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CHAPTER 1

Introduction

This document specifies a collection of compiler directives, library routines, and

environment variables that can be used to specify shared-memory parallelism in C, C++

and Fortran programs. This functionality collectively defines the specification of the

OpenMP Application Program Interface (OpenMP API). This specification provides a

model for parallel programming that is portable across shared memory architectures

from different vendors. Compilers from numerous vendors support the OpenMP API.

More information about OpenMP can be found at the following web site:

http://www.openmp.org

The directives, library routines, and environment variables defined in this document

allow users to create and manage parallel programs while permitting portability. The

directives extend the C, C++ and Fortran base languages with single program multiple

data (SPMD) constructs, work-sharing constructs, and synchronization constructs, and

they provide support for the sharing and privatization of data. The functionality to

control the runtime environment is provided by library routines and environment

variables. Compilers that support the OpenMP API often include a command line option

to the compiler that activates and allows interpretation of all OpenMP directives.

1.1 Scope
The OpenMP API covers only user-directed parallelization, wherein the user explicitly

specifies the actions to be taken by the compiler and runtime system in order to execute

the program in parallel. OpenMP-compliant implementations are not required to check

for dependencies, conflicts, deadlocks, race conditions, or other problems that result

from non-conforming programs. The user is responsible for using OpenMP in his

application to produce a conforming program. OpenMP does not cover compiler-

generated automatic parallelization and directives to the compiler to assist such

parallelization.
1
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1.2 Glossary

1.2.1 Threading Concepts

thread An execution entity having a serial flow of control and an associated stack.

thread-safe routine A routine that performs the intended function even when executed

concurrently (by more than one thread).

1.2.2 OpenMP language terminology

base language A programming language that serves as the foundation of the OpenMP

specification.

COMMENT: Current base languages for OpenMP are C90, C99, C++,

Fortran 77, Fortran 90, and Fortran 95.

original program A program written in a base language.

structured block For C/C++, an executable statement, possibly compound, with a single entry

at the top and a single exit at the bottom.

For Fortran, a block of executable statements with a single entry at the top and

a single exit at the bottom.

COMMENTS:

For both languages, the point of entry cannot be a labeled statement

and the point of exit cannot be a branch of any type.

For C/C++:

• The point of entry cannot be a call to setjmp() .

• longjmp() and throw() must not violate the entry/exit criteria.

• Calls to exit() are allowed in a structured block.

• An expression statement, iteration statement, selection statement,

or try block is considered to be a structured block if the

corresponding compound statement obtained by enclosing it in {
and } would be a structured block.
2 OpenMP API • Version 2.5  May 2005
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For Fortran:

• STOPstatements are allowed in a structured block.

OpenMP directive In C/C++, a #pragma and in Fortran, a comment, that specifies OpenMP

program behavior.

COMMENT: See Section 2.1 on page 18 for a description of OpenMP

directive syntax.

white space A non-empty sequence of space and/or horizontal tab characters.

OpenMP program A program that consists of an original program, annotated with OpenMP
directives.

declarative directive An OpenMP directive that may only be placed in a declarative context. A

declarative directive has no associated executable user code, but instead has

one or more associated user declarations.

COMMENT: Only the threadprivate directive is a declarative directive.

executable directive An OpenMP directive that is not declarative, i.e., it may be placed in an

executable context.

COMMENT: All directives except the threadprivate directive are

executable directives.

standalone directive An OpenMP executable directive that has no associated executable user code.

COMMENT: Only the barrier and flush directives are standalone
directives.

simple directive An OpenMP executable directive whose associated user code must be a

simple (single, non-compound) executable statement.

COMMENT: Only the atomic directive is a simple directive.

loop directive An OpenMP executable directive whose associated user code must be a loop

that is a structured block.

COMMENTS:

For C/C++, only the for directive is a loop directive.

For Fortran, only the do directive and the optional end do directive
are loop directives.
Chapter 1 Introduction 3
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structured directive An OpenMP executable directive that is neither a standalone directive, a

simple directive nor a loop directive.

For C/C++, all structured directives have associated user code that is the

following structured block.

For Fortran, all structured directives are paired with an associated end
directive except section , whose end is marked either by the next section
or by the end sections . These structured directives bracket the associated

user code that forms a structured block.

construct An OpenMP executable directive (and for Fortran, the paired end directive, if

any) and the associated statement, loop or structured block, if any, not

including the code in any called routines, i.e., the lexical extent of an

executable directive.

region All code encountered during a specific instance of the execution of a given

construct or OpenMP library routine. A region includes any code in called

routines as well as any implicit code introduced by the OpenMP

implementation.

COMMENTS:

A region may also be thought of as the dynamic or runtime extent of a

construct or OpenMP library routine.

During the execution of an OpenMP program, a construct may give

rise to many regions.

sequential part All code encountered during the execution of an OpenMP program that is not

enclosed by a parallel region corresponding to an explicit parallel
construct.

COMMENTS:

The sequential part executes as if it were enclosed by an inactive
parallel region called the implicit parallel region.

Executable statements in called routines may be in both the sequential
part and any number of explicit parallel regions at different points

in the program execution.

nested construct A construct (lexically) enclosed by another construct.

nested region A region (dynamically) enclosed by another region, i.e., a region executed in

its entirety during another region.

COMMENT: Some nestings are conforming and some are not. See Section 2.9

on page 87 for the rules specifying the conforming nestings.
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closely nested region A region nested inside another region with no parallel region nested
between them.

binding thread set The set of threads that are affected by, or provide the context for, the

execution of a region.

The binding thread set for a given region can be one of the following:

• all threads - all threads participating in the OpenMP program.

• current team - all the threads in the team executing the innermost enclosing

parallel region.

• encountering thread - the thread whose execution encountered the

construct giving rise to the region.

COMMENTS:

• The binding thread set for critical and atomic regions is all

threads.

• The binding thread set for parallel and flush regions is the

encountering thread.

• The binding thread set for all other regions arising from a construct
is the current team.

• The binding thread set for the OpenMP library routines

omp_get_num_threads and omp_get_thread_num is the

current team.

• The binding thread set for the OpenMP library routines

omp_set_num_threads , omp_get_max_threads ,

omp_set_nested , omp_get_nested , omp_set_dynamic ,

omp_get_dynamic , omp_get_wtime and omp_get_wtick
is the encountering thread.

• The binding thread set for all other OpenMP library routines is all

threads.
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binding region For a region whose binding thread set is the current team, the enclosing region
that determines the execution context and limits the scope of the effects of the

bound region.

Binding region is not defined for regions whose binding thread set is all

threads or the encountering thread.

COMMENTS:

The binding region for an ordered region is the innermost enclosing

loop region.

For all other regions with whose binding thread set is the current team,

the binding region is the innermost enclosing parallel region.

When such a region is encountered outside of any explicit parallel
region, the binding region is the implicit parallel region enclosing

the sequential part.

A parallel region need not be active to be a binding region.

A region never binds to any region outside of the innermost enclosing

parallel region.

orphaned construct A construct that gives rise to a region whose binding thread set is the current

team, but that is not nested within another construct giving rise to the binding
region.

worksharing
construct A construct that defines units of work, each of which is executed exactly once

by a thread in the team executing the construct.

For C, worksharing constructs are for , sections , and single .

For Fortran, worksharing constructs are do , sections , single and

workshare .

active parallel region A parallel region whose if clause evaluates to true.

COMMENT: A missing if clause is equivalent to an if clause that evaluates

to true.

inactive parallel
region A parallel region that is not an active parallel region, i.e., a serialized

parallel region.

An inactive parallel region is always executed by a team of only one thread.

implicit parallel
region The inactive parallel region that encloses the sequential part of an OpenMP

program.
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initial thread The thread that executes the sequential part.

master thread A thread that encounters (the start of) a parallel region and creates a team.

team A set of one or more threads participating in the execution of a parallel
region.

For an active parallel region, the team comprises the master thread and

additional threads that may be launched.

For an inactive parallel region, the team only includes the master thread.

barrier A point in the execution of a program encountered by a team, beyond which

no thread in the team may execute until all threads in the team have reached

that point.

1.2.3 Data Terminology

variable A named data object, whose value can be defined and redefined during the

execution of a program.

Only an object that is not part of another object is considered a variable. For

example, array elements, structure components, array sections and substrings

are not considered variables.

private variable A variable whose name provides access to a different block of storage for

each thread in a team.

shared variable A variable whose name provides access to the same block of storage for all

threads in a team.

global-lifetime
memory Memory locations that persist during the entire execution of the original

program, according to the base language specification.

threadprivate
memory Global-lifetime memory locations that are replicated, one per thread, by the

OpenMP implementation.
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defined For variables, the property of having a valid value.

For C:

For the contents of variables, the property of having a valid value.

For C++:

For the contents of variables of POD (plain old data) type, the property of

having a valid value.

For variables of non-POD class type, the property of having been constructed

but not subsequently destructed.

For Fortran:

For the contents of variables, the property of having a valid value. For the

allocation or association status of variables, the property of having a valid

status.

COMMENT: Programs that rely upon variables that are not defined are non-
conforming programs.

1.2.4 Implementation Terminology

supporting n levels of
parallelism Implies allowing an active parallel region to be enclosed by n-1 active

parallel regions, where the team associated with each active parallel region
has more than one thread.

supporting OpenMP Supporting at least one level of parallelism.

supporting nested
parallelism Supporting more than one level of parallelism.

conforming program An OpenMP program that follows all the rules and restrictions of the OpenMP

specification.

compliant
implementation An implementation of the OpenMP specification that compiles and executes

any conforming program as defined by the specification.

COMMENT: A compliant implementation may exhibit unspecified behavior
when compiling or executing a non-conforming program.
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unspecified behavior A behavior or result that is not specified by the OpenMP specification or not

known prior to the compilation or execution of an OpenMP program.

Such unspecified behavior may result from:

• Issues documented by the OpenMP specification as having unspecified
behavior.

• A non-conforming program.

• A conforming program exhibiting an implementation defined behavior.

implementation
defined Behavior that is allowed to vary among different compliant implementations,

but must be documented by the implementation. An implementation is

allowed to define this behavior as unspecified.

COMMENT: All such features are documented in Appendix E.

1.3 Execution Model
The OpenMP API uses the fork-join model of parallel execution. Although this fork-join

model can be useful for solving a variety of problems, it is somewhat tailored for large

array-based applications. OpenMP is intended to support programs that will execute

correctly both as parallel programs (multiple threads of execution and a full OpenMP

support library) and as sequential programs (directives ignored and a simple OpenMP

stubs library). However, it is possible and permitted to develop a program that executes

correctly as a parallel program but not as a sequential program, or that produces

different results when executed as a parallel program, compared to when it is executed

as a sequential program. Furthermore, using different numbers of threads may result in

different numeric results because of changes in the association of numeric operations.

For example, a serial addition reduction may have a different pattern of addition

associations than a parallel reduction. These different associations may change the

results of floating-point addition.

An OpenMP program begins as a single thread of execution, called the initial thread.

The initial thread executes sequentially, as if enclosed in an implicit inactive parallel
region surrounding the whole program.

When any thread encounters a parallel construct, the thread creates a team of itself

and zero or more additional threads and becomes the master of the new team. All

members of the new team execute the code inside the parallel construct. There is an

implicit barrier at the end of the parallel construct. Only the master thread continues

execution of user code beyond the end of the parallel construct. Any number of

parallel constructs can be specified in a single program.
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parallel regions may be arbitrarily nested inside each other. If nested parallelism is

disabled, or is not supported by the OpenMP implementation, then the new team that is

created by a thread encountering a parallel construct inside a parallel region

will consist only of the encountering thread. However, if nested parallelism is supported

and enabled, then the new team can consist of more than one thread.

When any team encounters a work-sharing construct, the work inside the construct is

divided among the members of the team and executed co-operatively instead of being

executed by every thread. There is an optional barrier at the end of work-sharing

constructs. Execution of code by every thread in the team resumes after the end of the

work-sharing construct.

Synchronization constructs and library routines are available in OpenMP to co-ordinate

threads and data in parallel and work-sharing constructs. In addition, library

routines and environment variables are available to control or query the runtime

environment of OpenMP programs.

OpenMP makes no guarantee that input or output to the same file is synchronous when

executed in parallel. In this case, the programmer is responsible for synchronizing input

and output statements (or routines) using the provided synchronization constructs or

library routines. For the case where each thread accesses a different file, no

synchronization by the programmer is necessary.

1.4 Memory Model

1.4.1 Structure of the OpenMP Memory Model
OpenMP provides a relaxed-consistency, shared-memory model. All OpenMP threads

have access to a place to store and retrieve variables, called the memory. In addition,

each thread is allowed to have its own temporary view of the memory. The temporary

view of memory for each thread is not a required part of the OpenMP memory model,

but can represent any kind of intervening structure, such as machine registers, cache, or

other local storage, between the thread and the memory. The temporary view of memory

allows the thread to cache variables and thereby avoid going to memory for every

reference to a variable. Each thread also has access to another type of memory that must

not be accessed by other threads, called threadprivate memory.

A parallel directive determines two kinds of access to variables used in the

associated structured block: shared and private. Each variable referenced in the

structured block has an original variable, which is the variable by the same name that
10 OpenMP API • Version 2.5  May 2005
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exists in the program immediately outside the parallel construct. Each reference to a

shared variable in the structured block becomes a reference to the original variable. For

each private variable referenced in the structured block, a new version of the original

variable (of the same type and size) is created in memory for each thread of the team

formed to execute the parallel region associated with the parallel directive,

except possibly for the master thread of the team. References to a private variable in the

structured block refer to the current thread’s private version of the original variable.

If multiple threads write to the same shared variable without synchronization, the

resulting value of the variable in memory is unspecified. If at least one thread reads from

a shared variable and at least one thread writes to it without synchronization, the value

seen by any reading thread is unspecified.

It is implementation defined as to whether, and in what sizes, memory accesses by

multiple threads to the same variable without synchronization are atomic with respect to

each other.

A private variable in an outer parallel region belonging to, or accessible from, a

thread that eventually becomes the master thread of an inner nested parallel region,

is permitted to be accessed by any of the threads of the team executing the inner

parallel region, unless the variable is also private with respect to the inner

parallel region. Any other access by one thread to the private variables of another

thread results in unspecified behavior.

1.4.2 The Flush Operation
The memory model has relaxed-consistency because a thread’s temporary view of

memory is not required to be consistent with memory at all times. A value written to a

variable can remain in the thread’s temporary view until it is forced to memory at a later

time. Likewise, a read from a variable may retrieve the value from the thread’s

temporary view, unless it is forced to read from memory. The OpenMP flush operation

enforces consistency between the temporary view and memory.

The flush operation is applied to a set of variables called the flush-set. The flush

operation restricts reordering of memory operations that an implementation might

otherwise do. Implementations must not reorder the code for a memory operation for a

given variable, or the code for a flush operation for the variable, with respect to a flush

operation that refers to the same variable.

If a thread has captured the value of a write in its temporary view of a variable since its

last flush of that variable, then when it executes another flush of the variable, the flush

does not complete until the value of the variable has been written to the variable in

memory. A flush of a variable executed by a thread also causes its temporary view of the

variable to be discarded, so that if its next memory operation for that variable is a read,

then the thread will read from memory and may capture the value in the temporary view.
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When a thread executes a flush, no later memory operation by that thread for a variable

involved in that flush is allowed to start until the flush completes. The completion of a

flush of a set of variables executed by a thread is defined as the point at which all writes

to those variables done by that thread are visible in memory to all other threads and the

temporary view, for that thread, of all variables involved, is discarded.

The flush operation provides a guarantee of consistency between a thread’s temporary

view and memory. Therefore, the flush operation can be used to guarantee that a value

written to a variable by one thread may be read by a second thread. To accomplish this,

the programmer must ensure that the second thread has not written to the variable since

its last flush of the variable, and that the following sequence of events happens in the

specified order:

1. The value is written to the variable by the first thread.

2. The variable is flushed by the first thread.

3. The variable is flushed by the second thread.

4. The value is read from the variable by the second thread.

The volatile keyword in the C and C++ languages specifies a consistency

mechanism that is related to the OpenMP memory consistency mechanism in the

following way: a reference that reads the value of an object with a volatile-qualified type

behaves as if there were a flush operation on that object at the previous sequence point,

while a reference that modifies the value of an object with a volatile-qualified type

behaves as if there were a flush operation on that object at the next sequence point.

1.4.3 OpenMP Memory Consistency
The type of relaxed memory consistency provided by OpenMP is similar to weak
ordering1. OpenMP does not apply restrictions to the reordering of memory operations

executed by a single thread except for those related to a flush operation.

The restrictions in Section 1.4.2 on page 11 on reordering with respect to flush

operations guarantee the following:

• If the intersection of the flush-sets of two flushes performed by two different threads

is non-empty, then the two flushes must be completed as if in some sequential order,

seen by all threads.

1. Weak ordering is described in S. V. Adve and K. Gharachorloo, “Shared Memory Consistency Models: A Tutorial”, IEEE
Computer, 29(12), pp.66-76, December 1996. Weak ordering requires that some memory operations be defined as

synchronization operations and that these be ordered with respect to each other. In the context of OpenMP, two flushes of

the same variable are synchronization operations. The OpenMP memory model is slightly weaker than weak ordering,

however, because flushes whose flush-sets have an empty intersection are not ordered with respect to each other.
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• If the intersection of the flush-sets of two flushes performed by one thread is non-

empty, then the two flushes must appear to be completed in that thread’s program

order.

• If the intersection of the flush-sets of two flushes is empty, the threads can observe

these flushes in any order.

The flush operation can be specified using the flush directive, and is also implied at

various locations in an OpenMP program: see Section 2.7.5 on page 58 for details. For

an example illustrating the memory model, see Section A.2 on page 120.

1.5 OpenMP Compliance
An implementation of the OpenMP API is compliant if and only if it compiles and

executes all conforming programs according to the syntax and semantics laid out in

Chapters 1, 2, 3 and 4. Appendices A, B, C, D, E and F and sections designated as Notes

(see Section 1.7 on page 14) are for information purposes only and are not part of the

specification.

The OpenMP API defines constructs that operate in the context of the base language that

is supported by an implementation. If the base language does not support a language

construct that appears in this document, a compliant OpenMP implementation is not

required to support it, with the exception that for Fortran, the implementation must allow

case insensitivity for directive and API routines names, and must allow identifiers of

more than six characters.

All library, intrinsic and built-in routines provided by the base language must be thread-

safe in a compliant implementation. In addition, the implementation of the base

language must also be thread-safe (e.g., ALLOCATEand DEALLOCATEstatements must

be thread-safe in Fortran). Unsynchronized concurrent use of such routines by different

threads must produce correct results (though not necessarily the same as serial execution

results, as in the case of random number generation routines).

In both Fortran 90 and Fortran 95, variables with explicit initialization have the SAVE
attribute implicitly. This is not the case in Fortran 77. However, a compliant OpenMP

Fortran implementation must give such a variable the SAVEattribute, regardless of the

underlying base language version.

Appendix E lists certain aspects of the OpenMP API that are implementation-defined. A

compliant implementation is required to define and document its behavior for each of

the items in Appendix E.
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1.6 Normative References

• ISO/IEC 9899:1990, Information Technology - Programming Languages - C.

This OpenMP API specification refers to ISO/IEC 9899:1990 as C90.

• ISO/IEC 9899:1999, Information Technology - Programming Languages - C.

This OpenMP API specification refers to ISO/IEC 9899:1999 as C99.

• ISO/IEC 14882:1998, Information Technology - Programming Languages - C++.

This OpenMP API specification refers to ISO/IEC 14882:1998 as C++.

• ISO/IEC 1539:1980, Information Technology - Programming Languages - Fortran.

This OpenMP API specification refers to ISO/IEC 1539:1980 as Fortran 77.

• ISO/IEC 1539:1991, Information Technology - Programming Languages - Fortran.

This OpenMP API specification refers to ISO/IEC 1539:1991 as Fortran 90.

• ISO/IEC 1539-1:1997, Information Technology - Programming Languages - Fortran.

This OpenMP API specification refers to ISO/IEC 1539-1:1997 as Fortran 95.

Where this OpenMP API specification refers to C, C++ or Fortran, reference is made to

the base language supported by the implementation.

1.7 Organization of this document
The remainder of this document is structured as follows:

• Chapter 2: Directives

• Chapter 3: Runtime Library Routines
14 OpenMP API • Version 2.5  May 2005
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• Chapter 4: Environment Variables

• Appendix A: Examples

• Appendix B: Stubs for Runtime Library Routines

• Appendix C: OpenMP C and C++ Grammar

• Appendix D: Interface Declarations

• Appendix E: Implementation Defined Behaviors in OpenMP

• Appendix F: Changes from Version 2.0 to Version 2.5

Some sections of this document only apply to programs written in a certain base

language. Text that applies only to programs whose base language is C or C++ is shown

as follows:

C/C++

C/C++
C/C++ specific text....

Text that applies only to programs whose base language is Fortran is shown as follows:

Fortran

Fortran

Fortran specific text......

Where an entire page consists of, for example, Fortran specific text, a marker is shown

Fortran (cont.)
at the top of the page like this:

Some text is for information only, and is not part of the normative specification. Such

text is designated as a note, like this:

Note – Non-normative text....
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CHAPTER 2

Directives

This chapter describes the syntax and behavior of OpenMP directives, and is divided

into the following sections:

• The language-specific directive format (Section 2.1 on page 18)

• Mechanisms to control conditional compilation (Section 2.2 on page 21)

• Control of OpenMP API internal control variables (Section 2.3 on page 24)

• Details of each OpenMP directive (Section 2.4 on page 26 to Section 2.9 on page 87)

C/C++
In C/C++, OpenMP directives are specified by using the #pragma mechanism provided

C/C++
by the C and C++ standards.

Fortran
In Fortran, OpenMP directives are specified by using special comments that are

identified by unique sentinels. Also, a special comment form is available for conditional

Fortran

compilation.

Compilers can therefore ignore OpenMP directives and conditionally compiled code if

support of OpenMP is not provided or enabled. A compliant implementation must

provide an option or interface that ensures that underlying support of all OpenMP

directives and OpenMP conditional compilation mechanisms is enabled. In the

remainder of this document, the phrase OpenMP compilation is used to mean a

compilation with these OpenMP features enabled.

Fortran

Restrictions

The following restriction applies to all OpenMP directives:
17
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Fortran

• OpenMP directives may not appear in PUREor ELEMENTALprocedures.

2.1 Directive Format
C/C++

OpenMP directives for C/C++ are specified with the pragma preprocessing directive.

The syntax of an OpenMP directive is formally specified by the grammar in

Appendix C, and informally as follows:

Each directive starts with #pragma omp . The remainder of the directive follows the

conventions of the C and C++ standards for compiler directives. In particular, white

space can be used before and after the #, and sometimes white space must be used to

separate the words in a directive. Preprocessing tokens following the #pragma omp
are subject to macro replacement.

Directives are case-sensitive.

An OpenMP directive applies to at most one succeeding statement, which must be a

C/C++
structured block.

Fortran
OpenMP directives for Fortran are specified as follows:

All OpenMP compiler directives must begin with a directive sentinel. The format of a

sentinel differs between fixed and free-form source files, as described in Section 2.1.1 on

page 19 and Section 2.1.2 on page 20.

Directives are case-insensitive. Directives cannot be embedded within continued

statements, and statements cannot be embedded within directives.

In order to simplify the presentation, free form is used for the syntax of OpenMP

Fortran

directives for Fortran in the remainder of this document, except as noted.

#pragma omp directive-name [clause[ [,] clause]...] new-line

sentinel directive-name [clause[[,] clause]...]
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Only one directive-name can be specified per directive (note that this includes combined

directives, see Section 2.6 on page 46). The order in which clauses appear on directives

is not significant. Clauses on directives may be repeated as needed, subject to the

restrictions listed in the description of each clause.

Some data-sharing attribute clauses (Section 2.8.3 on page 70), data copying clauses

(Section 2.8.4 on page 83), the threadprivate directive (Section 2.8.2 on page 66),

and the flush directive (Section 2.7.5 on page 58) accept a list. A list consists of a

comma-separated collection of one or more list items.

C/C++
A list item is a variable name, subject to the restrictions specified in each of the sections

C/C++
describing clauses and directives for which a list appears.

Fortran
A list item is a variable name or common block name (enclosed in slashes), subject to

the restrictions specified in each of the sections describing clauses and directives for

Fortran

which a list appears.

Fortran

2.1.1 Fixed Source Form Directives
The following sentinels are recognized in fixed form source files:

Sentinels must start in column 1 and appear as a single word with no intervening

characters. Fortran fixed form line length, white space, continuation, and column rules

apply to the directive line. Initial directive lines must have a space or zero in column 6,

and continuation directive lines must have a character other than a space or a zero in

column 6.

Comments may appear on the same line as a directive. The exclamation point initiates a

comment when it appears after column 6. The comment extends to the end of the source

line and is ignored. If the first non-blank character after the directive sentinel of an

initial or continuation directive line is an exclamation point, the line is ignored.

Note – in the following example, the three formats for specifying the directive are

equivalent (the first line represents the position of the first 9 columns):

!$omp  | c$omp | *$omp
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Fortran (cont.)

c23456789

!$omp parallel do shared(a,b,c)

c$omp parallel do

c$omp+shared(a,b,c)

c$omp paralleldoshared(a,b,c)

2.1.2 Free Source Form Directives
The following sentinel is recognized in free form source files:

The sentinel can appear in any column as long as it is preceded only by white space

(spaces and tab characters). It must appear as a single word with no intervening

character. Fortran free form line length, white space, and continuation rules apply to the

directive line. Initial directive lines must have a space after the sentinel. Continued

directive lines must have an ampersand as the last nonblank character on the line, prior

to any comment placed inside the directive. Continuation directive lines can have an

ampersand after the directive sentinel with optional white space before and after the

ampersand.

Comments may appear on the same line as a directive. The exclamation point initiates a

comment. The comment extends to the end of the source line and is ignored. If the first

nonblank character after the directive sentinel is an exclamation point, the line is

ignored.

One or more blanks or horizontal tabs must be used to separate adjacent keywords in

directives in free source form, except in the following cases, where white space is

optional between the given pair of keywords:

!$omp

end critical

end do

end master
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Note – in the following example the three formats for specifying the directive are

equivalent (the first line represents the position of the first 9 columns):

!23456789

       !$omp parallel do &

                 !$omp shared(a,b,c)

       !$omp parallel &

      !$omp&do shared(a,b,c)

!$omp paralleldo shared(a,b,c)

Fortran

2.2 Conditional Compilation
In implementations that support a preprocessor, the _OPENMPmacro name is defined to

have the decimal value yyyymm where yyyy and mm are the year and month designations

of the version of the OpenMP API that the implementation supports.

If this macro is the subject of a #define or a #undef preprocessing directive, the

behavior is unspecified.

For examples of conditional compilation, see Section A.3 on page 122.

end ordered

end parallel

end sections

end single

end workshare

parallel do

parallel sections

parallel workshare
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Fortran
The OpenMP API requires Fortran lines to be compiled conditionally, as described in

the following sections.

2.2.1 Fixed Source Form Conditional Compilation
Sentinels
The following conditional compilation sentinels are recognized in fixed form source

files:

To enable conditional compilation, a line with a conditional compilation sentinel must

satisfy the following criteria:

• The sentinel must start in column 1 and appear as a single word with no intervening

white space.

• After the sentinel is replaced with two spaces, initial lines must have a space or zero

in column 6 and only white space and numbers in columns 1 through 5.

• After the sentinel is replaced with two spaces, continuation lines must have a

character other than a space or zero in column 6 and only white space in columns 1

through 5.

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not

met, the line is left unchanged.

Note – in the following example, the two forms for specifying conditional compilation

in fixed source form are equivalent (the first line represents the position of the first 9

columns):

c23456789

!$ 10 iam = omp_get_thread_num() +

!$   &          index

#ifdef _OPENMP

   10 iam = omp_get_thread_num() +

     &          index

!$  | *$  | c$
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#endif

2.2.2 Free Source Form Conditional Compilation
Sentinel
The following conditional compilation sentinel is recognized in free form source files:

To enable conditional compilation, a line with a conditional compilation sentinel must

satisfy the following criteria:

• The sentinel can appear in any column but must be preceded only by white space.

• The sentinel must appear as a single word with no intervening white space.

• Initial lines must have a space after the sentinel.

• Continued lines must have an ampersand as the last nonblank character on the line,

prior to any comment appearing on the conditionally compiled line. (Continued lines

can have an ampersand after the sentinel, with optional white space before and after

the ampersand.)

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not

met, the line is left unchanged.

Note – in the following example, the two forms for specifying conditional compilation

in free source form are equivalent (the first line represents the position of the first 9

columns):

c23456789

 !$ iam = omp_get_thread_num() +    &

 !$&    index

#ifdef _OPENMP

    iam = omp_get_thread_num() +    &

        index

#endif

Fortran

!$
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2.3 Internal Control Variables
An OpenMP implementation must act as if there were internal control variables that

store the information for determining the number of threads to use for a parallel
region and how to schedule a work-sharing loop. The control variables are given values

at various times (described below) during execution of an OpenMP program. They are

initialized by the implementation itself and may be given values by using OpenMP

environment variables, and by calls to OpenMP API routines. The only way for the

program to retrieve the values of these control variables is by calling OpenMP API

routines.

For purposes of exposition, this document refers to the control variables by certain

names (below), but an implementation is not required to use these names or to offer any

way to access the variables other than through the ways shown in Table 2.1.

The following control variables store values that affect the operation of parallel
regions:

• nthreads-var - stores the number of threads requested for future parallel regions.

• dyn-var - controls whether dynamic adjustment of the number of threads to be used

for future parallel regions is enabled.

• nest-var - controls whether nested parallelism is enabled for future parallel
regions.

The following control variables store values that affect the operation of loop regions:

• run-sched-var - stores scheduling information to be used for loop regions using the

runtime schedule clause.

• def-sched-var - stores implementation defined default scheduling information for loop

regions.

Table 2-1 shows the methods for modifying and retrieving the values of each control

variable, as well as their initial values.

TABLE 2-1 Control variables

Control variable Ways to modify value Way to retrieve value Initial value

nthreads-var OMP_NUM_THREADS
omp_set_num_threads()

omp_get_max_threads() Implementation defined

dyn-var OMP_DYNAMIC
omp_set_dynamic()

omp_get_dynamic() Implementation defined

nest-var OMP_NESTED
omp_set_nested()

omp_get_nested() false

run-sched-var OMP_SCHEDULE (none) Implementation defined

def-sched-var (none) (none) Implementation defined
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The effect of the API routines in Table 2-1 on the internal control variables described in

this specification applies only during the execution of the sequential part of the program.

During execution of the sequential part, only one copy of each internal control variable

may exist. The effect of these API routines on the internal control variables is

implementation defined when the API routines are executed from within any explicit

parallel region. Additionally, the number of copies of the internal control variables,

and their effects, during the execution of any explicit parallel region are implementation

defined.

The internal control variables are each given values before any OpenMP construct or

OpenMP API routine executes. The initial values of nthreads-var, dyn-var, run-sched-
var, and def-sched-var are implementation defined. The initial value of nest-var is false.

After the initial values are assigned, but also before any OpenMP construct or OpenMP

API routine executes, the values of any OpenMP environment variables that were set by

the user are read and the associated control variables are modified accordingly. After this

point, no changes to any OpenMP environment variables will be reflected in the control

variables. During execution of the user’s code, certain control variables can be further

modified by certain OpenMP API routine calls. An OpenMP construct clause does not

modify the value of any of these control variables.

Table 2-2 shows the override relationships between various construct clauses, OpenMP

API routines, environment variables, and initial values.

Cross References:
• parallel construct, see Section 2.4 on page 26.

• Loop construct, see Section 2.5.1 on page 33.

• omp_set_num_threads routine, see Section 3.2.1 on page 91.

• omp_set_dynamic routine, see Section 3.2.7 on page 97.

TABLE 2-2 Override relationships

construct clause,
if used

...overrides previous call to
OpenMP API routine

...overrides environment
variable, if set ...overrides initial value

num_threads clause omp_set_num_threads() OMP_NUM_THREADS initial value of

nthreads-var

(none) omp_set_dynamic() OMP_DYNAMIC initial value of dyn-var

(none) omp_set_nested() OMP_NESTED initial value of nest-var

(none) (none) OMP_SCHEDULE
(only used when

schedule kind is

runtime )

initial value of

run-sched-var

schedule clause (none) (none) initial value of

def-sched-var
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• omp_set_nested routine, see Section 3.2.9 on page 100.

• omp_get_max_threads routine, see Section 3.2.3 on page 94.

• omp_get_dynamic routine, see Section 3.2.8 on page 99.

• omp_get_nested routine, see Section 3.2.10 on page 101.

• OMP_NUM_THREADSenvironment variable, see Section 4.2 on page 115.

• OMP_DYNAMICenvironment variable, see Section 4.3 on page 116.

• OMP_NESTEDenvironment variable, see Section 4.4 on page 116.

• OMP_SCHEDULEenvironment variable, see Section 4.1 on page 114.

2.4 parallel Construct

Summary

This is the fundamental construct that starts parallel execution. See Section 1.3 on page

9 for a general description of the OpenMP execution model.

Syntax

C/C++
The syntax of the parallel construct is as follows:

where clause is one of the following:

#pragma omp parallel [clause[ [, ]clause] ...] new-line
structured-block

if( scalar-expression)

private( list)

firstprivate( list)

default(shared  | none)

shared( list)

copyin( list)
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C/C++

Fortran
The syntax of the parallel construct is as follows:

where clause is one of the following:

Fortran

The end parallel directive denotes the end of the parallel construct.

Binding

The binding thread set for a parallel region is the encountering thread. The

encountering thread becomes the master thread of the new team.

Description

When a thread encounters a parallel construct, a team of threads is created to

execute the parallel region (see Section 2.4.1 on page 29 for more information about

how the number of threads in the team is determined, including the evaluation of the if
and num_threads clauses). The thread which encountered the parallel construct

reduction( operator: list)

num_threads( integer-expression)

!$omp parallel [clause[[,] clause]...]
structured-block

!$omp end parallel

if( scalar-logical-expression)

private( list)

firstprivate( list)

default(private  | shared  | none)

shared( list)

copyin( list)

reduction( { operator| intrinsic_procedure_name} : list)

num_threads( scalar-integer-expression)
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becomes the master thread of the new team, with a thread number of zero for the

duration of the parallel region. All threads in the new team, including the master

thread, execute the region. Once the team is created, the number of threads in the team

remains constant for the duration of that parallel region.

Within a parallel region, thread numbers uniquely identify each thread. Thread

numbers are consecutive whole numbers ranging from zero for the master thread up to

one less than the number of threads within the team. A thread may obtain its own thread

number by a call to the omp_get_thread_num library routine.

The structured block of the parallel construct is executed by each thread, although

each thread can execute a path of statements that is different from the other threads.

There is an implied barrier at the end of a parallel region. Only the master thread of

the team continues execution after the end of a parallel region.

If a thread in a team executing a parallel region encounters another parallel
directive, it creates a new team, according to the rules in Section 2.4.1 on page 29, and

it becomes the master of that new team.

If execution of a thread terminates while inside a parallel region, execution of all

threads in all teams terminates. The order of termination of threads is unspecified. All

the work done by a team prior to any barrier which the team has passed in the program

is guaranteed to be complete. The amount of work done by each thread after the last

barrier that it passed and before it terminates is unspecified.

For an example of the parallel construct, see Section A.4 on page 123. For an

example of the num_threads clause, see Section A.5 on page 125.

Restrictions

Restrictions to the parallel construct are as follows:

• A program which branches into or out of a parallel region is non-conforming.

• A program must not depend on any ordering of the evaluations of the clauses of the

parallel directive, or on any side effects of the evaluations of the clauses.

• At most one if clause can appear on the directive.

• At most one num_threads clause can appear on the directive. The num_threads
expression must evaluate to a positive integer value.

C/C++
• A throw executed inside a parallel region must cause execution to resume

within the same parallel region, and it must be caught by the same thread that

C/C++
threw the exception.
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Fortran
• Unsynchronized use of Fortran I/O statements by multiple threads on the same unit

Fortran

has unspecified behavior.

Cross References

• default , shared , private , firstprivate , and reduction clauses, see

Section 2.8.3 on page 70.

• copyin clause, see Section 2.8.4 on page 83.

• omp_get_thread_num routine, see Section 3.2.4 on page 95.

2.4.1 Determining the Number of Threads for a
parallel Region
When execution encounters a parallel directive, the value of the if clause or

num_threads clause (if any) on the directive, the current parallel context, the number

of levels of parallelism supported, and the values of the nthreads-var, dyn-var and nest-
var internal control variables are used to determine the number of threads to use in the

region. Figure 2-1 describes how the number of threads is determined. The if clause

expression and the num_threads clause expression are evaluated in the context

outside of the parallel construct, and no ordering of those evaluations is specified. It

is also unspecified whether, in what order, or how many times any side-effects of the

evaluation of the num_threads or if clause expressions occur.

When a thread executing inside an active parallel region encounters a parallel
construct, the new team which is created will consist of only the encountering thread,

when any of the following conditions hold:

• nested parallelism is disabled,

• the if clause expression evaluates to false, or

• no further levels of parallelism are supported by the OpenMP implementation.

However, if nested parallelism is enabled and additional levels of parallelism are

supported, then the new team can consist of more than one thread.

The number of levels of parallelism supported is implementation defined. If only one

level of parallelism is supported (i.e. nested parallelism is not supported) then the value

of the nest-var internal control variable is always false.

If dynamic adjustment of the number of threads is enabled, the number of threads that

are used for executing subsequent parallel regions may be adjusted automatically by

the implementation. Once the number of threads is determined, it remains fixed for the
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duration of that parallel region. If dynamic adjustment of the number of threads is

disabled, the number of threads that are used for executing subsequent parallel
regions may not be adjusted by the implementation.

It is implementation defined whether the ability to dynamically adjust the number of

threads is provided. If this ability is not provided, then the value of the dyn-var internal

control variable is always false.

Implementations may deliver fewer threads than indicated in Figure 2-1, in exceptional

situations, such as when there is a lack of resources, even if dynamic adjustment is

disabled. In these exceptional situations the behavior of the program is implementation

defined: this may, for example, include interrupting program execution.

Note – Since the initial value of the dyn-var internal control variable is implementation

defined, programs that depend on a specific number of threads for correct execution

should explicitly disable dynamic adjustment of the number of threads.
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FIGURE 2-1 Determining the number of threads for a parallel region. Note that no ordering of

evaluation of the if and num_threads clauses is implied.
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2.5 Work-sharing Constructs
A work-sharing construct distributes the execution of the associated region among the

members of the team that encounters it. A work-sharing region must bind to an active

parallel region in order for the work-sharing region to execute in parallel. If

execution encounters a work-sharing region in the sequential part, it is executed by the

initial thread.

A work-sharing construct does not launch new threads, and a work-sharing region has

no barrier on entry. However, an implied barrier exists at the end of the work-sharing

region, unless a nowait clause is specified. If a nowait clause is present, an

implementation may omit code to synchronize the threads at the end of the work-sharing

region. In this case, threads that finish early may proceed straight to the instructions

following the work-sharing region without waiting for the other members of the team to

finish the work-sharing region, and without performing a flush operation (see

Section A.8 on page 128 for an example.)

OpenMP defines the following work-sharing constructs, and these are described in the

sections that follow:

• loop construct

• sections construct

• single construct

Fortran

Fortran

• workshare construct

Restrictions

The following restrictions apply to work-sharing constructs:

• Each work-sharing region must be encountered by all threads in a team or by none at

all.

• The sequence of work-sharing regions and barrier regions encountered must be

the same for every thread in a team.
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2.5.1 Loop Construct

Summary

The loop construct specifies that the iterations of the associated loop will be executed in

parallel. The iterations of the loop are distributed across threads that already exist in the

team executing the parallel region to which the loop region binds.

Syntax

C/C++
The syntax of the loop construct is as follows:

The clause is one of the following:

#pragma omp for [clause[[, ] clause] ... ] new-line
for-loop

private( list)

firstprivate( list)

lastprivate( list)

reduction( operator: list)

ordered

schedule( kind[,  chunk_size])

nowait
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The for directive places restrictions on the structure of the corresponding for-loop.

Specifically, the corresponding for-loop must have the following canonical form:

Note that the canonical form allows the number of loop iterations to be computed on

entry to the loop. This computation is performed with values in the type of var, after

integral promotions. In particular, if the value of b - lb + incr, or any intermediate result

required to compute this value, cannot be represented in that type, the behavior is

C/C++
unspecified.

for ( init-expr; var relational-op b; incr-expr) statement

init-expr One of the following:

var = lb
integer-type var = lb

incr-expr One of the following:

++var
var++
-- var
var--
var += incr
var -= incr
var = var + incr
var = incr + var
var = var - incr

var A signed integer variable, of type integer-type, as defined in the

base language. If this variable would otherwise be shared, it is

implicitly made private on the loop construct. This variable

must not be modified during the execution of the for-loop other

than in incr-expr. Unless the variable is specified

lastprivate on the loop construct, its value after the loop is

undefined.

relational-op One of the following:

<
<=
>
>=

lb, b, and incr Loop invariant integer expressions. There is no implied

synchronization during the evaluation of these expressions. It is

unspecified whether, in what order, or how many times any side

effects within the lb, b, or incr expressions occur.

statement Defined according to the base language.
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Fortran
The syntax of the loop construct is as follows:

The clause is one of the following:

If an end do directive is not specified, an end do directive is assumed at the end of the

do-loop.

The do-loop must be a do-construct as defined in Section 8.1.4.1 of the Fortran 95

standard. If an end do directive follows a do-construct in which several DOstatements

share a DOtermination statement, then a do directive can only be specified for the first

(i.e. outermost) of these DOstatements. See Section A.6 on page 125 for examples.

If the loop iteration variable would otherwise be shared, it is implicitly made private on

the loop construct. See Section A.7 on page 127 for examples. Unless the variable is

Fortran

specified lastprivate on the loop construct, its value after the loop is undefined.

Binding

The binding thread set for a loop region is the current team. A loop region binds to the

innermost enclosing parallel region. Only the threads of the team executing the

binding parallel region participate in the execution of the loop iterations and

(optional) implicit barrier of the loop region.

Description

There is an implicit barrier at the end of a loop construct unless a nowait clause is

specified.

!$omp do [clause[[, ] clause] ... ]
do-loop

[!$omp end do [nowait ] ]

private( list)

firstprivate( list)

lastprivate( list)

reduction( { operator| intrinsic_procedure_name} : list)

ordered

schedule( kind[,  chunk_size])
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The schedule clause specifies how iterations of the loop are divided into contiguous

non-empty subsets, called chunks, and how these chunks are assigned among threads of

the team. Programs which depend on which thread executes a particular iteration are

non-conforming. The chunk_size expression is evaluated using the original list items of

any variables that are made private for the duration of the loop construct. It is

unspecified whether, in what order, or how many times, any side-effects of the

evaluation of this expression occur.

See Section 2.5.1.1 on page 38 for details of how the schedule for a work-sharing loop

is determined.

The schedule kind can be one of those specified in Table 2-3.

TABLE 2-3 schedule clause kind values

static When schedule(static, chunk_size) is specified, iterations are divided

into chunks of size chunk_size, and the chunks are statically assigned to

threads in the team in a round-robin fashion in the order of the thread number.

Note that the last chunk to be assigned may have a smaller number of

iterations.

When no chunk_size is specified, the iteration space is divided into chunks

which are approximately equal in size, and each thread is assigned at most one

chunk.

dynamic When schedule(dynamic, chunk_size) is specified, the iterations are

assigned to threads in chunks as the threads request them. The thread executes

the chunk of iterations, then requests another chunk, until no chunks remain to

be assigned.

Each chunk contains chunk_size iterations, except for the last chunk to be

assigned, which may have fewer iterations.

When no chunk_size is specified, it defaults to 1.

guided When schedule(guided, chunk_size) is specified, the iterations are

assigned to threads in chunks as the threads request them. The thread executes

the chunk of iterations, then requests another chunk, until no chunks remain to

be assigned.

For a chunk_size of 1, the size of each chunk is proportional to the

number of unassigned iterations divided by the number of threads,

decreasing to 1. For a chunk_size with value k (greater than 1), the

size of each chunk is determined in the same way with the restriction

that the chunks do not contain fewer than k iterations (except for the last chunk

to be assigned, which may have fewer than k iterations).

When no chunk_size is specified, it defaults to 1.
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Note – For a team of p threads and a loop of n iterations, let be the integer q
which satisfies n = p*q - r, with 0 <= r < p. One compliant implementation of the

static schedule (with no specified chunk_size) would behave as though chunk_size
had been specified with value q. Another compliant implementation would assign q
iterations to the first p-r threads, and q-1 iterations to the remaining r threads. This

illustrates why a conforming program must not rely on the details of a particular

implementation.

A compliant implementation of the guided schedule with a chunk_size value of k
would assign q = iterations to the first available thread and set n to the larger of

n-q and p*k. It would then repeat this process until q is greater than or equal to the

number of remaining iterations, at which time the remaining iterations form the final

chunk. Another compliant implementation could use the same method, except with q =
, and set n to the larger of n-q and 2*p*k.

Restrictions

Restrictions to the loop construct are as follows:

• The values of the loop control expressions of the loop associated with the loop

directive must be the same for all the threads in the team.

• Only a single schedule clause can appear on a loop directive.

• chunk_size must be a loop invariant integer expression with a positive value.

• The value of the chunk_size expression must be the same for all threads in the team.

• When schedule(runtime) is specified, chunk_size must not be specified.

• Only a single ordered clause can appear on a loop directive.

• The ordered clause must be present on the loop construct if any ordered region

ever binds to a loop region arising from the loop construct.

• The loop iteration variable may not appear in a threadprivate directive.

C/C++
• The for-loop must be a structured block, and in addition, its execution must not be

terminated by a break statement.

• The for-loop iteration variable var must have a signed integer type.

• Only a single nowait clause can appear on a for directive.

runtime When schedule(runtime) is specified, the decision regarding scheduling

is deferred until run time, and the schedule and chunk size are taken from the

run-sched-var control variable.

n p⁄

n p⁄

n 2 p( )⁄
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• If relational-op is < or <= then incr-expr must cause var to increase on each iteration

of the loop. Conversely, if relational-op is > or >= then incr-expr must cause var to

C/C++
decrease on each iteration of the loop.

Fortran
• The do-loop must be a structured block, and in addition, its execution must not be

terminated by an EXIT statement.

• The do-loop iteration variable must be of type integer.

Fortran

• The do-loop cannot be a DO WHILEor a DOloop without loop control.

Cross References
• private , firstprivate , lastprivate , and reduction clauses, see

Section 2.8.3 on page 70.

• OMP_SCHEDULEenvironment variable, see Section 4.1 on page 114.

• ordered construct, see Section 2.7.6 on page 61.

2.5.1.1 Determining the Schedule of a Work-sharing Loop

When execution encounters a loop directive, the schedule clause (if any) on the

directive, and the run-sched-var and def-sched-var internal control variables are used to

determine how loop iterations are assigned to threads. See Section 2.3 on page 24 for

details of how the values of the internal control variables are determined. If no

schedule clause is used on the work-sharing loop directive, then the schedule is taken

from the current value of def-sched-var. If the schedule clause is used and specifies

the runtime schedule kind, then the schedule is taken from the run-sched-var control

variable. Otherwise, the schedule is taken from the value of the schedule clause.

Figure 2-2 describes how the schedule for a work-sharing loop is determined.

Cross References
• Internal control variables, see Section 2.3 on page 24.
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FIGURE 2-2 Determining the schedule for a work-sharing loop.

2.5.2 sections Construct

Summary

The sections construct is a noniterative work-sharing construct that contains a set of

structured blocks that are to be divided among, and executed by, the threads in a team.

Each structured block is executed once by one of the threads in the team.

START

schedule
clause present?

No
Use def-sched-var schedule kind

schedule kind

value is runtime ?

No
Use schedule kind specified in

schedule  clause

Yes

Use run-sched-var schedule kind

Yes
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Syntax

C/C++
The syntax of the sections construct is as follows:

The clause is one of the following:

C/C++

Fortran
The syntax of the sections construct is as follows:

#pragma omp sections [clause[[, ] clause] ...] new-line
{
[#pragma omp section new-line]

structured-block
[#pragma omp section new-line

structured-block ]
...

}

private( list)

firstprivate( list)

lastprivate( list)

reduction( operator: list)

nowait

!$omp sections [clause[[, ] clause] ...]
[!$omp section ]

structured-block
[!$omp section

structured-block ]
...

!$omp end sections [nowait ]
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The clause is one of the following:

Fortran

Binding

The binding thread set for a sections region is the current team. A sections
region binds to the innermost enclosing parallel region. Only the threads of the team

executing the binding parallel region participate in the execution of the structured

blocks and (optional) implicit barrier of the sections region.

Description

Each structured block in the sections construct is preceded by a section directive

except possibly the first block, for which a preceding section directive is optional.

The method of scheduling the structured blocks among threads in the team is

implementation defined.

There is an implicit barrier at the end of a sections construct, unless a nowait
clause is specified.

Restrictions

Restrictions to the sections construct are as follows:

• The section directives must appear within the sections construct and may not

be encountered elsewhere in the sections region.

• The code enclosed in a sections construct must be a structured block.

C/C++

C/C++
• Only a single nowait clause can appear on a sections directive.

private( list)

firstprivate( list)

lastprivate( list)

reduction( { operator| intrinsic_procedure_name} : list)
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Cross References
• private , firstprivate , lastprivate , and reduction clauses, see

Section 2.8.3 on page 70.

2.5.3 single Construct

Summary

The single construct specifies that the associated structured block is executed by only

one thread in the team (not necessarily the master thread). The other threads in the team

do not execute the block, and wait at an implicit barrier at the end of single construct,

unless a nowait clause is specified.

Syntax

C/C++
The syntax of the single construct is as follows:

The clause is one of the following:

C/C++

Fortran
The syntax of the single construct is as follows:

#pragma omp single [clause[[, ] clause] ...] new-line
structured-block

private( list)

firstprivate( list)

copyprivate( list)

nowait

!$omp single [clause[[, ] clause] ...]
structured-block

!$omp end single [end_clause[[,] end_clause] ...]
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The clause is one of the following:

and end_clause is one of the following:

Fortran

Binding

The binding thread set for a single region is the current team. A single region

binds to the innermost enclosing parallel region. Only the threads of the team

executing the binding parallel region participate in the execution of the structured

block and (optional) implicit barrier of the single region.

Description

The method of choosing a thread to execute the structured block is implementation

defined. There is an implicit barrier after the single construct unless a nowait clause

is specified.

For an example of the single construct, see Section A.10 on page 130.

Restrictions

Restrictions to the single construct are as follows:

• The copyprivate clause must not be used with the nowait clause.

• At most one nowait clause can appear on a single construct.

Cross References
• private and firstprivate clauses, see Section 2.8.3 on page 70.

• copyprivate clause, see Section 2.8.4.2 on page 85.

private( list)

firstprivate( list)

copyprivate( list)

nowait
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Fortran

2.5.4 workshare Construct

Summary

The workshare construct divides the execution of the enclosed structured block into

separate units of work, and causes the threads of the team to share the work such that

each unit is executed only once.

Syntax

The syntax of the workshare construct is as follows:

The enclosed structured block must consist of only the following:

• array assignments

• scalar assignments

• FORALLstatements

• FORALLconstructs

• WHEREstatements

• WHEREconstructs

• atomic constructs

• critical constructs

• parallel constructs

Statements contained in any enclosed critical construct are also subject to these

restrictions. Statements in any enclosed parallel construct are not restricted.

Binding

The binding thread set for a workshare region is the current team. A workshare
region binds to the innermost enclosing parallel region. Only the threads of the team

executing the binding parallel region participate in the execution of the units of

work and (optional) implicit barrier of the workshare region.

!$omp workshare
structured-block

!$omp end workshare [nowait ]
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Fortran (cont.)

Description

There is an implicit barrier at the end of a workshare construct unless a nowait
clause is specified.

An implementation of the workshare construct must insert any synchronization that is

required to maintain standard Fortran semantics. For example, the effects of one

statement within the structured block must appear to occur before the execution of

succeeding statements, and the evaluation of the right hand side of an assignment must

appear to have been completed prior to the effects of assigning to the left hand side.

The statements in the workshare construct are divided into units of work as follows:

• For array expressions within each statement, including transformational array

intrinsic functions that compute scalar values from arrays:

• Evaluation of each element of the array expression, including any references to

ELEMENTALfunctions, is a unit of work.

• Evaluation of transformational array intrinsic functions may be freely subdivided

into any number of units of work.

• If a workshare directive is applied to an array assignment statement, the

assignment of each element is a unit of work.

• If a workshare directive is applied to a scalar assignment statement, the

assignment operation is a single unit of work.

• If a workshare directive is applied to a WHEREstatement or construct, the

evaluation of the mask expression and the masked assignments are workshared.

• If a workshare directive is applied to a FORALLstatement or construct, the

evaluation of the mask expression, expressions occurring in the specification of the

iteration space, and the masked assignments are workshared.

• For atomic constructs, the update of each scalar variable is a single unit of work.

• For critical constructs, each construct is a single unit of work.

• For parallel constructs, each construct is a single unit of work with respect to the

workshare construct. The statements contained in parallel constructs are

executed by new teams of threads formed for each parallel construct.

• If none of the rules above apply to a portion of a statement in the structured block,

then that portion is a single unit of work.

The transformational array intrinsic functions are MATMUL, DOT_PRODUCT, SUM,

PRODUCT, MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD, PACK, UNPACK,
RESHAPE, TRANSPOSE, EOSHIFT, CSHIFT, MINLOC, and MAXLOC.

It is unspecified how the units of work are assigned to the threads executing a

workshare region.
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If an array expression in the block references the value, association status, or allocation

status of private variables, the value of the expression is undefined, unless the same

value would be computed by every thread.

If an array assignment, a scalar assignment, a masked array assignment, or a FORALL
assignment assigns to a private variable in the block, the result is unspecified.

The workshare directive causes the sharing of work to occur only in the workshare
construct, and not in the remainder of the workshare region.

For examples of the workshare construct, see Section A.11 on page 132.

Restrictions

The following restrictions apply to the workshare directive:

• The construct must not contain any user defined function calls unless the function is

Fortran

ELEMENTAL.

2.6 Combined Parallel Work-sharing
Constructs
Combined parallel work-sharing constructs are shortcuts for specifying a work-sharing

construct nested immediately inside a parallel construct. The semantics of these

directives are identical to that of explicitly specifying a parallel construct containing

one work-sharing construct and no other statements.

The combined parallel work-sharing constructs allow certain clauses which are

permitted on both parallel constructs and on work-sharing constructs. If a program

would have different behavior depending on whether the clause were applied to the

parallel construct or to the work-sharing construct, then the program’s behavior is

unspecified.

The following sections describe the combined parallel work-sharing constructs:

• The parallel loop construct.

• The parallel sections construct.

Fortran

Fortran

• The parallel workshare construct.
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2.6.1 Parallel loop construct

Summary

The parallel loop construct is a shortcut for specifying a parallel construct

containing one loop construct and no other statements.

Syntax

C/C++
The syntax of the parallel loop construct is as follows:

The clause can be any of the clauses accepted by the parallel or for directives,

C/C++
except the nowait clause, with identical meanings and restrictions.

Fortran
The syntax of the parallel loop construct is as follows:

The clause can be any of the clauses accepted by the parallel or do directives, with

identical meanings and restrictions. However, nowait may not be specified on an end
parallel do directive.

If an end parallel do directive is not specified, an end parallel do directive is

Fortran

assumed at the end of the do-loop.

Description

C/C++
The semantics are identical to explicitly specifying a parallel directive immediately

C/C++
followed by a for directive.

#pragma omp parallel for [clause[[, ] clause] ...] new-line
for-loop

!$omp parallel do [clause[[, ] clause] ...]
do-loop

[!$omp end parallel do ]
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Fortran
The semantics are identical to explicitly specifying a parallel directive immediately

followed by a do directive, and an end do directive immediately followed by an end

Fortran

parallel directive.

Restrictions

The restrictions for the parallel construct and the loop construct apply.

Cross References
• parallel construct, see Section 2.4 on page 26.

• loop construct, see Section 2.5.1 on page 33.

• Data attribute clauses, see Section 2.8.3 on page 70.

2.6.2 parallel sections Construct

Summary

The parallel sections construct is a shortcut for specifying a parallel
construct containing one sections construct and no other statements.

Syntax

C/C++
The syntax of the parallel sections construct is as follows:

#pragma omp parallel sections [clause[[, ] clause] ...] new-line
{
[#pragma omp section new-line]

structured-block
[#pragma omp section new-line

structured-block ]
...

}
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The clause can be any of the clauses accepted by the parallel or sections

C/C++
directives, except the nowait clause, with identical meanings and restrictions.

Fortran
The syntax of the parallel sections construct is as follows:

The clause can be any of the clauses accepted by the parallel or sections
directives, with identical meanings and restrictions. However, nowait cannot be

specified on an end parallel sections directive.

Fortran

The last section ends at the end parallel sections directive.

Description

C/C++
The semantics are identical to explicitly specifying a parallel directive immediately

C/C++
followed by a sections directive.

Fortran
The semantics are identical to explicitly specifying a parallel directive immediately

followed by a sections directive, and an end sections directive immediately

Fortran

followed by an end parallel directive.

For an example of the parallel sections construct, see Section A.9 on page 129.

Restrictions

The restrictions for the parallel construct and the sections construct apply.

!$omp parallel sections [clause[[, ] clause] ...]
[!$omp section ]

structured-block
[!$omp section

structured-block ]
...

!$omp end parallel sections
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Cross References:
• parallel construct, see Section 2.4 on page 26.

• sections construct, see Section 2.5.2 on page 39.

• Data attribute clauses, see Section 2.8.3 on page 70.

Fortran

2.6.3 parallel workshare Construct

Summary

The parallel workshare construct is a shortcut for specifying a parallel
construct containing one workshare construct and no other statements.

Syntax

The syntax of the parallel workshare construct is as follows:

The clause can be any of the clauses accepted by the parallel directive, with

identical meanings and restrictions. However, nowait may not be specified on an end
parallel workshare directive.

Description

The semantics are identical to explicitly specifying a parallel directive immediately

followed by a workshare directive, and an end workshare directive immediately

followed by an end parallel directive.

Restrictions

The restrictions for the parallel construct and the workshare construct apply.

Cross References
• parallel construct, see Section 2.4 on page 26.

• workshare construct, see Section 2.5.4 on page 44.

!$omp parallel workshare [clause[[, ] clause] ...]
structured-block

!$omp end parallel workshare
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Fortran

• Data attribute clauses, see Section 2.8.3 on page 70.

2.7 Master and Synchronization Constructs
The following sections describe :

• the master construct.

• the critical construct.

• the barrier construct.

• the atomic construct.

• the flush construct.

• the ordered construct.

2.7.1 master Construct

Summary

The master construct specifies a structured block that is executed by the master thread

of the team.

Syntax

C/C++
The syntax of the master construct is as follows:

C/C++

#pragma omp master new-line
structured-block
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Fortran
The syntax of the master construct is as follows:

Fortran

Binding

The binding thread set for a master region is the current team. A master region

binds to the innermost enclosing parallel region. Only the master thread of the team

executing the binding parallel region participates in the execution of the structured

block of the master region.

Description

Other threads in the team do not execute the associated structured block. There is no

implied barrier either on entry to, or exit from, the master construct.

For an example of the master construct, see Section A.12 on page 136.

2.7.2 critical Construct

Summary

The critical construct restricts execution of the associated structured block to a

single thread at a time.

Syntax

C/C++
The syntax of the critical construct is as follows:

C/C++

!$omp master
structured-block

!$omp end master

#pragma omp critical [( name) ] new-line
structured-block
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Fortran
The syntax of the critical construct is as follows:

Fortran

Binding

The binding thread set for a critical region is all threads. Region execution is

restricted to a single thread at a time among all the threads in the program, without

regard to the team(s) to which the threads belong.

Description

An optional name may be used to identify the critical construct. All critical
constructs without a name are considered to have the same unspecified name. A thread

waits at the beginning of a critical region until no other thread is executing a

critical region with the same name. The critical construct enforces exclusive

access with respect to all critical constructs with the same name in all threads, not

just in the current team.

C/C++
Identifiers used to identify a critical construct have external linkage and are in a

name space which is separate from the name spaces used by labels, tags, members, and

C/C++
ordinary identifiers.

Fortran
The names of critical constructs are global entities of the program. If a name

Fortran

conflicts with any other entity, the behavior of the program is unspecified.

For an example of the critical construct, see Section A.13 on page 138.

Restrictions

Fortran
The following restrictions apply to the critical construct:

!$omp critical [( name) ]
structured-block

!$omp end critical [( name) ]
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• If a name is specified on a critical directive, the same name must also be

specified on the end critical directive.

• If no name appears on the critical directive, no name can appear on the end

Fortran

critical directive.

2.7.3 barrier Construct

Summary

The barrier construct specifies an explicit barrier at the point at which the construct

appears.

Syntax

C/C++
The syntax of the barrier construct is as follows:

Note that because the barrier construct does not have a C language statement as part

of its syntax, there are some restrictions on its placement within a program. The

barrier directive may only be placed in the program at a position where ignoring or

deleting the directive would result in a program with correct syntax. See Appendix C for

the formal grammar. The examples in Section A.20 on page 153 illustrate these

C/C++
restrictions.

Fortran
The syntax of the barrier construct is as follows:

Fortran

#pragma omp barrier new-line

!$omp barrier
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Binding

The binding thread set for a barrier region is the current team. A barrier region

binds to the innermost enclosing parallel region. See Section A.15 on page 140 for

examples.

Description

All of the threads of the team executing the binding parallel region must execute the

barrier region before any are allowed to continue execution beyond the barrier.

Restrictions

The following restrictions apply to the barrier construct:

• Each barrier region must be encountered by all threads in a team or by none at all.

• The sequence of work-sharing regions and barrier regions encountered must be

the same for every thread in a team.

2.7.4 atomic Construct

Summary

The atomic construct ensures that a specific storage location is updated atomically,

rather than exposing it to the possibility of multiple, simultaneous writing threads.

Syntax

C/C++
The syntax of the atomic construct is as follows:

expression-stmt is an expression statement with one of the following forms:

#pragma omp atomic new-line
expression-stmt

x binop= expr

x++
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In the preceding expressions:

• x is an lvalue expression with scalar type.

• expr is an expression with scalar type, and it does not reference the object designated

by x.

C/C++
• binop is not an overloaded operator and is one of +, * , - , / , &, ^ , | , <<, or >>.

Fortran
The syntax of the atomic construct is as follows:

where statement has one of the following forms:

x = x operator expr

x = expr operator x

x = intrinsic_procedure_name (x, expr_list)

x = intrinsic_procedure_name (expr_list, x)

In the preceding statements:

• x is a scalar variable of intrinsic type.

• expr is a scalar expression that does not reference x.

• expr_list is a comma-separated, non-empty list of scalar expressions that do not

reference x. When intrinsic_procedure_name refers to IAND, IOR, or IEOR, exactly

one expression must appear in expr_list.

• intrinsic_procedure_name is one of MAX, MIN, IAND, IOR, or IEOR.

• operator is one of +, * , - , / , .AND. , .OR. , .EQV. , or .NEQV. .

• The operators in expr must have precedence equal to or greater than the precedence

of operator, x operator expr must be mathematically equivalent to x operator (expr),
and expr operator x must be mathematically equivalent to (expr) operator x.

• intrinsic_procedure_name must refer to the intrinsic procedure name and not to other

program entities.

++x

x--

-- x

!$omp atomic
statement
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• operator must refer to the intrinsic operator and not to a user-defined operator.

Fortran

• The assignment must be intrinsic assignment.

Binding

The binding thread set for an atomic region is all threads. atomic regions enforce

exclusive access with respect to other atomic regions that update the same storage

location x among all the threads in the program without regard to the team(s) to which

the threads belong.

Description

Only the load and store of the object designated by x are atomic; the evaluation of expr
is not atomic. To avoid race conditions, all updates of the location which could

potentially occur in parallel must be protected with an atomic directive. atomic
regions do not enforce exclusive access with respect to any critical or ordered
regions which access the same storage location x.

A compliant implementation may enforce exclusive access between atomic regions

which update different storage locations. The circumstances under which this occurs are

implementation defined.

For an example of the atomic construct, see Section A.16 on page 142.

Restrictions

C/C++
The following restriction applies to the atomic construct:

• All atomic references to the storage location x throughout the program are required to

C/C++
have a compatible type. See Section A.17 on page 144 for examples.

Fortran
The following restriction applies to the atomic construct:

• All atomic references to the storage location of variable x throughout the program are

required to have the same type and type parameters. See Section A.17 on page 144

Fortran

for examples.
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Cross References
• critical construct, see Section 2.7.2 on page 52.

2.7.5 flush Construct

Summary

The flush construct executes the OpenMP flush operation. This operation makes a

thread’s temporary view of memory consistent with memory, and enforces an order on

the memory operations of the variables explicitly specified or implied. See the memory

model description in Section 1.4 on page 10 for more details.

Syntax

C/C++
The syntax of the flush construct is as follows:

C/C++

Fortran
The syntax of the flush construct is as follows:

Fortran

Binding

The binding thread set for a flush region is the encountering thread. Execution of a

flush region only affects the view of memory from the thread which executes the

region. Other threads must themselves execute a flush operation in order to observe the

effects of the encountering thread’s flush operation.

#pragma omp flush [( list) ] new-line

!$omp flush [( list) ]
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Description

A flush construct with a list applies the flush operation to the items in the list, and

does not return until the operation is complete for all specified list items. A flush
construct without a list, executed on a given thread, operates as if the whole thread-

visible data state of the program, as defined by the base language, is flushed.

C/C++
If a pointer is present in the list, the pointer itself is flushed, not the object to which the

C/C++
pointer refers.

Fortran
If the list item or a subobject of the list item has the POINTERattribute, the allocation

or association status of the POINTERitem is flushed, but the pointer target is not. If the

list item is a Cray pointer, the pointer is flushed, but the object to which it points is not.

If the list item has the ALLOCATABLEattribute and the list item is allocated, the

Fortran

allocated array is flushed; otherwise the allocation status is flushed.

For examples of the flush construct, see Section A.18 on page 147 and Section A.19

on page 150.

Note – the following examples illustrate the ordering properties of the flush operation.

In the following incorrect pseudocode example, the programmer intends to prevent

simultaneous execution of the critical section by the two threads, but the program does

not work properly because it does not enforce the proper ordering of the operations on

variables a and b.

Incorrect example:

                       a = b = 0

          thread 1 thread 2

     b = 1                            a = 1
flush(b)  flush(a)
flush(a)  flush(b)

     if (a == 0) then                 if (b == 0) then
critical section critical section

     end if                           end if
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The problem with this example is that operations on variables a and b are not ordered

with respect to each other. For instance, nothing prevents the compiler from moving the

flush of b on thread 1 or the flush of a on thread 2 to a position completely after the

critical section (assuming that the critical section on thread 1 does not reference b and the

critical section on thread 2 does not reference a). If either re-ordering happens, the critical

section can be active on both threads simultaneously.

The following correct pseudocode example correctly ensures that the critical section is

executed by not more than one of the two threads at any one time. Notice that execution of

the critical section by neither thread is considered correct in this example.

The compiler is prohibited from moving the flush at all for either thread, ensuring that the

respective assignment is complete and the data is flushed before the if statement is

executed.

C/C++
Note that because the flush construct does not have a C language statement as part of its

syntax, there are some restrictions on its placement within a program. The flush
directive may only be placed in the program at a position where ignoring or deleting the

directive would result in a program with correct syntax. See Appendix C for the formal

grammar. See Section A.20 on page 153 for an example that illustrates these placement

C/C++
restrictions.

A flush region without a list is implied at the following locations:

• During a barrier region.

• At entry to and exit from parallel , critical and ordered regions.

• At exit from work-sharing regions, unless a nowait is present.

• At entry to and exit from combined parallel work-sharing regions.

Correct example:

                       a = b = 0

          thread 1 thread 2

     b = 1                            a = 1
flush(a,b)  flush(a,b)

     if (a == 0) then                 if (b == 0) then
critical section critical section

     end if                           end if
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• During omp_set_lock and omp_unset_lock regions.

• During omp_test_lock , omp_set_nest_lock , omp_unset_nest_lock
and omp_test_nest_lock regions, if the region causes the lock to be set or

unset.

A flush region with a list is implied at the following locations:

• At entry to and exit from atomic regions, where the list contains only the object

updated in the atomic construct.

Note – A flush region is not implied at the following locations:

• At entry to work-sharing regions.

• At entry to or exit from a master region.

2.7.6 ordered Construct

Summary

The ordered construct specifies a structured block in a loop region which will be

executed in the order of the loop iterations. This sequentializes and orders the code

within an ordered region while allowing code outside the region to run in parallel.

Syntax

C/C++
The syntax of the ordered construct is as follows:

C/C++

#pragma omp ordered new-line
structured-block
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Fortran
The syntax of the ordered construct is as follows:

Fortran

Binding

The binding thread set for an ordered region is the current team. An ordered region

binds to the innermost enclosing loop region. ordered regions that bind to different

loop regions execute completely independently of each other.

Description

The threads in the team executing the loop region execute ordered regions

sequentially in the order of the loop iterations. When the thread executing the first

iteration of the loop encounters an ordered construct, it can enter the ordered
region without waiting. When a thread executing any subsequent iteration encounters an

ordered region, it waits at the beginning of that ordered region until each of the

previous iterations that contains an ordered region has completed the ordered
region.

For examples of the ordered construct, see Section A.21 on page 154.

Restrictions

Restrictions to the ordered construct are as follows:

• The loop region to which an ordered region binds must have an ordered clause

specified on the corresponding loop (or parallel loop) construct.

• During execution of an iteration of a loop within a loop region, the executing thread

must not execute more than one ordered region which binds to the same loop

region.

Cross References
• loop construct, see Section 2.5.1 on page 33.

• parallel loop construct, see Section 2.6.1 on page 47.

!$omp ordered
structured-block

!$omp end ordered
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2.8 Data Environment
This section presents a directive and several clauses for controlling the data environment

during the execution of parallel regions.

• Section 2.8.1 on page 63 describes how the sharing attributes of variables referenced

in parallel regions are determined.

• The threadprivate directive, which is provided to create threadprivate memory,

is described in Section 2.8.2 on page 66.

• Clauses that may be specified on directives to control the sharing attributes of

variables referenced in parallel or work-sharing constructs are described in

Section 2.8.3 on page 70.

• Clauses that may be specified on directives to copy data values from private or

threadprivate objects on one thread to the corresponding objects on other threads in

the team are described in Section 2.8.4 on page 83.

2.8.1 Sharing Attribute Rules
This section describes how the sharing attributes of variables referenced in parallel
regions are determined. The following two cases are described separately:

• Section 2.8.1.1 on page 63 describes the sharing attribute rules for variables

referenced in a construct.

• Section 2.8.1.2 on page 65 describes the sharing attribute rules for variables

referenced in a region, but outside any construct.

2.8.1.1 Sharing Attribute Rules for Variables Referenced in a
Construct

The sharing attributes of variables which are referenced in a construct may be one of the

following: predetermined, explicitly determined, or implicitly determined.

Note that specifying a variable on a firstprivate , lastprivate , or

reduction clause of an enclosed construct causes an implicit reference to the variable

in the enclosing construct. Such implicit references are also subject to the following

rules.

The following variables have predetermined sharing attributes:

C/C++
• Variables appearing in threadprivate directives are threadprivate.
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• Variables with automatic storage duration which are declared in a scope inside the

construct are private.

• Variables with heap allocated storage are shared.

• Static data members are shared.

• The loop iteration variable in the for-loop of a for or parallel for construct is

private in that construct.

C/C++
• Variables with const-qualified type having no mutable member are shared.

Fortran
• Variables and common blocks appearing in threadprivate directives are

threadprivate.

• The loop iteration variable in the do-loop of a do or parallel do construct is

private in that construct.

• Variables used as loop iteration variables in sequential loops in a parallel
construct are private in the parallel construct.

• implied-do and forall indices are private.

• Cray pointees inherit the sharing attribute of the storage with which their Cray

Fortran

pointers are associated.

Variables with predetermined sharing attributes may not be listed in data-sharing

attribute clauses, with the following exceptions:

C/C++
• The loop iteration variable in the for-loop of a for or parallel for construct

C/C++
may be listed in a private or lastprivate clause.

Fortran
• The loop iteration variable in the do-loop of a do or parallel do construct may be

listed in a private or lastprivate clause.

• Variables used as loop iteration variables in sequential loops in a parallel
construct may be listed in private , firstprivate , lastprivate , shared ,

Fortran

or reduction clauses.

Additional restrictions on the variables which may appear in individual clauses are

described with each clause in Section 2.8.3 on page 70.

Variables referenced in the construct are said to have an explicitly determined sharing

attribute if they are listed in a data-sharing attribute clause on the construct.
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Variables referenced in the construct whose sharing attribute is not predetermined or

explicitly determined will have their sharing attribute implicitly determined. In a

parallel construct, the sharing attributes of these variables is determined by the

default clause, if present (see Section 2.8.3.1 on page 71). If no default clause is present,

variables with implicitly determined sharing attributes are shared. For other constructs,

variables with implicitly determined sharing attributes inherit their sharing attributes

from the enclosing context.

2.8.1.2 Sharing Attribute Rules for Variables Referenced in a Region,
but not in a Construct

The sharing attributes of variables which are referenced in a region, but not in a

construct, are determined as follows:

C/C++
• Static variables declared in called routines in the region are shared.

• Variables with const-qualified type having no mutable member, and that are declared

in called routines, are shared.

• File-scope or namespace-scope variables referenced in called routines in the region

are shared unless they appear in a threadprivate directive.

• Variables with heap-allocated storage are shared.

• Static data members are shared.

• Formal arguments of called routines in the region that are passed by reference inherit

the data-sharing attributes of the associated actual argument.

C/C++
• Other variables declared in called routines in the region are private.

Fortran
• Local variables declared in called routines in the region and that have the save

attribute, or that are data initialized, are shared unless they appear in a

threadprivate directive.

• Variables belonging to common blocks, or declared in modules, and referenced in

called routines in the region are shared unless they appear in a threadprivate
directive.

• Dummy arguments of called routines in the region that are passed by reference inherit

the data-sharing attributes of the associated actual argument.

• implied-do and forall indices are private.

• Cray pointees inherit the sharing attribute of the storage with which their Cray

pointers are associated.
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Fortran

• Other local variables declared in called routines in the region are private.

2.8.2 threadprivate Directive

Summary

The threadprivate directive specifies that named global-lifetime objects are

replicated, with each thread having its own copy.

Syntax

C/C++
The syntax of the threadprivate directive is as follows:

where list is a comma-separated list of file-scope, namespace-scope, or static block-

C/C++
scope variables that do not have incomplete types.

Fortran
The syntax of the threadprivate directive is as follows:

where list is a comma-separated list of named variables and named common blocks.

Fortran

Common block names must appear between slashes.

Description

Each copy of a threadprivate object is initialized once, in the manner specified by the

program, but at an unspecified point in the program prior to the first reference to that

copy.

A thread may not reference another thread’s copy of a threadprivate object.

#pragma omp threadprivate( list) new-line

!$omp threadprivate( list)
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During the sequential part, and in non-nested inactive parallel regions, references

will be to the initial thread’s copy of the object. In parallel regions, references by

the master thread will be to the copy of the object in the thread which encountered the

parallel region.

The values of data in the initial thread’s copy of a threadprivate object are guaranteed to

persist between any two consecutive references to the object in the program.

The values of data in the threadprivate objects of threads other than the initial thread are

guaranteed to persist between two consecutive active parallel regions only if all the

following conditions hold:

• Neither parallel region is nested inside another parallel region.

• The number of threads used to execute both parallel regions is the same.

• The value of the dyn-var internal control variable is false at entry to the first

parallel region and remains false until entry to the second parallel region.

• The value of the nthreads-var internal control variable is the same at entry to both

parallel regions and has not been modified between these points.

If these conditions all hold, and if a threadprivate object is referenced in both regions,

then threads with the same thread number in their respective regions will reference the

same copy of that variable.

C/C++
If the above conditions hold, the storage duration, lifetime, and value of a thread’s copy

of a threadprivate variable that does not appear in any copyin clause on the second

region will be retained. Otherwise, the storage duration, lifetime, and value of a thread’s

copy of the variable in the second region is undefined.

If an object is referenced in an explicit initializer of a threadprivate variable, and the

value of the object is modified prior to the first reference to a copy of the variable, then

C/C++
the behavior is unspecified.

Fortran
A variable is said to be affected by a copyin clause if the variable appears in the

copyin clause or it is in a common block that appears in the copyin clause.

If the above conditions hold, the definition, association, or allocation status of a thread’s

copy of a threadprivate variable or a variable in a threadprivate common block, that is

not affected by any copyin clause that appears on the second region, will be retained.

Otherwise, the definition and association status of a thread’s copy of the variable in the

second region is undefined, and the allocation status of an allocatable array will be

implementation defined.
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If a common block, or a variable that is declared in the scope of a module, appears in a

threadprivate directive, it implicitly has the SAVEattribute.

If a threadprivate variable or a variable in a threadprivate common block is not affected

by any copyin clause that appears on the first parallel region in which it is

referenced, the variable or any subobject of the variable is initially defined or undefined

according to the following rules:

• If it has the ALLOCATABLEattribute, each copy created will have an initial

allocation status of not currently allocated.

• If it has the POINTERattribute:

• if it has an initial association status of disassociated, either through explicit

initialization or default initialization, each copy created will have an association

status of disassociated;

• otherwise, each copy created will have an association status of undefined.

• If it does not have either the POINTERor the ALLOCATABLEattribute:

• if it is initially defined, either through explicit initialization or default

initialization, each copy created is so defined;

Fortran

• otherwise, each copy created is undefined.

For examples of the threadprivate directive, see Section A.22 on page 158.

Restrictions

The restrictions to the threadprivate directive are as follows:

• A threadprivate object must not appear in any clause except the copyin ,

copyprivate , schedule , num_threads , and if clauses.

C/C++
• A threadprivate directive for file-scope variables must appear outside any

definition or declaration, and must lexically precede all references to any of the

variables in its list.

• A threadprivate directive for namespace-scope variables must appear outside

any definition or declaration other than the namespace definition itself, and must

lexically precede all references to any of the variables in its list.

• Each variable in the list of a threadprivate directive at file or namespace scope

must refer to a variable declaration at file or namespace scope that lexically precedes

the directive.

• A threadprivate directive for static block-scope variables must appear in the

scope of the variable and not in a nested scope. The directive must lexically precede

all references to any of the variables in its list.
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• Each variable in the list of a threadprivate directive in block scope must refer to

a variable declaration in the same scope that lexically precedes the directive. The

variable declaration must use the static storage-class specifier.

• If a variable is specified in a threadprivate directive in one translation unit, it

must be specified in a threadprivate directive in every translation unit in which

it is declared.

• The address of a threadprivate variable is not an address constant.

• A threadprivate variable must not have an incomplete type or a reference type.

• A threadprivate variable with non-POD class type must have an accessible,

C/C++
unambiguous copy constructor if it is declared with an explicit initializer.

Fortran
• The threadprivate directive must appear in the declaration section of a scoping

unit in which the common block or variable is declared. Although variables in

common blocks can be accessed by use association or host association, common

block names cannot. This means that a common block name specified in a

threadprivate directive must be declared to be a common block in the same

scoping unit in which the threadprivate directive appears.

• If a threadprivate directive specifying a common block name appears in one

program unit, then such a directive must also appear in every other program unit that

contains a COMMONstatement specifying the same name. It must appear after the last

such COMMONstatement in the program unit.

• A blank common block cannot appear in a threadprivate directive.

• A variable can only appear in a threadprivate directive in the scope in which it

is declared. It must not be an element of a common block or be declared in an

EQUIVALENCEstatement.

• A variable that appears in a threadprivate directive and is not declared in the

Fortran

scope of a module must have the SAVEattribute.

Cross References:
• Dynamic adjustment of threads, see Section 2.4.1 on page 29.

• copyin clause, see Section 2.8.4.1 on page 84.

• Internal control variables, see Section 2.3 on page 24.
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2.8.3 Data-Sharing Attribute Clauses
Several constructs accept clauses that allow a user to control the sharing attributes of

variables for the duration of the construct. Data-sharing attribute clauses apply only to

variables whose names are visible in the construct on which the clause appears, except

that formal arguments that are passed by reference inherit the data-sharing attributes of

the associated actual argument.

Not all of the clauses listed in this section are valid on all directives. The set of clauses

that is valid on a particular directive is described with the directive.

Most of the clauses accept a comma-separated list of list items (see Section 2.1 on page

18). All list items appearing in a clause must be visible, according to the scoping rules

of the base language. With the exception of the default clause, clauses may be

repeated as needed. A list item that specifies a given variable may not appear in more

than one clause on the same directive, except that a variable may be specified in both

firstprivate and lastprivate clauses.

C/C++
If a variable referenced in a data-sharing attribute clause has a type derived from a

template, and there are no other references to that variable in the program, then any

C/C++
behavior related to that variable is undefined.

Fortran
A named common block may be specified in a list by enclosing the name in slashes.

When a named common block appears in a list, it has the same meaning as if every

explicit member of the common block appeared in the list. An explicit member of a

common block is a variable that is named in a COMMONstatement that specifies the

common block name and is declared in the same scoping unit in which the clause

appears.

Although variables in common blocks can be accessed by use association or host

association, common block names cannot. This means that a common block name

specified in a data-sharing attribute clause must be declared to be a common block in the

same scoping unit in which the data-sharing attribute clause appears.

When a named common block appears in a private , firstprivate ,

lastprivate , or shared clause of a directive, none of its members may be declared

in another data-sharing attribute clause in that directive (see Section A.23 on page 163

for examples). When individual members of a common block are privatized, the storage

of the specified variables is no longer associated with the storage of the common block

Fortran

itself (see Section A.28 on page 171 for examples).
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2.8.3.1 default clause

Summary

The default clause allows the user to control the sharing attributes of variables which are

referenced in a parallel construct, and whose sharing attributes are implicitly

determined (see Section 2.8.1.1 on page 63).

Syntax

C/C++
The syntax of the default clause is as follows:

C/C++

Fortran
The syntax of the default clause is as follows:

Fortran

Description

The default(shared) clause causes all variables referenced in the construct which

have implicitly determined sharing attributes to be shared.

Fortran
The default(private) clause causes all variables referenced in the construct

Fortran

which have implicitly determined sharing attributes to be private.

The default(none) clause requires that each variable which is referenced in the

construct, and that does not have a predetermined sharing attribute, must have its sharing

attribute explicitly determined by being listed in a data-sharing attribute clause. See

Section A.24 on page 165 for examples.

default(shared  | none)

default(private  | shared  | none)
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Restrictions

The restrictions to the default clause are as follows:

• Only a single default clause may be specified on a parallel directive.

2.8.3.2 shared clause

Summary

The shared clause declares one or more list items to be shared among all the threads

in a team.

Syntax

The syntax of the shared clause is as follows:

Description

All threads within a team access the same storage area for each shared object.

Fortran
The association status of a shared pointer becomes undefined upon entry to and on exit

from the parallel construct if it is associated with a target or a subobject of a target

that is in a private , firstprivate , lastprivate , or reduction clause

inside the parallel construct.

Under certain conditions, passing a shared variable to a non-intrinsic procedure may

result in the value of the shared variable being copied into temporary storage before the

procedure reference, and back out of the temporary storage into the actual argument

storage after the procedure reference. This situation will occur when the following three

conditions hold regarding an actual argument in a reference to a non-intrinsic procedure:

a. The actual argument is one of the following:

• A shared variable.

• A subobject of a shared variable.

• An object associated with a shared variable.

• An object associated with a subobject of a shared variable.

b. The actual argument is also one of the following:

• An array section.

shared( list)
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• An array section with a vector subscript.

• An assumed-shape array.

• A pointer array.

c. The associated dummy argument for this actual argument is an explicit-shape

array or an assumed-size array.

This effectively results in references to, and definitions of, the storage during the

procedure reference. Any references to (or definitions of) the shared storage that is

associated with the dummy argument by any other thread must be synchronized with the

procedure reference to avoid possible race conditions.

It is implementation defined whether this situation might occur under other conditions.

Fortran

See Section A.25 on page 167 for an example of this behavior.

2.8.3.3 private clause

Summary

The private clause declares one or more list items to be private to a thread.

Syntax

The syntax of the private clause is as follows:

Description

Each thread in the team that references a list item that appears in a private clause in

any statement in the construct receives a new list item whose language-specific attributes

are derived from the original list item. Inside the construct, all references to the original

list item are replaced by references to the new list item. If a thread does not reference a

list item that appears in a private clause, it is unspecified whether that thread receives

a new list item.

The value of the original list item is not defined upon entry to the region. The original

list item must not be referenced within the region. The value of the original list item is

not defined upon exit from the region.

private( list)
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List items that are privatized in a parallel region may be privatized again in an

enclosed parallel or work-sharing construct. As a result, list items that appear in a

private clause on a parallel or work-sharing construct may be either shared or

private in the enclosing context. See Section A.27 on page 170 for an example.

C/C++
A new list item of the same type, with automatic storage duration, is allocated for the

construct. The size and alignment of the new list item are determined by the type of the

variable. This allocation occurs once for each thread in the team that references the list

item in any statement in the construct.

The new list item is initialized, or has an undefined initial value, as if it had been locally

declared without an initializer. The order in which any default constructors for different

C/C++
private objects are called is unspecified.

Fortran
A new list item of the same type is declared once for each thread in the team that

references the list item in any statement in the construct. The initial value of the new list

item is undefined. Within a parallel region, the initial status of a private pointer

is undefined.

A list item that appears in a private clause may be storage-associated with other

variables when the private clause is encountered. Storage association may exist

because of constructs such as EQUIVALENCE, COMMON, etc. If A is a variable

appearing in a private clause and B is a variable which is storage-associated with A,

then:

• The contents, allocation, and association status of B are undefined on entry to the

parallel region.

• Any definition of A, or of its allocation or association status, causes the contents,

allocation, and association status of B to become undefined.

• Any definition of B, or of its allocation or association status, causes the contents,

allocation, and association status of A to become undefined.

Fortran

For examples, see Section A.28 on page 171.

For examples of the private clause, see Section A.26 on page 168.

Restrictions

The restrictions to the private clause are as follows:
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• A list item that appears in the reduction clause of a parallel construct must

not appear in a private clause on a work-sharing construct if any of the work-

sharing regions arising from the work-sharing construct ever bind to any of the

parallel regions arising from the parallel construct.

C/C++
• A variable of class type (or array thereof) that appears in a private clause requires

an accessible, unambiguous default constructor for the class type.

• A variable that appears in a private clause must not have a const -qualified type

unless it is of class type with a mutable member.

• A variable that appears in a private clause must not have an incomplete type or a

C/C++
reference type.

Fortran
• A variable that appears in a private clause must either be definable, or an

allocatable array.

• An allocatable array that appears in a private clause must have an allocation status

of “not currently allocated” on entry to and on exit from the construct.

• Assumed-size arrays may not appear in a private clause.

• Variables that appear in namelist statements, in variable format expressions, and in

Fortran

expressions for statement function definitions, may not appear in a private clause.

2.8.3.4 firstprivate clause

Summary

The firstprivate clause declares one or more list items to be private to a thread,

and initializes each of them with the value that the corresponding original item has when

the construct is encountered.

Syntax

The syntax of the firstprivate clause is as follows:

firstprivate( list)
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Description

The firstprivate clause provides a superset of the functionality provided by the

private clause.

A list item that appears in a firstprivate clause is subject to the private clause

semantics described in Section 2.8.3.3 on page 73. In addition, the new list item is

initialized from the original list item existing before the construct. The initialization of

the new list item is done once for each thread in the team that references the list item in

any statement in the construct. The initialization is done prior to the thread’s execution

of the construct.

For a firstprivate clause on a parallel construct, the initial value of the new

list item is the value of the original list item that exists immediately prior to the

parallel construct for the thread that encounters the construct. For a

firstprivate clause on a work-sharing construct, the initial value of the new list

item for a thread that executes the work-sharing construct is the value of the original list

item that exists immediately prior to the point in time that the thread encounters the

work-sharing construct.

If a list item appears in both firstprivate and lastprivate clauses, the update

required for lastprivate occurs after all the initializations for firstprivate .

C/C++
For variables of non-array type, the initialization occurs as if by assignment. For a

(possibly multi-dimensional) array of objects of non-array type, each element is

initialized as if by assignment from an element of the original array to the corresponding

element of the new array. For class types, a copy constructor is invoked to perform the

initialization. The order in which copy constructors for different objects are called is

C/C++
unspecified.

Fortran

Fortran

The initialization of the new list items occurs as if by assignment.

Restrictions

The restrictions to the firstprivate clause are as follows:

• A list item that is private within a parallel region, or that appears in the

reduction clause of a parallel construct, must not appear in a

firstprivate clause on a work-sharing construct if any of the work-sharing

regions arising from the work-sharing construct ever bind to any of the parallel
regions arising from the parallel construct.
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C/C++
• A variable of class type (or array thereof) that appears in a firstprivate clause

requires an accessible, unambiguous copy constructor for the class type.

• A variable that appears in a firstprivate clause must not have a const -

qualified type unless it is of class type with a mutable member.

• A variable that appears in a firstprivate clause must not have an incomplete

C/C++
type or a reference type.

Fortran
• A variable that appears in a firstprivate clause must be definable.

• Fortran pointers, Cray pointers, assumed-size arrays and allocatable arrays may not

appear in a firstprivate clause.

• Variables that appear in namelist statements, in variable format expressions, and in

expressions for statement function definitions, may not appear in a firstprivate

Fortran

clause.

2.8.3.5 lastprivate clause

Summary

The lastprivate clause declares one or more list items to be private to a thread, and

causes the corresponding original list item to be updated after the end of the region.

Syntax

The syntax of the lastprivate clause is as follows:

Description

The lastprivate clause provides a superset of the functionality provided by the

private clause.

lastprivate( list)
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A list item that appears in a lastprivate clause is subject to the private clause

semantics described in Section 2.8.3.3 on page 73. In addition, when a lastprivate
clause appears on the directive that identifies a work-sharing construct, the value of each

new list item from the sequentially last iteration of the associated loop, or the lexically

last section construct, is assigned to the original list item.

C/C++
For a (possibly multi-dimensional) array of objects of non-array type, each element is

C/C++
assigned to the corresponding element of the original array.

List items that are not assigned a value by the sequentially last iteration of the loop, or

by the lexically last section construct, have unspecified values after the construct.

Unassigned subobjects also have an unspecified value after the construct.

The original list item becomes defined at the end of the construct if there is an implicit

barrier at that point. Any concurrent uses or definitions of the original list item must be

synchronized with the definition that occurs at the end of the construct to avoid race

conditions.

If the lastprivate clause is used on a construct to which nowait is also applied,

the original list item remains undefined until a barrier synchronization has been

performed to ensure that the thread that executed the sequentially last iteration, or the

lexically last section construct, has stored that list item.

If a list item appears in both firstprivate and lastprivate clauses, the update

required for lastprivate occurs after all initializations for firstprivate .

For an example of the lastprivate clause, see Section A.30 on page 175.

Restrictions

The restrictions to the lastprivate clause are as follows:

• A list item that is private within a parallel region, or that appears in the

reduction clause of a parallel construct, must not appear in a lastprivate
clause on a work-sharing construct if any of the corresponding work-sharing regions

ever binds to any of the corresponding parallel regions.

C/C++
• A variable of class type (or array thereof) that appears in a lastprivate clause

requires an accessible, unambiguous default constructor for the class type, unless the

list item is also specified in a firstprivate clause.

• A variable of class type (or array thereof) that appears in a lastprivate clause

requires an accessible, unambiguous copy assignment operator for the class type.The

order in which copy assignment operators for different objects are called is

unspecified.
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• A variable that appears in a lastprivate clause must not have a const -qualified

type unless it is of class type with a mutable member.

• A variable that appears in a lastprivate clause must not have an incomplete type

C/C++
or a reference type.

Fortran
• A variable that appears in a lastprivate clause must be definable.

• Fortran pointers, Cray pointers, assumed-size arrays and allocatable arrays may not

appear in a lastprivate clause.

• Variables that appear in namelist statements, in variable format expressions, and in

expressions for statement function definitions, may not appear in a lastprivate

Fortran

clause.

2.8.3.6 reduction clause

Summary

The reduction clause specifies an operator and one or more list items. For each list

item, a private copy is created on each thread, and is initialized appropriately for the

operator. After the end of the region, the original list item is updated with the values of

the private copies using the specified operator.

Syntax

C/C++
The syntax of the reduction clause is as follows:

The following table lists the operators that are valid and their initialization values. The

actual initialization value depends on the data type of the reduction variable.

reduction( operator: list)
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C/C++

Fortran
The syntax of the reduction clause is as follows:

The following table lists the operators and intrinsic_procedure_names that are valid and

their initialization values. The actual initialization value depends on the data type of the

reduction variable.

Operator Initialization value

+ 0

* 1

- 0

& ~0

| 0

^ 0

&& 1

|| 0

reduction( {operator | intrinsic_procedure_name}: list)

Operator/
Intrinsic Initialization value

+ 0

* 1

- 0

.and. .true.

.or. .false.

.eqv. .true.

.neqv. .false.

max Most negative representable number in the

reduction variable type
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Fortran

Description

The reduction clause can be used to perform some forms of recurrence calculations

(involving mathematically associative and commutative operators) in parallel.

A private copy of each list item is created, one for each thread, as if the private
clause had been used. The private copy is then initialized to the initialization value for

the operator, as specified above. At the end of the region for which the reduction
clause was specified, the original list item is updated by combining its original value

with the final value of each of the private copies, using the operator specified. (The

partial results of a subtraction reduction are added to form the final value.)

The value of the original list item becomes undefined when the first thread reaches the

construct that specifies the clause and remains so until the reduction computation is

complete. Normally, the computation will be complete at the end of the construct;

however, if the reduction clause is used on a construct to which nowait is also

applied, the value of the original list item remains undefined until a barrier

synchronization has been performed to ensure that all threads have completed the

reduction. Any concurrent uses or definitions of the original list item must be

synchronized with the definition that occurs at the end of the construct, or at the

subsequent barrier, to avoid race conditions.

The order in which the values are combined is unspecified. Therefore, comparing

sequential and parallel runs, or comparing one parallel run to another (even if the

number of threads used is the same), there is no guarantee that bit-identical results will

be obtained or that side effects (such as floating point exceptions) will be identical.

Note – List items specified in a reduction clause are typically used in the enclosed

region in certain forms.

min Largest representable number in the

reduction variable type

iand All bits on

ior 0

ieor 0
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C/C++
A reduction is typically specified for statements of the form:

where expr has scalar type and does not reference x, op is not an overloaded operator,

but one of +, * , - , &, ^ , | , &&, or || , and binop is not an overloaded operator, but one

C/C++
of +, * , - , &, ^ , or | .

Fortran
A reduction using an operator is typically specified for statements of the form:

where op is +, * , - , .and. , .or. , .eqv. , or .neqv. , the expression does not involve

x, and the reduction op is the last operation performed on the right hand side.

A reduction using an intrinsic is typically specified for statements of the form:

where intr is max, min , iand , ior , or ieor and expr_list is a comma separated list of

Fortran

expressions not involving x.

For examples, see Section A.31 on page 176.

Restrictions

The restrictions to the reduction clause are as follows:

x = x op expr
x binop= expr
x = expr op x (except for subtraction)
x++
++x
x--
-- x

x = x op expr
x = expr op x (except for subtraction)

x = intr( x, expr_list)
x = intr( expr_list, x)
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• A list item that appears in a reduction clause of a work-sharing construct must be

shared in the parallel regions to which any of the work-sharing regions arising

from the work-sharing construct bind.

• A list item that appears in a reduction clause of a parallel construct must not

be privatized on any enclosed work-sharing construct if any of the work-sharing

regions arising from the work-sharing construct bind to any of the parallel
regions arising from the parallel construct.

• Any number of reduction clauses can be specified on the directive, but a list item

can appear only once in the reduction clause(s) for that directive.

C/C++
• The type of a list item that appears in a reduction clause must be valid for the

reduction operator.

• Aggregate types (including arrays), pointer types and reference types may not appear

in a reduction clause.

• A variable that appears in a reduction clause must not be const -qualified.

• The operator specified in a reduction clause cannot be overloaded with respect to

C/C++
the variables that appear in that clause.

Fortran
• The type of a list item that appears in a reduction clause must be valid for the

reduction operator or intrinsic.

• A variable that appears in a reduction clause must be definable.

• A list item that appears in a reduction clause must be a named variable of

intrinsic type.

• Fortran pointers, Cray pointers, assumed-size arrays and allocatable arrays may not

appear in a reduction clause.

• Operators specified must be intrinsic operators and any intrinsic_procedure_name
must refer to one of the allowed intrinsic procedures. Assignment to the reduction

variables must be via intrinsic assignment. See Section A.31 on page 176 for

Fortran

examples.

2.8.4 Data Copying Clauses
This section describes the copyin clause (valid on the parallel directive and

combined parallel work-sharing directives) and the copyprivate clause (valid on the

single directive).
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These clauses support the copying of data values from private or threadprivate objects

on one thread, to the corresponding objects on other threads in the team.

The clauses accept a comma-separated list of list items (see Section 2.1 on page 18). All

list items appearing in a clause must be visible, according to the scoping rules of the

base language. Clauses may be repeated as needed, but a list item that specifies a given

variable may not appear in more than one clause on the same directive.

2.8.4.1 copyin clause

Summary

The copyin clause provides a mechanism to copy the value of the master thread’s

threadprivate variable to the threadprivate variable of each other member of the team

executing the parallel region.

Syntax

The syntax of the copyin clause is as follows:

Description

C/C++
The copy is done after the team is formed and prior to the start of execution of the

parallel region. For variables of non-array type, the copy occurs as if by assignment.

For a (possibly multi-dimensional) array of objects of non-array type, each element is

copied as if by assignment from an element of the master thread’s array to the

corresponding element of the other thread’s array. For class types, the copy assignment

operator is invoked. The order in which copy assignment operators for different objects

C/C++
are called is unspecified.

Fortran
The copy is done, as if by assignment, after the team is formed and prior to the start of

execution of the parallel region.

On entry to any parallel region, each thread’s copy of a variable that is affected by

a copyin clause for the parallel region will acquire the allocation, association, and

definition status of the master thread’s copy, according to the following rules:

• If it has the POINTERattribute:

copyin( list)
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• if the master thread’s copy is associated with a target that each copy can become

associated with, each copy will become associated with the same target;

• if the master thread’s copy is disassociated, each copy will become disassociated;

• otherwise, each copy will have an undefined association status.

• If it does not have the POINTERattribute, each copy becomes defined with the value

Fortran

of the master thread’s copy as if by intrinsic assignment.

For an example of the copyin clause, see Section A.32 on page 180.

Restrictions

The restrictions on the copyin clause are as follows:

C/C++
• A list item that appears in a copyin clause must be threadprivate.

• A variable of class type (or array thereof) that appears in a copyin clause requires

C/C++
an accessible, unambiguous copy assignment operator for the class type.

Fortran
• A list item that appears in a copyin clause must be threadprivate. Named variables

appearing in a threadprivate common block may be specified: it is not necessary to

specify the whole common block.

• A common block name that appears in a copyin clause must be declared to be a

common block in the same scoping unit in which the copyin clause appears.

Fortran

• Allocatable arrays may not appear in a copyin clause.

2.8.4.2 copyprivate clause

Summary

The copyprivate clause provides a mechanism to use a private variable to broadcast

a value from one member of a team to the other members of the team.
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Syntax

The syntax of the copyprivate clause is as follows:

Description

The effect of the copyprivate clause on the specified list items occurs after the

execution of the structured block associated with the single construct (see

Section 2.5.3 on page 42), and before any of the threads in the team have left the barrier

at the end of the construct.

C/C++
In all other threads in the team, each specified list item becomes defined with the value

of the corresponding list item in the thread that executed the structured block. For

variables of non-array type, the definition occurs as if by copy assignment. For a

(possibly multi-dimensional) array of objects of non-array type, each element is copied

as if by copy assignment from an element of the array in the thread that executed the

structured block to the corresponding element of the array in the other threads. For class

types, a copy assignment operator is invoked. The order in which copy assignment

C/C++
operators for different objects are called is unspecified.

Fortran
If a list item is not a pointer, then in all other threads in the team, the list item becomes

defined (as if by assignment) with the value of the corresponding list item in the thread

that executed the structured block. If the list item is a pointer, then in all other threads in

the team, the list item becomes pointer associated (as if by pointer assignment) with the

Fortran

corresponding list item in the thread that executed the structured block.

For examples of the copyprivate clause, see Section A.33 on page 181.

Note – The copyprivate clause is an alternative to using a shared variable for the

value when providing such a shared variable would be difficult (for example, in a

recursion requiring a different variable at each level).

Restrictions

The restrictions to the copyprivate clause are as follows:

copyprivate( list)
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• All list items that appear in the copyprivate clause must be either threadprivate,

or private in the enclosing context.

• A list item that appears in a copyprivate clause may not appear in a private or

firstprivate clause on the single construct.

C/C++
• A variable of class type (or array thereof) that appears in a copyprivate clause

C/C++
requires an accessible unambiguous copy assignment operator for the class type.

Fortran
• A common block that appears in a copyprivate clause must be threadprivate.

• Allocatable arrays and assumed-size arrays may not appear in a copyprivate

Fortran

clause.

2.9 Nesting of Regions
This section describes a set of restrictions on the nesting of regions. The restrictions on

nesting are as follows:

• A work-sharing region may not be closely nested inside a work-sharing, critical ,

ordered , or master region.

• A barrier region may not be closely nested inside a work-sharing, critical ,

ordered , or master region.

• A master region may not be closely nested inside a work-sharing region.

• An ordered region may not be closely nested inside a critical region.

• An ordered region must be closely nested inside a loop region (or parallel loop

region) with an ordered clause.

• A critical region may not be nested (closely or otherwise) inside a critical
region with the same name. Note that this restriction is not sufficient to prevent

deadlock.

For examples illustrating these rules, see Section A.14 on page 139, Section A.34 on

page 185 and Section A.35 on page 187.
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CHAPTER 3

Runtime Library Routines

This chapter describes the OpenMP API runtime library routines and is divided into the

following sections:

• Runtime library definitions (Section 3.1 on page 90).

• Execution environment routines that can be used to control and query the parallel

execution environment (Section 3.2 on page 91).

• Lock routines that can be used to synchronize access to data (Section 3.3 on page

102).

• Portable timer routines (Section 3.4 on page 108).

Throughout this chapter, true and false are used as generic terms to simplify the

description of the routines.

C/C++

C/C++
true means a nonzero integer value and false means an integer value of zero.

Fortran

Fortran

true means a logical value of .TRUE. and false means a logical value of .FALSE..

Fortran

Restrictions

The following restriction applies to all OpenMP runtime library routines:

• OpenMP runtime library routines may not be called from PUREor ELEMENTAL

Fortran

procedures.
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3.1 Runtime Library Definitions
For each base language, a compliant implementation must supply a set of definitions for

the OpenMP API runtime library routines and the special data types of their parameters.

The set of definitions must contain a declaration for each OpenMP API runtime library

routine and a declaration for the simple lock and nestable lock data types. In addition,

each set of definitions may specify other implementation specific values.

C/C++
The library routines are external functions with “C” linkage.

Prototypes for the C/C++ runtime library routines described in this chapter shall be

provided in a header file named omp.h . This file defines the following:

• The prototypes of all the routines in the chapter.

• The type omp_lock_t .

• The type omp_nest_lock_t .

C/C++
See Section D.1 on page 223 for an example of this file.

Fortran
The OpenMP Fortran API runtime library routines are external procedures. The return

values of these routines are of default kind, unless otherwise specified.

Interface declarations for the OpenMP Fortran runtime library routines described in this

chapter shall be provided in the form of a Fortran include file named omp_lib.h or

a Fortran 90 module named omp_lib . It is implementation defined whether the

include file or the module file (or both) is provided.

These files define the following:

• The interfaces of all of the routines in this chapter.

• The integer parameter omp_lock_kind .

• The integer parameter omp_nest_lock_kind .

• The integer parameter openmp_version with a value yyyymm where yyyy
and mm are the year and month designations of the version of the OpenMP Fortran

API that the implementation supports. This value matches that of the C preprocessor

macro _OPENMP, when a macro preprocessor is supported (see Section 2.2 on page

21).

See Section D.2 on page 225 and Section D.3 on page 227 for examples of these files.
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It is implementation defined whether any of the OpenMP runtime library routines that

take an argument are extended with a generic interface so arguments of different KIND

Fortran

type can be accommodated. See Appendix D.4 for an example of such an extension.

3.2 Execution Environment Routines
The routines described in this section affect and monitor threads, processors, and the

parallel environment.

• the omp_set_num_threads routine.

• the omp_get_num_threads routine.

• the omp_get_max_threads routine.

• the omp_get_thread_num routine.

• the omp_get_num_procs routine.

• the omp_in_parallel routine.

• the omp_set_dynamic routine.

• the omp_get_dynamic routine.

• the omp_set_nested routine.

• the omp_get_nested routine.

3.2.1 omp_set_num_threads

Summary

The omp_set_num_threads routine affects the number of threads to be used for

subsequent parallel regions that do not specify a num_threads clause, by setting

the value of the nthreads-var internal control variable.
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C/C++
Format

C/C++

Fortran

Fortran

Constraints on Arguments

The value of the argument passed to this routine must evaluate to a positive integer.

Binding

When called from the sequential part of the program, the binding thread set for an

omp_set_num_threads region is the encountering thread. When called from within

any explicit parallel region, the binding thread set (and binding region, if required)

for the omp_set_num_threads region is implementation defined.

Effect

The effect of this routine is to set the value of the nthreads-var internal control variable

to the value specified in the argument.

See Section 2.4.1 on page 29 for the rules governing the number of threads used to

execute a parallel region.

If the number of threads requested exceeds the number the implementation can support,

or is not a positive integer, the behavior of this routine is implementation defined.

For an example of the omp_set_num_threads routine, see Section A.36 on page

193.

Calling Context Rules

This routine has the described effect only when called from the sequential part of the

program. If it is called from any parallel region, the behavior of this routine is

implementation defined.

void omp_set_num_threads(int num_threads);

subroutine omp_set_num_threads( num_threads)
integer  num_threads
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Cross References
• Internal control variables, see Section 2.3 on page 24.

3.2.2 omp_get_num_threads

Summary

The omp_get_num_threads routine returns the number of threads in the current

team.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_get_num_threads region is the current team.The

binding region for an omp_get_num_threads region is the innermost enclosing

parallel region. The return value of this routine depends on the characteristics of the

team executing the binding parallel region.

Effect

The omp_get_num_threads routine returns the number of threads in the team

executing the parallel region to which the routine region binds. If called from the

sequential part of a program, this routine returns 1. For examples, see Section A.37 on

page 195.

See Section 2.4.1 on page 29 for the rules governing the number of threads used to

execute a parallel region.

Cross References
• parallel construct, see Section 2.4 on page 26.

int omp_get_num_threads(void);

integer function omp_get_num_threads()
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3.2.3 omp_get_max_threads

Summary

The omp_get_max_threads routine returns the value of the nthreads-var internal

control variable, which is used to determine the number of threads that would form the

new team, if an active parallel region without a num_threads clause were to be

encountered at that point in the program.

C/C++
Format

C/C++

Fortran

Fortran

Binding

When called from the sequential part of the program, the binding thread set for an

omp_get_max_threads region is the encountering thread. When called from within

any explicit parallel region, the binding thread set (and binding region, if required)

for the omp_get_max_threads region is implementation defined.

Effect

The following expresses a lower bound on the value of omp_get_max_threads : the

number of threads that would be used to form a team if an active parallel region

without a num_threads clause were to be encountered at that point in the program is

less than or equal to the value returned by omp_get_max_threads .

See Section 2.4.1 on page 29 for the rules governing the number of threads used to

execute a parallel region.

Note – The return value of omp_get_max_threads routine can be used to

dynamically allocate sufficient storage for all threads in the team formed at the

subsequent active parallel region.

int omp_get_max_threads(void);

integer function omp_get_max_threads()
94 OpenMP API • Version 2.5  May 2005



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
Cross References
• Internal control variables, see Section 2.3 on page 24.

• parallel construct, see Section 2.4 on page 26.

• num_threads clause, see Section 2.4 on page 26.

3.2.4 omp_get_thread_num

Summary

The omp_get_thread_num routine returns the thread number, within the team, of

the thread executing the parallel region from which omp_get_thread_num is

called.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_get_thread_num region is the current team.The

binding region for an omp_get_thread_num region is the innermost enclosing

parallel region. The return value of this routine depends on the characteristics of the

team executing the binding parallel region.

Effect

The omp_get_thread_num routine returns the thread number of the current thread,

within the team executing the parallel region to which the routine region binds. The

thread number is an integer between 0 and one less than the value returned by

omp_get_num_threads , inclusive. The thread number of the master thread of the

team is 0. The routine returns 0 if it is called from the sequential part of a program.

int omp_get_thread_num(void);

integer function omp_get_thread_num()
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Cross References
• omp_get_num_threads routine, see Section 3.2.2 on page 93.

3.2.5 omp_get_num_procs

Summary

The omp_get_num_procs routine returns the number of processors available to the

program.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_get_num_procs region is all threads. The effect

of executing this routine is not related to any specific region corresponding to any

construct or API routine.

Effect

The omp_get_num_procs routine returns the number of processors that are available

to the program at the time the routine is called.

3.2.6 omp_in_parallel

Summary

The omp_in_parallel routine returns true if the call to the routine is enclosed by an

active parallel region; otherwise, it returns false.

int omp_get_num_procs(void);

integer function omp_get_num_procs()
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C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_in_parallel region is all threads. The effect of

executing this routine is not related to any specific parallel region but instead

depends on the state of all enclosing parallel regions.

Effect

omp_in_parallel returns the logical OR of the if clauses of all enclosing

parallel regions. If a parallel region does not have an if clause, this is

equivalent to if ( true) .

If the routine is called from the sequential part of the program, then

omp_in_parallel returns false.

Cross References
• if clause, see Section 2.4.1 on page 29.

3.2.7 omp_set_dynamic

Summary

The omp_set_dynamic routine enables or disables dynamic adjustment of the

number of threads available for the execution of parallel regions by setting the value

of the dyn-var internal control variable.

int omp_in_parallel(void);

logical function omp_in_parallel()
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C/C++
Format

C/C++

Fortran

Fortran

Binding

When called from the sequential part of the program, the binding thread set for an

omp_set_dynamic region is the encountering thread. When called from within any

explicit parallel region, the binding thread set (and binding region, if required) for

the omp_set_dynamic region is implementation defined.

Effect

For implementations that provide the ability to dynamically adjust the number of

threads, if the argument to omp_set_dynamic evaluates to true, dynamic adjustment

of the number of threads is enabled; otherwise, dynamic adjustment is disabled.

For implementations that do not provide the ability to dynamically adjust the number of

threads, this routine has no effect: the value of dyn-var remains false.

For an example of the omp_set_dynamic routine, see Section A.36 on page 193.

See Section 2.4.1 on page 29 for the rules governing the number of threads used to

execute a parallel region.

Calling Context Rules

The omp_set_dynamic routine has the described effect only when called from the

sequential part of the program. If called from within any explicit parallel region, the

behavior of this routine is implementation defined.

Cross References:
• Internal control variables, see Section 2.3 on page 24.

• omp_get_num_threads routine, see Section 3.2.2 on page 93.

void omp_set_dynamic(int dynamic_threads);

subroutine omp_set_dynamic ( dynamic_threads)
logical dynamic_threads
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3.2.8 omp_get_dynamic

Summary

The omp_get_dynamic routine returns the value of the dyn-var internal control

variable, which determines whether dynamic adjustment of the number of threads is

enabled or disabled.

C/C++
Format

C/C++

Fortran

Fortran

Binding

When called from the sequential part of the program, the binding thread set for an

omp_get_dynamic region is the encountering thread. When called from within any

explicit parallel region, the binding thread set (and binding region, if required) for

the omp_get_dynamic region is implementation defined.

Effect

This routine returns true if dynamic adjustment of the number of threads is enabled; it

returns false, otherwise.

If the implementation does not provide the ability to dynamically adjust the number of

threads, then this routine always returns false.

See Section 2.4.1 on page 29 for the rules governing the number of threads used to

execute a parallel region.

Cross References
• Internal control variables, see Section 2.3 on page 24.

int omp_get_dynamic(void);

logical function omp_get_dynamic()
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3.2.9 omp_set_nested

Summary

The omp_set_nested routine enables or disables nested parallelism, by setting the

nest-var internal control variable.

C/C++
Format

C/C++

Fortran

Fortran

Binding

When called from the sequential part of the program, the binding thread set for an

omp_set_nested region is the encountering thread. When called from within any

explicit parallel region, the binding thread set (and binding region, if required) for

the omp_set_nested region is implementation defined.

Effect

For implementations that support nested parallelism, if the argument to

omp_set_nested evaluates to true, nested parallelism is enabled; otherwise, nested

parallelism is disabled.

For implementations that do not support nested parallelism, this routine has no effect:

the value of nest-var remains false.

See Section 2.4.1 on page 29 for the rules governing the number of threads used to

execute a parallel region.

Calling Context Rules

The omp_set_nested routine has the described effect only when called from the

sequential part of the program. If called from within any explicit parallel region, the

behavior of this routine is implementation defined.

void omp_set_nested(int nested);

subroutine omp_set_nested ( nested)
logical  nested
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Cross References
• Internal control variables, see Section 2.3 on page 24.

3.2.10 omp_get_nested

Summary

The omp_get_nested routine returns the value of the nest-var internal control

variable, which determines if nested parallelism is enabled or disabled.

C/C++
Format

C/C++

Fortran

Fortran

Binding

When called from the sequential part of the program, the binding thread set for an

omp_get_nested region is the encountering thread. When called from within any

explicit parallel region, the binding thread set (and binding region, if required) for

the omp_get_nested region is implementation defined.

Effect

This routine returns true if nested parallelism is enabled; it returns false, otherwise.

If an implementation does not support nested parallelism, this routine always returns

false.

See Section 2.4.1 on page 29 for the rules governing the number of threads used to

execute a parallel region.

Cross References
• Internal control variables, see Section 2.3 on page 24.

int omp_get_nested(void);

logical function omp_get_nested()
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3.3 Lock Routines
The OpenMP runtime library includes a set of general-purpose lock routines that can be

used for synchronization. These general-purpose lock routines operate on OpenMP locks

that are represented by OpenMP lock variables. An OpenMP lock variable must be

accessed only through the routines described in this section.

An OpenMP lock may be in one of the following states: uninitialized, unlocked, or

locked. If a lock is in the unlocked state, a thread may set the lock, which changes its

state to locked. The thread which sets the lock is then said to own the lock. A thread

which owns a lock may unset that lock, returning it to the unlocked state. A thread may

not set or unset a lock which is owned by another thread.

Two types of locks are supported: simple locks and nestable locks. A nestable lock may

be set multiple times by the same thread before being unset; a simple lock may not be

set if it is already owned by the thread trying to set it. Simple lock variables are

associated with simple locks and may only be passed to simple lock routines. Nestable

lock variables are associated with nestable locks and may only be passed to nestable

lock routines.

Constraints on the state and ownership of the lock accessed by each of the lock routines

are described with the routine. If these constraints are not met, the behavior of the

routine is unspecified.

The OpenMP lock routines access a lock variable in such a way that they always read

and update the most current value of the lock variable. Therefore, it is not necessary for

an OpenMP program to include explicit flush directives to ensure that the lock

variable’s value is consistent among different threads.

See Section A.39 on page 198 and Section A.40 on page 200, for examples of using the

simple and the nestable lock routines, respectively.

Binding

The binding thread set for all lock routine regions is all threads. For each OpenMP lock,

the lock routine effects relate to all threads which execute the routines, without regard to

which team(s) the threads belong.
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Simple Lock Routines

C/C++
The type omp_lock_t is an object type capable of representing a simple lock. For the

following routines, a lock variable must be of omp_lock_t type. All simple lock

C/C++
routines require an argument that is a pointer to a variable of type omp_lock_t .

Fortran
For the following routines, svar must be an integer variable of

Fortran

kind=omp_lock_kind .

The simple lock routines are as follows:

• The omp_init_lock routine initializes a simple lock.

• The omp_destroy_lock routine uninitializes a simple lock.

• The omp_set_lock routine waits until a simple lock is available, and then sets it.

• The omp_unset_lock routine unsets a simple lock.

• The omp_test_lock routine tests a simple lock, and sets it if it is available.

Nestable Lock Routines:

C/C++
The type omp_nest_lock_t is an object type capable of representing a nestable lock.

For the following routines, a lock variable must be of omp_nest_lock_t type. All

nestable lock routines require an argument that is a pointer to a variable of type

C/C++
omp_nest_lock_t .

Fortran
For the following routines, nvar must be an integer variable of

Fortran

kind=omp_nest_lock_kind .

The nestable lock routines are as follows:

• The omp_init_nest_lock routine initializes a nestable lock.

• The omp_destroy_nest_lock routine uninitializes a nestable lock.

• The omp_set_nest_lock routine waits until a nestable lock is available, and then

sets it.
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• The omp_unset_nest_lock routine unsets a nestable lock.

• The omp_test_nest_lock routine tests a nestable lock, and sets it if it is

available.

3.3.1 omp_init_lock and omp_init_nest_lock

Summary

These routines provide the only means of initializing an OpenMP lock.

C/C++
Format

C/C++

Fortran

Fortran

Constraints on Arguments

A lock accessed by either routine must be in the uninitialized state.

Effect

The effect of these routines is to initialize the lock to the unlocked state (that is, no

thread owns the lock). In addition, the nesting count for a nestable lock is set to zero.

For an example of the omp_init_lock routine, see Section A.38 on page 197.

void omp_init_lock(omp_lock_t * lock);
void omp_init_nest_lock(omp_nest_lock_t * lock);

subroutine omp_init_lock( svar)
integer (kind=omp_lock_kind)  svar

subroutine omp_init_nest_lock( nvar)
integer (kind=omp_nest_lock_kind)  nvar
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3.3.2 omp_destroy_lock and
omp_destroy_nest_lock

Summary

These routines ensure that the OpenMP lock is uninitialized.

C/C++
Format

C/C++

Fortran

Fortran

Constraints on Arguments

A lock accessed by either routine must be in the unlocked state.

Effect

The effect of these routines is to change the state of the lock to uninitialized.

3.3.3 omp_set_lock and omp_set_nest_lock

Summary

These routines provide a means of setting an OpenMP lock. The calling thread blocks

until the lock is set.

void omp_destroy_lock(omp_lock_t * lock);
void omp_destroy_nest_lock(omp_nest_lock_t * lock);

subroutine omp_destroy_lock( svar)
integer (kind=omp_lock_kind)  svar

subroutine omp_destroy_nest_lock( nvar)
integer (kind=omp_nest_lock_kind)  nvar
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C/C++
Format

C/C++

Fortran

Fortran

Constraints on Arguments

A lock accessed by either routine must not be in the uninitialized state. A simple lock

accessed by omp_set_lock which is in the locked state must not be owned by the

thread executing the routine.

Effect

Each of these routines blocks the thread executing the routine until the specified lock is

available and then sets the lock.

A simple lock is available if it is unlocked. Ownership of the lock is granted to the

thread executing the routine.

A nestable lock is available if it is unlocked or if it is already owned by the thread

executing the routine. The thread executing the routine is granted, or retains, ownership

of the lock, and the nesting count for the lock is incremented.

3.3.4 omp_unset_lock and omp_unset_nest_lock

Summary

These routines provide the means of unsetting an OpenMP lock.

void omp_set_lock(omp_lock_t * lock);
void omp_set_nest_lock(omp_nest_lock_t * lock);

subroutine omp_set_lock( svar)
integer (kind=omp_lock_kind)  svar

subroutine omp_set_nest_lock( nvar)
integer (kind=omp_nest_lock_kind)  nvar
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C/C++
Format

C/C++

Fortran

Fortran

Constraints on Arguments

A lock accessed by either routine must be in the locked state and owned by the thread

executing the routine.

Effect

For a simple lock, the omp_unset_lock routine causes the lock to become unlocked.

For a nestable lock, the omp_unset_nest_lock routine decrements the nesting

count, and causes the lock to become unlocked if the resulting nesting count is zero.

For either routine, if the lock becomes unlocked, and if one or more threads are waiting

for this lock, the effect is that one thread is chosen and given ownership of the lock.

3.3.5 omp_test_lock and omp_test_nest_lock

Summary

These routines attempt to set an OpenMP lock but do not block execution of the thread

executing the routine.

void omp_unset_lock(omp_lock_t * lock);
void omp_unset_nest_lock(omp_nest_lock_t * lock);

subroutine omp_unset_lock( svar)
integer (kind=omp_lock_kind)  svar

subroutine omp_unset_nest_lock( nvar)
integer (kind=omp_nest_lock_kind)  nvar
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C/C++
Format

C/C++

Fortran

Fortran

Constraints on Arguments

A lock accessed by either routine must not be in the uninitialized state. A simple lock

accessed by omp_test_lock which is in the locked state must not be owned by the

thread executing the routine.

Effect

These routines attempt to set a lock in the same manner as omp_set_lock and

omp_set_nest_lock , except that they do not block execution of the thread

executing the routine.

For a simple lock, the omp_test_lock routine returns true if the lock is successfully

set; otherwise, it returns false.

For a nestable lock, the omp_test_nest_lock routine returns the new nesting count

if the lock is successfully set; otherwise, it returns zero.

3.4 Timing Routines
The routines described in this section support a portable wall clock timer.

• the omp_get_wtime routine.

• the omp_get_wtick routine.

int omp_test_lock(omp_lock_t * lock);
int omp_test_nest_lock(omp_nest_lock_t * lock);

logical function omp_test_lock( svar)
integer (kind=omp_lock_kind)  svar

integer function omp_test_nest_lock( nvar)
integer (kind=omp_nest_lock_kind)  nvar
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3.4.1 omp_get_wtime

Summary

The omp_get_wtime routine returns elapsed wall clock time in seconds.

C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_get_wtime region is the encountering thread. The

routine’s return value is not guaranteed to be consistent across any set of threads.

Effect

The omp_get_wtime routine returns a value equal to the elapsed wall clock time in

seconds since some “time in the past”. The actual “time in the past” is arbitrary, but it is

guaranteed not to change during the execution of the application program. The times

returned are “per-thread times”, so they are not required to be globally consistent across

all the threads participating in an application.

double omp_get_wtime(void);

double precision function omp_get_wtime()
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Note – It is anticipated that the routine will be used to measure elapsed times as shown

C/C++
in the following example:

C/C++

Fortran

Fortran

3.4.2 omp_get_wtick

Summary

The omp_get_wtick routine returns the precision of the timer used by

omp_get_wtime .

double start;
double end;
start = omp_get_wtime();
... work to be timed ...
end = omp_get_wtime();
printf("Work took %f seconds\n", end - start);

DOUBLE PRECISION START, END
START = omp_get_wtime()
... work to be timed ...
END = omp_get_wtime()
PRINT *, "Work took", END - START, "seconds"
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C/C++
Format

C/C++

Fortran

Fortran

Binding

The binding thread set for an omp_get_wtick region is the encountering thread. The

routine’s return value is not guaranteed to be consistent across any set of threads.

Effect

The omp_get_wtick routine returns a value equal to the number of seconds between

successive clock ticks of the timer used by omp_get_wtime .

double omp_get_wtick(void);

double precision function omp_get_wtick()
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CHAPTER 4

Environment Variables

This chapter describes the OpenMP environment variables that specify the settings of

the internal control variables that affect the execution of OpenMP programs (see

Section 2.3 on page 24). The names of the environment variables must be uppercase.

The values assigned to the environment variables are case insensitive and may have

leading and trailing white space. Modifications to the environment variables after the

program has started, even if modified by the program itself, are ignored by the OpenMP

implementation. However, the settings of the internal control variables can be modified

during the execution of the OpenMP program by the use of the appropriate directive

clauses or OpenMP API routines.

The environment variables are as follows:

• OMP_SCHEDULEsets the run-sched-var internal control variable for the runtime

schedule type and chunk size.

• OMP_NUM_THREADSsets the nthreads-var internal control variable for the number

of threads to use for parallel regions.

• OMP_DYNAMICsets the dyn-var internal control variable for the dynamic adjustment

of threads to use for parallel regions.

• OMP_NESTEDsets the nest-var internal control variable to enable or disable nested

parallelism.

The examples in this chapter only demonstrate how these variables might be set in Unix

C shell (csh) environments. In Korn shell (ksh) and DOS environments the actions are

similar, as follows:

• csh:

• ksh:

setenv OMP_SCHEDULE "dynamic"

export OMP_SCHEDULE="dynamic"
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• DOS:

4.1 OMP_SCHEDULE
The OMP_SCHEDULEenvironment variable controls the schedule type and chunk size

of all loop directives that have the schedule type runtime , by setting the value of the

run-sched-var internal control variable.

The value of this environment variable takes the form:

type[,chunk]

where

• type is one of static , dynamic or guided

• chunk is an optional positive integer which specifies the chunk size

If chunk is present, there may be white space on either side of the “,”. See Section 2.5.1

on page 33 for a detailed description of the schedule types.

If OMP_SCHEDULEis not set, the initial value of the run-sched-var internal control

variable is implementation defined.

Example:

Cross References:
• Internal control variables, see Section 2.3 on page 24.

• Loop construct, see Section 2.5.1 on page 33.

• Parallel loop construct, see Section 2.6.1 on page 47.

set OMP_SCHEDULE="dynamic"

setenv OMP_SCHEDULE "guided,4"
setenv OMP_SCHEDULE "dynamic"
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4.2 OMP_NUM_THREADS
The OMP_NUM_THREADSenvironment variable sets the number of threads to use for

parallel regions by setting the initial value of the nthreads-var internal control

variable. See Section 2.3 for a comprehensive set of rules about the interaction between

the OMP_NUM_THREADSenvironment variable, the num_threads clause, the

omp_set_num_threads library routine and dynamic adjustment of threads.

The value of this environment variable must be a positive integer. The behavior of the

program is implementation defined if the requested value of OMP_NUM_THREADSis

greater than the number of threads an implementation can support, or if the value is not

a positive integer.

If the OMP_NUM_THREADSenvironment variable is not set, the initial value of the

nthreads-var internal control variable is implementation defined.

The nthreads-var internal control variable can be modified using the

omp_set_num_threads library routine. The number of threads in the current team

can be queried using the omp_get_num_threads library routine. The maximum

number of threads in future teams can be queried using the omp_get_max_threads
library routine.

Example:

Cross References:
• Internal control variables, see Section 2.3 on page 24.

• num_threads clause, Section 2.4 on page 26.

• omp_set_num_threads routine, see Section 3.2.1 on page 91.

• omp_get_num_threads routine, see Section 3.2.2 on page 93.

• omp_get_max_threads routine, see Section 3.2.3 on page 94.

• omp_get_dynamic routine, see Section 3.2.8 on page 99.

setenv OMP_NUM_THREADS 16
Chapter 4 Environment Variables 115



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
4.3 OMP_DYNAMIC
The OMP_DYNAMICenvironment variable controls dynamic adjustment of the number

of threads to use for executing parallel regions by setting the initial value of the

dyn-var internal control variable. The value of this environment variable must be true
or false . If the environment variable is set to true , the OpenMP implementation may

adjust the number of threads to use for executing parallel regions in order to

optimize the use of system resources. If the environment variable is set to false , the

dynamic adjustment of the number of threads is disabled.

If the OMP_DYNAMICenvironment variable is not set, the initial value of the dyn-var
internal control variable is implementation defined.

The dyn-var internal control variable can be modified by calling the

omp_set_dynamic library routine. The current value of dyn-var can be queried using

the omp_get_dynamic library routine.

Example:

Cross References:
• Internal control variables, see Section 2.3 on page 24.

• omp_get_num_threads routine, see Section 3.2.2 on page 93.

• omp_set_dynamic routine, see Section 3.2.7 on page 97.

• omp_get_dynamic routine, see Section 3.2.8 on page 99.

4.4 OMP_NESTED
The OMP_NESTEDenvironment variable controls nested parallelism by setting the

initial value of the nest-var internal control variable. The value of this environment

variable must be true or false . If the environment variable is set to true , nested

parallelism is enabled; if set to false , nested parallelism is disabled.

If the OMP_NESTEDenvironment variable is not set, the initial value of the nest-var
internal control variable is false .

setenv OMP_DYNAMIC true
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The nest-var internal control variable can be modified by calling the

omp_set_nested library routine. The current value of nest-var can be queried using

the omp_get_nested library routine.

Example:

Cross References:
• Internal control variables, see Section 2.3 on page 24.

• omp_set_nested routine, see Section 3.2.9 on page 100.

setenv OMP_NESTED false
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APPENDIX A

Examples

The following are examples of the constructs and routines defined in this document.

C/C++
A statement following a directive is compound only when necessary, and a non-

C/C++
compound statement is indented with respect to a directive preceding it.

A.1 A Simple Parallel Loop
The following example demonstrates how to parallelize a simple loop using the parallel

loop construct (Section 2.6.1 on page 47). The loop iteration variable is private by

default, so it is not necessary to specify it explicitly in a private clause.

C/C++
Example A.1.1c
void a1(int n, float *a, float *b)
{
    int i;

#pragma omp parallel for
    for (i=1; i<n; i++) /* i is private by default */
        b[i] = (a[i] + a[i-1]) / 2.0;

C/C++
}

Fortran

Example A.1.1f
    SUBROUTINE A1(N, A, B)
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      INTEGER I, N
      REAL B(N), A(N)

!$OMP PARALLEL DO  !I is private by default
      DO I=2,N
          B(I) = (A(I) + A(I-1)) / 2.0
      ENDDO
!$OMP END PARALLEL DO

Fortran

    END SUBROUTINE A1

A.2 The OpenMP Memory Model
In the following example, at Print 1, the value of x could be either 2 or 5, depending on

the timing of the threads, and the implementation of the assignment to x. There are two

reasons that the value at Print 1 might not be 5. First, Print 1 might be executed before

the assignment to x is executed. Second, even if Print 1 is executed after the assignment,

the value 5 is not guaranteed to be seen by thread 1 because a flush may not have been

executed by thread 0 since the assignment.

The barrier after Print 1 contains implicit flushes on all threads, as well as a thread

synchronization, so the programmer is guaranteed that the value 5 will be printed by

both Print 2 and Print 3.

C/C++
Example A.2.1c
#include <stdio.h>
#include <omp.h>

int main(){
  int x;

  x = 2;
  #pragma omp parallel num_threads(2) shared(x)
    {

    if (omp_get_thread_num() == 0) {
       x = 5;
    } else {
    /* Print 1: the following read of x has a race */
      printf("1: Thread# %d: x = %d\n", omp_get_thread_num(),x );
    }
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    #pragma omp barrier

    if (omp_get_thread_num() == 0) {
    /* Print 2 */
      printf("2: Thread# %d: x = %d\n", omp_get_thread_num(),x );
    } else {
    /* Print 3 */
      printf("3: Thread# %d: x = %d\n", omp_get_thread_num(),x );
    }
  }
  return 0;

C/C++
}

Fortran

Example A.2.1f
PROGRAM A2
  INCLUDE "omp_lib.h"      ! or USE OMP_LIB
  INTEGER X

  X = 2
!$OMP PARALLEL NUM_THREADS(2) SHARED(X)

    IF (OMP_GET_THREAD_NUM() .EQ. 0) THEN
       X = 5
    ELSE
    ! PRINT 1: The following read of x has a race
      PRINT *,"1: THREAD# ", OMP_GET_THREAD_NUM(), "X = ", X
    ENDIF

 !$OMP BARRIER

    IF (OMP_GET_THREAD_NUM() .EQ. 0) THEN
    ! PRINT 2
      PRINT *,"2: THREAD# ", OMP_GET_THREAD_NUM(), "X = ", X
    ELSE
    ! PRINT 3
      PRINT *,"3: THREAD# ", OMP_GET_THREAD_NUM(), "X = ", X
    ENDIF

!$OMP END PARALLEL

Fortran

END PROGRAM A2
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A.3 Conditional Compilation
C/C++

The following example illustrates the use of conditional compilation using the OpenMP

macro _OPENMP(Section 2.2 on page 21). With OpenMP compilation, the _OPENMP
macro becomes defined.

Example A.3.1c
#include <stdio.h>

int main()
{

# ifdef _OPENMP
    printf("Compiled by an OpenMP-compliant implementation.\n");
# endif

    return 0;

C/C++
}

Fortran
The following example illustrates the use of the conditional compilation sentinel (see

Section 2.2 on page 21). With OpenMP compilation, the conditional compilation

sentinel !$ is recognized and treated as two spaces. In fixed form source, statements

guarded by the sentinel must start after column 6.

Example A.3.1f
      PROGRAM A3

C234567890
!$    PRINT *, "Compiled by an OpenMP-compliant implementation."

Fortran

      END PROGRAM A3
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A.4 The parallel Construct
The parallel construct (Section 2.4 on page 26) can be used in coarse-grain parallel

programs. In the following example, each thread in the parallel region decides what

part of the global array x to work on, based on the thread number:

C/C++
Example A.4.1c
#include <omp.h>

void subdomain(float *x, int istart, int ipoints)
{
  int i;

  for (i = 0; i < ipoints; i++)
      x[istart+i] = 123.456;
}

void sub(float *x, int npoints)
{
    int iam, nt, ipoints, istart;

#pragma omp parallel default(shared) private(iam,nt,ipoints,istart)
    {
        iam = omp_get_thread_num();
        nt =  omp_get_num_threads();
        ipoints = npoints / nt;    /* size of partition */
        istart = iam * ipoints;  /* starting array index */
        if (iam == nt-1)     /* last thread may do more */
          ipoints = npoints - istart;
        subdomain(x, istart, ipoints);
    }
}

int main()
{
    float array[10000];

    sub(array, 10000);

    return 0;

C/C++
}
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Fortran

Example A.4.1f
      SUBROUTINE SUBDOMAIN(X, ISTART, IPOINTS)
          INTEGER ISTART, IPOINTS
          REAL X(*)

          INTEGER I

          DO 100 I=1,IPOINTS
             X(ISTART+I) = 123.456
 100      CONTINUE

      END SUBROUTINE SUBDOMAIN

      SUBROUTINE SUB(X, NPOINTS)
          INCLUDE "omp_lib.h"     ! or USE OMP_LIB

          REAL X(*)
          INTEGER NPOINTS

          INTEGER IAM, NT, IPOINTS, ISTART

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,NPOINTS)

          IAM = OMP_GET_THREAD_NUM()
          NT =  OMP_GET_NUM_THREADS()
          IPOINTS = NPOINTS/NT
          ISTART = IAM * IPOINTS
          IF (IAM .EQ. NT-1) THEN
              IPOINTS = NPOINTS - ISTART
          ENDIF
          CALL SUBDOMAIN(X,ISTART,IPOINTS)

!$OMP END PARALLEL

      END SUBROUTINE SUB

      PROGRAM A4

          REAL ARRAY(10000)

          CALL SUB(ARRAY, 10000)

Fortran

      END PROGRAM A4
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A.5 The num_threads Clause
The following example demonstrates the num_threads clause (Section 2.4 on page

26). The parallel region is executed with a maximum of 10 threads.

C/C++
Example A.5.1c
#include <omp.h>
int main()
{
  omp_set_dynamic(1);

  #pragma omp parallel num_threads(10)
  {
    /* do work here */
  }
  return 0;

C/C++
}

Fortran

Example A.5.1f
      PROGRAM A5
        INCLUDE "omp_lib.h"      ! or USE OMP_LIB
        CALL OMP_SET_DYNAMIC(.TRUE.)

!$OMP     PARALLEL NUM_THREADS(10)
            ! do work here
!$OMP     END PARALLEL

Fortran

      END PROGRAM A5

Fortran

A.6 Fortran Restrictions on the do Construct
If an end do directive follows a do-construct in which several DOstatements share a

DOtermination statement, then a do directive can only be specified for the first (i.e.

outermost) of these DOstatements. For more information, see Section 2.5.1 on page 33.

The following example contains correct usages of loop constructs:
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Fortran (cont.)

Example A.6.1f
      SUBROUTINE WORK(I, J)
      INTEGER I,J
      END SUBROUTINE WORK

      SUBROUTINE A6_GOOD()
        INTEGER I, J
        REAL A(1000)

        DO 100 I = 1,10
!$OMP     DO
          DO 100 J = 1,10
            CALL WORK(I,J)
100     CONTINUE      !  !$OMP ENDDO implied here

!$OMP   DO
        DO 200 J = 1,10
200       A(I) = I + 1
!$OMP   ENDDO

!$OMP   DO
        DO 300 I = 1,10
          DO 300 J = 1,10
            CALL WORK(I,J)
300     CONTINUE
!$OMP   ENDDO
      END SUBROUTINE A6_GOOD

The following example is non-conforming because the matching do directive for the

end do does not precede the outermost loop:

Example A.6.2f
      SUBROUTINE WORK(I, J)
      INTEGER I,J
      END SUBROUTINE WORK

      SUBROUTINE A6_WRONG
        INTEGER I, J

        DO 100 I = 1,10
!$OMP     DO
          DO 100 J = 1,10
            CALL WORK(I,J)
100     CONTINUE
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!$OMP   ENDDO

Fortran

      END SUBROUTINE A6_WRONG

Fortran

A.7 Fortran Private Loop Iteration Variables
In general loop iteration variables will be private, when used in the do-loop of a do and

parallel do construct or in sequential loops in a parallel construct (see

Section 2.5.1 on page 33 and Section 2.8.1 on page 63). In the following example of a

sequential loop in a parallel construct the loop iteration variable I will be private.

Example A.7.1f
SUBROUTINE A7_1(A,N)
INCLUDE "omp_lib.h"      ! or USE OMP_LIB

REAL A(*)
INTEGER I, MYOFFSET, N

!$OMP PARALLEL PRIVATE(MYOFFSET)
       MYOFFSET = OMP_GET_THREAD_NUM()*N
       DO I = 1, N
         A(MYOFFSET+I) = FLOAT(I)
       ENDDO
!$OMP END PARALLEL

END SUBROUTINE A7_1

In exceptional cases, loop iteration variables can be made shared, as in the following

example:

Example A.7.2f
SUBROUTINE A7_2(A,B,N,I1,I2)
REAL A(*), B(*)
INTEGER I1, I2, N

!$OMP PARALLEL SHARED(A,B,I1,I2)
!$OMP SECTIONS
!$OMP SECTION
     DO I1 = I1, N
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       IF (A(I1).NE.0.0) EXIT
     ENDDO
!$OMP SECTION
     DO I2 = I2, N
       IF (B(I2).NE.0.0) EXIT
     ENDDO
!$OMP END SECTIONS
!$OMP SINGLE
    IF (I1.LE.N) PRINT *, ’ITEMS IN A UP TO ’, I1, ’ ARE ALL ZERO.’
    IF (I2.LE.N) PRINT *, ’ITEMS IN B UP TO ’, I2, ’ ARE ALL ZERO.’
!$OMP END SINGLE
!$OMP END PARALLEL

END SUBROUTINE A7_2

Note however that the use of shared loop iteration variables can easily lead to race

Fortran

conditions.

A.8 The nowait clause
If there are multiple independent loops within a parallel region, you can use the

nowait clause (see Section 2.5.1 on page 33) to avoid the implied barrier at the end of

the loop construct, as follows:

C/C++
Example A.8.1c
#include <math.h>

void a8(int n, int m, float *a, float *b, float *y, float *z)
{
  int i;
  #pragma omp parallel
  {
    #pragma omp for nowait
      for (i=1; i<n; i++)
        b[i] = (a[i] + a[i-1]) / 2.0;

    #pragma omp for nowait
      for (i=0; i<m; i++)
        y[i] = sqrt(z[i]);
  }

C/C++
}
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Fortran

Example A.8.1f
      SUBROUTINE A8(N, M, A, B, Y, Z)

        INTEGER N, M
        REAL A(*), B(*), Y(*), Z(*)

        INTEGER I

!$OMP PARALLEL

!$OMP DO
        DO I=2,N
          B(I) = (A(I) + A(I-1)) / 2.0
        ENDDO
!$OMP END DO NOWAIT

!$OMP DO
        DO I=1,M
          Y(I) = SQRT(Z(I))
        ENDDO
!$OMP END DO NOWAIT

!$OMP END PARALLEL

Fortran

      END SUBROUTINE A8

A.9 The parallel sections Construct
In the following example (for Section 2.5.2 on page 39) routines xaxis, yaxis, and zaxis
can be executed concurrently. The first section directive is optional. Note that all

section directives need to appear in the parallel sections construct.

C/C++
Example A.9.1c

void XAXIS();
void YAXIS();
void ZAXIS();

void a9()
{
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  #pragma omp parallel sections
  {
    #pragma omp section
      XAXIS();

    #pragma omp section
      YAXIS();

    #pragma omp section
      ZAXIS();
  }

C/C++
}

Fortran

Example A.9.1f
      SUBROUTINE A9()

!$OMP PARALLEL SECTIONS
!$OMP SECTION
        CALL XAXIS()

!$OMP SECTION
        CALL YAXIS()

!$OMP SECTION
        CALL ZAXIS()

!$OMP END PARALLEL SECTIONS

Fortran

      END SUBROUTINE A9

A.10 The single Construct
The following example demonstrates the single construct (Section 2.5.3 on page 42).

In the example, only one thread prints each of the progress messages. All other threads

will skip the single region and stop at the barrier at the end of the single construct

until all threads in the team have reached the barrier. If other threads can proceed

without waiting for the thread executing the single region, a nowait clause can be

specified, as is done in the third single construct in this example. The user must not

make any assumptions as to which thread will execute a single region.
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C/C++
Example A.10.1c
#include <stdio.h>

void work1() {}
void work2() {}

void a10()
{
  #pragma omp parallel
  {
    #pragma omp single
      printf("Beginning work1.\n");

    work1();

    #pragma omp single
      printf("Finishing work1.\n");

    #pragma omp single nowait
      printf("Finished work1 and beginning work2.\n");

    work2();
  }

C/C++
}

Fortran

Example A.10.1f
      SUBROUTINE WORK1()
      END SUBROUTINE WORK1

      SUBROUTINE WORK2()
      END SUBROUTINE WORK2

      PROGRAM A10
!$OMP PARALLEL

!$OMP SINGLE
        print *, "Beginning work1."
!$OMP END SINGLE

        CALL WORK1()

!$OMP SINGLE
        print *, "Finishing work1."
!$OMP END SINGLE
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!$OMP SINGLE
        print *, "Finished work1 and beginning work2."
!$OMP END SINGLE NOWAIT

        CALL WORK2()

!$OMP END PARALLEL

Fortran

      END PROGRAM A10

Fortran

A.11 The workshare Construct
The following are examples of the workshare construct (see Section 2.5.4 on page

44).

In the following example, workshare spreads work across the threads executing the

parallel region, and there is a barrier after the last statement. Implementations must

enforce Fortran execution rules inside of the workshare block.

Example A.11.1f
      SUBROUTINE A11_1(AA, BB, CC, DD, EE, FF, N)
      INTEGER N
      REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N), EE(N,N), FF(N,N)

!$OMP    PARALLEL
!$OMP     WORKSHARE
            AA = BB
            CC = DD
            EE = FF
!$OMP     END WORKSHARE
!$OMP   END PARALLEL

      END SUBROUTINE A11_1

In the following example, the barrier at the end of the first workshare region is

eliminated with a nowait clause. Threads doing CC = DDimmediately begin work on

EE = FF when they are done with CC = DD.
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Fortran (cont.)

Example A.11.2f
      SUBROUTINE A11_2(AA, BB, CC, DD, EE, FF, N)
      INTEGER N
      REAL AA(N,N), BB(N,N), CC(N,N)
      REAL DD(N,N), EE(N,N), FF(N,N)

!$OMP   PARALLEL
!$OMP     WORKSHARE
            AA = BB
            CC = DD
!$OMP     END WORKSHARE NOWAIT
!$OMP     WORKSHARE
            EE = FF
!$OMP     END WORKSHARE
!$OMP   END PARALLEL
      END SUBROUTINE A11_2

The following example shows the use of an atomic directive inside a workshare
construct. The computation of SUM(AA) is workshared, but the update to I is atomic.

Example A.11.3f
      SUBROUTINE A11_3(AA, BB, CC, DD, N)
      INTEGER N
      REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)
      REAL R

        R=0
!$OMP   PARALLEL
!$OMP     WORKSHARE
            AA = BB
!$OMP       ATOMIC
              R = R + SUM(AA)
            CC = DD
!$OMP     END WORKSHARE
!$OMP   END PARALLEL

      END SUBROUTINE A11_3

Fortran WHEREand FORALLstatements are compound statements, made up of a control
part and a statement part. When workshare is applied to one of these compound

statements, both the control and the statement parts are workshared. The following

example shows the use of a WHEREstatement in a workshare construct.
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Fortran (cont.)

Each task gets worked on in order by the threads:

AA = BB then

CC = DD then

EE .ne. 0 then

FF = 1 / EE then

GG = HH

Example A.11.4f
      SUBROUTINE A11_4(AA, BB, CC, DD, EE, FF, GG, HH, N)
      INTEGER N
      REAL AA(N,N), BB(N,N), CC(N,N)
      REAL DD(N,N), EE(N,N), FF(N,N)
      REAL GG(N,N), HH(N,N)

!$OMP   PARALLEL
!$OMP     WORKSHARE
            AA = BB
            CC = DD
            WHERE (EE .ne. 0) FF = 1 / EE
            GG = HH
!$OMP     END WORKSHARE
!$OMP   END PARALLEL

      END SUBROUTINE A11_4

In the following example, an assignment to a shared scalar variable is performed by one

thread in a workshare while all other threads in the team wait.

Example A.11.5f
      SUBROUTINE A11_5(AA, BB, CC, DD, N)
      INTEGER N
      REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)

        INTEGER SHR

!$OMP   PARALLEL SHARED(SHR)
!$OMP     WORKSHARE
            AA = BB
            SHR = 1
            CC = DD * SHR
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Fortran (cont.)

!$OMP     END WORKSHARE
!$OMP   END PARALLEL

      END SUBROUTINE A11_5

The following example contains an assignment to a private scalar variable, which is

performed by one thread in a workshare while all other threads wait. It is non-

conforming because the private scalar variable is undefined after the assignment

statement.

Example A.11.6f
      SUBROUTINE A11_6_WRONG(AA, BB, CC, DD, N)
      INTEGER N
      REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)

        INTEGER PRI

!$OMP   PARALLEL PRIVATE(PRI)
!$OMP     WORKSHARE
            AA = BB
            PRI = 1
            CC = DD * PRI
!$OMP     END WORKSHARE
!$OMP   END PARALLEL

      END SUBROUTINE A11_6_WRONG

Fortran execution rules must be enforced inside a workshare construct. In the

following example, the same result is produced in the following program fragment

regardless of whether the code is executed sequentially or inside an OpenMP program

with multiple threads:

Example A.11.7f
      SUBROUTINE A11_7(AA, BB, CC, N)
      INTEGER N
      REAL AA(N), BB(N), CC(N)

!$OMP   PARALLEL
!$OMP     WORKSHARE
            AA(1:50)  = BB(11:60)
            CC(11:20) = AA(1:10)
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!$OMP     END WORKSHARE
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE A11_7

A.12 The master Construct
The following example demonstrates the master construct (Section 2.7.1 on page 51). In

the example, the master keeps track of how many iterations have been executed and

prints out a progress report. The other threads skip the master region without waiting.

C/C++
Example A.12.1c
#include <stdio.h>

extern float average(float,float,float);

void a12( float* x, float* xold, int n, float tol )
{
  int c, i, toobig;
  float error, y;
  c = 0;
  #pragma omp parallel
  {
    do{
      #pragma omp for private(i)
      for( i = 1; i < n-1; ++i ){
        xold[i] = x[i];
      }
      #pragma omp single
      {
        toobig = 0;
      }
      #pragma omp for private(i,y,error) reduction(+:toobig)
      for( i = 1; i < n-1; ++i ){
        y = x[i];
        x[i] = average( xold[i-1], x[i], xold[i+1] );
        error = y - x[i];
        if( error > tol || error < -tol ) ++toobig;
      }
      #pragma omp master
      {
        ++c;
        printf( "iteration %d, toobig=%d\n", c, toobig );
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      }
    }while( toobig > 0 );
  }

C/C++
}

Fortran

Example A.12.1f
      SUBROUTINE A12( X, XOLD, N, TOL )
      REAL X(*), XOLD(*), TOL
      INTEGER N
      INTEGER C, I, TOOBIG
      REAL ERROR, Y, AVERAGE
      EXTERNAL AVERAGE
      C = 0
      TOOBIG = 1
!$OMP PARALLEL
        DO WHILE( TOOBIG > 0 )
!$OMP     DO PRIVATE(I)
            DO I = 2, N-1
              XOLD(I) = X(I)
            ENDDO
!$OMP     SINGLE
            TOOBIG = 0
!$OMP     END SINGLE
!$OMP     DO PRIVATE(I,Y,ERROR), REDUCTION(+:TOOBIG)
            DO I = 2, N-1
              Y = X(I)
              X(I) = AVERAGE( XOLD(I-1), X(I), XOLD(I+1) )
              ERROR = Y-X(I)
              IF( ERROR > TOL .OR. ERROR < -TOL ) TOOBIG = TOOBIG+1
            ENDDO
!$OMP     MASTER
            C = C + 1
            PRINT *, ’Iteration ’, C, ’ TOOBIG=’, TOOBIG
!$OMP     END MASTER
        ENDDO
!$OMP END PARALLEL

Fortran

      END SUBROUTINE A12
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A.13 The critical Construct
The following example includes several critical constructs (Section 2.7.2 on page

52). The example illustrates a queuing model in which a task is dequeued and worked

on. To guard against multiple threads dequeuing the same task, the dequeuing operation

must be in a critical region. Because the two queues in this example are

independent, they are protected by critical constructs with different names, xaxis
and yaxis.

C/C++
Example A.13.1c
int dequeue(float *a);
void work(int i, float *a);

void a13(float *x, float *y)
{
  int ix_next, iy_next;

  #pragma omp parallel shared(x, y) private(ix_next, iy_next)
  {
    #pragma omp critical (xaxis)
      ix_next = dequeue(x);
    work(ix_next, x);

    #pragma omp critical (yaxis)
      iy_next = dequeue(y);
    work(iy_next, y);
  }

C/C++
}

Fortran

Example A.13.1f
      SUBROUTINE A13(X, Y)

        REAL X(*), Y(*)
        INTEGER IX_NEXT, IY_NEXT

!$OMP PARALLEL SHARED(X, Y) PRIVATE(IX_NEXT, IY_NEXT)

!$OMP CRITICAL(XAXIS)
        CALL DEQUEUE(IX_NEXT, X)
!$OMP END CRITICAL(XAXIS)
        CALL WORK(IX_NEXT, X)
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!$OMP CRITICAL(YAXIS)
        CALL DEQUEUE(IY_NEXT,Y)
!$OMP END CRITICAL(YAXIS)
        CALL WORK(IY_NEXT, Y)

!$OMP END PARALLEL

Fortran

      END SUBROUTINE A13

A.14 Work-Sharing Constructs Inside a
critical Construct
The following example demonstrates using a work-sharing construct inside a

critical construct (see Section 2.7.2 on page 52). This example is conforming

because the single region and the critical region are not closely nested (see

Section 2.9 on page 87).

C/C++
Example A.14.1c
void a14()
{
  int i = 1;
  #pragma omp parallel sections
  {
    #pragma omp section
    {
      #pragma omp critical (name)
      {
        #pragma omp parallel
        {
          #pragma omp single
          {
            i++;
          }
        }
      }
    }
  }

C/C++
}
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Fortran

Example A.14.1f
      SUBROUTINE A14()

        INTEGER I
        I = 1

!$OMP   PARALLEL SECTIONS
!$OMP     SECTION
!$OMP       CRITICAL (NAME)
!$OMP         PARALLEL
!$OMP           SINGLE
                  I = I + 1
!$OMP           END SINGLE
!$OMP         END PARALLEL
!$OMP       END CRITICAL (NAME)
!$OMP   END PARALLEL SECTIONS

Fortran

      END SUBROUTINE A14

A.15 Binding of barrier Regions
The binding rules call for a barrier region to bind to the closest enclosing

parallel region (see Section 2.7.3 on page 54).

In the following example, the call from the main program to sub2 is conforming because

the barrier region (in sub3) binds to the parallel region in sub2. The call from

the main program to sub1 is conforming because the barrier region binds to the

parallel region in subroutine sub2.

The call from the main program to sub3 is conforming because the barrier region

binds to the implicit inactive parallel region enclosing the sequential part. Also note

that the barrier region in sub3 when called from sub2 only synchronizes the team of

threads in the enclosing parallel region and not all the threads created in sub1.

C/C++
Example A.15.1c
void work(int n) {}

void sub3(int n)
{
  work(n);
  #pragma omp barrier
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  work(n);
}

void sub2(int k)
{
  #pragma omp parallel shared(k)
    sub3(k);
}

void sub1(int n)
{
  int i;
  #pragma omp parallel private(i) shared(n)
  {
    #pragma omp for
    for (i=0; i<n; i++)
      sub2(i);
  }
}

int main()
{
  sub1(2);
  sub2(2);
  sub3(2);
  return 0;

C/C++
}

Fortran

Example A.15.1f
      SUBROUTINE WORK(N)
        INTEGER N
      END SUBROUTINE WORK

      SUBROUTINE SUB3(N)
      INTEGER N
        CALL WORK(N)
!$OMP   BARRIER
        CALL WORK(N)
      END SUBROUTINE SUB3

      SUBROUTINE SUB2(K)
      INTEGER K
!$OMP   PARALLEL SHARED(K)
          CALL SUB3(K)
!$OMP   END PARALLEL
      END SUBROUTINE SUB2
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      SUBROUTINE SUB1(N)
      INTEGER N
        INTEGER I
!$OMP   PARALLEL PRIVATE(I) SHARED(N)
!$OMP     DO
          DO I = 1, N
            CALL SUB2(I)
          END DO
!$OMP   END PARALLEL
      END SUBROUTINE SUB1

      PROGRAM A15
        CALL SUB1(2)
        CALL SUB2(2)
        CALL SUB3(2)

Fortran

      END PROGRAM A15

A.16 The atomic Construct
The following example avoids race conditions (simultaneous updates of an element of x
by multiple threads) by using the atomic construct (Section 2.7.4 on page 55).

The advantage of using the atomic construct in this example is that it allows updates

of two different elements of x to occur in parallel. If a critical construct (see

Section 2.7.2 on page 52) were used instead, then all updates to elements of x would be

executed serially (though not in any guaranteed order).

Note that the atomic directive applies only to the statement immediately following it.

As a result, elements of y are not updated atomically in this example.

C/C++
Example A.16.1c
float work1(int i)
{
  return 1.0 * i;
}

float work2(int i)
{
   return 2.0 * i;
}
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void a16(float *x, float *y, int *index, int n)
{
  int i;

  #pragma omp parallel for shared(x, y, index, n)
    for (i=0; i<n; i++) {
      #pragma omp atomic
      x[index[i]] += work1(i);
      y[i] += work2(i);
  }
}

int main()
{
  float x[1000];
  float y[10000];
  int index[10000];
  int i;

  for (i = 0; i < 10000; i++) {
    index[i] = i % 1000;
    y[i]=0.0;
  }

  for (i = 0; i < 1000; i++)
    x[i] = 0.0;

  a16(x, y, index, 10000);
  return 0;

C/C++
}

Fortran

Example A.16.1f
      REAL FUNCTION WORK1(I)
        INTEGER I
        WORK1 = 1.0 * I
        RETURN
      END FUNCTION WORK1

      REAL FUNCTION WORK2(I)
        INTEGER I
        WORK2 = 2.0 * I
        RETURN
      END FUNCTION WORK2

      SUBROUTINE SUBA16(X, Y, INDEX, N)
        REAL X(*), Y(*)
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        INTEGER INDEX(*), N

        INTEGER I

!$OMP   PARALLEL DO SHARED(X, Y, INDEX, N)
          DO I=1,N
!$OMP       ATOMIC
              X(INDEX(I)) = X(INDEX(I)) + WORK1(I)
            Y(I) = Y(I) + WORK2(I)
          ENDDO

      END SUBROUTINE SUBA16

      PROGRAM A16
        REAL X(1000), Y(10000)
        INTEGER INDEX(10000)
        INTEGER I

        DO I=1,10000
          INDEX(I) = MOD(I, 1000) + 1
          Y(I) = 0.0
        ENDDO

        DO I = 1,1000
          X(I) = 0.0
        ENDDO

        CALL SUBA16(X, Y, INDEX, 10000)

Fortran

      END PROGRAM A16

A.17 Restrictions on the atomic Construct
The following examples illustrate the restrictions on the atomic construct. For more

information, see Section 2.7.4 on page 55.

C/C++
All atomic references to the storage location of each variable that appears on the left-

hand side of an atomic assignment statement throughout the program are required to

C/C++
have a compatible type.
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Fortran
All atomic references to the storage location of each variable that appears on the left-

hand side of an atomic assignment statement throughout the program are required to

Fortran

have the same type and type parameters.

The following are some non-conforming examples:

C/C++
Example A.17.1c
void a17_1_wrong ()
{
 union {int n; float x;} u;

#pragma omp parallel
  {
#pragma omp atomic
    u.n++;

#pragma omp atomic
    u.x += 1.0;

/* Incorrect because the atomic constructs reference the same location
   through incompatible types */
  }

C/C++
}

Fortran

Example A.17.1f
      SUBROUTINE A17_1_WRONG()
        INTEGER:: I
        REAL:: R
        EQUIVALENCE(I,R)

!$OMP   PARALLEL
!$OMP     ATOMIC
            I = I + 1
!$OMP     ATOMIC
            R = R + 1.0
! incorrect because I and R reference the same location
! but have different types
!$OMP   END PARALLEL
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Fortran

      END SUBROUTINE A17_1_WRONG

C/C++
Example A.17.2c
void a17_2_wrong ()
{
 int  x;
 int *i;
 float   *r;

 i = &x;
 r = (float *)&x;

#pragma omp parallel
  {
#pragma omp atomic
    *i += 1;

#pragma omp atomic
    *r += 1.0;

/* Incorrect because the atomic constructs reference the same location
   through incompatible types */

  }

C/C++
}

Fortran
The following example is non-conforming because I and R reference the same location

but have different types.

Example A.17.2f
      SUBROUTINE SUB()
        COMMON /BLK/ R
        REAL R

!$OMP   ATOMIC
          R = R + 1.0
      END SUBROUTINE SUB

      SUBROUTINE A17_2_WRONG()
        COMMON /BLK/ I
        INTEGER I
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!$OMP   PARALLEL

!$OMP     ATOMIC
            I = I + 1
          CALL SUB()
!$OMP   END PARALLEL
      END SUBROUTINE A17_2_WRONG

Although the following example might work on some implementations, this is also non-

conforming:

Example A.17.3f
      SUBROUTINE A17_3_WRONG
        INTEGER:: I
        REAL:: R
        EQUIVALENCE(I,R)

!$OMP   PARALLEL
!$OMP     ATOMIC
            I = I + 1
! incorrect because I and R reference the same location
! but have different types
!$OMP   END PARALLEL

!$OMP   PARALLEL
!$OMP     ATOMIC
            R = R + 1.0
! incorrect because I and R reference the same location
! but have different types
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE A17_3_WRONG

A.18 The flush Construct with a List
The following example uses the flush construct (see Section 2.7.5 on page 58) for

point-to-point synchronization of specific objects between pairs of threads:

C/C++
Example A.18.1c
#include <omp.h>
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C/C++ (cont.)
#define NUMBER_OF_THREADS 256

int   synch[NUMBER_OF_THREADS];
float work[NUMBER_OF_THREADS];
float result[NUMBER_OF_THREADS];

float fn1(int i)
{
  return i*2.0;
}

float fn2(float a, float b)
{
  return a + b;
}

int main()
{
  int iam, neighbor;

#pragma omp parallel private(iam,neighbor) shared(work,synch)
  {
    iam = omp_get_thread_num();
    synch[iam] = 0;

    #pragma omp barrier
    /*Do computation into my portion of work array */
    work[iam] = fn1(iam);

    /*  Announce that I am done with my work. The first flush
     *  ensures that my work is made visible before synch.
     *  The second flush ensures that synch is made visible.
     */

     #pragma omp flush(work,synch)
     synch[iam] = 1;
     #pragma omp flush(synch)

/* Wait for neighbor. The first flush ensures that synch is read
* from memory, rather than from the temporary view of memory.

* The second flush ensures that work is read from memory, and
      * is done so after the while loop exits.
      */

     neighbor = (iam>0 ? iam : omp_get_num_threads()) - 1;
     while (synch[neighbor] == 0) {
       #pragma omp flush(synch)
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     #pragma omp flush(work,synch)

     /* Read neighbor’s values of work array */
     result[iam] = fn2(work[neighbor], work[iam]);
  }

  /* output result here */

  return 0;

C/C++
}

Fortran

Example A.18.1f
      REAL FUNCTION FN1(I)
        INTEGER I
        FN1 = I * 2.0
        RETURN
      END FUNCTION FN1

      REAL FUNCTION FN2(A, B)
        REAL A, B
        FN2 = A + B
        RETURN
      END FUNCTION FN2

      PROGRAM A18

        INCLUDE "omp_lib.h"     ! or USE OMP_LIB
        INTEGER ISYNC(256)
        REAL    WORK(256)
        REAL    RESULT(256)

        INTEGER IAM, NEIGHBOR

!$OMP   PARALLEL PRIVATE(IAM, NEIGHBOR) SHARED(WORK, ISYNC)
          IAM = OMP_GET_THREAD_NUM() + 1
          ISYNC(IAM) = 0

!$OMP BARRIER

C         Do computation into my portion of work array

          WORK(IAM) = FN1(IAM)

C         Announce that I am done with my work.
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C The first flush ensures that my work is made visible before
C synch. The second flush ensures that synch is made visible.

!$OMP     FLUSH(WORK,ISYNC)
          ISYNC(IAM) = 1
!$OMP     FLUSH(ISYNC)

C Wait until neighbor is done. The first flush ensures that
C synch is read from memory, rather than from the temporary
C view of memory. The second flush ensures that work is read
C         from memory, and is done so after the while loop exits.

          IF (IAM .EQ. 1) THEN
             NEIGHBOR = OMP_GET_NUM_THREADS()
          ELSE
             NEIGHBOR = IAM - 1
          ENDIF

          DO WHILE (ISYNC(NEIGHBOR) .EQ. 0)
!$OMP       FLUSH(ISYNC)
          END DO

!$OMP     FLUSH(WORK, ISYNC)
          RESULT(IAM) = FN2(WORK(NEIGHBOR), WORK(IAM))
!$OMP   END PARALLEL

Fortran

      END PROGRAM A18

A.19 The flush Construct without a List
The following example (for Section 2.7.5 on page 58) distinguishes the shared objects

affected by a flush construct with no list from the shared objects that are not affected:

C/C++
Example A.19.1c
int x, *p = &x;

void f1(int *q)
{
  *q = 1;
  #pragma omp flush
  /* x, p, and *q are flushed */
  /* because they are shared and accessible */
  /* q is not flushed because it is not shared. */
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}

void f2(int *q)
{
  #pragma omp barrier
  *q = 2;
  #pragma omp barrier

  /* a barrier implies a flush */
  /* x, p, and *q are flushed */
  /* because they are shared and accessible */
  /* q is not flushed because it is not shared. */
}

int g(int n)
{
  int i = 1, j, sum = 0;
  *p = 1;
  #pragma omp parallel reduction(+: sum) num_threads(10)
  {
    f1(&j);

    /* i, n and sum were not flushed */
    /* because they were not accessible in f1 */
    /* j was flushed because it was accessible */
    sum += j;

    f2(&j);

    /* i, n, and sum were not flushed */
    /* because they were not accessible in f2 */
    /* j was flushed because it was accessible */
    sum += i + j + *p + n;
  }

  return sum;
}

int main()
{
  int result = g(7);
  return result;

C/C++
}

Fortran

Example A.19.1f
     SUBROUTINE F1(Q)
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Fortran (cont.)

        COMMON /DATA/ X, P
        INTEGER, TARGET  :: X
        INTEGER, POINTER :: P
        INTEGER Q

        Q = 1
!$OMP   FLUSH
        ! X, P and Q are flushed
        ! because they are shared and accessible
      END SUBROUTINE F1

      SUBROUTINE F2(Q)
        COMMON /DATA/ X, P
        INTEGER, TARGET  :: X
        INTEGER, POINTER :: P
        INTEGER Q

!$OMP   BARRIER
          Q = 2
!$OMP   BARRIER
          ! a barrier implies a flush
          ! X, P and Q are flushed
          ! because they are shared and accessible
      END SUBROUTINE F2

      INTEGER FUNCTION G(N)
        COMMON /DATA/ X, P
        INTEGER, TARGET  :: X
        INTEGER, POINTER :: P
        INTEGER N
        INTEGER I, J, SUM

        I = 1
        SUM = 0
        P = 1
!$OMP   PARALLEL REDUCTION(+: SUM) NUM_THREADS(10)
          CALL F1(J)
            ! I, N and SUM were not flushed
            !   because they were not accessible in F1
            ! J was flushed because it was accessible
          SUM = SUM + J

          CALL F2(J)
            ! I, N, and SUM were not flushed
            !   because they were not accessible in f2
            ! J was flushed because it was accessible
          SUM = SUM + I + J + P + N
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!$OMP   END PARALLEL

        G = SUM
      END FUNCTION G

      PROGRAM A19
        COMMON /DATA/ X, P
        INTEGER, TARGET  :: X
        INTEGER, POINTER :: P
        INTEGER RESULT, G

        P => X
        RESULT = G(7)
        PRINT *, RESULT

Fortran

      END PROGRAM A19

C/C++

A.20 Placement of flush and barrier
Directives
The following example is non-conforming, because the flush and barrier directives

cannot be the immediate substatement of an if statement. See Section 2.7.3 on page 54

and Section 2.7.5 on page 58.

Example A.20.1c
void a20_wrong()
{
  int a = 1;

  #pragma omp parallel
  {
     if (a != 0)
  #pragma omp flush(a)
/* incorrect as flush cannot be immediate substatement
   of if statement */

     if (a != 0)
  #pragma omp barrier
/* incorrect as barrier cannot be immediate substatement
   of if statement */
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}

The following version of the above example is conforming because the flush and

barrier directives are enclosed in a compound statement.

Example A.20.2c
void a20()
{
  int a = 1;

  #pragma omp parallel
  {
     if (a != 0) {
  #pragma omp flush(a)
     }
     if (a != 0) {
  #pragma omp barrier
     }
  }

C/C++
}

A.21 The ordered Clause and the ordered
Construct
Ordered constructs (Section 2.7.6 on page 61) are useful for sequentially ordering the

output from work that is done in parallel. The following program prints out the indices

in sequential order:

C/C++
Example A.21.1c
#include <stdio.h>

void work(int k)
{
  #pragma omp ordered
    printf(" %d\n", k);
}

void a21(int lb, int ub, int stride)
{
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  int i;

  #pragma omp parallel for ordered schedule(dynamic)
  for (i=lb; i<ub; i+=stride)
    work(i);
}

int main()
{
  a21(0, 100, 5);
  return 0;

C/C++
}

Fortran

Example A.21.1f
      SUBROUTINE WORK(K)
        INTEGER k

!$OMP ORDERED
        WRITE(*,*) K
!$OMP END ORDERED

      END SUBROUTINE WORK

      SUBROUTINE SUBA21(LB, UB, STRIDE)
        INTEGER LB, UB, STRIDE
        INTEGER I

!$OMP PARALLEL DO ORDERED SCHEDULE(DYNAMIC)
        DO I=LB,UB,STRIDE
          CALL WORK(I)
        END DO
!$OMP END PARALLEL DO

      END SUBROUTINE SUBA21

      PROGRAM A21
        CALL SUBA21(1,100,5)

Fortran

      END PROGRAM A21

It is possible to have multiple ordered constructs within a loop region with the

ordered clause specified. The first example is non-conforming because all iterations

execute two ordered regions. An iteration of a loop must not execute more than one

ordered region:
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C/C++
Example A.21.2c
void work(int i) {}

void a21_wrong(int n)
{
  int i;
  #pragma omp for ordered
  for (i=0; i<n; i++) {
/* incorrect because an iteration may not execute more than one
   ordered region */
    #pragma omp ordered
      work(i);
    #pragma omp ordered
      work(i+1);
  }

C/C++
}

Fortran

Example A.21.2f
      SUBROUTINE WORK(I)
      INTEGER I
      END SUBROUTINE WORK

      SUBROUTINE A21_WRONG(N)
      INTEGER N

        INTEGER I
!$OMP   DO ORDERED
        DO I = 1, N
! incorrect because an iteration may not execute more than one
! ordered region
!$OMP     ORDERED
            CALL WORK(I)
!$OMP     END ORDERED

!$OMP     ORDERED
            CALL WORK(I+1)
!$OMP     END ORDERED
        END DO

Fortran

      END SUBROUTINE A21_WRONG

The following is a conforming example with more than one ordered construct. Each

iteration will execute only one ordered region:
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C/C++
Example A.21.3c
void a21_good(int n)
{
  int i;

#pragma omp for ordered
  for (i=0; i<n; i++) {
    if (i <= 10) {
      #pragma omp ordered
         work(i);
    }

    if (i > 10) {
      #pragma omp ordered
        work(i+1);
    }
  }

C/C++
}

Fortran

Example A.21.3f
      SUBROUTINE A21_GOOD(N)
      INTEGER N

!$OMP   DO ORDERED
        DO I = 1,N
          IF (I <= 10) THEN
!$OMP       ORDERED
              CALL WORK(I)
!$OMP       END ORDERED
          ENDIF

          IF (I > 10) THEN
!$OMP       ORDERED
              CALL WORK(I+1)
!$OMP       END ORDERED
          ENDIF
        ENDDO

Fortran

      END SUBROUTINE A21_GOOD
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A.22 The threadprivate Directive
The following examples demonstrate how to use the threadprivate directive

(Section 2.8.2 on page 66) to give each thread a separate counter.

C/C++
Example A.22.1c
int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()
{
  counter++;
  return(counter);

C/C++
}

Fortran

Example A.22.1f
      INTEGER FUNCTION INCREMENT_COUNTER()
        COMMON/A22_COMMON/COUNTER
!$OMP   THREADPRIVATE(/A22_COMMON/)

        COUNTER = COUNTER +1
        INCREMENT_COUNTER = COUNTER
        RETURN

Fortran

      END FUNCTION INCREMENT_COUNTER

C/C++
The following example uses threadprivate on a static variable:

Example A.22.2c
int increment_counter_2()
{
  static int counter = 0;
  #pragma omp threadprivate(counter)
  counter++;
  return(counter);
}
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The following example illustrates how modifying a variable that appears in an initializer

can cause unspecified behavior, and also how to avoid this problem by using an auxiliary

object and a copy-constructor.

Example A.22.3c
class T {
  public:
    int val;
    T (int);
    T (const T&);
};

T :: T (int v){
   val = v;
}

T :: T (const T& t) {
   val = t.val;
}

void g(T a, T b){
   a.val += b.val;
}

int x = 1;
T a(x);
const T b_aux(x); /* Capture value of x = 1 */
T b(b_aux);
#pragma omp threadprivate(a, b)

void f(int n) {
   x++;
   #pragma omp parallel for
   /* In each thread:
    * Object a is constructed from x (with value 1 or 2?)
    * Object b is copy-constructed from b_aux
    */

   for (int i=0; i<n; i++) {
       g(a, b); /* Value of a is unspecified. */
   }

C/C++
}
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Fortran
The following examples show non-conforming uses and correct uses of the

threadprivate directive. For more information, see Section 2.8.2 on page 66 and

Section 2.8.4.1 on page 84.

The following example is non-conforming because the common block is not declared

local to the subroutine that refers to it:

Example A.22.4f
      MODULE A22_MODULE
        COMMON /T/ A
      END MODULE A22_MODULE

      SUBROUTINE A22_4_WRONG()
        USE A22_MODULE
!$OMP   THREADPRIVATE(/T/)
      !non-conforming because /T/ not declared in A22_4_WRONG
      END SUBROUTINE A22_4_WRONG

The following example is also non-conforming because the common block is not

declared local to the subroutine that refers to it:

Example A.22.5f
      SUBROUTINE A22_5_WRONG()
        COMMON /T/ A
!$OMP   THREADPRIVATE(/T/)

        CONTAINS
          SUBROUTINE A22_5S_WRONG()
!$OMP       PARALLEL COPYIN(/T/)
      !non-conforming because /T/ not declared in A22_5S_WRONG
!$OMP       END PARALLEL
          END SUBROUTINE A22_5S_WRONG
      END SUBROUTINE A22_5_WRONG

The following example is a correct rewrite of the previous example:

Example A.22.6f
       SUBROUTINE A22_6_GOOD()
        COMMON /T/ A
!$OMP   THREADPRIVATE(/T/)
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Fortran (cont.)

        CONTAINS
          SUBROUTINE A22_6S_GOOD()
            COMMON /T/ A
!$OMP       THREADPRIVATE(/T/)

!$OMP       PARALLEL COPYIN(/T/)
!$OMP       END PARALLEL
         END SUBROUTINE A22_6S_GOOD
       END SUBROUTINE A22_6_GOOD

The following is an example of the use of threadprivate for local variables:

Example A.22.7f
      PROGRAM A22_7_GOOD
        INTEGER, ALLOCATABLE, SAVE :: A(:)
        INTEGER, POINTER, SAVE :: PTR
        INTEGER, SAVE :: I
        INTEGER, TARGET :: TARG
        LOGICAL :: FIRSTIN = .TRUE.
!$OMP   THREADPRIVATE(A, I, PTR)

        ALLOCATE (A(3))
        A = (/1,2,3/)
        PTR => TARG
        I = 5

!$OMP   PARALLEL COPYIN(I, PTR)
!$OMP     CRITICAL
            IF (FIRSTIN) THEN
              TARG = 4           ! Update target of ptr
              I = I + 10
              IF (ALLOCATED(A)) A = A + 10
              FIRSTIN = .FALSE.
            END IF

            IF (ALLOCATED(A)) THEN
              PRINT *, ’a = ’, A
            ELSE
              PRINT *, ’A is not allocated’
            END IF

            PRINT *, ’ptr = ’, PTR
            PRINT *, ’i = ’, I
            PRINT *
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Fortran (cont.)

!$OMP     END CRITICAL
!$OMP   END PARALLEL
      END PROGRAM A22_7_GOOD

The above program, if executed by two threads, will print one of the following two sets

of output:

a = 11 12 13
ptr = 4
i = 15

A is not allocated
ptr = 4
i = 5

or

A is not allocated
ptr = 4
i = 15

a = 1 2 3
ptr = 4
i = 5

The following is an example of the use of threadprivate for module variables:

Example A.22.8f
      MODULE A22_MODULE8
        REAL, POINTER :: WORK(:)
        SAVE WORK
!$OMP   THREADPRIVATE(WORK)
      END MODULE A22_MODULE8

      SUBROUTINE SUB1(N)
      USE A22_MODULE8
!$OMP   PARALLEL PRIVATE(THE_SUM)
        ALLOCATE(WORK(N))
        CALL SUB2(THE_SUM)
       WRITE(*,*)THE_SUM
!$OMP   END PARALLEL
      END SUBROUTINE SUB1
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      SUBROUTINE SUB2(THE_SUM)
        USE A22_MODULE8
        WORK(:) = 10
        THE_SUM=SUM(WORK)
      END SUBROUTINE SUB2

      PROGRAM A22_8_GOOD
        N = 10
        CALL SUB1(N)

Fortran

      END PROGRAM A22_8_GOOD

Fortran

A.23 Fortran Restrictions on shared and
private Clauses with Common Blocks
When a named common block is specified in a private , firstprivate , or

lastprivate clause of a construct, none of its members may be declared in another

data-sharing attribute clause on that construct. The following examples illustrate this

point. For more information, see Section 2.8.3 on page 70.

The following example is conforming:

Example A.23.1f
      SUBROUTINE A23_1_GOOD()
        COMMON /C/ X,Y
        REAL X, Y

!$OMP   PARALLEL PRIVATE (/C/)
          ! do work here
!$OMP   END PARALLEL

!$OMP   PARALLEL SHARED (X,Y)
          ! do work here
!$OMP   END PARALLEL
      END SUBROUTINE A23_1_GOOD

The following example is also conforming:
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Fortran (cont.)

Example A.23.2f
     SUBROUTINE A23_2_GOOD()
        COMMON /C/ X,Y
        REAL X, Y

        INTEGER I

!$OMP   PARALLEL
!$OMP     DO PRIVATE(/C/)
          DO I=1,1000
            ! do work here
          ENDDO
!$OMP     END DO
!
!$OMP     DO PRIVATE(X)
          DO I=1,1000
            ! do work here
          ENDDO
!$OMP     END DO
!$OMP   END PARALLEL
      END SUBROUTINE A23_2_GOOD

The following example is conforming:

Example A.23.3f
      SUBROUTINE A23_3_GOOD()
        COMMON /C/ X,Y

!$OMP   PARALLEL PRIVATE (/C/)
          ! do work here
!$OMP   END PARALLEL

!$OMP   PARALLEL SHARED (/C/)
          ! do work here
!$OMP   END PARALLEL
      END SUBROUTINE A23_3_GOOD

The following example is non-conforming because x is a constituent element of c:

Example A.23.4f
      SUBROUTINE A23_4_WRONG()
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        COMMON /C/ X,Y
! Incorrect because X is a constituent element of C
!$OMP   PARALLEL PRIVATE(/C/), SHARED(X)
          ! do work here
!$OMP   END PARALLEL
      END SUBROUTINE A23_4_WRONG

The following example is non-conforming because a common block may not be declared

both shared and private:

Example A.23.5f
      SUBROUTINE A23_5_WRONG()
        COMMON /C/ X,Y
! Incorrect: common block C cannot be declared both
! shared and private
!$OMP   PARALLEL PRIVATE (/C/), SHARED(/C/)
          ! do work here
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE A23_5_WRONG

A.24 The default(none) Clause
The following example distinguishes the variables that are affected by the

default(none) clause from those that are not. For more information on the

default clause, see Section 2.8.3.1 on page 71.

C/C++
Example A.24.1c
#include <omp.h>
int x, y, z[1000];
#pragma omp threadprivate(x)

void a24(int a) {
  const int c = 1;
  int i = 0;

  #pragma omp parallel default(none) private(a) shared(z)
  {
     int j = omp_get_num_threads();
          /* O.K.  - j is declared within parallel region */
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     a = z[j];   /* O.K.  - a is listed in private clause */
                 /*       - z is listed in shared clause */
     x = c;      /* O.K.  - x is threadprivate */
                 /*       - c has const-qualified type */
     z[i] = y;   /* Error - cannot reference i or y here */

     #pragma omp for firstprivate(y)
     for (i=0; i<10 ; i++) {
       z[i] = y; /* O.K. - i is the loop iteration variable */
                 /* - y is listed in firstprivate clause */
     }

     z[i] = y;   /* Error - cannot reference i or y here */
  }

C/C++
}

Fortran

Example A.24.1f

      SUBROUTINE A24(A)
      INCLUDE "omp_lib.h"     ! or USE OMP_LIB

      INTEGER A

      INTEGER X, Y, Z(1000)
      COMMON/BLOCKX/X
      COMMON/BLOCKY/Y
      COMMON/BLOCKZ/Z
!$OMP THREADPRIVATE(/BLOCKX/)

        INTEGER I, J
        i = 1

!$OMP   PARALLEL DEFAULT(NONE) PRIVATE(A) SHARED(Z) PRIVATE(J)
          J = OMP_GET_NUM_THREADS();
                   ! O.K.  - J is listed in PRIVATE clause
          A = Z(J) ! O.K.  - A is listed in PRIVATE clause
                   !       - Z is listed in SHARED clause
          X = 1    ! O.K.  - X is THREADPRIVATE
          Z(I) = Y ! Error - cannot reference I or Y here

!$OMP     DO firstprivate(y)
          DO I = 1,10
            Z(I) = Y  ! O.K. - I is the loop iteration variable
                      ! Y is listed in FIRSTPRIVATE clause
          END DO
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          Z(I) = Y    ! Error - cannot reference I or Y here
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE A24

Fortran

A.25 Race Conditions Caused by Implied
Copies of Shared Variables in Fortran
The following example contains a race condition, because the shared variable, which is

an array section, is passed as an actual argument to a routine that has an assumed-size

array as its dummy argument (see Section 2.8.3.2 on page 72). The subroutine call

passing an array section argument may cause the compiler to copy the argument into a

temporary location prior to the call and copy from the temporary location into the

original variable when the subroutine returns. This copying would cause races in the

parallel region.

Example A.25.1f
SUBROUTINE A25

  INCLUDE "omp_lib.h"      ! or USE OMP_LIB

  REAL A(20)
  INTEGER MYTHREAD

!$OMP PARALLEL SHARED(A) PRIVATE(MYTHREAD)

  MYTHREAD = OMP_GET_THREAD_NUM()
  IF (MYTHREAD .EQ. 0) THEN
     CALL SUB(A(1:10)) ! compiler may introduce writes to A(6:10)
  ELSE
     A(6:10) = 12
  ENDIF

!$OMP END PARALLEL

END SUBROUTINE A25

SUBROUTINE SUB(X)
  REAL X(*)
  X(1:5) = 4
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Fortran

END SUBROUTINE SUB

A.26 The private Clause
In the following example, the values of i and j are undefined on exit from the

parallel region. For more information on the private clause, see Section 2.8.3.3

on page 73.

C/C++
Example A.26.1c
#include <stdio.h>

int main()
{
  int i, j;

  i = 1;
  j = 2;

  #pragma omp parallel private(i) firstprivate(j)
  {
    i = 3;
    j = j + 2;
  }

  printf("%d %d\n", i, j); /* i and j are undefined */

  return 0;

C/C++
}

Fortran

Example A.26.1f
      PROGRAM A26
        INTEGER I, J

        I = 1
        J = 2

!$OMP   PARALLEL PRIVATE(I) FIRSTPRIVATE(J)
          I = 3
          J = J + 2
!$OMP   END PARALLEL
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        PRINT *, I, J  ! I and J are undefined

Fortran

      END PROGRAM A26

The private clause of a parallel construct is only in effect inside the construct,

and not for the rest of the region. Therefore, in the example that follows, any uses of the

variable a within the loop in the routine f refers to a private copy of a, while a usage in

routine g refers to the global a.

C/C++
Example A.26.2c
int a;

void g(int k) {
  a = k;       /* The global "a", not the private "a" in f */
}

void f(int n) {
  int a = 0;

  #pragma omp parallel for private(a)
   for (int i=1; i<n; i++) {
       a = i;
       g(a*2);     /* Private copy of "a" */
    }

C/C++
}

Fortran

Example A.26.2f
     MODULE A26_2
        REAL A

        CONTAINS

          SUBROUTINE G(K)
            REAL K
            A = K  ! This is A in module A26_2, not the private
                   ! A in F
          END SUBROUTINE G

          SUBROUTINE F(N)
          INTEGER N
          REAL A
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            INTEGER I
!$OMP       PARALLEL DO PRIVATE(A)
              DO I = 1,N
                A = I
                CALL G(A*2)
              ENDDO
!$OMP       END PARALLEL DO
          END SUBROUTINE F

Fortran

      END MODULE A26_2

A.27 Reprivatization
The following example demonstrates the reprivatization of variables (see Section 2.8.3.3

on page 73). Private variables can be marked private again in a nested construct.

They do not have to be shared in the enclosing parallel region.

C/C++
Example A.27.1c
void a27()
{
  int i, a;

  #pragma omp parallel private(a)
  {
    #pragma omp parallel for private(a)
      for (i=0; i<10; i++)
     {
       /* do work here */
     }
  }

C/C++
}

Fortran

Example A.27.1f
      SUBROUTINE A27()
        INTEGER I, A

!$OMP   PARALLEL PRIVATE(A)
!$OMP     PARALLEL DO PRIVATE(A)
          DO I = 1, 10
            ! do work here
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          END DO
!$OMP     END PARALLEL DO
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE A27

Fortran

A.28 Fortran Restrictions on Storage
Association with the private Clause
The following non-conforming examples illustrate the implications of the private
clause rules with regard to storage association (see Section 2.8.3.3 on page 73).

Example A.28.1f
       SUBROUTINE SUB()
       COMMON /BLOCK/ X
       PRINT *,X             ! X is undefined
       END SUBROUTINE SUB

       PROGRAM A28_1
         COMMON /BLOCK/ X
         X = 1.0
!$OMP    PARALLEL PRIVATE (X)
         X = 2.0
         CALL SUB()
!$OMP    END PARALLEL
      END PROGRAM A28_1

Example A.28.2f
      PROGRAM A28_2
        COMMON /BLOCK2/ X
        X = 1.0

!$OMP   PARALLEL PRIVATE (X)
          X = 2.0
          CALL SUB()
!$OMP   END PARALLEL

       CONTAINS

          SUBROUTINE SUB()
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Fortran (cont.)

          COMMON /BLOCK2/ Y

          PRINT *,X               ! X is undefined
          PRINT *,Y               ! Y is undefined
          END SUBROUTINE SUB

       END PROGRAM A28_2

Example A.28.3f
        PROGRAM A28_3
        EQUIVALENCE (X,Y)
        X = 1.0

!$OMP   PARALLEL PRIVATE(X)
          PRINT *,Y                  ! Y is undefined
          Y = 10
          PRINT *,X                  ! X is undefined
!$OMP   END PARALLEL
      END PROGRAM A28_3

Example A.28.4f
      PROGRAM A28_4
        INTEGER I, J
        INTEGER A(100), B(100)
        EQUIVALENCE (A(51), B(1))

!$OMP PARALLEL DO DEFAULT(PRIVATE) PRIVATE(I,J) LASTPRIVATE(A)
          DO I=1,100
             DO J=1,100
               B(J) = J - 1
             ENDDO

             DO J=1,100
               A(J) = J   ! B becomes undefined at this point
             ENDDO

             DO J=1,50
               B(J) = B(J) + 1  ! B is undefined
                         ! A becomes undefined at this point
             ENDDO
          ENDDO
!$OMP END PARALLEL DO       ! The LASTPRIVATE write for A has
                            ! undefined results
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         PRINT *, B    ! B is undefined since the LASTPRIVATE
                       ! write of A was not defined
       END PROGRAM A28_4

Example A.28.5f

      SUBROUTINE SUB1(X)
        DIMENSION X(10)

        ! This use of X does not conform to the
        ! specification. It would be legal Fortran 90,
        ! but the OpenMP private directive allows the
        ! compiler to break the sequence association that
        ! A had with the rest of the common block.

        FORALL (I = 1:10) X(I) = I
      END SUBROUTINE SUB1

      PROGRAM A28_5
        COMMON /BLOCK5/ A

        DIMENSION B(10)
        EQUIVALENCE (A,B(1))

        ! the common block has to be at least 10 words
        A = 0

!$OMP   PARALLEL PRIVATE(/BLOCK5/)

          ! Without the private clause,
          ! we would be passing a member of a sequence
          ! that is at least ten elements long.
          ! With the private clause, A may no longer be
          ! sequence-associated.

          CALL SUB1(A)
!$OMP     MASTER
            PRINT *, A
!$OMP     END MASTER

!$OMP   END PARALLEL

Fortran

      END PROGRAM A28_5
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C/C++

A.29 C/C++ Arrays in a firstprivate Clause
The following example illustrates the size and value of list items of array or pointer type

in a firstprivate clause (Section 2.8.3.4 on page 75). The size of new list items is

based on the type of the corresponding original list item, as determined by the base

language.

In this example:

• The type of A is array of two arrays of two ints.

• The type of B is adjusted to pointer to array of n ints, because it is a function

parameter.

• The type of C is adjusted to pointer to int, because it is a function parameter.

• The type of D is array of two arrays of two ints.

• The type of E is array of n arrays of n ints.

Note that B and E involve variable length array types.

The new items of array type are initialized as if each integer element of the original

array is assigned to the corresponding element of the new array. Those of pointer type

are initialized as if by assignment from the original item to the new item.

Example A.29.1c
#include <assert.h>

int A[2][2] = {1, 2, 3, 4};

void f(int n, int B[n][n], int C[])
{
  int D[2][2] = {1, 2, 3, 4};
  int E[n][n];

  assert(n >= 2);
  E[1][1] = 4;

  #pragma omp parallel firstprivate(B, C, D, E)
  {
    assert(sizeof(B) == sizeof(int (*)[n]));
    assert(sizeof(C) == sizeof(int*));
    assert(sizeof(D) == 4 * sizeof(int));
    assert(sizeof(E) == n * n * sizeof(int));
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    /* Private B and C have values of original B and C. */
    assert(&B[1][1] == &A[1][1]);
    assert(&C[3] == &A[1][1]);
    assert(D[1][1] == 4);
    assert(E[1][1] == 4);
  }
}

int main() {
  f(2, A, A[0]);
  return 0;

C/C++
}

A.30 The lastprivate Clause
Correct execution sometimes depends on the value that the last iteration of a loop

assigns to a variable. Such programs must list all such variables in a lastprivate
clause (Section 2.8.3.5 on page 77) so that the values of the variables are the same as

when the loop is executed sequentially.

C/C++
Example A.30.1c
void a30 (int n, float *a, float *b)
{
  int i;

  #pragma omp parallel
  {
    #pragma omp for lastprivate(i)
    for (i=0; i<n-1; i++)
      a[i] = b[i] + b[i+1];
  }

  a[i]=b[i];      /* i == n-1 here */

C/C++
}

Fortran

Example A.30.1f
      SUBROUTINE A30(N, A, B)

        INTEGER N
        REAL A(*), B(*)
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!$OMP PARALLEL
!$OMP DO LASTPRIVATE(I)

        DO I=1,N-1
          A(I) = B(I) + B(I+1)
        ENDDO

!$OMP END PARALLEL

        A(I) = B(I)      ! I has the value of N here

Fortran

      END SUBROUTINE A30

A.31 The reduction Clause
The following example demonstrates the reduction clause (Section 2.8.3.6 on page

79):

C/C++
Example A.31.1c
void a31_1(float *x, int *y, int n)
{
  int i, b;
  float a;

  a = 0.0;
  b = 0;

#pragma omp parallel for private(i) shared(x, y, n) \
                         reduction(+:a) reduction(^:b)
  for (i=0; i<n; i++) {

    a += x[i];
    b ^= y[i];

  }

C/C++
}
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Fortran

Example A.31.1f
      SUBROUTINE A31_1(A, B, X, Y, N)

        INTEGER N
        REAL X(*), Y(*), A, B

!$OMP PARALLEL DO PRIVATE(I) SHARED(X, N) REDUCTION(+:A)
!$OMP& REDUCTION(MIN:B)

        DO I=1,N

           A = A + X(I)

           B = MIN(B, Y(I))

!  Note that some reductions can be expressed in
!  other forms. For example, the MIN could be expressed as
!  IF (B > Y(I)) B = Y(I)

         END DO

Fortran

      END SUBROUTINE A31_1

A common implementation of the preceding example is to treat it as if it had been

written as follows:

C/C++
Example A.31.2c
void a31_2(float *x, int *y, int n)
{
  int i, b, b_p;
  float a, a_p;

  a = 0.0;
  b = 0;

#pragma omp parallel shared(a, b, x, y, n) \
                     private(a_p, b_p)
  {
    a_p = 0.0;
    b_p = 0;

#pragma omp for private(i)
    for (i=0; i<n; i++) {
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      a_p += x[i];
      b_p ^= y[i];

    }

#pragma omp critical
    {
      a += a_p;
      b ^= b_p;
    }

  }

C/C++
}

Fortran

Example A.31.2f
       SUBROUTINE A31_2 (A, B, X, Y, N)

         INTEGER N
         REAL X(*), Y(*), A, B, A_P, B_P

!$OMP PARALLEL SHARED(X, Y, N, A, B) PRIVATE(A_P, B_P)

        A_P = 0.0
        B_P = HUGE(B_P)

!$OMP   DO PRIVATE(I)
        DO I=1,N
          A_P = A_P + X(I)
          B_P = MIN(B_P, Y(I))
        ENDDO
!$OMP   END DO

!$OMP   CRITICAL
          A = A + A_P
          B = MIN(B, B_P)
!$OMP   END CRITICAL

!$OMP END PARALLEL

      END SUBROUTINE A31_2

The following program is non-conforming because the reduction is on the intrinsic
procedure name MAXbut that name has been redefined to be the variable named MAX.
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Fortran (cont.)

Example A.31.3f
 PROGRAM A31_3_WRONG
 MAX = HUGE(0)

 M = 0

 !$OMP PARALLEL DO REDUCTION(MAX: M)  ! MAX is no longer the
                                      ! intrinsic so this
                                      ! is non-conforming

 DO I = 1, 100
    CALL SUB(M,I)
 END DO

 END PROGRAM A31_3_WRONG

 SUBROUTINE SUB(M,I)
    M = MAX(M,I)
 END SUBROUTINE SUB

The following conforming program performs the reduction using the intrinsic procedure
name MAXeven though the intrinsic MAXhas been renamed to REN.

Example A.31.4f
MODULE M
   INTRINSIC MAX
END MODULE M

PROGRAM A31_4
   USE M, REN => MAX
   N = 0
!$OMP PARALLEL DO REDUCTION(REN: N)     ! still does MAX
   DO I = 1, 100
      N = MAX(N,I)
   END DO
END PROGRAM A31_4

The following conforming program performs the reduction using intrinsic procedure
name MAXeven though the intrinsic MAXhas been renamed to MIN.

Example A.31.5f
MODULE MOD
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   INTRINSIC MAX, MIN
END MODULE MOD

PROGRAM A31_5
   USE MOD, MIN=>MAX, MAX=>MIN
   REAL :: R
   R = -HUGE(0.0)

!$OMP PARALLEL DO REDUCTION(MIN: R)     ! still does MAX
   DO I = 1, 1000
      R = MIN(R, SIN(REAL(I)))
   END DO
   PRINT *, R

Fortran

END PROGRAM A31_5

A.32 The copyin Clause
The copyin clause (see Section 2.8.4.1 on page 84) is used to initialize threadprivate

data upon entry to a parallel region. The value of the threadprivate variable in the

master thread is copied to the threadprivate variable of each other team member.

C/C++
Example A.32.1c
#include <stdlib.h>

float* work;
int size;
float tol;

#pragma omp threadprivate(work,size,tol)

void a32( float t, int n )
{
  tol = t;
  size = n;
  #pragma omp parallel copyin(tol,size)
  {
    build();
  }
}

void build()
{
  int i;
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  work = (float*)malloc( sizeof(float)*size );
  for( i = 0; i < size; ++i ) work[i] = tol;

C/C++
}

Fortran

Example A.32.1f
      MODULE M
        REAL, POINTER, SAVE :: WORK(:)
        INTEGER :: SIZE
        REAL :: TOL
!$OMP   THREADPRIVATE(WORK,SIZE,TOL)
      END MODULE M

      SUBROUTINE A32( T, N )
        USE M
        REAL :: T
        INTEGER :: N
        TOL = T
        SIZE = N
!$OMP   PARALLEL COPYIN(TOL,SIZE)
        CALL BUILD
!$OMP   END PARALLEL
      END SUBROUTINE A32

      SUBROUTINE BUILD
        USE M
        ALLOCATE(WORK(SIZE))
        WORK = TOL

Fortran

      END SUBROUTINE BUILD

A.33 The copyprivate Clause
The copyprivate clause (see Section 2.8.4.2 on page 85) can be used to broadcast

values acquired by a single thread directly to all instances of the private variables in the

other threads. In this example, if the routine is called from the sequential part, its

behavior is not affected by the presence of the directives. If it is called from a

parallel region, then the actual arguments with which a and b are associated must be

private. After the input routine has been executed by one thread, no thread leaves the

construct until the private objects designated by a, b, x, and y in all threads have become

defined with the values read.
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C/C++
Example A.33.1c
#include <stdio.h>
float x, y;
#pragma omp threadprivate(x, y)

void init(float a, float b ) {
    #pragma omp single copyprivate(a,b,x,y)
    {
        scanf("%f %f %f %f", &a, &b, &x, &y);
    }

C/C++
}

Fortran

Example A.33.1f
      SUBROUTINE INIT(A,B)
      REAL A, B
        COMMON /XY/ X,Y
!$OMP   THREADPRIVATE (/XY/)

!$OMP   SINGLE
          READ (11) A,B,X,Y
!$OMP   END SINGLE COPYPRIVATE (A,B,/XY/)

Fortran

      END SUBROUTINE INIT

In contrast to the previous example, suppose the input must be performed by a particular

thread, say the master thread. In this case, the copyprivate clause cannot be used to

do the broadcast directly, but it can be used to provide access to a temporary shared

object.

C/C++
Example A.33.2c
#include <stdio.h>
#include <stdlib.h>

float read_next( ) {
  float * tmp;
  float return_val;

  #pragma omp single copyprivate(tmp)
  {
    tmp = (float *) malloc(sizeof(float));
  }  /* copies the pointer only */
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  #pragma omp master
  {
    scanf("%f", tmp);
  }

  #pragma omp barrier
  return_val = *tmp;
  #pragma omp barrier

  #pragma omp single nowait
  {
    free(tmp);
  }

  return return_val;

C/C++
}

Fortran

Example A.33.2f
      REAL FUNCTION READ_NEXT()
        REAL, POINTER :: TMP

!$OMP   SINGLE
          ALLOCATE (TMP)
!$OMP   END SINGLE COPYPRIVATE (TMP)  ! copies the pointer only

!$OMP   MASTER
          READ (11) TMP
!$OMP   END MASTER

!$OMP   BARRIER
          READ_NEXT = TMP
!$OMP   BARRIER

!$OMP   SINGLE
          DEALLOCATE (TMP)
!$OMP   END SINGLE NOWAIT

Fortran

      END FUNCTION READ_NEXT

Suppose that the number of lock objects required within a parallel region cannot

easily be determined prior to entering it. The copyprivate clause can be used to

provide access to shared lock objects that are allocated within that parallel region.
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C/C++
Example A.33.3c
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>

omp_lock_t *new_lock()
{
  omp_lock_t *lock_ptr;

  #pragma omp single copyprivate(lock_ptr)
  {
    lock_ptr = (omp_lock_t *) malloc(sizeof(omp_lock_t));
    omp_init_lock( lock_ptr );
  }

  return lock_ptr;

C/C++
}

Fortran

Example A.33.3f
      FUNCTION NEW_LOCK()
      USE OMP_LIB       ! or INCLUDE "omp_lib.h"
        INTEGER(OMP_LOCK_KIND), POINTER :: NEW_LOCK

!$OMP   SINGLE
          ALLOCATE(NEW_LOCK)
          CALL OMP_INIT_LOCK(NEW_LOCK)
!$OMP   END SINGLE COPYPRIVATE(NEW_LOCK)
      END FUNCTION NEW_LOCK

Note that the effect of the copyprivate clause on a variable with the allocatable

attribute is different than on a variable with the pointer attribute.

Example A.33.4f
      SUBROUTINE S(N)
      INTEGER N

        REAL, DIMENSION(:), ALLOCATABLE :: A
        REAL, DIMENSION(:), POINTER :: B

        ALLOCATE (A(N))
!$OMP   SINGLE
          ALLOCATE (B(N))
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          READ (11) A,B
!$OMP   END SINGLE COPYPRIVATE(A,B)
        ! Variable A designates a private object
        !   which has the same value in each thread
        ! Variable B designates a shared object

!$OMP   BARRIER
!$OMP   SINGLE
          DEALLOCATE (B)
!$OMP   END SINGLE NOWAIT

Fortran

      END SUBROUTINE S

A.34 Nested Loop Constructs
The following example of loop construct nesting (see Section 2.9 on page 87) is

conforming because the inner and outer loop regions bind to different parallel
regions:

C/C++
Example A.34.1c
void work(int i, int j) {}

void good_nesting(int n)
{
  int i, j;
  #pragma omp parallel default(shared)
  {
    #pragma omp for
    for (i=0; i<n; i++) {
      #pragma omp parallel shared(i, n)
      {
        #pragma omp for
        for (j=0; j < n; j++)
          work(i, j);
      }
    }
  }

C/C++
}

Fortran

Example A.34.1f
      SUBROUTINE WORK(I, J)
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      INTEGER I, J
      END SUBROUTINE WORK

      SUBROUTINE GOOD_NESTING(N)
      INTEGER N

        INTEGER I
!$OMP   PARALLEL DEFAULT(SHARED)
!$OMP     DO
          DO I = 1, N
!$OMP       PARALLEL SHARED(I,N)
!$OMP         DO
              DO J = 1, N
                CALL WORK(I,J)
              END DO
!$OMP       END PARALLEL
          END DO
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE GOOD_NESTING

The following variation of the preceding example is also conforming:

C/C++
Example A.34.2c
void work(int i, int j) {}

void work1(int i, int n)
{
  int j;
  #pragma omp parallel default(shared)
  {
    #pragma omp for
    for (j=0; j<n; j++)
      work(i, j);
  }
}

void good_nesting2(int n)
{
  int i;
  #pragma omp parallel default(shared)
  {
    #pragma omp for
    for (i=0; i<n; i++)
      work1(i, n);
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  }

C/C++
}

Fortran

Example A.34.2f
      SUBROUTINE WORK(I, J)
      INTEGER I, J
      END SUBROUTINE WORK

      SUBROUTINE WORK1(I, N)
      INTEGER J
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO
        DO J = 1, N
          CALL WORK(I,J)
        END DO
!$OMP END PARALLEL
      END SUBROUTINE WORK1

      SUBROUTINE GOOD_NESTING2(N)
      INTEGER N
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO
      DO I = 1, N
         CALL WORK1(I, N)
      END DO
!$OMP END PARALLEL

Fortran

      END SUBROUTINE GOOD_NESTING2

A.35 Restrictions on Nesting of Regions
The examples in this section illustrate the region nesting rules. For more information on

region nesting, see Section 2.9 on page 87.

The following example is non-conforming because the inner and outer loop regions are

closely nested:

C/C++
Example A.35.1c
void work(int i, int j) {}

void wrong1(int n)
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{
  #pragma omp parallel default(shared)
  {
    int i, j;
    #pragma omp for
    for (i=0; i<n; i++) {
       /* incorrect nesting of loop regions */
       #pragma omp for
         for (j=0; j<n; j++)
           work(i, j);
    }
  }

C/C++
}

Fortran

Example A.35.1f
      SUBROUTINE WORK(I, J)
      INTEGER I, J
      END SUBROUTINE WORK

      SUBROUTINE WRONG1(N)
      INTEGER N

        INTEGER I,J
!$OMP   PARALLEL DEFAULT(SHARED)
!$OMP     DO
          DO I = 1, N
!$OMP       DO             ! incorrect nesting of loop regions
            DO J = 1, N
              CALL WORK(I,J)
            END DO
          END DO
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE WRONG1

The following orphaned version of the preceding example is also non-conforming:

C/C++
Example A.35.2c
void work1(int i, int n)
{
  int j;
/* incorrect nesting of loop regions */
  #pragma omp for
    for (j=0; j<n; j++)
      work(i, j);
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void wrong2(int n)
{
  #pragma omp parallel default(shared)
  {
    int i;
    #pragma omp for
      for (i=0; i<n; i++)
         work1(i, n);
  }

C/C++
}

Fortran

Example A.35.2f

      SUBROUTINE WORK1(I,N)
      INTEGER I, N

        INTEGER J
!$OMP   DO      ! incorrect nesting of loop regions
        DO J = 1, N
          CALL WORK(I,J)
        END DO
      END SUBROUTINE WORK1

      SUBROUTINE WRONG2(N)
      INTEGER N

        INTEGER I
!$OMP   PARALLEL DEFAULT(SHARED)
!$OMP     DO
          DO I = 1, N
            CALL WORK1(I,N)
          END DO
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE WRONG2

The following example is non-conforming because the loop and single regions are

closely nested:

C/C++
Example A.35.3c
void wrong3(int n)
{
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  #pragma omp parallel default(shared)
  {
    int i;
    #pragma omp for
      for (i=0; i<n; i++) {
/* incorrect nesting of regions */
        #pragma omp single
          work(i, 0);
      }
  }

C/C++
}

Fortran

Example A.35.3f

      SUBROUTINE WRONG3(N)
      INTEGER N

        INTEGER I
!$OMP   PARALLEL DEFAULT(SHARED)
!$OMP     DO
          DO I = 1, N
!$OMP       SINGLE            ! incorrect nesting of regions
              CALL WORK(I, 1)
!$OMP       END SINGLE
          END DO
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE WRONG3

The following example is non-conforming because a barrier region cannot be closely

nested inside a loop region:

C/C++
Example A.35.4c
void wrong4(int n)
{

  #pragma omp parallel default(shared)
  {
    int i;
    #pragma omp for
      for (i=0; i<n; i++) {
        work(i, 0);
/* incorrect nesting of barrier region in a loop region */
        #pragma omp barrier
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        work(i, 1);
      }
  }

C/C++
}

Fortran

Example A.35.4f

      SUBROUTINE WRONG4(N)
      INTEGER N

        INTEGER I
!$OMP   PARALLEL DEFAULT(SHARED)
!$OMP     DO
          DO I = 1, N
            CALL WORK(I, 1)
! incorrect nesting of barrier region in a loop region
!$OMP       BARRIER
            CALL WORK(I, 2)
          END DO
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE WRONG4

The following example is non-conforming because the barrier region cannot be

closely nested inside the critical region. If this were permitted, it would result in

deadlock due to the fact that only one thread at a time can enter the critical region:

C/C++
Example A.35.5c
void wrong5(int n)
{
  #pragma omp parallel
  {
    #pragma omp critical
    {
       work(n, 0);
/* incorrect nesting of barrier region in a critical region */
       #pragma omp barrier
       work(n, 1);
    }
  }

C/C++
}
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Fortran

Example A.35.5f
      SUBROUTINE WRONG5(N)
      INTEGER N

!$OMP   PARALLEL DEFAULT(SHARED)
!$OMP     CRITICAL
            CALL WORK(N,1)
! incorrect nesting of barrier region in a critical region
!$OMP       BARRIER
            CALL WORK(N,2)
!$OMP     END CRITICAL
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE WRONG5

The following example is non-conforming because the barrier region cannot be

closely nested inside the single region. If this were permitted, it would result in

deadlock due to the fact that only one thread executes the single region:

C/C++
Example A.35.6c
void wrong6(int n)
{
  #pragma omp parallel
  {
    #pragma omp single
    {
      work(n, 0);
/* incorrect nesting of barrier region in a single region */
      #pragma omp barrier
      work(n, 1);
    }
  }

C/C++
}

Fortran

Example A.35.6f
     SUBROUTINE WRONG6(N)
      INTEGER N

!$OMP   PARALLEL DEFAULT(SHARED)
!$OMP     SINGLE
            CALL WORK(N,1)
! incorrect nesting of barrier region in a single region
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!$OMP       BARRIER
            CALL WORK(N,2)
!$OMP     END SINGLE
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE WRONG6

A.36 The omp_set_dynamic and
omp_set_num_threads Routines
Some programs rely on a fixed, prespecified number of threads to execute correctly.

Because the default setting for the dynamic adjustment of the number of threads is

implementation defined, such programs can choose to turn off the dynamic threads

capability and set the number of threads explicitly to ensure portability. The following

example shows how to do this using omp_set_dynamic (Section 3.2.7 on page 97),

and omp_set_num_threads (Section 3.2.1 on page 91).

In this example, the program executes correctly only if it is executed by 16 threads. If

the implementation is not capable of supporting 16 threads, the behavior of this example

is implementation defined. Note that the number of threads executing a parallel
region remains constant during the region, regardless of the dynamic threads setting.

The dynamic threads mechanism determines the number of threads to use at the start of

the parallel region and keeps it constant for the duration of the region.

C/C++
Example A.36.1c
#include <omp.h>
#include <stdlib.h>

void do_by_16(float *x, int iam, int ipoints) {}

void a36(float *x, int npoints)
{
  int iam, ipoints;

  omp_set_dynamic(0);
  omp_set_num_threads(16);

  #pragma omp parallel shared(x, npoints) private(iam, ipoints)
  {
    if (omp_get_num_threads() != 16)
      abort();
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    iam = omp_get_thread_num();
    ipoints = npoints/16;
    do_by_16(x, iam, ipoints);
  }

C/C++
}

Fortran

Example A.36.1f
      SUBROUTINE DO_BY_16(X, IAM, IPOINTS)
        REAL X(*)
        INTEGER IAM, IPOINTS
      END SUBROUTINE DO_BY_16

      SUBROUTINE SUBA36(X, NPOINTS)

        INCLUDE "omp_lib.h"      ! or USE OMP_LIB

        INTEGER NPOINTS
        REAL X(NPOINTS)

        INTEGER IAM, IPOINTS

        CALL OMP_SET_DYNAMIC(.FALSE.)
        CALL OMP_SET_NUM_THREADS(16)

!$OMP   PARALLEL SHARED(X,NPOINTS) PRIVATE(IAM, IPOINTS)

          IF (OMP_GET_NUM_THREADS() .NE. 16) THEN
            STOP
          ENDIF

          IAM = OMP_GET_THREAD_NUM()
          IPOINTS = NPOINTS/16
          CALL DO_BY_16(X,IAM,IPOINTS)

!$OMP   END PARALLEL

Fortran

      END SUBROUTINE SUBA36
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A.37 The omp_get_num_threads Routine
In the following example, the omp_get_num_threads call (see Section 3.2.2 on

page 93) returns 1 in the sequential part of the code, so np will always be equal to 1. To

determine the number of threads that will be deployed for the parallel region, the

call should be inside the parallel region.

C/C++
Example A.37.1c
#include <omp.h>
void work(int i);

void incorrect()
{
  int np, i;

  np = omp_get_num_threads();  /* misplaced */

  #pragma omp parallel for schedule(static)
  for (i=0; i < np; i++)
    work(i);

C/C++
}

Fortran

Example A.37.1f
      SUBROUTINE WORK(I)
      INTEGER I
        I = I + 1
      END SUBROUTINE WORK

      SUBROUTINE INCORRECT()
        INCLUDE "omp_lib.h"      ! or USE OMP_LIB
        INTEGER I, NP

        NP = OMP_GET_NUM_THREADS()   !misplaced: will return 1
!$OMP   PARALLEL DO SCHEDULE(STATIC)
          DO I = 0, NP-1
            CALL WORK(I)
          ENDDO
!$OMP   END PARALLEL DO

Fortran

      END SUBROUTINE INCORRECT
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The following example shows how to rewrite this program without including a query for

the number of threads:

C/C++
Example A.37.2c
#include <omp.h>
void work(int i);

void correct()
{
  int i;

  #pragma omp parallel private(i)
  {
    i = omp_get_thread_num();
    work(i);
  }

C/C++
}

Fortran

Example A.37.2f
      SUBROUTINE WORK(I)
        INTEGER I

        I = I + 1

      END SUBROUTINE WORK

      SUBROUTINE CORRECT()
        INCLUDE "omp_lib.h"     ! or USE OMP_LIB
        INTEGER I

!$OMP    PARALLEL PRIVATE(I)
          I = OMP_GET_THREAD_NUM()
          CALL WORK(I)
!$OMP   END PARALLEL

Fortran

      END SUBROUTINE CORRECT
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A.38 The omp_init_lock Routine
The following example demonstrates how to initialize an array of locks in a parallel
region by using omp_init_lock (Section 3.3.1 on page 104).

C/C++
Example A.38.1c
#include <omp.h>

omp_lock_t *new_locks()
{
  int i;
  omp_lock_t *lock = new omp_lock_t[1000];

  #pragma omp parallel for private(i)
    for (i=0; i<1000; i++)
    {
      omp_init_lock(&lock[i]);
    }
    return lock;

C/C++
}

Fortran

Example A.38.1f
      FUNCTION NEW_LOCKS()
        USE OMP_LIB        ! or INCLUDE "omp_lib.h"
        INTEGER(OMP_LOCK_KIND), DIMENSION(1000) :: NEW_LOCKS

        INTEGER I

!$OMP   PARALLEL DO PRIVATE(I)
          DO I=1,1000
            CALL OMP_INIT_LOCK(NEW_LOCKS(I))
          END DO
!$OMP   END PARALLEL DO

Fortran

      END FUNCTION NEW_LOCKS
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A.39 Simple Lock Routines
In the following example (for Section 3.3 on page 102), the lock routines cause the

threads to be idle while waiting for entry to the first critical section, but to do other work

while waiting for entry to the second. The omp_set_lock function blocks, but the

omp_test_lock function does not, allowing the work in skip to be done.

C/C++
Note that the argument to the lock routines should have type omp_lock_t , and that

there is no need to flush it.

Example A.39.1c
#include <stdio.h>
#include <omp.h>

void skip(int i) {}
void work(int i) {}

int main()
{
  omp_lock_t lck;
  int id;

  omp_init_lock(&lck);

  #pragma omp parallel shared(lck) private(id)
  {
    id = omp_get_thread_num();

    omp_set_lock(&lck);
    /*  only one thread at a time can execute this printf */
    printf("My thread id is %d.\n", id);
    omp_unset_lock(&lck);

    while (! omp_test_lock(&lck)) {
      skip(id);   /* we do not yet have the lock,
                     so we must do something else */
    }

    work(id);      /* we now have the lock
                      and can do the work */

    omp_unset_lock(&lck);
  }
198 OpenMP API • Version 2.5  May 2005



1

2
3

4

5

6

7

8
9

10
11

12

13

14
15

16

17
18
19
20
21

22
23
24
25

26
27

28

29

30

31
  omp_destroy_lock(&lck);

  return 0;

C/C++
}

Fortran
Note that there is no need to flush the lock variable.

Example A.39.1f
      SUBROUTINE SKIP(ID)
      END SUBROUTINE SKIP

      SUBROUTINE WORK(ID)
      END SUBROUTINE WORK

      PROGRAM A39

        INCLUDE "omp_lib.h"     ! or USE OMP_LIB

        INTEGER(OMP_LOCK_KIND) LCK
        INTEGER ID

        CALL OMP_INIT_LOCK(LCK)

!$OMP   PARALLEL SHARED(LCK) PRIVATE(ID)
          ID = OMP_GET_THREAD_NUM()
          CALL OMP_SET_LOCK(LCK)
          PRINT *, ’My thread id is ’, ID
          CALL OMP_UNSET_LOCK(LCK)

          DO WHILE (.NOT. OMP_TEST_LOCK(LCK))
            CALL SKIP(ID)     ! We do not yet have the lock
                              ! so we must do something else
          END DO

          CALL WORK(ID)       ! We now have the lock
                              ! and can do the work

          CALL OMP_UNSET_LOCK( LCK )

!$OMP   END PARALLEL

        CALL OMP_DESTROY_LOCK( LCK )
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Fortran

      END PROGRAM A39

A.40 Nestable Lock Routines
The following example (for Section 3.3 on page 102) demonstrates how a nestable lock

can be used to synchronize updates both to a whole structure and to one of its members.

C/C++
Example A.40.1c
#include <omp.h>

typedef struct {
      int a,b;
      omp_nest_lock_t lck; } pair;

int work1();
int work2();
int work3();

void incr_a(pair *p, int a)
{
  /* Called only from incr_pair, no need to lock. */
  p->a += a;
}

void incr_b(pair *p, int b)
{
  /* Called both from incr_pair and elsewhere, */
  /* so need a nestable lock. */

  omp_set_nest_lock(&p->lck);
  p->b += b;
  omp_unset_nest_lock(&p->lck);
}

void incr_pair(pair *p, int a, int b)
{
  omp_set_nest_lock(&p->lck);
  incr_a(p, a);
  incr_b(p, b);
  omp_unset_nest_lock(&p->lck);
}
void a40(pair *p)
{
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  #pragma omp parallel sections
  {
    #pragma omp section
      incr_pair(p, work1(), work2());
    #pragma omp section
      incr_b(p, work3());
  }

C/C++
}

Fortran

Example A.40.1f
      MODULE DATA
        USE OMP_LIB, ONLY: OMP_NEST_LOCK_KIND
        TYPE LOCKED_PAIR
          INTEGER A
          INTEGER B
          INTEGER (OMP_NEST_LOCK_KIND) LCK
       END TYPE
      END MODULE DATA

      SUBROUTINE INCR_A(P, A)
        ! called only from INCR_PAIR, no need to lock
        USE DATA
        TYPE(LOCKED_PAIR) :: P
        INTEGER A
        P%A = P%A + A
      END SUBROUTINE INCR_A

      SUBROUTINE INCR_B(P, B)
        ! called from both INCR_PAIR and elsewhere,
        ! so we need a nestable lock
        USE OMP_LIB       ! or INCLUDE "omp_lib.h"
        USE DATA
        TYPE(LOCKED_PAIR) :: P
        INTEGER B
        CALL OMP_SET_NEST_LOCK(P%LCK)
        P%B = P%B + B
        CALL OMP_UNSET_NEST_LOCK(P%LCK)
      END SUBROUTINE INCR_B

      SUBROUTINE INCR_PAIR(P, A, B)
        USE OMP_LIB        ! or INCLUDE "omp_lib.h"
        USE DATA
        TYPE(LOCKED_PAIR) :: P
        INTEGER A
        INTEGER B
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        CALL OMP_SET_NEST_LOCK(P%LCK)
        CALL INCR_A(P, A)
        CALL INCR_B(P, B)
        CALL OMP_UNSET_NEST_LOCK(P%LCK)
      END SUBROUTINE INCR_PAIR

      SUBROUTINE A40(P)
        USE OMP_LIB        ! or INCLUDE "omp_lib.h"
        USE DATA
        TYPE(LOCKED_PAIR) :: P
        INTEGER WORK1, WORK2, WORK3
        EXTERNAL WORK1, WORK2, WORK3

!$OMP   PARALLEL SECTIONS

!$OMP   SECTION
          CALL INCR_PAIR(P, WORK1(), WORK2())
!$OMP   SECTION
          CALL INCR_B(P, WORK3())
!$OMP   END PARALLEL SECTIONS

Fortran

      END SUBROUTINE A40
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APPENDIX B

Stubs for Runtime Library
Routines

This section provides stubs for the runtime library routines defined in the OpenMP API.

The stubs are provided to enable portability to platforms that do not support the

OpenMP API. On these platforms, OpenMP programs must be linked with a library

containing these stub routines. The stub routines assume that the directives in the

OpenMP program are ignored. As such, they emulate serial semantics.

Note that the lock variable that appears in the lock routines must be accessed exclusively

through these routines. It should not be initialized or otherwise modified in the user

program.

Fortran
For the stub routines written in Fortran, the lock variable is declared as a POINTERto

guarantee that it is capable of holding an address. Alternatively, for Fortran 90

implementations, it could be declared as an INTEGER(OMP_LOCK_KIND)or

Fortran

INTEGER(OMP_NEST_LOCK_KIND), as appropriate.

In an actual implementation the lock variable might be used to hold the address of an

allocated object, but here it is used to hold an integer value. Users should not make

assumptions about mechanisms used by OpenMP implementations to implement locks

based on the scheme used by the stub procedures.
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B.1 C/C++ Stub routines

#include <stdio.h>
#include <stdlib.h>
#include "omp.h"

#ifdef __cplusplus
extern "C" {
#endif

void omp_set_num_threads(int num_threads)
{
}

int omp_get_num_threads(void)
{
  return 1;
}

int omp_get_max_threads(void)
{
  return 1;
}

int omp_get_thread_num(void)
{
  return 0;
}

int omp_get_num_procs(void)
{
  return 1;
}

void omp_set_dynamic(int dynamic_threads)
{
}

204 OpenMP API • Version 2.5  May 2005



1
2
3
4

5
6
7
8

9
10
11

12
13
14
15

16

17
18
19
20

21
22
23
24

25
int omp_get_dynamic(void)
{
  return 0;
}

int omp_in_parallel(void)
{
  return 0;
}

void omp_set_nested(int nested)
{
}

int omp_get_nested(void)
{
  return 0;
}

enum {UNLOCKED = -1, INIT, LOCKED};

void omp_init_lock(omp_lock_t *lock)
{
  *lock = UNLOCKED;
}

void omp_destroy_lock(omp_lock_t *lock)
{
  *lock = INIT;
}
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void omp_set_lock(omp_lock_t *lock)
{
  if (*lock == UNLOCKED) {
    *lock = LOCKED;
  } else if (*lock == LOCKED) {
    fprintf(stderr, "error: deadlock in using lock variable\n");
    exit(1);
  } else {
    fprintf(stderr, "error: lock not initialized\n");
    exit(1);
  }
}

void omp_unset_lock(omp_lock_t *lock)
{
  if (*lock == LOCKED) {
    *lock = UNLOCKED;
  } else if (*lock == UNLOCKED) {
    fprintf(stderr, "error: lock not set\n");
    exit(1);
  } else {
    fprintf(stderr, "error: lock not initialized\n");
    exit(1);
  }
}

int omp_test_lock(omp_lock_t *lock)
{
  if (*lock == UNLOCKED) {
    *lock = LOCKED;
    return 1;
  } else if (*lock == LOCKED) {
    return 0;
  } else {
    fprintf(stderr, "error: lock not initialized\n");
    exit(1);
  }
}
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#ifndef OMP_NEST_LOCK_T

typedef struct {  /* This really belongs in omp.h */
  int owner;
  int count;
} omp_nest_lock_t;

#endif

enum {NOOWNER=-1, MASTER = 0};

void omp_init_nest_lock(omp_nest_lock_t *nlock)
{
  nlock->owner = NOOWNER;
  nlock->count = 0;
}

void omp_destroy_nest_lock(omp_nest_lock_t *nlock)
{
  nlock->owner = NOOWNER;
  nlock->count = UNLOCKED;
}

void omp_set_nest_lock(omp_nest_lock_t *nlock)
{
  if (nlock->owner == MASTER && nlock->count >= 1) {
    nlock->count++;
  } else if (nlock->owner == NOOWNER && nlock->count == 0) {
    nlock->owner = MASTER;
    nlock->count = 1;
  } else {

fprintf(stderr, "error: lock corrupted or not initialized\n");
    exit(1);
  }
}
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void omp_unset_nest_lock(omp_nest_lock_t *nlock)
{
  if (nlock->owner == NOOWNER && nlock->count >= 1) {
    nlock->count--;
    if (nlock->count == 0) {
      nlock->owner = NOOWNER;
    }
  } else if (nlock->owner == NOOWNER && nlock->count == 0) {
    fprintf(stderr, "error: lock not set\n");
    exit(1);
  } else {

fprintf(stderr, "error: lock corrupted or not initialized\n");
    exit(1);
  }
}

int omp_test_nest_lock(omp_nest_lock_t *nlock)
{
  omp_set_nest_lock(nlock);
  return nlock->count;
}

double omp_get_wtime(void)
{
/* This function does not provide a working
   wallclock timer. Replace it with a version
   customized for the target machine.
*/
   return 0.0;
}

double omp_get_wtick(void)
{
/* This function does not provide a working
   clock tick function. Replace it with
   a version customized for the target machine.
*/
   return 365. * 86400.;
}

#ifdef __cplusplus

}

#endif
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B.2 Fortran Stub Routines

SUBROUTINE OMP_SET_NUM_THREADS(NUM_THREADS)
  INTEGER NUM_THREADS
  RETURN
END SUBROUTINE

INTEGER FUNCTION OMP_GET_NUM_THREADS()
  OMP_GET_NUM_THREADS = 1
  RETURN
END FUNCTION

INTEGER FUNCTION OMP_GET_MAX_THREADS()
  OMP_GET_MAX_THREADS = 1
  RETURN
END FUNCTION

INTEGER FUNCTION OMP_GET_THREAD_NUM()
  OMP_GET_THREAD_NUM = 0
  RETURN
END FUNCTION

INTEGER FUNCTION OMP_GET_NUM_PROCS()
  OMP_GET_NUM_PROCS = 1
  RETURN
END FUNCTION

SUBROUTINE OMP_SET_DYNAMIC(DYNAMIC_THREADS)
  LOGICAL DYNAMIC_THREADS
  RETURN
END SUBROUTINE
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LOGICAL FUNCTION OMP_GET_DYNAMIC()
  OMP_GET_DYNAMIC = .FALSE.
  RETURN
END FUNCTION

LOGICAL FUNCTION OMP_IN_PARALLEL()
  OMP_IN_PARALLEL = .FALSE.
  RETURN
END FUNCTION

SUBROUTINE OMP_SET_NESTED(NESTED)
  LOGICAL NESTED
  RETURN
END SUBROUTINE

LOGICAL FUNCTION OMP_GET_NESTED()
  OMP_GET_NESTED = .FALSE.
  RETURN
END FUNCTION

SUBROUTINE OMP_INIT_LOCK(LOCK)
  ! LOCK is 0 if the simple lock is not initialized
  !        -1 if the simple lock is initialized but not set
  !         1 if the simple lock is set
  POINTER (LOCK,IL)
  INTEGER IL

  LOCK = -1
  RETURN
END SUBROUTINE

SUBROUTINE OMP_DESTROY_LOCK(LOCK)
  POINTER (LOCK,IL)
  INTEGER IL

  LOCK = 0
  RETURN
END SUBROUTINE
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SUBROUTINE OMP_SET_LOCK(LOCK)
  POINTER (LOCK,IL)
  INTEGER IL

  IF (LOCK .EQ. -1) THEN
    LOCK = 1
  ELSEIF (LOCK .EQ. 1) THEN
    PRINT *, ’ERROR: DEADLOCK IN USING LOCK VARIABLE’
    STOP
  ELSE
    PRINT *, ’ERROR: LOCK NOT INITIALIZED’
    STOP
  ENDIF

  RETURN
END SUBROUTINE

SUBROUTINE OMP_UNSET_LOCK(LOCK)
  POINTER (LOCK,IL)
  INTEGER IL

  IF (LOCK .EQ. 1) THEN
    LOCK = -1
  ELSEIF (LOCK .EQ. -1) THEN
    PRINT *, ’ERROR: LOCK NOT SET’
    STOP
  ELSE
    PRINT *, ’ERROR: LOCK NOT INITIALIZED’
    STOP
  ENDIF

  RETURN
END SUBROUTINE
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LOGICAL FUNCTION OMP_TEST_LOCK(LOCK)
  POINTER (LOCK,IL)
  INTEGER IL

  IF (LOCK .EQ. -1) THEN
    LOCK = 1
    OMP_TEST_LOCK = .TRUE.
  ELSEIF (LOCK .EQ. 1) THEN
    OMP_TEST_LOCK = .FALSE.
  ELSE
    PRINT *, ’ERROR: LOCK NOT INITIALIZED’
    STOP
  ENDIF

  RETURN
END FUNCTION

SUBROUTINE OMP_INIT_NEST_LOCK(NLOCK)
  ! NLOCK is  0 if the nestable lock is not initialized
  !          -1 if the nestable lock is initialized but not set
  !           1 if the nestable lock is set
  ! no use count is maintained
  POINTER (NLOCK,NIL)
  INTEGER NIL

  NLOCK = -1

  RETURN
END SUBROUTINE

SUBROUTINE OMP_DESTROY_NEST_LOCK(NLOCK)
  POINTER (NLOCK,NIL)
  INTEGER NIL

  NLOCK = 0

  RETURN
END SUBROUTINE
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SUBROUTINE OMP_SET_NEST_LOCK(NLOCK)
  POINTER (NLOCK,NIL)
  INTEGER NIL

  IF (NLOCK .EQ. -1) THEN
    NLOCK = 1
  ELSEIF (NLOCK .EQ. 0) THEN
    PRINT *, ’ERROR: NESTED LOCK NOT INITIALIZED’
    STOP
  ELSE
    PRINT *, ’ERROR: DEADLOCK USING NESTED LOCK VARIABLE’
    STOP
  ENDIF

  RETURN
END SUBROUTINE

SUBROUTINE OMP_UNSET_NEST_LOCK(NLOCK)
  POINTER (NLOCK,IL)
  INTEGER IL

  IF (NLOCK .EQ. 1) THEN
    NLOCK = -1
  ELSEIF (NLOCK .EQ. 0) THEN
    PRINT *, ’ERROR: NESTED LOCK NOT INITIALIZED’
    STOP
  ELSE
    PRINT *, ’ERROR: NESTED LOCK NOT SET’
    STOP
  ENDIF

  RETURN
END SUBROUTINE
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INTEGER FUNCTION OMP_TEST_NEST_LOCK(NLOCK)
  POINTER (NLOCK,NIL)
  INTEGER NIL

  IF (NLOCK .EQ. -1) THEN
    NLOCK = 1
    OMP_TEST_NEST_LOCK = 1
  ELSEIF (NLOCK .EQ. 1) THEN
    OMP_TEST_NEST_LOCK = 0
  ELSE
    PRINT *, ’ERROR: NESTED LOCK NOT INITIALIZED’
    STOP
  ENDIF

  RETURN
END SUBROUTINE

DOUBLE PRECISION FUNCTION OMP_GET_WTIME()
  ! This function does not provide a working
  ! wall clock timer. Replace it with a version
  ! customized for the target machine.

  OMP_WTIME = 0.0D0

  RETURN
END FUNCTION

DOUBLE PRECISION FUNCTION OMP_GET_WTICK()
  ! This function does not provide a working
  ! clock tick function. Replace it with
  ! a version customized for the target machine.
  DOUBLE PRECISION ONE_YEAR
  PARAMETER  (ONE_YEAR=365.D0*86400.D0)

  OMP_WTICK = ONE_YEAR

  RETURN
END FUNCTION
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APPENDIX C

OpenMP C and C++ Grammar

C.1 Notation
The grammar rules consist of the name for a non-terminal, followed by a colon,

followed by replacement alternatives on separate lines.

The syntactic expression termopt indicates that the term is optional within the

replacement.

The syntactic expression termoptseq is equivalent to term-seqopt with the following

additional rules:

term-seq :

term

term-seq term

term-seq , term
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C.2 Rules
The notation is described in Section 6.1 of the C standard. This grammar appendix

shows the extensions to the base language grammar for the OpenMP C and C++

directives.

/* in C++ (ISO/IEC 14882:1998) */

statement-seq:

statement

openmp-directive

statement-seq statement

statement-seq openmp-directive

/* in C90 (ISO/IEC 9899:1990) */

statement-list:

statement

openmp-directive

statement-list statement

statement-list openmp-directive

/* in C99 (ISO/IEC 9899:1999) */

block-item:

declaration

statement

openmp-directive
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statement:

/* standard statements */

openmp-construct

openmp-construct:

parallel-construct

for-construct

sections-construct

single-construct

parallel-for-construct

parallel-sections-construct

master-construct

critical-construct

atomic-construct

ordered-construct

openmp-directive:

barrier-directive

flush-directive

structured-block:

statement

parallel-construct:

parallel-directive structured-block

parallel-directive:

# pragma omp parallel parallel-clauseoptseq new-line

parallel-clause:

unique-parallel-clause

data-clause
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unique-parallel-clause:

if ( expression )

num_threads ( expression )

for-construct:

for-directive iteration-statement

for-directive:

# pragma omp for for-clauseoptseq new-line

for-clause:

unique-for-clause

data-clause

nowait

unique-for-clause:

ordered

schedule ( schedule-kind )

schedule ( schedule-kind , expression )

schedule-kind:

static

dynamic

guided

runtime

sections-construct:

sections-directive section-scope

sections-directive:

# pragma omp sections sections-clauseoptseq new-line

sections-clause:

data-clause

nowait

section-scope:
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{ section-sequence }

section-sequence:

section-directiveopt structured-block

section-sequence section-directive structured-block

section-directive:

# pragma omp section new-line

single-construct:

single-directive structured-block

single-directive:

# pragma omp single single-clauseoptseq new-line

single-clause:

data-clause

nowait

parallel-for-construct:

parallel-for-directive iteration-statement

parallel-for-directive:

# pragma omp parallel for parallel-for-clauseoptseq new-line

parallel-for-clause:

unique-parallel-clause

unique-for-clause

data-clause

parallel-sections-construct:

parallel-sections-directive section-scope

parallel-sections-directive:

# pragma omp parallel sections parallel-sections-clauseoptseq new-line

parallel-sections-clause:

unique-parallel-clause

data-clause
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master-construct:

master-directive structured-block

master-directive:

# pragma omp master new-line

critical-construct:

critical-directive structured-block

critical-directive:

# pragma omp critical region-phraseopt new-line

region-phrase:

( identifier )

barrier-directive:

# pragma omp barrier new-line

atomic-construct:

atomic-directive expression-statement

atomic-directive:

# pragma omp atomic new-line

flush-directive:

# pragma omp flush flush-varsopt new-line

flush-vars:

( variable-list )

ordered-construct:

ordered-directive structured-block

ordered-directive:

# pragma omp ordered new-line

declaration:

/* standard declarations */

threadprivate-directive

threadprivate-directive:
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# pragma omp threadprivate ( variable-list ) new-line

data-clause:

private ( variable-list )

copyprivate ( variable-list )

firstprivate ( variable-list )

lastprivate ( variable-list )

shared ( variable-list )

default ( shared )

default ( none )

reduction ( reduction-operator : variable-list )

copyin ( variable-list )

reduction-operator:

One of: + * - & ^ | && ||

/* in C */

variable-list:

identifier

variable-list , identifier

/* in C++ */

variable-list:

id-expression

variable-list , id-expression
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APPENDIX D

Interface Declarations

This appendix gives examples of the C/C++ header file, the Fortran include file and

Fortran 90 module that shall be provided by implementations as specified in Chapter 3.

It also includes an example of a Fortran 90 generic interface for a library routine.

D.1 Example of the omp.h Header File

#ifndef _OMP_H_DEF
#define _OMP_H_DEF

/*
 * define the lock data types
 */
#ifndef _OMP_LOCK_T_DEF
#   define _OMP_LOCK_T_DEF
    typedef struct __omp_lock *omp_lock_t;
#endif

#ifndef _OMP_NEST_LOCK_T_DEF
#   define _OMP_NEST_LOCK_T_DEF
    typedef struct __omp_nest_lock *omp_nest_lock_t;
#endif
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/*
 * exported OpenMP functions
 */
#ifdef __cplusplus
extern "C" {
#endif

#if defined(__stdc__) || defined(__STDC__) ||
defined(__cplusplus)
  extern void    omp_set_num_threads(int num_threads);
  extern int     omp_get_num_threads(void);
  extern int     omp_get_max_threads(void);
  extern int     omp_get_thread_num(void);
  extern int     omp_get_num_procs(void);
  extern int     omp_in_parallel(void);
  extern void    omp_set_dynamic(int dynamic_threads);
  extern int     omp_get_dynamic(void);
  extern void    omp_set_nested(int nested);
  extern int     omp_get_nested(void);

  extern void    omp_init_lock(omp_lock_t *lock);
  extern void    omp_destroy_lock(omp_lock_t *lock);
  extern void    omp_set_lock(omp_lock_t *lock);
  extern void    omp_unset_lock(omp_lock_t *lock);
  extern int     omp_test_lock(omp_lock_t *lock);

  extern void    omp_init_nest_lock(omp_nest_lock_t *lock);
  extern void    omp_destroy_nest_lock(omp_nest_lock_t *lock);
  extern void    omp_set_nest_lock(omp_nest_lock_t *lock);
  extern void    omp_unset_nest_lock(omp_nest_lock_t *lock);
  extern int     omp_test_nest_lock(omp_nest_lock_t *lock);

  extern double  omp_get_wtime(void);
  extern double  omp_get_wtick(void);

#else
  extern void    omp_set_num_threads();
  extern int     omp_get_num_threads();
  extern int     omp_get_max_threads();
  extern int     omp_get_thread_num();
  extern int     omp_get_num_procs();
  extern int     omp_in_parallel();
  extern void    omp_set_dynamic();
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D.2 Example of an Interface Declaration include
File

  extern int    omp_get_dynamic();
  extern void   omp_set_nested();
  extern int    omp_get_nested();

  extern void   omp_init_lock();
  extern void   omp_destroy_lock();
  extern void   omp_set_lock();
  extern void   omp_unset_lock();
  extern int    omp_test_lock();

  extern void   omp_init_nest_lock();
  extern void   omp_destroy_nest_lock();
  extern void   omp_set_nest_lock();
  extern void   omp_unset_nest_lock();
  extern int    omp_test_nest_lock();

  extern double omp_get_wtime();
  extern double omp_get_wtick();
#endif
#ifdef __cplusplus
}
#endif

#endif

C     the "C" of this comment starts in column 1
      integer     omp_lock_kind
      parameter ( omp_lock_kind = 8 )

      integer     omp_nest_lock_kind
      parameter ( omp_nest_lock_kind = 8 )
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C                          default integer type assumed below
C                          default logical type assumed below
C                          OpenMP Fortran API v2.5

      integer     openmp_version
      parameter ( openmp_version = 200505 )

      external omp_destroy_lock

      external omp_destroy_nest_lock

      external omp_get_dynamic
      logical  omp_get_dynamic

      external omp_get_max_threads
      integer  omp_get_max_threads

      external omp_get_nested
      logical  omp_get_nested

      external omp_get_num_procs
      integer  omp_get_num_procs

      external omp_get_num_threads

      integer  omp_get_num_threads

      external omp_get_thread_num
      integer  omp_get_thread_num

      external omp_get_wtick
      double precision  omp_get_wtick

      external omp_get_wtime
      double precision  omp_get_wtime

      external omp_init_lock

      external omp_init_nest_lock

      external omp_in_parallel
      logical  omp_in_parallel

      external omp_set_dynamic

      external omp_set_lock
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D.3 Example of a Fortran 90 Interface Declaration
module

       external omp_set_nest_lock

       external omp_set_nested

       external omp_set_num_threads

       external omp_test_lock
       logical  omp_test_lock

       external omp_test_nest_lock
       integer  omp_test_nest_lock

       external omp_unset_lock

       external omp_unset_nest_lock

!     the "!" of this comment starts in column 1

      module omp_lib_kinds

        integer, parameter :: omp_integer_kind      = 4
        integer, parameter :: omp_logical_kind      = 4
        integer, parameter :: omp_lock_kind         = 8
        integer, parameter :: omp_nest_lock_kind    = 8

      end module omp_lib_kinds
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      module omp_lib

        use omp_lib_kinds

!                               OpenMP Fortran API v2.5
        integer, parameter :: openmp_version = 200505

        interface
           subroutine omp_destroy_lock ( var )
           use omp_lib_kinds
           integer ( kind=omp_lock_kind ), intent(inout) :: var
           end subroutine omp_destroy_lock
        end interface

        interface
           subroutine omp_destroy_nest_lock ( var )
           use omp_lib_kinds

integer ( kind=omp_nest_lock_kind ), intent(inout) :: var
           end subroutine omp_destroy_nest_lock
        end interface

        interface
           function omp_get_dynamic ()
           use omp_lib_kinds
           logical ( kind=omp_logical_kind ) :: omp_get_dynamic
           end function omp_get_dynamic
        end interface

        interface
           function omp_get_max_threads ()
           use omp_lib_kinds

integer ( kind=omp_integer_kind ) :: omp_get_max_threads
           end function omp_get_max_threads
        end interface

        interface
           function omp_get_nested ()
           use omp_lib_kinds
           logical ( kind=omp_logical_kind ) :: omp_get_nested
           end function omp_get_nested
         end interface
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         interface
           function omp_get_num_procs ()
           use omp_lib_kinds

integer ( kind=omp_integer_kind ) :: omp_get_num_procs
           end function omp_get_num_procs
         end interface

         interface
           function omp_get_num_threads ()
           use omp_lib_kinds

integer ( kind=omp_integer_kind ) :: omp_get_num_threads
           end function omp_get_num_threads
         end interface

         interface
           function omp_get_thread_num ()
           use omp_lib_kinds

integer ( kind=omp_integer_kind ) :: omp_get_thread_num
           end function omp_get_thread_num
         end interface

         interface
           function omp_get_wtick ()
           double precision :: omp_get_wtick
           end function omp_get_wtick
          end interface

         interface
           function omp_get_wtime ()
           double precision :: omp_get_wtime
           end function omp_get_wtime
         end interface

         interface
           subroutine omp_init_lock ( var )
           use omp_lib_kinds
           integer ( kind=omp_lock_kind ), intent(out) :: var
           end subroutine omp_init_lock
         end interface

         interface
           subroutine omp_init_nest_lock ( var )
           use omp_lib_kinds

integer ( kind=omp_nest_lock_kind ), intent(out) :: var
           end subroutine omp_init_nest_lock
         end interface
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         interface
           function omp_in_parallel ()
           use omp_lib_kinds
           logical ( kind=omp_logical_kind ) :: omp_in_parallel
           end function omp_in_parallel
         end interface

         interface
           subroutine omp_set_dynamic ( enable_expr )
           use omp_lib_kinds

logical ( kind=omp_logical_kind ), intent(in) :: &
      &      enable_expr
           end subroutine omp_set_dynamic
         end interface

         interface
           subroutine omp_set_lock ( var )
           use omp_lib_kinds
           integer ( kind=omp_lock_kind ), intent(inout) :: var
          end subroutine omp_set_lock
         end interface

         interface
           subroutine omp_set_nest_lock ( var )
           use omp_lib_kinds

integer ( kind=omp_nest_lock_kind ), intent(inout) :: var
           end subroutine omp_set_nest_lock
         end interface

         interface
           subroutine omp_set_nested ( enable_expr )
           use omp_lib_kinds
           logical ( kind=omp_logical_kind ), intent(in) :: &
      &      enable_expr
           end subroutine omp_set_nested
         end interface
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        interface
subroutine omp_set_num_threads ( number_of_threads_expr )

           use omp_lib_kinds
           integer ( kind=omp_integer_kind ), intent(in) :: &

& number_of_threads_expr
           end subroutine omp_set_num_threads
         end interface

         interface
           function omp_test_lock ( var )
           use omp_lib_kinds
           logical ( kind=omp_logical_kind ) :: omp_test_lock
           integer ( kind=omp_lock_kind ), intent(inout) :: var
           end function omp_test_lock
         end interface

         interface
           function omp_test_nest_lock ( var )
           use omp_lib_kinds

integer ( kind=omp_integer_kind ) :: omp_test_nest_lock
integer ( kind=omp_nest_lock_kind ), intent(inout) :: var

           end function omp_test_nest_lock
         end interface

         interface
           subroutine omp_unset_lock ( var )
           use omp_lib_kinds
           integer ( kind=omp_lock_kind ), intent(inout) :: var
           end subroutine omp_unset_lock
         end interface

         interface
           subroutine omp_unset_nest_lock ( var )
           use omp_lib_kinds

integer ( kind=omp_nest_lock_kind ), intent(inout) :: var
           end subroutine omp_unset_nest_lock
         end interface

       end module omp_lib
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D.4 Example of a Generic Interface for a Library
Routine
Any of the OMP runtime library routines that take an argument may be extended with a

generic interface so arguments of different KIND type can be accommodated.

Assume an implementation supports both default INTEGERas KIND =
OMP_INTEGER_KINDand another INTEGER KIND, KIND = SHORT_INT. Then

OMP_SET_NUM_THREADScould be specified in the omp_lib module as the

following:

!     the "!" of this comment starts in column 1
      interface omp_set_num_threads

subroutine omp_set_num_threads_1 ( number_of_threads_expr )
        use omp_lib_kinds
        integer ( kind=omp_integer_kind ), intent(in) :: &

& number_of_threads_expr
      end subroutine omp_set_num_threads_1

subroutine omp_set_num_threads_2 ( number_of_threads_expr )
        use omp_lib_kinds
        integer ( kind=short_int ), intent(in) :: &

& number_of_threads_expr
      end subroutine omp_set_num_threads_2

      end interface omp_set_num_threads
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APPENDIX E

Implementation Defined
Behaviors in OpenMP

This appendix summarizes the behaviors that are described as implementation defined in

this API. Each behavior is cross-referenced back to its description in the main

specification. An implementation is required to define and document its behavior in

these cases.

• Memory model: it is implementation defined as to whether, and in what sizes,

memory accesses by multiple threads to the same variable without synchronization

are atomic with respect to each other (see Section 1.4.1 on page 10).

• Internal control variables: the number of copies of the internal control variables,

and their effects, during the execution of any explicit parallel region are

implementation defined. The initial values of nthreads-var, dyn-var, run-sched-var,
and def-sched-var are implementation defined (see Section 2.3 on page 24).

• Nested parallelism: the number of levels of parallelism supported is implementation

defined (see Section 1.2.4 on page 8 and Section 2.4.1 on page 29).

• Dynamic adjustment of threads: it is implementation defined whether the ability to

dynamically adjust the number of threads is provided. Implementations are allowed to

deliver fewer threads (but at least one) than indicated in Figure 2-1 in exceptional

situations, such as when there is a lack of resources, even if dynamic adjustment is

disabled. In these situations, the behavior of the program is implementation defined

(see Section 2.4.1 on page 29).

• sections construct: the method of scheduling the structured blocks among threads

in the team is implementation defined (see Section 2.5.2 on page 39).

• single construct: the method of choosing a thread to execute the structured block

is implementation defined (see Section 2.5.3 on page 42).

• atomic construct: a compliant implementation may enforce exclusive access

between atomic regions which update different storage locations. The

circumstances under which this occurs are implementation defined (see Section 2.7.4

on page 55).
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• omp_set_num_threads routine: when called from within any explicit

parallel region, the binding thread set (and binding region, if required) for the

omp_set_num_threads region is implementation defined. If the number of

threads requested exceeds the number the implementation can support, or is not a

positive integer, the behavior of this routine is implementation defined. If this routine

is called from within any explicit parallel region, the behavior of this routine is

implementation defined (see Section 3.2.1 on page 91).

• omp_get_max_threads routine: when called from within any explicit

parallel region, the binding thread set (and binding region, if required) for the

omp_get_max_threads region is implementation defined (see Section 3.2.3 on

page 94).

• omp_set_dynamic routine: when called from within any explicit parallel
region, the binding thread set (and binding region, if required) for the

omp_set_dynamic region is implementation defined. If called from within any

explicit parallel region, the behavior of this routine is implementation defined

(see Section 3.2.7 on page 97).

• omp_get_dynamic routine: when called from within any explicit parallel
region, the binding thread set (and binding region, if required) for the

omp_get_dynamic region is implementation defined (see Section 3.2.8 on page

99).

• omp_set_nested routine: when called from within any explicit parallel
region, the binding thread set (and binding region, if required) for the

omp_set_nested region is implementation defined. If called from within any

explicit parallel region, the behavior of this routine is implementation defined

(see Section 3.2.9 on page 100).

• omp_get_nested routine: when called from within any explicit parallel
region, the binding thread set (and binding region, if required) for the

omp_get_nested region is implementation defined (see Section 3.2.10 on page

101).

• OMP_NUM_THREADSenvironment variable: if the requested value of

OMP_NUM_THREADSis greater than the number of threads an implementation can

support, or if the value is not a positive integer, the behavior of the program is

implementation defined (see Section 4.2 on page 115).

Fortran
• threadprivate directive: if the conditions for values of data in the threadprivate

objects of threads (other than the initial thread) to persist between two consecutive

active parallel regions do not all hold, the allocation status of an allocatable array

in the second region is implementation defined (see Section 2.8.2 on page 66).
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• shared clause: passing a shared variable to a non-intrinsic procedure may result in

the value of the shared variable being copied into temporary storage before the

procedure reference, and back out of the temporary storage into the actual argument

storage after the procedure reference. Situations where this occurs other than those

specified are implementation defined (see Section 2.8.3.2 on page 72).

• Runtime library definitions: it is implementation defined whether the include file

omp_lib.h or the module file omp_lib (or both) is provided. It is

implementation defined whether any of the OpenMP runtime library routines that

take an argument are extended with a generic interface so arguments of different

Fortran

KIND type can be accommodated (see Section 3.1 on page 90).
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APPENDIX F

Changes from Version 2.0 to
Version 2.5

This appendix summarizes the major changes between the OpenMP API Version 2.0

specifications and the OpenMP API Version 2.5 specification. There are no additional

language features in Version 2.5. However, large parts of the text have been rewritten

and restructured in order to accommodate all the base languages in a single document,

and a number of inconsistencies have been resolved. Only the major changes are listed

here.

Terminology

Many terms have been redefined, and the Glossary (Section 1.2 on page 2) has been

significantly extended. In particular, readers should note the following changes:

• The Glossary contains new definitions of construct and region. The terms lexical
extent and dynamic extent are no longer used.

• The term parallel region is no longer used. Instead, the terms parallel construct
and parallel region are used, as appropriate.

• The term serial region is no longer used: this has been replaced with sequential part.

• The Glossary defines binding in terms of binding thread set and binding region.

• The term serialize is no longer used. The terms active and inactive parallel
region are used instead.

• The definition of variable differs from the previous definitions.

• The Glossary defines what is meant by supporting nested parallelism.

Memory model

Version 2.5 contains a description of the OpenMP memory model (see Section 1.4 on

page 10). This describes the underlying consistency model assumed by OpenMP, and

defines the flush operation. It also describes the circumstances under which it is
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permitted for one thread to access private variables belonging to another thread. The

memory model states that a race condition on a shared variable results in unspecified

behavior. The relationship between the flush operation and the volatile keyword in

the C and C++ languages is explained.

Fortran

PUREand ELEMENTALProcedures

OpenMP directives and runtime library routine calls may not appear in PUREor

Fortran

ELEMENTALprocedures.

Internal Control Variables

Version 2.5 introduces the notion of internal control variables (see Section 2.3 on page

24), that store the information for determining the number of threads to use for a

parallel region and how to schedule a work-sharing loop. The behavior of certain

execution environment routines (see Section 3.2 on page 91) and environment variables

(see Chapter 4) is described in terms of the internal control variables.

Determining the Number of Threads for a parallel Region

The rules which determine the number of threads to use for a parallel region have

been clarified. See Section 2.4.1 on page 29.

Loop Construct

The definition of the guided schedule kind has been relaxed: the size of each chunk is

proportional to the number of unassigned iterations divided by the number of threads.

See Section 2.5.1 on page 33.

sections Construct

The method of scheduling the structured blocks among threads in the team is

implementation defined in Version 2.5. See Section 2.5.2 on page 39.

single Construct

The method of choosing a thread to execute the structured block is implementation

defined in Version 2.5. See Section 2.5.3 on page 42.
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critical Construct

The term critical section is no longer used. Instead, the terms critical construct and

critical region are used, as appropriate.

flush Construct

In Version 2.5 it is stated that the flush operation does not imply any ordering between

itself and operations on variables not in the flush-set, nor does it imply any ordering

between two or more flush constructs if the intersection of their flush-sets is empty

(see Section 2.7.5 on page 58). Such implied orderings were assumed in Version 2.0,

and as a result, the examples in Section A.18 on page 147 in Version 2.5 differ from the

equivalent examples in Version 2.0.

In Version 2.0 no flush operation was implied by calls to OpenMP lock routines. In

Version 2.5 a flush without a list is implied whenever a lock is set or unset. See

Section 2.7.5 on page 58 and Section 3.3 on page 102.

ordered Construct

The description of the ordered construct has been modified to account for the case

where not every iteration of the loop encounters an ordered region.

Sharing Attribute Rules

Version 2.5 clarifies the rules which determine the sharing attributes of variable. See

Section 2.8.1 on page 63.

threadprivate Directive

Version 2.5 clarifies the circumstances under which the values of data in the

threadprivate objects of threads other than the initial thread are guaranteed to persist

between two consecutive active parallel regions. See Section 2.8.2 on page 66.

Fortran

private Clause

Version 2.5 confirms that variables that appear in expressions for statement function

Fortran

definitions may not appear in a private clause. Section 2.8.3.3 on page 73.
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C/C++
Private Arrays

The behavior of arrays which appear in private , firstprivate and

lastprivate clauses has been clarified. See Section 2.8.3.3 on page 73,

C/C++
Section 2.8.3.4 on page 75 and Section 2.8.3.5 on page 77.

Fortran

reduction Clause

Fortran pointers and Cray pointers are not permitted in a reduction clause. This

Fortran

restriction was omitted in Version 2.0.

Data Copying Clauses

In Version 2.5, the copyin and copyprivate clauses are no longer considered data-

sharing attribute clauses, but are described as data copying clauses.

Nesting of Regions

The rules governing the nesting of regions are described using the concept of closely
nested regions. See Section 2.9 on page 87.

Execution Environment Routines

In Version 2.0, the behavior of the omp_set_num_threads , omp_set_dynamic
and omp_set_nested routines was undefined if called from an explicit parallel
region. In Version 2.5, their behavior in this case is implementation defined. See

Section 3.2.1 on page 91, Section 3.2.7 on page 97 and Section 3.2.9 on page 100.

Examples

The examples in Appendix A have been extended, corrected and reordered in Version

2.5. Where appropriate, equivalent examples have been provided for C/C++ and Fortran.

Except for examples illustrating non-conforming programs, all the examples consist of

compilable program units.
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Interface Declarations

An example of the omp.h header file has been included in Version 2.5.

Using the schedule Clause

This material, which appeared in Appendix D in OpenMP C/C++ Version 2.0 and in

Appendix C in OpenMP Fortran Version 2.0, has been removed.
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