Details

Operators legally allowed in a reduction

Operator Initialization value

+ 0

* 1

- 0
& ~0

\ 0

A 0

&& 1

I 0

Schedule types for the loop construct

static

dynamic

guided

auto

runtime

Iterations are divided into chunks of size chunk size, and
the chunks are assigned to the threads in the team in a
round-robin fashion in the order of the thread number.

Each thread executes a chunk of iterations, then requests
another chunk, until no chunks remain to be distributed.

Each thread executes a chunk of iterations, then requests
another chunk, until no chunks remain to be assigned.
The chunk sizes start large and shrink to the indicated
chunk_size as chunks are scheduled.

The decision regarding scheduling is delegated to the
compiler and/or runtime system.

The schedule and chunk size are taken from the
run-sched-var ICV.

Copyright © 1997-2008 OpenMP Architecture Review Board. Permission to
copy without fee all or part of this material is granted, provided the OpenMP
Architecture Review Board copyright notice and the title of this document

appear. Notice is given that copying is by permission of the OpenMP

Architecture Review Board. Products or publications based on one or more of
the OpenMP specifications must acknowledge the copyright by displaying the
following statement: “OpenMP is a trademark of the OpenMP Architecture
Review Board. Portions of this product/publication may have been derived from

the OpenMP Language Application Program Interface Specification.”

Rev 1108-001

8



Runtime Library Routines

Execution environment routines affect and monitor threads,
processors, and the parallel environment. Lock routines support
synchronization with OpenMP locks. Timing routines support

a portable wall clock timer. Prototypes for the runtime library
routines are defined in the file “omp.h”.

Execution Environment Routines

void omp_set num threads (int num_threads) ;
Affects the number of threads used for subsequent parallel
regions that do not specify a num_threads clause.

int omp_get num_threads(void);
Returns the number of threads in the current team.

int omp_get max_ threads(void);
Returns maximum number of threads that could be used to form a new
team using a “parallel” construct without a “num_threads” clause.

int omp_get_ thread num(void);
Returns the ID of the encountering thread where ID ranges from zero
to the size of the team minus 1.

int omp_get num procs(void);
Returns the number of processors available to the program.

int omp_in parallel (void);
Returns true if the call to the routine is enclosed by an active
parallel region; otherwise, it returns false.

void omp_set dynamic (int dynamic_threads) ;
Enables or disables dynamic adjustment of the number of threads
available.

int omp_get_dynamic(void);
Returns the value of the dyn-var internal control variable (ICV),
determining whether dynamic adjustment of the number of threads is
enabled or disabled.

void omp_set nested(int nested) ;
Enables or disables nested parallelism, by setting the nest-var ICV.

int omp_get nested(void);
Returns the value of the nest-var ICV, which determines if nested
parallelism is enabled or disabled.

void omp_set schedule (omp_sched t kind, int modifier) ;

Affects the schedule that is applied when runtime is used as
schedule kind, by setting the value of the run-sched-var ICV.

void omp_get schedule (omp_sched t *kind,
int *modifier) ;
Returns the schedule applied when runtime schedule is used.

5



