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1

CHAPTER  1

Introduction

The collection of compiler directives, library routines, and environment variables 
described in this document collectively define the specification of the OpenMP 
Application Program Interface (OpenMP API) for shared-memory parallelism in C, C++ 
and Fortran programs.

This specification provides a model for parallel programming that is portable across 
shared memory architectures from different vendors. Compilers from numerous vendors 
support the OpenMP API. More information about the OpenMP API can be found at the 
following web site

http://www.openmp.org

The directives, library routines, and environment variables defined in this document 
allow users to create and manage parallel programs while permitting portability. The 
directives extend the C, C++ and Fortran base languages with single program multiple 
data (SPMD) constructs, tasking constructs, worksharing constructs, and 
synchronization constructs, and they provide support for sharing and privatizing data. 
The functionality to control the runtime environment is provided by library routines and 
environment variables. Compilers that support the OpenMP API often include a 
command line option to the compiler that activates and allows interpretation of all 
OpenMP directives.

1.1 Scope
The OpenMP API covers only user-directed parallelization, wherein the programmer 
explicitly specifies the actions to be taken by the compiler and runtime system in order 
to execute the program in parallel. OpenMP-compliant implementations are not required 
to check for data dependencies, data conflicts, race conditions, or deadlocks, any of 
which may occur in conforming programs. In addition, compliant implementations are 
not required to check for code sequences that cause a program to be classified as non-
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conforming. Application developers are responsible for correctly using the OpenMP API 
to produce a conforming program. The OpenMP API does not cover compiler-generated 
automatic parallelization and directives to the compiler to assist such parallelization.

1.2 Glossary

1.2.1 Threading Concepts

thread An execution entity with a stack and associated static memory, called 
threadprivate memory.

OpenMP thread A thread that is managed by the OpenMP runtime system.

thread-safe routine A routine that performs the intended function even when executed 
concurrently (by more than one thread).

1.2.2 OpenMP Language Terminology

base language A programming language that serves as the foundation of the OpenMP 
specification.

COMMENT: See Section 1.6 on page 17 for a listing of current base 
languages for the OpenMP API.

base program A program written in a base language.

structured block For C/C++, an executable statement, possibly compound, with a single entry 
at the top and a single exit at the bottom, or an OpenMP construct.

For Fortran, a block of executable statements with a single entry at the top and 
a single exit at the bottom, or an OpenMP construct.

COMMENTS: 

For all base languages, 

• Access to the structured block must not be the result of a branch.

• The point of exit cannot be a branch out of the structured block.
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Chapter 1 Introduction 3

For C/C++:

• The point of entry must not be a call to setjmp().

• longjmp() and throw() must not violate the entry/exit criteria.

• Calls to exit() are allowed in a structured block.

• An expression statement, iteration statement, selection statement, 
or try block is considered to be a structured block if the 
corresponding compound statement obtained by enclosing it in { 
and } would be a structured block.

For Fortran:

• STOP statements are allowed in a structured block.

enclosing context In C/C++, the innermost scope enclosing an OpenMP construct.

In Fortran, the innermost scoping unit enclosing an OpenMP construct.

directive In C/C++, a #pragma, and in Fortran, a comment, that specifies OpenMP 
program behavior.

COMMENT: See Section 2.1 on page 22 for a description of OpenMP 
directive syntax.

white space A non-empty sequence of space and/or horizontal tab characters.

OpenMP program A program that consists of a base program, annotated with OpenMP directives 
and runtime library routines.

conforming program An OpenMP program that follows all the rules and restrictions of the 
OpenMP specification.

declarative directive An OpenMP directive that may only be placed in a declarative context. A 
declarative directive has no associated executable user code, but instead has 
one or more associated user declarations.

COMMENT: Only the threadprivate directive is a declarative directive.

executable directive An OpenMP directive that is not declarative. That is, it may be placed in an 
executable context.

COMMENT: All directives except the threadprivate directive are 
executable directives.

stand-alone directive An OpenMP executable directive that has no associated executable user code.
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loop directive An OpenMP executable directive whose associated user code must be a loop 
nest that is a structured block.

COMMENTS:

For C/C++, only the for directive is a loop directive.

For Fortran, only the do directive and the optional end do directive 
are loop directives.

associated loop(s) The loop(s) controlled by a loop directive.

COMMENT: If the loop directive contains a collapse clause then there 
may be more than one associated loop.

construct An OpenMP executable directive (and for Fortran, the paired end directive, if 
any) and the associated statement, loop or structured block, if any, not 
including the code in any called routines. That is, in the lexical extent of an 
executable directive.

region All code encountered during a specific instance of the execution of a given 
construct or of an OpenMP library routine. A region includes any code in 
called routines as well as any implicit code introduced by the OpenMP 
implementation. The generation of a task at the point where a task directive 
is encountered is a part of the region of the encountering thread, but the 
explicit task region associated with the task directive is not.

COMMENTS:

A region may also be thought of as the dynamic or runtime extent of a 
construct or of an OpenMP library routine.

During the execution of an OpenMP program, a construct may give 
rise to many regions.

active parallel region A parallel region that is executed by a team consisting of more than one 
thread.

inactive parallel
region A parallel region that is executed by a team of only one thread.
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Chapter 1 Introduction 5

sequential part All code encountered during the execution of an OpenMP program that is not 
part of a parallel region corresponding to a parallel construct or a 
task region corresponding to a task construct.

COMMENTS: 

The sequential part executes as if it were enclosed by an inactive 
parallel region.

Executable statements in called routines may be in both the sequential 
part and any number of explicit parallel regions at different points 
in the program execution.

master thread The thread that encounters a parallel construct, creates a team, generates 
a set of tasks, then executes one of those tasks as thread number 0.

parent thread The thread that encountered the parallel construct and generated a 
parallel region is the parent thread of each of the threads in the team of 
that parallel region. The master thread of a parallel region is the 
same thread as its parent thread with respect to any resources associated with 
an OpenMP thread.

ancestor thread For a given thread, its parent thread or one of its parent thread’s ancestor 
threads.

team A set of one or more threads participating in the execution of a parallel 
region.

COMMENTS:

For an active parallel region, the team comprises the master thread 
and at least one additional thread.

For an inactive parallel region, the team comprises only the master 
thread.

initial thread The thread that executes the sequential part.

implicit parallel
region The inactive parallel region that encloses the sequential part of an OpenMP 

program.

nested construct A construct (lexically) enclosed by another construct.

nested region A region (dynamically) enclosed by another region. That is, a region 
encountered during the execution of another region.

COMMENT: Some nestings are conforming and some are not. See 
Section 2.10 on page 111 for the restrictions on nesting.
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closely nested region A region nested inside another region with no parallel region nested 
between them. 

all threads All OpenMP threads participating in the OpenMP program. 

current team All threads in the team executing the innermost enclosing parallel region 

encountering thread For a given region, the thread that encounters the corresponding construct.

all tasks All tasks participating in the OpenMP program. 

current team tasks All tasks encountered by the corresponding team. Note that the implicit tasks 
constituting the parallel region and any descendant tasks encountered 
during the execution of these implicit tasks are included in this binding task 
set. 

generating task For a given region the task whose execution by a thread generated the region.

binding thread set The set of threads that are affected by, or provide the context for, the 
execution of a region. 

The binding thread set for a given region can be all threads, the current team, 
or the encountering thread.

COMMENT: The binding thread set for a particular region is described in its 
corresponding subsection of this specification.

binding task set The set of tasks that are affected by, or provide the context for, the execution 
of a region. 

The binding task set for a given region can be all tasks, the current team 
tasks, or the generating task. 

COMMENT: The binding task set for a particular region (if applicable) is 
described in its corresponding subsection of this specification.
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Chapter 1 Introduction 7

binding region The enclosing region that determines the execution context and limits the 
scope of the effects of the bound region is called the binding region.

Binding region is not defined for regions whose binding thread set is all 
threads or the encountering thread, nor is it defined for regions whose binding 
task set is all tasks.

COMMENTS: 

The binding region for an ordered region is the innermost enclosing 
loop region.

The binding region for a taskwait region is the innermost enclosing 
task region.

For all other regions for which the binding thread set is the current 
team or the binding task set is the current team tasks, the binding 
region is the innermost enclosing parallel region.

For regions for which the binding task set is the generating task, the 
binding region is the region of the generating task.

A parallel region need not be active nor explicit to be a binding 
region.

A task region need not be explicit to be a binding region.

A region never binds to any region outside of the innermost enclosing 
parallel region.

orphaned construct A construct that gives rise to a region whose binding thread set is the current 
team, but is not nested within another construct giving rise to the binding 
region.

worksharing
construct A construct that defines units of work, each of which is executed exactly once 

by one of the threads in the team executing the construct.

For C/C++, worksharing constructs are for, sections, and single.

For Fortran, worksharing constructs are do, sections, single and 
workshare.

sequential loop A loop that is not associated with any OpenMP loop directive.

barrier A point in the execution of a program encountered by a team of threads, 
beyond which no thread in the team may execute until all threads in the team 
have reached the barrier and all explicit tasks generated by the team have 
executed to completion.
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1.2.3 Tasking Terminology
task A specific instance of executable code and its data environment, generated 

when a thread encounters a task construct or a parallel construct. 

task region A region consisting of all code encountered during the execution of a task. 

COMMENT: A parallel region consists of one or more implicit task 
regions. 

explicit task A task generated when a task construct is encountered during execution.

implicit task A task generated by the implicit parallel region or generated when a 
parallel construct is encountered during execution.

initial task The implicit task associated with the implicit parallel region.

current task For a given thread, the task corresponding to the task region in which it is 
executing.

child task A task is a child task of the region of its generating task. A child task region 
is not part of its generating task region.

descendant task A task that is the child task of a task region or of one of its descendant task 
regions.

task completion Task completion occurs when the end of the structured block associated with 
the construct that generated the task is reached.

COMMENT: Completion of the initial task occurs at program exit.

task scheduling point A point during the execution of the current task region at which it can be 
suspended to be resumed later; or the point of task completion, after which the 
executing thread may switch to a different task region. 

COMMENT: 

Within tied task regions, task scheduling points only appear in the 
following: 

• encountered task constructs 

• encountered taskyield constructs

• encountered taskwait constructs 

• encountered barrier directives 

• implicit barrier regions

• at the end of the tied task region

task switching The act of a thread switching from the execution of one task to another task.
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Chapter 1 Introduction 9

tied task A task that, when its task region is suspended, can be resumed only by the 
same thread that suspended it. That is, the task is tied to that thread. 

untied task A task that, when its task region is suspended, can be resumed by any thread 
in the team. That is, the task is not tied to any thread. 

undeferred task A task for which execution is not deferred with respect to its generating task 
region. That is, its generating task region is suspended until execution of the 
undeferred task is completed.

included task A task for which execution is sequentially included in the generating task 
region. That is, it is undeferred and executed immediately by the encountering 
thread.

merged task A task whose data environment, inclusive of ICVs, is the same as that of its 
generating task region.

final task A task that forces all of its child tasks to become final and included tasks.

task synchronization
construct A taskwait or a barrier construct. 

1.2.4 Data Terminology

variable A named data storage block, whose value can be defined and redefined during 
the execution of a program.

Array sections and substrings are not considered variables. 

private variable With respect to a given set of task regions that bind to the same parallel 
region, a variable whose name provides access to a different block of storage 
for each task region.

A variable that is part of another variable (as an array or structure element) 
cannot be made private independently of other components.

shared variable With respect to a given set of task regions that bind to the same parallel 
region, a variable whose name provides access to the same block of storage 
for each task region.

A variable that is part of another variable (as an array or structure element) 
cannot be shared independently of the other components, except for static data 
members of C++ classes.
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threadprivate
variable A variable that is replicated, one instance per thread, by the OpenMP 

implementation. Its name then provides access to a different block of storage 
for each thread.

A variable that is part of another variable (as an array or structure element) 
cannot be made threadprivate independently of the other components, except 
for static data members of C++ classes. 

threadprivate
memory The set of threadprivate variables associated with each thread.

data environment All the variables associated with the execution of a given task. The data 
environment for a given task is constructed from the data environment of the 
generating task at the time the task is generated.

defined For variables, the property of having a valid value.

For C:

For the contents of variables, the property of having a valid value.

For C++: 

For the contents of variables of POD (plain old data) type, the property of 
having a valid value.

For variables of non-POD class type, the property of having been constructed 
but not subsequently destructed.

For Fortran: 

For the contents of variables, the property of having a valid value. For the 
allocation or association status of variables, the property of having a valid 
status.

COMMENT: Programs that rely upon variables that are not defined are non-
conforming programs.

class type For C++: Variables declared with one of the class, struct, or union keywords.

1.2.5 Implementation Terminology

supporting n levels of
parallelism Implies allowing an active parallel region to be enclosed by n-1 active 

parallel regions.
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Chapter 1 Introduction 11

supporting the
OpenMP API Supporting at least one level of parallelism.

supporting nested
parallelism Supporting more than one level of parallelism.

internal control
variable A conceptual variable that specifies run-time behavior of a set of threads or 

tasks in an OpenMP program.

COMMENT: The acronym ICV is used interchangeably with the term internal 
control variable in the remainder of this specification.

compliant
implementation An implementation of the OpenMP specification that compiles and executes 

any conforming program as defined by the specification.

COMMENT: A compliant implementation may exhibit unspecified behavior 
when compiling or executing a non-conforming program.

unspecified behavior A behavior or result that is not specified by the OpenMP specification or not 
known prior to the compilation or execution of an OpenMP program.

Such unspecified behavior may result from:

• Issues documented by the OpenMP specification as having unspecified 
behavior.

• A non-conforming program.

• A conforming program exhibiting an implementation defined behavior.

implementation
defined Behavior that must be documented by the implementation, and is allowed to 

vary among different compliant implementations. An implementation is 
allowed to define this behavior as unspecified.

COMMENT: All features that have implementation defined behavior are 
documented in Appendix E.
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1.3 Execution Model
The OpenMP API uses the fork-join model of parallel execution.  Multiple threads of 
execution perform tasks defined implicitly or explicitly by OpenMP directives. The 
OpenMP API is intended to support programs that will execute correctly both as parallel 
programs (multiple threads of execution and a full OpenMP support library) and as 
sequential programs (directives ignored and a simple OpenMP stubs library). However, 
it is possible and permitted to develop a program that executes correctly as a parallel 
program but not as a sequential program, or that produces different results when 
executed as a parallel program compared to when it is executed as a sequential program. 
Furthermore, using different numbers of threads may result in different numeric results 
because of changes in the association of numeric operations. For example, a serial 
addition reduction may have a different pattern of addition associations than a parallel 
reduction. These different associations may change the results of floating-point addition.

An OpenMP program begins as a single thread of execution, called the initial thread. 
The initial thread executes sequentially, as if enclosed in an implicit task region, called 
the initial task region, that is defined by an implicit inactive parallel region 
surrounding the whole program.

When any thread encounters a parallel construct, the thread creates a team of itself 
and zero or more additional threads and becomes the master of the new team. A set of 
implicit tasks, one per thread, is generated. The code for each task is defined by the code 
inside the parallel construct. Each task is assigned to a different thread in the team 
and becomes tied; that is, it is always executed by the thread to which it is initially 
assigned. The task region of the task being executed by the encountering thread is 
suspended, and each member of the new team executes its implicit task. There is an 
implicit barrier at the end of the parallel construct. Only the master thread resumes 
execution beyond the end of the parallel construct, resuming the task region that 
was suspended upon encountering the parallel construct. Any number of 
parallel constructs can be specified in a single program. 

parallel regions may be arbitrarily nested inside each other. If nested parallelism is 
disabled, or is not supported by the OpenMP implementation, then the new team that is 
created by a thread encountering a parallel construct inside a parallel region 
will consist only of the encountering thread. However, if nested parallelism is supported 
and enabled, then the new team can consist of more than one thread. 

When any team encounters a worksharing construct, the work inside the construct is 
divided among the members of the team, and executed cooperatively instead of being 
executed by every thread. There is a default barrier at the end of each worksharing 
construct unless the nowait clause is present. Redundant execution of code by every 
thread in the team resumes after the end of the worksharing construct.
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Chapter 1 Introduction 13

When any thread encounters a task construct, a new explicit task is generated. 
Execution of explicitly generated tasks is assigned to one of the threads in the current 
team, subject to the thread's availability to execute work. Thus, execution of the new 
task could be immediate, or deferred until later. Threads are allowed to suspend the 
current task region at a task scheduling point in order to execute a different task. If the 
suspended task region is for a tied task, the initially assigned thread later resumes 
execution of the suspended task region. If the suspended task region is for an untied 
task, then any thread may resume its execution. Completion of all explicit tasks bound 
to a given parallel region is guaranteed before the master thread leaves the implicit 
barrier at the end of the region. Completion of a subset of all explicit tasks bound to a 
given parallel region may be specified through the use of task synchronization 
constructs. Completion of all explicit tasks bound to the implicit parallel region is 
guaranteed by the time the program exits.

Synchronization constructs and library routines are available in the OpenMP API to 
coordinate  tasks and data access in parallel regions. In addition, library routines 
and environment variables are available to control or to query the runtime environment 
of OpenMP programs.

The OpenMP specification makes no guarantee that input or output to the same file is 
synchronous when executed in parallel. In this case, the programmer is responsible for 
synchronizing input and output statements (or routines) using the provided 
synchronization constructs or library routines. For the case where each thread accesses a 
different file, no synchronization by the programmer is necessary.

1.4 Memory Model

1.4.1 Structure of the OpenMP Memory Model 
The OpenMP API provides a relaxed-consistency, shared-memory model. All OpenMP 
threads have access to a place to store and to retrieve variables, called the memory. In 
addition, each thread is allowed to have its own temporary view of the memory. The 
temporary view of memory for each thread is not a required part of the OpenMP 
memory model, but can represent any kind of intervening structure, such as machine 
registers, cache, or other local storage, between the thread and the memory. The 
temporary view of memory allows the thread to cache variables and thereby to avoid 
going to memory for every reference to a variable. Each thread also has access to 
another type of memory that must not be accessed by other threads, called threadprivate 
memory. 
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A directive that accepts data-sharing attribute clauses determines two kinds of access to 
variables used in the directive’s associated structured block: shared and private. Each 
variable referenced in the structured block has an original variable, which is the variable 
by the same name that exists in the program immediately outside the construct. Each 
reference to a shared variable in the structured block becomes a reference to the original 
variable. For each private variable referenced in the structured block, a new version of 
the original variable (of the same type and size) is created in memory for each  task that 
contains code associated with the directive. Creation of the new version does not alter 
the value of the original variable. However, the impact of attempts to access the original 
variable during the region associated with the directive is unspecified; see 
Section 2.9.3.3 on page 96 for additional details. References to a private variable in the 
structured block refer to the current task’s private version of the original variable. The 
relationship between the value of the original variable and the initial or final value of the 
private version depends on the exact clause that specifies it. Details of this issue, as well 
as other issues with privatization, are provided in Section 2.9 on page 84.

The minimum size at which a memory update may also read and write back adjacent 
variables that are part of another variable (as array or structure elements) is 
implementation defined but is no larger than required by the base language. 

A single access to a variable may be implemented with multiple load or store 
instructions, and hence is not guaranteed to be atomic with respect to other accesses to 
the same variable.  Accesses to variables smaller than the implementation defined 
minimum size or to C or C++ bit-fields may be implemented by reading, modifying, and 
rewriting a larger unit of memory, and may thus interfere with updates of variables or 
fields in the same unit of memory.

If multiple threads write without synchronization to the same memory unit, including 
cases due to atomicity considerations as described above, then a data race occurs. 
Similarly, if at least one thread reads from a memory unit and at least one thread writes 
without synchronization to that same memory unit, including cases due to atomicity 
considerations as described above, then a data race occurs. If a data race occurs then the 
result of the program is unspecified.

A private variable in a task region that eventually generates an inner nested parallel 
region is permitted to be made shared by implicit tasks in the inner parallel region. 
A private variable in a task region can be shared by an explicit task region generated 
during its execution. However, it is the programmer’s responsibility to ensure through 
synchronization that the lifetime of the variable does not end before completion of the 
explicit task region sharing it. Any other access by one task to the private variables of 
another task results in unspecified behavior.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16
17
18

19
20
21
22
23
24

25
26
27
28
29
30

31
32
33
34
35
36
37



Chapter 1 Introduction 15

1.4.2 The Flush Operation 
The memory model has relaxed-consistency because a thread’s temporary view of 
memory is not required to be consistent with memory at all times. A value written to a 
variable can remain in the thread’s temporary view until it is forced to memory at a later 
time. Likewise, a read from a variable may retrieve the value from the thread’s 
temporary view, unless it is forced to read from memory. The OpenMP flush operation 
enforces consistency between the temporary view and memory. 

The flush operation is applied to a set of variables called the flush-set. The flush 
operation restricts reordering of memory operations that an implementation might 
otherwise do. Implementations must not reorder the code for a memory operation for a 
given variable, or the code for a flush operation for the variable, with respect to a flush 
operation that refers to the same variable. 

If a thread has performed a write to its temporary view of a shared variable since its last 
flush of that variable, then when it executes another flush of the variable, the flush does 
not complete until the value of the variable has been written to the variable in memory. 
If a thread performs multiple writes to the same variable between two flushes of that 
variable, the flush ensures that the value of the last write is written to the variable in 
memory. A flush of a variable executed by a thread also causes its temporary view of the 
variable to be discarded, so that if its next memory operation for that variable is a read, 
then the thread will read from memory when it may again capture the value in the 
temporary view. When a thread executes a flush, no later memory operation by that 
thread for a variable involved in that flush is allowed to start until the flush completes. 
The completion of a flush of a set of variables executed by a thread is defined as the 
point at which all writes to those variables performed by the thread before the flush are 
visible in memory to all other threads and that thread’s temporary view of all variables 
involved is discarded.

The flush operation provides a guarantee of consistency between a thread’s temporary 
view and memory. Therefore, the flush operation can be used to guarantee that a value 
written to a variable by one thread may be read by a second thread. To accomplish this, 
the programmer must ensure that the second thread has not written to the variable since 
its last flush of the variable, and that the following sequence of events happens in the 
specified order: 

1. The value is written to the variable by the first thread. 

2. The variable is flushed by the first thread. 

3. The variable is flushed by the second thread. 

4. The value is read from the variable by the second thread.
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Note – OpenMP synchronization operations, described in Section 2.8 on page 67 and in 
Section 3.3 on page 141, are recommended for enforcing this order. Synchronization 
through variables is possible but is not recommended because the proper timing of 
flushes is difficult as shown in Section A.2 on page 162.

1.4.3 OpenMP Memory Consistency 
The restrictions in Section 1.4.2 on page 15 on reordering with respect to flush 
operations guarantee the following: 

• If the intersection of the flush-sets of two flushes performed by two different threads 
is non-empty, then the two flushes must be completed as if in some sequential order, 
seen by all threads. 

• If two operations performed by the same thread either access, modify, or flush the 
same variable, then they must be completed as if in that thread's program order, as 
seen by all threads. 

• If the intersection of the flush-sets of two flushes is empty, the threads can observe 
these flushes in any order.

The flush operation can be specified using the flush directive, and is also implied at 
various locations in an OpenMP program: see Section 2.8.6 on page 78 for details. For 
an example illustrating the memory model, see Section A.2 on page 162. 

Note – Since flush operations by themselves cannot prevent data races, explicit flush 
operations are only useful in combination with atomic directives.

OpenMP programs that:

• do not use atomic directives,

• do not rely on the accuracy of a false result from omp_test_lock and 
omp_test_nest_lock, and

• correctly avoid data races as required in Section 1.4.1 on page 13 

behave as though operations on shared variables were simply interleaved in an order 
consistent with the order in which they are performed by each thread. The relaxed 
consistency model is invisible for such programs, and any explicit flush operations in 
such programs are redundant.
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Chapter 1 Introduction 17

Implementations are allowed to relax the ordering imposed by implicit flush operations 
when the result is only visible to programs using atomic directives.

1.5 OpenMP Compliance
An implementation of the OpenMP API is compliant if and only if it compiles and 
executes all conforming programs according to the syntax and semantics laid out in 
Chapters 1, 2, 3 and 4. Appendices A, B, C, D, E and F and sections designated as Notes 
(see Section 1.7 on page 18) are for information purposes only and are not part of the 
specification.

The OpenMP API defines constructs that operate in the context of the base language that 
is supported by an implementation. If the base language does not support a language 
construct that appears in this document, a compliant OpenMP implementation is not 
required to support it, with the exception that for Fortran, the implementation must 
allow case insensitivity for directive and API routines names, and must allow identifiers 
of more than six characters.

All library, intrinsic and built-in routines provided by the base language must be thread-
safe in a compliant implementation. In addition, the implementation of the base 
language must also be thread-safe. For example, ALLOCATE and DEALLOCATE 
statements must be thread-safe in Fortran. Unsynchronized concurrent use of such 
routines by different threads must produce correct results (although not necessarily the 
same as serial execution results, as in the case of random number generation routines).

In both Fortran 90 and Fortran 95, variables with explicit initialization have the SAVE 
attribute implicitly. This is not the case in Fortran 77. However, a compliant OpenMP 
Fortran implementation must give such a variable the SAVE attribute, regardless of the 
underlying base language version.

Appendix E lists certain aspects of the OpenMP API that are implementation defined. A 
compliant implementation is required to define and document its behavior for each of 
the items in Appendix E.

1.6 Normative References

• ISO/IEC 9899:1990, Information Technology - Programming Languages - C.

This OpenMP API specification refers to ISO/IEC 9899:1990 as C90.
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• ISO/IEC 9899:1999, Information Technology - Programming Languages - C. 

This OpenMP API specification refers to ISO/IEC 9899:1999 as C99.

• ISO/IEC 14882:1998, Information Technology - Programming Languages - C++. 

This OpenMP API specification refers to ISO/IEC 14882:1998 as C++.

• ISO/IEC 1539:1980, Information Technology - Programming Languages - Fortran.

This OpenMP API specification refers to ISO/IEC 1539:1980 as Fortran 77.

• ISO/IEC 1539:1991, Information Technology - Programming Languages - Fortran.

This OpenMP API specification refers to ISO/IEC 1539:1991 as Fortran 90.

• ISO/IEC 1539-1:1997, Information Technology - Programming Languages - Fortran.

This OpenMP API specification refers to ISO/IEC 1539-1:1997 as Fortran 95.

Where this OpenMP API specification refers to C, C++ or Fortran, reference is made to 
the base language supported by the implementation.

1.7 Organization of this document
The remainder of this document is structured as follows: 

• Chapter 2: Directives

• Chapter 3: Runtime Library Routines

• Chapter 4: Environment Variables

• Appendix A: Examples

• Appendix B: Stubs for Runtime Library Routines

• Appendix C: OpenMP C and C++ Grammar

• Appendix D: Interface Declarations 

• Appendix E: OpenMP Implementation Defined Behaviors

• Appendix F: Features History
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Chapter 1 Introduction 19

Some sections of this document only apply to programs written in a certain base 
language. Text that applies only to programs whose base language is C or C++ is shown 
as follows: 

C/C++

C/C++
C/C++ specific text....

Text that applies only to programs whose base language is Fortran is shown as follows: 

Fortran

Fortran

Fortran specific text......

Where an entire page consists of, for example, Fortran specific text, a marker is shown 

Fortran (cont.)
at the top of the page like this:

Some text is for information only, and is not part of the normative specification. Such 
text is designated as a note, like this: 

Note – Non-normative text....
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CHAPTER 2                                           

Directives

This chapter describes the syntax and behavior of OpenMP directives, and is divided 
into the following sections:

• The language-specific directive format (Section 2.1 on page 22)

• Mechanisms to control conditional compilation (Section 2.2 on page 26)

• Control of OpenMP API ICVs (Section 2.3 on page 28)

• Details of each OpenMP directive (Section 2.4 on page 33 to Section 2.10 on page 
111)

C/C++
In C/C++, OpenMP directives are specified by using the #pragma mechanism provided 

C/C++
by the C and C++ standards. 

Fortran

In Fortran, OpenMP directives are specified by using special comments that are 
identified by unique sentinels. Also, a special comment form is available for conditional 

Fortran

compilation. 

Compilers can therefore ignore OpenMP directives and conditionally compiled code if 
support of the OpenMP API is not provided or enabled. A compliant implementation 
must provide an option or interface that ensures that underlying support of all OpenMP 
directives and OpenMP conditional compilation mechanisms is enabled. In the 
remainder of this document, the phrase OpenMP compilation is used to mean a 
compilation with these OpenMP features enabled.
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Fortran

Restrictions

The following restriction applies to all OpenMP directives: 

Fortran

• OpenMP directives may not appear in PURE or ELEMENTAL procedures.

2.1 Directive Format

C/C++
OpenMP directives for C/C++ are specified with the pragma preprocessing directive. 
The syntax of an OpenMP directive is formally specified by the grammar in 
Appendix C, and informally as follows:

Each directive starts with #pragma omp. The remainder of the directive follows the 
conventions of the C and C++ standards for compiler directives. In particular, white 
space can be used before and after the #, and sometimes white space must be used to 
separate the words in a directive. Preprocessing tokens following the #pragma omp 
are subject to macro replacement. 

Directives are case-sensitive. 

An OpenMP executable directive applies to at most one succeeding statement, which 

C/C++
must be a structured block.

Fortran

OpenMP directives for Fortran are specified as follows:

All OpenMP compiler directives must begin with a directive sentinel. The format of a 
sentinel differs between fixed and free-form source files, as described in Section 2.1.1 
on page 23 and Section 2.1.2 on page 24. 

Directives are case-insensitive. Directives cannot be embedded within continued 
statements, and statements cannot be embedded within directives.

#pragma omp directive-name [clause[ [,] clause]...] new-line 

sentinel directive-name [clause[[,] clause]...] 
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Chapter 2 Directives 23

In order to simplify the presentation, free form is used for the syntax of OpenMP 

Fortran

directives for Fortran in the remainder of this document, except as noted.

Only one directive-name can be specified per directive (note that this includes combined 
directives, see Section 2.6 on page 55). The order in which clauses appear on directives 
is not significant. Clauses on directives may be repeated as needed, subject to the 
restrictions listed in the description of each clause.

Some data-sharing attribute clauses (Section 2.9.3 on page 92), data copying clauses 
(Section 2.9.4 on page 107), the threadprivate directive (Section 2.9.2 on page 88) 
and the flush directive (Section 2.8.6 on page 78) accept a list. A list consists of a 
comma-separated collection of one or more list items. 

C/C++
A list item is a variable name, subject to the restrictions specified in each of the sections 

C/C++
describing clauses and directives for which a list appears.

Fortran

A list item is a variable name or a common block name (enclosed in slashes), subject to 
the restrictions specified in each of the sections describing clauses and directives for 

Fortran

which a list appears.

Fortran

2.1.1 Fixed Source Form Directives
The following sentinels are recognized in fixed form source files:

Sentinels must start in column 1 and appear as a single word with no intervening 
characters. Fortran fixed form line length, white space, continuation, and column rules 
apply to the directive line. Initial directive lines must have a space or zero in column 6, 
and continuation directive lines must have a character other than a space or a zero in 
column 6.

Comments may appear on the same line as a directive. The exclamation point initiates a 
comment when it appears after column 6. The comment extends to the end of the source 
line and is ignored. If the first non-blank character after the directive sentinel of an 
initial or continuation directive line is an exclamation point, the line is ignored.

!$omp | c$omp | *$omp

1
2

3
4
5
6

7
8
9

10

11
12

13
14
15

16

17

18

19
20
21
22
23

24
25
26
27



24 OpenMP API • Version 3.1  July 2011

Fortran (cont.)

Note – in the following example, the three formats for specifying the directive are 
equivalent (the first line represents the position of the first 9 columns):

c23456789

!$omp parallel do shared(a,b,c)

c$omp parallel do

c$omp+shared(a,b,c)

c$omp paralleldoshared(a,b,c)

2.1.2 Free Source Form Directives

The following sentinel is recognized in free form source files:

The sentinel can appear in any column as long as it is preceded only by white space 
(spaces and tab characters). It must appear as a single word with no intervening 
character. Fortran free form line length, white space, and continuation rules apply to the 
directive line. Initial directive lines must have a space after the sentinel. Continued 
directive lines must have an ampersand (&) as the last nonblank character on the line, 
prior to any comment placed inside the directive. Continuation directive lines can have 
an ampersand after the directive sentinel with optional white space before and after the 
ampersand.

Comments may appear on the same line as a directive. The exclamation point (!) 
initiates a comment. The comment extends to the end of the source line and is ignored. 
If the first nonblank character after the directive sentinel is an exclamation point, the 
line is ignored.

One or more blanks or horizontal tabs must be used to separate adjacent keywords in 
directives in free source form, except in the following cases, where white space is 
optional between the given pair of keywords:

!$omp
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Chapter 2 Directives 25

Note – in the following example the three formats for specifying the directive are 
equivalent (the first line represents the position of the first 9 columns):

!23456789

       !$omp parallel do &

                 !$omp shared(a,b,c)

       !$omp parallel &

      !$omp&do shared(a,b,c)

!$omp paralleldo shared(a,b,c)

Fortran

end atomic

end critical

end do

end master

end ordered

end parallel

end sections

end single

end task

end workshare

parallel do

parallel sections

parallel workshare
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2.2 Conditional Compilation
In implementations that support a preprocessor, the _OPENMP macro name is defined to 
have the decimal value yyyymm where yyyy and mm are the year and month designations 
of the version of the OpenMP API that the implementation supports. 

If this macro is the subject of a #define or a #undef preprocessing directive, the 
behavior is unspecified.

For examples of conditional compilation, see Section A.3 on page 169.

Fortran

The OpenMP API requires Fortran lines to be compiled conditionally, as described in 
the following sections.

2.2.1 Fixed Source Form Conditional Compilation 
Sentinels
The following conditional compilation sentinels are recognized in fixed form source 
files:

To enable conditional compilation, a line with a conditional compilation sentinel must 
satisfy the following criteria: 

• The sentinel must start in column 1 and appear as a single word with no intervening 
white space. 

• After the sentinel is replaced with two spaces, initial lines must have a space or zero 
in column 6 and only white space and numbers in columns 1 through 5.

• After the sentinel is replaced with two spaces, continuation lines must have a 
character other than a space or zero in column 6 and only white space in columns 1 
through 5.

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not 
met, the line is left unchanged.

!$ | *$ | c$ 
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Fortran (cont.)

Note – in the following example, the two forms for specifying conditional compilation 
in fixed source form are equivalent (the first line represents the position of the first 9 
columns):

c23456789

!$ 10 iam = omp_get_thread_num() +

!$   &          index

#ifdef _OPENMP

   10 iam = omp_get_thread_num() +

     &          index

#endif

2.2.2 Free Source Form Conditional Compilation 
Sentinel
The following conditional compilation sentinel is recognized in free form source files:

To enable conditional compilation, a line with a conditional compilation sentinel must 
satisfy the following criteria: 

• The sentinel can appear in any column but must be preceded only by white space.

• The sentinel must appear as a single word with no intervening white space. 

• Initial lines must have a space after the sentinel. 

• Continued lines must have an ampersand as the last nonblank character on the line, 
prior to any comment appearing on the conditionally compiled line. Continued lines 
can have an ampersand after the sentinel, with optional white space before and after 
the ampersand. 

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not 
met, the line is left unchanged. 

!$
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Note – in the following example, the two forms for specifying conditional compilation 
in free source form are equivalent (the first line represents the position of the first 9 
columns):

c23456789

 !$ iam = omp_get_thread_num() +    &

 !$&    index

#ifdef _OPENMP

    iam = omp_get_thread_num() +    &

        index

#endif

Fortran

2.3 Internal Control Variables
An OpenMP implementation must act as if there were internal control variables (ICVs) 
that control the behavior of an OpenMP program. These ICVs store information such as 
the number of threads to use for future parallel regions, the schedule to use for 
worksharing loops and whether nested parallelism is enabled or not. The ICVs are given 
values at various times (described below) during the execution of the program. They are 
initialized by the implementation itself and may be given values through OpenMP 
environment variables and through calls to OpenMP API routines. The program can 
retrieve the values of these ICVs only through OpenMP API routines.

For purposes of exposition, this document refers to the ICVs by certain names, but an 
implementation is not required to use these names or to offer any way to access the 
variables other than through the ways shown in Section 2.3.2 on page 29.

2.3.1 ICV Descriptions
The following ICVs store values that affect the operation of parallel regions.
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• dyn-var - controls whether dynamic adjustment of the number of threads is enabled 
for encountered parallel regions. There is one copy of this ICV per data 
environment. 

• nest-var - controls whether nested parallelism is enabled for encountered parallel 
regions. There is one copy of this ICV per data environment. 

• nthreads-var - controls the number of threads requested for encountered parallel 
regions. There is one copy of this ICV per data environment. 

• thread-limit-var - controls the maximum number of threads participating in the 
OpenMP program. There is one copy of this ICV for the whole program. 

• max-active-levels-var - controls the maximum number of nested active parallel 
regions. There is one copy of this ICV for the whole program. 

The following ICVs store values that affect the operation of loop regions.

• run-sched-var - controls the schedule that the runtime schedule clause uses for 
loop regions. There is one copy of this ICV per data environment.

• def-sched-var - controls the implementation defined default scheduling of loop 
regions. There is one copy of this ICV for the whole program. 

The following ICVs store values that affect the program execution.

• bind-var - controls the binding of threads to processors. If binding is enabled, the 
execution environment is advised not to move OpenMP threads between processors. 
There is one copy of this ICV for the whole program. 

• stacksize-var - controls the stack size for threads that the OpenMP implementation 
creates. There is one copy this ICV for the whole program. 

• wait-policy-var - controls the desired behavior of waiting threads. There is one copy 
of this ICV for the whole program. 

2.3.2 Modifying and Retrieving ICV Values
The following table shows the methods for retrieving the values of the ICVs as well as 
their initial values:

ICV Scope Ways to modify value Way to retrieve value Initial value

dyn-var data 
environment

OMP_DYNAMIC
omp_set_dynamic()

omp_get_dynamic() See comments 
below

nest-var data 
environment

OMP_NESTED
omp_set_nested()

omp_get_nested() false

nthreads-var data 
environment

OMP_NUM_THREADS
omp_set_num_threads()

omp_get_max_threads() Implementation 
defined

run-sched-var data 
environment

OMP_SCHEDULE
omp_set_schedule()

omp_get_schedule() Implementation 
defined
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Comments:

• The value of the nthreads-var ICV is a list. The runtime call
omp_set_num_threads() sets the value of the first element of this list, and
omp_get_max_threads() retrieves the value of the first element of this list.

• The initial value of dyn-var is implementation defined if the implementation supports 
dynamic adjustment of the number of threads; otherwise, the initial value is false. 

• The initial value of max-active-levels-var is the number of levels of parallelism that 
the implementation supports. See the definition of supporting n levels of parallelism 
in Section 1.2.5 on page 10 for further details.

After the initial values are assigned, but before any OpenMP construct or OpenMP API 
routine executes, the values of any OpenMP environment variables that were set by the 
user are read and the associated ICVs are modified accordingly. After this point, no 
changes to any OpenMP environment variables will affect the ICVs.

Clauses on OpenMP constructs do not modify the values of any of the ICVs.

2.3.3 How the Per-Data Environment ICVs Work 
Each data environment has its own copies of internal variables dyn-var, nest-var, 
nthreads-var, and run-sched-var.

Calls to omp_set_num_threads(), omp_set_dynamic(), 
omp_set_nested(), and omp_set_schedule() modify only the ICVs in the 
data environment of their binding task.

When a task construct or parallel construct is encountered, the generated task(s) 
inherit the values of dyn-var, nest-var, and run-sched-var from the generating task's ICV 
values.

def-sched-var global (none) (none) Implementation 
defined

bind-var global OMP_PROC_BIND (none) Implementation 
defined

stacksize-var global OMP_STACKSIZE (none) Implementation 
defined

wait-policy-var global OMP_WAIT_POLICY (none) Implementation 
defined

thread-limit-var global OMP_THREAD_LIMIT omp_get_thread_limit() Implementation
defined

max-active-levels-var global OMP_MAX_ACTIVE_LEVELS
omp_set_max_active_
levels() 

omp_get_max_active_
levels() 

See comments 
below

ICV Scope Ways to modify value Way to retrieve value Initial value
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When a task construct is encountered, the generated task inherits the value of 
nthreads-var from the generating task's nthreads-var value. When a parallel 
construct is encountered, and the generating task's nthreads-var list contains a single 
element, the generated task(s) inherit that list as the value of nthreads-var. When a 
parallel construct is encountered, and the generating task's nthreads-var list contains 
multiple elements, the generated task(s) inherit the value of nthreads-var as the list 
obtained by deletion of the first element from the generating task's nthreads-var value.

When encountering a loop worksharing region with schedule(runtime), all 
implicit task regions that constitute the binding parallel region must have the same value 
for run-sched-var in their data environments. Otherwise, the behavior is unspecified.

2.3.4 ICV Override Relationships 
The override relationships among various construct clauses, OpenMP API routines, 
environment variables, and the initial values of ICVs are shown in the following table: 

* The num_threads clause and omp_set_num_threads() override the value of 
the OMP_NUM_THREADS environment variable and the initial value of the first element 
of the nthreads-var ICV.

Cross References:
• parallel construct, see Section 2.4 on page 33.

• num_threads clause, see Section 2.4.1 on page 36.

construct 
clause, if used overrides call to API routine

overrides setting of 
environment variable

overrides initial 
value of

(none) omp_set_dynamic() OMP_DYNAMIC dyn-var

(none) omp_set_nested() OMP_NESTED nest-var

num_threads omp_set_num_threads() OMP_NUM_THREADS nthreads-var *

schedule omp_set_schedule() OMP_SCHEDULE run-sched-var

(none) (none) OMP_PROC_BIND bind-var

schedule (none) (none) def-sched-var

(none) (none) OMP_STACKSIZE stacksize-var

(none) (none) OMP_WAIT_POLICY wait-policy-var

(none) (none) OMP_THREAD_LIMIT thread-limit-var

(none) omp_set_max_active_levels() OMP_MAX_ACTIVE_LEVELS max-active-levels-var
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• schedule clause, see Section 2.5.1.1 on page 47.

• Loop construct, see Section 2.5.1 on page 39.

• omp_set_num_threads routine, see Section 3.2.1 on page 116.

• omp_get_max_threads routine, see Section 3.2.3 on page 118.

• omp_set_dynamic routine, see Section 3.2.7 on page 123.

• omp_get_dynamic routine, see Section 3.2.8 on page 124.

• omp_set_nested routine, see Section 3.2.9 on page 125.

• omp_get_nested routine, see Section 3.2.10 on page 126.

• omp_set_schedule routine, see Section 3.2.11 on page 128.

• omp_get_schedule routine, see Section 3.2.12 on page 130.

• omp_get_thread_limit routine, see Section 3.2.13 on page 131.

• omp_set_max_active_levels routine, see Section 3.2.14 on page 132.

• omp_get_max_active_levels routine, see Section 3.2.15 on page 134.

• OMP_SCHEDULE environment variable, see Section 4.1 on page 154.

• OMP_NUM_THREADS environment variable, see Section 4.2 on page 155.

• OMP_DYNAMIC environment variable, see Section 4.3 on page 156.

• OMP_PROC_BIND environment variable, see Section 4.4 on page 156

• OMP_NESTED environment variable, see Section 4.5 on page 157.

• OMP_STACKSIZE environment variable, see Section 4.6 on page 157. 

• OMP_WAIT_POLICY environment variable, see Section 4.7 on page 158. 

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 4.8 on page 159.

• OMP_THREAD_LIMIT environment variable, see Section 4.9 on page 160.
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2.4 parallel Construct

Summary

This fundamental construct starts parallel execution. See Section 1.3 on page 12 for a 
general description of the OpenMP execution model.

Syntax

C/C++
The syntax of the parallel construct is as follows:

where clause is one of the following:

C/C++

Fortran

The syntax of the parallel construct is as follows:

#pragma omp parallel [clause[ [, ]clause] ...] new-line
structured-block

if(scalar-expression)

num_threads(integer-expression)

default(shared | none)

private(list)

firstprivate(list)

shared(list)

copyin(list)

reduction(operator: list)

!$omp parallel [clause[[,] clause]...]
structured-block

!$omp end parallel
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where clause is one of the following:

Fortran

The end parallel directive denotes the end of the parallel construct.

Binding

The binding thread set for a parallel region is the encountering thread. The 
encountering thread becomes the master thread of the new team.

Description

When a thread encounters a parallel construct, a team of threads is created to 
execute the parallel region (see Section 2.4.1 on page 36 for more information about 
how the number of threads in the team is determined, including the evaluation of the if 
and num_threads clauses). The thread that encountered the parallel construct 
becomes the master thread of the new team, with a thread number of zero for the 
duration of the new parallel region. All threads in the new team, including the 
master thread, execute the region. Once the team is created, the number of threads in the 
team remains constant for the duration of that parallel region. 

Within a parallel region, thread numbers uniquely identify each thread. Thread 
numbers are consecutive whole numbers ranging from zero for the master thread up to 
one less than the number of threads in the team. A thread may obtain its own thread 
number by a call to the omp_get_thread_num library routine. 

A set of implicit tasks, equal in number to the number of threads in the team, is 
generated by the encountering thread. The structured block of the parallel construct 
determines the code that will be executed in each implicit task. Each task is assigned to 
a different thread in the team and becomes tied. The task region of the task being 

if(scalar-logical-expression)

num_threads(scalar-integer-expression)

default(private | firstprivate | shared | none)

private(list)

firstprivate(list)

shared(list)

copyin(list)

reduction({operator|intrinsic_procedure_name}:list)
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executed by the encountering thread is suspended and each thread in the team executes 
its implicit task. Each thread can execute a path of statements that is different from that 
of the other threads.

The implementation may cause any thread to suspend execution of its implicit task at a 
task scheduling point, and switch to execute any explicit task generated by any of the 
threads in the team, before eventually resuming execution of the implicit task (for more 
details see Section 2.7 on page 61).

There is an implied barrier at the end of a parallel region. After the end of a 
parallel region, only the master thread of the team resumes execution of the 
enclosing task region.

If a thread in a team executing a parallel region encounters another parallel 
directive, it creates a new team, according to the rules in Section 2.4.1 on page 36, and 
it becomes the master of that new team.

If execution of a thread terminates while inside a parallel region, execution of all 
threads in all teams terminates. The order of termination of threads is unspecified. All 
work done by a team prior to any barrier that the team has passed in the program is 
guaranteed to be complete. The amount of work done by each thread after the last 
barrier that it passed and before it terminates is unspecified.

For an example of the parallel construct, see Section A.5 on page 172. For an 
example of the num_threads clause, see Section A.7 on page 177.

Restrictions

Restrictions to the parallel construct are as follows:

• A program that branches into or out of a parallel region is non-conforming.

• A program must not depend on any ordering of the evaluations of the clauses of the 
parallel directive, or on any side effects of the evaluations of the clauses.

• At most one if clause can appear on the directive.

• At most one num_threads clause can appear on the directive. The num_threads 
expression must evaluate to a positive integer value.

C/C++
• A throw executed inside a parallel region must cause execution to resume 

within the same parallel region, and the same thread that threw the exception 

C/C++
must catch it.
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Fortran

• Unsynchronized use of Fortran I/O statements by multiple threads on the same unit 

Fortran

has unspecified behavior.

Cross References

• default, shared, private, firstprivate, and reduction clauses, see 
Section 2.9.3 on page 92.

• copyin clause, see Section 2.9.4 on page 107.

• omp_get_thread_num routine, see Section 3.2.4 on page 119.

2.4.1 Determining the Number of Threads for a 
parallel Region
When execution encounters a parallel directive, the value of the if clause or 
num_threads clause (if any) on the directive, the current parallel context, and the 
values of the nthreads-var, dyn-var, thread-limit-var, max-active-level-var, and nest-var 
ICVs are used to determine the number of threads to use in the region.

Note that using a variable in an if or num_threads clause expression of a 
parallel construct causes an implicit reference to the variable in all enclosing 
constructs. The if clause expression and the num_threads clause expression are 
evaluated in the context outside of the parallel construct, and no ordering of those 
evaluations is specified. It is also unspecified whether, in what order, or how many times 
any side-effects of the evaluation of the num_threads or if clause expressions occur.

When a thread encounters a parallel construct, the number of threads is determined 
according to Algorithm 2.1.

Algorithm 2.1

let ThreadsBusy be the number of OpenMP threads currently executing;

let ActiveParRegions be the number of enclosing active parallel regions;

if an if clause exists

then let IfClauseValue be the value of the if clause expression; 

else let IfClauseValue = true; 

if a num_threads clause exists 
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Note – Since the initial value of the dyn-var ICV is implementation defined, programs 
that depend on a specific number of threads for correct execution should explicitly 
disable dynamic adjustment of the number of threads.

Cross References
• nthreads-var, dyn-var, thread-limit-var, max-active-level-var, and nest-var ICVs, see 

Section 2.3 on page 28.

then let ThreadsRequested be the value of the num_threads clause 
expression; 

else let ThreadsRequested = value of the first element of nthreads-var; 

let ThreadsAvailable = (thread-limit-var - ThreadsBusy + 1);

if (IfClauseValue = false) 

then number of threads = 1; 

else if (ActiveParRegions >= 1) and (nest-var = false) 

then number of threads = 1; 

else if (ActiveParRegions = max-active-levels-var) 

then number of threads = 1; 

else if (dyn-var = true) and (ThreadsRequested <= ThreadsAvailable)

then number of threads = [ 1 : ThreadsRequested ];

else if (dyn-var = true) and (ThreadsRequested > ThreadsAvailable)

then number of threads = [ 1 : ThreadsAvailable ];

else if (dyn-var = false) and (ThreadsRequested <= ThreadsAvailable)

then number of threads = ThreadsRequested;

else if (dyn-var = false) and (ThreadsRequested > ThreadsAvailable)

then behavior is implementation defined;

Algorithm 2.1
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2.5 Worksharing Constructs
A worksharing construct distributes the execution of the associated region among the 
members of the team that encounters it. Threads execute portions of the region in the 
context of the implicit tasks each one is executing. If the team consists of only one 
thread then the worksharing region is not executed in parallel.

A worksharing region has no barrier on entry; however, an implied barrier exists at the 
end of the worksharing region, unless a nowait clause is specified. If a nowait 
clause is present, an implementation may omit the barrier at the end of the worksharing 
region. In this case, threads that finish early may proceed straight to the instructions 
following the worksharing region without waiting for the other members of the team to 
finish the worksharing region, and without performing a flush operation (see 
Section A.10 on page 182 for an example). 

The OpenMP API defines the following worksharing constructs, and these are described 
in the sections that follow:

• loop construct

• sections construct

• single construct

• workshare construct

Restrictions

The following restrictions apply to worksharing constructs:

• Each worksharing region must be encountered by all threads in a team or by none at 
all.

• The sequence of worksharing regions and barrier regions encountered must be the 
same for every thread in a team.
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2.5.1 Loop Construct

Summary

The loop construct specifies that the iterations of one or more associated loops will be 
executed in parallel by threads in the team in the context of their implicit tasks. The 
iterations are distributed across threads that already exist in the team executing the 
parallel region to which the loop region binds.

Syntax

C/C++
The syntax of the loop construct is as follows:

where clause is one of the following: 

#pragma omp for [clause[[,] clause] ... ] new-line
for-loops

private(list)

firstprivate(list)

lastprivate(list)

reduction(operator: list)

schedule(kind[, chunk_size])

collapse(n)

ordered

nowait
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C/C++ (cont.)
The for directive places restrictions on the structure of all associated for-loops. 
Specifically, all associated for-loops must have the following canonical form:

for (init-expr; test-expr; incr-expr) structured-block

init-expr One of the following:
var = lb
integer-type var = lb
random-access-iterator-type var = lb
pointer-type var = lb

test-expr One of the following:
var relational-op b
b relational-op var

incr-expr One of the following:
++var
var++
--var
var--
var += incr
var -= incr
var = var + incr
var = incr + var
var = var - incr

var One of the following:
 A variable of a signed or unsigned integer type.

For C++, a variable of a random access iterator type.
For C, a variable of a pointer type.

If this variable would otherwise be shared, it is implicitly made 
private in the loop construct. This variable must not be 
modified during the execution of the for-loop other than in 
incr-expr. Unless the variable is specified lastprivate on 
the loop construct, its value after the loop is unspecified.

relational-op One of the following:
<
<=
>
>=

lb and b Loop invariant expressions of a type compatible with the type 
of var.

incr A loop invariant integer expression.
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The canonical form allows the iteration count of all associated loops to be computed 
before executing the outermost loop. The computation is performed for each loop in an 
integer type. This type is derived from the type of var as follows:

• If var is of an integer type, then the type is the type of var.

• For C++, if var is of a random access iterator type, then the type is the type that 
would be used by std::distance applied to variables of the type of var.

• For C, if var is of a pointer type, then the type is ptrdiff_t.

The behavior is unspecified if any intermediate result required to compute the iteration 
count cannot be represented in the type determined above.

There is no implied synchronization during the evaluation of the lb, b, or incr 
expressions. It is unspecified whether, in what order, or how many times any side effects 
within the lb, b, or incr expressions occur.

Note – Random access iterators are required to support random access to elements in 
constant time. Other iterators are precluded by the restrictions since they can take linear 
time or offer limited functionality. It is therefore advisable to use tasks to parallelize 
those cases. 

C/C++

Fortran

The syntax of the loop construct is as follows: 

where clause is one of the following:

!$omp do [clause[[,] clause] ... ] 
 do-loops
[!$omp end do [nowait] ] 

private(list)

firstprivate(list)

lastprivate(list)

reduction({operator|intrinsic_procedure_name}:list)
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If an end do directive is not specified, an end do directive is assumed at the end of the 
do-loop.

All associated do-loops must be do-constructs as defined by the Fortran standard. If an 
end do directive follows a do-construct in which several loop statements share a DO 
termination statement, then the directive can only be specified for the outermost of these 
DO statements. See Section A.8 on page 179 for examples.

If any of the loop iteration variables would otherwise be shared, they are implicitly 
made private on the loop construct. See Section A.9 on page 181 for examples. Unless 
the loop iteration variables are specified lastprivate on the loop construct, their 

Fortran

values after the loop are unspecified.

Binding

The binding thread set for a loop region is the current team. A loop region binds to the 
innermost enclosing parallel region. Only the threads of the team executing the 
binding parallel region participate in the execution of the loop iterations and the 
implied barrier of the loop region if the barrier is not eliminated by a nowait clause.

Description

The loop construct is associated with a loop nest consisting of one or more loops that 
follow the directive.

There is an implicit barrier at the end of a loop construct unless a nowait clause is 
specified.

The collapse clause may be used to specify how many loops are associated with the 
loop construct.  The parameter of the collapse clause must be a constant positive 
integer expression. If no collapse clause is present, the only loop that is associated 
with the loop construct is the one that immediately follows the loop directive.

If more than one loop is associated with the loop construct, then the iterations of all 
associated loops are collapsed into one larger iteration space that is then divided 
according to the schedule clause. The sequential execution of the iterations in all 
associated loops determines the order of the iterations in the collapsed iteration space.

schedule(kind[, chunk_size])

collapse(n)

ordered
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The iteration count for each associated loop is computed before entry to the outermost 
loop. If execution of any associated loop changes any of the values used to compute any 
of the iteration counts, then the behavior is unspecified.

The integer type (or kind, for Fortran) used to compute the iteration count for the 
collapsed loop is implementation defined.

A worksharing loop has logical iterations numbered 0,1,...,N-1 where N is the number of 
loop iterations, and the logical numbering denotes the sequence in which the iterations 
would be executed if the associated loop(s) were executed by a single thread. The 
schedule clause specifies how iterations of the associated loops are divided into 
contiguous non-empty subsets, called chunks, and how these chunks are distributed 
among threads of the team. Each thread executes its assigned chunk(s) in the context of 
its implicit task. The chunk_size expression is evaluated using the original list items of 
any variables that are made private in the loop construct. It is unspecified whether, in 
what order, or how many times, any side-effects of the evaluation of this expression 
occur. The use of a variable in a schedule clause expression of a loop construct 
causes an implicit reference to the variable in all enclosing constructs.

Different loop regions with the same schedule and iteration count, even if they occur in 
the same parallel region, can distribute iterations among threads differently. The only 
exception is for the static schedule as specified in Table 2-1. Programs that depend 
on which thread executes a particular iteration under any other circumstances are 
non-conforming. 

See Section 2.5.1.1 on page 47 for details of how the schedule for a worksharing loop is 
determined. 

The schedule kind can be one of those specified in Table 2-1.
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TABLE 2-1 schedule clause kind values

static When schedule(static, chunk_size) is specified, iterations are divided 
into chunks of size chunk_size, and the chunks are assigned to the threads in 
the team in a round-robin fashion in the order of the thread number. 

When no chunk_size is specified, the iteration space is divided into chunks that 
are approximately equal in size, and at most one chunk is distributed to each 
thread. Note that the size of the chunks is unspecified in this case.

A compliant implementation of the static schedule must ensure that the 
same assignment of logical iteration numbers to threads will be used in two 
loop regions if the following conditions are satisfied: 1) both loop regions have 
the same number of loop iterations, 2) both loop regions have the same value 
of chunk_size specified, or both loop regions have no chunk_size specified, and 
3) both loop regions bind to the same parallel region. A data dependence 
between the same logical iterations in two such loops is guaranteed to be 
satisfied allowing safe use of the nowait clause (see Section A.10 on page 
182 for examples). 

dynamic When schedule(dynamic, chunk_size) is specified, the iterations are
distributed to  threads in the team in chunks as the threads request them. Each 
thread executes a chunk of iterations, then requests another chunk, until no 
chunks remain to be distributed. 

Each chunk contains chunk_size iterations, except for the last chunk to be 
distributed, which may have fewer iterations.

When no chunk_size is specified, it defaults to 1.

guided When schedule(guided, chunk_size) is specified, the iterations are
assigned to threads in the team in chunks as the executing threads request 
them. Each thread executes a chunk of iterations, then requests another chunk, 
until no chunks remain to be assigned.

For a chunk_size of 1, the size of each chunk is proportional to the
number of unassigned iterations divided by the number of threads in the team,
decreasing to 1. For a chunk_size with value k (greater than 1), the
size of each chunk is determined in the same way, with the restriction
that the chunks do not contain fewer than k iterations (except for the last chunk
to be assigned, which may have fewer than k iterations).

When no chunk_size is specified, it defaults to 1.

auto When schedule(auto) is specified, the decision regarding scheduling is 
delegated to the compiler and/or runtime system. The programmer gives the 
implementation the freedom to choose any possible mapping of iterations to 
threads in the team.

1
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Note – For a team of p threads and a loop of n iterations, let  be the integer q 
that satisfies n = p*q - r, with . One compliant implementation of the static 
schedule (with no specified chunk_size) would behave as though chunk_size had been 
specified with value q. Another compliant implementation would assign q iterations to 
the first p-r threads, and q-1 iterations to the remaining r threads. This illustrates why a 
conforming program must not rely on the details of a particular implementation. 

A compliant implementation of the guided schedule with a chunk_size value of k 
would assign q =  iterations to the first available thread and set n to the larger of 
n-q and p*k. It would then repeat this process until q is greater than or equal to the 
number of remaining iterations, at which time the remaining iterations form the final 
chunk. Another compliant implementation could use the same method, except with 
q = , and set n to the larger of n-q and 2*p*k. 

Restrictions

Restrictions to the loop construct are as follows:

• All loops associated with the loop construct must be perfectly nested; that is, there 
must be no intervening code nor any OpenMP directive between any two loops.

• The values of the loop control expressions of the loops associated with the loop 
construct must be the same for all the threads in the team.

• Only one schedule clause can appear on a loop directive.

• Only one collapse clause can appear on a loop directive.

• chunk_size must be a loop invariant integer expression with a positive value.

• The value of the chunk_size expression must be the same for all threads in the team.

• The value of the run-sched-var ICV must be the same for all threads in the team.

• When schedule(runtime) or schedule(auto) is specified, chunk_size must 
not be specified.

• Only one ordered clause can appear on a loop directive.

• The ordered clause must be present on the loop construct if any ordered region 
ever binds to a loop region arising from the loop construct.

• The loop iteration variable may not appear in a threadprivate directive.

runtime When schedule(runtime) is specified, the decision regarding scheduling 
is deferred until run time, and the schedule and chunk size are taken from the 
run-sched-var ICV. If the ICV is set to auto, the schedule is implementation 
defined.
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C/C++
• The associated for-loops must be structured blocks.

• Only an iteration of the innermost associated loop may be curtailed by a continue 
statement.

• No statement can branch to any associated for statement.

• Only one nowait clause can appear on a for directive.

• If test-expr is of the form var relational-op b and relational-op is < or <= then 
incr-expr must cause var to increase on each iteration of the loop. If test-expr is of 
the form var relational-op b and relational-op is > or >= then incr-expr must cause 
var to decrease on each iteration of the loop.

• If test-expr is of the form b relational-op var and relational-op is < or <= then 
incr-expr must cause var to decrease on each iteration of the loop. If test-expr is of 
the form b relational-op var and relational-op is > or >= then incr-expr must cause 
var to increase on each iteration of the loop.

• A throw executed inside a loop region must cause execution to resume within the 
same iteration of the loop region, and the same thread that threw the exception must 

C/C++
catch it.

Fortran

• The associated do-loops must be structured blocks.

• Only an iteration of the innermost associated loop may be curtailed by a CYCLE 
statement.

• No statement in the associated loops other than the DO statements can cause a branch 
out of the loops.

• The do-loop iteration variable must be of type integer.

Fortran

• The do-loop cannot be a DO WHILE or a DO loop without loop control.

Cross References
• private, firstprivate, lastprivate, and reduction clauses, see 

Section 2.9.3 on page 92.

• OMP_SCHEDULE environment variable, see Section 4.1 on page 154.

• ordered construct, see Section 2.8.7 on page 82.
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2.5.1.1 Determining the Schedule of a Worksharing Loop

When execution encounters a loop directive, the schedule clause (if any) on the 
directive, and the run-sched-var and def-sched-var ICVs are used to determine how loop 
iterations are assigned to threads. See Section 2.3 on page 28 for details of how the 
values of the ICVs are determined. If the loop directive does not have a schedule 
clause then the current value of the def-sched-var ICV determines the schedule. If the 
loop directive has a schedule clause that specifies the runtime schedule kind then 
the current value of the run-sched-var ICV determines the schedule. Otherwise, the 
value of the schedule clause determines the schedule. Figure 2-1 describes how the 
schedule for a worksharing loop is determined.

Cross References
• ICVs, see Section 2.3 on page 28.

FIGURE 2-1 Determining the schedule for a worksharing loop.
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2.5.2 sections Construct 

Summary

The sections construct is a noniterative worksharing construct that contains a set of 
structured blocks that are to be distributed among and executed by the threads in a team. 
Each structured block is executed once by one of the threads in the team in the context 
of its implicit task.

Syntax

C/C++
The syntax of the sections construct is as follows:

where clause is one of the following: 

C/C++

#pragma omp sections [clause[[,] clause] ...] new-line
{
[#pragma omp section new-line]

      structured-block
[#pragma omp section new-line

      structured-block ]
     ...

}

private(list)

firstprivate(list)

lastprivate(list)

reduction(operator: list)

nowait
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Fortran

The syntax of the sections construct is as follows:

where clause is one of the following:

Fortran

Binding

The binding thread set for a sections region is the current team. A sections 
region binds to the innermost enclosing parallel region. Only the threads of the team 
executing the binding parallel region participate in the execution of the structured 
blocks and the implied barrier of the sections region if the barrier is not eliminated 
by a nowait clause.

Description

Each structured block in the sections construct is preceded by a section directive 
except possibly the first block, for which a preceding section directive is optional.

The method of scheduling the structured blocks among the threads in the team is 
implementation defined.

There is an implicit barrier at the end of a sections construct unless a nowait 
clause is specified.

!$omp sections [clause[[,] clause] ...] 
[!$omp section]

     structured-block
[!$omp section

     structured-block ]
...

!$omp end sections [nowait]

private(list)

firstprivate(list)

lastprivate(list)

reduction({operator|intrinsic_procedure_name}:list)
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Restrictions

Restrictions to the sections construct are as follows:

• Orphaned section directives are prohibited. That is, the section directives must 
appear within the sections construct and must not be encountered elsewhere in the 
sections region.

• The code enclosed in a sections construct must be a structured block. 

• Only a single nowait clause can appear on a sections directive.

C/C++
• A throw executed inside a sections region must cause execution to resume within 

the same section of the sections region, and the same thread that threw the 

C/C++
exception must catch it.

Cross References
• private, firstprivate, lastprivate, and reduction clauses, see 

Section 2.9.3 on page 92.

2.5.3 single Construct

Summary

The single construct specifies that the associated structured block is executed by only 
one of the threads in the team (not necessarily the master thread), in the context of its 
implicit task. The other threads in the team, which do not execute the block, wait at an 
implicit barrier at the end of the single construct unless a nowait clause is specified.

Syntax

C/C++
The syntax of the single construct is as follows:

#pragma omp single [clause[[,] clause] ...] new-line
   structured-block 

1

2

3
4
5

6

7

8
9

10

11

12
13

14

15

16
17
18
19

20

21



Chapter 2 Directives 51

where clause is one of the following:

C/C++

Fortran

The syntax of the single construct is as follows:

where clause is one of the following:

and end_clause is one of the following: 

Fortran

Binding

The binding thread set for a single region is the current team. A single region 
binds to the innermost enclosing parallel region. Only the threads of the team 
executing the binding parallel region participate in the execution of the structured 
block and the implied barrier of the single region if the barrier is not eliminated by a 
nowait clause.

private(list)

firstprivate(list)

copyprivate(list)

nowait

!$omp single [clause[[,] clause] ...]
   structured-block 
!$omp end single [end_clause[[,] end_clause] ...]

private(list)

firstprivate(list)

copyprivate(list)

nowait
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Description

The method of choosing a thread to execute the structured block is implementation 
defined. There is an implicit barrier at the end of the single construct unless a 
nowait clause is specified. 

For an example of the single construct, see Section A.14 on page 192. 

Restrictions

Restrictions to the single construct are as follows: 

• The copyprivate clause must not be used with the nowait clause.

• At most one nowait clause can appear on a single construct.

C/C++
• A throw executed inside a single region must cause execution to resume within the 

C/C++
same single region, and the same thread that threw the exception must catch it.

Cross References
• private and firstprivate clauses, see Section 2.9.3 on page 92.

• copyprivate clause, see Section 2.9.4.2 on page 109.

Fortran

2.5.4 workshare Construct

Summary

The workshare construct divides the execution of the enclosed structured block into 
separate units of work, and causes the threads of the team to share the work such that 
each unit is executed only once by one thread, in the context of its implicit task.
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Fortran (cont.)

Syntax

The syntax of the workshare construct is as follows:

The enclosed structured block must consist of only the following:

• array assignments 

• scalar assignments 

• FORALL statements

• FORALL constructs 

• WHERE statements

• WHERE constructs

• atomic constructs

• critical constructs

• parallel constructs

Statements contained in any enclosed critical construct are also subject to these 
restrictions. Statements in any enclosed parallel construct are not restricted.

Binding

The binding thread set for a workshare region is the current team. A workshare 
region binds to the innermost enclosing parallel region. Only the threads of the team 
executing the binding parallel region participate in the execution of the units of 
work and the implied barrier of the workshare region if the barrier is not eliminated 
by a nowait clause.

Description

There is an implicit barrier at the end of a workshare construct unless a nowait 
clause is specified.

!$omp workshare
   structured-block 
!$omp end workshare [nowait]
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Fortran (cont.)

An implementation of the workshare construct must insert any synchronization that is 
required to maintain standard Fortran semantics. For example, the effects of one 
statement within the structured block must appear to occur before the execution of 
succeeding statements, and the evaluation of the right hand side of an assignment must 
appear to complete prior to the effects of assigning to the left hand side.

The statements in the workshare construct are divided into units of work as follows:

• For array expressions within each statement, including transformational array 
intrinsic functions that compute scalar values from arrays:

• Evaluation of each element of the array expression, including any references to 
ELEMENTAL functions, is a unit of work.

• Evaluation of transformational array intrinsic functions may be freely subdivided 
into any number of units of work.

• For an array assignment statement, the assignment of each element is a unit of work.

• For a scalar assignment statement, the assignment operation is a unit of work.

• For a WHERE statement or construct, the evaluation of the mask expression and the 
masked assignments are each a unit of work.

• For a FORALL statement or construct, the evaluation of the mask expression, 
expressions occurring in the specification of the iteration space, and the masked 
assignments are each a unit of work.

• For an atomic construct, the atomic operation on the storage location designated as 
x is the unit of work.

• For a critical construct, the construct is a single unit of work.

• For a parallel construct, the construct is a unit of work with respect to the 
workshare construct. The statements contained in the parallel construct are 
executed by a new thread team.

• If none of the rules above apply to a portion of a statement in the structured block, 
then that portion is a unit of work.

The transformational array intrinsic functions are MATMUL, DOT_PRODUCT, SUM, 
PRODUCT, MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD, PACK, UNPACK, 
RESHAPE, TRANSPOSE, EOSHIFT, CSHIFT, MINLOC, and MAXLOC.

It is unspecified how the units of work are assigned to the threads executing a 
workshare region.

If an array expression in the block references the value, association status, or allocation 
status of private variables, the value of the expression is undefined, unless the same 
value would be computed by every thread.
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If an array assignment, a scalar assignment, a masked array assignment, or a FORALL 
assignment assigns to a private variable in the block, the result is unspecified.

The workshare directive causes the sharing of work to occur only in the workshare 
construct, and not in the remainder of the workshare region.

For examples of the workshare construct, see Section A.17 on page 213.

Restrictions

The following restrictions apply to the workshare construct:

• All array assignments, scalar assignments, and masked array assignments must be 
intrinsic assignments.

• The construct must not contain any user defined function calls unless the function is 

Fortran

ELEMENTAL.

2.6 Combined Parallel Worksharing 
Constructs
Combined parallel worksharing constructs are shortcuts for specifying a worksharing 
construct nested immediately inside a parallel construct. The semantics of these 
directives are identical to that of explicitly specifying a parallel construct containing 
one worksharing construct and no other statements.

The combined parallel worksharing constructs allow certain clauses that are permitted 
both on parallel constructs and on worksharing constructs. If a program would have 
different behavior depending on whether the clause were applied to the parallel 
construct or to the worksharing construct, then the program’s behavior is unspecified.

The following sections describe the combined parallel worksharing constructs:

• The parallel loop construct.

• The parallel sections construct.

• The parallel workshare construct. 
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2.6.1 Parallel Loop Construct

Summary

The parallel loop construct is a shortcut for specifying a parallel construct 
containing one or more associated loops and no other statements.

Syntax

C/C++
The syntax of the parallel loop construct is as follows:

where clause can be any of the clauses accepted by the parallel or for directives, 

C/C++
except the nowait clause, with identical meanings and restrictions.

Fortran

The syntax of the parallel loop construct is as follows:

where clause can be any of the clauses accepted by the parallel or do directives, 
with identical meanings and restrictions. 

If an end parallel do directive is not specified, an end parallel do directive is 
assumed at the end of the do-loop. nowait may not be specified on an end 

Fortran

parallel do directive.

#pragma omp parallel for [clause[[,] clause] ...] new-line
   for-loop 

!$omp parallel do [clause[[,] clause] ...] 
    do-loop
[!$omp end parallel do] 
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Description

C/C++
The semantics are identical to explicitly specifying a parallel directive immediately 

C/C++
followed by a for directive.

Fortran

The semantics are identical to explicitly specifying a parallel directive immediately 
followed by a do directive, and an end do directive immediately followed by an end 

Fortran

parallel directive. 

Restrictions

The restrictions for the parallel construct and the loop construct apply.

Cross References
• parallel construct, see Section 2.4 on page 33.

• loop construct, see Section 2.5.1 on page 39.

• Data attribute clauses, see Section 2.9.3 on page 92.

2.6.2 parallel sections Construct

Summary

The parallel sections construct is a shortcut for specifying a parallel 
construct containing one sections construct and no other statements.
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Syntax

C/C++
The syntax of the parallel sections construct is as follows:

where clause can be any of the clauses accepted by the parallel or sections 

C/C++
directives, except the nowait clause, with identical meanings and restrictions.

Fortran

The syntax of the parallel sections construct is as follows:

where clause can be any of the clauses accepted by the parallel or sections 
directives, with identical meanings and restrictions. 

The last section ends at the end parallel sections directive. nowait cannot be 

Fortran

specified on an end parallel sections directive.

Description

C/C++
The semantics are identical to explicitly specifying a parallel directive immediately 

C/C++
followed by a sections directive.

#pragma omp parallel sections [clause[[,] clause] ...] new-line
{

 [#pragma omp section new-line]
      structured-block

[#pragma omp section new-line
      structured-block ]

...
} 

!$omp parallel sections [clause[[,] clause] ...] 
[!$omp section]

      structured-block
[!$omp section 

      structured-block ]
...

!$omp end parallel sections
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Fortran

The semantics are identical to explicitly specifying a parallel directive immediately 
followed by a sections directive, and an end sections directive immediately 

Fortran

followed by an end parallel directive. 

For an example of the parallel sections construct, see Section A.12 on page 189.

Restrictions

The restrictions for the parallel construct and the sections construct apply.

Cross References:
• parallel construct, see Section 2.4 on page 33. 

• sections construct, see Section 2.5.2 on page 48.

• Data attribute clauses, see Section 2.9.3 on page 92.

Fortran

2.6.3 parallel workshare Construct

Summary

The parallel workshare construct is a shortcut for specifying a parallel 
construct containing one workshare construct and no other statements.

Syntax

The syntax of the parallel workshare construct is as follows:

where clause can be any of the clauses accepted by the parallel directive, with 
identical meanings and restrictions. nowait may not be specified on an end 
parallel workshare directive.

!$omp parallel workshare [clause[[,] clause] ...]
   structured-block 
!$omp end parallel workshare
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Description

The semantics are identical to explicitly specifying a parallel directive immediately 
followed by a workshare directive, and an end workshare directive immediately 
followed by an end parallel directive. 

Restrictions

The restrictions for the parallel construct and the workshare construct apply.

Cross References
• parallel construct, see Section 2.4 on page 33. 

• workshare construct, see Section 2.5.4 on page 52.

Fortran

• Data attribute clauses, see Section 2.9.3 on page 92.

1

2
3
4

5

6

7

8

9

10



Chapter 2 Directives 61

2.7 Tasking Constructs

2.7.1 task Construct

Summary 

The task construct defines an explicit task.

Syntax 

C/C++
The syntax of the task construct is as follows: 

where clause is one of the following: 

C/C++

#pragma omp task [clause[[,] clause] ...] new-line
structured-block

if(scalar-expression)

final(scalar-expression)

untied

default(shared | none)

mergeable

private(list)

firstprivate(list)

shared(list)
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Fortran

The syntax of the task construct is as follows: 

where clause is one of the following: 

Fortran

Binding 

The binding thread set of the task region is the current team. A task region binds to 
the innermost enclosing parallel region. 

Description 

When a thread encounters a task construct, a task is generated from the code for the 
associated structured block. The data environment of the task is created according to the 
data-sharing attribute clauses on the task construct, per-data environment ICVs, and 
any defaults that apply.

The encountering thread may immediately execute the task, or defer its execution. In the 
latter case, any thread in the team may be assigned the task. Completion of the task can 
be guaranteed using task synchronization constructs. A task construct may be nested 
inside an outer task, but the task region of the inner task is not a part of the task 
region of the outer task.

!$omp task [clause[[,] clause] ...]
structured-block

!$omp end task

if(scalar-logical-expression)

final(scalar-logical-expression)

untied

default(private | firstprivate | shared | none)

mergeable

private(list)

firstprivate(list)

shared(list)
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When an if clause is present on a task construct, and the if clause expression 
evaluates to false, an undeferred task is generated, and the encountering thread must 
suspend the current task region, for which execution cannot be resumed until the 
generated task is completed. Note that the use of a variable in an if clause expression 
of a task construct causes an implicit reference to the variable in all enclosing 
constructs.

When a final clause is present on a task construct and the final clause expression 
evaluates to true, the generated task will be a final task. All task constructs 
encountered during execution of a final task will generate final and included tasks. Note 
that the use of a variable in a final clause expression of a task construct causes an 
implicit reference to the variable in all enclosing constructs.

The if clause expression and the final clause expression are evaluated in the context 
outside of the task construct, and no ordering of those evaluations is specified.

A thread that encounters a task scheduling point within the task region may 
temporarily suspend the task region. By default, a task is tied and its suspended task 
region can only be resumed by the thread that started its execution. If the untied 
clause is present on a task construct, any thread in the team can resume the task 
region after a suspension. The untied clause is ignored if a final clause is present 
on the same task construct and the final clause expression evaluates to true, or if a 
task is an included task.

The task construct includes a task scheduling point in the task region of its generating 
task, immediately following the generation of the explicit task. Each explicit task 
region includes a task scheduling point at its point of completion. An implementation 
might add task scheduling points anywhere in untied task regions.

When a mergeable clause is present on a task  construct, and the generated task is 
an undeferred task or an included task, the implementation might generate a merged task 
instead.

Note – When storage is shared by an explicit task region, it is the programmer's 
responsibility to ensure, by adding proper synchronization, that the storage does not 
reach the end of its lifetime before the explicit task region completes its execution.

Restrictions 

Restrictions to the task construct are as follows: 

• A program that branches into or out of a task region is non-conforming. 

• A program must not depend on any ordering of the evaluations of the clauses of the 
task directive, or on any side effects of the evaluations of the clauses. 
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• At most one if clause can appear on the directive. 

• At most one final clause can appear on the directive.

C/C++
• A throw executed inside a task region must cause execution to resume within the 

C/C++
same task region, and the same thread that threw the exception must catch it.

Fortran

• Unsynchronized use of Fortran I/O statements by multiple tasks on the same unit has 

Fortran

unspecified behavior. 

2.7.2 taskyield Construct

Summary

The taskyield construct specifies that the current task can be suspended in favor of 
execution of a different task.

Syntax

C/C++
The syntax of the taskyield construct is as follows:

Because the taskyield construct is a stand-alone directive, there are some 
restrictions on its placement within a program. The taskyield directive may be 
placed only at a point where a base language statement is allowed. The taskyield 
directive may not be used in place of the statement following an if, while, do, 
switch, or label. See Appendix C for the formal grammar. The examples in 

C/C++
Section A.25 on page 236 illustrate these restrictions.

Fortran

The syntax of the taskyield construct is as follows:

#pragma omp taskyield new-line

!$omp taskyield
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Because the taskyield construct is a stand-alone directive, there are some 
restrictions on its placement within a program. The taskyield directive may be 
placed only at a point where a Fortran executable statement is allowed. The 
taskyield directive may not be used as the action statement in an if statement or as 
the executable statement following a label if the label is referenced in the program. The 

Fortran

examples in Section A.25 on page 236 illustrate these restrictions.

Binding

A taskyield region binds to the current task region. The binding thread set of the 
taskyield region is the current team.

Description

The taskyield region includes an explicit task scheduling point in the current task 
region.

Cross References
• Task scheduling, see Section 2.7.3 on page 65. 

2.7.3 Task Scheduling
Whenever a thread reaches a task scheduling point, the implementation may cause it to 
perform a task switch, beginning or resuming execution of a different task bound to the 
current team. Task scheduling points are implied at the following locations:

• the point immediately following the generation of an explicit task

• after the last instruction of a task region

• in taskyield regions

• in taskwait regions

• in implicit and explicit barrier regions.

In addition, implementations may insert implementation defined task scheduling points 
in untied tasks anywhere that they are not specifically prohibited in this specification.

When a thread encounters a task scheduling point it may do one of the following, 
subject to the Task Scheduling Constraints (below):

• begin execution of a tied task bound to the current team
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• resume any suspended task region, bound to the current team, to which it is tied

• begin execution of an untied task bound to the current team

• resume any suspended untied task region bound to the current team.

If more than one of the above choices is available, it is unspecified as to which will be 
chosen.

Task Scheduling Constraints are as follows:

1. An included task is executed immediately after generation of the task.

2. Scheduling of new tied tasks is constrained by the set of task regions that are currently 
tied to the thread, and that are not suspended in a barrier region.  If this set is empty, 
any new tied task may be scheduled.  Otherwise, a new tied task may be scheduled only 
if it is a descendant of every task in the set.

3. When an explicit task is generated by a construct containing an if  clause for which the 
expression evaluated to false, and the previous constraint is already met, the task is 
executed immediately after generation of the task.

A program relying on any other assumption about task scheduling is non-conforming.

Note – Task scheduling points dynamically divide task regions into parts. Each part is 
executed uninterrupted from start to end. Different parts of the same task region are 
executed in the order in which they are encountered.  In the absence of task 
synchronization constructs, the order in which a thread executes parts of different 
schedulable tasks is unspecified.

A correct program must behave correctly and consistently with all conceivable 
scheduling sequences that are compatible with the rules above.

For example, if threadprivate storage is accessed (explicitly in the source code or 
implicitly in calls to library routines) in one part of a task region, its value cannot be 
assumed to be preserved into the next part of the same task region if another schedulable 
task exists that modifies it (see Example A.15.7c on page 202, Example A.15.7f on page 
202, Example A.15.8c on page 203 and Example A.15.8f on page 203).

As another example, if a lock acquire and release happen in different parts of a task 
region, no attempt should be made to acquire the same lock in any part of another task 
that the executing thread may schedule. Otherwise, a deadlock is possible. A similar 
situation can occur when a critical region spans multiple parts of a task and another 
schedulable task contains a critical region with the same name (see Example A.15.9c on 
page 204, Example A.15.9f on page 205, Example A.15.10c on page 206 and Example 
A.15.10f on page 207).
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The use of threadprivate variables and the use of locks or critical sections in an explicit 
task with an if clause must take into account that when the if clause evaluates to 
false, the task is executed immediately, without regard to Task Scheduling Constraint 2.

2.8 Master and Synchronization Constructs
The following sections describe :

• the master construct.

• the critical construct.

• the barrier construct.

• the taskwait construct.

• the atomic construct.

• the flush construct.

• the ordered construct.

2.8.1 master Construct

Summary

The master construct specifies a structured block that is executed by the master thread 
of the team.

Syntax

C/C++
The syntax of the master construct is as follows:

C/C++

#pragma omp master new-line
   structured-block
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Fortran

The syntax of the master construct is as follows:

Fortran

Binding

The binding thread set for a master region is the current team. A master region 
binds to the innermost enclosing parallel region. Only the master thread of the team 
executing the binding parallel region participates in the execution of the structured 
block of the master region.

Description

Other threads in the team do not execute the associated structured block. There is no 
implied barrier either on entry to, or exit from, the master construct.

For an example of the master construct, see Section A.18 on page 217.

Restrictions

C/C++
• A throw executed inside a master region must cause execution to resume within the 

C/C++
same master region, and the same thread that threw the exception must catch it.

2.8.2 critical Construct

Summary

The critical construct restricts execution of the associated structured block to a 
single thread at a time.

!$omp master
   structured-block
!$omp end master
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Syntax

C/C++
The syntax of the critical construct is as follows:

C/C++

Fortran

The syntax of the critical construct is as follows:

Fortran

Binding

The binding thread set for a critical region is all threads. Region execution is 
restricted to a single thread at a time among all the threads in the program, without 
regard to the team(s) to which the threads belong.

Description

An optional name may be used to identify the critical construct. All critical 
constructs without a name are considered to have the same unspecified name. A thread 
waits at the beginning of a critical region until no thread is executing a critical 
region with the same name. The critical construct enforces exclusive access with 
respect to all critical constructs with the same name in all threads, not just those 
threads in the current team. 

C/C++
Identifiers used to identify a critical construct have external linkage and are in a 
name space that is separate from the name spaces used by labels, tags, members, and 

C/C++
ordinary identifiers.

#pragma omp critical [(name)] new-line
   structured-block

!$omp critical [(name)]
   structured-block
!$omp end critical [(name)]
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Fortran

The names of critical constructs are global entities of the program. If a name 

Fortran

conflicts with any other entity, the behavior of the program is unspecified.

For an example of the critical construct, see Section A.19 on page 219.

Restrictions

C/C++
• A throw executed inside a critical region must cause execution to resume within 

the same critical region, and the same thread that threw the exception must catch 

C/C++
it.

Fortran

The following restrictions apply to the critical construct:

• If a name is specified on a critical directive, the same name must also be 
specified on the end critical directive. 

• If no name appears on the critical directive, no name can appear on the end 

Fortran

critical directive.

2.8.3 barrier Construct

Summary

The barrier construct specifies an explicit barrier at the point at which the construct 
appears. 

Syntax

C/C++
The syntax of the barrier construct is as follows:

#pragma omp barrier new-line
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Because the barrier construct is a stand-alone directive, there are some restrictions 
on its placement within a program. The barrier directive may be placed only at a 
point where a base language statement is allowed. The barrier directive may not be 
used in place of the statement following an if, while, do, switch, or label. See 
Appendix C for the formal grammar. The examples in Section A.25 on page 236 

C/C++
illustrate these restrictions.

Fortran

The syntax of the barrier construct is as follows:

Because the barrier construct is a stand-alone directive, there are some restrictions 
on its placement within a program. The barrier directive may be placed only at a 
point where a Fortran executable statement is allowed. The barrier  directive may not 
be used as the action statement in an if  statement or as the executable statement 
following a label if the label is referenced in the program. The examples in Section A.25 
on page 236 illustrate these restrictions.

Fortran

Binding

The binding thread set for a barrier region is the current team. A barrier region 
binds to the innermost enclosing parallel region. See Section A.21 on page 222 for 
examples.

Description

All threads of the team executing the binding parallel region must execute the 
barrier region and complete execution of all explicit tasks generated in the binding 
parallel region up to this point before any are allowed to continue execution beyond 
the barrier.

The barrier region includes an implicit task scheduling point in the current task 
region.

Restrictions

The following restrictions apply to the barrier construct:

!$omp barrier
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• Each barrier region must be encountered by all threads in a team or by none at all.

• The sequence of worksharing regions and barrier regions encountered must be the 
same for every thread in a team.

2.8.4 taskwait Construct

Summary 

The taskwait construct specifies a wait on the completion of child tasks of the 
current task. 

Syntax 

C/C++
The syntax of the taskwait construct is as follows:

Because the taskwait construct is a stand-alone directive, there are some restrictions 
on its placement within a program. The taskwait directive may be placed only at a 
point where a base language statement is allowed. The taskwait directive may not be 
used in place of the statement following an if, while, do, switch, or label. See 
Appendix C for the formal grammar. The examples in Section A.25 on page 236 

C/C++
illustrate these restrictions. 

Fortran

The syntax of the taskwait construct is as follows:

Because the taskwait construct is a stand-alone directive, there are some restrictions 
on its placement within a program. The taskwait directive may be placed only at a 
point where a Fortran executable statement is allowed. The taskwait  directive may 
not be used as the action statement in an if  statement or as the executable statement 
following a label if the label is referenced in the program. The examples in Section A.25 

Fortran

on page 236 illustrate these restrictions.

#pragma omp taskwait newline 

!$omp taskwait 
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Binding 

A taskwait region binds to the current task region. The binding thread set of the 
taskwait region is the current team.

Description 

The taskwait region includes an implicit task scheduling point in the current task 
region. The current task region is suspended at the task scheduling point until execution 
of all its child tasks generated before the taskwait region are completed.

2.8.5 atomic Construct

Summary

The atomic construct ensures that a specific storage location is accessed atomically, 
rather than exposing it to the possibility of multiple, simultaneous reading and writing 
threads that may result in indeterminate values.

Syntax

C/C++
The syntax of the atomic construct takes either of the following forms:

or:

where expression-stmt is an expression statement with one of the following forms:

• If clause is read:
v = x;

• If clause is write:
x = expr;

#pragma omp atomic [read | write | update | capture ] new-line
  expression-stmt

#pragma omp atomic capture new-line
  structured-block
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• If clause is update or not present:
x++;
x--;
++x;
--x;
x binop= expr;
x = x binop expr;

• If clause is capture:
v = x++;
v = x--;
v = ++x;
v = --x;
v = x binop= expr;

and where structured-block is a structured block with one of the following forms:

{v = x; x binop= expr;}
{x binop= expr; v = x;}
{v = x; x = x binop expr;}
{x = x binop expr; v = x;}
{v = x; x++;}
{v = x; ++x;}
{++x; v = x;}
{x++; v = x;}
{v = x; x--;}
{v = x; --x;}
{--x; v = x;}
{x--; v = x;}

In the preceding expressions:

• x and v (as applicable) are both l-value expressions with scalar type.

• During the execution of an atomic region, multiple syntactic occurrences of x must 
designate the same storage location.

• Neither of v and expr (as applicable) may access the storage location designated by x.

• Neither of x and expr (as applicable) may access the storage location designated by v.

• expr is an expression with scalar type. 

• binop is one of +, *, -, /, &, ^, |, <<, or >>.

• binop, binop=, ++, and -- are not overloaded operators.

• For forms that allow multiple occurrences of x, the number of times that x is 

C/C++
evaluated is unspecified.
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Fortran

The syntax of the atomic construct takes any of the following forms: 

or 

or 

or 

or 

where write-statement has the following form (if clause is write):

    x = expr

where capture-statement has the following form (if clause is capture or read):

    v = x

and where update-statement has one of the following forms (if clause is update, 
capture, or not present):

!$omp atomic read
capture-statement 

[!$omp end atomic]

!$omp atomic write
write-statement 

[!$omp end atomic]

!$omp atomic [update]
update-statement 

[!$omp end atomic]

!$omp atomic capture
update-statement 
capture-statement

!$omp end atomic

!$omp atomic capture
capture-statement
update-statement

!$omp end atomic
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    x = x operator expr

    x = expr operator x

    x = intrinsic_procedure_name (x, expr_list)

    x = intrinsic_procedure_name (expr_list, x)

In the preceding statements:

• x and v (as applicable) are both scalar variables of intrinsic type.

• During the execution of an atomic region, multiple syntactic occurrences of x must 
designate the same storage location.

• None of v, expr and expr_list (as applicable) may access the same storage location as 
x. 

• None of x, expr and expr_list (as applicable) may access the same storage location as 
v.

• expr is a scalar expression.

• expr_list is a comma-separated, non-empty list of scalar expressions. If 
intrinsic_procedure_name refers to IAND, IOR, or IEOR, exactly one expression 
must appear in expr_list.

• intrinsic_procedure_name is one of MAX, MIN, IAND, IOR, or IEOR.

• operator is one of +, *, -, /, .AND., .OR., .EQV., or .NEQV. .

• The operators in expr must have precedence equal to or greater than the precedence 
of operator, x operator expr must be mathematically equivalent to x operator (expr), 
and expr operator x must be mathematically equivalent to (expr) operator x.

• intrinsic_procedure_name must refer to the intrinsic procedure name and not to other 
program entities.

• operator must refer to the intrinsic operator and not to a user-defined operator.

• All assignments must be intrinsic assignments.

• For forms that allow multiple occurrences of x, the number of times that x is 

Fortran

evaluated is unspecified.

Binding

The binding thread set for an atomic region is all threads. atomic regions enforce 
exclusive access with respect to other atomic regions that access the same storage 
location x among all the threads in the program without regard to the teams to which the 
threads belong. 
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Description

The atomic construct with the read clause forces an atomic read of the location 
designated by x regardless of the native machine word size.

The atomic construct with the write clause forces an atomic write of the location 
designated by x regardless of the native machine word size.

The atomic construct with the update clause forces an atomic update of the location 
designated by x using the designated operator or intrinsic. Note that when no clause is 
present, the semantics are equivalent to atomic update. Only the read and write of the 
location designated by x are performed mutually atomically. The evaluation of expr or 
expr_list need not be atomic with respect to the read or write of the location designated 
by x. No task scheduling points are allowed between the read and the write of the 
location designated by x.

The atomic construct with the capture clause forces an atomic update of the 
location designated by x using the designated operator or intrinsic while also capturing 
the original or final value of the location designated by x with respect to the atomic 
update. The original or final value of the location designated by x is written in the 
location designated by v depending on the form of the atomic construct structured 
block or statements following the usual language semantics. Only the read and write of 
the location designated by x are performed mutually atomically. Neither the evaluation 
of expr or expr_list, nor the write to the location designated by v need be atomic with 
respect to the read or write of the location designated by x. No task scheduling points 
are allowed between the read and the write of the location designated by x.

For all forms of the atomic construct, any combination of two or more of these 
atomic constructs enforces mutually exclusive access to the locations designated by x. 
To avoid race conditions, all accesses of the locations designated by x that could 
potentially occur in parallel must be protected with an atomic construct. 

atomic regions do not guarantee exclusive access with respect to any accesses outside 
of atomic regions to the same storage location x even if those accesses occur during a 
critical or ordered region, while an OpenMP lock is owned by the executing 
task, or during the execution of a reduction clause.

However, other OpenMP synchronization can ensure the desired exclusive access. For 
example, a barrier following a series of atomic updates to x guarantees that subsequent 
accesses do not form a race with the atomic accesses. 

A compliant implementation may enforce exclusive access between atomic regions 
that update different storage locations. The circumstances under which this occurs are 
implementation defined. 

For an example of the atomic construct, see Section A.22 on page 224.
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Restrictions

C/C++
The following restriction applies to the atomic construct:

• All atomic accesses to the storage locations designated by x throughout the program 

C/C++
are required to have a compatible type. See Section A.23 on page 230 for examples.

Fortran

The following restriction applies to the atomic construct:

• All atomic accesses to the storage locations designated by x throughout the program 
are required to have the same type and type parameters. See Section A.23 on page 

Fortran

230 for examples.

Cross References
• critical construct, see Section 2.8.2 on page 68. 

• barrier construct, see Section 2.8.3 on page 70.

• flush construct, see Section 2.8.6 on page 78.

• ordered construct, see Section 2.8.7 on page 82.

• reduction clause, see Section 2.9.3.6 on page 103.

• lock routines, see Section 3.3 on page 141.

2.8.6 flush Construct

Summary

The flush construct executes the OpenMP flush operation. This operation makes a 
thread’s temporary view of memory consistent with memory, and enforces an order on 
the memory operations of the variables explicitly specified or implied. See the memory 
model description in Section 1.4 on page 13 for more details.
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Syntax

C/C++
The syntax of the flush construct is as follows:

Because the flush construct is a stand-alone directive, there are some restrictions on 
its placement within a program. The flush directive may be placed only at a point 
where a base language statement is allowed. The flush directive may not be used in 
place of the statement following an if, while, do, switch, or label. See Appendix 
C for the formal grammar. See Section A.25 on page 236 for an example that illustrates 

C/C++
these placement restrictions. 

Fortran

The syntax of the flush construct is as follows:

Because the flush construct is a stand-alone directive, there are some restrictions on 
its placement within a program. The flush  directive may be placed only at a point 
where a Fortran executable statement is allowed. The flush directive may not be used 
as the action statement in an if statement or as the executable statement following a 
label if the label is referenced in the program. The examples in Section A.25 on page 

Fortran

236 illustrate these restrictions.

Binding

The binding thread set for a flush region is the encountering thread. Execution of a 
flush region affects the memory and the temporary view of memory of only the thread 
that executes the region. It does not affect the temporary view of other threads. Other 
threads must themselves execute a flush operation in order to be guaranteed to observe 
the effects of the encountering thread’s flush operation.

Description

A flush construct without a list, executed on a given thread, operates as if the whole 
thread-visible data state of the program, as defined by the base language, is flushed. A 
flush construct with a list applies the flush operation to the items in the list, and does 

#pragma omp flush [(list)] new-line

!$omp flush [(list)]
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not return until the operation is complete for all specified list items. Use of a flush 
construct with a list is extremely error prone and users are strongly discouraged from 
attempting it. An implementation may implement a flush with a list by ignoring the 
list, and treating it the same as a flush without a list.

C/C++
If a pointer is present in the list, the pointer itself is flushed, not the memory block to 

C/C++
which the pointer refers.

Fortran

If the list item or a subobject of the list item has the POINTER attribute, the allocation 
or association status of the POINTER item is flushed, but the pointer target is not. If the 
list item is a Cray pointer, the pointer is flushed, but the object to which it points is not. 
If the list item has the ALLOCATABLE attribute and the list item is allocated, the 

Fortran

allocated array is flushed; otherwise the allocation status is flushed.

For examples of the flush construct, see Section A.25 on page 236.

Note – the following examples illustrate the ordering properties of the flush operation. 
In the following incorrect pseudocode example, the programmer intends to prevent 
simultaneous execution of the protected section by the two threads, but the program 
does not work properly because it does not enforce the proper ordering of the operations 
on variables a and b. Any shared data accessed in the protected section is not 
guaranteed to be current or consistent during or after the protected section. The atomic 
notation in the pseudocode in the following two examples indicates that the accesses to 
a and b are ATOMIC writes and captures. Otherwise both examples would contain data 
races and automatically result in unspecified behavior. 

Incorrect example:
                        
                       a = b = 0

          thread 1                           thread 2

     atomic(b = 1) atomic(a = 1)
     flush(b)                           flush(a)
     flush(a)                           flush(b)

 atomic(tmp = a)  atomic(tmp = b)
 if (tmp == 0) then  if (tmp == 0) then

       protected section protected section
     end if                           end if
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The problem with this example is that operations on variables a and b are not ordered 
with respect to each other. For instance, nothing prevents the compiler from moving the 
flush of b on thread 1 or the flush of a on thread 2 to a position completely after the 
protected section (assuming that the protected section on thread 1 does not reference b and 
the protected section on thread 2 does not reference a). If either re-ordering happens, both 
threads can simultaneously execute the protected section.

The following pseudocode example correctly ensures that the protected section is executed 
by not more than one of the two threads at any one time. Notice that execution of the 
protected section by neither thread is considered correct in this example. This occurs if 
both flushes complete prior to either thread executing its if statement.

The compiler is prohibited from moving the flush at all for either thread, ensuring that the 
respective assignment is complete and the data is flushed before the if statement is 
executed.

A flush region without a list is implied at the following locations:

• During a barrier region.

• At entry to and exit from parallel, critical, and ordered regions.

• At exit from worksharing regions unless a nowait is present.

• At entry to and exit from combined parallel worksharing regions.

• During omp_set_lock and omp_unset_lock regions.

• During omp_test_lock, omp_set_nest_lock, omp_unset_nest_lock 
and omp_test_nest_lock regions, if the region causes the lock to be set or 
unset.

• Immediately before and immediately after every task scheduling point.

A flush region with a list is implied at the following locations:

Correct example:
                 
                       a = b = 0

          thread 1                           thread 2

     atomic(b = 1)  atomic(a = 1)
     flush(a,b)                         flush(a,b)

 atomic(tmp = a)  atomic(tmp = b)
     if (tmp == 0) then  if (tmp == 0) then
       protected section protected section
     end if                           end if
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• At entry to and exit from the atomic operation (read, write, update, or capture) 
performed in an atomic region, where the list contains only the storage location 
designated as x  according to the description of the syntax of the atomic construct 
in Section 2.8.5 on page 73.

Note – A flush region is not implied at the following locations:

• At entry to worksharing regions.

• At entry to or exit from a master region.

2.8.7 ordered Construct

Summary

The ordered construct specifies a structured block in a loop region that will be 
executed in the order of the loop iterations. This sequentializes and orders the code 
within an ordered region while allowing code outside the region to run in parallel. 

Syntax

C/C++
The syntax of the ordered construct is as follows:

C/C++

Fortran

The syntax of the ordered construct is as follows:

Fortran

#pragma omp ordered new-line
   structured-block

!$omp ordered
   structured-block
!$omp end ordered
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Binding

The binding thread set for an ordered region is the current team. An ordered region 
binds to the innermost enclosing loop region. ordered regions that bind to different 
loop regions execute independently of each other.

Description

The threads in the team executing the loop region execute ordered regions 
sequentially in the order of the loop iterations. When the thread executing the first 
iteration of the loop encounters an ordered construct, it can enter the ordered 
region without waiting. When a thread executing any subsequent iteration encounters an 
ordered region, it waits at the beginning of that ordered region until execution of 
all the ordered regions belonging to all previous iterations have completed.

For examples of the ordered construct, see Section A.26 on page 239.

Restrictions

Restrictions to the ordered construct are as follows:

• The loop region to which an ordered region binds must have an ordered clause 
specified on the corresponding loop (or parallel loop) construct.

• During execution of an iteration of a loop or a loop nest within a loop region, a 
thread must not execute more than one ordered region that binds to the same loop 
region.

C/C++
• A throw executed inside a ordered region must cause execution to resume within 

the same ordered region, and the same thread that threw the exception must catch 

C/C++
it.

Cross References
• loop construct, see Section 2.5.1 on page 39.

• parallel loop construct, see Section 2.6.1 on page 56.
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2.9 Data Environment
This section presents a directive and several clauses for controlling the data environment 
during the execution of parallel, task, and worksharing regions.

• Section 2.9.1 on page 84 describes how the data-sharing attributes of variables 
referenced in parallel, task, and worksharing regions are determined.

• The threadprivate directive, which is provided to create threadprivate memory, 
is described in Section 2.9.2 on page 88.

• Clauses that may be specified on directives to control the data-sharing attributes of 
variables referenced in parallel, task, or worksharing constructs are described 
in Section 2.9.3 on page 92.

• Clauses that may be specified on directives to copy data values from private or 
threadprivate variables on one thread to the corresponding variables on other threads 
in the team are described in Section 2.9.4 on page 107.

2.9.1 Data-sharing Attribute Rules
This section describes how the data-sharing attributes of variables referenced in 
parallel, task, and worksharing regions are determined. The following two cases 
are described separately:

• Section 2.9.1.1 on page 84 describes the data-sharing attribute rules for variables 
referenced in a construct.

• Section 2.9.1.2 on page 87 describes the data-sharing attribute rules for variables 
referenced in a region, but outside any construct. 

2.9.1.1 Data-sharing Attribute Rules for Variables Referenced in a 
Construct

The data-sharing attributes of variables that are referenced in a construct can be 
predetermined, explicitly determined, or implicitly determined, according to the rules 
outlined in this section.

Specifying a variable on a firstprivate, lastprivate, or reduction clause 
of an enclosed construct causes an implicit reference to the variable in the enclosing 
construct. Such implicit references are also subject to the data-sharing attribute rules 
outlined in this section.

Certain variables and objects have predetermined data-sharing attributes as follows: 
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C/C++
• Variables appearing in threadprivate directives are threadprivate.

• Variables with automatic storage duration that are declared in a scope inside the 
construct are private. 

• Objects with dynamic storage duration are shared.

• Static data members are shared.

• The loop iteration variable(s) in the associated for-loop(s) of a for or parallel 
for construct is (are) private. 

• Variables with const-qualified type having no mutable member are shared.

• Variables with static storage duration that are declared in a scope inside the construct 

C/C++
are shared.

Fortran

• Variables and common blocks appearing in threadprivate directives are 
threadprivate. 

• The loop iteration variable(s) in the associated do-loop(s) of a do or parallel do 
construct is(are) private. 

• A loop iteration variable for a sequential loop in a parallel or task construct is 
private in the innermost such construct that encloses the loop.

• Implied-do indices and forall indices are private. 

• Cray pointees inherit the data-sharing attribute of the storage with which their Cray 
pointers are associated.

Fortran

• Assumed-size arrays are shared.

Variables with predetermined data-sharing attributes may not be listed in data-sharing 
attribute clauses, except for the cases listed below. For these exceptions only, listing a 
predetermined variable in a data-sharing attribute clause is allowed and overrides the 
variable’s predetermined data-sharing attributes.

C/C++
• The loop iteration variable(s) in the associated for-loop(s) of a for or parallel 

for construct may be listed in a private or lastprivate clause. 

• Variables with const-qualified type having no mutable member may be listed in a 

C/C++
firstprivate clause.
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Fortran

• The loop iteration variable(s) in the associated do-loop(s) of a do or parallel do 
construct may be listed in a private or lastprivate clause. 

• Variables used as loop iteration variables in sequential loops in a parallel or 
task construct may be listed in data-sharing clauses on the construct itself, and on 
enclosed constructs, subject to other restrictions.

Fortran

• Assumed-size arrays may be listed in a shared clause.

Additional restrictions on the variables that may appear in individual clauses are 
described with each clause in Section 2.9.3 on page 92.

Variables with explicitly determined data-sharing attributes are those that are referenced 
in a given construct and are listed in a data-sharing attribute clause on the construct.

Variables with implicitly determined data-sharing attributes are those that are referenced 
in a given construct, do not have predetermined data-sharing attributes, and are not 
listed in a data-sharing attribute clause on the construct.

Rules for variables with implicitly determined data-sharing attributes are as follows:

• In a parallel or task construct, the data-sharing attributes of these variables are 
determined by the default clause, if present (see Section 2.9.3.1 on page 93). 

• In a parallel construct, if no default clause is present, these variables are 
shared.

• For constructs other than task, if no default clause is present, these variables 
inherit their data-sharing attributes from the enclosing context.

• In a task construct, if no default clause is present, a variable that in the 
enclosing context is determined to be shared by all implicit tasks bound to the current 
team is shared.

Fortran

• In an orphaned task construct, if no default  clause is present, dummy arguments 

Fortran

are firstprivate.

• In a task construct, if no default clause is present, a variable whose data-sharing 
attribute is not determined by the rules above is firstprivate.

Additional restrictions on the variables for which data-sharing attributes cannot be 
implicitly determined in a task construct are described in Section 2.9.3.4 on page 98. 
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2.9.1.2 Data-sharing Attribute Rules for Variables Referenced in a 
Region but not in a Construct

The data-sharing attributes of variables that are referenced in a region, but not in a 
construct, are determined as follows: 

C/C++
• Variables with static storage duration that are declared in called routines in the region 

are shared.

• Variables with const-qualified type having no mutable member, and that are 
declared in called routines, are shared.

• File-scope or namespace-scope variables referenced in called routines in the region 
are shared unless they appear in a threadprivate directive.

• Objects with dynamic storage duration are shared.

• Static data members are shared unless they appear in a threadprivate directive.

• Formal arguments of called routines in the region that are passed by reference inherit 
the data-sharing attributes of the associated actual argument. 

C/C++
• Other variables declared in called routines in the region are private.

Fortran

• Local variables declared in called routines in the region and that have the save 
attribute, or that are data initialized, are shared unless they appear in a 
threadprivate directive.

• Variables belonging to common blocks, or declared in modules, and referenced in 
called routines in the region are shared unless they appear in a threadprivate 
directive.

• Dummy arguments of called routines in the region that are passed by reference inherit 
the data-sharing attributes of the associated actual argument. 

• Cray pointees inherit the data-sharing attribute of the storage with which their Cray 
pointers are associated.

• Implied-do indices, forall indices, and other local variables declared in called 

Fortran

routines in the region are private. 
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2.9.2 threadprivate Directive

Summary

The threadprivate directive specifies that variables are replicated, with each thread 
having its own copy. 

Syntax

C/C++
The syntax of the threadprivate directive is as follows:

where list is a comma-separated list of file-scope, namespace-scope, or static 

C/C++
block-scope variables that do not have incomplete types.

Fortran

The syntax of the threadprivate directive is as follows:

where list is a comma-separated list of named variables and named common blocks. 

Fortran

Common block names must appear between slashes.

Description

Each copy of a threadprivate variable is initialized once, in the manner specified by the 
program, but at an unspecified point in the program prior to the first reference to that 
copy. The storage of all copies of a threadprivate variable is freed according to how 
static variables are handled in the base language, but at an unspecified point in the 
program.

A program in which a thread references another thread’s copy of a threadprivate variable 
is non-conforming.

#pragma omp threadprivate(list) new-line

!$omp threadprivate(list)
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The content of a threadprivate variable can change across a task scheduling point if the 
executing thread switches to another task that modifies the variable. For more details on 
task scheduling, see Section 1.3 on page 12 and Section 2.7 on page 61.

In parallel regions, references by the master thread will be to the copy of the 
variable in the thread that encountered the parallel region. 

During the sequential part references will be to the initial thread’s copy of the variable. 
The values of data in the initial thread’s copy of a threadprivate variable are guaranteed 
to persist between any two consecutive references to the variable in the program. 

The values of data in the threadprivate variables of non-initial threads are guaranteed to 
persist between two consecutive active parallel regions only if all the following 
conditions hold: 

• Neither parallel region is nested inside another explicit parallel region. 

• The number of threads used to execute both parallel regions is the same. 

• The value of the dyn-var internal control variable in the enclosing task region is false 
at entry to both parallel regions.

If these conditions all hold, and if a threadprivate variable is referenced in both regions, 
then threads with the same thread number in their respective regions will reference the 
same copy of that variable.

C/C++
If the above conditions hold, the storage duration, lifetime, and value of a thread’s copy 
of a threadprivate variable that does not appear in any copyin clause on the second 
region will be retained. Otherwise, the storage duration, lifetime, and value of a thread’s 
copy of the variable in the second region is unspecified.

If the value of a variable referenced in an explicit initializer of a threadprivate variable 
is modified prior to the first reference to any instance of the threadprivate variable, then 
the behavior is unspecified. 

The order in which any constructors for different threadprivate variables of class type 
are called is unspecified. The order in which any destructors for different threadprivate 
variables of class type are called is unspecified. 

C/C++

Fortran

A variable is affected by a copyin clause if the variable appears in the copyin clause 
or it is in a common block that appears in the copyin clause. 

If the above conditions hold, the definition, association, or allocation status of a thread’s 
copy of a threadprivate variable or a variable in a threadprivate common 
block, that is not affected by any copyin clause that appears on the second region, will 
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be retained. Otherwise, the definition and association status of a thread’s copy of the 
variable in the second region is undefined, and the allocation status of an allocatable 
array will be implementation defined. 

If a threadprivate variable or a variable in a threadprivate common block is 
not affected by any copyin clause that appears on the first parallel region in which 
it is referenced, the variable or any subobject of the variable is initially defined or 
undefined according to the following rules:

• If it has the ALLOCATABLE attribute, each copy created will have an initial 
allocation status of not currently allocated.

• If it has the POINTER attribute:

• if it has an initial association status of disassociated, either through explicit 
initialization or default initialization, each copy created will have an association 
status of disassociated;

• otherwise, each copy created will have an association status of undefined.

• If it does not have either the POINTER or the ALLOCATABLE attribute:

• if it is initially defined, either through explicit initialization or default 
initialization, each copy created is so defined;

Fortran

• otherwise, each copy created is undefined.

For examples of the threadprivate directive, see Section A.27 on page 244. 

Restrictions

The restrictions to the threadprivate directive are as follows:

• A threadprivate variable must not appear in any clause except the copyin, 
copyprivate, schedule, num_threads, and if clauses.

• A program in which an untied task accesses threadprivate storage is non-conforming.

C/C++
• A variable that is part of another variable (as an array or structure element) cannot 

appear in a threadprivate clause unless it is a static data member of a C++ 
class.

• A threadprivate directive for file-scope variables must appear outside any 
definition or declaration, and must lexically precede all references to any of the 
variables in its list.

• A threadprivate directive for static class member variables must appear in the 
class definition, in the same scope in which the member variables are declared, and 
must lexically precede all references to any of the variables in its list.
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• A threadprivate directive for namespace-scope variables must appear outside 
any definition or declaration other than the namespace definition itself, and must 
lexically precede all references to any of the variables in its list.

• Each variable in the list of a threadprivate directive at file, namespace, or class 
scope must refer to a variable declaration at file, namespace, or class scope that 
lexically precedes the directive.

• A threadprivate directive for static block-scope variables must appear in the 
scope of the variable and not in a nested scope. The directive must lexically precede 
all references to any of the variables in its list.

• Each variable in the list of a threadprivate directive in block scope must refer to 
a variable declaration in the same scope that lexically precedes the directive. The 
variable declaration must use the static storage-class specifier.

• If a variable is specified in a threadprivate directive in one translation unit, it 
must be specified in a threadprivate directive in every translation unit in which 
it is declared.

• The address of a threadprivate variable is not an address constant.

• A threadprivate variable must not have an incomplete type or a reference type.

• A threadprivate variable with class type must have:

• an accessible, unambiguous default constructor in case of default initialization 
without a given initializer;

• an accessible, unambiguous constructor accepting the given argument in case of 
direct initialization;

• an accessible, unambiguous copy constructor in case of copy initialization with an 
explicit initializer.

C/C++

Fortran

• A variable that is part of another variable (as an array or structure element) cannot 
appear in a threadprivate clause.

• The threadprivate directive must appear in the declaration section of a scoping 
unit in which the common block or variable is declared. Although variables in 
common blocks can be accessed by use association or host association, common 
block names cannot. This means that a common block name specified in a 
threadprivate directive must be declared to be a common block in the same 
scoping unit in which the threadprivate directive appears. 

• If a threadprivate directive specifying a common block name appears in one 
program unit, then such a directive must also appear in every other program unit that 
contains a COMMON statement specifying the same name. It must appear after the last 
such COMMON statement in the program unit.

1
2
3

4
5
6

7
8
9

10
11
12

13
14
15

16

17

18

19
20

21
22

23
24

25

26
27

28
29
30
31
32
33

34
35
36
37



92 OpenMP API • Version 3.1  July 2011

• A blank common block cannot appear in a threadprivate directive.

• A variable can only appear in a threadprivate directive in the scope in which it 
is declared. It must not be an element of a common block or appear in an 
EQUIVALENCE statement.

• A variable that appears in a threadprivate directive must be declared in the 

Fortran

scope of a module or have the SAVE attribute, either explicitly or implicitly.

Cross References:
• dyn-var ICV, see Section 2.3 on page 28.

• number of threads used to execute a parallel region, see Section 2.4.1 on page 36.

• copyin clause, see Section 2.9.4.1 on page 107.

2.9.3 Data-Sharing Attribute Clauses
Several constructs accept clauses that allow a user to control the data-sharing attributes 
of variables referenced in the construct. Data-sharing attribute clauses apply only to 
variables for which the names are visible in the construct on which the clause appears.

Not all of the clauses listed in this section are valid on all directives. The set of clauses 
that is valid on a particular directive is described with the directive.

Most of the clauses accept a comma-separated list of list items (see Section 2.1 on page 
22). All list items appearing in a clause must be visible, according to the scoping rules 
of the base language. With the exception of the default clause, clauses may be 
repeated as needed. A list item that specifies a given variable may not appear in more 
than one clause on the same directive, except that a variable may be specified in both 
firstprivate and lastprivate clauses.

C/C++
If a variable referenced in a data-sharing attribute clause has a type derived from a 
template, and there are no other references to that variable in the program, then any 

C/C++
behavior related to that variable is unspecified. 

Fortran

A named common block may be specified in a list by enclosing the name in slashes. 
When a named common block appears in a list, it has the same meaning as if every 
explicit member of the common block appeared in the list. An explicit member of a 
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common block is a variable that is named in a COMMON statement that specifies the 
common block name and is declared in the same scoping unit in which the clause 
appears.

Although variables in common blocks can be accessed by use association or host 
association, common block names cannot. As a result, a common block name specified 
in a data-sharing attribute clause must be declared to be a common block in the same 
scoping unit in which the data-sharing attribute clause appears.

When a named common block appears in a private, firstprivate, 
lastprivate, or shared clause of a directive, none of its members may be declared 
in another data-sharing attribute clause in that directive (see Section A.29 on page 251 
for examples). When individual members of a common block appear in a private, 
firstprivate, lastprivate, or reduction clause of a directive, the storage of 
the specified variables is no longer associated with the storage of the common block 

Fortran

itself (see Section A.33 on page 260 for examples).

2.9.3.1 default clause

Summary

The default clause explicitly determines the data-sharing attributes of variables that 
are referenced in a parallel or task construct and would otherwise be implicitly 
determined (see Section 2.9.1.1 on page 84).

Syntax

C/C++
The syntax of the default clause is as follows:

C/C++

default(shared | none)
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Fortran

The syntax of the default clause is as follows:

Fortran

Description

The default(shared) clause causes all variables referenced in the construct that 
have implicitly determined data-sharing attributes to be shared.

Fortran

The default(firstprivate) clause causes all variables in the construct that have 
implicitly determined data-sharing attributes to be firstprivate.

The default(private) clause causes all variables referenced in the construct that 

Fortran

have implicitly determined data-sharing attributes to be private.

The default(none) clause requires that each variable that is referenced in the 
construct, and that does not have a predetermined data-sharing attribute, must have its 
data-sharing attribute explicitly determined by being listed in a data-sharing attribute 
clause. See Section A.30 on page 253 for examples. 

Restrictions

The restrictions to the default clause are as follows:

• Only a single default clause may be specified on a parallel or task directive. 

2.9.3.2 shared clause

Summary

The shared clause declares one or more list items to be shared by tasks generated by 
a parallel or task construct. 

default(private | firstprivate | shared | none)
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Syntax

The syntax of the shared clause is as follows:

Description

All references to a list item within a task refer to the storage area of the original variable 
at the point the directive was encountered. 

It is the programmer's responsibility to ensure, by adding proper synchronization, that 
storage shared by an explicit task region does not reach the end of its lifetime before 
the explicit task region completes its execution. 

Fortran

The association status of a shared pointer becomes undefined upon entry to and on exit 
from the parallel or task construct if it is associated with a target or a subobject of 
a target that is in a private, firstprivate, lastprivate, or reduction 
clause inside the construct.

Under certain conditions, passing a shared variable to a non-intrinsic procedure may 
result in the value of the shared variable being copied into temporary storage before the 
procedure reference, and back out of the temporary storage into the actual argument 
storage after the procedure reference. It is implementation defined when this situation 
occurs. See Section A.31 on page 255 for an example of this behavior. 

Note – Use of intervening temporary storage may occur when the following three 
conditions hold regarding an actual argument in a reference to a non-intrinsic procedure:

a. The actual argument is one of the following:

• A shared variable.

• A subobject of a shared variable.

• An object associated with a shared variable.

• An object associated with a subobject of a shared variable.

b. The actual argument is also one of the following:

• An array section.

• An array section with a vector subscript.

• An assumed-shape array.

• A pointer array.

shared(list)
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c. The associated dummy argument for this actual argument is an explicit-shape array 
or an assumed-size array.

These conditions effectively result in references to, and definitions of, the temporary 
storage during the procedure reference. Any references to (or definitions of) the shared 
storage that is associated with the dummy argument by any other task must be 
synchronized with the procedure reference to avoid possible race conditions. 

Fortran

2.9.3.3 private clause

Summary

The private clause declares one or more list items to be private to a task.

Syntax

The syntax of the private clause is as follows:

Description

Each task that references a list item that appears in a private clause in any statement 
in the construct receives a new list item whose language-specific attributes are derived 
from the original list item. Inside the construct, all references to the original list item are 
replaced by references to the new list item. In the rest of the region, it is unspecified 
whether references are to the new list item or the original list item. Therefore, if an 
attempt is made to reference the original item, its value after the region is also 
unspecified. If a task does not reference a list item that appears in a private clause, it 
is unspecified whether that task receives a new list item. 

The value and/or allocation status of the original list item will change only: 

• if accessed and modified via pointer, 

• if possibly accessed in the region but outside of the construct, or 

• as a side effect of directives or clauses. 

private(list)
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List items that appear in a private, firstprivate, or reduction clause in a 
parallel construct may also appear in a private clause in an enclosed parallel, 
task, or worksharing construct. List items that appear in a private or 
firstprivate clause in a task construct may also appear in a private clause in 
an enclosed parallel or task construct. List items that appear in a private, 
firstprivate, lastprivate, or reduction clause in a worksharing construct 
may also appear in a private clause in an enclosed parallel or task construct. 
See Section A.32 on page 256 for an example. 

C/C++
A new list item of the same type, with automatic storage duration, is allocated for the 
construct. The storage and thus lifetime of these list items lasts until the block in which 
they are created exits. The size and alignment of the new list item are determined by the 
type of the variable. This allocation occurs once for each task generated by the 
construct, if the task references the list item in any statement.

The new list item is initialized, or has an undefined initial value, as if it had been locally 
declared without an initializer. The order in which any default constructors for different 
private variables of class type are called is unspecified. The order in which any 

C/C++
destructors for different private variables of class type are called is unspecified.

Fortran

A new list item of the same type is allocated once for each implicit task in the 
parallel region, or for each task generated by a task construct, if the construct 
references the list item in any statement. The initial value of the new list item is 
undefined. Within a parallel, worksharing, or task region, the initial status of a 
private pointer is undefined.

For a list item with the ALLOCATABLE attribute:

• if the list item is "not currently allocated", the new list item will have an initial state 
of "not currently allocated";

• if the list item is allocated, the new list item will have an initial state of allocated 
with the same array bounds.

A list item that appears in a private clause may be storage-associated with other 
variables when the private clause is encountered. Storage association may exist 
because of constructs such as EQUIVALENCE or COMMON. If A is a variable appearing 
in a private clause and B is a variable that is storage-associated with A, then:

• The contents, allocation, and association status of B are undefined on entry to the 
parallel or task region.

• Any definition of A, or of its allocation or association status, causes the contents, 
allocation, and association status of B to become undefined. 
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• Any definition of B, or of its allocation or association status, causes the contents, 
allocation, and association status of A to become undefined. 

Fortran

For examples, see Section A.33 on page 260.

For examples of the private clause, see Section A.32 on page 256.

Restrictions

The restrictions to the private clause are as follows:

• A variable that is part of another variable (as an array or structure element) cannot 
appear in a private clause.

C/C++
• A variable of class type (or array thereof) that appears in a private clause requires 

an accessible, unambiguous default constructor for the class type. 

• A variable that appears in a private clause must not have a const-qualified type 
unless it is of class type with a mutable member. This restriction does not apply to 
the firstprivate clause.

• A variable that appears in a private clause must not have an incomplete type or a 

C/C++
reference type. 

Fortran

• A variable that appears in a private clause must either be definable, or an 
allocatable array. This restriction does not apply to the firstprivate clause.

• Variables that appear in namelist statements, in variable format expressions, and in 

Fortran

expressions for statement function definitions, may not appear in a private clause.

2.9.3.4 firstprivate clause

Summary

The firstprivate clause declares one or more list items to be private to a task, and 
initializes each of them with the value that the corresponding original item has when the 
construct is encountered. 
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Syntax

The syntax of the firstprivate clause is as follows:

Description

The firstprivate clause provides a superset of the functionality provided by the 
private clause. 

A list item that appears in a firstprivate clause is subject to the private clause 
semantics described in Section 2.9.3.3 on page 96, except as noted. In addition, the new 
list item is initialized from the original list item existing before the construct. The 
initialization of the new list item is done once for each task that references the list item 
in any statement in the construct. The initialization is done prior to the execution of the 
construct.

For a firstprivate clause on a parallel or task construct, the initial value of 
the new list item is the value of the original list item that exists immediately prior to the  
construct in the task region where the construct is encountered. For a firstprivate 
clause on a worksharing construct, the initial value of the new list item for each implicit 
task of the threads that execute the worksharing construct is the value of the original list 
item that exists in the implicit task immediately prior to the point in time that the 
worksharing construct is encountered.

To avoid race conditions, concurrent updates of the original list item must be 
synchronized with the read of the original list item that occurs as a result of the 
firstprivate clause.

If a list item appears in both firstprivate and lastprivate clauses, the update 
required for lastprivate occurs after all the initializations for firstprivate.

C/C++
For variables of non-array type, the initialization occurs by copy assignment. For an 
array of elements of non-array type, each element is initialized as if by assignment from 
an element of the original array to the corresponding element of the new array. For 
variables of class type, a copy constructor is invoked to perform the initialization. The 
order in which copy constructors for different variables of class type are called is 

C/C++
unspecified. 

firstprivate(list)
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Fortran

If the original list item does not have the POINTER  attribute, initialization of the new 
list items occurs as if by intrinsic assignment, unless the original list item has the 
allocation status of not currently allocated, in which case the new list items will have the 
same status.

If the original list item has the POINTER attribute, the new list items receive the same 

Fortran

association status of the original list item as if by pointer assignment.

Restrictions

The restrictions to the firstprivate clause are as follows:

• A variable that is part of another variable (as an array or structure element) cannot 
appear in a firstprivate clause.

• A list item that is private within a parallel region must not appear in a 
firstprivate clause on a worksharing construct if any of the worksharing 
regions arising from the worksharing construct ever bind to any of the parallel 
regions arising from the parallel construct. 

• A list item that appears in a reduction clause of a parallel construct must not 
appear in a firstprivate clause on a worksharing or task construct if any of 
the worksharing or task regions arising from the worksharing or task construct 
ever bind to any of the parallel regions arising from the parallel construct. 

• A list item that appears in a reduction clause in a worksharing construct must not 
appear in a firstprivate clause in a task construct encountered during execution 
of any of the worksharing regions arising from the worksharing construct.

C/C++
• A variable of class type (or array thereof) that appears in a firstprivate clause 

requires an accessible, unambiguous copy constructor for the class type.

• A variable that appears in a firstprivate clause must not have an incomplete 

C/C++
type or a reference type.

Fortran

• Variables that appear in namelist statements, in variable format expressions, and in 
expressions for statement function definitions, may not appear in a firstprivate 

Fortran

clause. 
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2.9.3.5 lastprivate clause

Summary

The lastprivate clause declares one or more list items to be private to an implicit 
task, and causes the corresponding original list item to be updated after the end of the 
region. 

Syntax

The syntax of the lastprivate clause is as follows:

Description

The lastprivate clause provides a superset of the functionality provided by the 
private clause.

A list item that appears in a lastprivate clause is subject to the private clause 
semantics described in Section 2.9.3.3 on page 96. In addition, when a lastprivate 
clause appears on the directive that identifies a worksharing construct, the value of each 
new list item from the sequentially last iteration of the associated loops, or the lexically 
last section construct, is assigned to the original list item. 

C/C++
For an array of elements of non-array type, each element is assigned to the 

C/C++
corresponding element of the original array.

Fortran

If the original list item does not have the POINTER attribute, its update occurs as if by 
intrinsic assignment.

If the original list item has the POINTER attribute, its update occurs as if by pointer 

Fortran

assignment.

List items that are not assigned a value by the sequentially last iteration of the loops, or 
by the lexically last section construct, have unspecified values after the construct. 
Unassigned subcomponents also have unspecified values after the construct.

lastprivate(list)
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The original list item becomes defined at the end of the construct if there is an implicit 
barrier at that point. To avoid race conditions, concurrent reads or updates of the original 
list item must be synchronized with the update of the original list item that occurs as a 
result of the lastprivate clause.

If the lastprivate clause is used on a construct to which nowait is applied, 
accesses to the original list item may create a data race. To avoid this, synchronization 
must be inserted to ensure that the sequentially last iteration or lexically last section 
construct has stored and flushed that list item.

If a list item appears in both firstprivate and lastprivate clauses, the update 
required for lastprivate occurs after all initializations for firstprivate.

For an example of the lastprivate clause, see Section A.35 on page 264.

Restrictions

The restrictions to the lastprivate clause are as follows:

• A variable that is part of another variable (as an array or structure element) cannot 
appear in a lastprivate clause.

• A list item that is private within a parallel region, or that appears in the 
reduction clause of a parallel construct, must not appear in a lastprivate 
clause on a worksharing construct if any of the corresponding worksharing regions 
ever binds to any of the corresponding parallel regions.

C/C++
• A variable of class type (or array thereof) that appears in a lastprivate clause 

requires an accessible, unambiguous default constructor for the class type, unless the 
list item is also specified in a firstprivate clause. 

• A variable of class type (or array thereof) that appears in a lastprivate clause 
requires an accessible, unambiguous copy assignment operator for the class type. The 
order in which copy assignment operators for different variables of class type are 
called is unspecified.

• A variable that appears in a lastprivate clause must not have a const-qualified 
type unless it is of class type with a mutable member. 

• A variable that appears in a lastprivate clause must not have an incomplete type 

C/C++
or a reference type. 

Fortran

• A variable that appears in a lastprivate clause must be definable.
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• An original list item with the ALLOCATABLE attribute must be in the allocated state 
at entry to the construct containing the lastprivate clause. The list item in the 
sequentially last iteration or lexically last section must be in the allocated state upon 
exit from that iteration or section with the same bounds as the corresponding original 
list item.

• Variables that appear in namelist statements, in variable format expressions, and in 
expressions for statement function definitions, may not appear in a lastprivate 

Fortran

clause.

2.9.3.6 reduction clause

Summary

The reduction clause specifies an operator and one or more list items. For each list 
item, a private copy is created in each implicit task, and is initialized appropriately for 
the operator. After the end of the region, the original list item is updated with the values 
of the private copies using the specified operator.

Syntax

C/C++
The syntax of the reduction clause is as follows:

The following table lists the operators that are valid and their initialization values. The 
actual initialization value depends on the data type of the reduction list item.

reduction(operator:list)

Operator Initialization value

+ 0

* 1

- 0

& ~0

| 0

^ 0

&& 1
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C/C++

Fortran

The syntax of the reduction clause is as follows:

The following table lists the operators and intrinsic_procedure_names that are valid and 
their initialization values. The actual initialization value depends on the data type of the 
reduction list item.

Fortran

|| 0 

max Least representable value in the reduction list item type

min Largest representable value in the reduction list item type

reduction({operator | intrinsic_procedure_name}:list)

Operator/
Intrinsic Initialization value

+ 0

* 1

- 0

.and. .true.

.or. .false.

.eqv. .true.

.neqv. .false.

max Least representable number in the reduction list item type

min Largest representable number in the reduction list item type

iand All bits on

ior 0

ieor 0

1
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Description

The reduction clause can be used to perform some forms of recurrence calculations 
(involving mathematically associative and commutative operators) in parallel.

A private copy of each list item is created, one for each implicit task, as if the private 
clause had been used. The private copy is then initialized to the initialization value for 
the operator, as specified above. At the end of the region for which the reduction 
clause was specified, the original list item is updated by combining its original value 
with the final value of each of the private copies, using the operator specified. (The 
partial results of a subtraction reduction are added to form the final value.) 

C/C++
For max and min operators, the final values of the private copies are combined with the 
original list item value using the following expressions:

C/C++

If nowait is not used, the reduction computation will be complete at the end of the 
construct; however, if the reduction clause is used on a construct to which nowait is 
also applied, accesses to the original list item will create a race and, thus, have 
unspecified effect unless synchronization ensures that they occur after all threads have 
executed all of their iterations or section constructs, and the reduction computation 
has completed and stored the computed value of that list item. This can most simply be 
ensured through a barrier synchronization. 

The location in the OpenMP program at which the values are combined and the order in 
which the values are combined are unspecified. Therefore, when comparing sequential 
and parallel runs, or when comparing one parallel run to another (even if the number of 
threads used is the same), there is no guarantee that bit-identical results will be obtained 
or that side effects (such as floating point exceptions) will be identical or take place at 
the same location in the OpenMP program.

To avoid race conditions, concurrent reads or updates of the original list item must be 
synchronized with the update of the original list item that occurs as a result of the 
reduction computation.

max original_list_item = 
original_list_item < private_copy ? private_copy : original_list_item;

min original_list_item = 
original_list_item > private_copy ? private_copy : original_list_item;
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Restrictions

The restrictions to the reduction clause are as follows:

• A list item that appears in a reduction clause of a worksharing construct must be 
shared in the parallel regions to which any of the worksharing regions arising 
from the worksharing construct bind.

• A list item that appears in a reduction clause of the innermost enclosing 
worksharing or parallel construct may not be accessed in an explicit task.

• Any number of reduction clauses can be specified on the directive, but a list item 
can appear only once in the reduction clauses for that directive.

C/C++
• The type of a list item that appears in a reduction clause must be valid for the 

reduction operator. For a max or min reduction in C, the type of the list item must be 
an allowed arithmetic data type: char, int, float, double, or _Bool, possibly 
modified with long, short, signed, or unsigned. For a max or min reduction 
in C++, the type of the list item must be an allowed arithmetic data type: char, 
wchar_t, int, float, double, or bool, possibly modified with long, short, 
signed, or unsigned.

• Aggregate types (including arrays), pointer types and reference types may not appear 
in a reduction clause.

C/C++
• A list item that appears in a reduction clause must not be const-qualified.

Fortran

• The type of a list item that appears in a reduction clause must be valid for the 
reduction operator or intrinsic.

• A list item that appears in a reduction clause must be definable.

• A list item that appears in a reduction clause must be a named variable of 
intrinsic type.

• An original list item with the ALLOCATABLE attribute must be in the allocated state 
at entry to the construct containing the reduction clause. Additionally, the list item 
must not be deallocated and/or allocated within the region. 

• Fortran pointers and Cray pointers may not appear in a reduction clause.

• Operators specified must be intrinsic operators and any intrinsic_procedure_name 
must refer to one of the allowed intrinsic procedures. Assignment to the reduction list 

Fortran

items must be via intrinsic assignment. See Section A.36 on page 266 for examples.
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2.9.4 Data Copying Clauses
This section describes the copyin clause (allowed on the parallel directive and 
combined parallel worksharing directives) and the copyprivate clause (allowed on 
the single directive).

These clauses support the copying of data values from private or threadprivate variables 
on one implicit task or thread to the corresponding variables on other implicit tasks or 
threads in the team.

The clauses accept a comma-separated list of list items (see Section 2.1 on page 22). All 
list items appearing in a clause must be visible, according to the scoping rules of the 
base language. Clauses may be repeated as needed, but a list item that specifies a given 
variable may not appear in more than one clause on the same directive. 

2.9.4.1 copyin clause

Summary

The copyin clause provides a mechanism to copy the value of the master thread’s 
threadprivate variable to the threadprivate variable of each other member of the team 
executing the parallel region. 

Syntax

The syntax of the copyin clause is as follows:

Description

C/C++
The copy is done after the team is formed and prior to the start of execution of the 
associated structured block. For variables of non-array type, the copy occurs by copy 
assignment. For an array of elements of non-array type, each element is copied as if by 
assignment from an element of the master thread’s array to the corresponding element of 
the other thread’s array. For class types, the copy assignment operator is invoked. The 
order in which copy assignment operators for different variables of class type are called 

C/C++
is unspecified. 

copyin(list)
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Fortran

The copy is done, as if by assignment, after the team is formed and prior to the start of 
execution of the associated structured block.

On entry to any parallel region, each thread’s copy of a variable that is affected by 
a copyin clause for the parallel region will acquire the allocation, association, and 
definition status of the master thread’s copy, according to the following rules:

• If the original list item has the POINTER attribute, each copy receives the same 
association status of the master thread’s copy as if by pointer assignment.

• If the original list item does not have the POINTER attribute, each copy becomes 
defined with the value of the master thread's copy as if by intrinsic assignment, 
unless it has the allocation status of not currently allocated, in which case each copy 

Fortran

will have the same status.

For an example of the copyin clause, see Section A.37 on page 271.

Restrictions

The restrictions to the copyin clause are as follows:

C/C++
• A list item that appears in a copyin clause must be threadprivate.

• A variable of class type (or array thereof) that appears in a copyin clause requires 

C/C++
an accessible, unambiguous copy assignment operator for the class type.

Fortran

• A list item that appears in a copyin clause must be threadprivate. Named variables 
appearing in a threadprivate common block may be specified: it is not necessary to 
specify the whole common block. 

• A common block name that appears in a copyin clause must be declared to be a 
common block in the same scoping unit in which the copyin clause appears.

• If an array with the ALLOCATABLE attribute is allocated, then each thread's copy of 

Fortran

that array must be allocated with the same bounds.
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2.9.4.2 copyprivate clause

Summary

The copyprivate clause provides a mechanism to use a private variable to broadcast 
a value from the data environment of one implicit task to the data environments of the 
other implicit tasks belonging to the parallel region.

To avoid race conditions, concurrent reads or updates of the list item must be 
synchronized with the update of the list item that occurs as a result of the 
copyprivate clause.

Syntax

The syntax of the copyprivate clause is as follows:

Description

The effect of the copyprivate clause on the specified list items occurs after the 
execution of the structured block associated with the single construct (see 
Section 2.5.3 on page 50), and before any of the threads in the team have left the barrier 
at the end of the construct.

C/C++
In all other implicit tasks belonging to the parallel region, each specified list item 
becomes defined with the value of the corresponding list item in the implicit task whose 
thread executed the structured block. For variables of non-array type, the definition 
occurs by copy assignment. For an array of elements of non-array type, each element is 
copied  by copy assignment from an element of the array in the data environment of the 
implicit task associated with the thread that executed the structured block to the 
corresponding element of the array in the data environment of the other implicit tasks. 
For class types, a copy assignment operator is invoked. The order in which copy 

C/C++
assignment operators for different variables of class type are called is unspecified. 

Fortran

If a list item does not have the POINTER attribute, then in all other implicit tasks 
belonging to the parallel region, the list item becomes defined as if by intrinsic 
assignment with the value of the corresponding list item in the implicit task associated 
with the thread that executed the structured block. 

copyprivate(list)
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If the list item has the POINTER attribute, then, in all other implicit tasks belonging to 
the parallel  region, the list item receives, as if by pointer assignment, the same 
association status of the corresponding list item in the implicit task associated with the 

Fortran

thread that executed the structured block.

For examples of the copyprivate clause, see Section A.38 on page 273.

Note – The copyprivate clause is an alternative to using a shared variable for the 
value when providing such a shared variable would be difficult (for example, in a 
recursion requiring a different variable at each level). 

Restrictions

The restrictions to the copyprivate clause are as follows:

• All list items that appear in the copyprivate clause must be either threadprivate 
or private in the enclosing context.

• A list item that appears in a copyprivate clause may not appear in a private or 
firstprivate clause on the single construct. 

C/C++
• A variable of class type (or array thereof) that appears in a copyprivate clause 

C/C++
requires an accessible unambiguous copy assignment operator for the class type.

Fortran

• A common block that appears in a copyprivate clause must be threadprivate. 

• An array with the ALLOCATABLE attribute must be in the allocated state with the 

Fortran

same bounds in all threads affected by the copyprivate clause. 
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2.10 Nesting of Regions
This section describes a set of restrictions on the nesting of regions. The restrictions on 
nesting are as follows:

• A worksharing region may not be closely nested inside a worksharing, explicit task, 
critical, ordered, atomic, or master region.

• A barrier region may not be closely nested inside a worksharing, explicit task, 
critical, ordered, atomic, or master region.

• A master region may not be closely nested inside a worksharing, atomic, or 
explicit task region.

• An ordered region may not be closely nested inside a critical, atomic, or 
explicit task region. 

• An ordered region must be closely nested inside a loop region (or parallel loop 
region) with an ordered clause.

• A critical region may not be nested (closely or otherwise) inside a critical 
region with the same name. Note that this restriction is not sufficient to prevent 
deadlock.

• parallel, flush, critical, atomic, taskyield, and explicit task  
regions may not be closely nested inside an atomic region.

For examples illustrating these rules, see Section A.20 on page 221, Section A.39 on 
page 278, Section A.40 on page 281, and Section A.15 on page 193.
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CHAPTER 3

Runtime Library Routines

This chapter describes the OpenMP API runtime library routines and is divided into the 
following sections:

• Runtime library definitions (Section 3.1 on page 114).

• Execution environment routines that can be used to control and to query the parallel 
execution environment (Section 3.2 on page 115).

• Lock routines that can be used to synchronize access to data (Section 3.3 on page 
141). 

• Portable timer routines (Section 3.4 on page 148).

Throughout this chapter, true and false are used as generic terms to simplify the 
description of the routines. 

C/C++

C/C++
true means a nonzero integer value and false means an integer value of zero. 

Fortran

Fortran

true means a logical value of .TRUE. and false means a logical value of .FALSE..

Fortran

Restrictions

The following restriction applies to all OpenMP runtime library routines: 

• OpenMP runtime library routines may not be called from PURE or ELEMENTAL 

Fortran

procedures. 
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3.1 Runtime Library Definitions
For each base language, a compliant implementation must supply a set of definitions for 
the OpenMP API runtime library routines and the special data types of their parameters. 
The set of definitions must contain a declaration for each OpenMP API runtime library 
routine and a declaration for the simple lock, nestable lock and schedule data types. In 
addition, each set of definitions may specify other implementation specific values.

C/C++
The library routines are external functions with “C” linkage.

Prototypes for the C/C++ runtime library routines described in this chapter shall be 
provided in a header file named omp.h. This file defines the following: 

• The prototypes of all the routines in the chapter. 

• The type omp_lock_t. 

• The type omp_nest_lock_t.

• The type omp_sched_t.

C/C++
See Section D.1 on page 326 for an example of this file.

Fortran

The OpenMP Fortran API runtime library routines are external procedures. The return 
values of these routines are of default kind, unless otherwise specified.

Interface declarations for the OpenMP Fortran runtime library routines described in this 
chapter shall be provided in the form of a Fortran include file named omp_lib.h or 
a Fortran 90 module named omp_lib. It is implementation defined whether the 
include file or the module file (or both) is provided.

These files define the following:

• The interfaces of all of the routines in this chapter.

• The integer parameter omp_lock_kind.

• The integer parameter omp_nest_lock_kind.

• The integer parameter omp_sched_kind.

• The integer parameter openmp_version with a value yyyymm where yyyy 
and mm are the year and month designations of the version of the OpenMP Fortran 
API that the implementation supports. This value matches that of the C preprocessor 
macro _OPENMP, when a macro preprocessor is supported (see Section 2.2 on page 
26).
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See Section D.2 on page 328 and Section D.3 on page 330 for examples of these files.

It is implementation defined whether any of the OpenMP runtime library routines that 
take an argument are extended with a generic interface so arguments of different KIND 

Fortran

type can be accommodated. See Appendix D.4 for an example of such an extension. 

3.2 Execution Environment Routines
The routines described in this section affect and monitor threads, processors, and the 
parallel environment. 

• the omp_set_num_threads routine.

• the omp_get_num_threads routine.

• the omp_get_max_threads routine.

• the omp_get_thread_num routine.

• the omp_get_num_procs routine.

• the omp_in_parallel routine.

• the omp_set_dynamic routine.

• the omp_get_dynamic routine.

• the omp_set_nested routine.

• the omp_get_nested routine.

• the omp_set_schedule routine.

• the omp_get_schedule routine.

• the omp_get_thread_limit routine.

• the omp_set_max_active_levels routine.

• the omp_get_max_active_levels routine.

• the omp_get_level routine.

• the omp_get_ancestor_thread_num routine.

• the omp_get_team_size routine.

• the omp_get_active_level routine.

• the omp_in_final routine.
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3.2.1 omp_set_num_threads 

Summary

The omp_set_num_threads routine affects the number of threads to be used for 
subsequent parallel regions that do not specify a num_threads clause, by setting the 
value of the first element of the nthreads-var ICV of the current task.

C/C++
Format

C/C++

Fortran

Fortran

Constraints on Arguments

The value of the argument passed to this routine must evaluate to a positive integer, or 
else the behavior of this routine is implementation defined.

Binding

The binding task set for an omp_set_num_threads region is the generating task.

Effect 

The effect of this routine is to set the value of the first element of the nthreads-var ICV 
of the current task to the value specified in the argument. 

See Section 2.4.1 on page 36 for the rules governing the number of threads used to 
execute a parallel region. 

void omp_set_num_threads(int num_threads);

subroutine omp_set_num_threads(num_threads)
integer num_threads
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For an example of the omp_set_num_threads routine, see Section A.41 on page 
288.

Cross References
• nthreads-var ICV, see Section 2.3 on page 28.

• OMP_NUM_THREADS environment variable, see Section 4.2 on page 155.

• omp_get_max_threads routine, see Section 3.2.3 on page 118.

• parallel construct, see Section 2.4 on page 33.

• num_threads clause, see Section 2.4 on page 33.

3.2.2 omp_get_num_threads

Summary

The omp_get_num_threads routine returns the number of threads in the current 
team.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding region for an omp_get_num_threads region is the innermost enclosing 
parallel region.

int omp_get_num_threads(void); 

integer function omp_get_num_threads()
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Effect 

The omp_get_num_threads routine returns the number of threads in the team 
executing the parallel region to which the routine region binds. If called from the 
sequential part of a program, this routine returns 1. For examples, see Section A.42 on 
page 289.

See Section 2.4.1 on page 36 for the rules governing the number of threads used to 
execute a parallel region. 

Cross References
• parallel construct, see Section 2.4 on page 33.

• omp_set_num_threads routine, see Section 3.2.1 on page 116.

• OMP_NUM_THREADS environment variable, see Section 4.2 on page 155.

3.2.3 omp_get_max_threads 

Summary

The omp_get_max_threads routine returns an upper bound on the number of 
threads that could be used to form a new team if a parallel region without a 
num_threads clause were encountered after execution returns from this routine.

C/C++
Format

C/C++

Fortran

Fortran

int omp_get_max_threads(void);

integer function omp_get_max_threads()
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Binding

The binding task set for an omp_get_max_threads region is the generating task. 

Effect 

The value returned by omp_get_max_threads is the value of the first element of 
the nthreads-var ICV of the current task. This value is also an upper bound on the 
number of threads that could be used to form a new team if a parallel region without a 
num_threads clause were encountered after execution returns from this routine.

See Section 2.4.1 on page 36 for the rules governing the number of threads used to 
execute a parallel region. 

Note – The return value of the omp_get_max_threads routine can be used to 
dynamically allocate sufficient storage for all threads in the team formed at the 
subsequent active parallel region.

Cross References
• nthreads-var ICV, see Section 2.3 on page 28.

• parallel construct, see Section 2.4 on page 33.

• num_threads clause, see Section 2.4 on page 33.

• omp_set_num_threads routine, see Section 3.2.1 on page 116.

• OMP_NUM_THREADS environment variable, see Section 4.2 on page 155.

3.2.4 omp_get_thread_num

Summary

The omp_get_thread_num routine returns the thread number, within the current 
team, of the calling thread.
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C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_get_thread_num region is the current team. The 
binding region for an omp_get_thread_num region is the innermost enclosing 
parallel region. 

Effect 

The omp_get_thread_num routine returns the thread number of the calling thread, 
within the team executing the parallel region to which the routine region binds. The 
thread number is an integer between 0 and one less than the value returned by 
omp_get_num_threads, inclusive. The thread number of the master thread of the 
team is 0. The routine returns 0 if it is called from the sequential part of a program.

Note – The thread number may change at any time during the execution of an untied 
task. The value returned by omp_get_thread_num is not generally useful during the 
execution of such a task region.

Cross References
• omp_get_num_threads routine, see Section 3.2.2 on page 117.

int omp_get_thread_num(void); 

integer function omp_get_thread_num() 
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3.2.5 omp_get_num_procs

Summary

The omp_get_num_procs routine returns the number of processors available to the 
program.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_get_num_procs region is all threads. The effect 
of executing this routine is not related to any specific region corresponding to any 
construct or API routine.

Effect 

The omp_get_num_procs routine returns the number of processors that are available 
to the program at the time the routine is called. Note that this value may change between 
the time that it is determined by the omp_get_num_procs routine and the time that it 
is read in the calling context due to system actions outside the control of the OpenMP 
implementation.

int omp_get_num_procs(void);

integer function omp_get_num_procs()
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3.2.6 omp_in_parallel

Summary

The omp_in_parallel routine returns true if the call to the routine is enclosed by an 
active parallel region; otherwise, it returns false.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_in_parallel region is all threads. The effect of 
executing this routine is not related to any specific parallel region but instead 
depends on the state of all enclosing parallel regions.

Effect

omp_in_parallel returns true if any enclosing parallel region is active. If the 
routine call is enclosed by only inactive parallel regions (including the implicit 
parallel region), then it returns false.

int omp_in_parallel(void);

logical function omp_in_parallel()
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3.2.7 omp_set_dynamic 

Summary

The omp_set_dynamic routine enables or disables dynamic adjustment of the 
number of threads available for the execution of subsequent parallel regions by 
setting the value of the dyn-var ICV.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_set_dynamic region is the generating task. 

Effect 

For implementations that support dynamic adjustment of the number of threads, if the 
argument to omp_set_dynamic evaluates to true, dynamic adjustment is enabled for 
the current task; otherwise, dynamic adjustment is disabled for the current task. For 
implementations that do not support dynamic adjustment of the number of threads this 
routine has no effect: the value of dyn-var remains false.

For an example of the omp_set_dynamic routine, see Section A.41 on page 288.

See Section 2.4.1 on page 36 for the rules governing the number of threads used to 
execute a parallel region. 

void omp_set_dynamic(int dynamic_threads); 

subroutine omp_set_dynamic (dynamic_threads)
logical dynamic_threads
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Cross References:
• dyn-var ICV, see Section 2.3 on page 28.

• omp_get_num_threads routine, see Section 3.2.2 on page 117.

• omp_get_dynamic routine, see Section 3.2.8 on page 124.

• OMP_DYNAMIC environment variable, see Section 4.3 on page 156.

3.2.8 omp_get_dynamic

Summary

The omp_get_dynamic routine returns the value of the dyn-var ICV, which 
determines whether dynamic adjustment of the number of threads is enabled or disabled.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_get_dynamic region is the generating task. 

Effect 

This routine returns true if dynamic adjustment of the number of threads is enabled for 
the current task; it returns false, otherwise. If an implementation does not support 
dynamic adjustment of the number of threads, then this routine always returns false.

int omp_get_dynamic(void);

logical function omp_get_dynamic()
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See Section 2.4.1 on page 36 for the rules governing the number of threads used to 
execute a parallel region. 

Cross References
• dyn-var ICV, see Section 2.3 on page 28.

• omp_set_dynamic routine, see Section 3.2.7 on page 123.

• OMP_DYNAMIC environment variable, see Section 4.3 on page 156.

3.2.9 omp_set_nested 

Summary

The omp_set_nested routine enables or disables nested parallelism, by setting the 
nest-var ICV. 

C/C++
Format

C/C++

Fortran

Fortran

void omp_set_nested(int nested);

subroutine omp_set_nested (nested)
logical nested

1
2

3

4

5

6

7

8

9
10

11

12

13



126 OpenMP API • Version 3.1  July 2011

Binding

The binding task set for an omp_set_nested region is the generating task. 

Effect

For implementations that support nested parallelism, if the argument to 
omp_set_nested evaluates to true, nested parallelism is enabled for the current task; 
otherwise, nested parallelism is disabled for the current task. For implementations that 
do not support nested parallelism, this routine has no effect: the value of nest-var 
remains false.

See Section 2.4.1 on page 36 for the rules governing the number of threads used to 
execute a parallel region. 

Cross References
• nest-var ICV, see Section 2.3 on page 28.

• omp_set_max_active_levels routine, see Section 3.2.14 on page 132.

• omp_get_max_active_levels routine, see Section 3.2.15 on page 134.

• omp_get_nested routine, see Section 3.2.10 on page 126.

• OMP_NESTED environment variable, see Section 4.5 on page 157.

3.2.10 omp_get_nested

Summary

The omp_get_nested routine returns the value of the nest-var ICV, which 
determines if nested parallelism is enabled or disabled.
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C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_get_nested region is the generating task. 

Effect

This routine returns true if nested parallelism is enabled for the current task; it returns 
false, otherwise. If an implementation does not support nested parallelism, this routine 
always returns false.

See Section 2.4.1 on page 36 for the rules governing the number of threads used to 
execute a parallel region. 

Cross References
• nest-var ICV, see Section 2.3 on page 28.

• omp_set_nested routine, see Section 3.2.9 on page 125.

• OMP_NESTED environment variable, see Section 4.5 on page 157.

int omp_get_nested(void);

logical function omp_get_nested()
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3.2.11 omp_set_schedule

Summary 

The omp_set_schedule routine affects the schedule that is applied when runtime 
is used as schedule kind, by setting the value of the run-sched-var ICV. 

Format 

C/C++

C/C++

Fortran

Fortran

Constraints on Arguments 

The first argument passed to this routine can be one of the valid OpenMP schedule kinds 
(except for runtime) or any implementation specific schedule. The C/C++ header file 
(omp.h) and the Fortran include file (omp_lib.h) and/or Fortran 90 module file 
(omp_lib) define the valid constants. The valid constants must include the following, 
which can be extended with implementation specific values:

void omp_set_schedule(omp_sched_t kind, int modifier); 

subroutine omp_set_schedule(kind, modifier) 
integer (kind=omp_sched_kind) kind 
integer modifier
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C/C++

C/C++

Fortran

Fortran

Binding 

The binding task set for an omp_set_schedule region is the generating task. 

Effect 

The effect of this routine is to set the value of the run-sched-var ICV of the current task 
to the values specified in the two arguments. The schedule is set to the schedule type 
specified by the first argument kind. It can be any of the standard schedule types or 
any other implementation specific one. For the schedule types static, dynamic, and 
guided the chunk_size is set to the value of the second argument, or to the default 
chunk_size if the value of the second argument is less than 1; for the schedule type 
auto the second argument has no meaning; for implementation specific schedule types, 
the values and associated meanings of the second argument are implementation defined.

typedef enum omp_sched_t {
omp_sched_static = 1,
omp_sched_dynamic = 2,
omp_sched_guided = 3,
omp_sched_auto = 4

} omp_sched_t; 

integer(kind=omp_sched_kind), parameter :: omp_sched_static = 1
integer(kind=omp_sched_kind), parameter :: omp_sched_dynamic = 2
integer(kind=omp_sched_kind), parameter :: omp_sched_guided = 3
integer(kind=omp_sched_kind), parameter :: omp_sched_auto = 4
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Cross References 
• run-sched-var ICV, see Section 2.3 on page 28.

• omp_get_schedule routine, see Section 3.2.12 on page 130.

• OMP_SCHEDULE environment variable, see Section 4.1 on page 154.

• Determining the schedule of a worksharing loop, see Section 2.5.1.1 on page 47.

3.2.12 omp_get_schedule

Summary 

The omp_get_schedule routine returns the schedule that is applied when the 
runtime schedule is used. 

Format 

C/C++

C/C++

Fortran

Fortran

Binding 

The binding task set for an omp_get_schedule region is the generating task. 

void omp_get_schedule(omp_sched_t * kind, int * modifier ); 

subroutine omp_get_schedule(kind, modifier) 
integer (kind=omp_sched_kind) kind 
integer modifier

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15



Chapter 3 Runtime Library Routines 131

Effect 

This routine returns the run-sched-var ICV in the task to which the routine binds. The 
first argument kind returns the schedule to be used. It can be any of the standard 
schedule types as defined in Section 3.2.11 on page 128, or any implementation specific 
schedule type. The second argument is interpreted as in the omp_set_schedule call, 
defined in Section 3.2.11 on page 128.

Cross References 
• run-sched-var ICV, see Section 2.3 on page 28.

• omp_set_schedule routine, see Section 3.2.11 on page 128.

• OMP_SCHEDULE environment variable, see Section 4.1 on page 154.

• Determining the schedule of a worksharing loop, see Section 2.5.1.1 on page 47.

3.2.13 omp_get_thread_limit

Summary 

The omp_get_thread_limit routine returns the maximum number of OpenMP 
threads available to the program. 

Format 

C/C++

C/C++

Fortran

Fortran

int omp_get_thread_limit(void);

integer function omp_get_thread_limit()
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Binding 

The binding thread set for an omp_get_thread_limit region is all threads. The 
effect of executing this routine is not related to any specific region corresponding to any 
construct or API routine. 

Effect 

The omp_get_thread_limit routine returns the maximum number of OpenMP 
threads available to the program as stored in the ICV thread-limit-var.

Cross References 
• thread-limit-var ICV, see Section 2.3 on page 28.

• OMP_THREAD_LIMIT environment variable, see Section 4.9 on page 160.

3.2.14 omp_set_max_active_levels

Summary 

The omp_set_max_active_levels routine limits the number of nested active 
parallel regions, by setting the max-active-levels-var ICV.

Format 

C/C++

C/C++

void omp_set_max_active_levels (int max_levels);
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Fortran

Fortran

Constraints on Arguments

The value of the argument passed to this routine must evaluate to a non-negative integer, 
otherwise the behavior of this routine is implementation defined.

Binding 

When called from the sequential part of the program, the binding thread set for an 
omp_set_max_active_levels region is the encountering thread. When called 
from within any explicit parallel region, the binding thread set (and binding region, if 
required) for the omp_set_max_active_levels region is implementation defined. 

Effect 

The effect of this routine is to set the value of the max-active-levels-var ICV to the value 
specified in the argument. 

If the number of parallel levels requested exceeds the number of levels of parallelism 
supported by the implementation, the value of the max-active-levels-var ICV will be set 
to the number of parallel levels supported by the implementation.

This routine has the described effect only when called from the sequential part of the 
program. When called from within an explicit parallel region, the effect of this 
routine is implementation defined.

Cross References 
• max-active-levels-var ICV, see Section 2.3 on page 28.

• omp_get_max_active_levels routine, see Section 3.2.15 on page 134.

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 4.8 on page 159.

subroutine omp_set_max_active_levels (max_levels)
integer max_levels
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3.2.15 omp_get_max_active_levels

Summary 

The omp_get_max_active_levels routine returns the value of the max-active-
levels-var ICV, which determines the maximum number of nested active parallel 
regions. 

Format

C/C++

C/C++

Fortran

Fortran

Binding 

When called from the sequential part of the program, the binding thread set for an 
omp_get_max_active_levels region is the encountering thread. When called 
from within any explicit parallel region, the binding thread set (and binding region, if 
required) for the omp_get_max_active_levels region is implementation defined. 

Effect 

The omp_get_max_active_levels routine returns the value of the max-active-
levels-var ICV, which determines the maximum number of nested active parallel 
regions. 

int omp_get_max_active_levels(void);

integer function omp_get_max_active_levels()

1

2

3
4
5

6

7

8

9

10

11
12
13
14

15

16
17
18



Chapter 3 Runtime Library Routines 135

Cross References 
• max-active-levels-var ICV, see Section 2.3 on page 28.

• omp_set_max_active_levels routine, see Section 3.2.14 on page 132.

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 4.8 on page 159.

3.2.16 omp_get_level

Summary 

The omp_get_level routine returns the number of nested parallel regions 
enclosing the task that contains the call. 

Format 

C/C++

C/C++

Fortran

Fortran

Binding 

The binding task set for an omp_get_level region is the generating task. The 
binding region for an omp_get_level region is the innermost enclosing parallel 
region. 

int omp_get_level(void);

integer function omp_get_level()
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Effect 

The omp_get_level routine returns the number of nested parallel regions 
(whether active or inactive) enclosing the task that contains the call, not including the 
implicit parallel region. The routine always returns a non-negative integer, and returns 0 
if it is called from the sequential part of the program.

Cross References 
• omp_get_active_level routine, see Section 3.2.19 on page 139.

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 4.8 on page 159.

3.2.17 omp_get_ancestor_thread_num

Summary 

The omp_get_ancestor_thread_num routine returns, for a given nested level of 
the current thread, the thread number of the ancestor or the current thread.

Format 

C/C++

C/C++

Fortran

Fortran

int omp_get_ancestor_thread_num(int level);

integer function omp_get_ancestor_thread_num(level)
integer level
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Binding 

The binding thread set for an omp_get_ancestor_thread_num region is the 
encountering thread. The binding region for an omp_get_ancestor_thread_num 
region is the innermost enclosing parallel region. 

Effect 

The omp_get_ancestor_thread_num routine returns the thread number of the 
ancestor at a given nest level of the current thread or the thread number of the current 
thread. If the requested nest level is outside the range of 0 and the nest level of the 
current thread, as returned by the omp_get_level routine, the routine returns -1.

Note – When the omp_get_ancestor_thread_num routine is called with a value 
of level=0, the routine always returns 0. If level=omp_get_level(), the routine 
has the same effect as the omp_get_thread_num routine. 

Cross References 
• omp_get_level routine, see Section 3.2.16 on page 135.

• omp_get_thread_num routine, see Section 3.2.4 on page 119.

• omp_get_team_size routine, see Section 3.2.18 on page 137.

3.2.18 omp_get_team_size

Summary 

The omp_get_team_size routine returns, for a given nested level of the current 
thread, the size of the thread team to which the ancestor or the current thread belongs. 
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Format 

C/C++

C/C++

Fortran

Fortran

Binding 

The binding thread set for an omp_get_team_size region is the encountering 
thread. The binding region for an omp_get_team_size region is the innermost 
enclosing parallel region.

Effect 

The omp_get_team_size routine returns the size of the thread team to which the 
ancestor or the current thread belongs. If the requested nested level is outside the range 
of 0 and the nested level of the current thread, as returned by the omp_get_level 
routine, the routine returns -1. Inactive parallel regions are regarded like active parallel 
regions executed with one thread. 

Note – When the omp_get_team_size routine is called with a value of level=0, 
the routine always returns 1. If level=omp_get_level(), the routine has the same 
effect as the omp_get_num_threads routine. 

int omp_get_team_size(int level);

integer function omp_get_team_size(level)
integer level
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Cross References 
• omp_get_num_threads routine, see Section 3.2.2 on page 117.

• omp_get_level routine, see Section 3.2.16 on page 135.

• omp_get_ancestor_thread_num routine, see Section 3.2.17 on page 136.

3.2.19 omp_get_active_level

Summary 

The omp_get_active_level routine returns the number of nested, active 
parallel regions enclosing the task that contains the call. 

Format 

C/C++

C/C++

Fortran

Fortran

Binding 

The binding task set for the an omp_get_active_level region is the generating 
task. The binding region for an omp_get_active_level region is the innermost 
enclosing parallel region. 

int omp_get_active_level(void);

integer function omp_get_active_level()
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Effect 

The omp_get_active_level routine returns the number of nested, active parallel 
regions enclosing the task that contains the call. The routine always returns a non-
negative integer, and returns 0 if it is called from the sequential part of the program. 

Cross References 
• omp_get_level routine, see Section 3.2.16 on page 135. 

3.2.20 omp_in_final

Summary

The omp_in_final routine returns true if the routine is executed in a final task 
region; otherwise, it returns false.

Format

C/C++

C/C++

Fortran

Fortran

Binding

The binding task set for an omp_in_final region is the generating task.

int omp_in_final(void);

logical function omp_in_final()

1

2
3
4

5

6

7

8

9
10

11

12

13

14

15

16



Chapter 3 Runtime Library Routines 141

Effect

omp_in_final returns true if the enclosing task region is final. Otherwise, it returns 
false.

3.3 Lock Routines
The OpenMP runtime library includes a set of general-purpose lock routines that can be 
used for synchronization. These general-purpose lock routines operate on OpenMP locks 
that are represented by OpenMP lock variables. OpenMP lock variables must be 
accessed only through the routines described in this section; programs that otherwise 
access OpenMP lock variables are non-conforming.

An OpenMP lock can be in one of the following states: uninitialized, unlocked, or 
locked. If a lock is in the unlocked state, a task can set the lock, which changes its state 
to locked. The task that sets the lock is then said to own the lock. A task that owns a 
lock can unset that lock, returning it to the unlocked state. A program in which a task 
unsets a lock that is owned by another task is non-conforming.

Two types of locks are supported: simple locks and nestable locks. A nestable lock can 
be set multiple times by the same task before being unset; a simple lock cannot be set if 
it is already owned by the task trying to set it. Simple lock variables are associated with 
simple locks and can only be passed to simple lock routines. Nestable lock variables are 
associated with nestable locks and can only be passed to nestable lock routines.

Constraints on the state and ownership of the lock accessed by each of the lock routines 
are described with the routine. If these constraints are not met, the behavior of the 
routine is unspecified. 

The OpenMP lock routines access a lock variable in such a way that they always read 
and update the most current value of the lock variable. It is not necessary for an 
OpenMP program to include explicit flush directives to ensure that the lock variable’s 
value is consistent among different tasks. 

See Section A.45 on page 294 and Section A.46 on page 297, for examples of using the 
simple and the nestable lock routines, respectively.

Binding

The binding thread set for all lock routine regions is all threads. As a consequence, for 
each OpenMP lock, the lock routine effects relate to all tasks that call the routines, 
without regard to which teams the threads executing the tasks belong.
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Simple Lock Routines

C/C++
The type omp_lock_t is a data type capable of representing a simple lock. For the 
following routines, a simple lock variable must be of omp_lock_t type. All simple 

C/C++
lock routines require an argument that is a pointer to a variable of type omp_lock_t.

Fortran

For the following routines, a simple lock variable must be an integer variable of 

Fortran

kind=omp_lock_kind.

The simple lock routines are as follows:

• The omp_init_lock routine initializes a simple lock.

• The omp_destroy_lock routine uninitializes a simple lock.

• The omp_set_lock routine waits until a simple lock is available, and then sets it.

• The omp_unset_lock routine unsets a simple lock.

• The omp_test_lock routine tests a simple lock, and sets it if it is available.

Nestable Lock Routines:

C/C++
The type omp_nest_lock_t is a data type capable of representing a nestable lock. 
For the following routines, a nested lock variable must be of omp_nest_lock_t type. 
All nestable lock routines require an argument that is a pointer to a variable of type 

C/C++
omp_nest_lock_t.

Fortran

For the following routines, a nested lock variable must be an integer variable of 

Fortran

kind=omp_nest_lock_kind.

The nestable lock routines are as follows:

• The omp_init_nest_lock routine initializes a nestable lock.

• The omp_destroy_nest_lock routine uninitializes a nestable lock.

1

2
3
4

5
6

7

8

9

10

11

12

13

14

15
16
17
18

19
20

21

22

23



Chapter 3 Runtime Library Routines 143

• The omp_set_nest_lock routine waits until a nestable lock is available, and then 
sets it.

• The omp_unset_nest_lock routine unsets a nestable lock.

• The omp_test_nest_lock routine tests a nestable lock, and sets it if it is 
available.

3.3.1 omp_init_lock and omp_init_nest_lock 

Summary

These routines provide the only means of initializing an OpenMP lock.

C/C++
Format

C/C++

Fortran

Fortran

Constraints on Arguments

A program that accesses a lock that is not in the uninitialized state through either routine 
is non-conforming.

void omp_init_lock(omp_lock_t *lock);
void omp_init_nest_lock(omp_nest_lock_t *lock);

subroutine omp_init_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_init_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar
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Effect

The effect of these routines is to initialize the lock to the unlocked state; that is, no task 
owns the lock. In addition, the nesting count for a nestable lock is set to zero.

For an example of the omp_init_lock routine, see Section A.43 on page 292.

3.3.2 omp_destroy_lock and 
omp_destroy_nest_lock 

Summary

These routines ensure that the OpenMP lock is uninitialized.

C/C++
Format

C/C++

Fortran

Fortran

Constraints on Arguments

A program that accesses a lock that is not in the unlocked state through either routine is 
non-conforming.

void omp_destroy_lock(omp_lock_t *lock);
void omp_destroy_nest_lock(omp_nest_lock_t *lock);

subroutine omp_destroy_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_destroy_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar
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Effect 

The effect of these routines is to change the state of the lock to uninitialized.

3.3.3 omp_set_lock and omp_set_nest_lock 

Summary

These routines provide a means of setting an OpenMP lock. The calling task region is 
suspended until the lock is set. 

C/C++
Format

C/C++

Fortran

Fortran

Constraints on Arguments

A program that accesses a lock that is in the uninitialized state through either routine is 
non-conforming. A simple lock accessed by omp_set_lock that is in the locked state 
must not be owned by the task that contains the call or deadlock will result.

void omp_set_lock(omp_lock_t *lock);
void omp_set_nest_lock(omp_nest_lock_t *lock);

subroutine omp_set_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_set_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar
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Effect 

Each of these routines causes suspension of the task executing the routine until the 
specified lock is available and then sets the lock. 

A simple lock is available if it is unlocked. Ownership of the lock is granted to the task 
executing the routine.

A nestable lock is available if it is unlocked or if it is already owned by the task 
executing the routine. The task executing the routine is granted, or retains, ownership of 
the lock, and the nesting count for the lock is incremented.

3.3.4 omp_unset_lock and omp_unset_nest_lock

Summary

These routines provide the means of unsetting an OpenMP lock.

C/C++
Format

C/C++

Fortran

Fortran

void omp_unset_lock(omp_lock_t *lock);
void omp_unset_nest_lock(omp_nest_lock_t *lock);

subroutine omp_unset_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_unset_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar
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Constraints on Arguments

A program that accesses a lock that is not in the locked state or that is not owned by the 
task that contains the call through either routine is non-conforming.

Effect

For a simple lock, the omp_unset_lock routine causes the lock to become unlocked.

For a nestable lock, the omp_unset_nest_lock routine decrements the nesting 
count, and causes the lock to become unlocked if the resulting nesting count is zero.

For either routine, if the lock becomes unlocked, and if one or more task regions were 
suspended because the lock was unavailable, the effect is that one task is chosen and 
given ownership of the lock.

3.3.5 omp_test_lock and omp_test_nest_lock 

Summary

These routines attempt to set an OpenMP lock but do not suspend execution of the task 
executing the routine.

C/C++
Format

C/C++

Fortran

Fortran

int omp_test_lock(omp_lock_t *lock);
int omp_test_nest_lock(omp_nest_lock_t *lock);

logical function omp_test_lock(svar)
integer (kind=omp_lock_kind) svar
integer function omp_test_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

1

2
3

4

5

6
7

8
9

10

11

12

13
14

15

16

17



148 OpenMP API • Version 3.1  July 2011

Constraints on Arguments

A program that accesses a lock that is in the uninitialized state through either routine is 
non-conforming. The behavior is unspecified if a simple lock accessed by 
omp_test_lock is in the locked state and is owned by the task that contains the call.

Effect 

These routines attempt to set a lock in the same manner as omp_set_lock and 
omp_set_nest_lock, except that they do not suspend execution of the task 
executing the routine.

For a simple lock, the omp_test_lock routine returns true if the lock is successfully 
set; otherwise, it returns false.

For a nestable lock, the omp_test_nest_lock routine returns the new nesting count 
if the lock is successfully set; otherwise, it returns zero.

3.4 Timing Routines
The routines described in this section support a portable wall clock timer.

• the omp_get_wtime routine.

• the omp_get_wtick routine.

3.4.1 omp_get_wtime

Summary

The omp_get_wtime routine returns elapsed wall clock time in seconds.
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C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_get_wtime region is the encountering thread. The 
routine’s return value is not guaranteed to be consistent across any set of threads.

Effect 

The omp_get_wtime routine returns a value equal to the elapsed wall clock time in 
seconds since some “time in the past”. The actual “time in the past” is arbitrary, but it is 
guaranteed not to change during the execution of the application program. The time 
returned is a “per-thread time”, so it is not required to be globally consistent across all 
the threads participating in an application.

Note – It is anticipated that the routine will be used to measure elapsed times as shown 

C/C++
in the following example:

C/C++

double omp_get_wtime(void);

double precision function omp_get_wtime()

double start;
double end;
start = omp_get_wtime();
... work to be timed ...
end = omp_get_wtime();
printf("Work took %f seconds\n", end - start);
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Fortran

Fortran

3.4.2 omp_get_wtick

Summary

The omp_get_wtick routine returns the precision of the timer used by 
omp_get_wtime.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_get_wtick region is the encountering thread. The 
routine’s return value is not guaranteed to be consistent across any set of threads.

DOUBLE PRECISION START, END
START = omp_get_wtime()
... work to be timed ...
END = omp_get_wtime()
PRINT *, "Work took", END - START, "seconds"

double omp_get_wtick(void);

double precision function omp_get_wtick()
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Effect 

The omp_get_wtick routine returns a value equal to the number of seconds between 
successive clock ticks of the timer used by omp_get_wtime.

1

2
3



152 OpenMP API • Version 3.1  July 2011

This page intentionally left blank.

1

2



153

CHAPTER 4

Environment Variables

This chapter describes the OpenMP environment variables that specify the settings of 
the ICVs that affect the execution of OpenMP programs (see Section 2.3 on page 28). 
The names of the environment variables must be upper case. The values assigned to the 
environment variables are case insensitive and may have leading and trailing white 
space. Modifications to the environment variables after the program has started, even if 
modified by the program itself, are ignored by the OpenMP implementation. However, 
the settings of some of the ICVs can be modified during the execution of the OpenMP 
program by the use of the appropriate directive clauses or OpenMP API routines.

The environment variables are as follows:

• OMP_SCHEDULE sets the run-sched-var ICV that specifies the runtime schedule type 
and chunk size. It can be set to any of the valid OpenMP schedule types.

• OMP_NUM_THREADS sets the nthreads-var ICV that specifies the number of threads 
to use for parallel regions.

• OMP_DYNAMIC sets the dyn-var ICV that specifies the dynamic adjustment of 
threads to use for parallel regions.

• OMP_PROC_BIND sets the bind-var ICV that controls whether threads are bound to 
processors.

• OMP_NESTED sets the nest-var ICV that enables or disables nested parallelism.

• OMP_STACKSIZE sets the stacksize-var ICV that specifies the size of the stack for 
threads created by the OpenMP implementation.

• OMP_WAIT_POLICY sets the wait-policy-var ICV that controls the desired behavior 
of waiting threads. 

• OMP_MAX_ACTIVE_LEVELS sets the max-active-levels-var ICV that controls the 
maximum number of nested active parallel regions. 

• OMP_THREAD_LIMIT sets the thread-limit-var ICV that controls the maximum 
number of threads participating in the OpenMP program.
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The examples in this chapter only demonstrate how these variables might be set in Unix 
C shell (csh) environments. In Korn shell (ksh) and DOS environments the actions are 
similar, as follows:

• csh:

• ksh:

• DOS:

4.1 OMP_SCHEDULE
The OMP_SCHEDULE environment variable controls the schedule type and chunk size 
of all loop directives that have the schedule type runtime, by setting the value of the 
run-sched-var ICV.

The value of this environment variable takes the form:

type[,chunk]

where

• type is one of static, dynamic, guided, or auto

• chunk is an optional positive integer that specifies the chunk size

If chunk is present, there may be white space on either side of the “,”. See Section 2.5.1 
on page 39 for a detailed description of the schedule types.

The behavior of the program is implementation defined if the value of OMP_SCHEDULE 
does not conform to the above format.

Implementation specific schedules cannot be specified in OMP_SCHEDULE. They can 
only be specified by calling omp_set_schedule, described in Section 3.2.11 on page 
128. 

setenv OMP_SCHEDULE "dynamic"

export OMP_SCHEDULE="dynamic"

set OMP_SCHEDULE=dynamic
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Example:

Cross References 
• run-sched-var ICV, see Section 2.3 on page 28.

• Loop construct, see Section 2.5.1 on page 39.

• Parallel loop construct, see Section 2.6.1 on page 56.

• omp_set_schedule routine, see Section 3.2.11 on page 128.

• omp_get_schedule routine, see Section 3.2.12 on page 130.

4.2 OMP_NUM_THREADS 
The OMP_NUM_THREADS environment variable sets the number of threads to use for 
parallel regions by setting the initial value of the nthreads-var ICV. See Section 2.3 
on page 28 for a comprehensive set of rules about the interaction between the 
OMP_NUM_THREADS environment variable, the num_threads clause, the 
omp_set_num_threads  library routine and dynamic adjustment of threads, and 
Section 2.4.1 on page 36 for a complete algorithm that describes how the number of 
threads for a parallel region is determined.

The value of this environment variable must be a list of positive integer values. The 
values of the list set the number of threads to use for parallel regions at the 
corresponding nested level.

The behavior of the program is implementation defined if any value of the list specified 
in the OMP_NUM_THREADS environment variable leads to a number of threads which is 
greater than an implementation can support, or if any value is not a positive integer.

Example:

Cross References:
• nthreads-var ICV, see Section 2.3 on page 28.

• num_threads clause, Section 2.4 on page 33.

setenv OMP_SCHEDULE "guided,4" 
setenv OMP_SCHEDULE "dynamic"

setenv OMP_NUM_THREADS 4,3,2

1

2

3

4

5

6

7

8

9
10
11
12
13
14
15

16
17
18

19
20
21

22

23

24

25



156 OpenMP API • Version 3.1  July 2011

• omp_set_num_threads routine, see Section 3.2.1 on page 116.

• omp_get_num_threads routine, see Section 3.2.2 on page 117.

• omp_get_max_threads routine, see Section 3.2.3 on page 118.

• omp_get_team_size routine, see Section 3.2.18 on page 137.

4.3 OMP_DYNAMIC 
The OMP_DYNAMIC environment variable controls dynamic adjustment of the number 
of threads to use for executing parallel regions by setting the initial value of the 
dyn-var ICV. The value of this environment variable must be true or false. If the 
environment variable is set to true, the OpenMP implementation may adjust the 
number of threads to use for executing parallel regions in order to optimize the use 
of system resources. If the environment variable is set to false, the dynamic 
adjustment of the number of threads is disabled. The behavior of the program is 
implementation defined if the value of OMP_DYNAMIC is neither true nor false.

Example:

Cross References:
• dyn-var ICV, see Section 2.3 on page 28.

• omp_set_dynamic routine, see Section 3.2.7 on page 123.

• omp_get_dynamic routine, see Section 3.2.8 on page 124.

4.4 OMP_PROC_BIND
The OMP_PROC_BIND environment variable sets the value of the global bind-var ICV. 
The value of this environment variable must be true or false. If the environment 
variable is set to true, the execution environment should not move OpenMP threads 
between processors. If the environment variable is set to false, the execution 
environment may move OpenMP threads between processors. The behavior of the 
program is implementation defined if the value of OMP_PROC_BIND is neither true 
nor false.

setenv OMP_DYNAMIC true
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Example:

Cross References:
• bind-var ICV, see Section 2.3 on page 28.

4.5 OMP_NESTED 
The OMP_NESTED environment variable controls nested parallelism by setting the 
initial value of the nest-var ICV. The value of this environment variable must be true 
or false. If the environment variable is set to true, nested parallelism is enabled; if 
set to false, nested parallelism is disabled. The behavior of the program is 
implementation defined if the value of OMP_NESTED is neither true nor false.

Example:

Cross References
• nest-var ICV, see Section 2.3 on page 28.

• omp_set_nested routine, see Section 3.2.9 on page 125.

• omp_get_nested routine, see Section 3.2.18 on page 137.

4.6 OMP_STACKSIZE
The OMP_STACKSIZE environment variable controls the size of the stack for threads 
created by the OpenMP implementation, by setting the value of the stacksize-var ICV. 
The environment variable does not control the size of the stack for the initial thread. 

The value of this environment variable takes the form: 

size | sizeB | sizeK | sizeM | sizeG 

where: 

setenv  OMP_PROC_BIND true

setenv OMP_NESTED false
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• size is a positive integer that specifies the size of the stack for threads that are created 
by the OpenMP implementation. 

• B, K, M, and G are letters that specify whether the given size is in Bytes, Kilobytes 
(1024 Bytes), Megabytes (1024 Kilobytes), or Gigabytes (1024 Megabytes), 
respectively. If one of these letters is present, there may be white space between 
size and the letter.

If only size is specified and none of B, K, M, or G is specified, then size is assumed to be 
in Kilobytes.

The behavior of the program is implementation defined if OMP_STACKSIZE does not 
conform to the above format, or if the implementation cannot provide a stack with the 
requested size.

Examples: 

Cross References
• stacksize-var ICV, see Section 2.3 on page 28.

4.7 OMP_WAIT_POLICY
The OMP_WAIT_POLICY environment variable provides a hint to an OpenMP 
implementation about the desired behavior of waiting threads by setting the wait-policy-
var ICV. A compliant OpenMP implementation may or may not abide by the setting of 
the environment variable.

The value of this environment variable takes the form:

ACTIVE | PASSIVE

The ACTIVE value specifies that waiting threads should mostly be active, consuming 
processor cycles, while waiting. An OpenMP implementation may, for example, make 
waiting threads spin. 

setenv OMP_STACKSIZE 2000500B 
setenv OMP_STACKSIZE "3000 k " 
setenv OMP_STACKSIZE 10M 
setenv OMP_STACKSIZE " 10 M "
setenv OMP_STACKSIZE "20 m " 
setenv OMP_STACKSIZE " 1G" 
setenv OMP_STACKSIZE 20000 
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The PASSIVE value specifies that waiting threads should mostly be passive, not 
consuming processor cycles, while waiting. For example, an OpenMP implementation 
may make waiting threads yield the processor to other threads or go to sleep.

The details of the ACTIVE and PASSIVE behaviors are implementation defined. 

Examples: 

Cross References
• wait-policy-var ICV, see Section 2.3 on page 24. 

4.8 OMP_MAX_ACTIVE_LEVELS
The OMP_MAX_ACTIVE_LEVELS environment variable controls the maximum number 
of nested active parallel regions by setting the initial value of the max-active-levels-var 
ICV.

The value of this environment variable must be a non-negative integer. The behavior of 
the program is implementation defined if the requested value of 
OMP_MAX_ACTIVE_LEVELS is greater than the maximum number of nested active 
parallel levels an implementation can support, or if the value is not a non-negative 
integer.

Cross References
• max-active-levels-var ICV, see Section 2.3 on page 28.

• omp_set_max_active_levels routine, see Section 3.2.14 on page 132.

• omp_get_max_active_levels routine, see Section 3.2.15 on page 134.

setenv OMP_WAIT_POLICY ACTIVE 
setenv OMP_WAIT_POLICY active 
setenv OMP_WAIT_POLICY PASSIVE 
setenv OMP_WAIT_POLICY passive 
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4.9 OMP_THREAD_LIMIT
The OMP_THREAD_LIMIT environment variable sets the number of OpenMP threads 
to use for the whole OpenMP program by setting the thread-limit-var ICV. 

The value of this environment variable must be a positive integer. The behavior of the 
program is implementation defined if the requested value of OMP_THREAD_LIMIT is 
greater than the number of threads an implementation can support, or if the value is not 
a positive integer. 

Cross References 
• thread-limit-var ICV, see Section 2.3 on page 28.

• omp_get_thread_limit routine 
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APPENDIX A

Examples

The following are examples of the constructs and routines defined in this document. 

C/C++
A statement following a directive is compound only when necessary, and a non-

C/C++
compound statement is indented with respect to a directive preceding it.

A.1 A Simple Parallel Loop
The following example demonstrates how to parallelize a simple loop using the parallel 
loop construct (Section 2.6.1 on page 56). The loop iteration variable is private by 
default, so it is not necessary to specify it explicitly in a private clause.

C/C++
Example A.1.1c

void simple(int n, float *a, float *b)
{
    int i;

#pragma omp parallel for 
    for (i=1; i<n; i++) /* i is private by default */
        b[i] = (a[i] + a[i-1]) / 2.0;

C/C++
}
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Fortran

Example A.1.1f

    SUBROUTINE SIMPLE(N, A, B)

      INTEGER I, N
      REAL B(N), A(N)

!$OMP PARALLEL DO  !I is private by default
      DO I=2,N
          B(I) = (A(I) + A(I-1)) / 2.0
      ENDDO
!$OMP END PARALLEL DO

Fortran

    END SUBROUTINE SIMPLE

A.2 The OpenMP Memory Model
In the following example, at Print 1, the value of x could be either 2 or 5, depending on 
the timing of the threads, and the implementation of the assignment to x. There are two 
reasons that the value at Print 1 might not be 5. First, Print 1 might be executed before 
the assignment to x is executed. Second, even if Print 1 is executed after the assignment, 
the value 5 is not guaranteed to be seen by thread 1 because a flush may not have been 
executed by thread 0 since the assignment.
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The barrier after Print 1 contains implicit flushes on all threads, as well as a thread 
synchronization, so the programmer is guaranteed that the value 5 will be printed by 
both Print 2 and Print 3.

C/C++
Example A.2.1c

#include <stdio.h>
#include <omp.h>

int main(){
  int x;
  
  x = 2;
  #pragma omp parallel num_threads(2) shared(x)

{

    if (omp_get_thread_num() == 0) {
       x = 5;
    } else { 
    /* Print 1: the following read of x has a race */ 
      printf("1: Thread# %d: x = %d\n", omp_get_thread_num(),x ); 
    }
    
    #pragma omp barrier
    
    if (omp_get_thread_num() == 0) {
    /* Print 2 */ 
      printf("2: Thread# %d: x = %d\n", omp_get_thread_num(),x );
    } else {
    /* Print 3 */ 
      printf("3: Thread# %d: x = %d\n", omp_get_thread_num(),x );
    }
  }
  return 0; 

C/C++
}
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Fortran

Example A.2.1f

PROGRAM MEMMODEL
  INCLUDE "omp_lib.h"      ! or USE OMP_LIB
  INTEGER X
  
  X = 2
!$OMP PARALLEL NUM_THREADS(2) SHARED(X)
   
    IF (OMP_GET_THREAD_NUM() .EQ. 0) THEN 
       X = 5
    ELSE 
    ! PRINT 1: The following read of x has a race 
      PRINT *,"1: THREAD# ", OMP_GET_THREAD_NUM(), "X = ", X  
    ENDIF 
    
 !$OMP BARRIER
    
    IF (OMP_GET_THREAD_NUM() .EQ. 0) THEN 
    ! PRINT 2 
      PRINT *,"2: THREAD# ", OMP_GET_THREAD_NUM(), "X = ", X  
    ELSE 
    ! PRINT 3 
      PRINT *,"3: THREAD# ", OMP_GET_THREAD_NUM(), "X = ", X 
    ENDIF 
  
!$OMP END PARALLEL 

Fortran

END PROGRAM MEMMODEL

The following example demonstrates why synchronization is difficult to perform 
correctly through variables. The value of flag is undefined in both prints on thread 1 and 
the value of data is only well-defined in the second print.
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C/C++
Example A.2.2c

#include <omp.h>
#include <stdio.h>
int main()
{

int data;
int flag=0;
#pragma omp parallel num_threads(2)
{

if (omp_get_thread_num()==0)
{

/* Write to the data buffer that will be
read by thread */
data = 42;
/* Flush data to thread 1 and strictly order
the write to data
relative to the write to the flag */
#pragma omp flush(flag, data)
/* Set flag to release thread 1 */
flag = 1;
/* Flush flag to ensure that thread 1 sees
the change */
#pragma omp flush(flag)

}
else if(omp_get_thread_num()==1)
{

/* Loop until we see the update to the flag */
#pragma omp flush(flag, data)
while (flag < 1)

{
#pragma omp flush(flag, data)

}
/* Values of flag and data are undefined */
printf("flag=%d data=%d\n", flag, data);
#pragma omp flush(flag, data)
/* Values data will be 42, value of flag
still undefined */
printf("flag=%d data=%d\n", flag, data);

}
}
return 0;

C/C++
}
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Fortran

Example A.2.2f

PROGRAM EXAMPLE
       INCLUDE "omp_lib.h" ! or USE OMP_LIB
       INTEGER DATA
       INTEGER FLAG

FLAG = 0
       !$OMP PARALLEL NUM_THREADS(2)
         IF(OMP_GET_THREAD_NUM() .EQ. 0) THEN
                 ! Write to the data buffer that will be read by thread 1
                 DATA = 42
                 ! Flush DATA to thread 1 and strictly order the write to DATA
                 ! relative to the write to the FLAG
                 !$OMP FLUSH(FLAG, DATA)
                 ! Set FLAG to release thread 1
                 FLAG = 1;
                 ! Flush FLAG to ensure that thread 1 sees the change */
                 !$OMP FLUSH(FLAG)
         ELSE IF(OMP_GET_THREAD_NUM() .EQ. 1) THEN
                 ! Loop until we see the update to the FLAG
                 !$OMP FLUSH(FLAG, DATA)
                 DO WHILE(FLAG .LT. 1)
                         !$OMP FLUSH(FLAG, DATA)
                 ENDDO

                 ! Values of FLAG and DATA are undefined
                 PRINT *, 'FLAG=', FLAG, ' DATA=', DATA
                 !$OMP FLUSH(FLAG, DATA)

                 !Values DATA will be 42, value of FLAG still undefined */
                 PRINT *, 'FLAG=', FLAG, ' DATA=', DATA
         ENDIF
       !$OMP END PARALLEL

Fortran

       END

The next example demonstrates why synchronization is difficult to perform correctly 
through variables. Because the write(1)-flush(1)-flush(2)-read(2) sequence cannot be 
guaranteed in the example, the statements on thread 0 and thread 1 may execute in either 
order.
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C/C++
Example A.2.3c

#include <omp.h>
#include <stdio.h>
int main()
{
         int flag=0;

         #pragma omp parallel num_threads(3)
         {
                 if(omp_get_thread_num()==0)
                 {
                         /* Set flag to release thread 1 */
                         #pragma omp atomic update
                         flag++;
                         /* Flush of flag is implied by the atomic directive */
                 }
                 else if(omp_get_thread_num()==1)
                 {
                         /* Loop until we see that flag reaches 1*/
                         #pragma omp flush(flag)
                         while(flag < 1)
                         {
                                 #pragma omp flush(flag)
                         }
                         printf("Thread 1 awoken\n");

                         /* Set flag to release thread 2 */
                         #pragma omp atomic update
                         flag++;
                         /* Flush of flag is implied by the atomic directive */
                 }
                 else if(omp_get_thread_num()==2)
                 {
                         /* Loop until we see that flag reaches 2 */
                         #pragma omp flush(flag)
                         while(flag < 2)
                         {
                                 #pragma omp flush(flag)
                         }
                         printf("Thread 2 awoken\n");
                 }
         }

return 0;

C/C++
}
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Fortran

Example A.2.3f

PROGRAM EXAMPLE
       INCLUDE "omp_lib.h" ! or USE OMP_LIB
       INTEGER FLAG

FLAG = 0
!$OMP PARALLEL NUM_THREADS(3)

         IF(OMP_GET_THREAD_NUM() .EQ. 0) THEN
                 ! Set flag to release thread 1

!$OMP ATOMIC UPDATE
                         FLAG = FLAG + 1
                 !Flush of FLAG is implied by the atomic directive
         ELSE IF(OMP_GET_THREAD_NUM() .EQ. 1) THEN
                         ! Loop until we see that FLAG reaches 1
                         !$OMP FLUSH(FLAG, DATA)
                         DO WHILE(FLAG .LT. 1)
                                 !$OMP FLUSH(FLAG, DATA)
                         ENDDO

                         PRINT *, 'Thread 1 awoken'

                         ! Set FLAG to release thread 2
                         !$OMP ATOMIC UPDATE
                                 FLAG = FLAG + 1
                         !Flush of FLAG is implied by the atomic directive
         ELSE IF(OMP_GET_THREAD_NUM() .EQ. 2) THEN
                         ! Loop until we see that FLAG reaches 2
                         !$OMP FLUSH(FLAG, DATA)
                         DO WHILE(FLAG .LT. 2)
                                 !$OMP FLUSH(FLAG,    DATA)
                         ENDDO

                         PRINT *, 'Thread 2 awoken'
         ENDIF
       !$OMP END PARALLEL

Fortran

       END
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A.3 Conditional Compilation

C/C++
The following example illustrates the use of conditional compilation using the OpenMP 
macro _OPENMP (Section 2.2 on page 26). With OpenMP compilation, the _OPENMP 
macro becomes defined.

Example A.3.1c

#include <stdio.h>

int main()
{

# ifdef _OPENMP
    printf("Compiled by an OpenMP-compliant implementation.\n");
# endif

    return 0;

C/C++
}

Fortran

The following example illustrates the use of the conditional compilation sentinel (see 
Section 2.2 on page 26). With OpenMP compilation, the conditional compilation 
sentinel !$ is recognized and treated as two spaces. In fixed form source, statements 
guarded by the sentinel must start after column 6.

Example A.3.1f

      PROGRAM EXAMPLE

C234567890
!$    PRINT *, "Compiled by an OpenMP-compliant implementation."

Fortran

      END PROGRAM EXAMPLE
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A.4 Internal Control Variables (ICVs)
According to Section 2.3 on page 28, an OpenMP implementation must act as if there 
are ICVs that control the behavior of the program.  This example illustrates two ICVs, 
nthreads-var and max-active-levels-var. The nthreads-var ICV controls the number of 
threads requested for encountered parallel regions; there is one copy of this ICV per 
task. The max-active-levels-var ICV controls the maximum number of nested active 
parallel regions; there is one copy of this ICV for the whole program.

In the following example, the nest-var, max-active-levels-var, dyn-var, and nthreads-var 
ICVs are modified through calls to the runtime library routines omp_set_nested, 
omp_set_max_active_levels, omp_set_dynamic, and 
omp_set_num_threads respectively. These ICVs affect the operation of 
parallel regions. Each implicit task generated by a parallel region has its own 
copy of the nest-var, dyn-var, and nthreads-var ICVs.

In the following example, the new value of nthreads-var applies only to the implicit 
tasks that execute the call to omp_set_num_threads. There is one copy of the max-
active-levels-var ICV for the whole program and its value is the same for all tasks. This 
example assumes that nested parallelism is supported.

The outer parallel region creates a team of two threads; each of the threads will 
execute one of the two implicit tasks generated by the outer parallel region.

Each implicit task generated by the outer parallel region calls 
omp_set_num_threads(3), assigning the value 3 to its respective copy of 
nthreads-var. Then each implicit task encounters an inner parallel region that 
creates a team of three threads; each of the threads will execute one of the three implicit 
tasks generated by that inner parallel region.

Since the outer parallel region is executed by 2 threads, and the inner by 3, there 
will be a total of 6 implicit tasks generated by the two inner parallel regions.

Each implicit task generated by an inner parallel region will execute the call to 
omp_set_num_threads(4), assigning the value 4 to its respective copy of 
nthreads-var.

The print statement in the outer parallel region is executed by only one of the 
threads in the team. So it will be executed only once.

The print statement in an inner parallel region is also executed by only one of the 
threads in the team. Since we have a total of two inner parallel regions, the print 
statement will be executed twice -- once per inner parallel region.
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C/C++
Example A.4.1c

#include <stdio.h>
#include <omp.h>

int main (void)
{
  omp_set_nested(1);
  omp_set_max_active_levels(8);
  omp_set_dynamic(0);
  omp_set_num_threads(2);
  #pragma omp parallel
    {
      omp_set_num_threads(3);

      #pragma omp parallel
        {
          omp_set_num_threads(4);
          #pragma omp single
            {
              /*
               * The following should print:
               * Inner: max_act_lev=8, num_thds=3, max_thds=4
               * Inner: max_act_lev=8, num_thds=3, max_thds=4
               */
              printf ("Inner: max_act_lev=%d, num_thds=%d, max_thds=%d\n",
              omp_get_max_active_levels(), omp_get_num_threads(),
              omp_get_max_threads());
            }
        }

      #pragma omp barrier
      #pragma omp single
        {
          /*
           * The following should print:
           * Outer: max_act_lev=8, num_thds=2, max_thds=3
           */
          printf ("Outer: max_act_lev=%d, num_thds=%d, max_thds=%d\n",
                  omp_get_max_active_levels(), omp_get_num_threads(),
                  omp_get_max_threads());
        }
    }

return 0;

C/C++
}
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Fortran

Example A.4.1f

      program icv
      use omp_lib

      call omp_set_nested(.true.)
      call omp_set_max_active_levels(8)
      call omp_set_dynamic(.false.)
      call omp_set_num_threads(2)

!$omp parallel
      call omp_set_num_threads(3)

!$omp parallel
      call omp_set_num_threads(4)
!$omp single
!      The following should print:
!      Inner: max_act_lev= 8 , num_thds= 3 , max_thds= 4
!      Inner: max_act_lev= 8 , num_thds= 3 , max_thds= 4
       print *, "Inner: max_act_lev=", omp_get_max_active_levels(),
     &           ", num_thds=", omp_get_num_threads(),
     &           ", max_thds=", omp_get_max_threads()
!$omp end single
!$omp end parallel

!$omp barrier
!$omp single
!      The following should print:
!      Outer: max_act_lev= 8 , num_thds= 2 , max_thds= 3
       print *, "Outer: max_act_lev=", omp_get_max_active_levels(),
     &           ", num_thds=", omp_get_num_threads(),
     &           ", max_thds=", omp_get_max_threads()
!$omp end single
!$omp end parallel

Fortran

       end

A.5 The parallel Construct
The parallel construct (Section 2.4 on page 33) can be used in coarse-grain parallel 
programs. In the following example, each thread in the parallel region decides what 
part of the global array x to work on, based on the thread number:
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C/C++
Example A.5.1c

#include <omp.h>

void subdomain(float *x, int istart, int ipoints)
{
  int i;

  for (i = 0; i < ipoints; i++)
      x[istart+i] = 123.456;
}

void sub(float *x, int npoints)
{
    int iam, nt, ipoints, istart;

#pragma omp parallel default(shared) private(iam,nt,ipoints,istart)
    {
        iam = omp_get_thread_num();
        nt =  omp_get_num_threads();
        ipoints = npoints / nt;    /* size of partition */
        istart = iam * ipoints;  /* starting array index */
        if (iam == nt-1)     /* last thread may do more */
          ipoints = npoints - istart;
        subdomain(x, istart, ipoints);
    }
}

int main()
{
    float array[10000];

    sub(array, 10000);

    return 0;

C/C++
}

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35



174 OpenMP API • Version 3.1  July 2011

Fortran

Example A.5.1f

      SUBROUTINE SUBDOMAIN(X, ISTART, IPOINTS)
          INTEGER ISTART, IPOINTS
          REAL X(*)

          INTEGER I
          
          DO 100 I=1,IPOINTS
             X(ISTART+I) = 123.456
 100      CONTINUE      

      END SUBROUTINE SUBDOMAIN

      SUBROUTINE SUB(X, NPOINTS)
          INCLUDE "omp_lib.h"     ! or USE OMP_LIB
        
          REAL X(*)
          INTEGER NPOINTS
          INTEGER IAM, NT, IPOINTS, ISTART

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,NPOINTS)
             
          IAM = OMP_GET_THREAD_NUM()
          NT =  OMP_GET_NUM_THREADS()
          IPOINTS = NPOINTS/NT
          ISTART = IAM * IPOINTS
          IF (IAM .EQ. NT-1) THEN
              IPOINTS = NPOINTS - ISTART
          ENDIF
          CALL SUBDOMAIN(X,ISTART,IPOINTS)

!$OMP END PARALLEL
      END SUBROUTINE SUB

      PROGRAM PAREXAMPLE
          REAL ARRAY(10000)
          CALL SUB(ARRAY, 10000)

Fortran

END PROGRAM PAREXAMPLE
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A.6 Controlling the Number of Threads on 
Multiple Nesting Levels
The following examples demonstrate how to use the OMP_NUM_THREADS environment 
variable (Section 2.3.2 on page 29) to control the number of threads on multiple nesting 
levels:

C/C++
Example A.6.1c

#include <stdio.h>
#include <omp.h>
int main (void)
{

omp_set_nested(1);
omp_set_dynamic(0);
#pragma omp parallel
{

#pragma omp parallel
{

#pragma omp single
{
/*
* If OMP_NUM_THREADS=2,3 was set, the following should print:
* Inner: num_thds=3
* Inner: num_thds=3
*
* If nesting is not supported, the following should print:
* Inner: num_thds=1
* Inner: num_thds=1
*/

printf ("Inner: num_thds=%d\n", omp_get_num_threads());
}

}
#pragma omp barrier
omp_set_nested(0);
#pragma omp parallel
{

#pragma omp single
{
/*
* Even if OMP_NUM_THREADS=2,3 was set, the following should
* print, because nesting is disabled:
* Inner: num_thds=1
* Inner: num_thds=1
*/

printf ("Inner: num_thds=%d\n", omp_get_num_threads());

1

2

3
4
5

6

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43



176 OpenMP API • Version 3.1  July 2011

}
}
#pragma omp barrier
#pragma omp single
{

/*
* If OMP_NUM_THREADS=2,3 was set, the following should print:
* Outer: num_thds=2
*/
printf ("Outer: num_thds=%d\n", omp_get_num_threads());

}
}
return 0;

C/C++
}

Fortran

Example A.6.1f

program icv
use omp_lib
call omp_set_nested(.true.)
call omp_set_dynamic(.false.)

!$omp parallel
!$omp parallel
!$omp single

! If OMP_NUM_THREADS=2,3 was set, the following should print:
! Inner: num_thds= 3
! Inner: num_thds= 3
! If nesting is not supported, the following should print:
! Inner: num_thds= 1
! Inner: num_thds= 1
print *, "Inner: num_thds=", omp_get_num_threads()

!$omp end single
!$omp end parallel
!$omp barrier

call omp_set_nested(.false.)
!$omp parallel
!$omp single

! Even if OMP_NUM_THREADS=2,3 was set, the following should print, 
! because nesting is disabled:
! Inner: num_thds= 1
! Inner: num_thds= 1
print *, "Inner: num_thds=", omp_get_num_threads()

!$omp end single
!$omp end parallel
!$omp barrier
!$omp single

! If OMP_NUM_THREADS=2,3 was set, the following should print:
! Outer: num_thds= 2
print *, "Outer: num_thds=", omp_get_num_threads()
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!$omp end single
!$omp end parallel

end

Fortran

A.7 Interaction Between the num_threads 
Clause and omp_set_dynamic
The following example demonstrates the num_threads clause (Section 2.4 on page 
33) and the effect of the omp_set_dynamic routine (Section 3.2.7 on page 123) on 
it.

The call to the omp_set_dynamic routine with argument 0 in C/C++, or .FALSE. 
in Fortran, disables the dynamic adjustment of the number of threads in OpenMP 
implementations that support it. In this case, 10 threads are provided. Note that in case 
of an error the OpenMP implementation is free to abort the program or to supply any 
number of threads available.

C/C++
Example A.7.1c

#include <omp.h>
int main()
{
  omp_set_dynamic(0);
  #pragma omp parallel num_threads(10)
  {
    /* do work here */
  }
  return 0; 

C/C++
}

Fortran

Example A.7.1f

      PROGRAM EXAMPLE
        INCLUDE "omp_lib.h"      ! or USE OMP_LIB

1
2
3

4
5

6

7

8
9

10

11
12
13
14
15

16

17

18
19
20
21
22
23
24
25
26
27

28

29
30



178 OpenMP API • Version 3.1  July 2011

        CALL OMP_SET_DYNAMIC(.FALSE.)
!$OMP     PARALLEL NUM_THREADS(10)
            ! do work here
!$OMP     END PARALLEL

Fortran

      END PROGRAM EXAMPLE

The call to the omp_set_dynamic routine with a non-zero argument in C/C++, or 
.TRUE. in Fortran, allows the OpenMP implementation to choose any number of 
threads between 1 and 10 (see also Algorithm 2.1 in Section 2.4.1 on page 36).

C/C++
Example A.7.2c

#include <omp.h>
int main()
{
  omp_set_dynamic(1);
  #pragma omp parallel num_threads(10)
  {
    /* do work here */
  }
  return 0; 

C/C++
}

Fortran

Example A.7.2f

      PROGRAM EXAMPLE
        INCLUDE "omp_lib.h"      ! or USE OMP_LIB
        CALL OMP_SET_DYNAMIC(.TRUE.)
!$OMP     PARALLEL NUM_THREADS(10)
            ! do work here
!$OMP     END PARALLEL

Fortran

      END PROGRAM EXAMPLE

It is good practice to set the dyn-var ICV explicitly by calling the omp_set_dynamic 
routine, as its default setting is implementation defined.
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Fortran

A.8 Fortran Restrictions on the do Construct
If an end do directive follows a do-construct in which several DO statements share a 
DO termination statement, then a do directive can only be specified for the outermost of 
these DO statements. For more information, see Section 2.5.1 on page 39. The following 
example contains correct usages of loop constructs:
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Example A.8.1f

      SUBROUTINE WORK(I, J)
      INTEGER I,J
      END SUBROUTINE WORK

      SUBROUTINE DO_GOOD()
        INTEGER I, J
        REAL A(1000)

        DO 100 I = 1,10
!$OMP     DO 
          DO 100 J = 1,10
            CALL WORK(I,J)
100     CONTINUE      !  !$OMP ENDDO implied here

!$OMP   DO 
        DO 200 J = 1,10
200       A(I) = I + 1
!$OMP   ENDDO

!$OMP   DO 
        DO 300 I = 1,10
          DO 300 J = 1,10
            CALL WORK(I,J)
300     CONTINUE    
!$OMP   ENDDO
      END SUBROUTINE DO_GOOD

The following example is non-conforming because the matching do directive for the 
end do does not precede the outermost loop:

Example A.8.2f

      SUBROUTINE WORK(I, J)
      INTEGER I,J
      END SUBROUTINE WORK

      SUBROUTINE DO_WRONG
        INTEGER I, J

        DO 100 I = 1,10
!$OMP     DO 
          DO 100 J = 1,10
            CALL WORK(I,J)
100     CONTINUE
!$OMP   ENDDO

Fortran

      END SUBROUTINE DO_WRONG 
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Fortran

A.9 Fortran Private Loop Iteration Variables
In general loop iteration variables will be private, when used in the do-loop of a do and 
parallel do construct or in sequential loops in a parallel construct (see 
Section 2.5.1 on page 39 and Section 2.9.1 on page 84). In the following example of a 
sequential loop in a parallel construct the loop iteration variable I will be private.

Example A.9.1f

SUBROUTINE PLOOP_1(A,N) 
INCLUDE "omp_lib.h"      ! or USE OMP_LIB

REAL A(*) 
INTEGER I, MYOFFSET, N 

!$OMP PARALLEL PRIVATE(MYOFFSET)
       MYOFFSET = OMP_GET_THREAD_NUM()*N
       DO I = 1, N
         A(MYOFFSET+I) = FLOAT(I)
       ENDDO
!$OMP END PARALLEL

END SUBROUTINE PLOOP_1
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In exceptional cases, loop iteration variables can be made shared, as in the following 
example:

Example A.9.2f

SUBROUTINE PLOOP_2(A,B,N,I1,I2) 
REAL A(*), B(*) 
INTEGER I1, I2, N 

!$OMP PARALLEL SHARED(A,B,I1,I2)
!$OMP SECTIONS
!$OMP SECTION
     DO I1 = I1, N
       IF (A(I1).NE.0.0) EXIT
     ENDDO
!$OMP SECTION
     DO I2 = I2, N
       IF (B(I2).NE.0.0) EXIT
     ENDDO
!$OMP END SECTIONS
!$OMP SINGLE
    IF (I1.LE.N) PRINT *, 'ITEMS IN A UP TO ', I1, 'ARE ALL ZERO.'
    IF (I2.LE.N) PRINT *, 'ITEMS IN B UP TO ', I2, 'ARE ALL ZERO.'
!$OMP END SINGLE
!$OMP END PARALLEL

END SUBROUTINE PLOOP_2

Note however that the use of shared loop iteration variables can easily lead to race 

Fortran

conditions.

A.10 The nowait clause
If there are multiple independent loops within a parallel region, you can use the 
nowait clause (see Section 2.5.1 on page 39) to avoid the implied barrier at the end of 
the loop construct, as follows:
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C/C++
Example A.10.1c

#include <math.h>

void nowait_example(int n, int m, float *a, float *b, float *y, float *z)
{
  int i;
  #pragma omp parallel
  {
    #pragma omp for nowait
      for (i=1; i<n; i++)
        b[i] = (a[i] + a[i-1]) / 2.0;
  
    #pragma omp for nowait
      for (i=0; i<m; i++)
        y[i] = sqrt(z[i]);
  }

C/C++
}

Fortran

Example A.10.1f

SUBROUTINE NOWAIT_EXAMPLE(N, M, A, B, Y, Z)

        INTEGER N, M
        REAL A(*), B(*), Y(*), Z(*)

        INTEGER I

!$OMP PARALLEL

!$OMP DO
        DO I=2,N
          B(I) = (A(I) + A(I-1)) / 2.0
        ENDDO
!$OMP END DO NOWAIT

!$OMP DO
        DO I=1,M
          Y(I) = SQRT(Z(I))
        ENDDO
!$OMP END DO NOWAIT

!$OMP END PARALLEL

Fortran

      END SUBROUTINE NOWAIT_EXAMPLE
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In the following example, static scheduling distributes the same logical iteration 
numbers to the threads that execute the three loop regions. This allows the nowait 
clause to be used, even though there is a data dependence between the loops. The 
dependence is satisfied as long the same thread executes the same logical iteration 
numbers in each loop.

Note that the iteration count of the loops must be the same. The example satisfies this 
requirement, since the iteration space of the first two loops is from 0 to n-1 (from 1 to 
N in the Fortran version), while the iteration space of the last loop is from 1 to n (2 to 
N+1 in the Fortran version).

C/C++
Example A.10.2c

#include <math.h>
void nowait_example2(int n, float *a, float *b, float *c, float *y, float *z)
{

int i;
#pragma omp parallel

{
#pragma omp for schedule(static) nowait

for (i=0; i<n; i++)
c[i] = (a[i] + b[i]) / 2.0f;

#pragma omp for schedule(static) nowait
for (i=0; i<n; i++)

z[i] = sqrtf(c[i]);
#pragma omp for schedule(static) nowait 

for (i=1; i<=n; i++) 
y[i] = z[i-1] + a[i];

}

C/C++
}

Fortran

Example A.10.2f

SUBROUTINE NOWAIT_EXAMPLE2(N, A, B, C, Y, Z)
INTEGER N
REAL A(*), B(*), C(*), Y(*), Z(*)
INTEGER I

!$OMP PARALLEL
!$OMP DO SCHEDULE(STATIC)

DO I=1,N
C(I) = (A(I) + B(I)) / 2.0

ENDDO
!$OMP END DO NOWAIT
!$OMP DO SCHEDULE(STATIC)

DO I=1,N
Z(I) = SQRT(C(I))

ENDDO
!$OMP END DO NOWAIT
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!$OMP DO SCHEDULE(STATIC)
DO I=2,N+1

Y(I) = Z(I-1) + A(I)
ENDDO

!$OMP END DO NOWAIT
!$OMP END PARALLEL

Fortran

END SUBROUTINE NOWAIT_EXAMPLE2

A.11 The collapse clause
For the following three examples, see Section 2.5.1 on page 39 for a description of the 
collapse clause, Section 2.8.7 on page 82 for a description of the ordered 
construct, and Section 2.9.3.5 on page 101 for a description of the lastprivate  
clause.

In the following example, the k and j loops are associated with the loop construct. So 
the iterations of the k and j loops are collapsed into one loop with a larger iteration 
space, and that loop is then divided among the threads in the current team. Since the i 
loop is not associated with the loop construct, it is not collapsed, and the i loop is 
executed sequentially in its entirety in every iteration of the collapsed k and j loop. 

C/C++
The variable j can be omitted from the private  clause when the collapse clause 
is used since it is implicitly private. However, if the collapse clause is omitted then 
j will be shared if it is omitted from the private clause. In either case, k is implicitly 
private and could be omitted from the private  clause.

Example A.11.1c

void bar(float *a, int i, int j, int k);
int kl, ku, ks, jl, ju, js, il, iu,is;
void sub(float *a)
{
    int i, j, k;
    #pragma omp for collapse(2) private(i, k, j)
    for (k=kl; k<=ku; k+=ks)
       for (j=jl; j<=ju; j+=js)
          for (i=il; i<=iu; i+=is)
             bar(a,i,j,k);

C/C++
}
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Fortran

Example A.11.1f

subroutine sub(a)
real a(*)
integer kl, ku, ks, jl, ju, js, il, iu, is
common /csub/ kl, ku, ks, jl, ju, js, il, iu, is
integer i, j, k

!$omp do collapse(2) private(i,j,k)
      do k = kl, ku, ks
        do j = jl, ju, js
          do i = il, iu, is
         call bar(a,i,j,k)
          enddo
        enddo
      enddo
!$omp end do

Fortran

end subroutine

In the next example, the k and j loops are associated with the loop construct. So the 
iterations of the k and j loops are collapsed into one loop with a larger iteration space, 
and that loop is then divided among the threads in the current team.

The sequential execution of the iterations in the k and j loops determines the order of 
the iterations in the collapsed iteration space. This implies that in the sequentially last 
iteration of the collapsed iteration space, k will have the value 2 and j will have the 
value 3. Since klast and jlast are lastprivate, their values are assigned by the 
sequentially last iteration of the collapsed k and j loop. This example prints: 2 3.
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C/C++
Example A.11.2c

#include <stdio.h>
void test()
{
   int j, k, jlast, klast;
   #pragma omp parallel
   {
      #pragma omp for collapse(2) lastprivate(jlast, klast)
      for (k=1; k<=2; k++)
         for (j=1; j<=3; j++)
         {
            jlast=j;
            klast=k;
         }
      #pragma omp single
      printf("%d %d\n", klast, jlast);
   }

C/C++
}

Fortran

Example A.11.2f

program test
!$omp parallel 
!$omp do private(j,k) collapse(2) lastprivate(jlast, klast)
      do k = 1,2
        do j = 1,3

jlast=j
klast=k

        enddo
      enddo
!$omp end do
!$omp single
                print *, klast, jlast 
!$omp end single
!$omp end parallel

Fortran

end program test

The next example illustrates the interaction of the collapse and ordered  clauses.
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In the example, the loop construct has both a collapse clause and an ordered 
clause. The collapse clause causes the iterations of the k and j loops to be collapsed 
into one loop with a larger iteration space, and that loop is divided among the threads in 
the current team. An ordered clause is added to the loop construct, because an 
ordered region binds to the loop region arising from the loop construct.

According to Section 2.8.7 on page 82, a thread must not execute more than one ordered 
region that binds to the same loop region. So the collapse clause is required for the 
example to be conforming. With the collapse clause, the iterations of the k and j 
loops are collapsed into one loop, and therefore only one ordered region will bind to the 
collapsed k and j loop. Without the collapse clause, there would be two ordered 
regions that bind to each iteration of the k loop (one arising from the first iteration of 
the j loop, and the other arising from the second iteration of the j loop).

The code prints
0 1 1
0 1 2
0 2 1
1 2 2
1 3 1
1 3 2

C/C++
Example A.11.3c

#include <omp.h>
#include <stdio.h>
void work(int a, int j, int k);
void sub()
{
   int j, k, a;
   #pragma omp parallel num_threads(2)
   {
      #pragma omp for collapse(2) ordered private(j,k) schedule(static,3)
      for (k=1; k<=3; k++)
         for (j=1; j<=2; j++)
         {
            #pragma omp ordered
            printf("%d %d %d\n", omp_get_thread_num(), k, j);
            /* end ordered */
            work(a,j,k);
         }
   }

C/C++
}
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Fortran

Example A.11.3f

program test
include 'omp_lib.h'

!$omp parallel num_threads(2)
!$omp do collapse(2) ordered private(j,k) schedule(static,3)
      do k = 1,3
        do j = 1,2
!$omp ordered

print *, omp_get_thread_num(), k, j
!$omp end ordered          
         call work(a,j,k)
        enddo
      enddo
!$omp end do
!$omp end parallel

Fortran

end program test

A.12 The parallel sections Construct
In the following example (for Section 2.6.2 on page 57) routines XAXIS, YAXIS, and 
ZAXIS can be executed concurrently. The first section directive is optional. Note 
that all section directives need to appear in the parallel sections construct.

C/C++
Example A.12.1c

void XAXIS();
void YAXIS();
void ZAXIS();

void sect_example()
{
  #pragma omp parallel sections
  {
    #pragma omp section
      XAXIS();

    #pragma omp section
      YAXIS();
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    #pragma omp section
      ZAXIS();
  }

C/C++
}

Fortran

Example A.12.1f

      SUBROUTINE SECT_EXAMPLE()

!$OMP PARALLEL SECTIONS

!$OMP SECTION
        CALL XAXIS()

!$OMP SECTION
        CALL YAXIS()

!$OMP SECTION
        CALL ZAXIS()

!$OMP END PARALLEL SECTIONS

Fortran

      END SUBROUTINE SECT_EXAMPLE

A.13 The firstprivate  Clause and the 
sections Construct
In the following example of the sections construct (Section 2.5.2 on page 48) the 
firstprivate clause is used to initialize the private copy of section_count of 
each thread. The problem is that the section constructs modify section_count, 
which breaks the independence of the section constructs. When different threads 
execute each section, both sections will print the value 1. When the same thread 
executes the two sections, one section will print the value 1 and the other will print the 
value 2. Since the order of execution of the two sections in this case is unspecified, it is 
unspecified which section prints which value. 

C/C++
Example A.13.1c

#include <omp.h>
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#include <stdio.h>
#define NT 4
int main( ) {
    int section_count = 0;
    omp_set_dynamic(0);
    omp_set_num_threads(NT);
#pragma omp parallel
#pragma omp sections firstprivate( section_count )
{
#pragma omp section
    {
        section_count++;
        /* may print the number one or two */
        printf( "section_count %d\n", section_count );
    }
#pragma omp section
    {
        section_count++;
        /* may print the number one or two */
        printf( "section_count %d\n", section_count );
    }
}
    return 1;

C/C++
}

Fortran

Example A.13.1f

program section
    use omp_lib
    integer :: section_count = 0
    integer, parameter :: NT = 4
    call omp_set_dynamic(.false.)
    call omp_set_num_threads(NT)
!$omp parallel
!$omp sections firstprivate ( section_count )
!$omp section
    section_count = section_count + 1
! may print the number one or two
    print *, 'section_count', section_count
!$omp section
    section_count = section_count + 1
! may print the number one or two
    print *, 'section_count', section_count
!$omp end sections
!$omp end parallel

Fortran

end program section
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A.14 The single Construct
The following example demonstrates the single construct (Section 2.5.3 on page 50). 
In the example, only one thread prints each of the progress messages. All other threads 
will skip the single region and stop at the barrier at the end of the single construct 
until all threads in the team have reached the barrier. If other threads can proceed 
without waiting for the thread executing the single region, a nowait clause can be 
specified, as is done in the third single construct in this example. The user must not 
make any assumptions as to which thread will execute a single region.

C/C++
Example A.14.1c

#include <stdio.h>

void work1() {}
void work2() {}

void single_example()
{
  #pragma omp parallel
  {
    #pragma omp single
      printf("Beginning work1.\n");

    work1();

    #pragma omp single
      printf("Finishing work1.\n");

    #pragma omp single nowait
      printf("Finished work1 and beginning work2.\n");

    work2();
  }

C/C++
}
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Fortran

Example A.14.1f

      SUBROUTINE WORK1()
      END SUBROUTINE WORK1
      
      SUBROUTINE WORK2()
      END SUBROUTINE WORK2
      
      PROGRAM SINGLE_EXAMPLE
!$OMP PARALLEL

!$OMP SINGLE
        print *, "Beginning work1."
!$OMP END SINGLE

        CALL WORK1()

!$OMP SINGLE
        print *, "Finishing work1."
!$OMP END SINGLE

!$OMP SINGLE
        print *, "Finished work1 and beginning work2."
!$OMP END SINGLE NOWAIT

        CALL WORK2()

!$OMP END PARALLEL

Fortran

      END PROGRAM SINGLE_EXAMPLE

A.15 Tasking Constructs
The following example shows how to traverse a tree-like structure using explicit tasks 
(see Section 2.7 on page 61). Note that the traverse function should be called from 
within a parallel region for the different specified tasks to be executed in parallel. Also 
note that the tasks will be executed in no specified order because there are no 
synchronization directives. Thus, assuming that the traversal will be done in post order, 
as in the sequential code, is wrong.
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C/C++
Example A.15.1c

struct node {
struct node *left;
struct node *right; 

};
extern void process(struct node *);
void traverse( struct node *p ) {
  if (p->left)
#pragma omp task   // p is firstprivate by default
      traverse(p->left);
  if (p->right)
#pragma omp task    // p is firstprivate by default
      traverse(p->right);
  process(p);

C/C++
}

Fortran

Example A.15.1f

RECURSIVE SUBROUTINE traverse ( P )
          TYPE Node
            TYPE(Node), POINTER :: left, right
          END TYPE Node
          TYPE(Node) :: P
          IF (associated(P%left)) THEN 
                  !$OMP TASK    ! P is firstprivate by default
                      call traverse(P%left)
                  !$OMP END TASK
          ENDIF
          IF (associated(P%right)) THEN 
                  !$OMP TASK     ! P is firstprivate by default
                      call traverse(P%right)
                  !$OMP END TASK
          ENDIF
          CALL process ( P )

Fortran

        END SUBROUTINE
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In the next example, we force a postorder traversal of the tree by adding a taskwait 
directive (see Section 2.8.4 on page 72). Now, we can safely assume that the left and 
right sons have been executed before we process the current node.

C/C++
Example A.15.2c

struct node {
struct node *left;
struct node *right; 

};
extern void process(struct node *);
void postorder_traverse( struct node *p ) {
    if (p->left)
       #pragma omp task    // p is firstprivate by default

postorder_traverse(p->left);
    if (p->right)
       #pragma omp task   // p is firstprivate by default

postorder_traverse(p->right);
    #pragma omp taskwait
    process(p);

C/C++
}

Fortran

Example A.15.2f

RECURSIVE SUBROUTINE traverse ( P ) 
            TYPE Node 
                TYPE(Node), POINTER :: left, right 
             END TYPE Node 
             TYPE(Node) :: P 
             IF (associated(P%left)) THEN 
                  !$OMP TASK   ! P is firstprivate by default
                      call traverse(P%left) 
                  !$OMP END TASK
             ENDIF 
             IF (associated(P%right)) THEN 
                  !$OMP TASK    ! P is firstprivate by default

call traverse(P%right) 
                  !$OMP END TASK
             ENDIF
             !$OMP TASKWAIT
             CALL process ( P ) 

Fortran

          END SUBROUTINE
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The following example demonstrates how to use the task construct to process elements 
of a linked list in parallel. The thread executing the single region generates all of the 
explicit tasks, which are then executed by the threads in the current team. The pointer p 
is firstprivate by default on the task construct so it is not necessary to specify it 
in a firstprivate clause (see page 86).

C/C++
Example A.15.3c

typedef struct node node; 
struct node {
      int data;
      node * next;
};
 
void process(node * p)
{
    /* do work here */
}
void increment_list_items(node * head)
{
    #pragma omp parallel
    {
        #pragma omp single
            {
               node * p = head;
               while (p) {
                    #pragma omp task

// p is firstprivate by default
                           process(p);
                     p = p->next;

}
            }

}

C/C++
}
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Fortran

Example A.15.3f

      MODULE LIST
         TYPE NODE
             INTEGER :: PAYLOAD
             TYPE (NODE), POINTER :: NEXT
         END TYPE NODE
      CONTAINS
          SUBROUTINE PROCESS(p)
             TYPE (NODE), POINTER :: P
                 ! do work here

END SUBROUTINE
SUBROUTINE INCREMENT_LIST_ITEMS (HEAD)

              TYPE (NODE), POINTER :: HEAD
              TYPE (NODE), POINTER :: P
              !$OMP PARALLEL PRIVATE(P)
                 !$OMP SINGLE
                      P => HEAD
                      DO
                         !$OMP TASK

! P is firstprivate by default
                             CALL PROCESS(P)
                         !$OMP END TASK
                         P => P%NEXT
                         IF ( .NOT. ASSOCIATED (P) ) EXIT
                     END DO
                !$OMP END SINGLE
             !$OMP END PARALLEL
          END SUBROUTINE

Fortran

       END MODULE
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The fib() function should be called from within a parallel  region for the different 
specified tasks to be executed in parallel. Also, only one thread of the parallel 
region should call fib() unless multiple concurrent Fibonacci computations are 
desired. 

C/C++
Example A.15.4c

     int fib(int n) { 
        int i, j; 
        if (n<2) 
          return n; 
        else { 
           #pragma omp task shared(i) 
              i=fib(n-1); 
           #pragma omp task shared(j) 
              j=fib(n-2); 
           #pragma omp taskwait 
              return i+j; 
        } 

C/C++
     } 

Fortran

Example A.15.4f

      RECURSIVE INTEGER FUNCTION fib(n) RESULT(res)
      INTEGER n, i, j 
      IF ( n .LT. 2) THEN 
        res = n 
      ELSE 
!$OMP TASK SHARED(i) 
        i = fib( n-1 ) 
!$OMP END TASK 
!$OMP TASK SHARED(j) 
        j = fib( n-2 ) 
!$OMP END TASK 
!$OMP TASKWAIT
        res = i+j 
      END IF 

Fortran

      END FUNCTION 

Note: There are more efficient algorithms for computing Fibonacci numbers. This 
classic recursion algorithm is for illustrative purposes.
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The following example demonstrates a way to generate a large number of tasks with one 
thread and execute them with the threads in the team (see Section 2.7.3 on page 65). 
While generating these tasks, the implementation may reach its limit on unassigned 
tasks.  If it does, the implementation is allowed to cause the thread executing the task 
generating loop to suspend its task at the task scheduling point in the task directive, 
and start executing unassigned tasks.  Once the number of unassigned tasks is 
sufficiently low, the thread may resume execution of the task generating loop.

C/C++
Example A.15.5c

#define LARGE_NUMBER 10000000
double item[LARGE_NUMBER];
extern void process(double);
 
int main() {
#pragma omp parallel

{
    #pragma omp single
    {
      int i;
      for (i=0; i<LARGE_NUMBER; i++)
             #pragma omp task    // i is firstprivate, item is shared
                  process(item[i]);
    }

}

C/C++
}

Fortran

Example A.15.5f 

real*8 item(10000000)
integer i

 
!$omp parallel
!$omp single ! loop iteration variable i is private

do i=1,10000000
!$omp task        

! i is firstprivate, item is shared
call process(item(i))

!$omp end task
end do

!$omp end single
!$omp end parallel

Fortran

end
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The following example is the same as the previous one, except that the tasks are 
generated in an untied task (see Section 2.7 on page 61). While generating the tasks, the 
implementation may reach its limit on unassigned tasks. If it does, the implementation is 
allowed to cause the thread executing the task generating loop to suspend its task at the 
task scheduling point in the task directive, and start executing unassigned tasks.  If 
that thread begins execution of a task that takes a long time to complete, the other 
threads may complete all the other tasks before it is finished.

In this case, since the loop is in an untied task, any other thread is eligible to resume the 
task generating loop. In the previous examples, the other threads would be forced to idle 
until the generating thread finishes its long task, since the task generating loop was in a 
tied task.

C/C++
Example A.15.6c

#define LARGE_NUMBER 10000000
double item[LARGE_NUMBER];
extern void process(double);
int main() {
#pragma omp parallel

{
    #pragma omp single
    {
      int i;
      #pragma omp task untied

// i is firstprivate, item is shared
      {
         for (i=0; i<LARGE_NUMBER; i++)
             #pragma omp task
                  process(item[i]);
      }
    }

}
return 0;

C/C++
}
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Fortran

Example A.15.6f

real*8 item(10000000) 
!$omp parallel
!$omp single
!$omp task untied

! loop iteration variable i is private
do i=1,10000000

!$omp task ! i is firstprivate, item is shared
call process(item(i))

!$omp end task
end do

!$omp end task
!$omp end single
!$omp end parallel

Fortran

end

The following two examples demonstrate how the scheduling rules illustrated in 
Section 2.7.3 on page 65 affect the usage of threadprivate variables in tasks. A 
threadprivate variable can be modified by another task that is executed by the 
same thread. Thus, the value of a threadprivate variable cannot be assumed to be 
unchanged across a task scheduling point. In untied tasks, task scheduling points may be 
added in any place by the implementation.

A task switch may occur at a task scheduling point. A single thread may execute both of 
the task regions that modify tp. The parts of these task regions in which tp is modified 
may be executed in any order so the resulting value of var can be either 1 or 2.
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C/C++
Example A.15.7c

int tp;
#pragma omp threadprivate(tp)
int var;
void work()
{
#pragma omp task
    {
        /* do work here */
#pragma omp task
        {
            tp = 1;
            /* do work here */
#pragma omp task
            {
                /* no modification of tp */
            }
            var = tp; //value of tp can be 1 or 2
        }
        tp = 2;
    }

C/C++
}

Fortran

Example A.15.7f

module example
      integer tp
!$omp threadprivate(tp)
      integer var
      contains
      subroutine work
      use globals
!$omp task
         ! do work here
!$omp task
         tp = 1
         ! do work here
!$omp task
           ! no modification of tp
!$omp end task     
         var = tp    ! value of var can be 1 or 2  
!$omp end task
        tp = 2
!$omp end task
      end subroutine

Fortran

      end module
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In this example, scheduling constraints (see Section 2.7.3 on page 65) prohibit a thread 
in the team from executing a new task that modifies tp  while another such task region 
tied to the same thread is suspended. Therefore, the value written will persist across the 
task scheduling point.

C/C++
Example A.15.8c

int tp;
#pragma omp threadprivate(tp)
int var;
void work()
{
#pragma omp parallel
    {
        /* do work here */
#pragma omp task
        {
            tp++;
            /* do work here */
#pragma omp task
            {
                /* do work here but don't modify tp */
            }
            var = tp; //Value does not change after write above
        }
    }

C/C++
}

Fortran

Example A.15.8f

module example
      integer tp
!$omp threadprivate(tp)
      integer var
      contains
      subroutine work
!$omp parallel
         ! do work here
!$omp task
         tp = tp + 1
         ! do work here
!$omp task
           ! do work here but don't modify tp
!$omp end task     
         var = tp    ! value does not change after write above  
!$omp end task
!$omp end parallel
      end subroutine
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Fortran

      end module

The following two examples demonstrate how the scheduling rules illustrated in 
Section 2.7.3 on page 65 affect the usage of locks and critical sections in tasks.  If a lock 
is held across a task scheduling point, no attempt should be made to acquire the same 
lock in any code that may be interleaved.  Otherwise, a deadlock is possible.

In the example below, suppose the thread executing task 1 defers task 2.  When it 
encounters the task scheduling point at task 3, it could suspend task 1 and begin task 2 
which will result in a deadlock when it tries to enter critical region 1.  

C/C++
Example A.15.9c

void work()
{
   #pragma omp task 
   { //Task 1
       #pragma omp task 
       { //Task 2
            #pragma omp critical //Critical region 1 
            {/*do work here */ }       
       }
       #pragma omp critical //Critical Region 2
       {
           //Capture data for the following task
           #pragma omp task

{ /* do work here */ } //Task 3
       }
   }

C/C++
}
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Fortran

Example A.15.9f       

module example
       contains 
       subroutine work
!$omp task
       ! Task 1
!$omp task
       ! Task 2 
!$omp critical
       ! Critical region 1
       ! do work here
!$omp end critical
!$omp end task
!$omp critical
       ! Critical region 2 
       ! Capture data for the following task
!$omp task    
       !Task 3
       ! do work here
!$omp end task
!$omp end critical
!$omp end task
      end subroutine

Fortran

      end module
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In the following example, lock is held across a task scheduling point.  However, 
according to the scheduling restrictions outlined in Section 2.7.3 on page 65, the 
executing thread can't begin executing one of the non-descendant tasks that also acquires 
lock before the task region is complete.  Therefore, no deadlock is possible.

C/C++
Example A.15.10c

#include <omp.h>
void work() {
    omp_lock_t lock;

omp_init_lock(&lock);
#pragma omp parallel
    {
        int i;
#pragma omp for
        for (i = 0; i < 100; i++) {
#pragma omp task 
            { 

// lock is shared by default in the task
omp_set_lock(&lock);

                // Capture data for the following task
#pragma omp task

// Task Scheduling Point 1
                { /* do work here */ }
                omp_unset_lock(&lock);
            }
        }
    }

omp_destroy_lock(&lock);

C/C++
}
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Fortran

Example A.15.10f

       module example
       include 'omp_lib.h'
       integer (kind=omp_lock_kind) lock
       integer i
       contains
       subroutine work

call omp_init_lock(lock)
!$omp parallel
     !$omp do
      do i=1,100
         !$omp task 
              ! Outer task
              call omp_set_lock(lock)    ! lock is shared by

! default in the task
! Capture data for the following task

                     !$omp task     ! Task Scheduling Point 1
                              ! do work here
                     !$omp end task
               call omp_unset_lock(lock)
         !$omp end task
      end do
!$omp end parallel

call omp_destroy_lock(lock)
      end subroutine

Fortran

      end module

The following examples illustrate the use of the mergeable clause in the task 
construct. In this first example, the task construct has been annotated with the 
mergeable  clause (see Section 2.7.1 on page 61). The addition of this clause allows 
the implementation to reuse the data environment (including the ICVs) of the parent task 
for the task inside foo if the task is included or undeferred (see Section 1.2.3 on page 
8). Thus, the result of the execution may differ depending on whether the task is merged 
or not. Therefore the mergeable clause needs to be used with caution. In this example, 
the use of the mergeable clause is safe. As x is a shared variable the outcome does not 
depend on whether or not the task is merged (that is, the task will always increment the 
same variable and will always compute the same value for x).

C/C++
Example A.15.11c

#include <stdio.h>
void foo ( )
{
   int x = 2;
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   #pragma omp task shared(x) mergeable
   {
      x++;
   }
   #pragma omp taskwait
   printf("%d\n",x);  // prints 3

C/C++
}

Fortran

Example A.15.11f

subroutine foo()
  integer :: x
  x = 2
!$omp task shared(x) mergeable
  x = x + 1
!$omp end task
!$omp taskwait
  print *, x     ! prints 3

Fortran

end subroutine

This second example shows an incorrect use of the mergeable clause. In this 
example, the created task will access different instances of the variable x if the task is 
not merged, as x is firstprivate, but it will access the same variable x if the task 
is merged. As a result, the behavior of the program is unspecified and it can print two 
different values for x depending on the decisions taken by the implementation.

C/C++
Example A.15.12c

#include <stdio.h>
void foo ( )
{
   int x = 2;
   #pragma omp task mergeable
   {
      x++;
   }
   #pragma omp taskwait
   printf("%d\n",x);  // prints 2 or 3
}

C/C++
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Fortran

Example A.15.12f

subroutine foo()
  integer :: x
  x = 2
!$omp task mergeable
  x = x + 1
!$omp end task
!$omp taskwait
  print *, x   ! prints 2 or 3

Fortran

end subroutine

The following example shows the use of the final clause (see Section 2.7.1 on page 
61) and the omp_in_final API call (see Section 3.2.20 on page 140) in a recursive 
binary search program. To reduce overhead, once a certain depth of recursion is reached 
the program uses the final clause to create only included tasks, which allow 
additional optimizations.

The use of the omp_in_final API call allows programmers to optimize their code by 
specifying which parts of the program are not necessary when a task can create only 
included tasks (that is, the code is inside a final task). In this example, the use of a 
different state variable is not necessary so once the program reaches the part of the 
computation that is finalized and copying from the parent state to the new state is 
eliminated. The allocation of new_state in the stack could also be avoided but it 
would make this example less clear. The final clause is most effective when used in 
conjunction with the mergeable clause since all tasks created in a final task region 
are included tasks that can be merged if the mergeable clause is present.

C/C++
Example A.15.13c

#include <string.h>
#include <omp.h>
#define LIMIT  3 /* arbitrary limit on recursion depth */
void check_solution(char *);
void bin_search (int pos, int n, char *state)
{
   if ( pos == n ) {
      check_solution(state);
      return;
   }
   #pragma omp task final( pos > LIMIT ) mergeable
   {
      char new_state[n];
      if (!omp_in_final() ) {
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        memcpy(new_state, state, pos );
        state = new_state;
      }
      state[pos] = 0;
      bin_search(pos+1, n, state );
   }
   #pragma omp task final( pos > LIMIT ) mergeable
   {
      char new_state[n];
      if (! omp_in_final() ) {
        memcpy(new_state, state, pos );
        state = new_state;
      }
      state[pos] = 1;
      bin_search(pos+1, n, state );
   }
   #pragma omp taskwait

C/C++
}

Fortran

Example A.15.13f

recursive subroutine bin_search(pos, n, state)
  use omp_lib
  integer :: pos, n
  character, pointer :: state(:)
  character, target, dimension(n) :: new_state1, new_state2
  integer, parameter :: LIMIT = 3
  if (pos .eq. n) then
    call check_solution(state)
    return
  endif
!$omp task final(pos > LIMIT) mergeable
  if (.not. omp_in_final()) then
    new_state1(1:pos) = state(1:pos)
    state => new_state1
  endif
  state(pos+1) = 'z'
  call bin_search(pos+1, n, state)
!$omp end task
!$omp task final(pos > LIMIT) mergeable
  if (.not. omp_in_final()) then
    new_state2(1:pos) = state(1:pos)
    state => new_state2
  endif
  state(pos+1) = 'y'
  call bin_search(pos+1, n, state)
!$omp end task
!$omp taskwait
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Fortran

end subroutine

The following example illustrates the difference between the if  and the final 
clauses. The if clause has a local effect. In the first nest of tasks, the one that has the 
if  clause will be undeferred but the task nested inside that task will not be affected by 
the if clause and will be created as usual. Alternatively, the final clause affects all 
task constructs in the final task region but not the final task itself. In the second 
nest of tasks, the nested tasks will be created as included tasks. Note also that the 
conditions for the if and final clauses are usually the opposite.

C/C++
Example A.15.14c

void foo ( )
{
   int i;
   #pragma omp task if(0)  // This task is undeferred
   {
      #pragma omp task     // This task is a regular task
      for (i = 0; i < 3; i++) {
          #pragma omp task     // This task is a regular task
          bar();
      }
   }
   #pragma omp task final(1) // This task is a regular task
   {
      #pragma omp task  // This task is included
      for (i = 0; i < 3; i++) {
          #pragma omp task     // This task is also included
          bar();
      }
   }

C/C++
}

Fortran

Example A.15.14f

subroutine foo()
integer i
!$omp task if(.FALSE.) ! This task is undeferred
!$omp task             ! This task is a regular task
  do i = 1, 3
    !$omp task             ! This task is a regular task
      call bar()
    !$omp end task
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  enddo
!$omp end task
!$omp end task
!$omp task final(.TRUE.) ! This task is a regular task
!$omp task               ! This task is included
  do i = 1, 3
    !$omp task               ! This task is also included
     call bar()
    !$omp end task
  enddo
!$omp end task
!$omp end task

Fortran

end subroutine

A.16 The taskyield Directive 
The following example illustrates the use of the taskyield  directive (see 
Section 2.7.2 on page 64). The tasks in the example compute something useful and then 
do some computation that must be done in a critical region. By using taskyield 
when a task cannot get access to the critical region the implementation can suspend 
the current task and schedule some other task that can do something useful. 

C/C++
Example A.16.1c

#include <omp.h>

void something_useful ( void );
void something_critical ( void );
void foo ( omp_lock_t * lock, int n )
{
   int i;

   for ( i = 0; i < n; i++ )
      #pragma omp task
      {
          something_useful();
          while ( !omp_test_lock(lock) ) {
             #pragma omp taskyield
          }
          something_critical();
          omp_unset_lock(lock);
      }

C/C++
}
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Fortran

Example A.16.1f

subroutine foo ( lock, n )
   use omp_lib
   integer (kind=omp_lock_kind) :: lock
   integer n
   integer i

   do i = 1, n
     !$omp task
       call something_useful()
       do while ( .not. omp_test_lock(lock) ) 
         !$omp taskyield
       end do
       call something_critical()
       call omp_unset_lock(lock)
     !$omp end task
   end do

Fortran

end subroutine

Fortran

A.17 The workshare Construct
The following are examples of the workshare construct (see Section 2.5.4 on page 
52). 

In the following example, workshare spreads work across the threads executing the 
parallel region, and there is a barrier after the last statement. Implementations must 
enforce Fortran execution rules inside of the workshare block.
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Fortran (cont.)

Example A.17.1f

      SUBROUTINE WSHARE1(AA, BB, CC, DD, EE, FF, N)
      INTEGER N
      REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N), EE(N,N), FF(N,N)

!$OMP    PARALLEL
!$OMP     WORKSHARE
            AA = BB
            CC = DD
            EE = FF
!$OMP     END WORKSHARE
!$OMP   END PARALLEL

      END SUBROUTINE WSHARE1

In the following example, the barrier at the end of the first workshare region is 
eliminated with a nowait clause. Threads doing CC = DD immediately begin work on 
EE = FF when they are done with CC = DD.

Example A.17.2f

      SUBROUTINE WSHARE2(AA, BB, CC, DD, EE, FF, N)
      INTEGER N
      REAL AA(N,N), BB(N,N), CC(N,N)
      REAL DD(N,N), EE(N,N), FF(N,N)

!$OMP   PARALLEL
!$OMP     WORKSHARE
            AA = BB
            CC = DD
!$OMP     END WORKSHARE NOWAIT
!$OMP     WORKSHARE
            EE = FF
!$OMP     END WORKSHARE
!$OMP   END PARALLEL

END SUBROUTINE WSHARE2

The following example shows the use of an atomic directive inside a workshare 
construct. The computation of SUM(AA) is workshared, but the update to R is atomic.
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Fortran (cont.)

Example A.17.3f

      SUBROUTINE WSHARE3(AA, BB, CC, DD, N)
      INTEGER N
      REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)
      REAL R

        R=0
!$OMP   PARALLEL
!$OMP     WORKSHARE
            AA = BB
!$OMP       ATOMIC UPDATE
              R = R + SUM(AA)
            CC = DD
!$OMP     END WORKSHARE      
!$OMP   END PARALLEL

      END SUBROUTINE WSHARE3

Fortran WHERE and FORALL statements are compound statements, made up of a control 
part and a statement part. When workshare is applied to one of these compound 
statements, both the control and the statement parts are workshared. The following 
example shows the use of a WHERE statement in a workshare construct.

Each task gets worked on in order by the threads:
AA = BB then
CC = DD then
EE .ne. 0 then
FF = 1 / EE then
GG = HH

Example A.17.4f

      SUBROUTINE WSHARE4(AA, BB, CC, DD, EE, FF, GG, HH, N)
      INTEGER N
      REAL AA(N,N), BB(N,N), CC(N,N)
      REAL DD(N,N), EE(N,N), FF(N,N)
      REAL GG(N,N), HH(N,N)

!$OMP   PARALLEL
!$OMP     WORKSHARE
            AA = BB
            CC = DD
            WHERE (EE .ne. 0) FF = 1 / EE
            GG = HH
!$OMP     END WORKSHARE          
!$OMP   END PARALLEL
          
      END SUBROUTINE WSHARE4
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Fortran (cont.)

In the following example, an assignment to a shared scalar variable is performed by one 
thread in a workshare while all other threads in the team wait.

Example A.17.5f

      SUBROUTINE WSHARE5(AA, BB, CC, DD, N)
      INTEGER N
      REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)

        INTEGER SHR

!$OMP   PARALLEL SHARED(SHR)
!$OMP     WORKSHARE
            AA = BB
            SHR = 1
            CC = DD * SHR
!$OMP     END WORKSHARE      
!$OMP   END PARALLEL      
      
      END SUBROUTINE WSHARE5

The following example contains an assignment to a private scalar variable, which is 
performed by one thread in a workshare while all other threads wait. It is non-
conforming because the private scalar variable is undefined after the assignment 
statement. 

Example A.17.6f

 SUBROUTINE WSHARE6_WRONG(AA, BB, CC, DD, N)
      INTEGER N
      REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)

        INTEGER PRI

!$OMP   PARALLEL PRIVATE(PRI)
!$OMP     WORKSHARE
            AA = BB
            PRI = 1
            CC = DD * PRI
!$OMP     END WORKSHARE
!$OMP   END PARALLEL

      END SUBROUTINE WSHARE6_WRONG
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Fortran execution rules must be enforced inside a workshare construct. In the 
following example, the same result is produced in the following program fragment 
regardless of whether the code is executed sequentially or inside an OpenMP program 
with multiple threads:

Example A.17.7f

      SUBROUTINE WSHARE7(AA, BB, CC, N)
      INTEGER N
      REAL AA(N), BB(N), CC(N)

!$OMP   PARALLEL
!$OMP     WORKSHARE
            AA(1:50)  = BB(11:60)
            CC(11:20) = AA(1:10)
!$OMP     END WORKSHARE
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE WSHARE7

A.18 The master Construct
The following example demonstrates the master construct (Section 2.8.1 on page 67). In 
the example, the master keeps track of how many iterations have been executed and 
prints out a progress report. The other threads skip the master region without waiting.

C/C++
Example A.18.1c

#include <stdio.h>

extern float average(float,float,float);

void master_example( float* x, float* xold, int n, float tol )
{
  int c, i, toobig;
  float error, y;
  c = 0;
  #pragma omp parallel
  {
    do{
      #pragma omp for private(i)
      for( i = 1; i < n-1; ++i ){
        xold[i] = x[i];
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      }
      #pragma omp single
      {
        toobig = 0;
      }
      #pragma omp for private(i,y,error) reduction(+:toobig)
      for( i = 1; i < n-1; ++i ){
        y = x[i];
        x[i] = average( xold[i-1], x[i], xold[i+1] );
        error = y - x[i];
        if( error > tol || error < -tol ) ++toobig;
      }
      #pragma omp master
      {
        ++c;
        printf( "iteration %d, toobig=%d\n", c, toobig );
      }
    }while( toobig > 0 );
  }

C/C++
}
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Fortran

Example A.18.1f

      SUBROUTINE MASTER_EXAMPLE( X, XOLD, N, TOL )
      REAL X(*), XOLD(*), TOL
      INTEGER N
      INTEGER C, I, TOOBIG
      REAL ERROR, Y, AVERAGE
      EXTERNAL AVERAGE
      C = 0
      TOOBIG = 1
!$OMP PARALLEL
        DO WHILE( TOOBIG > 0 )
!$OMP     DO PRIVATE(I)
            DO I = 2, N-1
              XOLD(I) = X(I)
            ENDDO
!$OMP     SINGLE
            TOOBIG = 0
!$OMP     END SINGLE
!$OMP     DO PRIVATE(I,Y,ERROR), REDUCTION(+:TOOBIG)
            DO I = 2, N-1
              Y = X(I)
              X(I) = AVERAGE( XOLD(I-1), X(I), XOLD(I+1) )
              ERROR = Y-X(I)
              IF( ERROR > TOL .OR. ERROR < -TOL ) TOOBIG = TOOBIG+1
            ENDDO
!$OMP     MASTER
            C = C + 1
            PRINT *, 'Iteration ', C, 'TOOBIG=', TOOBIG
!$OMP     END MASTER
        ENDDO
!$OMP END PARALLEL

Fortran

      END SUBROUTINE MASTER_EXAMPLE

A.19 The critical Construct
The following example includes several critical constructs (Section 2.8.2 on page 
68). The example illustrates a queuing model in which a task is dequeued and worked 
on. To guard against multiple threads dequeuing the same task, the dequeuing operation 
must be in a critical region. Because the two queues in this example are 
independent, they are protected by critical constructs with different names, xaxis 
and yaxis.
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C/C++
Example A.19.1c

int dequeue(float *a);
void work(int i, float *a);

void critical_example(float *x, float *y)
{
  int ix_next, iy_next;

  #pragma omp parallel shared(x, y) private(ix_next, iy_next)
  {
    #pragma omp critical (xaxis)
      ix_next = dequeue(x);
    work(ix_next, x);

    #pragma omp critical (yaxis)
      iy_next = dequeue(y);
    work(iy_next, y);
  }

C/C++
}

Fortran

Example A.19.1f

      SUBROUTINE CRITICAL_EXAMPLE(X, Y)

        REAL X(*), Y(*)
        INTEGER IX_NEXT, IY_NEXT

!$OMP PARALLEL SHARED(X, Y) PRIVATE(IX_NEXT, IY_NEXT)

!$OMP CRITICAL(XAXIS)
        CALL DEQUEUE(IX_NEXT, X)
!$OMP END CRITICAL(XAXIS)
        CALL WORK(IX_NEXT, X)

!$OMP CRITICAL(YAXIS)
        CALL DEQUEUE(IY_NEXT,Y)
!$OMP END CRITICAL(YAXIS)
        CALL WORK(IY_NEXT, Y)

!$OMP END PARALLEL

Fortran

      END SUBROUTINE CRITICAL_EXAMPLE
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A.20 worksharing Constructs Inside a 
critical Construct
The following example demonstrates using a worksharing construct inside a critical 
construct (see Section 2.8.2 on page 68). This example is conforming because the 
worksharing single  region is not closely nested inside the critical region (see 
Section 2.10 on page 111). A single thread executes the one and only section in the 
sections region, and executes the critical region. The same thread encounters 
the nested parallel region, creates a new team of threads, and becomes the master of 
the new team. One of the threads in the new team enters the single region and 
increments i by 1. At the end of this example i is equal to 2.

C/C++
Example A.20.1c

void critical_work() 
{
  int i = 1;
  #pragma omp parallel sections
  {
    #pragma omp section
    {
      #pragma omp critical (name)
      {
        #pragma omp parallel
        {
          #pragma omp single
          {
            i++;
          }
        }
      }
    }
  }

C/C++
}
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Fortran

Example A.20.1f

      SUBROUTINE CRITICAL_WORK() 

        INTEGER I
        I = 1

!$OMP   PARALLEL SECTIONS
!$OMP     SECTION
!$OMP       CRITICAL (NAME)
!$OMP         PARALLEL
!$OMP           SINGLE
                  I = I + 1
!$OMP           END SINGLE
!$OMP         END PARALLEL
!$OMP       END CRITICAL (NAME)
!$OMP   END PARALLEL SECTIONS

Fortran

      END SUBROUTINE CRITICAL_WORK

A.21 Binding of barrier Regions
The binding rules call for a barrier region to bind to the closest enclosing 
parallel region (see Section 2.8.3 on page 70). 

In the following example, the call from the main program to sub2 is conforming because 
the barrier region (in sub3) binds to the parallel region in sub2. The call from 
the main program to sub1 is conforming because the barrier region binds to the 
parallel region in subroutine sub2.

The call from the main program to sub3 is conforming because the barrier region 
binds to the implicit inactive parallel region enclosing the sequential part. Also note 
that the barrier region in sub3 when called from sub2 only synchronizes the team of 
threads in the enclosing parallel region and not all the threads created in sub1.
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C/C++
Example A.21.1c

void work(int n) {}

void sub3(int n)
{
  work(n);
  #pragma omp barrier
  work(n);
}

void sub2(int k)
{
  #pragma omp parallel shared(k)
    sub3(k);
}

void sub1(int n)
{
  int i;
  #pragma omp parallel private(i) shared(n)
  {
    #pragma omp for
    for (i=0; i<n; i++)
      sub2(i);
  }
}

int main()
{
  sub1(2);
  sub2(2);
  sub3(2);
  return 0; 

C/C++
}
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Fortran

Example A.21.1f

      SUBROUTINE WORK(N)
        INTEGER N
      END SUBROUTINE WORK

      SUBROUTINE SUB3(N)
      INTEGER N
        CALL WORK(N)
!$OMP   BARRIER
        CALL WORK(N)
      END SUBROUTINE SUB3

      SUBROUTINE SUB2(K)
      INTEGER K
!$OMP   PARALLEL SHARED(K)
          CALL SUB3(K)
!$OMP   END PARALLEL
      END SUBROUTINE SUB2

      SUBROUTINE SUB1(N)
      INTEGER N
        INTEGER I
!$OMP   PARALLEL PRIVATE(I) SHARED(N)
!$OMP     DO
          DO I = 1, N
            CALL SUB2(I)
          END DO
!$OMP   END PARALLEL
      END SUBROUTINE SUB1

      PROGRAM EXAMPLE
        CALL SUB1(2)
        CALL SUB2(2)
        CALL SUB3(2)

Fortran

      END PROGRAM EXAMPLE

A.22 The atomic Construct
The following example avoids race conditions (simultaneous updates of an element of x 
by multiple threads) by using the atomic construct (Section 2.8.5 on page 73).
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The advantage of using the atomic construct in this example is that it allows updates 
of two different elements of x to occur in parallel. If a critical construct (see 
Section 2.8.2 on page 68) were used instead, then all updates to elements of x would be 
executed serially (though not in any guaranteed order).

Note that the atomic directive applies only to the statement immediately following it. 
As a result, elements of y are not updated atomically in this example.

C/C++
Example A.22.1c

float work1(int i)
{
  return 1.0 * i;
}

float work2(int i)
{
   return 2.0 * i;
}

void atomic_example(float *x, float *y, int *index, int n)
{
  int i;

  #pragma omp parallel for shared(x, y, index, n)
    for (i=0; i<n; i++) {
      #pragma omp atomic update
      x[index[i]] += work1(i);
      y[i] += work2(i);

}
}

int main()
{
  float x[1000];
  float y[10000];
  int index[10000];  
  int i;

  for (i = 0; i < 10000; i++) {
    index[i] = i % 1000;
    y[i]=0.0;
  }
  for (i = 0; i < 1000; i++)
    x[i] = 0.0;
  atomic_example(x, y, index, 10000);
  return 0;

C/C++
}
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Fortran

Example A.22.1f

      REAL FUNCTION WORK1(I)
        INTEGER I
        WORK1 = 1.0 * I
        RETURN
      END FUNCTION WORK1

      REAL FUNCTION WORK2(I)
        INTEGER I
        WORK2 = 2.0 * I
        RETURN
      END FUNCTION WORK2

      SUBROUTINE SUB(X, Y, INDEX, N)
        REAL X(*), Y(*)
        INTEGER INDEX(*), N

        INTEGER I

!$OMP   PARALLEL DO SHARED(X, Y, INDEX, N)
          DO I=1,N
!$OMP       ATOMIC UPDATE
              X(INDEX(I)) = X(INDEX(I)) + WORK1(I)
            Y(I) = Y(I) + WORK2(I)
          ENDDO

      END SUBROUTINE SUB

      PROGRAM ATOMIC_EXAMPLE
        REAL X(1000), Y(10000)
        INTEGER INDEX(10000) 
        INTEGER I
      
        DO I=1,10000
          INDEX(I) = MOD(I, 1000) + 1
          Y(I) = 0.0
        ENDDO
      
        DO I = 1,1000
          X(I) = 0.0
        ENDDO

        CALL SUB(X, Y, INDEX, 10000)
      

Fortran

      END PROGRAM ATOMIC_EXAMPLE
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The following example illustrates the read and write  clauses for the atomic 
directive. These clauses ensure that the given variable is read or written, respectively, as 
a whole. Otherwise, some other thread might read or write part of the variable while the 
current thread was reading or writing another part of the variable. Note that most 
hardware provides atomic reads and writes for some set of properly aligned variables of 
specific sizes, but not necessarily for all the variable types supported by the OpenMP 
API.

C/C++
Example A.22.2c

int atomic_read(const int *p)
{
    int value;
/* Guarantee that the entire value of *p is read atomically. No part of
 * *p can change during the read operation.
 */
#pragma omp atomic read
     value = *p;
     return value;
}

void atomic_write(int *p, int value)
{
/* Guarantee that value is stored atomically into *p. No part of *p can change
 * until after the entire write operation is completed.
 */
#pragma omp atomic write
    *p = value;

C/C++
}

Fortran

Example A.22.2f

function atomic_read(p)
       integer :: atomic_read
       integer, intent(in) :: p
! Guarantee that the entire value of p is read atomically. No part of
! p can change during the read operation.

!$omp atomic read
       atomic_read = p
       return
       end function atomic_read

       subroutine atomic_write(p, value)
       integer, intent(out) :: p
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       integer, intent(in) :: value
! Guarantee that value is stored atomically into p. No part of p can change
! until after the entire write operation is completed.
!$omp atomic write
       p = value
       end subroutine atomic_write

Fortran

The following example illustrates the capture clause for the atomic directive. In 
this case the value of a variable is captured, and then the variable is incremented. These 
operations occur atomically. This particular example could be implemented using the 
fetch-and-add instruction available on many kinds of hardware. The example also shows 
a way to implement a spin lock using the capture  and read clauses.

C/C++
Example A.22.3c

int fetch_and_add(int *p)
{
/* Atomically read the value of *p and then increment it. The previous value is
 * returned. This can be used to implement a simple lock as shown below.
 */
    int old;
#pragma omp atomic capture
    { old = *p; (*p)++; }
    return old;
}

/*
 * Use fetch_and_add to implement a lock
 */
struct locktype {
    int ticketnumber;
    int turn;
};
void do_locked_work(struct locktype *lock)
{
    int atomic_read(const int *p);
    void work();

    // Obtain the lock
    int myturn = fetch_and_add(&lock->ticketnumber);
    while (atomic_read(&lock->turn) != myturn)
       ;
    // Do some work. The flush is needed to ensure visibility of
    // variables not involved in atomic directives

#pragma omp flush
    work();
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#pragma omp flush
    // Release the lock
    fetch_and_add(&lock->turn);

C/C++
}

Fortran

Example A.22.3f

function fetch_and_add(p)
       integer:: fetch_and_add
       integer, intent(inout) :: p

! Atomically read the value of p and then increment it. The previous value is
! returned. This can be used to implement a simple lock as shown below.

!$omp atomic capture
       fetch_and_add = p
       p = p + 1
!$omp end atomic
       end function fetch_and_add

! Use fetch_and_add to implement a lock
       module m
       interface
         function fetch_and_add(p)
           integer :: fetch_and_add
           integer, intent(inout) :: p
         end function
         function atomic_read(p)
           integer :: atomic_read
           integer, intent(in) :: p
         end function
       end interface
       type locktype
          integer ticketnumber
          integer turn
       end type
       contains
       subroutine do_locked_work(lock)
       type(locktype), intent(inout) :: lock
       integer myturn
       integer junk
! obtain the lock
        myturn = fetch_and_add(lock%ticketnumber)
        do while (atomic_read(lock%turn) .ne. myturn)
          continue
        enddo

! Do some work. The flush is needed to ensure visibility of variables
! not involved in atomic directives
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!$omp flush
       call work
!$omp flush

! Release the lock
       junk = fetch_and_add(lock%turn)
       end subroutine
       end module

Fortran

A.23 Restrictions on the atomic Construct
The following non-conforming examples illustrate the restrictions on the atomic 
construct given in Section 2.8.5 on page 73. 

C/C++
Example A.23.1c

void atomic_wrong ()
{
 union {int n; float x;} u;

#pragma omp parallel
  {
#pragma omp atomic update
    u.n++;  

#pragma omp atomic update
    u.x += 1.0;   

/* Incorrect because the atomic constructs reference the same location
   through incompatible types */
  }

C/C++
}

Fortran

Example A.23.1f

      SUBROUTINE ATOMIC_WRONG()
        INTEGER:: I
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        REAL:: R
        EQUIVALENCE(I,R)

!$OMP   PARALLEL
!$OMP     ATOMIC UPDATE
            I = I + 1
!$OMP     ATOMIC UPDATE
            R = R + 1.0
! incorrect because I and R reference the same location
! but have different types
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE ATOMIC_WRONG

C/C++
Example A.23.2c

void atomic_wrong2 ()
{
 int  x;
 int *i;
 float   *r;

 i = &x;
 r = (float *)&x;

#pragma omp parallel
  {
#pragma omp atomic update
    *i += 1;   

#pragma omp atomic update
    *r += 1.0;   

/* Incorrect because the atomic constructs reference the same location
   through incompatible types */

  }

C/C++
}
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Fortran

The following example is non-conforming because I and R reference the same location 
but have different types.

Example A.23.2f

      SUBROUTINE SUB()
        COMMON /BLK/ R
        REAL R

!$OMP   ATOMIC UPDATE
          R = R + 1.0
      END SUBROUTINE SUB

      SUBROUTINE ATOMIC_WRONG2()
        COMMON /BLK/ I
        INTEGER I

!$OMP   PARALLEL

!$OMP     ATOMIC UPDATE
            I = I + 1
          CALL SUB()
!$OMP   END PARALLEL
      END SUBROUTINE ATOMIC_WRONG2
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Although the following example might work on some implementations, this is also non-
conforming:

Example A.23.3f

      SUBROUTINE ATOMIC_WRONG3
        INTEGER:: I
        REAL:: R
        EQUIVALENCE(I,R)

!$OMP   PARALLEL
!$OMP     ATOMIC UPDATE
            I = I + 1
! incorrect because I and R reference the same location
! but have different types
!$OMP   END PARALLEL

!$OMP   PARALLEL
!$OMP     ATOMIC UPDATE
            R = R + 1.0
! incorrect because I and R reference the same location
! but have different types
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE ATOMIC_WRONG3

A.24 The flush Construct without a List
The following example (for Section 2.8.6 on page 78) distinguishes the shared variables 
affected by a flush construct with no list from the shared objects that are not affected:

C/C++
Example A.24.1c

int x, *p = &x;

void f1(int *q)
{
  *q = 1;
  #pragma omp flush
  /* x, p, and *q are flushed */
  /* because they are shared and accessible */
  /* q is not flushed because it is not shared. */
}
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void f2(int *q)
{
  #pragma omp barrier
  *q = 2;
  #pragma omp barrier

  /* a barrier implies a flush */
  /* x, p, and *q are flushed */
  /* because they are shared and accessible */
  /* q is not flushed because it is not shared. */
}

int g(int n)
{
  int i = 1, j, sum = 0;
  *p = 1;
  #pragma omp parallel reduction(+: sum) num_threads(10)
  {
    f1(&j);

    /* i, n and sum were not flushed */
    /* because they were not accessible in f1 */
    /* j was flushed because it was accessible */
    sum += j;

    f2(&j);

    /* i, n, and sum were not flushed */
    /* because they were not accessible in f2 */
    /* j was flushed because it was accessible */
    sum += i + j + *p + n;
  }
  return sum;
}

int main()
{
  int result = g(7);
  return result;

C/C++
}
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Fortran

Example A.24.1f

     SUBROUTINE F1(Q)
        COMMON /DATA/ X, P
        INTEGER, TARGET  :: X
        INTEGER, POINTER :: P
        INTEGER Q

        Q = 1
!$OMP   FLUSH
        ! X, P and Q are flushed
        ! because they are shared and accessible
      END SUBROUTINE F1

      SUBROUTINE F2(Q)
        COMMON /DATA/ X, P
        INTEGER, TARGET  :: X
        INTEGER, POINTER :: P
        INTEGER Q

!$OMP   BARRIER
          Q = 2
!$OMP   BARRIER
          ! a barrier implies a flush
          ! X, P and Q are flushed
          ! because they are shared and accessible
      END SUBROUTINE F2

      INTEGER FUNCTION G(N)
        COMMON /DATA/ X, P
        INTEGER, TARGET  :: X
        INTEGER, POINTER :: P
        INTEGER N
        INTEGER I, J, SUM

        I = 1
        SUM = 0
        P = 1
!$OMP   PARALLEL REDUCTION(+: SUM) NUM_THREADS(10)
          CALL F1(J)
            ! I, N and SUM were not flushed
            !   because they were not accessible in F1
            ! J was flushed because it was accessible
          SUM = SUM + J

          CALL F2(J)
            ! I, N, and SUM were not flushed
            !   because they were not accessible in f2
            ! J was flushed because it was accessible
          SUM = SUM + I + J + P + N
!$OMP   END PARALLEL
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        G = SUM
      END FUNCTION G

      PROGRAM FLUSH_NOLIST
        COMMON /DATA/ X, P
        INTEGER, TARGET  :: X
        INTEGER, POINTER :: P
        INTEGER RESULT, G

        P => X
        RESULT = G(7)
        PRINT *, RESULT

Fortran

      END PROGRAM FLUSH_NOLIST

A.25 Placement of flush, barrier, taskwait 
and taskyield Directives
The following example is non-conforming, because the flush, barrier, taskwait, 
and taskyield  directives are stand-alone directives and cannot be the immediate 
substatement of an if statement. See Section 2.8.3 on page 70, Section 2.8.6 on page 
78, Section 2.8.4 on page 72, and Section 2.7.2 on page 64.

C/C++
Example A.25.1c

void standalone_wrong()
{
  int a = 1;

if (a != 0) 
  #pragma omp flush(a)
/* incorrect as flush cannot be immediate substatement 
   of if statement */ 

if (a != 0)
  #pragma omp barrier   
/* incorrect as barrier cannot be immediate substatement 
   of if statement */ 

if (a!=0)
  #pragma omp taskyield
/* incorrect as taskyield cannot be immediate substatement of if statement */
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if (a != 0)
  #pragma omp taskwait 
/* incorrect as taskwait cannot be immediate substatement 
   of if statement */ 

}

C/C++

The following example is non-conforming, because the flush, barrier, taskwait, 
and taskyield  directives are stand-alone directives and cannot be the action 
statement of an if statement or a labeled branch target.

Fortran

Example A.25.1f

SUBROUTINE STANDALONE_WRONG()
  INTEGER  A
  A = 1
  ! the FLUSH directive must not be the action statement
  ! in an IF statement
  IF (A .NE. 0) !$OMP FLUSH(A)

  ! the BARRIER directive must not be the action statement
  ! in an IF statement
  IF (A .NE. 0) !$OMP BARRIER

  ! the TASKWAIT directive must not be the action statement
  ! in an IF statement
  IF (A .NE. 0) !$OMP TASKWAIT

  ! the TASKYIELD directive must not be the action statement
  ! in an IF statement
  IF (A .NE. 0) !$OMP TASKYIELD

  GOTO 100

  ! the FLUSH directive must not be a labeled branch target
  ! statement
  100 !$OMP FLUSH(A)
  GOTO 200

  ! the BARRIER directive must not be a labeled branch target
  ! statement
  200 !$OMP BARRIER
  GOTO 300

  ! the TASKWAIT directive must not be a labeled branch target
  ! statement
  300 !$OMP TASKWAIT
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  GOTO 400

  ! the TASKYIELD directive must not be a labeled branch target
  ! statement
  400 !$OMP TASKYIELD

Fortran

END SUBROUTINE

The following version of the above example is conforming because the flush, 
barrier, taskwait, and taskyield directives are enclosed in a compound 
statement. 

C/C++
Example A.25.2c

void standalone_ok()
{
  int a = 1;

  #pragma omp parallel
  {
     if (a != 0) { 
  #pragma omp flush(a)
     }
     if (a != 0) {
  #pragma omp barrier
     } 

if (a != 0) {
  #pragma omp taskwait
     } 
if (a != 0) {

  #pragma omp taskyield
} 

  }

C/C++
}

The following example is conforming because the flush, barrier, taskwait, and 
taskyield directives are enclosed in an if construct or follow the labeled branch 
target.

Fortran

Example A.25.2f

SUBROUTINE STANDALONE_OK()
  INTEGER  A
  A = 1
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  IF (A .NE. 0) THEN
    !$OMP FLUSH(A)
  ENDIF
  IF (A .NE. 0) THEN
    !$OMP BARRIER
  ENDIF
  IF (A .NE. 0) THEN
    !$OMP TASKWAIT
  ENDIF
  IF (A .NE. 0) THEN
    !$OMP TASKYIELD
  ENDIF
  GOTO 100
  100 CONTINUE
  !$OMP FLUSH(A)
  GOTO 200
  200 CONTINUE
  !$OMP BARRIER
  GOTO 300
  300 CONTINUE
  !$OMP TASKWAIT
  GOTO 400
  400 CONTINUE
  !$OMP TASKYIELD
END SUBROUTINE

Fortran

A.26 The ordered Clause and the ordered 
Construct
Ordered constructs (Section 2.8.7 on page 82) are useful for sequentially ordering the 
output from work that is done in parallel. The following program prints out the indices 
in sequential order:
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C/C++
Example A.26.1c

#include <stdio.h>

void work(int k)
{
  #pragma omp ordered
    printf(" %d\n", k);
}

void ordered_example(int lb, int ub, int stride)
{
  int i;

  #pragma omp parallel for ordered schedule(dynamic)
  for (i=lb; i<ub; i+=stride)
    work(i);
}

int main()
{
  ordered_example(0, 100, 5);
  return 0;

C/C++
}
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Fortran

Example A.26.1f

      SUBROUTINE WORK(K)
        INTEGER k

!$OMP ORDERED
        WRITE(*,*) K
!$OMP END ORDERED

      END SUBROUTINE WORK

      SUBROUTINE SUB(LB, UB, STRIDE)
        INTEGER LB, UB, STRIDE
        INTEGER I

!$OMP PARALLEL DO ORDERED SCHEDULE(DYNAMIC)
        DO I=LB,UB,STRIDE
          CALL WORK(I)
        END DO
!$OMP END PARALLEL DO

      END SUBROUTINE SUB

      PROGRAM ORDERED_EXAMPLE
        CALL SUB(1,100,5)

Fortran

      END PROGRAM ORDERED_EXAMPLE

It is possible to have multiple ordered constructs within a loop region with the 
ordered clause specified. The first example is non-conforming because all iterations 
execute two ordered regions. An iteration of a loop must not execute more than one 
ordered region:
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C/C++
Example A.26.2c

void work(int i) {}

void ordered_wrong(int n)
{ 
  int i;
  #pragma omp for ordered
  for (i=0; i<n; i++) {
/* incorrect because an iteration may not execute more than one 
   ordered region */  
    #pragma omp ordered
      work(i);
    #pragma omp ordered
      work(i+1);
  }

C/C++
}

Fortran

Example A.26.2f

      SUBROUTINE WORK(I)
      INTEGER I
      END SUBROUTINE WORK

      SUBROUTINE ORDERED_WRONG(N)
      INTEGER N

        INTEGER I
!$OMP   DO ORDERED
        DO I = 1, N
! incorrect because an iteration may not execute more than one 
! ordered region
!$OMP     ORDERED
            CALL WORK(I)
!$OMP     END ORDERED

!$OMP     ORDERED
            CALL WORK(I+1)
!$OMP     END ORDERED
        END DO

Fortran

      END SUBROUTINE ORDERED_WRONG
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The following is a conforming example with more than one ordered construct. Each 
iteration will execute only one ordered region:

C/C++
Example A.26.3c

void work(int i) {}
void ordered_good(int n)
{
  int i;

#pragma omp for ordered
  for (i=0; i<n; i++) {
    if (i <= 10) {
      #pragma omp ordered
         work(i);
    }

    if (i > 10) {
      #pragma omp ordered
        work(i+1);
    }
  }

C/C++
}

Fortran

Example A.26.3f

      SUBROUTINE ORDERED_GOOD(N)
      INTEGER N

!$OMP   DO ORDERED 
        DO I = 1,N
          IF (I <= 10) THEN
!$OMP       ORDERED    
              CALL WORK(I)
!$OMP       END ORDERED
          ENDIF

          IF (I > 10) THEN
!$OMP       ORDERED     
              CALL WORK(I+1)
!$OMP       END ORDERED
          ENDIF
        ENDDO

Fortran

      END SUBROUTINE ORDERED_GOOD
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A.27 The threadprivate Directive
The following examples demonstrate how to use the threadprivate directive 
(Section 2.9.2 on page 88) to give each thread a separate counter.

C/C++
Example A.27.1c

int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()
{
  counter++;
  return(counter);

C/C++
}

Fortran

Example A.27.1f

      INTEGER FUNCTION INCREMENT_COUNTER()
        COMMON/INC_COMMON/COUNTER
!$OMP   THREADPRIVATE(/INC_COMMON/)

        COUNTER = COUNTER +1
        INCREMENT_COUNTER = COUNTER
        RETURN

Fortran

      END FUNCTION INCREMENT_COUNTER

C/C++
The following example uses threadprivate on a static variable:

Example A.27.2c

int increment_counter_2()
{
  static int counter = 0;
  #pragma omp threadprivate(counter)
  counter++;
  return(counter);
}
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The following example demonstrates unspecified behavior for the initialization of a 
threadprivate variable. A threadprivate  variable is initialized once at an 
unspecified point before its first reference. Because a is constructed using the value of x  
(which is modified by the statement x++), the value of a.val  at the start of the 
parallel region could be either 1 or 2. This problem is avoided for b, which uses an 
auxiliary const variable and a copy-constructor.

Example A.27.3c

class T {
  public:
    int val;
    T (int);
    T (const T&);
};

T :: T (int v){
   val = v;
}

T :: T (const T& t) {
   val = t.val;
}

void g(T a, T b){
   a.val += b.val;
}

int x = 1;
T a(x);
const T b_aux(x); /* Capture value of x = 1 */
T b(b_aux);
#pragma omp threadprivate(a, b)

void f(int n) {
   x++;
   #pragma omp parallel for
   /* In each thread:
    * a is constructed from x (with value 1 or 2?)
    * b is copy-constructed from b_aux
    */

   for (int i=0; i<n; i++) {
       g(a, b); /* Value of a is unspecified. */
   }

C/C++
}
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Fortran

The following examples show non-conforming uses and correct uses of the 
threadprivate directive. For more information, see Section 2.9.2 on page 88 and 
Section 2.9.4.1 on page 107.

The following example is non-conforming because the common block is not declared 
local to the subroutine that refers to it:

Example A.27.2f

      MODULE INC_MODULE
        COMMON /T/ A
      END MODULE INC_MODULE
      
      SUBROUTINE INC_MODULE_WRONG()
        USE INC_MODULE
!$OMP   THREADPRIVATE(/T/)
      !non-conforming because /T/ not declared in INC_MODULE_WRONG
      END SUBROUTINE INC_MODULE_WRONG

The following example is also non-conforming because the common block is not 
declared local to the subroutine that refers to it:

Example A.27.3f

      SUBROUTINE INC_WRONG() 
        COMMON /T/ A
!$OMP   THREADPRIVATE(/T/)

        CONTAINS
          SUBROUTINE INC_WRONG_SUB()
!$OMP       PARALLEL COPYIN(/T/)
      !non-conforming because /T/ not declared in INC_WRONG_SUB
!$OMP       END PARALLEL
          END SUBROUTINE INC_WRONG_SUB
      END SUBROUTINE INC_WRONG
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Fortran (cont.)

The following example is a correct rewrite of the previous example:

Example A.27.4f

       SUBROUTINE INC_GOOD()
        COMMON /T/ A
!$OMP   THREADPRIVATE(/T/)

        CONTAINS
          SUBROUTINE INC_GOOD_SUB()
            COMMON /T/ A
!$OMP       THREADPRIVATE(/T/)

!$OMP       PARALLEL COPYIN(/T/)
!$OMP       END PARALLEL
         END SUBROUTINE INC_GOOD_SUB
       END SUBROUTINE INC_GOOD

The following is an example of the use of threadprivate for local variables:

Example A.27.5f

      PROGRAM INC_GOOD2
        INTEGER, ALLOCATABLE, SAVE :: A(:) 
        INTEGER, POINTER, SAVE :: PTR
        INTEGER, SAVE :: I
        INTEGER, TARGET :: TARG
        LOGICAL :: FIRSTIN = .TRUE.
!$OMP   THREADPRIVATE(A, I, PTR)
      
        ALLOCATE (A(3))
        A = (/1,2,3/) 
        PTR => TARG 
        I = 5
      
!$OMP   PARALLEL COPYIN(I, PTR)
!$OMP     CRITICAL
            IF (FIRSTIN) THEN
              TARG = 4           ! Update target of ptr
              I = I + 10
              IF (ALLOCATED(A)) A = A + 10
              FIRSTIN = .FALSE.
            END IF
      
            IF (ALLOCATED(A)) THEN
              PRINT *, 'a = ', A
            ELSE
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Fortran (cont.)

              PRINT *, 'A is not allocated'
            END IF

            PRINT *, 'ptr = ', PTR
            PRINT *, 'i = ', I
            PRINT *

!$OMP     END CRITICAL
!$OMP   END PARALLEL
      END PROGRAM INC_GOOD2

The above program, if executed by two threads, will print one of the following two sets 
of output: 

a = 11 12 13
ptr = 4
i = 15

A is not allocated
ptr = 4
i = 5

or

A is not allocated
ptr = 4
i = 15 

a = 1 2 3
ptr = 4
i = 5

The following is an example of the use of threadprivate for module variables:

Example A.27.6f

      MODULE INC_MODULE_GOOD3
        REAL, POINTER :: WORK(:)
        SAVE WORK
!$OMP   THREADPRIVATE(WORK)
      END MODULE INC_MODULE_GOOD3
      
      SUBROUTINE SUB1(N)
      USE INC_MODULE_GOOD3
!$OMP   PARALLEL PRIVATE(THE_SUM)
        ALLOCATE(WORK(N))
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        CALL SUB2(THE_SUM)
       WRITE(*,*)THE_SUM
!$OMP   END PARALLEL
      END SUBROUTINE SUB1
      
      SUBROUTINE SUB2(THE_SUM)
        USE INC_MODULE_GOOD3
        WORK(:) = 10
        THE_SUM=SUM(WORK)
      END SUBROUTINE SUB2
      
      PROGRAM INC_GOOD3
        N = 10
        CALL SUB1(N)

Fortran

      END PROGRAM INC_GOOD3

C/C++
The following example illustrates initialization of threadprivate variables for 
class-type T. t1 is default constructed, t2 is constructed taking a constructor accepting 
one argument of integer type, t3 is copy constructed with argument f():

Example A.27.4c

static T t1;
#pragma omp threadprivate(t1)
static T t2( 23 );
#pragma omp threadprivate(t2)
static T t3 = f();
#pragma omp threadprivate(t3)

The following example illustrates the use of threadprivate for static class 
members. The threadprivate directive for a static class member must be placed 
inside the class definition.

Example A.27.5c

class T {
 public:
  static int i;
#pragma omp threadprivate(i) 
};

C/C++
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C/C++

A.28 Parallel Random Access Iterator Loop
The following example shows a parallel random access iterator loop.

Example A.28.1c
#include <vector>
void iterator_example()
{
  std::vector<int> vec(23);
  std::vector<int>::iterator it;
#pragma omp parallel for default(none) shared(vec)
  for (it = vec.begin(); it < vec.end(); it++)
  {
    // do work with *it //
  }

C/C++
}
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Fortran

A.29 Fortran Restrictions on shared and 
private Clauses with Common Blocks
When a named common block is specified in a private, firstprivate, or 
lastprivate clause of a construct, none of its members may be declared in another 
data-sharing attribute clause on that construct. The following examples illustrate this 
point. For more information, see Section 2.9.3 on page 92.

The following example is conforming:

Example A.29.1f

      SUBROUTINE COMMON_GOOD()
        COMMON /C/ X,Y
        REAL X, Y

!$OMP   PARALLEL PRIVATE (/C/)
          ! do work here
!$OMP   END PARALLEL

!$OMP   PARALLEL SHARED (X,Y)
          ! do work here
!$OMP   END PARALLEL
      END SUBROUTINE COMMON_GOOD

The following example is also conforming:

Example A.29.2f

     SUBROUTINE COMMON_GOOD2()
        COMMON /C/ X,Y
        REAL X, Y

        INTEGER I

!$OMP   PARALLEL
!$OMP     DO PRIVATE(/C/)
          DO I=1,1000
            ! do work here
          ENDDO
!$OMP     END DO
!
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Fortran (cont.)

!$OMP     DO PRIVATE(X)
          DO I=1,1000
            ! do work here
          ENDDO
!$OMP     END DO
!$OMP   END PARALLEL
      END SUBROUTINE COMMON_GOOD2

The following example is conforming:

Example A.29.3f

      SUBROUTINE COMMON_GOOD3()
        COMMON /C/ X,Y

!$OMP   PARALLEL PRIVATE (/C/)
          ! do work here
!$OMP   END PARALLEL

!$OMP   PARALLEL SHARED (/C/)
          ! do work here
!$OMP   END PARALLEL
      END SUBROUTINE COMMON_GOOD3

The following example is non-conforming because x is a constituent element of c:

Example A.29.4f

      SUBROUTINE COMMON_WRONG()
        COMMON /C/ X,Y
! Incorrect because X is a constituent element of C 
!$OMP   PARALLEL PRIVATE(/C/), SHARED(X)
          ! do work here
!$OMP   END PARALLEL
      END SUBROUTINE COMMON_WRONG

The following example is non-conforming because a common block may not be 
declared both shared and private:

Example A.29.5f

      SUBROUTINE COMMON_WRONG2()
        COMMON /C/ X,Y
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! Incorrect: common block C cannot be declared both 
! shared and private
!$OMP   PARALLEL PRIVATE (/C/), SHARED(/C/)
          ! do work here
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE COMMON_WRONG2

A.30 The default(none) Clause
The following example distinguishes the variables that are affected by the 
default(none) clause from those that are not. For more information on the 
default clause, see Section 2.9.3.1 on page 93.

C/C++
Example A.30.1c

#include <omp.h>
int x, y, z[1000];
#pragma omp threadprivate(x)

void default_none(int a) {
  const int c = 1;
  int i = 0;

  #pragma omp parallel default(none) private(a) shared(z)
  {
     int j = omp_get_num_threads();
          /* O.K.  - j is declared within parallel region */
     a = z[j];   /* O.K.  - a is listed in private clause */
                 /*       - z is listed in shared clause */
     x = c;      /* O.K.  - x is threadprivate */
                 /*       - c has const-qualified type */
     z[i] = y;   /* Error - cannot reference i or y here */

#pragma omp for firstprivate(y)
/* Error - Cannot reference y in the firstprivate clause */

  for (i=0; i<10 ; i++) {
    z[i] = i; /* O.K. - i is the loop iteration variable */
    }

     z[i] = y;   /* Error - cannot reference i or y here */
  }

C/C++
}
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Fortran

Example A.30.1f

      SUBROUTINE DEFAULT_NONE(A)
      INCLUDE "omp_lib.h"     ! or USE OMP_LIB
     
      INTEGER A

      INTEGER X, Y, Z(1000)
      COMMON/BLOCKX/X
      COMMON/BLOCKY/Y
      COMMON/BLOCKZ/Z
!$OMP THREADPRIVATE(/BLOCKX/)

        INTEGER I, J
        i = 1

!$OMP   PARALLEL DEFAULT(NONE) PRIVATE(A) SHARED(Z) PRIVATE(J)
          J = OMP_GET_NUM_THREADS();
                   ! O.K.  - J is listed in PRIVATE clause
          A = Z(J) ! O.K.  - A is listed in PRIVATE clause
                   !       - Z is listed in SHARED clause
          X = 1    ! O.K.  - X is THREADPRIVATE
          Z(I) = Y ! Error - cannot reference I or Y here

!$OMP DO firstprivate(y)
! Error - Cannot reference y in the firstprivate clause

      DO I = 1,10
        Z(I) = I ! O.K. - I is the loop iteration variable
      END DO

          Z(I) = Y    ! Error - cannot reference I or Y here
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE DEFAULT_NONE
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Fortran

A.31 Race Conditions Caused by Implied 
Copies of Shared Variables in Fortran
The following example contains a race condition, because the shared variable, which is 
an array section, is passed as an actual argument to a routine that has an assumed-size 
array as its dummy argument (see Section 2.9.3.2 on page 94). The subroutine call 
passing an array section argument may cause the compiler to copy the argument into a 
temporary location prior to the call and copy from the temporary location into the 
original variable when the subroutine returns. This copying would cause races in the 
parallel region.

Example A.31.1f

SUBROUTINE SHARED_RACE
  
  INCLUDE "omp_lib.h"      ! or USE OMP_LIB
  
  REAL A(20) 
  INTEGER MYTHREAD

!$OMP PARALLEL SHARED(A) PRIVATE(MYTHREAD)

  MYTHREAD = OMP_GET_THREAD_NUM()
  IF (MYTHREAD .EQ. 0) THEN
     CALL SUB(A(1:10)) ! compiler may introduce writes to A(6:10)
  ELSE
     A(6:10) = 12
  ENDIF

!$OMP END PARALLEL

END SUBROUTINE SHARED_RACE 

SUBROUTINE SUB(X) 
  REAL X(*)
  X(1:5) = 4 

Fortran

END SUBROUTINE SUB

1

2

3

4
5
6
7
8
9

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35



256 OpenMP API • Version 3.1  July 2011

A.32 The private Clause
In the following example, the values of original list items i and j are retained on exit 
from the parallel region, while the private list items i and j are modified within the 
parallel construct. For more information on the private clause, see 
Section 2.9.3.3 on page 96.

C/C++
Example A.32.1c

#include <stdio.h>
#include <assert.h>

int main()
{
  int i, j;

int *ptr_i, *ptr_j;

  i = 1;
  j = 2;

ptr_i = &i;
ptr_j = &j;

  #pragma omp parallel private(i) firstprivate(j)
  {
    i = 3;
    j = j + 2;

assert (*ptr_i == 1 && *ptr_j == 2);
  }

  assert(i == 1 && j == 2);

  return 0;

C/C++
}

Fortran

Example A.32.1f

      PROGRAM PRIV_EXAMPLE
        INTEGER I, J

        I = 1
        J = 2
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!$OMP   PARALLEL PRIVATE(I) FIRSTPRIVATE(J)
          I = 3
          J = J + 2
!$OMP   END PARALLEL

        PRINT *, I, J  ! I .eq. 1 .and. J .eq. 2

Fortran

      END PROGRAM PRIV_EXAMPLE

In the following example, all uses of the variable a within the loop construct in the 
routine f refer to a private list item a, while it is unspecified whether references to a in 
the routine g are to a private list item or the original list item.

C/C++
Example A.32.2c

int a;

void g(int k) {
  a = k; /* Accessed in the region but outside of the construct;

* therefore unspecified whether original or private list
* item is modified. */

}

void f(int n) {
  int a = 0;
    
  #pragma omp parallel for private(a)
   for (int i=1; i<n; i++) {
       a = i;
       g(a*2);     /* Private copy of "a" */
    }

C/C++
}
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Fortran

Example A.32.2f

     MODULE PRIV_EXAMPLE2
        REAL A

        CONTAINS

          SUBROUTINE G(K)
            REAL K
            A = K  ! Accessed in the region but outside of the

! construct; therefore unspecified whether
! original or private list item is modified.

END SUBROUTINE G

          SUBROUTINE F(N)
          INTEGER N
          REAL A 
      
            INTEGER I
!$OMP       PARALLEL DO PRIVATE(A)
              DO I = 1,N
                A = I
                CALL G(A*2)
              ENDDO
!$OMP       END PARALLEL DO
          END SUBROUTINE F

Fortran

      END MODULE PRIV_EXAMPLE2

The following example demonstrates that a list item that appears in a private  clause 
in a parallel construct may also appear in a private  clause in an enclosed 
worksharing construct, which results in an additional private copy.
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C/C++
Example A.32.3c

#include <assert.h>
void priv_example3()
{
  int i, a;

  #pragma omp parallel private(a)
  {

a = 1;
    #pragma omp parallel for private(a)
      for (i=0; i<10; i++)
     {

a = 2;
     }

assert(a == 1);
  }

C/C++
}

Fortran

Example A.32.3f

      SUBROUTINE PRIV_EXAMPLE3()
        INTEGER I, A

!$OMP   PARALLEL PRIVATE(A)
A = 1

!$OMP     PARALLEL DO PRIVATE(A)
          DO I = 1, 10
            A = 2
          END DO
!$OMP     END PARALLEL DO

PRINT *, A ! Outer A still has value 1
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE PRIV_EXAMPLE3
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Fortran

A.33 Fortran Restrictions on Storage 
Association with the private Clause
The following non-conforming examples illustrate the implications of the private 
clause rules with regard to storage association (see Section 2.9.3.3 on page 96). 

Example A.33.1f

       SUBROUTINE SUB()
       COMMON /BLOCK/ X
       PRINT *,X             ! X is undefined
       END SUBROUTINE SUB

       PROGRAM PRIV_RESTRICT
         COMMON /BLOCK/ X
         X = 1.0
!$OMP    PARALLEL PRIVATE (X)
         X = 2.0
         CALL SUB()
!$OMP    END PARALLEL
      END PROGRAM PRIV_RESTRICT

Example A.33.2f

      PROGRAM PRIV_RESTRICT2
        COMMON /BLOCK2/ X
        X = 1.0

!$OMP   PARALLEL PRIVATE (X)
          X = 2.0
          CALL SUB()
!$OMP   END PARALLEL

       CONTAINS

          SUBROUTINE SUB()
          COMMON /BLOCK2/ Y

          PRINT *,X               ! X is undefined
          PRINT *,Y               ! Y is undefined
          END SUBROUTINE SUB

       END PROGRAM PRIV_RESTRICT2
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Fortran (cont.)

Example A.33.3f

        PROGRAM PRIV_RESTRICT3
        EQUIVALENCE (X,Y)
        X = 1.0

!$OMP   PARALLEL PRIVATE(X)
          PRINT *,Y                  ! Y is undefined
          Y = 10
          PRINT *,X                  ! X is undefined
!$OMP   END PARALLEL
      END PROGRAM PRIV_RESTRICT3

Example A.33.4f

      PROGRAM PRIV_RESTRICT4
        INTEGER I, J
        INTEGER A(100), B(100)
        EQUIVALENCE (A(51), B(1))

!$OMP PARALLEL DO DEFAULT(PRIVATE) PRIVATE(I,J) LASTPRIVATE(A)
          DO I=1,100
             DO J=1,100
               B(J) = J - 1
             ENDDO

             DO J=1,100
               A(J) = J   ! B becomes undefined at this point
             ENDDO

             DO J=1,50
               B(J) = B(J) + 1  ! B is undefined
                         ! A becomes undefined at this point
             ENDDO
          ENDDO
!$OMP END PARALLEL DO       ! The LASTPRIVATE write for A has
                            ! undefined results

         PRINT *, B    ! B is undefined since the LASTPRIVATE
                       ! write of A was not defined
       END PROGRAM PRIV_RESTRICT4
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Example A.33.5f

      SUBROUTINE SUB1(X)
        DIMENSION X(10)
  
        ! This use of X does not conform to the 
        ! specification. It would be legal Fortran 90, 
        ! but the OpenMP private directive allows the
        ! compiler to break the sequence association that
        ! A had with the rest of the common block. 
  
        FORALL (I = 1:10) X(I) = I
      END SUBROUTINE SUB1

      PROGRAM PRIV_RESTRICT5
        COMMON /BLOCK5/ A 

        DIMENSION B(10)
        EQUIVALENCE (A,B(1)) 

        ! the common block has to be at least 10 words
        A = 0

!$OMP   PARALLEL PRIVATE(/BLOCK5/) 
          
          ! Without the private clause, 
          ! we would be passing a member of a sequence
          ! that is at least ten elements long.  
          ! With the private clause, A may no longer be 
          ! sequence-associated.

          CALL SUB1(A)
!$OMP     MASTER
            PRINT *, A
!$OMP     END MASTER

!$OMP   END PARALLEL

Fortran

      END PROGRAM PRIV_RESTRICT5 
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C/C++

A.34 C/C++ Arrays in a firstprivate Clause
The following example illustrates the size and value of list items of array or pointer type 
in a firstprivate clause (Section 2.9.3.4 on page 98). The size of new list items is 
based on the type of the corresponding original list item, as determined by the base 
language.

In this example:

• The type of A is array of two arrays of two ints.

• The type of B is adjusted to pointer to array of n ints, because it is a function parameter.

• The type of C is adjusted to pointer to int, because it is a function parameter.

• The type of D is array of two arrays of two ints.

• The type of E is array of n arrays of n ints.

Note that B and E involve variable length array types.

The new items of array type are initialized as if each integer element of the original 
array is assigned to the corresponding element of the new array. Those of pointer type 
are initialized as if by assignment from the original item to the new item.
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Example A.34.1c

#include <assert.h>

int A[2][2] = {1, 2, 3, 4};

void f(int n, int B[n][n], int C[])
{
  int D[2][2] = {1, 2, 3, 4};
  int E[n][n];

  assert(n >= 2);
  E[1][1] = 4;

  #pragma omp parallel firstprivate(B, C, D, E)
  {
    assert(sizeof(B) == sizeof(int (*)[n]));
    assert(sizeof(C) == sizeof(int*));
    assert(sizeof(D) == 4 * sizeof(int));
    assert(sizeof(E) == n * n * sizeof(int));

    /* Private B and C have values of original B and C. */
    assert(&B[1][1] == &A[1][1]);
    assert(&C[3] == &A[1][1]);
    assert(D[1][1] == 4);
    assert(E[1][1] == 4);
  }
}

int main() {
  f(2, A, A[0]);
  return 0;

C/C++
}

A.35 The lastprivate Clause
Correct execution sometimes depends on the value that the last iteration of a loop 
assigns to a variable. Such programs must list all such variables in a lastprivate 
clause (Section 2.9.3.5 on page 101) so that the values of the variables are the same as 
when the loop is executed sequentially.
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C/C++
Example A.35.1c

void lastpriv (int n, float *a, float *b)
{
  int i;

  #pragma omp parallel
  {
    #pragma omp for lastprivate(i)
    for (i=0; i<n-1; i++)
      a[i] = b[i] + b[i+1];
  }

  a[i]=b[i];      /* i == n-1 here */

C/C++
}

Fortran

Example A.35.1f

      SUBROUTINE LASTPRIV(N, A, B)

        INTEGER N
        REAL A(*), B(*)
        INTEGER I

!$OMP PARALLEL
!$OMP DO LASTPRIVATE(I)

        DO I=1,N-1
          A(I) = B(I) + B(I+1)
        ENDDO

!$OMP END PARALLEL

        A(I) = B(I)      ! I has the value of N here

Fortran

      END SUBROUTINE LASTPRIV 
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A.36 The reduction Clause
The following example demonstrates the reduction clause (Section 2.9.3.6 on page 
103); note that some reductions can be expressed in the loop in several ways, as shown 
for the max and min reductions below:

C/C++
Example A.36.1c

#include <math.h>
void reduction1(float *x, int *y, int n)
{
  int i, b, c;
  float a, d;
  a = 0.0;
  b = 0;
  c = y[0];
  d = x[0];
  #pragma omp parallel for private(i) shared(x, y, n) \
                          reduction(+:a) reduction(^:b) \
                          reduction(min:c) reduction(max:d)
    for (i=0; i<n; i++) {
      a += x[i];
      b ^= y[i];
      if (c > y[i]) c = y[i];
      d = fmaxf(d,x[i]);
    }

C/C++
}

Fortran

Example A.36.1f

SUBROUTINE REDUCTION1(A, B, C, D, X, Y, N)
    REAL :: X(*), A, D
    INTEGER :: Y(*), N, B, C
    INTEGER :: I
    A = 0
    B = 0
    C = Y(1)
    D = X(1)
    !$OMP PARALLEL DO PRIVATE(I) SHARED(X, Y, N) REDUCTION(+:A) &
    !$OMP& REDUCTION(IEOR:B) REDUCTION(MIN:C)  REDUCTION(MAX:D)
      DO I=1,N
        A = A + X(I)
        B = IEOR(B, Y(I))
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        C = MIN(C, Y(I))
        IF (D < X(I)) D = X(I)
      END DO

Fortran

END SUBROUTINE REDUCTION1

A common implementation of the preceding example is to treat it as if it had been 
written as follows:

C/C++
Example A.36.2c

#include <limits.h>
#include <math.h>
void reduction2(float *x, int *y, int n)
{
  int i, b, b_p, c, c_p;
  float a, a_p, d, d_p;
  a = 0.0f;
  b = 0;
  c = y[0];
  d = x[0];
  #pragma omp parallel shared(a, b, c, d, x, y, n) \
                          private(a_p, b_p, c_p, d_p)
  {
    a_p = 0.0f;
    b_p = 0;
    c_p = INT_MAX;
    d_p = -HUGE_VALF;
    #pragma omp for private(i)
    for (i=0; i<n; i++) {
      a_p += x[i];
      b_p ^= y[i];
      if (c_p > y[i]) c_p = y[i];
      d_p = fmaxf(d_p,x[i]);
    }
    #pragma omp critical
    {
      a += a_p;
      b ^= b_p;
      if( c > c_p ) c = c_p;
      d = fmaxf(d,d_p);
    }
  }

C/C++
}
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Fortran

Example A.36.2f

SUBROUTINE REDUCTION2(A, B, C, D, X, Y, N)
    REAL :: X(*), A, D
    INTEGER :: Y(*), N, B, C
    REAL :: A_P, D_P
    INTEGER :: I, B_P, C_P
    A = 0
    B = 0
    C = Y(1)
    D = X(1)
    !$OMP PARALLEL SHARED(X, Y, A, B, C, D, N) &
    !$OMP&         PRIVATE(A_P, B_P, C_P, D_P)
      A_P = 0.0
      B_P = 0
      C_P = HUGE(C_P)
      D_P = -HUGE(D_P)
      !$OMP DO PRIVATE(I)
      DO I=1,N
        A_P = A_P + X(I)
        B_P = IEOR(B_P, Y(I))
        C_P = MIN(C_P, Y(I))
        IF (D_P < X(I)) D_P = X(I)
      END DO
      !$OMP CRITICAL
        A = A + A_P
        B = IEOR(B, B_P)
        C = MIN(C, C_P)
        D = MAX(D, D_P)
      !$OMP END CRITICAL
    !$OMP END PARALLEL

END SUBROUTINE REDUCTION2

The following program is non-conforming because the reduction is on the intrinsic 
procedure name MAX but that name has been redefined to be the variable named MAX.

Example A.36.3f

 PROGRAM REDUCTION_WRONG
 MAX = HUGE(0)
 M = 0
 
 !$OMP PARALLEL DO REDUCTION(MAX: M)
! MAX is no longer the intrinsic so this is non-conforming
 DO I = 1, 100
    CALL SUB(M,I)
 END DO
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 END PROGRAM REDUCTION_WRONG
 
 SUBROUTINE SUB(M,I)
    M = MAX(M,I)
 END SUBROUTINE SUB

The following conforming program performs the reduction using the intrinsic procedure 
name MAX even though the intrinsic MAX has been renamed to REN.

Example A.36.4f

MODULE M
   INTRINSIC MAX
END MODULE M

PROGRAM REDUCTION3
   USE M, REN => MAX
   N = 0
!$OMP PARALLEL DO REDUCTION(REN: N)     ! still does MAX
   DO I = 1, 100
      N = MAX(N,I)
   END DO
END PROGRAM REDUCTION3

The following conforming program performs the reduction using intrinsic procedure 
name MAX even though the intrinsic MAX has been renamed to MIN.

Example A.36.5f

MODULE MOD
   INTRINSIC MAX, MIN
END MODULE MOD

PROGRAM REDUCTION4
   USE MOD, MIN=>MAX, MAX=>MIN
   REAL :: R
   R = -HUGE(0.0)

!$OMP PARALLEL DO REDUCTION(MIN: R)     ! still does MAX
   DO I = 1, 1000
      R = MIN(R, SIN(REAL(I)))
   END DO
   PRINT *, R

Fortran

END PROGRAM REDUCTION4
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The following example is non-conforming because the initialization (a = 0) of the 
original list item a is not synchronized with the update of a as a result of the reduction 
computation in the for loop. Therefore, the example may print an incorrect value for a.

To avoid this problem, the initialization of the original list item a should complete 
before any update of a as a result of the reduction clause. This can be achieved by 
adding an explicit barrier after the assignment a = 0, or by enclosing the assignment 
a = 0 in a single directive (which has an implied barrier), or by initializing a before 
the start of the parallel region.

C/C++
Example A.36.3c

#include <stdio.h>

int main (void)
{
  int a, i;

  #pragma omp parallel shared(a) private(i)
  {
    #pragma omp master
    a = 0;

    // To avoid race conditions, add a barrier here.

    #pragma omp for reduction(+:a)
    for (i = 0; i < 10; i++) {
        a += i;
    }

    #pragma omp single
    printf ("Sum is %d\n", a);
  }

C/C++
}
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Fortran

Example A.36.6f

INTEGER A, I

!$OMP PARALLEL SHARED(A) PRIVATE(I)

!$OMP MASTER
      A = 0
!$OMP END MASTER

      ! To avoid race conditions, add a barrier here.

!$OMP DO REDUCTION(+:A)
      DO I= 0, 9
         A = A + I
      END DO

!$OMP SINGLE
      PRINT *, "Sum is ", A
!$OMP END SINGLE

!$OMP END PARALLEL

Fortran

      END

A.37 The copyin Clause
The copyin clause (see Section 2.9.4.1 on page 107) is used to initialize threadprivate 
data upon entry to a parallel region. The value of the threadprivate variable in the 
master thread is copied to the threadprivate variable of each other team member.
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C/C++
Example A.37.1c

#include <stdlib.h>

float* work;
int size;
float tol;

#pragma omp threadprivate(work,size,tol)

void build()
{
  int i;
  work = (float*)malloc( sizeof(float)*size );
  for( i = 0; i < size; ++i ) work[i] = tol;
}

void copyin_example( float t, int n )
{
  tol = t;
  size = n;
  #pragma omp parallel copyin(tol,size)
  {
    build();
  }
}

C/C++
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Fortran

Example A.37.1f

      MODULE M
        REAL, POINTER, SAVE :: WORK(:)
        INTEGER :: SIZE
        REAL :: TOL
!$OMP   THREADPRIVATE(WORK,SIZE,TOL)
      END MODULE M 

      SUBROUTINE COPYIN_EXAMPLE( T, N )
        USE M
        REAL :: T
        INTEGER :: N
        TOL = T
        SIZE = N
!$OMP   PARALLEL COPYIN(TOL,SIZE)
        CALL BUILD
!$OMP   END PARALLEL
      END SUBROUTINE COPYIN_EXAMPLE

      SUBROUTINE BUILD
        USE M
        ALLOCATE(WORK(SIZE))
        WORK = TOL

Fortran

      END SUBROUTINE BUILD

A.38 The copyprivate Clause
The copyprivate clause (see Section 2.9.4.2 on page 109) can be used to broadcast 
values acquired by a single thread directly to all instances of the private variables in the 
other threads. In this example, if the routine is called from the sequential part, its 
behavior is not affected by the presence of the directives. If it is called from a 
parallel region, then the actual arguments with which a and b are associated must 
be private. 

The thread that executes the structured block associated with the single  construct 
broadcasts the values of the private variables a, b, x, and y from its implicit task's 
data environment to the data environments of the other implicit tasks in the thread team. 
The broadcast completes before any of the threads have left the barrier at the end of the 
construct.
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C/C++
Example A.38.1c

#include <stdio.h>
float x, y;
#pragma omp threadprivate(x, y)

void init(float a, float b ) {
    #pragma omp single copyprivate(a,b,x,y)
    {
        scanf("%f %f %f %f", &a, &b, &x, &y); 
    }

C/C++
}

Fortran

Example A.38.1f

      SUBROUTINE INIT(A,B)
      REAL A, B
        COMMON /XY/ X,Y
!$OMP   THREADPRIVATE (/XY/)

!$OMP   SINGLE
          READ (11) A,B,X,Y
!$OMP   END SINGLE COPYPRIVATE (A,B,/XY/)

Fortran

      END SUBROUTINE INIT
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In this example, assume that the input must be performed by the master thread. Since the 
master construct does not support the copyprivate clause, it cannot broadcast the 
input value that is read. However, copyprivate is used to broadcast an address where 
the input value is stored.

C/C++
Example A.38.2c

#include <stdio.h>
#include <stdlib.h>

float read_next( ) {
  float * tmp;
  float return_val;

  #pragma omp single copyprivate(tmp)
  {       
    tmp = (float *) malloc(sizeof(float));
  }  /* copies the pointer only */

  #pragma omp master
  {
    scanf("%f", tmp);
  }

  #pragma omp barrier
  return_val = *tmp;
  #pragma omp barrier

  #pragma omp single nowait
  {
    free(tmp);
  }

  return return_val;

C/C++
}
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Fortran

Example A.38.2f

      REAL FUNCTION READ_NEXT()
        REAL, POINTER :: TMP

!$OMP   SINGLE
          ALLOCATE (TMP)
!$OMP   END SINGLE COPYPRIVATE (TMP)  ! copies the pointer only

!$OMP   MASTER
          READ (11) TMP
!$OMP   END MASTER

!$OMP   BARRIER
          READ_NEXT = TMP
!$OMP   BARRIER

!$OMP   SINGLE
          DEALLOCATE (TMP)
!$OMP   END SINGLE NOWAIT

Fortran

      END FUNCTION READ_NEXT

Suppose that the number of lock variables required within a parallel region cannot 
easily be determined prior to entering it. The copyprivate clause can be used to 
provide access to shared lock variables that are allocated within that parallel region.

C/C++
Example A.38.3c

#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

omp_lock_t *new_lock()
{
  omp_lock_t *lock_ptr;

  #pragma omp single copyprivate(lock_ptr)
  {
    lock_ptr = (omp_lock_t *) malloc(sizeof(omp_lock_t));
    omp_init_lock( lock_ptr );
  }

  return lock_ptr;

C/C++
}
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Fortran

Example A.38.3f

      FUNCTION NEW_LOCK()
      USE OMP_LIB       ! or INCLUDE "omp_lib.h"
        INTEGER(OMP_LOCK_KIND), POINTER :: NEW_LOCK

!$OMP   SINGLE
          ALLOCATE(NEW_LOCK)
          CALL OMP_INIT_LOCK(NEW_LOCK)
!$OMP   END SINGLE COPYPRIVATE(NEW_LOCK)
      END FUNCTION NEW_LOCK

Note that the effect of the copyprivate clause on a variable with the allocatable 
attribute is different than on a variable with the pointer attribute. The value of A is 
copied (as if by intrinsic assignment) and the pointer B is copied (as if by pointer 
assignment) to the corresponding list items in the other implicit tasks belonging to the 
parallel region. 

Example A.38.4f

      SUBROUTINE S(N)
      INTEGER N

        REAL, DIMENSION(:), ALLOCATABLE :: A
        REAL, DIMENSION(:), POINTER :: B
  
        ALLOCATE (A(N))
!$OMP   SINGLE
          ALLOCATE (B(N))
          READ (11) A,B
!$OMP   END SINGLE COPYPRIVATE(A,B)
        ! Variable A is private and is
        ! assigned the same value in each thread

! Variable B is shared

!$OMP   BARRIER
!$OMP   SINGLE
          DEALLOCATE (B)
!$OMP   END SINGLE NOWAIT

Fortran

      END SUBROUTINE S
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A.39 Nested Loop Constructs
The following example of loop construct nesting (see Section 2.10 on page 111) is 
conforming because the inner and outer loop regions bind to different parallel 
regions:

C/C++
Example A.39.1c

void work(int i, int j) {}

void good_nesting(int n)
{
  int i, j;
  #pragma omp parallel default(shared)
  {
    #pragma omp for
    for (i=0; i<n; i++) {
      #pragma omp parallel shared(i, n)
      {
        #pragma omp for
        for (j=0; j < n; j++)
          work(i, j);
      }
    }
  }

C/C++
}

1

2
3
4

5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23



Appendix A Examples 279

Fortran

Example A.39.1f

      SUBROUTINE WORK(I, J)
      INTEGER I, J
      END SUBROUTINE WORK

      SUBROUTINE GOOD_NESTING(N)
      INTEGER N

        INTEGER I
!$OMP   PARALLEL DEFAULT(SHARED)
!$OMP     DO
          DO I = 1, N
!$OMP       PARALLEL SHARED(I,N)
!$OMP         DO
              DO J = 1, N
                CALL WORK(I,J)
              END DO
!$OMP       END PARALLEL
          END DO
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE GOOD_NESTING
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The following variation of the preceding example is also conforming:

C/C++
Example A.39.2c

void work(int i, int j) {}

void work1(int i, int n)
{
  int j;
  #pragma omp parallel default(shared)
  {
    #pragma omp for
    for (j=0; j<n; j++)
      work(i, j);
  }
}

void good_nesting2(int n)
{
  int i;
  #pragma omp parallel default(shared)
  {
    #pragma omp for
    for (i=0; i<n; i++)
      work1(i, n);
  }

C/C++
}
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Fortran

Example A.39.2f

      SUBROUTINE WORK(I, J)
      INTEGER I, J
      END SUBROUTINE WORK

      SUBROUTINE WORK1(I, N) 
      INTEGER J 
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO
        DO J = 1, N
          CALL WORK(I,J)
        END DO
!$OMP END PARALLEL
      END SUBROUTINE WORK1 

      SUBROUTINE GOOD_NESTING2(N)
      INTEGER N
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO
      DO I = 1, N
         CALL WORK1(I, N) 
      END DO
!$OMP END PARALLEL

Fortran

      END SUBROUTINE GOOD_NESTING2

A.40 Restrictions on Nesting of Regions
The examples in this section illustrate the region nesting rules. For more information on 
region nesting, see Section 2.10 on page 111. 
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The following example is non-conforming because the inner and outer loop regions are 
closely nested:

C/C++
Example A.40.1c

void work(int i, int j) {}

void wrong1(int n)
{
  #pragma omp parallel default(shared)
  {
    int i, j;
    #pragma omp for
    for (i=0; i<n; i++) {
       /* incorrect nesting of loop regions */
       #pragma omp for
         for (j=0; j<n; j++)
           work(i, j);
    }
  }

C/C++
}

Fortran

Example A.40.1f

      SUBROUTINE WORK(I, J)
      INTEGER I, J
      END SUBROUTINE WORK

      SUBROUTINE WRONG1(N)
      INTEGER N

        INTEGER I,J
!$OMP   PARALLEL DEFAULT(SHARED)
!$OMP     DO
          DO I = 1, N
!$OMP       DO             ! incorrect nesting of loop regions
            DO J = 1, N
              CALL WORK(I,J)
            END DO
          END DO
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE WRONG1
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The following orphaned version of the preceding example is also non-conforming:

C/C++
Example A.40.2c

void work(int i, int j) {}
void work1(int i, int n)
{
  int j;
/* incorrect nesting of loop regions */
  #pragma omp for
    for (j=0; j<n; j++)
      work(i, j);
}

void wrong2(int n)
{
  #pragma omp parallel default(shared)
  {
    int i;
    #pragma omp for
      for (i=0; i<n; i++)
         work1(i, n);
  }

C/C++
}

Fortran

Example A.40.2f

      SUBROUTINE WORK1(I,N)
      INTEGER I, N

INTEGER J
!$OMP   DO      ! incorrect nesting of loop regions
        DO J = 1, N
          CALL WORK(I,J)
        END DO
      END SUBROUTINE WORK1
      SUBROUTINE WRONG2(N)
      INTEGER N

INTEGER I 
!$OMP   PARALLEL DEFAULT(SHARED)
!$OMP     DO
          DO I = 1, N
            CALL WORK1(I,N)
          END DO
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE WRONG2
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The following example is non-conforming because the loop and single regions are 
closely nested:

C/C++
Example A.40.3c

void work(int i, int j) {}
void wrong3(int n)
{
  #pragma omp parallel default(shared)
  {
    int i;
    #pragma omp for
      for (i=0; i<n; i++) {
/* incorrect nesting of regions */ 
        #pragma omp single
          work(i, 0);
      }
  }

C/C++
}

Fortran

Example A.40.3f

      SUBROUTINE WRONG3(N)
      INTEGER N

        INTEGER I
!$OMP   PARALLEL DEFAULT(SHARED)
!$OMP     DO
          DO I = 1, N
!$OMP       SINGLE            ! incorrect nesting of regions 
              CALL WORK(I, 1)
!$OMP       END SINGLE
          END DO
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE WRONG3
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The following example is non-conforming because a barrier region cannot be closely 
nested inside a loop region:

C/C++
Example A.40.4c

void work(int i, int j) {}
void wrong4(int n)
{

  #pragma omp parallel default(shared)
  {
    int i;
    #pragma omp for
      for (i=0; i<n; i++) {
        work(i, 0);
/* incorrect nesting of barrier region in a loop region */ 
        #pragma omp barrier
        work(i, 1);
      }
  }

C/C++
}

Fortran

Example A.40.4f

      SUBROUTINE WRONG4(N)
      INTEGER N

        INTEGER I
!$OMP   PARALLEL DEFAULT(SHARED)
!$OMP     DO
          DO I = 1, N
            CALL WORK(I, 1)
! incorrect nesting of barrier region in a loop region
!$OMP       BARRIER 
            CALL WORK(I, 2)
          END DO
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE WRONG4
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The following example is non-conforming because the barrier region cannot be 
closely nested inside the critical region. If this were permitted, it would result in 
deadlock due to the fact that only one thread at a time can enter the critical region:

C/C++
Example A.40.5c

void work(int i, int j) {}
void wrong5(int n)
{
  #pragma omp parallel
  {
    #pragma omp critical
    {
       work(n, 0);
/* incorrect nesting of barrier region in a critical region */
       #pragma omp barrier
       work(n, 1);
    }
  }

C/C++
}

Fortran

Example A.40.5f

      SUBROUTINE WRONG5(N)
      INTEGER N

!$OMP   PARALLEL DEFAULT(SHARED)
!$OMP     CRITICAL
            CALL WORK(N,1)
! incorrect nesting of barrier region in a critical region
!$OMP       BARRIER
            CALL WORK(N,2)
!$OMP     END CRITICAL
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE WRONG5

1
2
3

4

5
6
7
8
9

10
11
12
13
14
15
16
17
18

19

20
21
22
23
24
25
26
27
28
29
30
31



Appendix A Examples 287

The following example is non-conforming because the barrier region cannot be 
closely nested inside the single region. If this were permitted, it would result in 
deadlock due to the fact that only one thread executes the single region:

C/C++
Example A.40.6c

void work(int i, int j) {}
void wrong6(int n)
{
  #pragma omp parallel
  {
    #pragma omp single
    {
      work(n, 0);
/* incorrect nesting of barrier region in a single region */ 
      #pragma omp barrier
      work(n, 1);
    }
  }

C/C++
}

Fortran

Example A.40.6f

     SUBROUTINE WRONG6(N)
      INTEGER N

!$OMP   PARALLEL DEFAULT(SHARED)
!$OMP     SINGLE
            CALL WORK(N,1)
! incorrect nesting of barrier region in a single region
!$OMP       BARRIER
            CALL WORK(N,2)
!$OMP     END SINGLE
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE WRONG6
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A.41 The omp_set_dynamic and 
omp_set_num_threads Routines
Some programs rely on a fixed, prespecified number of threads to execute correctly. 
Because the default setting for the dynamic adjustment of the number of threads is 
implementation defined, such programs can choose to turn off the dynamic threads 
capability and set the number of threads explicitly to ensure portability. The following 
example shows how to do this using omp_set_dynamic (Section 3.2.7 on page 123), 
and omp_set_num_threads (Section 3.2.1 on page 116).

In this example, the program executes correctly only if it is executed by 16 threads. If 
the implementation is not capable of supporting 16 threads, the behavior of this example 
is implementation defined (see Algorithm 2.1 on page 36). Note that the number of 
threads executing a parallel region remains constant during the region, regardless of 
the dynamic threads setting. The dynamic threads mechanism determines the number of 
threads to use at the start of the parallel region and keeps it constant for the duration 
of the region.

C/C++
Example A.41.1c

#include <omp.h>
#include <stdlib.h>

void do_by_16(float *x, int iam, int ipoints) {}

void dynthreads(float *x, int npoints)
{
  int iam, ipoints;

  omp_set_dynamic(0);
  omp_set_num_threads(16);

  #pragma omp parallel shared(x, npoints) private(iam, ipoints)
  {
    if (omp_get_num_threads() != 16) 
      abort();

    iam = omp_get_thread_num();
    ipoints = npoints/16;
    do_by_16(x, iam, ipoints);
  }

C/C++
}
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Fortran

Example A.41.1f

      SUBROUTINE DO_BY_16(X, IAM, IPOINTS)
        REAL X(*)
        INTEGER IAM, IPOINTS
      END SUBROUTINE DO_BY_16

      SUBROUTINE DYNTHREADS(X, NPOINTS)

        INCLUDE "omp_lib.h"      ! or USE OMP_LIB

        INTEGER NPOINTS
        REAL X(NPOINTS)

        INTEGER IAM, IPOINTS

        CALL OMP_SET_DYNAMIC(.FALSE.)
        CALL OMP_SET_NUM_THREADS(16)

!$OMP   PARALLEL SHARED(X,NPOINTS) PRIVATE(IAM, IPOINTS) 

          IF (OMP_GET_NUM_THREADS() .NE. 16) THEN
            STOP
          ENDIF

          IAM = OMP_GET_THREAD_NUM()
          IPOINTS = NPOINTS/16
          CALL DO_BY_16(X,IAM,IPOINTS)

!$OMP   END PARALLEL

Fortran

      END SUBROUTINE DYNTHREADS

A.42 The omp_get_num_threads Routine
In the following example, the omp_get_num_threads call (see Section 3.2.2 on 
page 117) returns 1 in the sequential part of the code, so np will always be equal to 1. 
To determine the number of threads that will be deployed for the parallel region, the 
call should be inside the parallel region.
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C/C++
Example A.42.1c

#include <omp.h>
void work(int i);

void incorrect()
{
  int np, i;

  np = omp_get_num_threads();  /* misplaced */

  #pragma omp parallel for schedule(static)
  for (i=0; i < np; i++)
    work(i);

C/C++
}

Fortran

Example A.42.1f

      SUBROUTINE WORK(I)
      INTEGER I
        I = I + 1
      END SUBROUTINE WORK

      SUBROUTINE INCORRECT()
        INCLUDE "omp_lib.h"      ! or USE OMP_LIB
        INTEGER I, NP

        NP = OMP_GET_NUM_THREADS()   !misplaced: will return 1
!$OMP   PARALLEL DO SCHEDULE(STATIC)
          DO I = 0, NP-1
            CALL WORK(I)
          ENDDO
!$OMP   END PARALLEL DO

Fortran

      END SUBROUTINE INCORRECT
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The following example shows how to rewrite this program without including a query for 
the number of threads:

C/C++
Example A.42.2c

#include <omp.h>
void work(int i);

void correct()
{
  int i;

  #pragma omp parallel private(i)
  {
    i = omp_get_thread_num();
    work(i);
  }

C/C++
}

Fortran

Example A.42.2f

      SUBROUTINE WORK(I)
        INTEGER I
      
        I = I + 1

      END SUBROUTINE WORK
    
      SUBROUTINE CORRECT()
        INCLUDE "omp_lib.h"     ! or USE OMP_LIB
        INTEGER I

!$OMP    PARALLEL PRIVATE(I)
          I = OMP_GET_THREAD_NUM()
          CALL WORK(I)
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE CORRECT
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A.43 The omp_init_lock Routine
The following example demonstrates how to initialize an array of locks in a parallel 
region by using omp_init_lock (Section 3.3.1 on page 143).

C/C++
Example A.43.1c

#include <omp.h> 

omp_lock_t *new_locks() 
{ 
  int i; 
  omp_lock_t *lock = new omp_lock_t[1000]; 

  #pragma omp parallel for private(i) 
    for (i=0; i<1000; i++) 
    { 
      omp_init_lock(&lock[i]); 
    } 
    return lock; 

C/C++
} 

Fortran

Example A.43.1f

      FUNCTION NEW_LOCKS()
        USE OMP_LIB        ! or INCLUDE "omp_lib.h"
        INTEGER(OMP_LOCK_KIND), DIMENSION(1000) :: NEW_LOCKS

        INTEGER I

!$OMP   PARALLEL DO PRIVATE(I)
          DO I=1,1000
            CALL OMP_INIT_LOCK(NEW_LOCKS(I))
          END DO
!$OMP   END PARALLEL DO
           

Fortran

      END FUNCTION NEW_LOCKS
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A.44 Ownership of Locks
Ownership of locks has changed since OpenMP 2.5. In OpenMP 2.5, locks are owned by 
threads; so a lock released by the omp_unset_lock routine must be owned by the 
same thread executing the routine.  With OpenMP 3.0, locks are owned by task regions; 
so a lock released by the omp_unset_lock routine in a task region must be owned by 
the same task region.

This change in ownership requires extra care when using locks. The following program 
is conforming in OpenMP 2.5 because the thread that releases the lock lck in the 
parallel region is the same thread that acquired the lock in the sequential part of the 
program (master thread of parallel region and the initial thread are the same). However, 
it is not conforming in OpenMP 3.0 and 3.1, because the task region that releases the 
lock lck is different from the task region that acquires the lock.

C/C++
Example A.44.1c

#include <stdlib.h>
#include <stdio.h>
#include <omp.h>

int main()
{
  int x;
  omp_lock_t lck;
 
  omp_init_lock (&lck);
  omp_set_lock (&lck);
  x = 0;  

#pragma omp parallel shared (x)
  {
    #pragma omp master
      {
        x = x + 1;
        omp_unset_lock (&lck);
      }

    /* Some more stuff. */
  }
  omp_destroy_lock (&lck);

return 0;

C/C++
}
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Fortran

Example A.44.1f

        program lock
        use omp_lib
        integer :: x
        integer (kind=omp_lock_kind) :: lck

        call omp_init_lock (lck)
        call omp_set_lock(lck)
        x = 0

!$omp parallel shared (x)
!$omp master
        x = x + 1
        call omp_unset_lock(lck)
!$omp end master
      
!       Some more stuff.
!$omp end parallel

        call omp_destroy_lock(lck)

Fortran

        end

A.45 Simple Lock Routines
In the following example (for Section 3.3 on page 141), the lock routines cause the 
threads to be idle while waiting for entry to the first critical section, but to do other work 
while waiting for entry to the second. The omp_set_lock function blocks, but the 
omp_test_lock function does not, allowing the work in skip to be done. 
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C/C++
Note that the argument to the lock routines should have type omp_lock_t, and that 
there is no need to flush it. 

Example A.45.1c

#include <stdio.h>
#include <omp.h>

void skip(int i) {}
void work(int i) {}

int main()
{
  omp_lock_t lck;
  int id;

  omp_init_lock(&lck);

  #pragma omp parallel shared(lck) private(id)
  {
    id = omp_get_thread_num();

    omp_set_lock(&lck);
    /*  only one thread at a time can execute this printf */
    printf("My thread id is %d.\n", id);
    omp_unset_lock(&lck);

    while (! omp_test_lock(&lck)) {
      skip(id);   /* we do not yet have the lock,
                     so we must do something else */
    }

    work(id);      /* we now have the lock
                      and can do the work */

    omp_unset_lock(&lck);
  }

  omp_destroy_lock(&lck);
  
  return 0;

C/C++
}
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Fortran

Note that there is no need to flush the lock variable. 

Example A.45.1f

      SUBROUTINE SKIP(ID) 
      END SUBROUTINE SKIP

      SUBROUTINE WORK(ID)
      END SUBROUTINE WORK

      PROGRAM SIMPLELOCK

        INCLUDE "omp_lib.h"     ! or USE OMP_LIB

        INTEGER(OMP_LOCK_KIND) LCK   
        INTEGER ID

        CALL OMP_INIT_LOCK(LCK)

!$OMP   PARALLEL SHARED(LCK) PRIVATE(ID)
          ID = OMP_GET_THREAD_NUM()
          CALL OMP_SET_LOCK(LCK)
          PRINT *, 'My thread id is ', ID
          CALL OMP_UNSET_LOCK(LCK)

          DO WHILE (.NOT. OMP_TEST_LOCK(LCK))
            CALL SKIP(ID)     ! We do not yet have the lock
                              ! so we must do something else
          END DO              

          CALL WORK(ID)       ! We now have the lock
                              ! and can do the work

          CALL OMP_UNSET_LOCK( LCK )

!$OMP   END PARALLEL

        CALL OMP_DESTROY_LOCK( LCK )

Fortran

      END PROGRAM SIMPLELOCK

1

2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38



Appendix A Examples 297

A.46 Nestable Lock Routines
The following example (for Section 3.3 on page 141) demonstrates how a nestable lock 
can be used to synchronize updates both to a whole structure and to one of its members.

C/C++
Example A.46.1c

#include <omp.h>
typedef struct {
      int a,b; 
      omp_nest_lock_t lck; } pair;

int work1();
int work2();
int work3();
void incr_a(pair *p, int a)
{
  /* Called only from incr_pair, no need to lock. */
  p->a += a;
}
void incr_b(pair *p, int b)
{
  /* Called both from incr_pair and elsewhere, */
  /* so need a nestable lock. */

  omp_set_nest_lock(&p->lck);
  p->b += b;
  omp_unset_nest_lock(&p->lck);
}
void incr_pair(pair *p, int a, int b)
{
  omp_set_nest_lock(&p->lck);
  incr_a(p, a);
  incr_b(p, b);
  omp_unset_nest_lock(&p->lck);
}
void nestlock(pair *p)
{
  #pragma omp parallel sections
  {
    #pragma omp section
      incr_pair(p, work1(), work2());
    #pragma omp section
      incr_b(p, work3());
  }

C/C++
}
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Fortran

Example A.46.1f

      MODULE DATA
        USE OMP_LIB, ONLY: OMP_NEST_LOCK_KIND 
        TYPE LOCKED_PAIR
          INTEGER A
          INTEGER B
          INTEGER (OMP_NEST_LOCK_KIND) LCK
       END TYPE
      END MODULE DATA

      SUBROUTINE INCR_A(P, A)
        ! called only from INCR_PAIR, no need to lock
        USE DATA
        TYPE(LOCKED_PAIR) :: P
        INTEGER A
        P%A = P%A + A
      END SUBROUTINE INCR_A

      SUBROUTINE INCR_B(P, B)
        ! called from both INCR_PAIR and elsewhere,
        ! so we need a nestable lock
        USE OMP_LIB       ! or INCLUDE "omp_lib.h"
        USE DATA
        TYPE(LOCKED_PAIR) :: P
        INTEGER B
        CALL OMP_SET_NEST_LOCK(P%LCK)
        P%B = P%B + B
        CALL OMP_UNSET_NEST_LOCK(P%LCK)
      END SUBROUTINE INCR_B

      SUBROUTINE INCR_PAIR(P, A, B)
        USE OMP_LIB        ! or INCLUDE "omp_lib.h"
        USE DATA
        TYPE(LOCKED_PAIR) :: P
        INTEGER A
        INTEGER B

        CALL OMP_SET_NEST_LOCK(P%LCK)
        CALL INCR_A(P, A) 
        CALL INCR_B(P, B)
        CALL OMP_UNSET_NEST_LOCK(P%LCK)
      END SUBROUTINE INCR_PAIR

      SUBROUTINE NESTLOCK(P)
        USE OMP_LIB        ! or INCLUDE "omp_lib.h"
        USE DATA
        TYPE(LOCKED_PAIR) :: P
        INTEGER WORK1, WORK2, WORK3
        EXTERNAL WORK1, WORK2, WORK3
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!$OMP   PARALLEL SECTIONS 

!$OMP   SECTION
          CALL INCR_PAIR(P, WORK1(), WORK2())
!$OMP   SECTION
          CALL INCR_B(P, WORK3())
!$OMP   END PARALLEL SECTIONS

Fortran

      END SUBROUTINE NESTLOCK
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APPENDIX B

Stubs for Runtime Library 
Routines

This section provides stubs for the runtime library routines defined in the OpenMP API. 
The stubs are provided to enable portability to platforms that do not support the 
OpenMP API. On these platforms, OpenMP programs must be linked with a library 
containing these stub routines. The stub routines assume that the directives in the 
OpenMP program are ignored. As such, they emulate serial semantics.

Note that the lock variable that appears in the lock routines must be accessed 
exclusively through these routines. It should not be initialized or otherwise modified in 
the user program. 

In an actual implementation the lock variable might be used to hold the address of an 
allocated memory block, but here it is used to hold an integer value. Users should not 
make assumptions about mechanisms used by OpenMP implementations to implement 
locks based on the scheme used by the stub procedures.

Fortran

Note – In order to be able to compile the Fortran stubs file, the include file 
omp_lib.h was split into two files: omp_lib_kinds.h and omp_lib.h and the 
omp_lib_kinds.h file included where needed. There is no requirement for the 

Fortran

implementation to provide separate files.
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B.1 C/C++ Stub Routines
#include <stdio.h>
#include <stdlib.h>
#include "omp.h"

void omp_set_num_threads(int num_threads)
{
}

int omp_get_num_threads(void)
{
    return 1;
}

int omp_get_max_threads(void)
{
    return 1;
}

int omp_get_thread_num(void)
{
    return 0;
}

int omp_get_num_procs(void)
{
    return 1;
}

int omp_in_parallel(void)
{
    return 0;
}

void omp_set_dynamic(int dynamic_threads)
{
}

int omp_get_dynamic(void)
{
    return 0;
}

void omp_set_nested(int nested)
{
}

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47



Appendix B Stubs for Runtime Library Routines 303

int omp_get_nested(void)
{
    return 0;
}

void omp_set_schedule(omp_sched_t kind, int modifier)
{
}

void omp_get_schedule(omp_sched_t *kind, int *modifier)
{
    *kind = omp_sched_static;
    *modifier = 0;
}

int omp_get_thread_limit(void)
{
    return 1;
}

void omp_set_max_active_levels(int max_active_levels)
{
}

int omp_get_max_active_levels(void)
{
    return 0;
}

int omp_get_level(void)
{
    return 0;
}

int omp_get_ancestor_thread_num(int level)
{
    if (level == 0)
    {
        return 0;
    }
    else
    {
        return -1;
    }
}
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int omp_get_team_size(int level)
{
    if (level == 0)
    {
        return 1;
    }
    else
    {
        return -1;
    }
}

int omp_get_active_level(void)
{
    return 0;
}

int omp_in_final(void)
{
    return 1;
}

struct __omp_lock
{
    int lock;
};

enum { UNLOCKED = -1, INIT, LOCKED };

void omp_init_lock(omp_lock_t *arg)
{

struct __omp_lock *lock = (struct __omp_lock *)arg;
    lock->lock = UNLOCKED;
}

void omp_destroy_lock(omp_lock_t *arg)
{

struct __omp_lock *lock = (struct __omp_lock *)arg;
    lock->lock = INIT;
}
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void omp_set_lock(omp_lock_t *arg)
{

struct __omp_lock *lock = (struct __omp_lock *)arg;
    if (lock->lock == UNLOCKED)
    {
        lock->lock = LOCKED;
    }
    else if (lock->lock == LOCKED)
    {
        fprintf(stderr,

"error: deadlock in using lock variable\n");
        exit(1);
    }
    else
    {
        fprintf(stderr, "error: lock not initialized\n");
        exit(1);
    }
}

void omp_unset_lock(omp_lock_t *arg)
{

struct __omp_lock *lock = (struct __omp_lock *)arg;
    if (lock->lock == LOCKED)
    {
        lock->lock = UNLOCKED;
    }
    else if (lock->lock == UNLOCKED)
    {
        fprintf(stderr, "error: lock not set\n");
        exit(1);
    }
    else
    {
        fprintf(stderr, "error: lock not initialized\n");
        exit(1);
    }
}
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int omp_test_lock(omp_lock_t *arg)
{

struct __omp_lock *lock = (struct __omp_lock *)arg;
    if (lock->lock == UNLOCKED)
    {
        lock->lock = LOCKED;
        return 1;
    }
    else if (lock->lock == LOCKED)
    {
        return 0;
    }
    else
    {
        fprintf(stderr, "error: lock not initialized\n");
        exit(1);
    }
}

struct __omp_nest_lock
{
    short owner;

short count;
};

enum { NOOWNER = -1, MASTER = 0 };

void omp_init_nest_lock(omp_nest_lock_t *arg)
{

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;
nlock->owner = NOOWNER;

    nlock->count = 0;
}

void omp_destroy_nest_lock(omp_nest_lock_t *arg)
{

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;
    nlock->owner = NOOWNER;
    nlock->count = UNLOCKED;
}
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void omp_set_nest_lock(omp_nest_lock_t *arg)
{

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;
    if (nlock->owner == MASTER && nlock->count >= 1)
    {
        nlock->count++;
    }
    else if (nlock->owner == NOOWNER && nlock->count == 0)
    {
        nlock->owner = MASTER;
        nlock->count = 1;
    }
    else
    {
        fprintf(stderr,

"error: lock corrupted or not initialized\n");
        exit(1);
    }
}

void omp_unset_nest_lock(omp_nest_lock_t *arg)
{

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;
    if (nlock->owner == MASTER && nlock->count >= 1)
    {
        nlock->count--;
        if (nlock->count == 0)
        {
            nlock->owner = NOOWNER;
        }
    }
    else if (nlock->owner == NOOWNER && nlock->count == 0)
    {
        fprintf(stderr, "error: lock not set\n");
        exit(1);
    }
    else
    {
        fprintf(stderr,

"error: lock corrupted or not initialized\n");
        exit(1);
    }
}

int omp_test_nest_lock(omp_nest_lock_t *arg)
{

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;
    omp_set_nest_lock(arg);
    return nlock->count;
}
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double omp_get_wtime(void)
{
/* This function does not provide a working
 * wallclock timer. Replace it with a version
 * customized for the target machine.
 */
    return 0.0;
}

double omp_get_wtick(void)
{
/* This function does not provide a working
 * clock tick function. Replace it with
 * a version customized for the target machine.
 */
    return 365. * 86400.;
}
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B.2 Fortran Stub Routines
C23456
       subroutine omp_set_num_threads(num_threads)
         integer num_threads
         return
       end subroutine

       integer function omp_get_num_threads()
         omp_get_num_threads = 1
         return
       end function

       integer function omp_get_max_threads()
         omp_get_max_threads = 1
         return
       end function

       integer function omp_get_thread_num()
         omp_get_thread_num = 0
         return
       end function

       integer function omp_get_num_procs()
         omp_get_num_procs = 1
         return
       end function

       logical function omp_in_parallel()
         omp_in_parallel = .false.
         return
       end function

       subroutine omp_set_dynamic(dynamic_threads)
         logical dynamic_threads
         return
       end subroutine

       logical function omp_get_dynamic()
         omp_get_dynamic = .false.
         return
       end function

       subroutine omp_set_nested(nested)
         logical nested
         return
       end subroutine
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       logical function omp_get_nested()
         omp_get_nested = .false.
         return
       end function

       subroutine omp_set_schedule(kind, modifier)
         include 'omp_lib_kinds.h'
         integer (kind=omp_sched_kind) kind
         integer modifier
         return
       end subroutine

       subroutine omp_get_schedule(kind, modifier)
         include 'omp_lib_kinds.h'
         integer (kind=omp_sched_kind) kind
         integer modifier

         kind = omp_sched_static
         modifier = 0
         return
       end subroutine

       integer function omp_get_thread_limit()
         omp_get_thread_limit = 1
         return
       end function

       subroutine omp_set_max_active_levels( level )
         integer level
       end subroutine

       integer function omp_get_max_active_levels()
         omp_get_max_active_levels = 0
         return
       end function

       integer function omp_get_level()
         omp_get_level = 0
         return
       end function

       integer function omp_get_ancestor_thread_num( level )
         integer level
         if ( level .eq. 0 ) then
            omp_get_ancestor_thread_num = 0
         else
            omp_get_ancestor_thread_num = -1
         end if
         return
       end function
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       integer function omp_get_team_size( level )
         integer level
         if ( level .eq. 0 ) then
            omp_get_team_size = 1
         else
            omp_get_team_size = -1
         end if
         return
       end function

       integer function omp_get_active_level()
         omp_get_active_level = 0
         return
       end function

logical function omp_in_final()
  omp_in_final = .true.
  return

end function

       subroutine omp_init_lock(lock)
         ! lock is 0 if the simple lock is not initialized
         !        -1 if the simple lock is initialized but not set
         !         1 if the simple lock is set
         include 'omp_lib_kinds.h'
         integer(kind=omp_lock_kind) lock

         lock = -1
         return
       end subroutine

       subroutine omp_destroy_lock(lock)
         include 'omp_lib_kinds.h'
         integer(kind=omp_lock_kind) lock

         lock = 0
         return
       end subroutine

       subroutine omp_set_lock(lock)
         include 'omp_lib_kinds.h'
         integer(kind=omp_lock_kind) lock

         if (lock .eq. -1) then
           lock = 1
         elseif (lock .eq. 1) then
           print *, 'error: deadlock in using lock variable'
           stop
         else
           print *, 'error: lock not initialized'
           stop
         endif
         return
       end subroutine
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       subroutine omp_unset_lock(lock)
         include 'omp_lib_kinds.h'
         integer(kind=omp_lock_kind) lock

         if (lock .eq. 1) then
           lock = -1
         elseif (lock .eq. -1) then
           print *, 'error: lock not set'
           stop
         else
           print *, 'error: lock not initialized'
           stop
         endif

         return
       end subroutine

       logical function omp_test_lock(lock)
         include 'omp_lib_kinds.h'
         integer(kind=omp_lock_kind) lock

         if (lock .eq. -1) then
           lock = 1
           omp_test_lock = .true.
         elseif (lock .eq. 1) then
           omp_test_lock = .false.
         else
           print *, 'error: lock not initialized'
           stop
         endif

         return
       end function

       subroutine omp_init_nest_lock(nlock)
         ! nlock is  

! 0 if the nestable lock is not initialized
         ! -1 if the nestable lock is initialized but not set
         ! 1 if the nestable lock is set
         ! no use count is maintained
         include 'omp_lib_kinds.h'
         integer(kind=omp_nest_lock_kind) nlock

         nlock = -1

         return
       end subroutine
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       subroutine omp_destroy_nest_lock(nlock)
         include 'omp_lib_kinds.h'
         integer(kind=omp_nest_lock_kind) nlock

         nlock = 0

         return
       end subroutine

       subroutine omp_set_nest_lock(nlock)
         include 'omp_lib_kinds.h'
         integer(kind=omp_nest_lock_kind) nlock

         if (nlock .eq. -1) then
           nlock = 1
         elseif (nlock .eq. 0) then
           print *, 'error: nested lock not initialized'
           stop
         else
           print *, 'error: deadlock using nested lock variable'
           stop
         endif

         return
       end subroutine

       subroutine omp_unset_nest_lock(nlock)
         include 'omp_lib_kinds.h'
         integer(kind=omp_nest_lock_kind) nlock

         if (nlock .eq. 1) then
           nlock = -1
         elseif (nlock .eq. 0) then
           print *, 'error: nested lock not initialized'
           stop
         else
           print *, 'error: nested lock not set'
           stop
         endif

         return
       end subroutine
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       integer function omp_test_nest_lock(nlock)
         include 'omp_lib_kinds.h'
         integer(kind=omp_nest_lock_kind) nlock

         if (nlock .eq. -1) then
           nlock = 1
           omp_test_nest_lock = 1
         elseif (nlock .eq. 1) then
           omp_test_nest_lock = 0
         else
           print *, 'error: nested lock not initialized'
           stop
         endif

         return
       end function

       double precision function omp_get_wtime()
         ! this function does not provide a working
         ! wall clock timer. replace it with a version
         ! customized for the target machine.

         omp_get_wtime = 0.0d0

         return
       end function

       double precision function omp_get_wtick()
         ! this function does not provide a working
         ! clock tick function. replace it with
         ! a version customized for the target machine.
         double precision one_year
         parameter  (one_year=365.d0*86400.d0)

         omp_get_wtick = one_year

         return
       end function
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APPENDIX C

OpenMP C and C++ Grammar

C.1 Notation
The grammar rules consist of the name for a non-terminal, followed by a colon, 
followed by replacement alternatives on separate lines.

The syntactic expression termopt indicates that the term is optional within the 
replacement.

The syntactic expression termoptseq is equivalent to term-seqopt with the following 
additional rules:

term-seq :

term

term-seq term

term-seq , term
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C.2 Rules
The notation is described in Section 6.1 of the C standard. This grammar appendix 
shows the extensions to the base language grammar for the OpenMP C and C++ 
directives.

/* in C++ (ISO/IEC 14882:1998) */

statement-seq:

statement

openmp-directive

statement-seq statement

statement-seq openmp-directive

/* in C90 (ISO/IEC 9899:1990) */

statement-list:

statement

openmp-directive

statement-list statement

statement-list openmp-directive

/* in C99 (ISO/IEC 9899:1999) */

block-item:

declaration

statement

openmp-directive
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statement:

/* standard statements */

openmp-construct

openmp-construct:

parallel-construct

for-construct

sections-construct

single-construct

parallel-for-construct

parallel-sections-construct

task-construct

master-construct

critical-construct

atomic-construct

ordered-construct

openmp-directive:

barrier-directive

taskwait-directive

taskyield-directive

flush-directive

structured-block:

statement

parallel-construct:

parallel-directive structured-block

parallel-directive:

# pragma omp parallel parallel-clauseoptseq new-line

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28



318 OpenMP API • Version 3.1  July 2011

parallel-clause:

unique-parallel-clause

data-default-clause 

data-privatization-clause 

data-privatization-in-clause 

data-sharing-clause 

data-reduction-clause 

unique-parallel-clause:

if ( expression )

num_threads ( expression )

copyin ( variable-list )

for-construct:

for-directive iteration-statement

for-directive:

# pragma omp for for-clauseoptseq new-line

for-clause:

unique-for-clause

data-privatization-clause 

data-privatization-in-clause 

data-privatization-out-clause 

data-reduction-clause 

nowait

unique-for-clause:

ordered

schedule ( schedule-kind )

schedule ( schedule-kind , expression )

collapse ( expression )
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schedule-kind:

static

dynamic

guided

auto

runtime

sections-construct:

sections-directive section-scope

sections-directive:

# pragma omp sections sections-clauseoptseq new-line

sections-clause:

data-privatization-clause 

data-privatization-in-clause 

data-privatization-out-clause 

data-reduction-clause 

nowait

section-scope:

{ section-sequence }

section-sequence:

section-directiveopt structured-block

section-sequence section-directive structured-block

section-directive:

# pragma omp section new-line

single-construct:

single-directive structured-block

single-directive:

# pragma omp single single-clauseoptseq new-line
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single-clause:

unique-single-clause

data-privatization-clause

data-privatization-in-clause

nowait

unique-single-clause:

copyprivate ( variable-list )

task-construct:

task-directive structured-block

task-directive:

# pragma omp task task-clauseoptseq new-line

task-clause:

unique-task-clause

data-default-clause

data-privatization-clause

data-privatization-in-clause

data-sharing-clause

unique-task-clause:

if ( scalar-expression )

final( scalar-expression )

untied

mergeable

parallel-for-construct:

parallel-for-directive iteration-statement

parallel-for-directive:

# pragma omp parallel for parallel-for-clauseoptseq new-line
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parallel-for-clause:

unique-parallel-clause

unique-for-clause

data-default-clause 

data-privatization-clause 

data-privatization-in-clause

data-privatization-out-clause 

data-sharing-clause 

data-reduction-clause 

parallel-sections-construct:

 parallel-sections-directive section-scope

 parallel-sections-directive:

# pragma omp parallel sections parallel-sections-clauseoptseq new-line

parallel-sections-clause:

unique-parallel-clause

data-default-clause 

data-privatization-clause 

data-privatization-in-clause

data-privatization-out-clause 

data-sharing-clause 

data-reduction-clause 

master-construct:

master-directive structured-block

master-directive:

# pragma omp master new-line

critical-construct:

critical-directive structured-block
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critical-directive:

# pragma omp critical region-phraseopt new-line

region-phrase:

( identifier )

barrier-directive:

# pragma omp barrier new-line

taskwait-directive:

# pragma omp taskwait new-line

taskyield-directive:

# pragma omp taskyield new-line

atomic-construct:

atomic-directive expression-statement

atomic-directive structured block

atomic-directive:

# pragma omp atomic atomic-clauseopt new-line

atomic-clause:

read

write

update

capture

flush-directive:

# pragma omp flush flush-varsopt new-line

flush-vars:

( variable-list )

ordered-construct:

ordered-directive structured-block
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ordered-directive:

# pragma omp ordered new-line

declaration:

/* standard declarations */

threadprivate-directive

threadprivate-directive:

# pragma omp threadprivate ( variable-list ) new-line

data-default-clause:

default ( shared )

default ( none )

data-privatization-clause:

private ( variable-list )

data-privatization-in-clause:

firstprivate ( variable-list )

data-privatization-out-clause:

lastprivate ( variable-list )

data-sharing-clause:

shared ( variable-list )

data-reduction-clause:

reduction ( reduction-operator : variable-list )

reduction-operator:

One of: + * - & ^ | && || max min

/* in C */

variable-list:

identifier

variable-list , identifier
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/* in C++ */

variable-list:

id-expression

variable-list , id-expression
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APPENDIX D

Interface Declarations

This appendix gives examples of the C/C++ header file, the Fortran include file and 
Fortran module that shall be provided by implementations as specified in Chapter 3. It 
also includes an example of a Fortran 90 generic interface for a library routine. This is a 
non-normative section, implementation files may differ.
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D.1 Example of the omp.h Header File
#ifndef _OMP_H_DEF
#define _OMP_H_DEF

/*
 * define the lock data types
 */
typedef void *omp_lock_t;

typedef void *omp_nest_lock_t;

/*
 * define the schedule kinds
 */
typedef enum omp_sched_t
{
    omp_sched_static = 1,
    omp_sched_dynamic = 2,
    omp_sched_guided = 3,
    omp_sched_auto = 4
/* , Add vendor specific schedule constants here */
} omp_sched_t;

/*
 * exported OpenMP functions
 */
#ifdef __cplusplus
extern         "C"
{
#endif

extern void   omp_set_num_threads(int num_threads);
extern int    omp_get_num_threads(void);
extern int    omp_get_max_threads(void);
extern int    omp_get_thread_num(void);
extern int    omp_get_num_procs(void);
extern int    omp_in_parallel(void);
extern void   omp_set_dynamic(int dynamic_threads);
extern int    omp_get_dynamic(void);
extern void   omp_set_nested(int nested);
extern int    omp_get_nested(void);
extern int    omp_get_thread_limit(void);
extern void   omp_set_max_active_levels(int max_active_levels);
extern int    omp_get_max_active_levels(void);
extern int    omp_get_level(void);
extern int    omp_get_ancestor_thread_num(int level);
extern int    omp_get_team_size(int level);
extern int    omp_get_active_level(void);
extern int omp_in_final(void);
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extern void   omp_set_schedule(omp_sched_t kind, int modifier);
extern void   omp_get_schedule(omp_sched_t *kind, int *modifier);

extern void   omp_init_lock(omp_lock_t *lock);
extern void   omp_destroy_lock(omp_lock_t *lock);
extern void   omp_set_lock(omp_lock_t *lock);
extern void   omp_unset_lock(omp_lock_t *lock);
extern int    omp_test_lock(omp_lock_t *lock);

extern void   omp_init_nest_lock(omp_nest_lock_t *lock);
extern void   omp_destroy_nest_lock(omp_nest_lock_t *lock);
extern void   omp_set_nest_lock(omp_nest_lock_t *lock);
extern void   omp_unset_nest_lock(omp_nest_lock_t *lock);
extern int    omp_test_nest_lock(omp_nest_lock_t *lock);

extern double omp_get_wtime(void);
extern double omp_get_wtick(void);

#ifdef __cplusplus
}
#endif

#endif
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D.2 Example of an Interface Declaration include 
File
omp_lib_kinds.h:

integer     omp_lock_kind
integer     omp_nest_lock_kind

! this selects an integer that is large enough to hold a 64 bit integer
parameter ( omp_lock_kind = selected_int_kind( 10 ) )
parameter ( omp_nest_lock_kind = selected_int_kind( 10 ) )

      integer     omp_sched_kind
! this selects an integer that is large enough to hold a 32 bit integer

parameter ( omp_sched_kind = selected_int_kind( 8 ) )
      integer ( omp_sched_kind ) omp_sched_static
      parameter ( omp_sched_static = 1 )
      integer ( omp_sched_kind ) omp_sched_dynamic
      parameter ( omp_sched_dynamic = 2 )
      integer ( omp_sched_kind ) omp_sched_guided
      parameter ( omp_sched_guided = 3 )
      integer ( omp_sched_kind ) omp_sched_auto
      parameter ( omp_sched_auto = 4 )

omp_lib.h:
! default integer type assumed below
! default logical type assumed below
! OpenMP API v3.1

      include 'omp_lib_kinds.h'
integer     openmp_version

      parameter ( openmp_version = 201107 )

      external omp_set_num_threads
      external omp_get_num_threads
      integer  omp_get_num_threads
      external omp_get_max_threads
      integer  omp_get_max_threads
      external omp_get_thread_num
      integer  omp_get_thread_num
      external omp_get_num_procs
      integer  omp_get_num_procs
      external omp_in_parallel
      logical  omp_in_parallel
      external omp_set_dynamic
      external omp_get_dynamic
      logical  omp_get_dynamic
      external omp_set_nested
      external omp_get_nested
      logical  omp_get_nested
      external omp_set_schedule
      external omp_get_schedule
      external omp_get_thread_limit
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      integer omp_get_thread_limit
      external omp_set_max_active_levels
      external omp_get_max_active_levels
      integer omp_get_max_active_levels
      external omp_get_level
      integer omp_get_level
      external omp_get_ancestor_thread_num
      integer omp_get_ancestor_thread_num
      external omp_get_team_size
      integer omp_get_team_size
      external omp_get_active_level
      integer omp_get_active_level

external omp_in_final
logical omp_in_final

      external omp_init_lock
      external omp_destroy_lock
      external omp_set_lock
      external omp_unset_lock
      external omp_test_lock
      logical  omp_test_lock

      external omp_init_nest_lock
      external omp_destroy_nest_lock
      external omp_set_nest_lock
      external omp_unset_nest_lock
      external omp_test_nest_lock
      integer  omp_test_nest_lock

      external omp_get_wtick
      double precision  omp_get_wtick
      external omp_get_wtime
      double precision  omp_get_wtime
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D.3 Example of a Fortran Interface Declaration 
module
!     the "!" of this comment starts in column 1
!23456

       module omp_lib_kinds
integer, parameter :: omp_lock_kind = selected_int_kind( 10 )
integer, parameter :: omp_nest_lock_kind = selected_int_kind( 10 )
integer, parameter :: omp_sched_kind = selected_int_kind( 8 ) 
integer(kind=omp_sched_kind), parameter ::

     &   omp_sched_static = 1
       integer(kind=omp_sched_kind), parameter ::
     &   omp_sched_dynamic = 2
       integer(kind=omp_sched_kind), parameter ::
     &   omp_sched_guided = 3
       integer(kind=omp_sched_kind), parameter ::
     &   omp_sched_auto = 4
       end module omp_lib_kinds

      module omp_lib

        use omp_lib_kinds
!                               OpenMP API v3.1
        integer, parameter :: openmp_version = 201107

interface

        subroutine omp_set_num_threads (number_of_threads_expr)
         integer, intent(in) :: number_of_threads_expr
        end subroutine omp_set_num_threads

        function omp_get_num_threads ()
         integer :: omp_get_num_threads
        end function omp_get_num_threads

        function omp_get_max_threads ()
         integer :: omp_get_max_threads
        end function omp_get_max_threads

        function omp_get_thread_num ()
         integer :: omp_get_thread_num
        end function omp_get_thread_num

        function omp_get_num_procs ()
         integer :: omp_get_num_procs
        end function omp_get_num_procs

        function omp_in_parallel ()
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         logical :: omp_in_parallel
        end function omp_in_parallel

        subroutine omp_set_dynamic (enable_expr)
         logical, intent(in) ::enable_expr
        end subroutine omp_set_dynamic

        function omp_get_dynamic ()
         logical :: omp_get_dynamic
        end function omp_get_dynamic

        subroutine omp_set_nested (enable_expr)
         logical, intent(in) :: enable_expr
        end subroutine omp_set_nested

        function omp_get_nested ()
         logical :: omp_get_nested
        end function omp_get_nested

        subroutine omp_set_schedule (kind, modifier)
         use omp_lib_kinds
         integer(kind=omp_sched_kind), intent(in) :: kind
         integer, intent(in) :: modifier
        end subroutine omp_set_schedule

        subroutine omp_get_schedule (kind, modifier)
         use omp_lib_kinds
         integer(kind=omp_sched_kind), intent(out) :: kind
         integer, intent(out)::modifier
        end subroutine omp_get_schedule

        function omp_get_thread_limit()
         integer :: omp_get_thread_limit
        end function omp_get_thread_limit

        subroutine omp_set_max_active_levels(var)
         integer, intent(in) :: var
        end subroutine omp_set_max_active_levels

        function omp_get_max_active_levels()
         integer :: omp_get_max_active_levels
        end function omp_get_max_active_levels

        function omp_get_level()
         integer :: omp_get_level
        end function omp_get_level

        function omp_get_ancestor_thread_num(level)
integer, intent(in) :: level

         integer :: omp_get_ancestor_thread_num
        end function omp_get_ancestor_thread_num
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        function omp_get_team_size(level)
         integer, intent(in) :: level
         integer :: omp_get_team_size
        end function omp_get_team_size

        function omp_get_active_level()
         integer :: omp_get_active_level
        end function omp_get_active_level

function omp_in_final()
logical omp_in_final

end function omp_in_final

        subroutine omp_init_lock (var)
         use omp_lib_kinds
         integer (kind=omp_lock_kind), intent(out) :: var
        end subroutine omp_init_lock

        subroutine omp_destroy_lock (var)
         use omp_lib_kinds
         integer (kind=omp_lock_kind), intent(inout) :: var
        end subroutine omp_destroy_lock

        subroutine omp_set_lock (var)
         use omp_lib_kinds
         integer (kind=omp_lock_kind), intent(inout) :: var
        end subroutine omp_set_lock

        subroutine omp_unset_lock (var)
         use omp_lib_kinds
         integer (kind=omp_lock_kind), intent(inout) :: var
        end subroutine omp_unset_lock

        function omp_test_lock (var)
         use omp_lib_kinds
         logical :: omp_test_lock
         integer (kind=omp_lock_kind), intent(inout) :: var
        end function omp_test_lock

        subroutine omp_init_nest_lock (var)
         use omp_lib_kinds
         integer (kind=omp_nest_lock_kind), intent(out) :: var
        end subroutine omp_init_nest_lock

        subroutine omp_destroy_nest_lock (var)
         use omp_lib_kinds
         integer (kind=omp_nest_lock_kind), intent(inout) :: var
        end subroutine omp_destroy_nest_lock

        subroutine omp_set_nest_lock (var)
         use omp_lib_kinds
         integer (kind=omp_nest_lock_kind), intent(inout) :: var
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        end subroutine omp_set_nest_lock

        subroutine omp_unset_nest_lock (var)
         use omp_lib_kinds
         integer (kind=omp_nest_lock_kind), intent(inout) :: var
        end subroutine omp_unset_nest_lock

        function omp_test_nest_lock (var)
         use omp_lib_kinds
         integer :: omp_test_nest_lock
         integer (kind=omp_nest_lock_kind), intent(inout) :: var
        end function omp_test_nest_lock

        function omp_get_wtick ()
          double precision :: omp_get_wtick
        end function omp_get_wtick

        function omp_get_wtime ()
          double precision :: omp_get_wtime
        end function omp_get_wtime

        end interface

      end module omp_lib
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D.4 Example of a Generic Interface for a Library 
Routine
Any of the OpenMP runtime library routines that take an argument may be extended 
with a generic interface so arguments of different KIND type can be accommodated.

The OMP_SET_NUM_THREADS interface could be specified in the omp_lib module 
as the following:

!     the "!" of this comment starts in column 1  
      interface omp_set_num_threads
        
        subroutine omp_set_num_threads_1 ( number_of_threads_expr )
        use omp_lib_kinds
        integer ( kind=selected_int_kind( 8 ) ), intent(in) :: &
      &                                          number_of_threads_expr
      end subroutine omp_set_num_threads_1
        
        subroutine omp_set_num_threads_2 ( number_of_threads_expr )
        use omp_lib_kinds
        integer ( kind=selected_int_kind( 3 ) ), intent(in) :: &
      &                                          number_of_threads_expr
      end subroutine omp_set_num_threads_2
     
      end interface omp_set_num_threads  
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APPENDIX E

OpenMP Implementation-
Defined Behaviors 

This appendix summarizes the behaviors that are described as implementation defined in 
this API. Each behavior is cross-referenced back to its description in the main 
specification. An implementation is required to define and document its behavior in 
these cases.

• Memory model: the minimum size at which a memory update may also read and 
write back adjacent variables that are part of another variable (as array or structure 
elements) is implementation defined but is no larger than required by the base 
language (see Section 1.4.1 on page 13).

• Internal control variables: the initial values of nthreads-var, dyn-var, run-sched-var, 
def-sched-var, bind-var, stacksize-var, wait-policy-var, thread-limit-var, and max-
active-levels-var are implementation defined (see Section 2.3.2 on page 29).

• Dynamic adjustment of threads: providing the ability to dynamically adjust the 
number of threads is implementation defined . Implementations are allowed to deliver 
fewer threads (but at least one) than indicated in Algorithm 2-1 even if dynamic 
adjustment is disabled (see Section 2.4.1 on page 36).

• Loop directive: the integer type or kind used to compute the iteration count of a 
collapsed loop is implementation defined. The effect of the schedule(runtime) 
clause when the run-sched-var ICV is set to auto is implementation defined. See 
Section 2.5.1 on page 39. 

• sections construct: the method of scheduling the structured blocks among threads 
in the team is implementation defined (see Section 2.5.2 on page 48).

• single construct: the method of choosing a thread to execute the structured block 
is implementation defined (see Section 2.5.3 on page 50).

• Task scheduling points: where task scheduling points occur in untied task regions is 
implementation defined (see Section 2.7.3 on page 65).
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• atomic construct: a compliant implementation may enforce exclusive access 
between atomic regions which update different storage locations. The 
circumstances under which this occurs are implementation defined (see Section 2.8.5 
on page 73).

• omp_set_num_threads routine: if the argument is not a positive integer the 
behavior is implementation defined (see Section 3.2.1 on page 116).

• omp_set_schedule routine: for implementation specific schedule types, the 
values and associated meanings of the second argument are implementation defined. 
(see Section 3.2.11 on page 128).

• omp_set_max_active_levels routine: when called from within any explicit 
parallel region the binding thread set (and binding region, if required) for the 
omp_set_max_active_levels region is implementation defined and the 
behavior is implementation defined. If the argument is not a non-negative integer 
then the behavior is implementation defined (see Section 3.2.14 on page 132).

• omp_get_max_active_levels routine: when called from within any explicit 
parallel region the binding thread set (and binding region, if required) for the 
omp_get_max_active_levels region is implementation defined (see 
Section 3.2.15 on page 134).

• OMP_SCHEDULE environment variable: if the value of the variable does not 
conform to the specified format then the result is implementation defined (see 
Section 4.1 on page 154).

• OMP_NUM_THREADS environment variable: if any value of the list specified in the 
OMP_NUM_THREADS environment variable leads to a number of threads that is 
greater than the implementation can support, or if any value is not a positive integer, 
then the result is implementation defined (see Section 4.2 on page 155).

• OMP_PROC_BIND environment variable: if the value is neither true nor false the 
behavior is implementation defined (see Section 4.4 on page 156).

• OMP_DYNAMIC environment variable: if the value is neither true nor false the 
behavior is implementation defined (see Section 4.3 on page 156).

• OMP_NESTED environment variable: if the value is neither true nor false the 
behavior is implementation defined (see Section 4.5 on page 157).

• OMP_STACKSIZE environment variable: if the value does not conform to the 
specified format or the implementation cannot provide a stack of the specified size 
then the behavior is implementation defined (see Section 4.6 on page 157).

• OMP_WAIT_POLICY environment variable: the details of the ACTIVE and 
PASSIVE behaviors are implementation defined (see Section 4.7 on page 158).

• OMP_MAX_ACTIVE_LEVELS environment variable: if the value is not a non-
negative integer or is greater than the number of parallel levels an implementation 
can support then the behavior is implementation defined (see Section 4.8 on page 
159).
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• OMP_THREAD_LIMIT environment variable: if the requested value is greater than 
the number of threads an implementation can support, or if the value is not a positive 
integer, the behavior of the program is implementation defined (see Section 4.9 on 
page 160).

Fortran

• threadprivate directive: if the conditions for values of data in the threadprivate 
objects of threads (other than the initial thread) to persist between two consecutive 
active parallel regions do not all hold, the allocation status of an allocatable array in 
the second region is implementation defined (see Section 2.9.2 on page 88).

• shared clause: passing a shared variable to a non-intrinsic procedure may result in 
the value of the shared variable being copied into temporary storage before the 
procedure reference, and back out of the temporary storage into the actual argument 
storage after the procedure reference. Situations where this occurs other than those 
specified are implementation defined (see Section 2.9.3.2 on page 94).

• Runtime library definitions: it is implementation defined whether the include file 
omp_lib.h or the module omp_lib (or both) is provided. It is implementation 
defined whether any of the OpenMP runtime library routines that take an argument 
are extended with a generic interface so arguments of different KIND type can be 

Fortran

accommodated (see Section 3.1 on page 114).
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APPENDIX F

Features History

This appendix summarizes the major changes between the OpenMP API Version 2.5 and 
Version 3.0, and between Version 3.0 and Version 3.1.

F.1 Version 3.0 to 3.1 Differences
• The final and mergeable clauses (see Section 2.7.1 on page 61) were added to 

the task construct to support optimization of task data environments.

• The taskyield construct (see Section 2.7.2 on page 64) was added to allow user-
defined task switching points.

• The atomic construct (see Section 2.8.5 on page 73) was extended to include 
read, write, and capture forms, and an update  clause was added to apply 
the already existing form of the atomic  construct.

• Data environment restrictions were changed to allow intent(in)  and const-
qualified types for the firstprivate clause (see Section 2.9.3.4 on page 98).

• Data environment restrictions were changed to allow Fortran pointers in 
firstprivate (see Section 2.9.3.4 on page 98) and lastprivate (see 
Section 2.9.3.5 on page 101).

• New reduction operators min and max were added for C and C++ (see 
Section 2.9.3.6 on page 103 and page 105)

• The nesting restrictions in Section 2.10 on page 111 were clarified to disallow 
closely-nested OpenMP regions within an atomic region. This allows an atomic 
region to be consistently defined with other OpenMP regions so that they include all 
the code in the atomic construct.

• The omp_in_final runtime library routine (see Section 3.2.20 on page 140) was 
added to support specialization of final task regions.
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• The nthreads-var ICV has been modified to be a list of the number of threads to use 
at each nested parallel region level. The value of this ICV is still set with the 
OMP_NUM_THREADS environment variable (see Section 4.2 on page 155), but the 
algorithm for determining the number of threads used in a parallel region has been 
modified to handle a list (see Section 2.4.1 on page 36).

• The bind-var ICV has been added, which controls whether or not threads are bound 
to processors (see Section 2.3.1 on page 28). The value of this ICV can be set with 
the OMP_PROC_BIND environment variable (see Section 4.4 on page 156).

• Descriptions of examples (see Appendix A on page 161) were expanded and clarified.

• Replaced incorrect use of omp_integer_kind in Fortran interfaces (see 
Section D.3 on page 330 and Section D.4 on page 334) with 
selected_int_kind(8). 

F.2 Version 2.5 to 3.0 Differences
The concept of tasks has been added to the OpenMP execution model (see Section 1.2.3 
on page 8 and Section 1.3 on page 12). 

• The task construct (see Section 2.7 on page 61) has been added, which provides a 
mechanism for creating tasks explicitly. 

• The taskwait construct (see Section 2.8.4 on page 72) has been added, which 
causes a task to wait for all its child tasks to complete. 

• The OpenMP memory model now covers atomicity of memory accesses (see 
Section 1.4.1 on page 13). The description of the behavior of volatile in terms of 
flush was removed.

• In Version 2.5, there was a single copy of the nest-var, dyn-var, nthreads-var and 
run-sched-var internal control variables (ICVs) for the whole program. In Version 
3.0, there is one copy of these ICVs per task (see Section 2.3 on page 28). As a result, 
the omp_set_num_threads, omp_set_nested and omp_set_dynamic 
runtime library routines now have specified effects when called from inside a 
parallel region (see Section 3.2.1 on page 116, Section 3.2.7 on page 123 and 
Section 3.2.9 on page 125). 

• The definition of active parallel region has been changed: in Version 3.0 a 
parallel region is active if it is executed by a team consisting of more than one 
thread (see Section 1.2.2 on page 2). 

• The rules for determining the number of threads used in a parallel region have 
been modified (see Section 2.4.1 on page 36). 

• In Version 3.0, the assignment of iterations to threads in a loop construct with a 
static schedule kind is deterministic (see Section 2.5.1 on page 39). 
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• In Version 3.0, a loop construct may be associated with more than one perfectly 
nested loop. The number of associated loops may be controlled by the collapse 
clause (see Section 2.5.1 on page 39). 

• Random access iterators, and variables of unsigned integer type, may now be used as 
loop iterators in loops associated with a loop construct (see Section 2.5.1 on page 39). 

• The schedule kind auto has been added, which gives the implementation the 
freedom to choose any possible mapping of iterations in a loop construct to threads in 
the team (see Section 2.5.1 on page 39).

• Fortran assumed-size arrays now have predetermined data-sharing attributes (see 
Section 2.9.1.1 on page 84).

• In Fortran, firstprivate is now permitted as an argument to the default 
clause (see Section 2.9.3.1 on page 93).

• For list items in the private clause, implementations are no longer permitted to use 
the storage of the original list item to hold the new list item on the master thread. If 
no attempt is made to reference the original list item inside the parallel region, its 
value is well defined on exit from the parallel region (see Section 2.9.3.3 on page 
96).

• In Version 3.0, Fortran allocatable arrays may appear in private, 
firstprivate, lastprivate, reduction, copyin and copyprivate 
clauses. (see Section 2.9.2 on page 88, Section 2.9.3.3 on page 96, Section 2.9.3.4 on 
page 98, Section 2.9.3.5 on page 101, Section 2.9.3.6 on page 103, Section 2.9.4.1 on 
page 107 and Section 2.9.4.2 on page 109). 

• In Version 3.0, static class members variables may appear in a threadprivate 
directive (see Section 2.9.2 on page 88). 

• Version 3.0 makes clear where, and with which arguments, constructors and 
destructors of private and threadprivate class type variables are called (see 
Section 2.9.2 on page 88, Section 2.9.3.3 on page 96, Section 2.9.3.4 on page 98, 
Section 2.9.4.1 on page 107 and Section 2.9.4.2 on page 109)

• The runtime library routines omp_set_schedule and omp_get_schedule 
have been added; these routines respectively set and retrieve the value of the 
run-sched-var ICV (see Section 3.2.11 on page 128 and Section 3.2.12 on page 130).

• The thread-limit-var ICV has been added, which controls the maximum number of 
threads participating in the OpenMP program. The value of this ICV can be set with 
the OMP_THREAD_LIMIT environment variable and retrieved with the 
omp_get_thread_limit runtime library routine (see Section 2.3.1 on page 28, 
Section 3.2.13 on page 131 and Section 4.9 on page 160).

• The max-active-levels-var ICV has been added, which controls the number of nested 
active parallel regions. The value of this ICV can be set with the 
OMP_MAX_ACTIVE_LEVELS environment variable and the 
omp_set_max_active_levels runtime library routine, and it can be retrieved 
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with the omp_get_max_active_levels runtime library routine (see 
Section 2.3.1 on page 28, Section 3.2.14 on page 132, Section 3.2.15 on page 134 and 
Section 4.8 on page 159).

• The stacksize-var ICV has been added, which controls the stack size for threads that 
the OpenMP implementation creates. The value of this ICV can be set with the 
OMP_STACKSIZE environment variable (see Section 2.3.1 on page 28 and 
Section 4.6 on page 157).

• The wait-policy-var ICV has been added, which controls the desired behavior of 
waiting threads. The value of this ICV can be set with the OMP_WAIT_POLICY 
environment variable (see Section 2.3.1 on page 28 and Section 4.7 on page 158).

• The omp_get_level runtime library routine has been added, which returns the 
number of nested parallel regions enclosing the task that contains the call (see 
Section 3.2.16 on page 135). 

• The omp_get_ancestor_thread_num runtime library routine has been added, 
which returns, for a given nested level of the current thread, the thread number of the 
ancestor (see Section 3.2.17 on page 136).

• The omp_get_team_size runtime library routine has been added, which returns, 
for a given nested level of the current thread, the size of the thread team to which the 
ancestor belongs (see Section 3.2.18 on page 137).

• The omp_get_active_level runtime library routine has been added, which 
returns the number of nested, active parallel regions enclosing the task that 
contains the call (see Section 3.2.19 on page 139).

• In Version 3.0, locks are owned by tasks, not by threads (see Section 3.3 on page 
141). 
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