
Sangmin	Seo

Assistant	Computer	Scientist
Argonne	National	Laboratory

sseo@anl.gov

November	15,	2016

BOLT
OpenMP over Lightweight Threads

http://www.bolt-omp.org

OpenMP

• Directive	based	programming	model
• Commonly	used	for	shared-memory	programming	in	a	node
• Many	different	implementations

– Typically	on	top	of	Pthreads	library
– Intel,	GCC,	Clang,	IBM,	etc.

Sequential	code
for (i = 0; i < N; i++) {

do_something();
}

OpenMP	code
#pragma omp parallel for
for (i = 0; i < N; i++) {

do_something();
}

zz

zzzz

2

Nested Parallel Loop: Microbenchmark

A	thread	for	each	CPU	is	created
by	default

Each	thread	executes	a	portion

Each	thread	creates	more	threads
for	the	second	loop

Each	inner	thread	executes	a	portion

int in[1000][1000], out[1000][1000];

#pragma omp parallel for

for (i = 0; i < 1000; i++) {

lib_compute(i);

}

lib_compute(int x)

{

#pragma omp parallel for

for (j = 0; j < 1000; j++)

out[x][j] = compute(in[x][j]);

}

Contribution:	Adrian	Castello	(Universitat Jaume I)

3

0.00

0.01

0.10

1.00

10.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Ti
m
e	
(s
)

#	OMP	Threads	|	Argobots	ULTs/tasks	(inner	loop)

ICC/Pthreads ICC/Argobots	ULTs ICC/Argobots	tasks

0.00

0.01

0.10

1.00

10.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Ti
m
e	
(s
)

#	OMP	Threads	|	Argobots	ULTs/tasks	(inner	loop)

GCC/Pthreads GCC/Argobots	ULTs GCC/Argobots	tasks

Nested Parallel Loop: Performance

GCC	OpenMP	implementation	does	not	
reuse	idle	threads	in	nested	parallel	
regions,	all	the	teams	of	threads	need	to	
be	created	in	each	iteration

Execution	time	for	36	threads	in	the	outer	loop

Some	overhead	is	added	by	creating	
ULTs	instead	of	tasks

Lower	is	
better

Lower	is	
better

4

BOLT: A Lightning-Fast OpenMP Implementation

• About	BOLT
– BOLT	is	a	recursive	acronym	that	stands	for	

"BOLT	is	OpenMP over	Lightweight	Threads"
– http://www.bolt-omp.org

• Objective
– OpenMP framework	that	exploits	lightweight	threads	and	tasks

Improved	Nested	Massive	Parallelism

Enhanced	Fine-Grained	Task	Parallelism

Better	Interoperability	with	MPI	and	
Other	Internode	Programming	Models

5

Approach & Development

• Basic	approach
– Compiler	simply	generates	runtime	API	calls,	while	the	runtime	

creates	ULTs/tasklets and	manages	them	over	a	fixed	set	of	
computational	resources

– Use	Argobots as	the	underlying	threading	and	tasking	mechanism
– ABI	compatibility	with	Intel	OpenMP compilers,	LLVM/Clang,	and	GCC	

(i.e.,	can	be	used	with	these	compilers)
• Development

– Runtime
• Based	on	Intel	OpenMP Runtime	API
• Generates	Argobots	work	units	from	OpenMP pragmas
• Can	generate	ULTs	or	tasklets depending	on	code	characteristics

– Compiler	(planned)
• LLVM/Clang
• Passes	characteristics	of	parallel	region	or	task	(e.g.,	existence	of	blocking	

calls)	to	the	runtime
• Extends	pragmas	with	the	option	“nonblocking”

6

Argobots

Overview
• Separation	of	mechanisms	and	policies
• Massive	parallelism

– Exec.	Streams guarantee	progress
– Work	Units execute	to	completion

• User-level	threads	(ULTs)	vs.	Tasklets
• Clearly	defined	memory	semantics

– Consistency	domains
• Provide	Eventual	Consistency

– Software	can	manage	consistency

Argobots	Innovations
• Enabling	technology,	but	not	a	policy	maker

– High-level	languages/libraries	such	as	
OpenMP	or	Charm++	have	more	
information	about	the	user	application	
(data	locality,	dependencies)

• Explicit	model:	
– Enables	dynamism,	but	always	managed	

by	high-level	systems

Argobots

coreProcessor

Programming Models
(MPI, OpenMP, Charm++, PaRSEC, …)

U User-Level Thread T TaskletLightweight
Work Units

Ex
ec

ut
io

n
St

re
am

Private pool Private poolShared pool

U U

U T

TTU TU

Ex
ec

ut
io

n
St

re
am

Ex
ec

ut
io

n
St

re
am

A	lightweight	low-level	threading	and	tasking	framework
(http://www.argobots.org)

7

*	Current	team	members:	Pavan	Balaji,	Sangmin	Seo,	Halim Amer (ANL),	L.	Kale,	Nitin	Bhat,	Prateek Jindal	(UIUC)

BOLT Execution Model

• OpenMP threads	and	tasks	are	translated	into	Argobots	work	units	
(i.e.,	ULTs	and	tasklets)

• Shared	pools	are	utilized	to	handle	nested	parallelism
• A	customized	Argobots	scheduler	manages	scheduling	of	work	units	

across	execution	streams

T TU T

OpenMP

Argobots

U

ULT

T

Tasklet

#pragma	omp parallel #pragma	omp task

U U

Execution
Stream

CPU	core

Private
Pool

U TU T U
Shared
Pool

CPU

OpenMP
threads

OpenMP
tasks

8

OpenMP Pragma Translation

1. A	set	of	N threads	is	created	at	run	time
– If	they	have	not	been	created	yet
– Commonly	as	many	as	the	number	of	CPU	cores

2. The	number	of	iterations	is	divided	between	all	the	threads
3. A	synchronization	point	is	added	after	the	for	loop

– Implicit	barrier	at	the	end	of	parallel	for

#pragma omp parallel for (1,2)
for (i = 0; i < N; i++) {

do_something();
} (3)

9

OpenMP Compiler & BOLT Runtime

__kmpc_fork_call(…){

}

__kmp_fork_call(…)

__kmp_join_call(…)

Intel	OpenMP	Runtime	API

• Create	Execution	Streams	(if	needed)
• Add	a	ULT	or	tasklet	to	each	ES
• Launch	the	work

• Join work	units	created

BOLT	runtime

#pragma	omp	parallel
Clang	and	Intel	compiler

10

parallel for

#pragma omp parallel for
for (i = 0; i < N; i++) {

do_something();
}

Creates	threads

Divides	all	iterations	among	threads

Synchronization	point

ES	0

ES	1

ES	K

…

WU

WU

WU

Each	work	unit	executes	
a	portion	of	the	for	loop

Implementation	using	Argobots

S

S

S

A	synchronization	point	is	added

One	Execution	Stream
for	each	CPU core
(or	hardware	thread)

11

Prototype Implementation of BOLT Runtime

• Based	on	Intel’s	open-source	OpenMP runtime
– http://openmp.llvm.org/

• Kept	the	original	runtime	API	for	the	ABI	compatibility
• Designed	and	implemented	the	threading	layer	using	

Argobots and	modified	the	runtime	internal	layer

Threading	Layer

Pthreads

Runtime	API	Layer

Runtime	Internal	Layer

Argobots

12

How to use BOLT?
Co

m
pi
le
rs

Ru
nt
im

es
Th

re
ad

s

BOLT

Argobots

GCC

GOMPIntel	OpenMP
runtime

Pthreads

Two	ways	to	use	BOLT
1. Compile	your	code	with	LLVM/Clang,	Intel compiler,	or	GCC	while	linking	BOLT
2. LD_PRELOAD=<bolt_installation_path>/lib/libomp.so (no	recompilation	needed)

LLVM/Clang Intel	Compiler

13

OpenUH OpenMP Validation Suite 3.1

GCC 6.1 ICC	17.0.0 +	
Intel	OpenMP

ICC 17.0.0	+	
BOLT	(Argobots)

LLVM/clang 3.9	+	
BOLT	(Argobots)

#	of	tested	OpenMP
constructs 62 62 62 62

#	of	used	tests 123 123 123 123

#	of	successful tests 118 118 122 112

#	of	failed	tests 5 5 1 1

Pass	rate	(%) 95.9 95.9 99.2 99.2

• The	BOLT	prototype	functionally	works	well!

14

Nested Parallel Loop Microbenchmark

*	The	number	of	threads	for	the	outer	loop	was	fixed	at	36.

10

100

1000

10000

100000

1000000

10000000

100000000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Ex
ec
ut
io
n	
Ti
m
e	
(u
s)

#	 of	Threads	for	the	Inner	Loop

GCC+GOMP ICC+IntelOMP ICC+BOLT	(ULT)
ICC+BOLT	(ULT+tasklet) ICC+Argobots	(ULT)

15

Lower	is	better

Application Study: KIFMM

• Kernel-Independent	Fast	Multipole	Method	(KIFMM)
– Offload	dgemv operations	to	Intel	MKL

• Evaluated	the	efficiency	of	the	nested	parallelism	support	in	Intel	OpenMP
and	BOLT	during	the	Downward	stage
– 9	threads	for	the	application	(outer	parallel	region)

0

2

4

6

8

10

12

14

1 2 4 8

Ex
ec
ut
io
n	
Ti
m
e	
(s
)

#	of	Threads	for	Intel	MKL

IntelOMP:core-close IntelOMP:core-true IntelOMP:no-binding BOLT

16

oversubscription

Lower	is	better

Application Study: ACME mini-app

• ACME	(Accelerated	Climate	Modeling	for	Energy)
– Implementing	additional	levels	of	parallelism	through	OpenMP

nested	parallel	loops	for	upcoming	many-core	machines
• Preliminary	results	of	testing	the	transport_semini-app	version	

of	HOMME	(ACME’s	CAM-SE	dycore)

0%

20%

40%

60%

80%

100%

120%

H=16,	V=1 H=8,	V=2 H=4,	V=4 H=4,	V=8 H=8,	V=4

N
or
m
al
ize

d	
Ex
ec
ut
io
n	
Ti
m
e	
(%

)

ACME	mini-app	(transport_se)

ICC	+	Intel	OpenMP	(15.0.0) ICC	+	BOLT	(Argobots)

Lower	is	better
(up	to	3.16x	

faster)

oversubscription
17

Summary

• BOLT:	OpenMP over	Lightweight	Threads
– More	efficient	support	of	nested	parallelism	with	Argobots	
ULTs	and	tasklets

– Preliminary	results	show	that	BOLT	is	promising
– BOLT	1.0a1	pre-release	is	available	at	
http://www.bolt-omp.org

• Argobots
– A	lightweight	low-level	threading/tasking	framework
– Provides	efficient	mechanisms,	not	policies,	to	users	
(library	developers	or	compilers)

• They	can	build	their	own	solutions

18

BOLT Team

• Maintainers
– Argonne	National	Laboratory

• Sangmin Seo
• Abdelhalim Amer
• Pavan Balaji

• Contributors
– Universitat Jaume I	de	Castelló

• Adrián Castelló
• Rafael	Mayo
• Enrique	S.	Quintana-Ortí

– Barcelona	Supercomputing	Center	(BSC)
• Antonio	J.	Peña
• Jesus	Labarta

– RIKEN
• Jinpil Lee
• Mitsuhisa Sato

19

Argobots Team

• Argonne	National	Laboratory	(ANL)
– Pavan Balaji (co-lead)
– Sangmin	Seo
– Abdelhalim Amer
– Pete	Beckman	(PI)

• University	of	Illinois	at	Urbana-Champaign	(UIUC)
– Laxmikant Kale	(co-lead)
– Marc	Snir
– Nitin	Kundapur Bhat

• University	of	Tennessee,	Knoxville	(UTK)
– George	Bosilca
– Thomas	Herault
– Damien	Genet

• Pacific	Northwest	National	Laboratory	(PNNL)
– Sriram Krishnamoorthy

Past	Team	Members:
• Cyril	Bordage (UIUC)
• Prateek Jindal	(UIUC)
• Jonathan	Lifflander (UIUC)
• Esteban	Meneses

(University	of	Pittsburgh)
• Huiwei Lu	(ANL)
• Yanhua Sun	(UIUC)

20

Try BOLT & Argobots

• BOLT
– Pre-release	1.0a1	is	available
– http://www.bolt-omp.org
– git repository

• https://github.com/pmodels/bolt

• Argobots
– Pre-release	1.0a1	is	available
– http://www.argobots.org
– git repository

• https://github.com/pmodels/argobots

21

Funding Acknowledgments
Funding	Grant	Providers

Infrastructure	Providers

Programming Models and Runtime Systems Group
Group	Lead
– Pavan	Balaji	(computer	scientist	and	group	

lead)

Current	Staff	Members
– Abdelhalim Amer (postdoc)
– Yanfei Guo (postdoc)
– Rob	Latham	(developer)
– Lena	Oden	(postdoc)
– Ken	Raffenetti (developer)
– Sangmin Seo (assistant	computer	scientist)
– Min	Si	(postdoc)

Past	Staff	Members
– Antonio	Pena	(postdoc)
– Wesley	Bland	(postdoc)
– Darius	T.	Buntinas (developer)
– James	S.	Dinan (postdoc)
– David	J.	Goodell (developer)
– Huiwei Lu	(postdoc)
– Min	Tian	(visiting	scholar)
– Yanjie Wei	(visiting	scholar)
– Yuqing Xiong (visiting	scholar)
– Jian	Yu	(visiting	scholar)
– Junchao Zhang	(postdoc)
– Xiaomin Zhu	(visiting	scholar)

– Ashwin Aji (Ph.D.)
– Abdelhalim Amer (Ph.D.)
– Md.	Humayun Arafat	(Ph.D.)
– Alex	Brooks	(Ph.D.)
– Adrian	Castello (Ph.D.)
– Dazhao Cheng	(Ph.D.)
– Hoang-Vu	Dang	(Ph.D.)
– James	S.	Dinan (Ph.D.)
– Piotr Fidkowski (Ph.D.)
– Priyanka	Ghosh	(Ph.D.)
– Sayan Ghosh (Ph.D.)
– Ralf	Gunter	(B.S.)
– Jichi Guo (Ph.D.)
– Yanfei Guo (Ph.D.)
– Marius	Horga (M.S.)
– John	Jenkins	(Ph.D.)
– Feng Ji (Ph.D.)
– Ping	Lai	(Ph.D.)
– Palden Lama	(Ph.D.)
– Yan	Li	(Ph.D.)
– Huiwei Lu	(Ph.D.)
– Jintao	Meng (Ph.D.)
– Ganesh	Narayanaswamy (M.S.)
– Qingpeng Niu (Ph.D.)
– Ziaul Haque Olive	(Ph.D.)

– David	Ozog (Ph.D.)
– Renbo Pang	(Ph.D.)
– Nikela Papadopoulou (Ph.D)
– Sreeram Potluri (Ph.D.)
– Sarunya Pumma (Ph.D)
– Li	Rao (M.S.)
– Gopal Santhanaraman (Ph.D.)
– Thomas	Scogland (Ph.D.)
– Min	Si	(Ph.D.)
– Brian	Skjerven (Ph.D.)
– Rajesh	Sudarsan (Ph.D.)
– Lukasz	Wesolowski (Ph.D.)
– Shucai Xiao	(Ph.D.)
– Chaoran Yang	(Ph.D.)
– Boyu Zhang	(Ph.D.)
– Xiuxia Zhang	(Ph.D.)
– Xin	Zhao	(Ph.D.)

Advisory Board
– Pete	Beckman	(senior	scientist)
– Rusty	Lusk	(retired,	STA)
– Marc	Snir (division	director)
– Rajeev	Thakur	(deputy	director)

Current	and	Recent	Students

Q&A

• Thank	you	for	your	attention!

Questions?

24

