
OpenMP
Application Programming

Interface

Version 4.5 November 2015

Copyright c© 1997-2015 OpenMP Architecture Review Board.
Permission to copy without fee all or part of this material is granted, provided the OpenMP
Architecture Review Board copyright notice and the title of this document appear. Notice is
given that copying is by permission of OpenMP Architecture Review Board.

This page intentionally left blank in published version.

Contents

1 Introduction 1
1.1 Scope . 1
1.2 Glossary . 2

1.2.1 Threading Concepts . 2
1.2.2 OpenMP Language Terminology . 2
1.2.3 Loop Terminology . 8
1.2.4 Synchronization Terminology . 9
1.2.5 Tasking Terminology . 9
1.2.6 Data Terminology . 11
1.2.7 Implementation Terminology . 13

1.3 Execution Model . 14
1.4 Memory Model . 17

1.4.1 Structure of the OpenMP Memory Model 17
1.4.2 Device Data Environments . 18
1.4.3 The Flush Operation . 19
1.4.4 OpenMP Memory Consistency . 20

1.5 OpenMP Compliance . 21
1.6 Normative References . 21
1.7 Organization of this Document . 23

2 Directives 25
2.1 Directive Format . 26

2.1.1 Fixed Source Form Directives . 28
2.1.2 Free Source Form Directives . 29
2.1.3 Stand-Alone Directives . 32

2.2 Conditional Compilation . 33
2.2.1 Fixed Source Form Conditional Compilation Sentinels 34

i

2.2.2 Free Source Form Conditional Compilation Sentinel 34
2.3 Internal Control Variables . 36

2.3.1 ICV Descriptions . 36
2.3.2 ICV Initialization . 37
2.3.3 Modifying and Retrieving ICV Values . 39
2.3.4 How ICVs are Scoped . 41

2.3.4.1 How the Per-Data Environment ICVs Work 42
2.3.5 ICV Override Relationships . 43

2.4 Array Sections . 44
2.5 parallel Construct . 46

2.5.1 Determining the Number of Threads for a parallel Region 50
2.5.2 Controlling OpenMP Thread Affinity . 52

2.6 Canonical Loop Form . 53
2.7 Worksharing Constructs . 56

2.7.1 Loop Construct . 56
2.7.1.1 Determining the Schedule of a Worksharing Loop 64

2.7.2 sections Construct . 65
2.7.3 single Construct . 67
2.7.4 workshare Construct . 69

2.8 SIMD Constructs . 72
2.8.1 simd Construct . 72
2.8.2 declare simd Construct . 76
2.8.3 Loop SIMD Construct . 81

2.9 Tasking Constructs . 83
2.9.1 task Construct . 83
2.9.2 taskloop Construct . 87
2.9.3 taskloop simd Construct . 91
2.9.4 taskyield Construct . 93
2.9.5 Task Scheduling . 94

2.10 Device Constructs . 95
2.10.1 target data Construct . 95
2.10.2 target enter data Construct . 97
2.10.3 target exit data Construct . 100

ii OpenMP API – Version 4.5 November 2015

2.10.4 target Construct . 103
2.10.5 target update Construct . 107
2.10.6 declare target Directive . 110
2.10.7 teams Construct . 114
2.10.8 distribute Construct . 117
2.10.9 distribute simd Construct . 119
2.10.10 Distribute Parallel Loop Construct . 121
2.10.11 Distribute Parallel Loop SIMD Construct 122

2.11 Combined Constructs . 124
2.11.1 Parallel Loop Construct . 124
2.11.2 parallel sections Construct . 125
2.11.3 parallel workshare Construct . 127
2.11.4 Parallel Loop SIMD Construct . 128
2.11.5 target parallel Construct . 129
2.11.6 Target Parallel Loop Construct . 131
2.11.7 Target Parallel Loop SIMD Construct . 132
2.11.8 target simd Construct . 134
2.11.9 target teams Construct . 135
2.11.10 teams distribute Construct . 136
2.11.11 teams distribute simd Construct 137
2.11.12 target teams distribute Construct 139
2.11.13 target teams distribute simd Construct 140
2.11.14 Teams Distribute Parallel Loop Construct 141
2.11.15 Target Teams Distribute Parallel Loop Construct 142
2.11.16 Teams Distribute Parallel Loop SIMD Construct 144
2.11.17 Target Teams Distribute Parallel Loop SIMD Construct 145

2.12 if Clause . 147
2.13 Master and Synchronization Constructs and Clauses 148

2.13.1 master Construct . 148
2.13.2 critical Construct . 149
2.13.3 barrier Construct . 151
2.13.4 taskwait Construct . 153
2.13.5 taskgroup Construct . 153

Contents iii

2.13.6 atomic Construct . 155
2.13.7 flush Construct . 162
2.13.8 ordered Construct . 166
2.13.9 depend Clause . 169

2.14 Cancellation Constructs . 172
2.14.1 cancel Construct . 172
2.14.2 cancellation point Construct . 176

2.15 Data Environment . 178
2.15.1 Data-sharing Attribute Rules . 179

2.15.1.1 Data-sharing Attribute Rules for Variables Referenced in a Construct179
2.15.1.2 Data-sharing Attribute Rules for Variables Referenced in a Region

but not in a Construct . 183
2.15.2 threadprivate Directive . 183
2.15.3 Data-Sharing Attribute Clauses . 188

2.15.3.1 default Clause . 189
2.15.3.2 shared Clause . 190
2.15.3.3 private Clause . 192
2.15.3.4 firstprivate Clause . 196
2.15.3.5 lastprivate Clause . 199
2.15.3.6 reduction Clause . 201
2.15.3.7 linear Clause . 207

2.15.4 Data Copying Clauses . 211
2.15.4.1 copyin Clause . 211
2.15.4.2 copyprivate Clause . 213

2.15.5 Data-mapping Attribute Rules and Clauses 215
2.15.5.1 map Clause . 216
2.15.5.2 defaultmap Clause . 219

2.16 declare reduction Directive . 220
2.17 Nesting of Regions . 227

3 Runtime Library Routines 229
3.1 Runtime Library Definitions . 230
3.2 Execution Environment Routines . 231

3.2.1 omp_set_num_threads . 231

iv OpenMP API – Version 4.5 November 2015

3.2.2 omp_get_num_threads . 232
3.2.3 omp_get_max_threads . 233
3.2.4 omp_get_thread_num . 235
3.2.5 omp_get_num_procs . 236
3.2.6 omp_in_parallel . 236
3.2.7 omp_set_dynamic . 237
3.2.8 omp_get_dynamic . 239
3.2.9 omp_get_cancellation . 240
3.2.10 omp_set_nested . 240
3.2.11 omp_get_nested . 242
3.2.12 omp_set_schedule . 243
3.2.13 omp_get_schedule . 245
3.2.14 omp_get_thread_limit . 246
3.2.15 omp_set_max_active_levels . 246
3.2.16 omp_get_max_active_levels . 248
3.2.17 omp_get_level . 249
3.2.18 omp_get_ancestor_thread_num 250
3.2.19 omp_get_team_size . 251
3.2.20 omp_get_active_level . 252
3.2.21 omp_in_final . 253
3.2.22 omp_get_proc_bind . 254
3.2.23 omp_get_num_places . 256
3.2.24 omp_get_place_num_procs . 257
3.2.25 omp_get_place_proc_ids . 258
3.2.26 omp_get_place_num . 259
3.2.27 omp_get_partition_num_places 260
3.2.28 omp_get_partition_place_nums 261
3.2.29 omp_set_default_device . 262
3.2.30 omp_get_default_device . 263
3.2.31 omp_get_num_devices . 264
3.2.32 omp_get_num_teams . 264
3.2.33 omp_get_team_num . 266
3.2.34 omp_is_initial_device . 267

Contents v

3.2.35 omp_get_initial_device . 267
3.2.36 omp_get_max_task_priority . 268

3.3 Lock Routines . 270
3.3.1 omp_init_lock and omp_init_nest_lock 272
3.3.2 omp_init_lock_with_hint and

omp_init_nest_lock_with_hint 273
3.3.3 omp_destroy_lock and omp_destroy_nest_lock 275
3.3.4 omp_set_lock and omp_set_nest_lock 276
3.3.5 omp_unset_lock and omp_unset_nest_lock 277
3.3.6 omp_test_lock and omp_test_nest_lock 278

3.4 Timing Routines . 279
3.4.1 omp_get_wtime . 279
3.4.2 omp_get_wtick . 281

3.5 Device Memory Routines . 282
3.5.1 omp_target_alloc . 282
3.5.2 omp_target_free . 283
3.5.3 omp_target_is_present . 284
3.5.4 omp_target_memcpy . 285
3.5.5 omp_target_memcpy_rect . 286
3.5.6 omp_target_associate_ptr . 287
3.5.7 omp_target_disassociate_ptr 289

4 Environment Variables 290
4.1 OMP_SCHEDULE . 292
4.2 OMP_NUM_THREADS . 293
4.3 OMP_DYNAMIC . 294
4.4 OMP_PROC_BIND . 294
4.5 OMP_PLACES . 295
4.6 OMP_NESTED . 297
4.7 OMP_STACKSIZE . 298
4.8 OMP_WAIT_POLICY . 299
4.9 OMP_MAX_ACTIVE_LEVELS . 300
4.10 OMP_THREAD_LIMIT . 300
4.11 OMP_CANCELLATION . 300

vi OpenMP API – Version 4.5 November 2015

4.12 OMP_DISPLAY_ENV . 301
4.13 OMP_DEFAULT_DEVICE . 302
4.14 OMP_MAX_TASK_PRIORITY . 303

A Stubs for Runtime Library Routines 304
A.1 C/C++ Stub Routines . 305
A.2 Fortran Stub Routines . 316

B Interface Declarations 326
B.1 Example of the omp.h Header File . 327
B.2 Example of an Interface Declaration include File 331
B.3 Example of a Fortran Interface Declaration module 335
B.4 Example of a Generic Interface for a Library Routine 342

C OpenMP Implementation-Defined Behaviors 343

D Features History 348
D.1 Version 4.0 to 4.5 Differences . 348
D.2 Version 3.1 to 4.0 Differences . 350
D.3 Version 3.0 to 3.1 Differences . 351
D.4 Version 2.5 to 3.0 Differences . 352

Index 355

Contents vii

CHAPTER 11

Introduction2

The collection of compiler directives, library routines, and environment variables described in this3
document collectively define the specification of the OpenMP Application Program Interface4
(OpenMP API) for parallelism in C, C++ and Fortran programs.5

This specification provides a model for parallel programming that is portable across architectures6
from different vendors. Compilers from numerous vendors support the OpenMP API. More7
information about the OpenMP API can be found at the following web site8

http://www.openmp.org9

The directives, library routines, and environment variables defined in this document allow users to10
create and to manage parallel programs while permitting portability. The directives extend the C,11
C++ and Fortran base languages with single program multiple data (SPMD) constructs, tasking12
constructs, device constructs, worksharing constructs, and synchronization constructs, and they13
provide support for sharing, mapping and privatizing data. The functionality to control the runtime14
environment is provided by library routines and environment variables. Compilers that support the15
OpenMP API often include a command line option to the compiler that activates and allows16
interpretation of all OpenMP directives.17

1.1 Scope18

The OpenMP API covers only user-directed parallelization, wherein the programmer explicitly19
specifies the actions to be taken by the compiler and runtime system in order to execute the program20
in parallel. OpenMP-compliant implementations are not required to check for data dependencies,21
data conflicts, race conditions, or deadlocks, any of which may occur in conforming programs. In22
addition, compliant implementations are not required to check for code sequences that cause a23

1

program to be classified as non-conforming. Application developers are responsible for correctly1
using the OpenMP API to produce a conforming program. The OpenMP API does not cover2
compiler-generated automatic parallelization and directives to the compiler to assist such3
parallelization.4

1.2 Glossary5

1.2.1 Threading Concepts6

thread An execution entity with a stack and associated static memory, called threadprivate7
memory.8

OpenMP thread A thread that is managed by the OpenMP runtime system.9

thread-safe routine A routine that performs the intended function even when executed concurrently (by10
more than one thread).11

processor Implementation defined hardware unit on which one or more OpenMP threads can12
execute.13

device An implementation defined logical execution engine.14

COMMENT: A device could have one or more processors.15

host device The device on which the OpenMP program begins execution.16

target device A device onto which code and data may be offloaded from the host device.17

1.2.2 OpenMP Language Terminology18

base language A programming language that serves as the foundation of the OpenMP specification.19

COMMENT: See Section 1.6 on page 21 for a listing of current base20
languages for the OpenMP API.21

base program A program written in a base language.22

2 OpenMP API – Version 4.5 November 2015

structured block For C/C++, an executable statement, possibly compound, with a single entry at the1
top and a single exit at the bottom, or an OpenMP construct.2

For Fortran, a block of executable statements with a single entry at the top and a3
single exit at the bottom, or an OpenMP construct.4

COMMENTS:5

For all base languages:6

• Access to the structured block must not be the result of a branch; and7

• The point of exit cannot be a branch out of the structured block.8

For C/C++:9

• The point of entry must not be a call to setjmp();10

• longjmp() and throw() must not violate the entry/exit criteria;11

• Calls to exit() are allowed in a structured block; and12

• An expression statement, iteration statement, selection statement, or try13
block is considered to be a structured block if the corresponding14
compound statement obtained by enclosing it in { and } would be a15
structured block.16

For Fortran:17

• STOP statements are allowed in a structured block.18

enclosing context In C/C++, the innermost scope enclosing an OpenMP directive.19

In Fortran, the innermost scoping unit enclosing an OpenMP directive.20

directive In C/C++, a #pragma, and in Fortran, a comment, that specifies OpenMP program21
behavior.22

COMMENT: See Section 2.1 on page 26 for a description of OpenMP23
directive syntax.24

white space A non-empty sequence of space and/or horizontal tab characters.25

OpenMP program A program that consists of a base program, annotated with OpenMP directives and26
runtime library routines.27

conforming program An OpenMP program that follows all rules and restrictions of the OpenMP28
specification.29

declarative directive An OpenMP directive that may only be placed in a declarative context. A declarative30
directive results in one or more declarations only; it is not associated with the31
immediate execution of any user code.32

CHAPTER 1. INTRODUCTION 3

executable directive An OpenMP directive that is not declarative. That is, it may be placed in an1
executable context.2

stand-alone directive An OpenMP executable directive that has no associated executable user code.3

construct An OpenMP executable directive (and for Fortran, the paired end directive, if any)4
and the associated statement, loop or structured block, if any, not including the code5
in any called routines. That is, the lexical extent of an executable directive.6

combined construct A construct that is a shortcut for specifying one construct immediately nested inside7
another construct. A combined construct is semantically identical to that of explicitly8
specifying the first construct containing one instance of the second construct and no9
other statements.10

composite construct A construct that is composed of two constructs but does not have identical semantics11
to specifying one of the constructs immediately nested inside the other. A composite12
construct either adds semantics not included in the constructs from which it is13
composed or the nesting of the one construct inside the other is not conforming.14

region All code encountered during a specific instance of the execution of a given construct15
or of an OpenMP library routine. A region includes any code in called routines as16
well as any implicit code introduced by the OpenMP implementation. The generation17
of a task at the point where a task generating construct is encountered is a part of the18
region of the encountering thread, but an explicit task region associated with a task19
generating construct is not unless it is an included task region. The point where a20
target or teams directive is encountered is a part of the region of the21
encountering thread, but the region associated with the target or teams directive22
is not.23

COMMENTS:24

A region may also be thought of as the dynamic or runtime extent of a25
construct or of an OpenMP library routine.26

During the execution of an OpenMP program, a construct may give rise to27
many regions.28

active parallel region A parallel region that is executed by a team consisting of more than one thread.29

inactive parallel region A parallel region that is executed by a team of only one thread.30

sequential part All code encountered during the execution of an initial task region that is not part of31
a parallel region corresponding to a parallel construct or a task region32
corresponding to a task construct.33

COMMENTS:34

A sequential part is enclosed by an implicit parallel region.35

4 OpenMP API – Version 4.5 November 2015

Executable statements in called routines may be in both a sequential part1
and any number of explicit parallel regions at different points in the2
program execution.3

master thread An OpenMP thread that has thread number 0. A master thread may be an initial4
thread or the thread that encounters a parallel construct, creates a team,5
generates a set of implicit tasks, and then executes one of those tasks as thread6
number 0.7

parent thread The thread that encountered the parallel construct and generated a parallel8
region is the parent thread of each of the threads in the team of that parallel9
region. The master thread of a parallel region is the same thread as its parent10
thread with respect to any resources associated with an OpenMP thread.11

child thread When a thread encounters a parallel construct, each of the threads in the12
generated parallel region’s team are child threads of the encountering thread.13
The target or teams region’s initial thread is not a child thread of the thread that14
encountered the target or teams construct.15

ancestor thread For a given thread, its parent thread or one of its parent thread’s ancestor threads.16

descendent thread For a given thread, one of its child threads or one of its child threads’ descendent17
threads.18

team A set of one or more threads participating in the execution of a parallel region.19

COMMENTS:20

For an active parallel region, the team comprises the master thread and at21
least one additional thread.22

For an inactive parallel region, the team comprises only the master thread.23

league The set of thread teams created by a teams construct.24

contention group An initial thread and its descendent threads.25

implicit parallel region An inactive parallel region that is not generated from a parallel construct.26
Implicit parallel regions surround the whole OpenMP program, all target regions,27
and all teams regions.28

initial thread A thread that executes an implicit parallel region.29

nested construct A construct (lexically) enclosed by another construct.30

closely nested construct A construct nested inside another construct with no other construct nested between31
them.32

nested region A region (dynamically) enclosed by another region. That is, a region encountered33
during the execution of another region.34

CHAPTER 1. INTRODUCTION 5

COMMENT: Some nestings are conforming and some are not. See1
Section 2.17 on page 227 for the restrictions on nesting.2

closely nested region A region nested inside another region with no parallel region nested between3
them.4

strictly nested region A region nested inside another region with no other region nested between them.5

all threads All OpenMP threads participating in the OpenMP program.6

current team All threads in the team executing the innermost enclosing parallel region.7

encountering thread For a given region, the thread that encounters the corresponding construct.8

all tasks All tasks participating in the OpenMP program.9

current team tasks All tasks encountered by the corresponding team. The implicit tasks constituting the10
parallel region and any descendent tasks encountered during the execution of11
these implicit tasks are included in this set of tasks.12

generating task For a given region, the task for which execution by a thread generated the region.13

binding thread set The set of threads that are affected by, or provide the context for, the execution of a14
region.15

The binding thread set for a given region can be all threads on a device, all threads16
in a contention group, all master threads executing an enclosing teams region, the17
current team, or the encountering thread.18

COMMENT: The binding thread set for a particular region is described in19
its corresponding subsection of this specification.20

binding task set The set of tasks that are affected by, or provide the context for, the execution of a21
region.22

The binding task set for a given region can be all tasks, the current team tasks, or the23
generating task.24

COMMENT: The binding task set for a particular region (if applicable) is25
described in its corresponding subsection of this specification.26

6 OpenMP API – Version 4.5 November 2015

binding region The enclosing region that determines the execution context and limits the scope of1
the effects of the bound region is called the binding region.2

Binding region is not defined for regions for which the binding thread set is all3
threads or the encountering thread, nor is it defined for regions for which the binding4
task set is all tasks.5

COMMENTS:6

The binding region for an ordered region is the innermost enclosing7
loop region.8

The binding region for a taskwait region is the innermost enclosing9
task region.10

The binding region for a cancel region is the innermost enclosing11
region corresponding to the construct-type-clause of the cancel12
construct.13

The binding region for a cancellation point region is the14
innermost enclosing region corresponding to the construct-type-clause of15
the cancellation point construct.16

For all other regions for which the binding thread set is the current team17
or the binding task set is the current team tasks, the binding region is the18
innermost enclosing parallel region.19

For regions for which the binding task set is the generating task, the20
binding region is the region of the generating task.21

A parallel region need not be active nor explicit to be a binding22
region.23

A task region need not be explicit to be a binding region.24

A region never binds to any region outside of the innermost enclosing25
parallel region.26

orphaned construct A construct that gives rise to a region for which the binding thread set is the current27
team, but is not nested within another construct giving rise to the binding region.28

worksharing construct A construct that defines units of work, each of which is executed exactly once by one29
of the threads in the team executing the construct.30

For C/C++, worksharing constructs are for, sections, and single.31

For Fortran, worksharing constructs are do, sections, single and32
workshare.33

CHAPTER 1. INTRODUCTION 7

place Unordered set of processors on a device that is treated by the execution environment1
as a location unit when dealing with OpenMP thread affinity.2

place list The ordered list that describes all OpenMP places available to the execution3
environment.4

place partition An ordered list that corresponds to a contiguous interval in the OpenMP place list. It5
describes the places currently available to the execution environment for a given6
parallel region.7

place number A number that uniquely identifies a place in the place list, with zero identifying the8
first place in the place list, and each consecutive whole number identifying the next9
place in the place list.10

SIMD instruction A single machine instruction that can operate on multiple data elements.11

SIMD lane A software or hardware mechanism capable of processing one data element from a12
SIMD instruction.13

SIMD chunk A set of iterations executed concurrently, each by a SIMD lane, by a single thread by14
means of SIMD instructions.15

1.2.3 Loop Terminology16

loop directive An OpenMP executable directive for which the associated user code must be a loop17
nest that is a structured block.18

associated loop(s) The loop(s) controlled by a loop directive.19

COMMENT: If the loop directive contains a collapse or an20
ordered(n) clause then it may have more than one associated loop.21

sequential loop A loop that is not associated with any OpenMP loop directive.22

SIMD loop A loop that includes at least one SIMD chunk.23

doacross loop nest A loop nest that has cross-iteration dependence. An iteration is dependent on one or24
more lexicographically earlier iterations.25

COMMENT: The ordered clause parameter on a loop directive26
identifies the loop(s) associated with the doacross loop nest.27

8 OpenMP API – Version 4.5 November 2015

1.2.4 Synchronization Terminology1

barrier A point in the execution of a program encountered by a team of threads, beyond2
which no thread in the team may execute until all threads in the team have reached3
the barrier and all explicit tasks generated by the team have executed to completion.4
If cancellation has been requested, threads may proceed to the end of the canceled5
region even if some threads in the team have not reached the barrier.6

cancellation An action that cancels (that is, aborts) an OpenMP region and causes executing7
implicit or explicit tasks to proceed to the end of the canceled region.8

cancellation point A point at which implicit and explicit tasks check if cancellation has been requested.9
If cancellation has been observed, they perform the cancellation.10

COMMENT: For a list of cancellation points, see Section 2.14.1 on11
page 17212

1.2.5 Tasking Terminology13

task A specific instance of executable code and its data environment, generated when a14
thread encounters a task, taskloop, parallel, target, or teams construct15
(or any combined construct that specifies any of these constructs).16

task region A region consisting of all code encountered during the execution of a task.17

COMMENT: A parallel region consists of one or more implicit task18
regions.19

explicit task A task generated when a task construct is encountered during execution.20

implicit task A task generated by an implicit parallel region or generated when a parallel21
construct is encountered during execution.22

initial task An implicit task associated with an implicit parallel region.23

current task For a given thread, the task corresponding to the task region in which it is executing.24

child task A task is a child task of its generating task region. A child task region is not part of25
its generating task region.26

sibling tasks Tasks that are child tasks of the same task region.27

descendent task A task that is the child task of a task region or of one of its descendent task regions.28

CHAPTER 1. INTRODUCTION 9

task completion Task completion occurs when the end of the structured block associated with the1
construct that generated the task is reached.2

COMMENT: Completion of the initial task that is generated when the3
program begins occurs at program exit.4

task scheduling point A point during the execution of the current task region at which it can be suspended5
to be resumed later; or the point of task completion, after which the executing thread6
may switch to a different task region.7

COMMENT: For a list of task scheduling points, see Section 2.9.5 on8
page 94.9

task switching The act of a thread switching from the execution of one task to another task.10

tied task A task that, when its task region is suspended, can be resumed only by the same11
thread that suspended it. That is, the task is tied to that thread.12

untied task A task that, when its task region is suspended, can be resumed by any thread in the13
team. That is, the task is not tied to any thread.14

undeferred task A task for which execution is not deferred with respect to its generating task region.15
That is, its generating task region is suspended until execution of the undeferred task16
is completed.17

included task A task for which execution is sequentially included in the generating task region.18
That is, an included task is undeferred and executed immediately by the encountering19
thread.20

merged task A task for which the data environment, inclusive of ICVs, is the same as that of its21
generating task region.22

mergeable task A task that may be a merged task if it is an undeferred task or an included task.23

final task A task that forces all of its child tasks to become final and included tasks.24

task dependence An ordering relation between two sibling tasks: the dependent task and a previously25
generated predecessor task. The task dependence is fulfilled when the predecessor26
task has completed.27

dependent task A task that because of a task dependence cannot be executed until its predecessor28
tasks have completed.29

predecessor task A task that must complete before its dependent tasks can be executed.30

task synchronization
construct

A taskwait, taskgroup, or a barrier construct.31

task generating
construct

A task or a taskloop construct.32

10 OpenMP API – Version 4.5 November 2015

target task A mergeable task that is generated by a target, target enter data,1
target exit data, or target update construct.2

taskgroup set A set of tasks that are logically grouped by a taskgroup region.3

1.2.6 Data Terminology4

variable A named data storage block, for which the value can be defined and redefined during5
the execution of a program.6

Note – An array or structure element is a variable that is part of another variable.7

scalar variable For C/C++: A scalar variable, as defined by the base language.8

For Fortran: A scalar variable with intrinsic type, as defined by the base language,9
excluding character type.10

array section A designated subset of the elements of an array.11

array item An array, an array section, or an array element.12

structure A structure is a variable that contains one or more variables.13

For C/C++: Implemented using struct types.14

For C++: Implemented using class types.15

For Fortran: Implemented using derived types.16

private variable With respect to a given set of task regions or SIMD lanes that bind to the same17
parallel region, a variable for which the name provides access to a different18
block of storage for each task region or SIMD lane.19

A variable that is part of another variable (as an array or structure element) cannot be20
made private independently of other components.21

shared variable With respect to a given set of task regions that bind to the same parallel region, a22
variable for which the name provides access to the same block of storage for each23
task region.24

A variable that is part of another variable (as an array or structure element) cannot be25
shared independently of the other components, except for static data members of26
C++ classes.27

CHAPTER 1. INTRODUCTION 11

threadprivate variable A variable that is replicated, one instance per thread, by the OpenMP1
implementation. Its name then provides access to a different block of storage for each2
thread.3

A variable that is part of another variable (as an array or structure element) cannot be4
made threadprivate independently of the other components, except for static data5
members of C++ classes.6

threadprivate memory The set of threadprivate variables associated with each thread.7

data environment The variables associated with the execution of a given region.8

device data
environment

The initial data environment associated with a device.9

device address An implementation defined reference to an address in a device data environment.10

device pointer A variable that contains a device address.11

mapped variable An original variable in a data environment with a corresponding variable in a device12
data environment.13

COMMENT: The original and corresponding variables may share storage.14

mappable type A type that is valid for a mapped variable. If a type is composed from other types15
(such as the type of an array or structure element) and any of the other types are not16
mappable then the type is not mappable.17

COMMENT: Pointer types are mappable but the memory block to which18
the pointer refers is not mapped.19

For C: The type must be a complete type.20

For C++: The type must be a complete type.21

In addition, for class types:22

• All member functions accessed in any target region must appear in a23
declare target directive.24

• All data members must be non-static.25

• A mappable type cannot contain virtual members.26

For Fortran: No restrictions on the type except that for derived types:27

• All type-bound procedures accessed in any target region must appear in a28
declare target directive.29

defined

12 OpenMP API – Version 4.5 November 2015

For variables, the property of having a valid value.1

For C: For the contents of variables, the property of having a valid value.2

For C++: For the contents of variables of POD (plain old data) type, the property of3
having a valid value.4

For variables of non-POD class type, the property of having been constructed but not5
subsequently destructed.6

For Fortran: For the contents of variables, the property of having a valid value. For7
the allocation or association status of variables, the property of having a valid status.8

COMMENT: Programs that rely upon variables that are not defined are9
non-conforming programs.10

class type For C++: Variables declared with one of the class, struct, or union keywords11

sequentially consistent
atomic construct

An atomic construct for which the seq_cst clause is specified.12

non-sequentially
consistent atomic

construct

An atomic construct for which the seq_cst clause is not specified13

1.2.7 Implementation Terminology14

supporting n levels of
parallelism

Implies allowing an active parallel region to be enclosed by n-1 active parallel15
regions.16

supporting the
OpenMP API

Supporting at least one level of parallelism.17

supporting nested
parallelism

Supporting more than one level of parallelism.18

internal control
variable

A conceptual variable that specifies runtime behavior of a set of threads or tasks in19
an OpenMP program.20

COMMENT: The acronym ICV is used interchangeably with the term21
internal control variable in the remainder of this specification.22

compliant
implementation

An implementation of the OpenMP specification that compiles and executes any23
conforming program as defined by the specification.24

COMMENT: A compliant implementation may exhibit unspecified25
behavior when compiling or executing a non-conforming program.26

CHAPTER 1. INTRODUCTION 13

unspecified behavior A behavior or result that is not specified by the OpenMP specification or not known1
prior to the compilation or execution of an OpenMP program.2

Such unspecified behavior may result from:3

• Issues documented by the OpenMP specification as having unspecified behavior.4

• A non-conforming program.5

• A conforming program exhibiting an implementation defined behavior.6

implementation defined Behavior that must be documented by the implementation, and is allowed to vary7
among different compliant implementations. An implementation is allowed to define8
this behavior as unspecified.9

COMMENT: All features that have implementation defined behavior are10
documented in Appendix C.11

deprecated Implies a construct, clause or other feature is normative in the current specification12
but is considered obsolescent and will be removed in the future.13

1.3 Execution Model14

The OpenMP API uses the fork-join model of parallel execution. Multiple threads of execution15
perform tasks defined implicitly or explicitly by OpenMP directives. The OpenMP API is intended16
to support programs that will execute correctly both as parallel programs (multiple threads of17
execution and a full OpenMP support library) and as sequential programs (directives ignored and a18
simple OpenMP stubs library). However, it is possible and permitted to develop a program that19
executes correctly as a parallel program but not as a sequential program, or that produces different20
results when executed as a parallel program compared to when it is executed as a sequential21
program. Furthermore, using different numbers of threads may result in different numeric results22
because of changes in the association of numeric operations. For example, a serial addition23
reduction may have a different pattern of addition associations than a parallel reduction. These24
different associations may change the results of floating-point addition.25

An OpenMP program begins as a single thread of execution, called an initial thread. An initial26
thread executes sequentially, as if enclosed in an implicit task region, called an initial task region,27
that is defined by the implicit parallel region surrounding the whole program.28

The thread that executes the implicit parallel region that surrounds the whole program executes on29
the host device. An implementation may support other target devices. If supported, one or more30
devices are available to the host device for offloading code and data. Each device has its own31
threads that are distinct from threads that execute on another device. Threads cannot migrate from32

14 OpenMP API – Version 4.5 November 2015

one device to another device. The execution model is host-centric such that the host device offloads1
target regions to target devices.2

When a target construct is encountered, a new target task is generated. The target task region3
encloses the target region. The target task is complete after the execution of the target region4
is complete.5

When a target task executes, the enclosed target region is executed by an initial thread. The6
initial thread may execute on a target device. The initial thread executes sequentially, as if enclosed7
in an implicit task region, called an initial task region, that is defined by an implicit parallel8
region that surrounds the entire target region. If the target device does not exist or the9
implementation does not support the target device, all target regions associated with that device10
execute on the host device.11

The implementation must ensure that the target region executes as if it were executed in the data12
environment of the target device unless an if clause is present and the if clause expression13
evaluates to false.14

The teams construct creates a league of thread teams where the master thread of each team15
executes the region. Each of these master threads is an initial thread, and executes sequentially, as if16
enclosed in an implicit task region that is defined by an implicit parallel region that surrounds the17
entire teams region.18

If a construct creates a data environment, the data environment is created at the time the construct is19
encountered. Whether a construct creates a data environment is defined in the description of the20
construct.21

When any thread encounters a parallel construct, the thread creates a team of itself and zero or22
more additional threads and becomes the master of the new team. A set of implicit tasks, one per23
thread, is generated. The code for each task is defined by the code inside the parallel construct.24
Each task is assigned to a different thread in the team and becomes tied; that is, it is always25
executed by the thread to which it is initially assigned. The task region of the task being executed26
by the encountering thread is suspended, and each member of the new team executes its implicit27
task. There is an implicit barrier at the end of the parallel construct. Only the master thread28
resumes execution beyond the end of the parallel construct, resuming the task region that was29
suspended upon encountering the parallel construct. Any number of parallel constructs30
can be specified in a single program.31

parallel regions may be arbitrarily nested inside each other. If nested parallelism is disabled, or32
is not supported by the OpenMP implementation, then the new team that is created by a thread33
encountering a parallel construct inside a parallel region will consist only of the34
encountering thread. However, if nested parallelism is supported and enabled, then the new team35
can consist of more than one thread. A parallel construct may include a proc_bind clause to36
specify the places to use for the threads in the team within the parallel region.37

When any team encounters a worksharing construct, the work inside the construct is divided among38
the members of the team, and executed cooperatively instead of being executed by every thread.39

CHAPTER 1. INTRODUCTION 15

There is a default barrier at the end of each worksharing construct unless the nowait clause is1
present. Redundant execution of code by every thread in the team resumes after the end of the2
worksharing construct.3

When any thread encounters a task construct, a new explicit task is generated. Execution of4
explicitly generated tasks is assigned to one of the threads in the current team, subject to the5
thread’s availability to execute work. Thus, execution of the new task could be immediate, or6
deferred until later according to task scheduling constraints and thread availability. Threads are7
allowed to suspend the current task region at a task scheduling point in order to execute a different8
task. If the suspended task region is for a tied task, the initially assigned thread later resumes9
execution of the suspended task region. If the suspended task region is for an untied task, then any10
thread may resume its execution. Completion of all explicit tasks bound to a given parallel region is11
guaranteed before the master thread leaves the implicit barrier at the end of the region. Completion12
of a subset of all explicit tasks bound to a given parallel region may be specified through the use of13
task synchronization constructs. Completion of all explicit tasks bound to the implicit parallel14
region is guaranteed by the time the program exits.15

When any thread encounters a simd construct, the iterations of the loop associated with the16
construct may be executed concurrently using the SIMD lanes that are available to the thread.17

The cancel construct can alter the previously described flow of execution in an OpenMP region.18
The effect of the cancel construct depends on its construct-type-clause. If a task encounters a19
cancel construct with a taskgroup construct-type-clause, then the task activates cancellation20
and continues execution at the end of its task region, which implies completion of that task. Any21
other task in that taskgroup that has begun executing completes execution unless it encounters a22
cancellation point construct, in which case it continues execution at the end of its task23
region, which implies its completion. Other tasks in that taskgroup region that have not begun24
execution are aborted, which implies their completion.25

For all other construct-type-clause values, if a thread encounters a cancel construct, it activates26
cancellation of the innermost enclosing region of the type specified and the thread continues27
execution at the end of that region. Threads check if cancellation has been activated for their region28
at cancellation points and, if so, also resume execution at the end of the canceled region.29

If cancellation has been activated regardless of construct-type-clause, threads that are waiting30
inside a barrier other than an implicit barrier at the end of the canceled region exit the barrier and31
resume execution at the end of the canceled region. This action can occur before the other threads32
reach that barrier.33

Synchronization constructs and library routines are available in the OpenMP API to coordinate34
tasks and data access in parallel regions. In addition, library routines and environment35
variables are available to control or to query the runtime environment of OpenMP programs.36

The OpenMP specification makes no guarantee that input or output to the same file is synchronous37
when executed in parallel. In this case, the programmer is responsible for synchronizing input and38
output statements (or routines) using the provided synchronization constructs or library routines.39

16 OpenMP API – Version 4.5 November 2015

For the case where each thread accesses a different file, no synchronization by the programmer is1
necessary.2

1.4 Memory Model3

1.4.1 Structure of the OpenMP Memory Model4

The OpenMP API provides a relaxed-consistency, shared-memory model. All OpenMP threads5
have access to a place to store and to retrieve variables, called the memory. In addition, each thread6
is allowed to have its own temporary view of the memory. The temporary view of memory for each7
thread is not a required part of the OpenMP memory model, but can represent any kind of8
intervening structure, such as machine registers, cache, or other local storage, between the thread9
and the memory. The temporary view of memory allows the thread to cache variables and thereby10
to avoid going to memory for every reference to a variable. Each thread also has access to another11
type of memory that must not be accessed by other threads, called threadprivate memory.12

A directive that accepts data-sharing attribute clauses determines two kinds of access to variables13
used in the directive’s associated structured block: shared and private. Each variable referenced in14
the structured block has an original variable, which is the variable by the same name that exists in15
the program immediately outside the construct. Each reference to a shared variable in the structured16
block becomes a reference to the original variable. For each private variable referenced in the17
structured block, a new version of the original variable (of the same type and size) is created in18
memory for each task or SIMD lane that contains code associated with the directive. Creation of19
the new version does not alter the value of the original variable. However, the impact of attempts to20
access the original variable during the region associated with the directive is unspecified; see21
Section 2.15.3.3 on page 192 for additional details. References to a private variable in the22
structured block refer to the private version of the original variable for the current task or SIMD23
lane. The relationship between the value of the original variable and the initial or final value of the24
private version depends on the exact clause that specifies it. Details of this issue, as well as other25
issues with privatization, are provided in Section 2.15 on page 178.26

The minimum size at which a memory update may also read and write back adjacent variables that27
are part of another variable (as array or structure elements) is implementation defined but is no28
larger than required by the base language.29

A single access to a variable may be implemented with multiple load or store instructions, and30
hence is not guaranteed to be atomic with respect to other accesses to the same variable. Accesses31
to variables smaller than the implementation defined minimum size or to C or C++ bit-fields may32
be implemented by reading, modifying, and rewriting a larger unit of memory, and may thus33
interfere with updates of variables or fields in the same unit of memory.34

CHAPTER 1. INTRODUCTION 17

If multiple threads write without synchronization to the same memory unit, including cases due to1
atomicity considerations as described above, then a data race occurs. Similarly, if at least one2
thread reads from a memory unit and at least one thread writes without synchronization to that3
same memory unit, including cases due to atomicity considerations as described above, then a data4
race occurs. If a data race occurs then the result of the program is unspecified.5

A private variable in a task region that eventually generates an inner nested parallel region is6
permitted to be made shared by implicit tasks in the inner parallel region. A private variable in7
a task region can be shared by an explicit task region generated during its execution. However, it8
is the programmer’s responsibility to ensure through synchronization that the lifetime of the9
variable does not end before completion of the explicit task region sharing it. Any other access by10
one task to the private variables of another task results in unspecified behavior.11

1.4.2 Device Data Environments12

When an OpenMP program begins, an implicit target data region for each device surrounds13
the whole program. Each device has a device data environment that is defined by its implicit14
target data region. Any declare target directives and the directives that accept15
data-mapping attribute clauses determine how an original variable in a data environment is mapped16
to a corresponding variable in a device data environment.17

When an original variable is mapped to a device data environment and the associated18
corresponding variable is not present in the device data environment, a new corresponding variable19
(of the same type and size as the original variable) is created in the device data environment. The20
initial value of the new corresponding variable is determined from the clauses and the data21
environment of the encountering thread.22

The corresponding variable in the device data environment may share storage with the original23
variable. Writes to the corresponding variable may alter the value of the original variable. The24
impact of this on memory consistency is discussed in Section 1.4.4 on page 20. When a task25
executes in the context of a device data environment, references to the original variable refer to the26
corresponding variable in the device data environment.27

The relationship between the value of the original variable and the initial or final value of the28
corresponding variable depends on the map-type. Details of this issue, as well as other issues with29
mapping a variable, are provided in Section 2.15.5.1 on page 216.30

The original variable in a data environment and the corresponding variable(s) in one or more device31
data environments may share storage. Without intervening synchronization data races can occur.32

18 OpenMP API – Version 4.5 November 2015

1.4.3 The Flush Operation1

The memory model has relaxed-consistency because a thread’s temporary view of memory is not2
required to be consistent with memory at all times. A value written to a variable can remain in the3
thread’s temporary view until it is forced to memory at a later time. Likewise, a read from a variable4
may retrieve the value from the thread’s temporary view, unless it is forced to read from memory.5
The OpenMP flush operation enforces consistency between the temporary view and memory.6

The flush operation is applied to a set of variables called the flush-set. The flush operation restricts7
reordering of memory operations that an implementation might otherwise do. Implementations8
must not reorder the code for a memory operation for a given variable, or the code for a flush9
operation for the variable, with respect to a flush operation that refers to the same variable.10

If a thread has performed a write to its temporary view of a shared variable since its last flush of11
that variable, then when it executes another flush of the variable, the flush does not complete until12
the value of the variable has been written to the variable in memory. If a thread performs multiple13
writes to the same variable between two flushes of that variable, the flush ensures that the value of14
the last write is written to the variable in memory. A flush of a variable executed by a thread also15
causes its temporary view of the variable to be discarded, so that if its next memory operation for16
that variable is a read, then the thread will read from memory when it may again capture the value17
in the temporary view. When a thread executes a flush, no later memory operation by that thread for18
a variable involved in that flush is allowed to start until the flush completes. The completion of a19
flush of a set of variables executed by a thread is defined as the point at which all writes to those20
variables performed by the thread before the flush are visible in memory to all other threads and21
that thread’s temporary view of all variables involved is discarded.22

The flush operation provides a guarantee of consistency between a thread’s temporary view and23
memory. Therefore, the flush operation can be used to guarantee that a value written to a variable24
by one thread may be read by a second thread. To accomplish this, the programmer must ensure25
that the second thread has not written to the variable since its last flush of the variable, and that the26
following sequence of events happens in the specified order:27

1. The value is written to the variable by the first thread.28

2. The variable is flushed by the first thread.29

3. The variable is flushed by the second thread.30

4. The value is read from the variable by the second thread.31

Note – OpenMP synchronization operations, described in Section 2.13 on page 148 and in32
Section 3.3 on page 270, are recommended for enforcing this order. Synchronization through33
variables is possible but is not recommended because the proper timing of flushes is difficult.34

CHAPTER 1. INTRODUCTION 19

1.4.4 OpenMP Memory Consistency1

The restrictions in Section 1.4.3 on page 19 on reordering with respect to flush operations2
guarantee the following:3

• If the intersection of the flush-sets of two flushes performed by two different threads is4
non-empty, then the two flushes must be completed as if in some sequential order, seen by all5
threads.6

• If two operations performed by the same thread either access, modify, or flush the same variable,7
then they must be completed as if in that thread’s program order, as seen by all threads.8

• If the intersection of the flush-sets of two flushes is empty, the threads can observe these flushes9
in any order.10

The flush operation can be specified using the flush directive, and is also implied at various11
locations in an OpenMP program: see Section 2.13.7 on page 162 for details.12

Note – Since flush operations by themselves cannot prevent data races, explicit flush operations are13
only useful in combination with non-sequentially consistent atomic directives.14

OpenMP programs that:15

• do not use non-sequentially consistent atomic directives,16

• do not rely on the accuracy of a false result from omp_test_lock and17
omp_test_nest_lock, and18

• correctly avoid data races as required in Section 1.4.1 on page 1719

behave as though operations on shared variables were simply interleaved in an order consistent with20
the order in which they are performed by each thread. The relaxed consistency model is invisible21
for such programs, and any explicit flush operations in such programs are redundant.22

Implementations are allowed to relax the ordering imposed by implicit flush operations when the23
result is only visible to programs using non-sequentially consistent atomic directives.24

20 OpenMP API – Version 4.5 November 2015

1.5 OpenMP Compliance1

An implementation of the OpenMP API is compliant if and only if it compiles and executes all2
conforming programs according to the syntax and semantics laid out in Chapters 1, 2, 3 and 4.3
Appendices A, B, C and D and sections designated as Notes (see Section 1.7 on page 23) are for4
information purposes only and are not part of the specification.5

The OpenMP API defines constructs that operate in the context of the base language that is6
supported by an implementation. If the base language does not support a language construct that7
appears in this document, a compliant OpenMP implementation is not required to support it, with8
the exception that for Fortran, the implementation must allow case insensitivity for directive and9
API routines names, and must allow identifiers of more than six characters10

All library, intrinsic and built-in routines provided by the base language must be thread-safe in a11
compliant implementation. In addition, the implementation of the base language must also be12
thread-safe. For example, ALLOCATE and DEALLOCATE statements must be thread-safe in13
Fortran. Unsynchronized concurrent use of such routines by different threads must produce correct14
results (although not necessarily the same as serial execution results, as in the case of random15
number generation routines).16

Starting with Fortran 90, variables with explicit initialization have the SAVE attribute implicitly.17
This is not the case in Fortran 77. However, a compliant OpenMP Fortran implementation must18
give such a variable the SAVE attribute, regardless of the underlying base language version.19

Appendix C lists certain aspects of the OpenMP API that are implementation defined. A compliant20
implementation is required to define and document its behavior for each of the items in Appendix C.21

1.6 Normative References22

• ISO/IEC 9899:1990, Information Technology - Programming Languages - C.23

This OpenMP API specification refers to ISO/IEC 9899:1990 as C90.24

• ISO/IEC 9899:1999, Information Technology - Programming Languages - C.25

This OpenMP API specification refers to ISO/IEC 9899:1999 as C99.26

• ISO/IEC 14882:1998, Information Technology - Programming Languages - C++.27

This OpenMP API specification refers to ISO/IEC 14882:1998 as C++.28

• ISO/IEC 1539:1980, Information Technology - Programming Languages - Fortran.29

This OpenMP API specification refers to ISO/IEC 1539:1980 as Fortran 77.30

CHAPTER 1. INTRODUCTION 21

• ISO/IEC 1539:1991, Information Technology - Programming Languages - Fortran.1

This OpenMP API specification refers to ISO/IEC 1539:1991 as Fortran 90.2

• ISO/IEC 1539-1:1997, Information Technology - Programming Languages - Fortran.3

This OpenMP API specification refers to ISO/IEC 1539-1:1997 as Fortran 95.4

• ISO/IEC 1539-1:2004, Information Technology - Programming Languages - Fortran.5

This OpenMP API specification refers to ISO/IEC 1539-1:2004 as Fortran 2003. The following6
features are not supported:7

– IEEE Arithmetic issues covered in Fortran 2003 Section 148

– Parameterized derived types9

– The PASS attribute10

– Procedures bound to a type as operators11

– Overriding a type-bound procedure12

– Polymorphic entities13

– SELECT TYPE construct14

– Deferred bindings and abstract types15

– Controlling IEEE underflow16

– Another IEEE class value17

Where this OpenMP API specification refers to C, C++ or Fortran, reference is made to the base18
language supported by the implementation.19

22 OpenMP API – Version 4.5 November 2015

1.7 Organization of this Document1

The remainder of this document is structured as follows:2

• Chapter 2 “Directives”3

• Chapter 3 “Runtime Library Routines”4

• Chapter 4 “Environment Variables”5

• Appendix A “Stubs for Runtime Library Routines”6

• Appendix B “Interface Declarations”7

• Appendix C “OpenMP Implementation-Defined Behaviors”8

• Appendix D “Features History”9

Some sections of this document only apply to programs written in a certain base language. Text that10
applies only to programs for which the base language is C or C++ is shown as follows:11

C / C++

C/C++ specific text...12

C / C++

Text that applies only to programs for which the base language is C only is shown as follows:13

C
C specific text...14

C

Text that applies only to programs for which the base language is C90 only is shown as follows:15

C90
C90 specific text...16

C90

Text that applies only to programs for which the base language is C99 only is shown as follows:17

C99
C99 specific text...18

C99

Text that applies only to programs for which the base language is C++ only is shown as follows:19

CHAPTER 1. INTRODUCTION 23

C++
C++ specific text...1

C++

Text that applies only to programs for which the base language is Fortran is shown as follows:2

Fortran

Fortran specific text......3

Fortran

Where an entire page consists of, for example, Fortran specific text, a marker is shown at the top of4
the page like this:5

Fortran (cont.)

Some text is for information only, and is not part of the normative specification. Such text is6
designated as a note, like this:7

Note – Non-normative text....8

24 OpenMP API – Version 4.5 November 2015

CHAPTER 21

Directives2

This chapter describes the syntax and behavior of OpenMP directives, and is divided into the3
following sections:4

• The language-specific directive format (Section 2.1 on page 26)5

• Mechanisms to control conditional compilation (Section 2.2 on page 33)6

• Control of OpenMP API ICVs (Section 2.3 on page 36)7

• How to specify and to use array sections for all base languages (Section 2.4 on page 44)8

• Details of each OpenMP directive (Section 2.5 on page 46 to Section 2.17 on page 227)9

C / C++

In C/C++, OpenMP directives are specified by using the #pragma mechanism provided by the C10
and C++ standards.11

C / C++
Fortran

In Fortran, OpenMP directives are specified by using special comments that are identified by12
unique sentinels. Also, a special comment form is available for conditional compilation.13

Fortran

Compilers can therefore ignore OpenMP directives and conditionally compiled code if support of14
the OpenMP API is not provided or enabled. A compliant implementation must provide an option15
or interface that ensures that underlying support of all OpenMP directives and OpenMP conditional16
compilation mechanisms is enabled. In the remainder of this document, the phrase OpenMP17
compilation is used to mean a compilation with these OpenMP features enabled.18

25

Fortran

Restrictions1

The following restriction applies to all OpenMP directives:2

• OpenMP directives, except SIMD and declare target directives, may not appear in pure3
procedures.4

Fortran

2.1 Directive Format5

C / C++

OpenMP directives for C/C++ are specified with the pragma preprocessing directive. The syntax6
of an OpenMP directive is as follows:7

#pragma omp directive-name [clause[[,] clause] ...] new-line

Each directive starts with #pragma omp. The remainder of the directive follows the conventions8
of the C and C++ standards for compiler directives. In particular, white space can be used before9
and after the #, and sometimes white space must be used to separate the words in a directive.10
Preprocessing tokens following the #pragma omp are subject to macro replacement.11

Some OpenMP directives may be composed of consecutive #pragma preprocessing directives if12
specified in their syntax.13

Directives are case-sensitive.14

An OpenMP executable directive applies to at most one succeeding statement, which must be a15
structured block.16

C / C++

26 OpenMP API – Version 4.5 November 2015

Fortran

OpenMP directives for Fortran are specified as follows:1

sentinel directive-name [clause[[,] clause]...]

All OpenMP compiler directives must begin with a directive sentinel. The format of a sentinel2
differs between fixed and free-form source files, as described in Section 2.1.1 on page 28 and3
Section 2.1.2 on page 29.4

Directives are case insensitive. Directives cannot be embedded within continued statements, and5
statements cannot be embedded within directives.6

In order to simplify the presentation, free form is used for the syntax of OpenMP directives for7
Fortran in the remainder of this document, except as noted.8

Fortran

Only one directive-name can be specified per directive (note that this includes combined directives,9
see Section 2.11 on page 124). The order in which clauses appear on directives is not significant.10
Clauses on directives may be repeated as needed, subject to the restrictions listed in the description11
of each clause.12

Some data-sharing attribute clauses (Section 2.15.3 on page 188), data copying clauses13
(Section 2.15.4 on page 211), the threadprivate directive (Section 2.15.2 on page 183), the14
flush directive (Section 2.13.7 on page 162), and the link clause of the declare target15
directive (Section 2.10.6 on page 110) accept a list. The to clause of the declare target16
directive (Section 2.10.6 on page 110) accepts an extended-list. A list consists of a17
comma-separated collection of one or more list items. A extended-list consists of a18
comma-separated collection of one or more extended list items.19

C / C++

A list item is a variable or array section. An extended list item is a list item or a function name.20

C / C++
Fortran

A list item is a variable, array section or common block name (enclosed in slashes). An extended21
list item is a list item or a procedure name.22

Fortran

For all base languages, a list item or an extended list item is subject to the restrictions specified in23
Section 2.4 on page 44 and in each of the sections describing clauses and directives for which the24
list or extended-list appears.25

CHAPTER 2. DIRECTIVES 27

Fortran

2.1.1 Fixed Source Form Directives1

The following sentinels are recognized in fixed form source files:2

!$omp | c$omp | *$omp

Sentinels must start in column 1 and appear as a single word with no intervening characters.3
Fortran fixed form line length, white space, continuation, and column rules apply to the directive4
line. Initial directive lines must have a space or zero in column 6, and continuation directive lines5
must have a character other than a space or a zero in column 6.6

Comments may appear on the same line as a directive. The exclamation point initiates a comment7
when it appears after column 6. The comment extends to the end of the source line and is ignored.8
If the first non-blank character after the directive sentinel of an initial or continuation directive line9
is an exclamation point, the line is ignored.10

Note – in the following example, the three formats for specifying the directive are equivalent (the11
first line represents the position of the first 9 columns):12

c2345678913
!$omp parallel do shared(a,b,c)14

15
c$omp parallel do16
c$omp+shared(a,b,c)17

18
c$omp paralleldoshared(a,b,c)19

28 OpenMP API – Version 4.5 November 2015

Fortran (cont.)

2.1.2 Free Source Form Directives1

The following sentinel is recognized in free form source files:2

!$omp

The sentinel can appear in any column as long as it is preceded only by white space (spaces and tab3
characters). It must appear as a single word with no intervening character. Fortran free form line4
length, white space, and continuation rules apply to the directive line. Initial directive lines must5
have a space after the sentinel. Continued directive lines must have an ampersand (&) as the last6
non-blank character on the line, prior to any comment placed inside the directive. Continuation7
directive lines can have an ampersand after the directive sentinel with optional white space before8
and after the ampersand.9

Comments may appear on the same line as a directive. The exclamation point (!) initiates a10
comment. The comment extends to the end of the source line and is ignored. If the first non-blank11
character after the directive sentinel is an exclamation point, the line is ignored.12

One or more blanks or horizontal tabs must be used to separate adjacent keywords in directives in13
free source form, except in the following cases, where white space is optional between the given set14
of keywords:15

declare reduction16

declare simd17

declare target18

distribute parallel do19

distribute parallel do simd20

distribute simd21

do simd22

end atomic23

end critical24

end distribute25

end distribute parallel do26

end distribute parallel do simd27

CHAPTER 2. DIRECTIVES 29

Fortran (cont.)

end distribute simd1

end do2

end do simd3

end master4

end ordered5

end parallel6

end parallel do7

end parallel do simd8

end parallel sections9

end parallel workshare10

end sections11

end simd12

end single13

end target14

end target data15

end target parallel16

end target parallel do17

end target parallel do simd18

end target simd19

end target teams20

end target teams distribute21

end target teams distribute parallel do22

end target teams distribute parallel do simd23

end target teams distribute simd24

end task25

end taskgroup26

end taskloop27

30 OpenMP API – Version 4.5 November 2015

Fortran (cont.)

end taskloop simd1

end teams2

end teams distribute3

end teams distribute parallel do4

end teams distribute parallel do simd5

end teams distribute simd6

end workshare7

parallel do8

parallel do simd9

parallel sections10

parallel workshare11

target data12

target enter data13

target exit data14

target parallel15

target parallel do16

target parallel do simd17

target simd18

target teams19

target teams distribute20

target teams distribute parallel do21

target teams distribute parallel do simd22

target teams distribute simd23

target update24

taskloop simd25

teams distribute26

teams distribute parallel do27

CHAPTER 2. DIRECTIVES 31

teams distribute parallel do simd1

teams distribute simd2

Note – in the following example the three formats for specifying the directive are equivalent (the3
first line represents the position of the first 9 columns):4

!234567895
!$omp parallel do &6

!$omp shared(a,b,c)7
8

!$omp parallel &9
!$omp&do shared(a,b,c)10

11
!$omp paralleldo shared(a,b,c)12

Fortran

2.1.3 Stand-Alone Directives13

Summary14

Stand-alone directives are executable directives that have no associated user code.15

Description16

Stand-alone directives do not have any associated executable user code. Instead, they represent17
executable statements that typically do not have succinct equivalent statements in the base18
languages. There are some restrictions on the placement of a stand-alone directive within a19
program. A stand-alone directive may be placed only at a point where a base language executable20
statement is allowed.21

32 OpenMP API – Version 4.5 November 2015

Restrictions1

C / C++

For C/C++, a stand-alone directive may not be used in place of the statement following an if,2
while, do, switch, or label.3

C / C++
Fortran

For Fortran, a stand-alone directive may not be used as the action statement in an if statement or4
as the executable statement following a label if the label is referenced in the program.5

Fortran

2.2 Conditional Compilation6

In implementations that support a preprocessor, the _OPENMP macro name is defined to have the7
decimal value yyyymm where yyyy and mm are the year and month designations of the version of8
the OpenMP API that the implementation supports.9

If this macro is the subject of a #define or a #undef preprocessing directive, the behavior is10
unspecified.11

Fortran

The OpenMP API requires Fortran lines to be compiled conditionally, as described in the following12
sections.13

CHAPTER 2. DIRECTIVES 33

Fortran (cont.)

2.2.1 Fixed Source Form Conditional Compilation1

Sentinels2

The following conditional compilation sentinels are recognized in fixed form source files:3

!$ | *$ | c$

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the4
following criteria:5

• The sentinel must start in column 1 and appear as a single word with no intervening white space.6

• After the sentinel is replaced with two spaces, initial lines must have a space or zero in column 67
and only white space and numbers in columns 1 through 5.8

• After the sentinel is replaced with two spaces, continuation lines must have a character other than9
a space or zero in column 6 and only white space in columns 1 through 5.10

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not met, the line11
is left unchanged.12

Note – in the following example, the two forms for specifying conditional compilation in fixed13
source form are equivalent (the first line represents the position of the first 9 columns):14

c2345678915
!$ 10 iam = omp_get_thread_num() +16
!$ & index17

18
#ifdef _OPENMP19

10 iam = omp_get_thread_num() +20
& index21

#endif22

2.2.2 Free Source Form Conditional Compilation Sentinel23

The following conditional compilation sentinel is recognized in free form source files:24

34 OpenMP API – Version 4.5 November 2015

!$

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the1
following criteria:2

• The sentinel can appear in any column but must be preceded only by white space.3

• The sentinel must appear as a single word with no intervening white space.4

• Initial lines must have a space after the sentinel.5

• Continued lines must have an ampersand as the last non-blank character on the line, prior to any6
comment appearing on the conditionally compiled line. Continuation lines can have an7
ampersand after the sentinel, with optional white space before and after the ampersand.8

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not met, the line9
is left unchanged.10

Note – in the following example, the two forms for specifying conditional compilation in free11
source form are equivalent (the first line represents the position of the first 9 columns):12

c2345678913
!$ iam = omp_get_thread_num() + &14
!$& index15

16
#ifdef _OPENMP17

iam = omp_get_thread_num() + &18
index19

#endif20

Fortran

CHAPTER 2. DIRECTIVES 35

2.3 Internal Control Variables1

An OpenMP implementation must act as if there are internal control variables (ICVs) that control2
the behavior of an OpenMP program. These ICVs store information such as the number of threads3
to use for future parallel regions, the schedule to use for worksharing loops and whether nested4
parallelism is enabled or not. The ICVs are given values at various times (described below) during5
the execution of the program. They are initialized by the implementation itself and may be given6
values through OpenMP environment variables and through calls to OpenMP API routines. The7
program can retrieve the values of these ICVs only through OpenMP API routines.8

For purposes of exposition, this document refers to the ICVs by certain names, but an9
implementation is not required to use these names or to offer any way to access the variables other10
than through the ways shown in Section 2.3.2 on page 37.11

2.3.1 ICV Descriptions12

The following ICVs store values that affect the operation of parallel regions.13

• dyn-var - controls whether dynamic adjustment of the number of threads is enabled for14
encountered parallel regions. There is one copy of this ICV per data environment.15

• nest-var - controls whether nested parallelism is enabled for encountered parallel regions.16
There is one copy of this ICV per data environment.17

• nthreads-var - controls the number of threads requested for encountered parallel regions.18
There is one copy of this ICV per data environment.19

• thread-limit-var - controls the maximum number of threads participating in the contention20
group. There is one copy of this ICV per data environment.21

• max-active-levels-var - controls the maximum number of nested active parallel regions.22
There is one copy of this ICV per device.23

• place-partition-var – controls the place partition available to the execution environment for24
encountered parallel regions. There is one copy of this ICV per implicit task.25

• active-levels-var - the number of nested, active parallel regions enclosing the current task such26
that all of the parallel regions are enclosed by the outermost initial task region on the current27
device. There is one copy of this ICV per data environment.28

• levels-var - the number of nested parallel regions enclosing the current task such that all of the29
parallel regions are enclosed by the outermost initial task region on the current device.30
There is one copy of this ICV per data environment.31

36 OpenMP API – Version 4.5 November 2015

• bind-var - controls the binding of OpenMP threads to places. When binding is requested, the1
variable indicates that the execution environment is advised not to move threads between places.2
The variable can also provide default thread affinity policies. There is one copy of this ICV per3
data environment.4

The following ICVs store values that affect the operation of loop regions.5

• run-sched-var - controls the schedule that the runtime schedule clause uses for loop regions.6
There is one copy of this ICV per data environment.7

• def-sched-var - controls the implementation defined default scheduling of loop regions. There is8
one copy of this ICV per device.9

The following ICVs store values that affect program execution.10

• stacksize-var - controls the stack size for threads that the OpenMP implementation creates. There11
is one copy of this ICV per device.12

• wait-policy-var - controls the desired behavior of waiting threads. There is one copy of this ICV13
per device.14

• cancel-var - controls the desired behavior of the cancel construct and cancellation points.15
There is one copy of this ICV for the whole program.16

• default-device-var - controls the default target device. There is one copy of this ICV per data17
environment.18

• max-task-priority-var - controls the maximum priority value that can be specified in the19
priority clause of the task construct. There is one copy of this ICV for the whole program.20

2.3.2 ICV Initialization21

Table 2.1 shows the ICVs, associated environment variables, and initial values.22

TABLE 2.1: ICV Initial Values

ICV Environment Variable Initial value

dyn-var OMP_DYNAMIC See description below

nest-var OMP_NESTED false

nthreads-var OMP_NUM_THREADS Implementation defined

table continued on next page

CHAPTER 2. DIRECTIVES 37

table continued from previous page

ICV Environment Variable Initial value

run-sched-var OMP_SCHEDULE Implementation defined

def-sched-var (none) Implementation defined

bind-var OMP_PROC_BIND Implementation defined

stacksize-var OMP_STACKSIZE Implementation defined

wait-policy-var OMP_WAIT_POLICY Implementation defined

thread-limit-var OMP_THREAD_LIMIT Implementation defined

max-active-levels-var OMP_MAX_ACTIVE_LEVELS See description below

active-levels-var (none) zero

levels-var (none) zero

place-partition-var OMP_PLACES Implementation defined

cancel-var OMP_CANCELLATION false

default-device-var OMP_DEFAULT_DEVICE Implementation defined

max-task-priority-var OMP_MAX_TASK_PRIORITY zero

1

Description2

• Each device has its own ICVs.3

• The value of the nthreads-var ICV is a list.4

• The value of the bind-var ICV is a list.5

• The initial value of dyn-var is implementation defined if the implementation supports dynamic6
adjustment of the number of threads; otherwise, the initial value is false.7

• The initial value of max-active-levels-var is the number of levels of parallelism that the8
implementation supports. See the definition of supporting n levels of parallelism in Section 1.2.79
on page 13 for further details.10

The host and target device ICVs are initialized before any OpenMP API construct or OpenMP API11
routine executes. After the initial values are assigned, the values of any OpenMP environment12
variables that were set by the user are read and the associated ICVs for the host device are modified13
accordingly. The method for initializing a target device’s ICVs is implementation defined.14

38 OpenMP API – Version 4.5 November 2015

Cross References1

• OMP_SCHEDULE environment variable, see Section 4.1 on page 292.2

• OMP_NUM_THREADS environment variable, see Section 4.2 on page 293.3

• OMP_DYNAMIC environment variable, see Section 4.3 on page 294.4

• OMP_PROC_BIND environment variable, see Section 4.4 on page 294.5

• OMP_PLACES environment variable, see Section 4.5 on page 295.6

• OMP_NESTED environment variable, see Section 4.6 on page 297.7

• OMP_STACKSIZE environment variable, see Section 4.7 on page 298.8

• OMP_WAIT_POLICY environment variable, see Section 4.8 on page 299.9

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 4.9 on page 300.10

• OMP_THREAD_LIMIT environment variable, see Section 4.10 on page 300.11

• OMP_CANCELLATION environment variable, see Section 4.11 on page 300.12

• OMP_DEFAULT_DEVICE environment variable, see Section 4.13 on page 302.13

• OMP_MAX_TASK_PRIORITY environment variable, see Section 4.14 on page 303.14

2.3.3 Modifying and Retrieving ICV Values15

Table 2.2 shows the method for modifying and retrieving the values of ICVs through OpenMP API16
routines.17

TABLE 2.2: Ways to Modify and to Retrieve ICV Values

ICV Ways to modify value Ways to retrieve value

dyn-var omp_set_dynamic() omp_get_dynamic()

nest-var omp_set_nested() omp_get_nested()

nthreads-var omp_set_num_threads() omp_get_max_threads()

run-sched-var omp_set_schedule() omp_get_schedule()

def-sched-var (none) (none)

table continued on next page

CHAPTER 2. DIRECTIVES 39

table continued from previous page

ICV Ways to modify value Ways to retrieve value

bind-var (none) omp_get_proc_bind()

stacksize-var (none) (none)

wait-policy-var (none) (none)

thread-limit-var thread_limit clause omp_get_thread_limit()

max-active-levels-var omp_set_max_active_levels() omp_get_max_active_levels()

active-levels-var (none) omp_get_active_level()

levels-var (none) omp_get_level()

place-partition-var (none) See description below

cancel-var (none) omp_get_cancellation()

default-device-var omp_set_default_device() omp_get_default_device()

max-task-priority-var (none) omp_get_max_task_priority()

1

Description2

• The value of the nthreads-var ICV is a list. The runtime call omp_set_num_threads() sets3
the value of the first element of this list, and omp_get_max_threads() retrieves the value4
of the first element of this list.5

• The value of the bind-var ICV is a list. The runtime call omp_get_proc_bind() retrieves6
the value of the first element of this list.7

• Detailed values in the place-partition-var ICV are retrieved using the runtime calls8
omp_get_partition_num_places(), omp_get_partition_place_nums(),9
omp_get_place_num_procs(), and omp_get_place_proc_ids().10

Cross References11

• thread_limit clause of the teams construct, see Section 2.10.7 on page 114.12

• omp_set_num_threads routine, see Section 3.2.1 on page 231.13

• omp_get_max_threads routine, see Section 3.2.3 on page 233.14

• omp_set_dynamic routine, see Section 3.2.7 on page 237.15

• omp_get_dynamic routine, see Section 3.2.8 on page 239.16

• omp_get_cancellation routine, see Section 3.2.9 on page 240.17

• omp_set_nested routine, see Section 3.2.10 on page 240.18

40 OpenMP API – Version 4.5 November 2015

• omp_get_nested routine, see Section 3.2.11 on page 242.1

• omp_set_schedule routine, see Section 3.2.12 on page 243.2

• omp_get_schedule routine, see Section 3.2.13 on page 245.3

• omp_get_thread_limit routine, see Section 3.2.14 on page 246.4

• omp_set_max_active_levels routine, see Section 3.2.15 on page 246.5

• omp_get_max_active_levels routine, see Section 3.2.16 on page 248.6

• omp_get_level routine, see Section 3.2.17 on page 249.7

• omp_get_active_level routine, see Section 3.2.20 on page 252.8

• omp_get_proc_bind routine, see Section 3.2.22 on page 254.9

• omp_get_place_num_procs() routine, see Section 3.2.24 on page 257.10

• omp_get_place_proc_ids() routine, see Section 3.2.25 on page 258.11

• omp_get_partition_num_places() routine, see Section 3.2.27 on page 260.12

• omp_get_partition_place_nums() routine, see Section 3.2.28 on page 261.13

• omp_set_default_device routine, see Section 3.2.29 on page 262.14

• omp_get_default_device routine, see Section 3.2.30 on page 263.15

• omp_get_max_task_priority routine, see Section 3.2.36 on page 268.16

2.3.4 How ICVs are Scoped17

Table 2.3 shows the ICVs and their scope.18

TABLE 2.3: Scopes of ICVs19

ICV Scope

dyn-var data environment
nest-var data environment
nthreads-var data environment
run-sched-var data environment
def-sched-var device
table continued on next page

20

CHAPTER 2. DIRECTIVES 41

table continued from previous page

ICV Scope

bind-var data environment
stacksize-var device
wait-policy-var device
thread-limit-var data environment
max-active-levels-var device
active-levels-var data environment
levels-var data environment
place-partition-var implicit task
cancel-var global
default-device-var data environment
max-task-priority-var global

1

Description2

• There is one copy per device of each ICV with device scope3

• Each data environment has its own copies of ICVs with data environment scope4

• Each implicit task has its own copy of ICVs with implicit task scope5

Calls to OpenMP API routines retrieve or modify data environment scoped ICVs in the data6
environment of their binding tasks.7

2.3.4.1 How the Per-Data Environment ICVs Work8

When a task construct or parallel construct is encountered, the generated task(s) inherit the9
values of the data environment scoped ICVs from the generating task’s ICV values.10

When a task construct is encountered, the generated task inherits the value of nthreads-var from11
the generating task’s nthreads-var value. When a parallel construct is encountered, and the12
generating task’s nthreads-var list contains a single element, the generated task(s) inherit that list as13
the value of nthreads-var. When a parallel construct is encountered, and the generating task’s14
nthreads-var list contains multiple elements, the generated task(s) inherit the value of nthreads-var15
as the list obtained by deletion of the first element from the generating task’s nthreads-var value.16
The bind-var ICV is handled in the same way as the nthreads-var ICV.17

42 OpenMP API – Version 4.5 November 2015

When a target task executes a target region, the generated initial task uses the values of the data1
environment scoped ICVs from the device data environment ICV values of the device that will2
execute the region.3

If a teams construct with a thread_limit clause is encountered, the thread-limit-var ICV of4
the construct’s data environment is instead set to a value that is less than or equal to the value5
specified in the clause.6

When encountering a loop worksharing region with schedule(runtime), all implicit task7
regions that constitute the binding parallel region must have the same value for run-sched-var in8
their data environments. Otherwise, the behavior is unspecified.9

2.3.5 ICV Override Relationships10

Table 2.4 shows the override relationships among construct clauses and ICVs.11

TABLE 2.4: ICV Override Relationships

ICV construct clause, if used

dyn-var (none)

nest-var (none)

nthreads-var num_threads

run-sched-var schedule

def-sched-var schedule

bind-var proc_bind

stacksize-var (none)

wait-policy-var (none)

thread-limit-var (none)

max-active-levels-var (none)

active-levels-var (none)

levels-var (none)

table continued on next page

CHAPTER 2. DIRECTIVES 43

table continued from previous page

ICV construct clause, if used

place-partition-var (none)

cancel-var (none)

default-device-var (none)

max-task-priority-var (none)

1

Description2

• The num_threads clause overrides the value of the first element of the nthreads-var ICV.3

• If bind-var is not set to false then the proc_bind clause overrides the value of the first element4
of the bind-var ICV; otherwise, the proc_bind clause has no effect.5

Cross References6

• parallel construct, see Section 2.5 on page 46.7

• proc_bind clause, Section 2.5 on page 46.8

• num_threads clause, see Section 2.5.1 on page 50.9

• Loop construct, see Section 2.7.1 on page 56.10

• schedule clause, see Section 2.7.1.1 on page 64.11

2.4 Array Sections12

An array section designates a subset of the elements in an array. An array section can appear only13
in clauses where it is explicitly allowed.14

C / C++

To specify an array section in an OpenMP construct, array subscript expressions are extended with15
the following syntax:16

44 OpenMP API – Version 4.5 November 2015

[lower-bound : length] or1

[lower-bound :] or2

[: length] or3

[:]4

The array section must be a subset of the original array.5

Array sections are allowed on multidimensional arrays. Base language array subscript expressions6
can be used to specify length-one dimensions of multidimensional array sections.7

The lower-bound and length are integral type expressions. When evaluated they represent a set of8
integer values as follows:9

{ lower-bound, lower-bound + 1, lower-bound + 2,... , lower-bound + length - 1 }10

The length must evaluate to a non-negative integer.11

When the size of the array dimension is not known, the length must be specified explicitly.12

When the length is absent, it defaults to the size of the array dimension minus the lower-bound.13

When the lower-bound is absent it defaults to 0.14

Note – The following are examples of array sections:15

a[0:6]16

a[:6]17

a[1:10]18

a[1:]19

b[10][:][:0]20

c[1:10][42][0:6]21

The first two examples are equivalent. If a is declared to be an eleven element array, the third and22
fourth examples are equivalent. The fifth example is a zero-length array section. The last example23
is not contiguous.24

C / C++

CHAPTER 2. DIRECTIVES 45

Fortran

Fortran has built-in support for array sections but the following restrictions apply for OpenMP1
constructs:2

• A stride expression may not be specified.3

• The upper bound for the last dimension of an assumed-size dummy array must be specified.4

Fortran

Restrictions5

Restrictions to array sections are as follows:6

• An array section can appear only in clauses where it is explicitly allowed.7

C / C++

• An array section can only be specified for a base language identifier.8

C / C++
C

• The type of the variable appearing in an array section must be array or pointer.9

C

C++
• If the type of the variable appearing in an array section is a reference to a type T then the type10
will be considered to be T for all purposes of the array section.11

• An array section cannot be used in a C++ user-defined []-operator.12

C++

2.5 parallel Construct13

Summary14

This fundamental construct starts parallel execution. See Section 1.3 on page 14 for a general15
description of the OpenMP execution model.16

46 OpenMP API – Version 4.5 November 2015

Syntax1

C / C++

The syntax of the parallel construct is as follows:2

#pragma omp parallel [clause[[,] clause] ...] new-line
structured-block

where clause is one of the following:3

if([parallel :] scalar-expression)4

num_threads(integer-expression)5

default(shared | none)6

private(list)7

firstprivate(list)8

shared(list)9

copyin(list)10

reduction(reduction-identifier : list)11

proc_bind(master | close | spread)12

C / C++
Fortran

The syntax of the parallel construct is as follows:13

!$omp parallel [clause[[,] clause] ...]
structured-block

!$omp end parallel

CHAPTER 2. DIRECTIVES 47

where clause is one of the following:1

if([parallel :] scalar-logical-expression)2

num_threads(scalar-integer-expression)3

default(private | firstprivate | shared | none)4

private(list)5

firstprivate(list)6

shared(list)7

copyin(list)8

reduction(reduction-identifier : list)9

proc_bind(master | close | spread)10

The end parallel directive denotes the end of the parallel construct.11

Fortran

Binding12

The binding thread set for a parallel region is the encountering thread. The encountering thread13
becomes the master thread of the new team.14

Description15

When a thread encounters a parallel construct, a team of threads is created to execute the16
parallel region (see Section 2.5.1 on page 50 for more information about how the number of17
threads in the team is determined, including the evaluation of the if and num_threads clauses).18
The thread that encountered the parallel construct becomes the master thread of the new team,19
with a thread number of zero for the duration of the new parallel region. All threads in the new20
team, including the master thread, execute the region. Once the team is created, the number of21
threads in the team remains constant for the duration of that parallel region.22

The optional proc_bind clause, described in Section 2.5.2 on page 52, specifies the mapping of23
OpenMP threads to places within the current place partition, that is, within the places listed in the24
place-partition-var ICV for the implicit task of the encountering thread.25

Within a parallel region, thread numbers uniquely identify each thread. Thread numbers are26
consecutive whole numbers ranging from zero for the master thread up to one less than the number27
of threads in the team. A thread may obtain its own thread number by a call to the28
omp_get_thread_num library routine.29

A set of implicit tasks, equal in number to the number of threads in the team, is generated by the30
encountering thread. The structured block of the parallel construct determines the code that31

48 OpenMP API – Version 4.5 November 2015

will be executed in each implicit task. Each task is assigned to a different thread in the team and1
becomes tied. The task region of the task being executed by the encountering thread is suspended2
and each thread in the team executes its implicit task. Each thread can execute a path of statements3
that is different from that of the other threads4

The implementation may cause any thread to suspend execution of its implicit task at a task5
scheduling point, and switch to execute any explicit task generated by any of the threads in the6
team, before eventually resuming execution of the implicit task (for more details see Section 2.9 on7
page 83).8

There is an implied barrier at the end of a parallel region. After the end of a parallel9
region, only the master thread of the team resumes execution of the enclosing task region.10

If a thread in a team executing a parallel region encounters another parallel directive, it11
creates a new team, according to the rules in Section 2.5.1 on page 50, and it becomes the master of12
that new team.13

If execution of a thread terminates while inside a parallel region, execution of all threads in all14
teams terminates. The order of termination of threads is unspecified. All work done by a team prior15
to any barrier that the team has passed in the program is guaranteed to be complete. The amount of16
work done by each thread after the last barrier that it passed and before it terminates is unspecified.17

Restrictions18

Restrictions to the parallel construct are as follows:19

• A program that branches into or out of a parallel region is non-conforming.20

• A program must not depend on any ordering of the evaluations of the clauses of the parallel21
directive, or on any side effects of the evaluations of the clauses.22

• At most one if clause can appear on the directive.23

• At most one proc_bind clause can appear on the directive.24

• At most one num_threads clause can appear on the directive. The num_threads25
expression must evaluate to a positive integer value.26

C / C++

A throw executed inside a parallel region must cause execution to resume within the same27
parallel region, and the same thread that threw the exception must catch it.28

C / C++
Fortran

Unsynchronized use of Fortran I/O statements by multiple threads on the same unit has unspecified29
behavior.30

Fortran

CHAPTER 2. DIRECTIVES 49

Cross References1

• if clause, see Section 2.12 on page 147.2

• default, shared, private, firstprivate, and reduction clauses, see3
Section 2.15.3 on page 188.4

• copyin clause, see Section 2.15.4 on page 211.5

• omp_get_thread_num routine, see Section 3.2.4 on page 235.6

2.5.1 Determining the Number of Threads for a parallel7

Region8

When execution encounters a parallel directive, the value of the if clause or num_threads9
clause (if any) on the directive, the current parallel context, and the values of the nthreads-var,10
dyn-var, thread-limit-var, max-active-levels-var, and nest-var ICVs are used to determine the11
number of threads to use in the region.12

Using a variable in an if or num_threads clause expression of a parallel construct causes13
an implicit reference to the variable in all enclosing constructs. The if clause expression and the14
num_threads clause expression are evaluated in the context outside of the parallel15
construct, and no ordering of those evaluations is specified. It is also unspecified whether, in what16
order, or how many times any side effects of the evaluation of the num_threads or if clause17
expressions occur.18

When a thread encounters a parallel construct, the number of threads is determined according19
to Algorithm 2.1.20

21
Algorithm 2.122

23

let ThreadsBusy be the number of OpenMP threads currently executing in this24
contention group;25

let ActiveParRegions be the number of enclosing active parallel regions;26

if an if clause exists27

then let IfClauseValue be the value of the if clause expression;28

else let IfClauseValue = true;29

if a num_threads clause exists30

then let ThreadsRequested be the value of the num_threads clause expression;31

50 OpenMP API – Version 4.5 November 2015

else let ThreadsRequested = value of the first element of nthreads-var;1

let ThreadsAvailable = (thread-limit-var - ThreadsBusy + 1);2

if (IfClauseValue = false)3

then number of threads = 1;4

else if (ActiveParRegions >= 1) and (nest-var = false)5

then number of threads = 1;6

else if (ActiveParRegions = max-active-levels-var)7

then number of threads = 1;8

else if (dyn-var = true) and (ThreadsRequested <= ThreadsAvailable)9

then number of threads = [1 : ThreadsRequested];10

else if (dyn-var = true) and (ThreadsRequested > ThreadsAvailable)11

then number of threads = [1 : ThreadsAvailable];12

else if (dyn-var = false) and (ThreadsRequested <= ThreadsAvailable)13

then number of threads = ThreadsRequested;14

else if (dyn-var = false) and (ThreadsRequested > ThreadsAvailable)15

then behavior is implementation defined;16

17
18

Note – Since the initial value of the dyn-var ICV is implementation defined, programs that depend19
on a specific number of threads for correct execution should explicitly disable dynamic adjustment20
of the number of threads.21

Cross References22

• nthreads-var, dyn-var, thread-limit-var, max-active-levels-var, and nest-var ICVs, see23
Section 2.3 on page 36.24

CHAPTER 2. DIRECTIVES 51

2.5.2 Controlling OpenMP Thread Affinity1

When a thread encounters a parallel directive without a proc_bind clause, the bind-var ICV2
is used to determine the policy for assigning OpenMP threads to places within the current place3
partition, that is, the places listed in the place-partition-var ICV for the implicit task of the4
encountering thread. If the parallel directive has a proc_bind clause then the binding policy5
specified by the proc_bind clause overrides the policy specified by the first element of the6
bind-var ICV. Once a thread in the team is assigned to a place, the OpenMP implementation should7
not move it to another place.8

The master thread affinity policy instructs the execution environment to assign every thread in the9
team to the same place as the master thread. The place partition is not changed by this policy, and10
each implicit task inherits the place-partition-var ICV of the parent implicit task.11

The close thread affinity policy instructs the execution environment to assign the threads in the12
team to places close to the place of the parent thread. The place partition is not changed by this13
policy, and each implicit task inherits the place-partition-var ICV of the parent implicit task. If T14
is the number of threads in the team, and P is the number of places in the parent’s place partition,15
then the assignment of threads in the team to places is as follows:16

• T ≤ P . The master thread executes on the place of the parent thread. The thread with the next17
smallest thread number executes on the next place in the place partition, and so on, with wrap18
around with respect to the place partition of the master thread.19

• T > P . Each place P will contain Sp threads with consecutive thread numbers, where20
bbT/Pcc ≤ Sp ≤ ddT/Pee. The first S0 threads (including the master thread) are assigned to the21
place of the parent thread. The next S1 threads are assigned to the next place in the place22
partition, and so on, with wrap around with respect to the place partition of the master thread.23
When P does not divide T evenly, the exact number of threads in a particular place is24
implementation defined.25

The purpose of the spread thread affinity policy is to create a sparse distribution for a team of T26
threads among the P places of the parent’s place partition. A sparse distribution is achieved by first27
subdividing the parent partition into T subpartitions if T ≤ P , or P subpartitions if T > P . Then28
one thread (T ≤ P) or a set of threads (T > P) is assigned to each subpartition. The29
place-partition-var ICV of each implicit task is set to its subpartition. The subpartitioning is not30
only a mechanism for achieving a sparse distribution, it also defines a subset of places for a thread31
to use when creating a nested parallel region. The assignment of threads to places is as follows:32

• T ≤ P . The parent thread’s place partition is split into T subpartitions, where each subpartition33
contains bbP/Tcc or ddP/Tee consecutive places. A single thread is assigned to each subpartition.34
The master thread executes on the place of the parent thread and is assigned to the subpartition35
that includes that place. The thread with the next smallest thread number is assigned to the first36
place in the next subpartition, and so on, with wrap around with respect to the original place37
partition of the master thread.38

52 OpenMP API – Version 4.5 November 2015

• T > P . The parent thread’s place partition is split into P subpartitions, each consisting of a1
single place. Each subpartition is assigned Sp threads with consecutive thread numbers, where2
bbT/Pcc ≤ Sp ≤ ddT/Pee. The first S0 threads (including the master thread) are assigned to the3
subpartition containing the place of the parent thread. The next S1 threads are assigned to the4
next subpartition, and so on, with wrap around with respect to the original place partition of the5
master thread. When P does not divide T evenly, the exact number of threads in a particular6
subpartition is implementation defined.7

The determination of whether the affinity request can be fulfilled is implementation defined. If the8
affinity request cannot be fulfilled, then the affinity of threads in the team is implementation defined.9

Note - Wrap around is needed if the end of a place partition is reached before all thread10
assignments are done. For example, wrap around may be needed in the case of close and T ≤ P ,11
if the master thread is assigned to a place other than the first place in the place partition. In this12
case, thread 1 is assigned to the place after the place of the master place, thread 2 is assigned to the13
place after that, and so on. The end of the place partition may be reached before all threads are14
assigned. In this case, assignment of threads is resumed with the first place in the place partition.15

2.6 Canonical Loop Form16

C / C++

A loop has canonical loop form if it conforms to the following:17

for (init-expr; test-expr; incr-expr) structured-block

init-expr One of the following:
var = lb
integer-type var = lb
random-access-iterator-type var = lb
pointer-type var = lb

test-expr One of the following:
var relational-op b
b relational-op var

continued on next page

CHAPTER 2. DIRECTIVES 53

C/C++ (cont.)

continued from previous page

incr-expr One of the following:
++var
var++
- - var
var - -
var += incr
var - = incr
var = var + incr
var = incr + var
var = var - incr

var One of the following:
A variable of a signed or unsigned integer type.
For C++, a variable of a random access iterator type.
For C, a variable of a pointer type.

If this variable would otherwise be shared, it is implicitly made private in the
loop construct. This variable must not be modified during the execution of the
for-loop other than in incr-expr. Unless the variable is specified lastprivate
or linear on the loop construct, its value after the loop is unspecified.

relational-op One of the following:
<
<=
>
>=

lb and b Loop invariant expressions of a type compatible with the type of var.

incr A loop invariant integer expression.

1

2

The canonical form allows the iteration count of all associated loops to be computed before3
executing the outermost loop. The computation is performed for each loop in an integer type. This4
type is derived from the type of var as follows:5

• If var is of an integer type, then the type is the type of var.6

• For C++, if var is of a random access iterator type, then the type is the type that would be used7
by std::distance applied to variables of the type of var.8

• For C, if var is of a pointer type, then the type is ptrdiff_t.9

The behavior is unspecified if any intermediate result required to compute the iteration count10

54 OpenMP API – Version 4.5 November 2015

cannot be represented in the type determined above.1

There is no implied synchronization during the evaluation of the lb, b, or incr expressions. It is2
unspecified whether, in what order, or how many times any side effects within the lb, b, or incr3
expressions occur.4

Note – Random access iterators are required to support random access to elements in constant5
time. Other iterators are precluded by the restrictions since they can take linear time or offer limited6
functionality. It is therefore advisable to use tasks to parallelize those cases.7

Restrictions8

The following restrictions also apply:9

• If test-expr is of the form var relational-op b and relational-op is < or <= then incr-expr must10
cause var to increase on each iteration of the loop. If test-expr is of the form var relational-op b11
and relational-op is > or >= then incr-expr must cause var to decrease on each iteration of the12
loop.13

• If test-expr is of the form b relational-op var and relational-op is < or <= then incr-expr must14
cause var to decrease on each iteration of the loop. If test-expr is of the form b relational-op var15
and relational-op is > or >= then incr-expr must cause var to increase on each iteration of the16
loop.17

• For C++, in the simd construct the only random access iterator types that are allowed for var are18
pointer types.19

• The b, lb and incr expressions may not reference var of any of the associated loops.20

C / C++

CHAPTER 2. DIRECTIVES 55

2.7 Worksharing Constructs1

A worksharing construct distributes the execution of the associated region among the members of2
the team that encounters it. Threads execute portions of the region in the context of the implicit3
tasks each one is executing. If the team consists of only one thread then the worksharing region is4
not executed in parallel.5

A worksharing region has no barrier on entry; however, an implied barrier exists at the end of the6
worksharing region, unless a nowait clause is specified. If a nowait clause is present, an7
implementation may omit the barrier at the end of the worksharing region. In this case, threads that8
finish early may proceed straight to the instructions following the worksharing region without9
waiting for the other members of the team to finish the worksharing region, and without performing10
a flush operation.11

The OpenMP API defines the following worksharing constructs, and these are described in the12
sections that follow:13

• loop construct14

• sections construct15

• single construct16

• workshare construct17

Restrictions18

The following restrictions apply to worksharing constructs:19

• Each worksharing region must be encountered by all threads in a team or by none at all, unless20
cancellation has been requested for the innermost enclosing parallel region.21

• The sequence of worksharing regions and barrier regions encountered must be the same for22
every thread in a team23

2.7.1 Loop Construct24

Summary25

The loop construct specifies that the iterations of one or more associated loops will be executed in26
parallel by threads in the team in the context of their implicit tasks. The iterations are distributed27
across threads that already exist in the team executing the parallel region to which the loop28
region binds.29

56 OpenMP API – Version 4.5 November 2015

Syntax1

C / C++

The syntax of the loop construct is as follows:2

#pragma omp for [clause[[,] clause] ...] new-line
for-loops

where clause is one of the following:3

private(list)4

firstprivate(list)5

lastprivate(list)6

linear(list[: linear-step])7

reduction(reduction-identifier : list)8

schedule([modifier [, modifier]:]kind[, chunk_size])9

collapse(n)10

ordered[(n)]11

nowait12

The for directive places restrictions on the structure of all associated for-loops. Specifically, all13
associated for-loops must have canonical loop form (see Section 2.6 on page 53).14

C / C++
Fortran

The syntax of the loop construct is as follows:15

!$omp do [clause[[,] clause] ...]
do-loops

[!$omp end do [nowait]]

where clause is one of the following:16

CHAPTER 2. DIRECTIVES 57

private(list)1

firstprivate(list)2

lastprivate(list)3

linear(list[: linear-step])4

reduction(reduction-identifier : list)5

schedule([modifier [, modifier]:]kind[, chunk_size])6

collapse(n)7

ordered[(n)]8

If an end do directive is not specified, an end do directive is assumed at the end of the do-loops.9

Any associated do-loop must be a do-construct or an inner-shared-do-construct as defined by the10
Fortran standard. If an end do directive follows a do-construct in which several loop statements11
share a DO termination statement, then the directive can only be specified for the outermost of these12
DO statements.13

If any of the loop iteration variables would otherwise be shared, they are implicitly made private on14
the loop construct.15

Fortran

Binding16

The binding thread set for a loop region is the current team. A loop region binds to the innermost17
enclosing parallel region. Only the threads of the team executing the binding parallel18
region participate in the execution of the loop iterations and the implied barrier of the loop region if19
the barrier is not eliminated by a nowait clause.20

Description21

The loop construct is associated with a loop nest consisting of one or more loops that follow the22
directive.23

There is an implicit barrier at the end of a loop construct unless a nowait clause is specified.24

The collapse clause may be used to specify how many loops are associated with the loop25
construct. The parameter of the collapse clause must be a constant positive integer expression.26
If a collapse clause is specified with a parameter value greater than 1, then the iterations of the27
associated loops to which the clause applies are collapsed into one larger iteration space that is then28
divided according to the schedule clause. The sequential execution of the iterations in these29
associated loops determines the order of the iterations in the collapsed iteration space. If no30
collapse clause is present or its parameter is 1, the only loop that is associated with the loop31

58 OpenMP API – Version 4.5 November 2015

construct for the purposes of determining how the iteration space is divided according to the1
schedule clause is the one that immediately follows the loop directive.2

The iteration count for each associated loop is computed before entry to the outermost loop. If3
execution of any associated loop changes any of the values used to compute any of the iteration4
counts, then the behavior is unspecified.5

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is6
implementation defined.7

A worksharing loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop8
iterations, and the logical numbering denotes the sequence in which the iterations would be9
executed if a set of associated loop(s) were executed sequentially. The schedule clause specifies10
how iterations of these associated loops are divided into contiguous non-empty subsets, called11
chunks, and how these chunks are distributed among threads of the team. Each thread executes its12
assigned chunk(s) in the context of its implicit task. The iterations of a given chunk are executed in13
sequential order by the assigned thread. The chunk_size expression is evaluated using the original14
list items of any variables that are made private in the loop construct. It is unspecified whether, in15
what order, or how many times, any side effects of the evaluation of this expression occur. The use16
of a variable in a schedule clause expression of a loop construct causes an implicit reference to17
the variable in all enclosing constructs.18

Different loop regions with the same schedule and iteration count, even if they occur in the same19
parallel region, can distribute iterations among threads differently. The only exception is for the20
static schedule as specified in Table 2.5. Programs that depend on which thread executes a21
particular iteration under any other circumstances are non-conforming.22

See Section 2.7.1.1 on page 64 for details of how the schedule for a worksharing loop is determined.23

The schedule kind can be one of those specified in Table 2.5.24

The schedule modifier can be one of those specified in Table 2.6. If the static schedule kind is25
specified or if the ordered clause is specified, and if no monotonic modifier is specified, the26
effect will be as if the monotonic modifier was specified.27

Note – The next release of the OpenMP specification will include the following statement:28

Otherwise, unless the monotonic modifier is specified, the effect will be as if the29
nonmonotonic modifier was specified.30

The ordered clause with the parameter may also be used to specify how many loops are31
associated with the loop construct. The parameter of the ordered clause must be a constant32
positive integer expression if specified. The parameter of the ordered clause does not affect how33
the logical iteration space is then divided. If an ordered clause with the parameter is specified for34
the loop construct, then those associated loops form a doacross loop nest.35

CHAPTER 2. DIRECTIVES 59

If the value of the parameter in the collapse or ordered clause is larger than the number of1
nested loops following the construct, the behavior is unspecified.2

TABLE 2.5: schedule Clause kind Values3

static When schedule(static, chunk_size) is specified, iterations are
divided into chunks of size chunk_size, and the chunks are assigned to
the threads in the team in a round-robin fashion in the order of the thread
number.

When no chunk_size is specified, the iteration space is divided into chunks
that are approximately equal in size, and at most one chunk is distributed to
each thread. The size of the chunks is unspecified in this case.

A compliant implementation of the static schedule must ensure that
the same assignment of logical iteration numbers to threads will be used
in two loop regions if the following conditions are satisfied: 1) both loop
regions have the same number of loop iterations, 2) both loop regions
have the same value of chunk_size specified, or both loop regions have no
chunk_size specified, 3) both loop regions bind to the same parallel region,
and 4) neither loop is associated with a SIMD construct. A data dependence
between the same logical iterations in two such loops is guaranteed to be
satisfied allowing safe use of the nowait clause.

dynamic
When schedule(dynamic, chunk_size) is specified, the iterations are
distributed to threads in the team in chunks. Each thread executes a chunk
of iterations, then requests another chunk, until no chunks remain to be
distributed.

Each chunk contains chunk_size iterations, except for the chunk that contains
the sequentially last iteration, which may have fewer iterations.

When no chunk_size is specified, it defaults to 1.

guided
When schedule(guided, chunk_size) is specified, the iterations are
assigned to threads in the team in chunks. Each thread executes a chunk
of iterations, then requests another chunk, until no chunks remain to be
assigned.

table continued on next page

4

60 OpenMP API – Version 4.5 November 2015

table continued from previous page

For a chunk_size of 1, the size of each chunk is proportional to the number
of unassigned iterations divided by the number of threads in the team,
decreasing to 1. For a chunk_size with value k (greater than 1), the size
of each chunk is determined in the same way, with the restriction that
the chunks do not contain fewer than k iterations (except for the chunk
that contains the sequentially last iteration, which may have fewer than k
iterations).

When no chunk_size is specified, it defaults to 1.

auto When schedule(auto) is specified, the decision regarding scheduling is
delegated to the compiler and/or runtime system. The programmer gives the
implementation the freedom to choose any possible mapping of iterations to
threads in the team.

runtime When schedule(runtime) is specified, the decision regarding
scheduling is deferred until run time, and the schedule and chunk size are
taken from the run-sched-var ICV. If the ICV is set to auto, the schedule is
implementation defined.

1

Note – For a team of p threads and a loop of n iterations, let ddn/pee be the integer q that satisfies2
n = p ∗ q − r, with 0 <= r < p. One compliant implementation of the static schedule (with no3
specified chunk_size) would behave as though chunk_size had been specified with value q. Another4
compliant implementation would assign q iterations to the first p− r threads, and q− 1 iterations to5
the remaining r threads. This illustrates why a conforming program must not rely on the details of a6
particular implementation.7

A compliant implementation of the guided schedule with a chunk_size value of k would assign8
q = ddn/pee iterations to the first available thread and set n to the larger of n− q and p ∗ k. It would9
then repeat this process until q is greater than or equal to the number of remaining iterations, at10
which time the remaining iterations form the final chunk. Another compliant implementation could11
use the same method, except with q = ddn/(2p)ee, and set n to the larger of n− q and 2 ∗ p ∗ k.12

CHAPTER 2. DIRECTIVES 61

TABLE 2.6: schedule Clause modifier Values1

monotonic When the monotonic modifier is specified then each thread executes
the chunks that it is assigned in increasing logical iteration order.

nonmonotonic When the nonmonotonic modifier is specified then chunks are
assigned to threads in any order and the behavior of an application that
depends on any execution order of the chunks is unspecified.

simd When the simd modifier is specified and the loop is associated with
a SIMD construct, the chunk_size for all chunks except the first and
last chunks is new_chunk_size = ddchunk_size/simd_widthee ∗
simd_width where simd_width is an implementation-defined value.
The first chunk will have at least new_chunk_size iterations except if
it is also the last chunk. The last chunk may have fewer iterations than
new_chunk_size. If the simd modifier is specified and the loop is not
associated with a SIMD construct, the modifier is ignored.

2

Restrictions3

Restrictions to the loop construct are as follows:4

• All loops associated with the loop construct must be perfectly nested; that is, there must be no5
intervening code nor any OpenMP directive between any two loops.6

• The values of the loop control expressions of the loops associated with the loop construct must7
be the same for all threads in the team.8

• Only one schedule clause can appear on a loop directive.9

• Only one collapse clause can appear on a loop directive.10

• chunk_size must be a loop invariant integer expression with a positive value.11

• The value of the chunk_size expression must be the same for all threads in the team.12

• The value of the run-sched-var ICV must be the same for all threads in the team.13

• When schedule(runtime) or schedule(auto) is specified, chunk_size must not be14
specified.15

• A modifier may not be specified on a linear clause.16

• Only one ordered clause can appear on a loop directive.17

• The ordered clause must be present on the loop construct if any ordered region ever binds18
to a loop region arising from the loop construct.19

• The nonmonotonic modifier can only be specified with schedule(dynamic) or20
schedule(guided).21

62 OpenMP API – Version 4.5 November 2015

• The nonmonotonic modifier cannot be specified if an ordered clause is specified.1

• Either the monotonic modifier or the nonmonotonic modifier can be specified but not both.2

• The loop iteration variable may not appear in a threadprivate directive.3

• If both the collapse and ordered clause with a parameter are specified, the parameter of the4
ordered clause must be greater than or equal to the parameter of the collapse clause.5

• A linear clause or an ordered clause with a parameter can be specified on a loop directive6
but not both.7

C / C++

• The associated for-loops must be structured blocks.8

• Only an iteration of the innermost associated loop may be curtailed by a continue statement.9

• No statement can branch to any associated for statement.10

• Only one nowait clause can appear on a for directive.11

• A throw executed inside a loop region must cause execution to resume within the same iteration12
of the loop region, and the same thread that threw the exception must catch it.13

C / C++
Fortran

• The associated do-loops must be structured blocks.14

• Only an iteration of the innermost associated loop may be curtailed by a CYCLE statement.15

• No statement in the associated loops other than the DO statements can cause a branch out of the16
loops.17

• The do-loop iteration variable must be of type integer.18

• The do-loop cannot be a DO WHILE or a DO loop without loop control.19

Fortran

Cross References20

• private, firstprivate, lastprivate, linear, and reduction clauses, see21
Section 2.15.3 on page 188.22

• OMP_SCHEDULE environment variable, see Section 4.1 on page 292.23

• ordered construct, see Section 2.13.8 on page 166.24

• depend clause, see Section 2.13.9 on page 169.25

CHAPTER 2. DIRECTIVES 63

2.7.1.1 Determining the Schedule of a Worksharing Loop1

When execution encounters a loop directive, the schedule clause (if any) on the directive, and2
the run-sched-var and def-sched-var ICVs are used to determine how loop iterations are assigned3
to threads. See Section 2.3 on page 36 for details of how the values of the ICVs are determined. If4
the loop directive does not have a schedule clause then the current value of the def-sched-var5
ICV determines the schedule. If the loop directive has a schedule clause that specifies the6
runtime schedule kind then the current value of the run-sched-var ICV determines the schedule.7
Otherwise, the value of the schedule clause determines the schedule. Figure 2.1 describes how8
the schedule for a worksharing loop is determined.9

Cross References10

• ICVs, see Section 2.3 on page 3611

START

schedule
clause present?

schedule
kind value is
runtime?

Use def-sched-var schedule kind

Use schedule kind specified in
schedule clause

Use run-sched-var schedule kind

No

Yes

No

Yes

FIGURE 2.1: Determining the schedule for a Worksharing Loop

64 OpenMP API – Version 4.5 November 2015

2.7.2 sections Construct1

Summary2

The sections construct is a non-iterative worksharing construct that contains a set of structured3
blocks that are to be distributed among and executed by the threads in a team. Each structured4
block is executed once by one of the threads in the team in the context of its implicit task.5

Syntax6

C / C++

The syntax of the sections construct is as follows:7

#pragma omp sections [clause[[,] clause] ...] new-line
{
[#pragma omp section new-line]

structured-block
[#pragma omp section new-line

structured-block]
...
}

where clause is one of the following:8

private(list)9

firstprivate(list)10

lastprivate(list)11

reduction(reduction-identifier : list)12

nowait13

C / C++

CHAPTER 2. DIRECTIVES 65

Fortran

The syntax of the sections construct is as follows:1

!$omp sections [clause[[,] clause] ...]
[!$omp section]

structured-block
[!$omp section

structured-block]
...

!$omp end sections [nowait]

where clause is one of the following:2

private(list)3

firstprivate(list)4

lastprivate(list)5

reduction(reduction-identifier : list)6

Fortran

Binding7

The binding thread set for a sections region is the current team. A sections region binds to8
the innermost enclosing parallel region. Only the threads of the team executing the binding9
parallel region participate in the execution of the structured blocks and the implied barrier of10
the sections region if the barrier is not eliminated by a nowait clause.11

Description12

Each structured block in the sections construct is preceded by a section directive except13
possibly the first block, for which a preceding section directive is optional.14

The method of scheduling the structured blocks among the threads in the team is implementation15
defined.16

There is an implicit barrier at the end of a sections construct unless a nowait clause is17
specified.18

66 OpenMP API – Version 4.5 November 2015

Restrictions1

Restrictions to the sections construct are as follows:2

• Orphaned section directives are prohibited. That is, the section directives must appear3
within the sections construct and must not be encountered elsewhere in the sections4
region.5

• The code enclosed in a sections construct must be a structured block.6

• Only a single nowait clause can appear on a sections directive.7

C++
• A throw executed inside a sections region must cause execution to resume within the same8
section of the sections region, and the same thread that threw the exception must catch it.9

C++

Cross References10

• private, firstprivate, lastprivate, and reduction clauses, see Section 2.15.3 on11
page 188.12

2.7.3 single Construct13

Summary14

The single construct specifies that the associated structured block is executed by only one of the15
threads in the team (not necessarily the master thread), in the context of its implicit task. The other16
threads in the team, which do not execute the block, wait at an implicit barrier at the end of the17
single construct unless a nowait clause is specified.18

Syntax

C / C++
19

The syntax of the single construct is as follows:20

#pragma omp single [clause[[,] clause] ...] new-line
structured-block

CHAPTER 2. DIRECTIVES 67

where clause is one of the following:1

private(list)2

firstprivate(list)3

copyprivate(list)4

nowait5

C / C++
Fortran

The syntax of the single construct is as follows:6

!$omp single [clause[[,] clause] ...]
structured-block

!$omp end single [end_clause[[,] end_clause] ...]

where clause is one of the following:7

private(list)8

firstprivate(list)9

and end_clause is one of the following:10

copyprivate(list)11

nowait12

Fortran

Binding13

The binding thread set for a single region is the current team. A single region binds to the14
innermost enclosing parallel region. Only the threads of the team executing the binding15
parallel region participate in the execution of the structured block and the implied barrier of the16
single region if the barrier is not eliminated by a nowait clause.17

Description18

The method of choosing a thread to execute the structured block is implementation defined. There19
is an implicit barrier at the end of the single construct unless a nowait clause is specified.20

68 OpenMP API – Version 4.5 November 2015

Restrictions1

Restrictions to the single construct are as follows:2

• The copyprivate clause must not be used with the nowait clause.3

• At most one nowait clause can appear on a single construct.4

C++
• A throw executed inside a single region must cause execution to resume within the same5
single region, and the same thread that threw the exception must catch it.6

C++

Cross References7

• private and firstprivate clauses, see Section 2.15.3 on page 188.8

• copyprivate clause, see Section 2.15.4.2 on page 213.9

Fortran

2.7.4 workshare Construct10

Summary11

The workshare construct divides the execution of the enclosed structured block into separate12
units of work, and causes the threads of the team to share the work such that each unit is executed13
only once by one thread, in the context of its implicit task.14

Syntax15

The syntax of the workshare construct is as follows:16

!$omp workshare
structured-block

!$omp end workshare [nowait]

The enclosed structured block must consist of only the following:17

• array assignments18

• scalar assignments19

• FORALL statements20

CHAPTER 2. DIRECTIVES 69

Fortran (cont.)

• FORALL constructs1

• WHERE statements2

• WHERE constructs3

• atomic constructs4

• critical constructs5

• parallel constructs6

Statements contained in any enclosed critical construct are also subject to these restrictions.7
Statements in any enclosed parallel construct are not restricted.8

Binding9

The binding thread set for a workshare region is the current team. A workshare region binds10
to the innermost enclosing parallel region. Only the threads of the team executing the binding11
parallel region participate in the execution of the units of work and the implied barrier of the12
workshare region if the barrier is not eliminated by a nowait clause.13

Description14

There is an implicit barrier at the end of a workshare construct unless a nowait clause is15
specified.16

An implementation of the workshare construct must insert any synchronization that is required17
to maintain standard Fortran semantics. For example, the effects of one statement within the18
structured block must appear to occur before the execution of succeeding statements, and the19
evaluation of the right hand side of an assignment must appear to complete prior to the effects of20
assigning to the left hand side.21

The statements in the workshare construct are divided into units of work as follows:22

• For array expressions within each statement, including transformational array intrinsic functions23
that compute scalar values from arrays:24

– Evaluation of each element of the array expression, including any references to ELEMENTAL25
functions, is a unit of work.26

– Evaluation of transformational array intrinsic functions may be freely subdivided into any27
number of units of work.28

• For an array assignment statement, the assignment of each element is a unit of work.29

• For a scalar assignment statement, the assignment operation is a unit of work.30

70 OpenMP API – Version 4.5 November 2015

• For a WHERE statement or construct, the evaluation of the mask expression and the masked1
assignments are each a unit of work.2

• For a FORALL statement or construct, the evaluation of the mask expression, expressions3
occurring in the specification of the iteration space, and the masked assignments are each a unit4
of work5

• For an atomic construct, the atomic operation on the storage location designated as x is a unit6
of work.7

• For a critical construct, the construct is a single unit of work.8

• For a parallel construct, the construct is a unit of work with respect to the workshare9
construct. The statements contained in the parallel construct are executed by a new thread10
team.11

• If none of the rules above apply to a portion of a statement in the structured block, then that12
portion is a unit of work.13

The transformational array intrinsic functions are MATMUL, DOT_PRODUCT, SUM, PRODUCT,14
MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD, PACK, UNPACK, RESHAPE, TRANSPOSE,15
EOSHIFT, CSHIFT, MINLOC, and MAXLOC.16

It is unspecified how the units of work are assigned to the threads executing a workshare region.17

If an array expression in the block references the value, association status, or allocation status of18
private variables, the value of the expression is undefined, unless the same value would be19
computed by every thread.20

If an array assignment, a scalar assignment, a masked array assignment, or a FORALL assignment21
assigns to a private variable in the block, the result is unspecified.22

The workshare directive causes the sharing of work to occur only in the workshare construct,23
and not in the remainder of the workshare region.24

Restrictions25

The following restrictions apply to the workshare construct:26

• All array assignments, scalar assignments, and masked array assignments must be intrinsic27
assignments.28

• The construct must not contain any user defined function calls unless the function is29
ELEMENTAL.30

Fortran

CHAPTER 2. DIRECTIVES 71

2.8 SIMD Constructs1

2.8.1 simd Construct2

Summary3

The simd construct can be applied to a loop to indicate that the loop can be transformed into a4
SIMD loop (that is, multiple iterations of the loop can be executed concurrently using SIMD5
instructions).6

Syntax7

The syntax of the simd construct is as follows:8

C / C++

#pragma omp simd [clause[[,] clause] ...] new-line
for-loops

where clause is one of the following:9

safelen(length)10

simdlen(length)11

linear(list[: linear-step])12

aligned(list[: alignment])13

private(list)14

lastprivate(list)15

reduction(reduction-identifier : list)16

collapse(n)17

The simd directive places restrictions on the structure of the associated for-loops. Specifically, all18
associated for-loops must have canonical loop form (Section 2.6 on page 53).19

C / C++

72 OpenMP API – Version 4.5 November 2015

Fortran

!$omp simd [clause[[,] clause ...]
do-loops

[!$omp end simd]

where clause is one of the following:1

safelen(length)2

simdlen(length)3

linear(list[: linear-step])4

aligned(list[: alignment])5

private(list)6

lastprivate(list)7

reduction(reduction-identifier : list)8

collapse(n)9

If an end simd directive is not specified, an end simd directive is assumed at the end of the10
do-loops.11

Any associated do-loop must be a do-construct or an inner-shared-do-construct as defined by the12
Fortran standard. If an end simd directive follows a do-construct in which several loop statements13
share a DO termination statement, then the directive can only be specified for the outermost of these14
DO statements.15

Fortran

Binding16

A simd region binds to the current task region. The binding thread set of the simd region is the17
current team.18

CHAPTER 2. DIRECTIVES 73

Description1

The simd construct enables the execution of multiple iterations of the associated loops2
concurrently by means of SIMD instructions.3

The collapse clause may be used to specify how many loops are associated with the construct.4
The parameter of the collapse clause must be a constant positive integer expression. If no5
collapse clause is present, the only loop that is associated with the loop construct is the one that6
immediately follows the directive.7

If more than one loop is associated with the simd construct, then the iterations of all associated8
loops are collapsed into one larger iteration space that is then executed with SIMD instructions.9
The sequential execution of the iterations in all associated loops determines the order of the10
iterations in the collapsed iteration space.11

The iteration count for each associated loop is computed before entry to the outermost loop. If12
execution of any associated loop changes any of the values used to compute any of the iteration13
counts, then the behavior is unspecified.14

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is15
implementation defined.16

A SIMD loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop iterations,17
and the logical numbering denotes the sequence in which the iterations would be executed if the18
associated loop(s) were executed with no SIMD instructions. If the safelen clause is used then19
no two iterations executed concurrently with SIMD instructions can have a greater distance in the20
logical iteration space than its value. The parameter of the safelen clause must be a constant21
positive integer expression. If used, the simdlen clause specifies the preferred number of22
iterations to be executed concurrently. The parameter of the simdlen clause must be a constant23
positive integer. The number of iterations that are executed concurrently at any given time is24
implementation defined. Each concurrent iteration will be executed by a different SIMD lane. Each25
set of concurrent iterations is a SIMD chunk. Lexical forward dependencies in the iterations of the26
original loop must be preserved within each SIMD chunk.27

C / C++
The aligned clause declares that the object to which each list item points is aligned to the28
number of bytes expressed in the optional parameter of the aligned clause29

C / C++
Fortran

The aligned clause declares that the location of each list item is aligned to the number of bytes30
expressed in the optional parameter of the aligned clause.31

Fortran
The optional parameter of the aligned clause, alignment, must be a constant positive integer32
expression. If no optional parameter is specified, implementation-defined default alignments for33
SIMD instructions on the target platforms are assumed.34

74 OpenMP API – Version 4.5 November 2015

Restrictions1

• All loops associated with the construct must be perfectly nested; that is, there must be no2
intervening code nor any OpenMP directive between any two loops.3

• The associated loops must be structured blocks.4

• A program that branches into or out of a simd region is non-conforming.5

• Only one collapse clause can appear on a simd directive.6

• A list-item cannot appear in more than one aligned clause.7

• Only one safelen clause can appear on a simd directive.8

• Only one simdlen clause can appear on a simd directive.9

• If both simdlen and safelen clauses are specified, the value of the simdlen parameter10
must be less than or equal to the value of the safelen parameter.11

• A modifier may not be specified on a linear clause.12

• An ordered construct with the simd clause is the only OpenMP construct that can be13
encountered during execution of a simd region.14

C / C++

• The simd region cannot contain calls to the longjmp or setjmp functions.15

C / C++

C
• The type of list items appearing in the aligned clause must be array or pointer.16

C

C++
• The type of list items appearing in the aligned clause must be array, pointer, reference to17
array, or reference to pointer.18

• No exception can be raised in the simd region.19

C++

CHAPTER 2. DIRECTIVES 75

Fortran

• The do-loop iteration variable must be of type integer.1

• The do-loop cannot be a DO WHILE or a DO loop without loop control.2

• If a list item on the aligned clause has the ALLOCATABLE attribute, the allocation status must3
be allocated.4

• If a list item on the aligned clause has the POINTER attribute, the association status must be5
associated.6

• If the type of a list item on the aligned clause is either C_PTR or Cray pointer, the list item7
must be defined.8

• Fortran

Cross References9

• private, lastprivate, linear and reduction clauses, see Section 2.15.3 on page 188.10

2.8.2 declare simd Construct11

Summary12

The declare simd construct can be applied to a function (C, C++ and Fortran) or a subroutine13
(Fortran) to enable the creation of one or more versions that can process multiple arguments using14
SIMD instructions from a single invocation in a SIMD loop. The declare simd directive is a15
declarative directive. There may be multiple declare simd directives for a function (C, C++,16
Fortran) or subroutine (Fortran).17

Syntax18

The syntax of the declare simd construct is as follows:19

76 OpenMP API – Version 4.5 November 2015

C / C++

#pragma omp declare simd [clause[[,] clause] ...] new-line
[#pragma omp declare simd [clause[[,] clause] ...] new-line]
[...]

function definition or declaration

where clause is one of the following:1

simdlen(length)2

linear(linear-list[: linear-step])3

aligned(argument-list[: alignment])4

uniform(argument-list)5

inbranch6

notinbranch7

C / C++
Fortran

!$omp declare simd [(proc-name)] [clause[[,] clause] ...]

where clause is one of the following:8

simdlen(length)9

linear(linear-list[: linear-step])10

aligned(argument-list[: alignment])11

uniform(argument-list)12

inbranch13

notinbranch14

Fortran

CHAPTER 2. DIRECTIVES 77

Description1

C / C++

The use of a declare simd construct on a function enables the creation of SIMD versions of the2
associated function that can be used to process multiple arguments from a single invocation in a3
SIMD loop concurrently.4

The expressions appearing in the clauses of this directive are evaluated in the scope of the5
arguments of the function declaration or definition.6

C / C++
Fortran

The use of a declare simd construct enables the creation of SIMD versions of the specified7
subroutine or function that can be used to process multiple arguments from a single invocation in a8
SIMD loop concurrently.9

Fortran

If a declare simd directive contains multiple SIMD declarations, each declaration enables the10
creation of SIMD versions.11

If a SIMD version is created, the number of concurrent arguments for the function is determined by12
the simdlen clause. If the simdlen clause is used its value corresponds to the number of13
concurrent arguments of the function. The parameter of the simdlen clause must be a constant14
positive integer expression. Otherwise, the number of concurrent arguments for the function is15
implementation defined.16

C++
The special this pointer can be used as if was one of the arguments to the function in any of the17
linear, aligned, or uniform clauses.18

C++

The uniform clause declares one or more arguments to have an invariant value for all concurrent19
invocations of the function in the execution of a single SIMD loop.20

C / C++

The aligned clause declares that the object to which each list item points is aligned to the21
number of bytes expressed in the optional parameter of the aligned clause.22

C / C++

78 OpenMP API – Version 4.5 November 2015

Fortran

The aligned clause declares that the target of each list item is aligned to the number of bytes1
expressed in the optional parameter of the aligned clause.2

Fortran

The optional parameter of the aligned clause, alignment, must be a constant positive integer3
expression. If no optional parameter is specified, implementation-defined default alignments for4
SIMD instructions on the target platforms are assumed.5

The inbranch clause specifies that the SIMD version of the function will always be called from6
inside a conditional statement of a SIMD loop. The notinbranch clause specifies that the SIMD7
version of the function will never be called from inside a conditional statement of a SIMD loop. If8
neither clause is specified, then the SIMD version of the function may or may not be called from9
inside a conditional statement of a SIMD loop.10

Restrictions11

• Each argument can appear in at most one uniform or linear clause.12

• At most one simdlen clause can appear in a declare simd directive.13

• Either inbranch or notinbranch may be specified, but not both.14

• When a linear-step expression is specified in a linear clause it must be either a constant integer15
expression or an integer-typed parameter that is specified in a uniform clause on the directive.16

• The function or subroutine body must be a structured block.17

• The execution of the function or subroutine, when called from a SIMD loop, cannot result in the18
execution of an OpenMP construct except for an ordered construct with the simd clause.19

• The execution of the function or subroutine cannot have any side effects that would alter its20
execution for concurrent iterations of a SIMD chunk.21

• A program that branches into or out of the function is non-conforming.22

C / C++

• If the function has any declarations, then the declare simd construct for any declaration that23
has one must be equivalent to the one specified for the definition. Otherwise, the result is24
unspecified.25

• The function cannot contain calls to the longjmp or setjmp functions.26

C / C++

CHAPTER 2. DIRECTIVES 79

C
• The type of list items appearing in the aligned clause must be array or pointer.1

C

C++
• The function cannot contain any calls to throw.2

• The type of list items appearing in the aligned clause must be array, pointer, reference to3
array, or reference to pointer.4

C++

Fortran

• proc-name must not be a generic name, procedure pointer or entry name.5

• If proc-name is omitted, the declare simd directive must appear in the specification part of a6
subroutine subprogram or a function subprogram for which creation of the SIMD versions is7
enabled.8

• Any declare simd directive must appear in the specification part of a subroutine subprogram,9
function subprogram or interface body to which it applies.10

• If a declare simd directive is specified in an interface block for a procedure, it must match a11
declare simd directive in the definition of the procedure.12

• If a procedure is declared via a procedure declaration statement, the procedure proc-name should13
appear in the same specification.14

• If a declare simd directive is specified for a procedure name with explicit interface and a15
declare simd directive is also specified for the definition of the procedure then the two16
declare simd directives must match. Otherwise the result is unspecified.17

• Procedure pointers may not be used to access versions created by the declare simd directive.18

• The type of list items appearing in the aligned clause must be C_PTR or Cray pointer, or the19
list item must have the POINTER or ALLOCATABLE attribute.20

Fortran

80 OpenMP API – Version 4.5 November 2015

Cross References1

• reduction clause, see Section 2.15.3.6 on page 201.2

• linear clause, see Section 2.15.3.7 on page 207.3

2.8.3 Loop SIMD Construct4

Summary5

The loop SIMD construct specifies that the iterations of one or more associated loops will be6
distributed across threads that already exist in the team and that the iterations executed by each7
thread can also be executed concurrently using SIMD instructions. The loop SIMD construct is a8
composite construct.9

Syntax10

C / C++

#pragma omp for simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the for or simd directives with identical11
meanings and restrictions.12

C / C++
Fortran

!$omp do simd [clause[[,] clause] ...]
do-loops

[!$omp end do simd [nowait]]

where clause can be any of the clauses accepted by the simd or do directives, with identical13
meanings and restrictions.14

If an end do simd directive is not specified, an end do simd directive is assumed at the end of15
the do-loops.16

Fortran

CHAPTER 2. DIRECTIVES 81

Description1

The loop SIMD construct will first distribute the iterations of the associated loop(s) across the2
implicit tasks of the parallel region in a manner consistent with any clauses that apply to the loop3
construct. The resulting chunks of iterations will then be converted to a SIMD loop in a manner4
consistent with any clauses that apply to the simd construct. The effect of any clause that applies5
to both constructs is as if it were applied to both constructs separately except the collapse6
clause, which is applied once.7

Restrictions8

All restrictions to the loop construct and the simd construct apply to the loop SIMD construct. In9
addition, the following restrictions apply:10

• No ordered clause with a parameter can be specified.11

• A list item may appear in a linear or firstprivate clause but not both.12

Cross References13

• loop construct, see Section 2.7.1 on page 56.14

• simd construct, see Section 2.8.1 on page 72.15

• Data attribute clauses, see Section 2.15.3 on page 188.16

82 OpenMP API – Version 4.5 November 2015

2.9 Tasking Constructs1

2.9.1 task Construct2

Summary3

The task construct defines an explicit task.4

Syntax5

C / C++

The syntax of the task construct is as follows:6

#pragma omp task [clause[[,] clause] ...] new-line
structured-block

where clause is one of the following:7

if([task :] scalar-expression)8

final(scalar-expression)9

untied10

default(shared | none)11

mergeable12

private(list)13

firstprivate(list)14

shared(list)15

depend(dependence-type : list)16

priority(priority-value)17

C / C++

CHAPTER 2. DIRECTIVES 83

Fortran

The syntax of the task construct is as follows:1

!$omp task [clause[[,] clause] ...]
structured-block

!$omp end task

where clause is one of the following:2

if([task :] scalar-logical-expression)3

final(scalar-logical-expression)4

untied5

default(private | firstprivate | shared | none)6

mergeable7

private(list)8

firstprivate(list)9

shared(list)10

depend(dependence-type : list)11

priority(priority-value)12

Fortran

Binding13

The binding thread set of the task region is the current team. A task region binds to the14
innermost enclosing parallel region.15

84 OpenMP API – Version 4.5 November 2015

Description1

When a thread encounters a task construct, a task is generated from the code for the associated2
structured block. The data environment of the task is created according to the data-sharing attribute3
clauses on the task construct, per-data environment ICVs, and any defaults that apply.4

The encountering thread may immediately execute the task, or defer its execution. In the latter case,5
any thread in the team may be assigned the task. Completion of the task can be guaranteed using6
task synchronization constructs. If a task construct is encountered during execution of an outer7
task, the generated task region associated with this construct is not a part of the outer task region8
unless the generated task is an included task.9

When an if clause is present on a task construct, and the if clause expression evaluates to false,10
an undeferred task is generated, and the encountering thread must suspend the current task region,11
for which execution cannot be resumed until the generated task is completed. The use of a variable12
in an if clause expression of a task construct causes an implicit reference to the variable in all13
enclosing constructs.14

When a final clause is present on a task construct and the final clause expression evaluates15
to true, the generated task will be a final task. All task constructs encountered during execution of16
a final task will generate final and included tasks. Note that the use of a variable in a final clause17
expression of a task construct causes an implicit reference to the variable in all enclosing18
constructs.19

The if clause expression and the final clause expression are evaluated in the context outside of20
the task construct, and no ordering of those evaluations is specified.21

A thread that encounters a task scheduling point within the task region may temporarily suspend22
the task region. By default, a task is tied and its suspended task region can only be resumed by23
the thread that started its execution. If the untied clause is present on a task construct, any24
thread in the team can resume the task region after a suspension. The untied clause is ignored25
if a final clause is present on the same task construct and the final clause expression26
evaluates to true, or if a task is an included task.27

The task construct includes a task scheduling point in the task region of its generating task,28
immediately following the generation of the explicit task. Each explicit task region includes a29
task scheduling point at its point of completion.30

When the mergeable clause is present on a task construct, the generated task is a mergeable31
task.32

The priority clause is a hint for the priority of the generated task. The priority-value is a33
non-negative numerical scalar expression that provides a hint for task execution order. Among all34
tasks ready to be executed, higher priority tasks (those with a higher numerical value in the35
priority clause expression) are recommended to execute before lower priority ones. The default36
priority-value when no priority clause is specified is zero (the lowest priority). If a value is37
specified in the priority clause that is higher than the max-task-priority-var ICV then the38

CHAPTER 2. DIRECTIVES 85

implementation will use the value of that ICV. A program that relies on task execution order being1
determined by this priority-value may have unspecified behavior.2

Note – When storage is shared by an explicit task region, the programmer must ensure, by adding3
proper synchronization, that the storage does not reach the end of its lifetime before the explicit4
task region completes its execution.5

Restrictions6

Restrictions to the task construct are as follows:7

• A program that branches into or out of a task region is non-conforming.8

• A program must not depend on any ordering of the evaluations of the clauses of the task9
directive, or on any side effects of the evaluations of the clauses.10

• At most one if clause can appear on the directive.11

• At most one final clause can appear on the directive.12

• At most one priority clause can appear on the directive.13

C / C++

• A throw executed inside a task region must cause execution to resume within the same task14
region, and the same thread that threw the exception must catch it.15

C / C++
Fortran

• Unsynchronized use of Fortran I/O statements by multiple tasks on the same unit has unspecified16
behavior17

Fortran

Cross References18

• Task scheduling constraints, see Section 2.9.5 on page 94.19

• depend clause, see Section 2.13.9 on page 169.20

• if Clause, see Section 2.12 on page 147.21

86 OpenMP API – Version 4.5 November 2015

2.9.2 taskloop Construct1

Summary2

The taskloop construct specifies that the iterations of one or more associated loops will be3
executed in parallel using OpenMP tasks. The iterations are distributed across tasks created by the4
construct and scheduled to be executed.5

Syntax6

C / C++

The syntax of the taskloop construct is as follows:7

#pragma omp taskloop [clause[[,] clause] ...] new-line
for-loops

where clause is one of the following:8

if([taskloop :] scalar-expr)9

shared(list)10

private(list)11

firstprivate(list)12

lastprivate(list)13

default(shared | none)14

grainsize(grain-size)15

num_tasks(num-tasks)16

collapse(n)17

final(scalar-expr)18

priority(priority-value)19

untied20

mergeable21

nogroup22

The taskloop directive places restrictions on the structure of all associated for-loops.23
Specifically, all associated for-loops must have canonical loop form (see Section 2.6 on page 53).24

C / C++

CHAPTER 2. DIRECTIVES 87

Fortran

The syntax of the taskloop construct is as follows:1

!$omp taskloop [clause[[,] clause] ...]
do-loops

[!$omp end taskloop]

where clause is one of the following:2

if([taskloop :] scalar-logical-expr)3

shared(list)4

private(list)5

firstprivate(list)6

lastprivate(list)7

default(private | firstprivate | shared | none)8

grainsize(grain-size)9

num_tasks(num-tasks)10

collapse(n)11

final(scalar-logical-expr)12

priority(priority-value)13

untied14

mergeable15

nogroup16

If an end taskloop directive is not specified, an end taskloop directive is assumed at the end17
of the do-loops.18

Any associated do-loop must be do-construct or an inner-shared-do-construct as defined by the19
Fortran standard. If an end taskloop directive follows a do-construct in which several loop20
statements share a DO termination statement, then the directive can only be specified for the21
outermost of these DO statements.22

If any of the loop iteration variables would otherwise be shared, they are implicitly made private for23
the loop-iteration tasks created by the taskloop construct. Unless the loop iteration variables are24
specified in a lastprivate clause on the taskloop construct, their values after the loop are25
unspecified.26

Fortran

88 OpenMP API – Version 4.5 November 2015

Binding1

The binding thread set of the taskloop region is the current team. A taskloop region binds to2
the innermost enclosing parallel region.3

Description4

When a thread encounters a taskloop construct, the construct partitions the associated loops into5
tasks for parallel execution of the loops’ iterations. The data environment of the created tasks is6
created according to the data-sharing attribute clauses on the taskloop construct, per-data7
environment ICVs, and any defaults that apply. The order of the creation of the loop tasks is8
unspecified. Programs that rely on any execution order of the logical loop iterations are9
non-conforming.10

If a grainsize clause is present on the taskloop construct, the number of logical loop11
iterations assigned to each created task is greater than or equal to the minimum of the value of the12
grain-size expression and the number of logical loop iterations, but less than two times the value of13
the grain-size expression. The parameter of the grainsize clause must be a positive integer14
expression. If num_tasks is specified, the taskloop construct creates as many tasks as the15
minimum of the num-tasks expression and the number of logical loop iterations. Each task must16
have at least one logical loop iteration. The parameter of the num_tasks clause must evaluate to a17
positive integer. If neither a grainsize nor num_tasks clause is present, the number of loop18
tasks created and the number of logical loop iterations assigned to these tasks is implementation19
defined.20

The collapse clause may be used to specify how many loops are associated with the taskloop21
construct. The parameter of the collapse clause must be a constant positive integer expression.22
If no collapse clause is present, the only loop that is associated with the taskloop construct is23
the one that immediately follows the taskloop directive.24

If more than one loop is associated with the taskloop construct, then the iterations of all25
associated loops are collapsed into one larger iteration space that is then divided according to the26
grainsize and num_tasks clauses. The sequential execution of the iterations in all associated27
loops determines the order of the iterations in the collapsed iteration space.28

The iteration count for each associated loop is computed before entry to the outermost loop. If29
execution of any associated loop changes any of the values used to compute any of the iteration30
counts, then the behavior is unspecified.31

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is32
implementation defined.33

When an if clause is present on a taskloop construct, and if the if clause expression evaluates34
to false, undeferred tasks are generated. The use of a variable in an if clause expression of a35
taskloop construct causes an implicit reference to the variable in all enclosing constructs.36

CHAPTER 2. DIRECTIVES 89

When a final clause is present on a taskloop construct and the final clause expression1
evaluates to true, the generated tasks will be final tasks. The use of a variable in a final clause2
expression of a taskloop construct causes an implicit reference to the variable in all enclosing3
constructs.4

When a priority clause is present on a taskloop construct, the generated tasks have the5
priority-value as if it was specified for each individual task. If the priority clause is not6
specified, tasks generated by the taskloop construct have the default task priority (zero).7

If the untied clause is specified, all tasks created by the taskloop construct are untied tasks.8

When the mergeable clause is present on a taskloop construct, each generated task is a9
mergeable task.10

By default, the taskloop construct executes as if it was enclosed in a taskgroup construct11
with no statements or directives outside of the taskloop construct. Thus, the taskloop12
construct creates an implicit taskgroup region. If the nogroup clause is present, no implicit13
taskgroup region is created.14

C++
For firstprivate variables of class type, the number of invocations of copy constructors to15
perform the initialization is implementation-defined.16

C++

Note – When storage is shared by a taskloop region, the programmer must ensure, by adding17
proper synchronization, that the storage does not reach the end of its lifetime before the taskloop18
region and its descendant tasks complete their execution.19

Restrictions20

The restrictions of the taskloop construct are as follows:21

• A program that branches into or out of a taskloop region is non-conforming.22

• All loops associated with the taskloop construct must be perfectly nested; that is, there must23
be no intervening code nor any OpenMP directive between any two loops.24

• At most one grainsize clause can appear on a taskloop directive.25

• At most one num_tasks clause can appear on a taskloop directive.26

• The grainsize clause and num_tasks clause are mutually exclusive and may not appear on27
the same taskloop directive.28

• At most one collapse clause can appear on a taskloop directive.29

90 OpenMP API – Version 4.5 November 2015

• At most one if clause can appear on the directive.1

• At most one final clause can appear on the directive.2

• At most one priority clause can appear on the directive.3

Cross References4

• task construct, Section 2.9.1 on page 83.5

• taskgroup construct, Section 2.13.5 on page 153.6

• Data-sharing attribute clauses, Section 2.15.3 on page 188.7

• if Clause, see Section 2.12 on page 147.8

2.9.3 taskloop simd Construct9

Summary10

The taskloop simd construct specifies a loop that can be executed concurrently using SIMD11
instructions and that those iterations will also be executed in parallel using OpenMP tasks. The12
taskloop simd construct is a composite construct.13

Syntax14

C / C++

The syntax of the taskloop simd construct is as follows:15

#pragma omp taskloop simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the taskloop or simd directives with16
identical meanings and restrictions.17

C / C++

CHAPTER 2. DIRECTIVES 91

Fortran

The syntax of the taskloop simd construct is as follows:1

!$omp taskloop simd [clause[[,] clause] ...]
do-loops

[!$omp end taskloop simd]

where clause can be any of the clauses accepted by the taskloop or simd directives with2
identical meanings and restrictions.3

If an end taskloop simd directive is not specified, an end taskloop simd directive is4
assumed at the end of the do-loops.5

Fortran

Binding6

The binding thread set of the taskloop simd region is the current team. A taskloop simd7
region binds to the innermost enclosing parallel region.8

Description9

The taskloop simd construct will first distribute the iterations of the associated loop(s) across10
tasks in a manner consistent with any clauses that apply to the taskloop construct. The resulting11
tasks will then be converted to a SIMD loop in a manner consistent with any clauses that apply to12
the simd construct. The effect of any clause that applies to both constructs is as if it were applied13
to both constructs separately except the collapse clause, which is applied once.14

Restrictions15

• The restrictions for the taskloop and simd constructs apply.16

• No reduction clause can be specified.17

Cross References18

• taskloop construct, see Section 2.9.2 on page 87.19

• simd construct, see Section 2.8.1 on page 72.20

• Data-sharing attribute clauses, see Section 2.15.3 on page 188.21

92 OpenMP API – Version 4.5 November 2015

2.9.4 taskyield Construct1

Summary2

The taskyield construct specifies that the current task can be suspended in favor of execution of3
a different task. The taskyield construct is a stand-alone directive.4

Syntax5

C / C++

The syntax of the taskyield construct is as follows:6

#pragma omp taskyield new-line

C / C++
Fortran

The syntax of the taskyield construct is as follows:7

!$omp taskyield

Fortran

Binding8

A taskyield region binds to the current task region. The binding thread set of the taskyield9
region is the current team.10

Description11

The taskyield region includes an explicit task scheduling point in the current task region.12

Cross References13

• Task scheduling, see Section 2.9.5 on page 94.14

CHAPTER 2. DIRECTIVES 93

2.9.5 Task Scheduling1

Whenever a thread reaches a task scheduling point, the implementation may cause it to perform a2
task switch, beginning or resuming execution of a different task bound to the current team. Task3
scheduling points are implied at the following locations:4

• the point immediately following the generation of an explicit task;5

• after the point of completion of a task region;6

• in a taskyield region;7

• in a taskwait region;8

• at the end of a taskgroup region;9

• in an implicit and explicit barrier region;10

• the point immediately following the generation of a target region;11

• at the beginning and end of a target data region;12

• in a target update region;13

• in a target enter data region;14

• in a target exit data region;15

• in the omp_target_memcpy routine;16

• in the omp_target_memcpy_rect routine;17

When a thread encounters a task scheduling point it may do one of the following, subject to the18
Task Scheduling Constraints (below):19

• begin execution of a tied task bound to the current team20

• resume any suspended task region, bound to the current team, to which it is tied21

• begin execution of an untied task bound to the current team22

• resume any suspended untied task region bound to the current team.23

If more than one of the above choices is available, it is unspecified as to which will be chosen.24

Task Scheduling Constraints are as follows:25

1. An included task is executed immediately after generation of the task.26

2. Scheduling of new tied tasks is constrained by the set of task regions that are currently tied to the27
thread, and that are not suspended in a barrier region. If this set is empty, any new tied task28
may be scheduled. Otherwise, a new tied task may be scheduled only if it is a descendent task of29
every task in the set.30

3. A dependent task shall not be scheduled until its task dependences are fulfilled.31

94 OpenMP API – Version 4.5 November 2015

4. When an explicit task is generated by a construct containing an if clause for which the1
expression evaluated to false, and the previous constraints are already met, the task is executed2
immediately after generation of the task.3

A program relying on any other assumption about task scheduling is non-conforming.4

Note – Task scheduling points dynamically divide task regions into parts. Each part is executed5
uninterrupted from start to end. Different parts of the same task region are executed in the order in6
which they are encountered. In the absence of task synchronization constructs, the order in which a7
thread executes parts of different schedulable tasks is unspecified.8

A correct program must behave correctly and consistently with all conceivable scheduling9
sequences that are compatible with the rules above.10

For example, if threadprivate storage is accessed (explicitly in the source code or implicitly11
in calls to library routines) in one part of a task region, its value cannot be assumed to be preserved12
into the next part of the same task region if another schedulable task exists that modifies it.13

As another example, if a lock acquire and release happen in different parts of a task region, no14
attempt should be made to acquire the same lock in any part of another task that the executing15
thread may schedule. Otherwise, a deadlock is possible. A similar situation can occur when a16
critical region spans multiple parts of a task and another schedulable task contains a17
critical region with the same name.18

The use of threadprivate variables and the use of locks or critical sections in an explicit task with an19
if clause must take into account that when the if clause evaluates to false, the task is executed20
immediately, without regard to Task Scheduling Constraint 2.21

2.10 Device Constructs22

2.10.1 target data Construct23

Summary24

Map variables to a device data environment for the extent of the region.25

CHAPTER 2. DIRECTIVES 95

Syntax1

C / C++

The syntax of the target data construct is as follows:2

#pragma omp target data clause[[[,] clause] ...] new-line
structured-block

where clause is one of the following:3

if([target data :] scalar-expression)4

device(integer-expression)5

map([[map-type-modifier[,]] map-type:] list)6

use_device_ptr(list)7

C / C++

Fortran

The syntax of the target data construct is as follows:8

!$omp target data clause[[[,] clause] ...]
structured-block

!$omp end target data

where clause is one of the following:9

if([target data :] scalar-logical-expression)10

device(scalar-integer-expression)11

map([[map-type-modifier[,]] map-type:] list)12

use_device_ptr(list)13

The end target data directive denotes the end of the target data construct.14

Fortran

Binding15

The binding task set for a target data region is the generating task. The target data region16
binds to the region of the generating task.17

96 OpenMP API – Version 4.5 November 2015

Description1

When a target data construct is encountered, the encountering task executes the region. If2
there is no device clause, the default device is determined by the default-device-var ICV.3
Variables are mapped for the extent of the region, according to any data-mapping clauses, from the4
data environment of the encountering task to the device data environment. When an if clause is5
present and the if clause expression evaluates to false, the device is the host.6

List items that appear in a use_device_ptr clause are converted into device pointers to the7
corresponding list item in the device data environment.8

Restrictions9

• A program must not depend on any ordering of the evaluations of the clauses of the10
target data directive, or on any side effects of the evaluations of the clauses.11

• At most one device clause can appear on the directive. The device expression must evaluate12
to a non-negative integer value less than the value of omp_get_num_devices().13

• At most one if clause can appear on the directive.14

• A map-type in a map clause must be to, from, tofrom or alloc.15

• At least one map clause must appear on the directive.16

• A list item in a use_device_ptr clause must have a corresponding list item in the device17
data environment.18

• References in the construct to a list item that appears in a use_device_ptr clause must be to19
the address of the list item.20

Cross References21

• default-device-var, see Section 2.3 on page 36.22

• if Clause, see Section 2.12 on page 147.23

• map clause, see Section 2.15.5.1 on page 216.24

2.10.2 target enter data Construct25

Summary26

The target enter data directive specifies that variables are mapped to a device data27
environment. The target enter data directive is a stand-alone directive.28

CHAPTER 2. DIRECTIVES 97

Syntax1

C / C++

The syntax of the target enter data construct is as follows:2

#pragma omp target enter data [clause[[,] clause]...] new-line

where clause is one of the following:3

if([target enter data :] scalar-expression)4

device(integer-expression)5

map([[map-type-modifier[,]] map-type :] list)6

depend(dependence-type : list)7

nowait8

C / C++
Fortran

The syntax of the target enter data is as follows:9

!$omp target enter data [clause[[,] clause]...]

where clause is one of the following:10

if([target enter data :] scalar-logical-expression)11

device(scalar-integer-expression)12

map([[map-type-modifier[,]] map-type :] list)13

depend(dependence-type : list)14

nowait15

Fortran

Binding16

The binding task set for a target enter data region is the generating task, which is the target17
task generated by the target enter data construct. The target enter data region binds18
to the corresponding target task region.19

98 OpenMP API – Version 4.5 November 2015

Description1

When a target enter data construct is encountered, the list items are mapped to the device2
data environment according to the map clause semantics.3

The target enter data construct is a task generating construct. The generated task is a target4
task. The generated task region encloses the target enter data region.5

All clauses are evaluated when the target enter data construct is encountered. The data6
environment of the target task is created according to the data-sharing attribute clauses on the7
target enter data construct, per-data environment ICVs, and any default data-sharing8
attribute rules that apply to the target enter data construct. A variable that is mapped in the9
target enter data construct has a default data-sharing attribute of shared in the data10
environment of the target task.11

Assignment operations associated with mapping a variable (see Section 2.15.5.1 on page 216)12
occur when the target task executes.13

If the nowait clause is present, execution of the target task may be deferred. If the nowait14
clause is not present, the target task is an included task.15

If a depend clause is present, it is associated with the target task.16

If there is no device clause, the default device is determined by the default-device-var ICV.17

When an if clause is present and the if clause expression evaluates to false, the device is the host.18

Restrictions19

• A program must not depend on any ordering of the evaluations of the clauses of the20
target enter data directive, or on any side effects of the evaluations of the clauses.21

• At least one map clause must appear on the directive.22

• At most one device clause can appear on the directive. The device expression must evaluate23
to a non-negative integer value.24

• At most one if clause can appear on the directive.25

• A map-type must be specified in all map clauses and must be either to or alloc.26

Cross References27

• default-device-var, see Section 2.3.1 on page 36.28

• task, see Section 2.9.1 on page 83.29

• task scheduling constraints, see Section 2.9.5 on page 94.30

• target data, see Section 2.10.1 on page 95.31

CHAPTER 2. DIRECTIVES 99

• target exit data, see Section 2.10.3 on page 100.1

• if Clause, see Section 2.12 on page 147.2

• map clause, see Section 2.15.5.1 on page 216.3

2.10.3 target exit data Construct4

Summary5

The target exit data directive specifies that list items are unmapped from a device data6
environment. The target exit data directive is a stand-alone directive.7

Syntax8

C / C++

The syntax of the target exit data construct is as follows:9

#pragma omp target exit data [clause[[,] clause]...] new-line

where clause is one of the following:10

if([target exit data :] scalar-expression)11

device(integer-expression)12

map([[map-type-modifier[,]] map-type :] list)13

depend(dependence-type : list)14

nowait15

C / C++

100 OpenMP API – Version 4.5 November 2015

Fortran

The syntax of the target exit data is as follows:1

!$omp target exit data [clause[[,] clause]...]

where clause is one of the following:2

if([target exit data :] scalar-logical-expression)3

device(scalar-integer-expression)4

map([[map-type-modifier[,]] map-type :] list)5

depend(dependence-type : list)6

nowait7

Fortran

Binding8

The binding task set for a target exit data region is the generating task, which is the target9
task generated by the target exit data construct. The target exit data region binds to10
the corresponding target task region.11

Description12

When a target exit data construct is encountered, the list items in the map clauses are13
unmapped from the device data environment according to the map clause semantics.14

The target exit data construct is a task generating construct. The generated task is a target15
task. The generated task region encloses the target exit data region.16

All clauses are evaluated when the target exit data construct is encountered. The data17
environment of the target task is created according to the data-sharing attribute clauses on the18
target exit data construct, per-data environment ICVs, and any default data-sharing attribute19
rules that apply to the target exit data construct. A variable that is mapped in the20
target exit data construct has a default data-sharing attribute of shared in the data21
environment of the target task.22

Assignment operations associated with mapping a variable (see Section 2.15.5.1 on page 216)23
occur when the target task executes.24

If the nowait clause is present, execution of the target task may be deferred. If the nowait25
clause is not present, the target task is an included task.26

If a depend clause is present, it is associated with the target task.27

CHAPTER 2. DIRECTIVES 101

If there is no device clause, the default device is determined by the default-device-var ICV.1

When an if clause is present and the if clause expression evaluates to false, the device is the host.2

Restrictions3

• A program must not depend on any ordering of the evaluations of the clauses of the4
target exit data directive, or on any side effects of the evaluations of the clauses.5

• At least one map clause must appear on the directive.6

• At most one device clause can appear on the directive. The device expression must evaluate7
to a non-negative integer value.8

• At most one if clause can appear on the directive.9

• A map-type must be specified in all map clauses and must be either from, release, or10
delete.11

Cross References12

• default-device-var, see Section 2.3.1 on page 36.13

• task, see Section 2.9.1 on page 83.14

• task scheduling constraints, see Section 2.9.5 on page 94.15

• target data, see Section 2.10.1 on page 95.16

• target enter data, see Section 2.10.2 on page 97.17

• if Clause, see Section 2.12 on page 147.18

• map clause, see Section 2.15.5.1 on page 216.19

102 OpenMP API – Version 4.5 November 2015

2.10.4 target Construct1

Summary2

Map variables to a device data environment and execute the construct on that device.3

Syntax4

C / C++

The syntax of the target construct is as follows:5

#pragma omp target [clause[[,] clause] ...] new-line
structured-block

where clause is one of the following:6

if([target :] scalar-expression)7

device(integer-expression)8

private(list)9

firstprivate(list)10

map([[map-type-modifier[,]] map-type:] list)11

is_device_ptr(list)12

defaultmap(tofrom:scalar)13

nowait14

depend(dependence-type: list)15

C / C++

CHAPTER 2. DIRECTIVES 103

Fortran

The syntax of the target construct is as follows:1

!$omp target [clause[[,] clause] ...]
structured-block

!$omp end target

where clause is one of the following:2

if([target :] scalar-logical-expression)3

device(scalar-integer-expression)4

private(list)5

firstprivate(list)6

map([[map-type-modifier[,]] map-type:] list)7

is_device_ptr(list)8

defaultmap(tofrom:scalar)9

nowait10

depend (dependence-type : list)11

The end target directive denotes the end of the target construct12

Fortran

Binding13

The binding task set for a target region is the generating task, which is the target task generated14
by the target construct. The target region binds to the corresponding target task region.15

104 OpenMP API – Version 4.5 November 2015

Description1

The target construct provides a superset of the functionality provided by the target data2
directive, except for the use_device_ptr clause.3

The functionality added to the target directive is the inclusion of an executable region to be4
executed by a device. That is, the target directive is an executable directive.5

The target construct is a task generating construct. The generated task is a target task. The6
generated task region encloses the target region.7

All clauses are evaluated when the target construct is encountered. The data environment of the8
target task is created according to the data-sharing attribute clauses on the target construct,9
per-data environment ICVs, and any default data-sharing attribute rules that apply to the target10
construct. A variable that is mapped in the target construct has a default data-sharing attribute11
of shared in the data environment of the target task.12

Assignment operations associated with mapping a variable (see Section 2.15.5.1 on page 216)13
occur when the target task executes.14

If the nowait clause is present, execution of the target task may be deferred. If the nowait15
clause is not present, the target task is an included task.16

If a depend clause is present, it is associated with the target task.17

When an if clause is present and the if clause expression evaluates to false, the target region18
is executed by the host device in the host data environment.19

The is_device_ptr clause is used to indicate that a list item is a device pointer already in the20
device data environment and that it should be used directly. Support for device pointers created21
outside of OpenMP, specifically outside of the omp_target_alloc routine and the22
use_device_ptr clause, is implementation defined.23

C / C++

If an array section is a list item in a map clause and the array section is derived from a variable for24
which the type is pointer then the data-sharing attribute for that variable in the construct is25
firstprivate. Prior to the execution of the construct, the private variable is initialized with the26
address of the storage location of the corresponding array section in the device data environment.27

If a zero-length array section is a list item in a map clause, and the array section is derived from a28
variable for the which the type is pointer then that variable is initialized with the address of the29
corresponding storage location in the device data environment. If the corresponding storage30
location is not present in the device data environment then the private variable is initialized to31
NULL.32

C / C++

CHAPTER 2. DIRECTIVES 105

Restrictions1

• If a target, target update, target data, target enter data, or2
target exit data construct is encountered during execution of a target region, the3
behavior is unspecified.4

• The result of an omp_set_default_device, omp_get_default_device, or5
omp_get_num_devices routine called within a target region is unspecified.6

• The effect of an access to a threadprivate variable in a target region is unspecified.7

• If a list item in a map clause is a structure element, any other element of that structure that is8
referenced in the target construct must also appear as a list item in a map clause.9

• A variable referenced in a target region but not the target construct that is not declared in10
the target region must appear in a declare target directive.11

• At most one defaultmap clause can appear on the directive.12

• A map-type in a map clause must be to, from, tofrom or alloc.13

• A list item that appears in an is_device_ptr clause must be a valid device pointer in the14
device data environment.15

C
• A list item that appears in an is_device_ptr clause must have a type of pointer or array.16

C

C++
• A list item that appears in an is_device_ptr clause must have a type of pointer, array,17
reference to pointer or reference to array.18

• A throw executed inside a target region must cause execution to resume within the same19
target region, and the same thread that threw the exception must catch it.20

C++

Fortran

• A list item that appears in an is_device_ptr clause must be a dummy argument.21

• If a list item in a map clause is an array section, and the array section is derived from a variable22
with a POINTER or ALLOCATABLE attribute then the behavior is unspecified if the23
corresponding list item’s variable is modified in the region.24

Fortran

106 OpenMP API – Version 4.5 November 2015

Cross References1

• default-device-var, see Section 2.3 on page 36.2

• task construct, see Section 2.9.1 on page 83.3

• task scheduling constraints, see Section 2.9.5 on page 944

• target data construct, see Section 2.10.1 on page 95.5

• if Clause, see Section 2.12 on page 147.6

• private and firstprivate clauses, see Section 2.15.3 on page 188.7

• Data-mapping Attribute Rules and Clauses, see Section 2.15.5 on page 215.8

2.10.5 target update Construct9

Summary10

The target update directive makes the corresponding list items in the device data environment11
consistent with their original list items, according to the specified motion clauses. The12
target update construct is a stand-alone directive.13

Syntax14

C / C++

The syntax of the target update construct is as follows:15

#pragma omp target update clause[[[,] clause] ...] new-line

where clause is either motion-clause or one of the following:16

if([target update :] scalar-expression)17

device(integer-expression)18

nowait19

depend (dependence-type : list)20

and motion-clause is one of the following:21

to(list)22

from(list)23

C / C++

CHAPTER 2. DIRECTIVES 107

Fortran

The syntax of the target update construct is as follows:1

!$omp target update clause[[[,] clause] ...]

where clause is either motion-clause or one of the following:2

if([target update :] scalar-logical-expression)3

device(scalar-integer-expression)4

nowait5

depend (dependence-type : list)6

and motion-clause is one of the following:7

to(list)8

from(list)9

Fortran

Binding10

The binding task set for a target update region is the generating task, which is the target task11
generated by the target update construct. The target update region binds to the12
corresponding target task region.13

Description14

For each list item in a to or from clause there is a corresponding list item and an original list item.15
If the corresponding list item is not present in the device data environment then no assignment16
occurs to or from the original list item. Otherwise, each corresponding list item in the device data17
environment has an original list item in the current task’s data environment.18

For each list item in a from clause the value of the corresponding list item is assigned to the19
original list item.20

For each list item in a to clause the value of the original list item is assigned to the corresponding21
list item.22

The list items that appear in the to or from clauses may include array sections.23

The target update construct is a task generating construct. The generated task is a target task.24
The generated task region encloses the target update region.25

108 OpenMP API – Version 4.5 November 2015

All clauses are evaluated when the target update construct is encountered. The data1
environment of the target task is created according to the data-sharing attribute clauses on the2
target update construct, per-data environment ICVs, and any default data-sharing attribute3
rules that apply to the target update construct. A variable that is mapped in the4
target update construct has a default data-sharing attribute of shared in the data environment5
of the target task.6

Assignment operations associated with mapping a variable (see Section 2.15.5.1 on page 216)7
occur when the target task executes.8

If the nowait clause is present, execution of the target task may be deferred. If the nowait9
clause is not present, the target task is an included task.10

If a depend clause is present, it is associated with the target task.11

The device is specified in the device clause. If there is no device clause, the device is12
determined by the default-device-var ICV. When an if clause is present and the if clause13
expression evaluates to false then no assignments occur.14

Restrictions15

• A program must not depend on any ordering of the evaluations of the clauses of the16
target update directive, or on any side effects of the evaluations of the clauses.17

• At least one motion-clause must be specified.18

• If a list item is an array section it must specify contiguous storage.19

• A list item can only appear in a to or from clause, but not both.20

• A list item in a to or from clause must have a mappable type.21

• At most one device clause can appear on the directive. The device expression must evaluate22
to a non-negative integer value less than the value of omp_get_num_devices().23

• At most one if clause can appear on the directive.24

Cross References25

• default-device-var, see Section 2.3 on page 36.26

• Array sections, Section 2.4 on page 4427

• task construct, see Section 2.9.1 on page 83.28

• task scheduling constraints, see Section 2.9.5 on page 9429

• target data, see Section 2.10.1 on page 95.30

• if Clause, see Section 2.12 on page 147.31

CHAPTER 2. DIRECTIVES 109

2.10.6 declare target Directive1

Summary2

The declare target directive specifies that variables, functions (C, C++ and Fortran), and3
subroutines (Fortran) are mapped to a device. The declare target directive is a declarative4
directive.5

Syntax6

C / C++

The syntax of the declare target directive takes either of the following forms:7

#pragma omp declare target new-line
declaration-definition-seq
#pragma omp end declare target new-line

or8

#pragma omp declare target (extended-list) new-line

or9

#pragma omp declare target clause[[,] clause ...] new-line

where clause is one of the following:10

to(extended-list)11

link(list)12

C / C++

110 OpenMP API – Version 4.5 November 2015

Fortran

The syntax of the declare target directive is as follows:1

!$omp declare target (extended-list)

or2

!$omp declare target [clause[[,] clause] ...]

where clause is one of the following:3

to(extended-list)4

link(list)5

Fortran

Description6

The declare target directive ensures that procedures and global variables can be executed or7
accessed on a device. Variables are mapped for all device executions, or for specific device8
executions through a link clause.9

If an extended-list is present with no clause then the to clause is assumed.10

If a list item of a to clause is a function (C, C++, Fortran) or subroutine (Fortran) then a11
device-specific version of the routine is created that can be called from a target region.12

If a list item of a to clause is a variable then the original variable is mapped to a corresponding13
variable in the device data environment of all devices as if it had appeared in a map clause with the14
map-type to on the implicit target data construct for each device. The list item is never15
removed from those device data environments as if its reference count is initialized to positive16
infinity.17

The list items of a link clause are not mapped by the declare target directive. Instead, their18
mapping is deferred until they are mapped by target data or target constructs. They are19
mapped only for such regions.20

CHAPTER 2. DIRECTIVES 111

C / C++

The form of the declare target directive that has no clauses and requires a matching1
end declare target directive defines an implicit extended-list to an implicit to clause. The2
implicit extended-list consists of the variable names of any variable declarations at file or3
namespace scope that appear between the two directives and of the function names of any function4
declarations at file, namespace or class scope that appear between the two directives.5

C / C++
Fortran

If a declare target does not have any clauses then an implicit extended-list to an implicit to6
clause of one item is formed from the name of the enclosing subroutine subprogram, function7
subprogram or interface body to which it applies.8

Fortran

Restrictions9

• A threadprivate variable cannot appear in a declare target directive.10

• A variable declared in a declare target directive must have a mappable type.11

• The same list item must not appear multiple times in clauses on the same directive.12

• The same list item must not appear in both a to clause on one declare target directive and13
a link clause on another declare target directive.14

C / C++

• All declarations and definitions for a function must have a declare target directive if one is15
specified for any of them. Otherwise, the result is unspecified.16

• The declaration-definition-seq defined by a declare target directive and an17
end declare target directive must not contain any declare target directives.18

C / C++
C++

• The function names of overloaded functions or template functions may only be specified within19
an implicit extended-list.20

C++

112 OpenMP API – Version 4.5 November 2015

Fortran

• If a list item is a procedure name, it must not be a generic name, procedure pointer or entry name.1

• Any declare target directive with clauses must appear in a specification part of a2
subroutine subprogram, function subprogram, program or module.3

• Any declare target directive without clauses must appear in a specification part of a4
subroutine subprogram, function subprogram or interface body to which it applies.5

• If a declare target directive is specified in an interface block for a procedure, it must match6
a declare target directive in the definition of the procedure.7

• If an external procedure is a type-bound procedure of a derived type and a declare target8
directive is specified in the definition of the external procedure, such a directive must appear in9
the interface block that is accessible to the derived type definition.10

• If any procedure is declared via a procedure declaration statement that is not in the type-bound11
procedure part of a derived-type definition, any declare target with the procedure name12
must appear in the same specification part.13

• A variable that is part of another variable (as an array or structure element) cannot appear in a14
declare target directive.15

• The declare target directive must appear in the declaration section of a scoping unit in16
which the common block or variable is declared. Although variables in common blocks can be17
accessed by use association or host association, common block names cannot. This means that a18
common block name specified in a declare target directive must be declared to be a19
common block in the same scoping unit in which the declare target directive appears.20

• If a declare target directive specifying a common block name appears in one program unit,21
then such a directive must also appear in every other program unit that contains a COMMON22
statement specifying the same name. It must appear after the last such COMMON statement in the23
program unit.24

• If a list item is declared with the BIND attribute, the corresponding C entities must also be25
specified in a declare target directive in the C program.26

• A blank common block cannot appear in a declare target directive.27

• A variable can only appear in a declare target directive in the scope in which it is declared.28
It must not be an element of a common block or appear in an EQUIVALENCE statement.29

• A variable that appears in a declare target directive must be declared in the Fortran scope30
of a module or have the SAVE attribute, either explicitly or implicitly.31

Fortran

CHAPTER 2. DIRECTIVES 113

2.10.7 teams Construct1

Summary2

The teams construct creates a league of thread teams and the master thread of each team executes3
the region.4

Syntax5

C / C++

The syntax of the teams construct is as follows:6

#pragma omp teams [clause[[,] clause] ...] new-line
structured-block

where clause is one of the following:7

num_teams(integer-expression)8

thread_limit(integer-expression)9

default(shared | none)10

private(list)11

firstprivate(list)12

shared(list)13

reduction(reduction-identifier : list)14

C / C++

114 OpenMP API – Version 4.5 November 2015

Fortran

The syntax of the teams construct is as follows:1

!$omp teams [clause[[,] clause] ...]
structured-block

!$omp end teams

where clause is one of the following:2

num_teams(scalar-integer-expression)3

thread_limit(scalar-integer-expression)4

default(shared | firstprivate | private | none)5

private(list)6

firstprivate(list)7

shared(list)8

reduction(reduction-identifier : list)9

The end teams directive denotes the end of the teams construct.10

Fortran

Binding11

The binding thread set for a teams region is the encountering thread, which is the initial thread of12
the target region.13

Description14

When a thread encounters a teams construct, a league of thread teams is created and the master15
thread of each thread team executes the teams region.16

The number of teams created is implementation defined, but is less than or equal to the value17
specified in the num_teams clause. A thread may obtain the number of teams by a call to the18
omp_get_num_teams routine.19

The maximum number of threads participating in the contention group that each team initiates is20
implementation defined, but is less than or equal to the value specified in the thread_limit21
clause.22

On a combined or composite construct that includes target and teams constructs, the23
expressions in num_teams and thread_limit clauses are evaluated on the host device on24
entry to the target construct.25

CHAPTER 2. DIRECTIVES 115

Once the teams are created, the number of teams remains constant for the duration of the teams1
region.2

Within a teams region, team numbers uniquely identify each team. Team numbers are consecutive3
whole numbers ranging from zero to one less than the number of teams. A thread may obtain its4
own team number by a call to the omp_get_team_num library routine.5

After the teams have completed execution of the teams region, the encountering thread resumes6
execution of the enclosing target region.7

There is no implicit barrier at the end of a teams construct.8

Restrictions9

Restrictions to the teams construct are as follows:10

• A program that branches into or out of a teams region is non-conforming.11

• A program must not depend on any ordering of the evaluations of the clauses of the teams12
directive, or on any side effects of the evaluation of the clauses.13

• At most one thread_limit clause can appear on the directive. The thread_limit14
expression must evaluate to a positive integer value.15

• At most one num_teams clause can appear on the directive. The num_teams expression must16
evaluate to a positive integer value.17

• If specified, a teams construct must be contained within a target construct. That target18
construct must contain no statements, declarations or directives outside of the teams construct.19

• distribute, distribute simd, distribute parallel loop, distribute parallel loop SIMD,20
and parallel regions, including any parallel regions arising from combined constructs,21
are the only OpenMP regions that may be strictly nested inside the teams region.22

Cross References23

• default, shared, private, firstprivate, and reduction clauses, see24
Section 2.15.3 on page 188.25

• omp_get_num_teams routine, see Section 3.2.32 on page 264.26

• omp_get_team_num routine, see Section 3.2.33 on page 266.27

116 OpenMP API – Version 4.5 November 2015

2.10.8 distribute Construct1

Summary2

The distribute construct specifies that the iterations of one or more loops will be executed by3
the thread teams in the context of their implicit tasks. The iterations are distributed across the4
master threads of all teams that execute the teams region to which the distribute region binds.5

Syntax6

C / C++

The syntax of the distribute construct is as follows:7

#pragma omp distribute [clause[[,] clause] ...] new-line
for-loops

Where clause is one of the following:8

private(list)9

firstprivate(list)10

lastprivate(list)11

collapse(n)12

dist_schedule(kind[, chunk_size])13

All associated for-loops must have the canonical form described in Section 2.6 on page 53.14

C / C++

CHAPTER 2. DIRECTIVES 117

Fortran

The syntax of the distribute construct is as follows:1

!$omp distribute [clause[[,] clause] ...]
do-loops

[!$omp end distribute]

Where clause is one of the following:2

private(list)3

firstprivate(list)4

lastprivate(list)5

collapse(n)6

dist_schedule(kind[, chunk_size])7

If an end distribute directive is not specified, an end distribute directive is assumed at8
the end of the do-loops.9

Any associated do-loop must be a do-construct or an inner-shared-do-construct as defined by the10
Fortran standard. If an end distribute directive follows a do-construct in which several loop11
statements share a DO termination statement, then the directive can only be specified for the12
outermost of these DO statements.13

Fortran

Binding14

The binding thread set for a distribute region is the set of master threads executing an15
enclosing teams region. A distribute region binds to this teams region. Only the threads16
executing the binding teams region participate in the execution of the loop iterations.17

Description18

The distribute construct is associated with a loop nest consisting of one or more loops that19
follow the directive.20

There is no implicit barrier at the end of a distribute construct. To avoid data races the21
original list items modified due to lastprivate or linear clauses should not be accessed22
between the end of the distribute construct and the end of the teams region to which the23
distribute binds.24

The collapse clause may be used to specify how many loops are associated with the25
distribute construct. The parameter of the collapse clause must be a constant positive26

118 OpenMP API – Version 4.5 November 2015

integer expression. If no collapse clause is present, the only loop that is associated with the1
distribute construct is the one that immediately follows the distribute construct.2

If more than one loop is associated with the distribute construct, then the iteration of all3
associated loops are collapsed into one larger iteration space. The sequential execution of the4
iterations in all associated loops determines the order of the iterations in the collapsed iteration5
space.6

The iteration count for each associated loop is computed before entry to the outermost loop. If7
execution of any associated loop changes any of the values used to compute any of the iteration8
counts, then the behavior is unspecified.9

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is10
implementation defined.11

If dist_schedule is specified, kind must be static. If specified, iterations are divided into12
chunks of size chunk_size, chunks are assigned to the teams of the league in a round-robin fashion13
in the order of the team number. When no chunk_size is specified, the iteration space is divided into14
chunks that are approximately equal in size, and at most one chunk is distributed to each team of15
the league. The size of the chunks is unspecified in this case.16

When no dist_schedule clause is specified, the schedule is implementation defined.17

Restrictions18

Restrictions to the distribute construct are as follows:19

• The distribute construct inherits the restrictions of the loop construct.20

• The region associated with the distribute construct must be strictly nested inside a teams21
region.22

• A list item may appear in a firstprivate or lastprivate clause but not both.23

Cross References24

• loop construct, see Section 2.7.1 on page 56.25

• teams construct, see Section 2.10.7 on page 11426

2.10.9 distribute simd Construct27

Summary28

The distribute simd construct specifies a loop that will be distributed across the master29
threads of the teams region and executed concurrently using SIMD instructions. The30
distribute simd construct is a composite construct.31

CHAPTER 2. DIRECTIVES 119

Syntax1

The syntax of the distribute simd construct is as follows:2

C / C++

#pragma omp distribute simd [clause[[,] clause] ...] newline
for-loops

where clause can be any of the clauses accepted by the distribute or simd directives with3
identical meanings and restrictions.4

C / C++
Fortran

!$omp distribute simd [clause[[,] clause] ...]
do-loops

[!$omp end distribute simd]

where clause can be any of the clauses accepted by the distribute or simd directives with5
identical meanings and restrictions.6

If an end distribute simd directive is not specified, an end distribute simd directive is7
assumed at the end of the do-loops.8

Fortran

Description9

The distribute simd construct will first distribute the iterations of the associated loop(s)10
according to the semantics of the distribute construct and any clauses that apply to the11
distribute construct. The resulting chunks of iterations will then be converted to a SIMD loop in a12
manner consistent with any clauses that apply to the simd construct. The effect of any clause that13
applies to both constructs is as if it were applied to both constructs separately except the14
collapse clause, which is applied once.15

Restrictions16

• The restrictions for the distribute and simd constructs apply.17

• A list item may not appear in a linear clause, unless it is the loop iteration variable.18

120 OpenMP API – Version 4.5 November 2015

Cross References1

• simd construct, see Section 2.8.1 on page 72.2

• distribute construct, see Section 2.10.8 on page 117.3

• Data attribute clauses, see Section 2.15.3 on page 188.4

2.10.10 Distribute Parallel Loop Construct5

Summary6

The distribute parallel loop construct specifies a loop that can be executed in parallel by multiple7
threads that are members of multiple teams. The distribute parallel loop construct is a composite8
construct.9

Syntax10

The syntax of the distribute parallel loop construct is as follows:11

C / C++

#pragma omp distribute parallel for [clause[[,] clause] ...] newline
for-loops

where clause can be any of the clauses accepted by the distribute or parallel loop directives12
with identical meanings and restrictions.13

C / C++
Fortran

!$omp distribute parallel do [clause[[,] clause] ...]
do-loops

[!$omp end distribute parallel do]

where clause can be any of the clauses accepted by the distribute or parallel loop directives14
with identical meanings and restrictions.15

If an end distribute parallel do directive is not specified, an16
end distribute parallel do directive is assumed at the end of the do-loops.17

Fortran

CHAPTER 2. DIRECTIVES 121

Description1

The distribute parallel loop construct will first distribute the iterations of the associated loop(s) into2
chunks according to the semantics of the distribute construct and any clauses that apply to the3
distribute construct. Each of these chunks will form a loop. Each resulting loop will then be4
distributed across the threads within the teams region to which the distribute construct binds5
in a manner consistent with any clauses that apply to the parallel loop construct. The effect of any6
clause that applies to both constructs is as if it were applied to both constructs separately except the7
collapse clause, which is applied once.8

Restrictions9

• The restrictions for the distribute and parallel loop constructs apply.10

• No ordered clause can be specified.11

• No linear clause can be specified.12

Cross References13

• distribute construct, see Section 2.10.8 on page 117.14

• Parallel loop construct, see Section 2.11.1 on page 124.15

• Data attribute clauses, see Section 2.15.3 on page 188.16

2.10.11 Distribute Parallel Loop SIMD Construct17

Summary18

The distribute parallel loop SIMD construct specifies a loop that can be executed concurrently19
using SIMD instructions in parallel by multiple threads that are members of multiple teams. The20
distribute parallel loop SIMD construct is a composite construct.21

Syntax22

C / C++

The syntax of the distribute parallel loop SIMD construct is as follows:23

#pragma omp distribute parallel for simd [clause[[,] clause] ...] newline
for-loops

where clause can be any of the clauses accepted by the distribute or parallel loop SIMD24
directives with identical meanings and restrictions25

C / C++

122 OpenMP API – Version 4.5 November 2015

Fortran

The syntax of the distribute parallel loop SIMD construct is as follows:1

!$omp distribute parallel do simd [clause[[,] clause] ...]
do-loops

[!$omp end distribute parallel do simd]

where clause can be any of the clauses accepted by the distribute or parallel loop SIMD2
directives with identical meanings and restrictions.3

If an end distribute parallel do simd directive is not specified, an4
end distribute parallel do simd directive is assumed at the end of the do-loops.5

Fortran

Description6

The distribute parallel loop SIMD construct will first distribute the iterations of the associated7
loop(s) according to the semantics of the distribute construct and any clauses that apply to the8
distribute construct. The resulting loops will then be distributed across the threads contained9
within the teams region to which the distribute construct binds in a manner consistent with10
any clauses that apply to the parallel loop construct. The resulting chunks of iterations will then be11
converted to a SIMD loop in a manner consistent with any clauses that apply to the simd construct.12
The effect of any clause that applies to both constructs is as if it were applied to both constructs13
separately except the collapse clause, which is applied once.14

Restrictions15

• The restrictions for the distribute and parallel loop SIMD constructs apply.16

• No ordered clause can be specified.17

• A list item may not appear in a linear clause, unless it is the loop iteration variable.18

Cross References19

• distribute construct, see Section 2.10.8 on page 117.20

• Parallel loop SIMD construct, see Section 2.11.4 on page 128.21

• Data attribute clauses, see Section 2.15.3 on page 188.22

CHAPTER 2. DIRECTIVES 123

2.11 Combined Constructs1

Combined constructs are shortcuts for specifying one construct immediately nested inside another2
construct. The semantics of the combined constructs are identical to that of explicitly specifying3
the first construct containing one instance of the second construct and no other statements.4

Some combined constructs have clauses that are permitted on both constructs that were combined.5
Where specified, the effect is as if applying the clauses to one or both constructs. If not specified6
and applying the clause to one construct would result in different program behavior than applying7
the clause to the other construct then the program’s behavior is unspecified.8

2.11.1 Parallel Loop Construct9

Summary10

The parallel loop construct is a shortcut for specifying a parallel construct containing one loop11
constuct with one or more associated loops and no other statements.12

Syntax13

C / C++
The syntax of the parallel loop construct is as follows:14

#pragma omp parallel for [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the parallel or for directives, except the15
nowait clause, with identical meanings and restrictions.16

C / C++
Fortran

The syntax of the parallel loop construct is as follows:17

!$omp parallel do [clause[[,] clause] ...]
do-loops

[!$omp end parallel do]

where clause can be any of the clauses accepted by the parallel or do directives, with identical18
meanings and restrictions.19

If an end parallel do directive is not specified, an end parallel do directive is assumed at20
the end of the do-loops. nowait may not be specified on an end parallel do directive.21

Fortran

124 OpenMP API – Version 4.5 November 2015

Description1

The semantics are identical to explicitly specifying a parallel directive immediately followed2
by a loop directive.3

Restrictions4

• The restrictions for the parallel construct and the loop construct apply.5

Cross References6

• parallel construct, see Section 2.5 on page 46.7

• loop SIMD construct, see Section 2.8.3 on page 81.8

• Data attribute clauses, see Section 2.15.3 on page 188.9

2.11.2 parallel sections Construct10

Summary11

The parallel sections construct is a shortcut for specifying a parallel construct12
containing one sections construct and no other statements.13

Syntax14

C / C++

The syntax of the parallel sections construct is as follows:15

#pragma omp parallel sections [clause[[,] clause] ...] new-line
{
[#pragma omp section new-line]

structured-block
[#pragma omp section new-line

structured-block]
...
}

where clause can be any of the clauses accepted by the parallel or sections directives,16
except the nowait clause, with identical meanings and restrictions.17

C / C++

CHAPTER 2. DIRECTIVES 125

Fortran

The syntax of the parallel sections construct is as follows:1

!$omp parallel sections [clause[[,] clause] ...]
[!$omp section]

structured-block
[!$omp section

structured-block]
...

!$omp end parallel sections

where clause can be any of the clauses accepted by the parallel or sections directives, with2
identical meanings and restrictions.3

The last section ends at the end parallel sections directive. nowait cannot be specified4
on an end parallel sections directive.5

Fortran

Description6

C / C++

The semantics are identical to explicitly specifying a parallel directive immediately followed7
by a sections directive.8

C / C++
Fortran

The semantics are identical to explicitly specifying a parallel directive immediately followed9
by a sections directive, and an end sections directive immediately followed by an10
end parallel directive.11

Fortran

Restrictions12

The restrictions for the parallel construct and the sections construct apply.13

126 OpenMP API – Version 4.5 November 2015

Cross References1

• parallel construct, see Section 2.5 on page 46.2

• sections construct, see Section 2.7.2 on page 65.3

• Data attribute clauses, see Section 2.15.3 on page 188.4

Fortran

2.11.3 parallel workshare Construct5

Summary6

The parallel workshare construct is a shortcut for specifying a parallel construct7
containing one workshare construct and no other statements.8

Syntax9

The syntax of the parallel workshare construct is as follows:10

!$omp parallel workshare [clause[[,] clause] ...]
structured-block

!$omp end parallel workshare

where clause can be any of the clauses accepted by the parallel directive, with identical11
meanings and restrictions. nowait may not be specified on an end parallel workshare12
directive.13

Description14

The semantics are identical to explicitly specifying a parallel directive immediately followed15
by a workshare directive, and an end workshare directive immediately followed by an16
end parallel directive.17

Restrictions18

The restrictions for the parallel construct and the workshare construct apply.19

CHAPTER 2. DIRECTIVES 127

Cross References1

• parallel construct, see Section 2.5 on page 46.2

• workshare construct, see Section 2.7.4 on page 69.3

• Data attribute clauses, see Section 2.15.3 on page 188.4

Fortran

2.11.4 Parallel Loop SIMD Construct5

Summary6

The parallel loop SIMD construct is a shortcut for specifying a parallel construct containing7
one loop SIMD construct and no other statement.8

Syntax9

C / C++
The syntax of the parallel loop SIMD construct is as follows:10

#pragma omp parallel for simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the parallel or for simd directives, except11
the nowait clause, with identical meanings and restrictions.12

C / C++
Fortran

The syntax of the parallel loop SIMD construct is as follows:13

!$omp parallel do simd [clause[[,] clause] ...]
do-loops

[!$omp end parallel do simd]

where clause can be any of the clauses accepted by the parallel or do simd directives, with14
identical meanings and restrictions.15

If an end parallel do simd directive is not specified, an end parallel do simd directive16
is assumed at the end of the do-loops. nowait may not be specified on an17
end parallel do simd directive.18

Fortran

128 OpenMP API – Version 4.5 November 2015

Description1

The semantics of the parallel loop SIMD construct are identical to explicitly specifying a2
parallel directive immediately followed by a loop SIMD directive. The effect of any clause that3
applies to both constructs is as if it were applied to the loop SIMD construct and not to the4
parallel construct.5

Restrictions6

The restrictions for the parallel construct and the loop SIMD construct apply.7

Cross References8

• parallel construct, see Section 2.5 on page 46.9

• loop SIMD construct, see Section 2.8.3 on page 81.10

• Data attribute clauses, see Section 2.15.3 on page 188.11

2.11.5 target parallel Construct12

Summary13

The target parallel construct is a shortcut for specifying a target construct containing a14
parallel construct and no other statements.15

Syntax16

C / C++

The syntax of the target parallel construct is as follows:17

#pragma omp target parallel [clause[[,] clause] ...] new-line
structured-block

where clause can be any of the clauses accepted by the target or parallel directives, except18
for copyin, with identical meanings and restrictions.19

C / C++

CHAPTER 2. DIRECTIVES 129

Fortran

The syntax of the target parallel construct is as follows:1

!$omp target parallel [clause[[,] clause] ...]
structured-block

!$omp end target parallel

where clause can be any of the clauses accepted by the target or parallel directives, except2
for copyin, with identical meanings and restrictions.3

Fortran

Description4

The semantics are identical to explicitly specifying a target directive immediately followed by a5
parallel directive.6

Restrictions7

The restrictions for the target and parallel constructs apply except for the following explicit8
modifications:9

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the10
directive must include a directive-name-modifier.11

• At most one if clause without a directive-name-modifier can appear on the directive.12

• At most one if clause with the parallel directive-name-modifier can appear on the directive.13

• At most one if clause with the target directive-name-modifier can appear on the directive.14

Cross References15

• parallel construct, see Section 2.5 on page 46.16

• target construct, see Section 2.10.4 on page 103.17

• if Clause, see Section 2.12 on page 147.18

• Data attribute clauses, see Section 2.15.3 on page 188.19

130 OpenMP API – Version 4.5 November 2015

2.11.6 Target Parallel Loop Construct1

Summary2

The target parallel loop construct is a shortcut for specifying a target construct containing a3
parallel loop construct and no other statements.4

Syntax5

C / C++

The syntax of the target parallel loop construct is as follows:6

#pragma omp target parallel for [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the target or parallel for directives,7
except for copyin, with identical meanings and restrictions.8

C / C++
Fortran

The syntax of the target parallel loop construct is as follows:9

!$omp target parallel do [clause[[,] clause] ...]
do-loops

[!$omp end target parallel do]

where clause can be any of the clauses accepted by the target or parallel do directives,10
except for copyin, with identical meanings and restrictions.11

If an end target parallel do directive is not specified, an end target parallel do12
directive is assumed at the end of the do-loops.13

Fortran

Description14

The semantics are identical to explicitly specifying a target directive immediately followed by a15
parallel loop directive.16

CHAPTER 2. DIRECTIVES 131

Restrictions1

The restrictions for the target and parallel loop constructs apply except for the following explicit2
modifications:3

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the4
directive must include a directive-name-modifier.5

• At most one if clause without a directive-name-modifier can appear on the directive.6

• At most one if clause with the parallel directive-name-modifier can appear on the directive.7

• At most one if clause with the target directive-name-modifier can appear on the directive.8

Cross References9

• target construct, see Section 2.10.4 on page 103.10

• Parallel loop construct, see Section 2.11.1 on page 124.11

• if Clause, see Section 2.12 on page 147.12

• Data attribute clauses, see Section 2.15.3 on page 188.13

2.11.7 Target Parallel Loop SIMD Construct14

Summary15

The target parallel loop SIMD construct is a shortcut for specifying a target construct containing16
a parallel loop SIMD construct and no other statements.17

Syntax18

C / C++

The syntax of the target parallel loop SIMD construct is as follows:19

#pragma omp target parallel for simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the target or parallel for simd20
directives, except for copyin, with identical meanings and restrictions.21

C / C++

132 OpenMP API – Version 4.5 November 2015

Fortran

The syntax of the target parallel loop SIMD construct is as follows:1

!$omp target parallel do simd [clause[[,] clause] ...]
do-loops

[!$omp end target parallel do simd]

where clause can be any of the clauses accepted by the target or parallel do simd2
directives, except for copyin, with identical meanings and restrictions.3

If an end target parallel do simd directive is not specified, an4
end target parallel do simd directive is assumed at the end of the do-loops.5

Fortran

Description6

The semantics are identical to explicitly specifying a target directive immediately followed by a7
parallel loop SIMD directive.8

Restrictions9

The restrictions for the target and parallel loop SIMD constructs apply except for the following10
explicit modifications:11

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the12
directive must include a directive-name-modifier.13

• At most one if clause without a directive-name-modifier can appear on the directive.14

• At most one if clause with the parallel directive-name-modifier can appear on the directive.15

• At most one if clause with the target directive-name-modifier can appear on the directive.16

Cross References17

• target construct, see Section 2.10.4 on page 103.18

• Parallel loop SIMD construct, see Section 2.11.4 on page 128.19

• if Clause, see Section 2.12 on page 147.20

• Data attribute clauses, see Section 2.15.3 on page 188.21

CHAPTER 2. DIRECTIVES 133

2.11.8 target simd Construct1

Summary2

The target simd construct is a shortcut for specifying a target construct containing a simd3
construct and no other statements.4

Syntax5

C / C++

The syntax of the target simd construct is as follows:6

#pragma omp target simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the target or simd directives with identical7
meanings and restrictions.8

C / C++
Fortran

The syntax of the target simd construct is as follows:9

!$omp target simd [clause[[,] clause] ...]
do-loops

[!$omp end target simd]

where clause can be any of the clauses accepted by the target or simd directives with identical10
meanings and restrictions.11

If an end target simd directive is not specified, an end target simd directive is assumed at12
the end of the do-loops.13

Fortran

Description14

The semantics are identical to explicitly specifying a target directive immediately followed by a15
simd directive.16

Restrictions17

The restrictions for the target and simd constructs apply.18

134 OpenMP API – Version 4.5 November 2015

Cross References1

• simd construct, see Section 2.8.1 on page 72.2

• target construct, see Section 2.10.4 on page 103.3

• Data attribute clauses, see Section 2.15.3 on page 188.4

2.11.9 target teams Construct5

Summary6

The target teams construct is a shortcut for specifying a target construct containing a7
teams construct and no other statements.8

Syntax9

C / C++

The syntax of the target teams construct is as follows:10

#pragma omp target teams [clause[[,] clause] ...] new-line
structured-block

where clause can be any of the clauses accepted by the target or teams directives with identical11
meanings and restrictions.12

C / C++
Fortran

The syntax of the target teams construct is as follows:13

!$omp target teams [clause[[,] clause] ...]
structured-block

!$omp end target teams

where clause can be any of the clauses accepted by the target or teams directives with identical14
meanings and restrictions.15

Fortran

CHAPTER 2. DIRECTIVES 135

Description1

The semantics are identical to explicitly specifying a target directive immediately followed by a2
teams directive.3

Restrictions4

The restrictions for the target and teams constructs apply.5

Cross References6

• target construct, see Section 2.10.4 on page 103.7

• teams construct, see Section 2.10.7 on page 114.8

• Data attribute clauses, see Section 2.15.3 on page 188.9

2.11.10 teams distribute Construct10

Summary11

The teams distribute construct is a shortcut for specifying a teams construct containing a12
distribute construct and no other statements.13

Syntax14

C / C++

The syntax of the teams distribute construct is as follows:15

#pragma omp teams distribute [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the teams or distribute directives with16
identical meanings and restrictions.17

C / C++

136 OpenMP API – Version 4.5 November 2015

Fortran

The syntax of the teams distribute construct is as follows:1

!$omp teams distribute [clause[[,] clause] ...]
do-loops

[!$omp end teams distribute]

where clause can be any of the clauses accepted by the teams or distribute directives with2
identical meanings and restrictions.3

If an end teams distribute directive is not specified, an end teams distribute4
directive is assumed at the end of the do-loops.5

Fortran

Description6

The semantics are identical to explicitly specifying a teams directive immediately followed by a7
distribute directive. The effect of any clause that applies to both constructs is as if it were8
applied to both constructs separately.9

Restrictions10

The restrictions for the teams and distribute constructs apply.11

Cross References12

• teams construct, see Section 2.10.7 on page 114.13

• distribute construct, see Section 2.10.8 on page 117.14

• Data attribute clauses, see Section 2.15.3 on page 188.15

2.11.11 teams distribute simd Construct16

Summary17

The teams distribute simd construct is a shortcut for specifying a teams construct18
containing a distribute simd construct and no other statements.19

CHAPTER 2. DIRECTIVES 137

Syntax1

C / C++

The syntax of the teams distribute simd construct is as follows:2

#pragma omp teams distribute simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the teams or distribute simd directives3
with identical meanings and restrictions.4

C / C++
Fortran

The syntax of the teams distribute simd construct is as follows:5

!$omp teams distribute simd [clause[[,] clause] ...]
do-loops

[!$omp end teams distribute simd]

where clause can be any of the clauses accepted by the teams or distribute simd directives6
with identical meanings and restrictions.7

If an end teams distribute simd directive is not specified, an8
end teams distribute simd directive is assumed at the end of the do-loops.9

Fortran

Description10

The semantics are identical to explicitly specifying a teams directive immediately followed by a11
distribute simd directive. The effect of any clause that applies to both constructs is as if it12
were applied to both constructs separately.13

Restrictions14

The restrictions for the teams and distribute simd constructs apply.15

Cross References16

• teams construct, see Section 2.10.7 on page 114.17

• distribute simd construct, see Section 2.10.9 on page 119.18

• Data attribute clauses, see Section 2.15.3 on page 188.19

138 OpenMP API – Version 4.5 November 2015

2.11.12 target teams distribute Construct1

Summary2

The target teams distribute construct is a shortcut for specifying a target construct3
containing a teams distribute construct and no other statements.4

Syntax5

C / C++

The syntax of the target teams distribute construct is as follows:6

#pragma omp target teams distribute [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the target or teams distribute7
directives with identical meanings and restrictions.8

C / C++
Fortran

The syntax of the target teams distribute construct is as follows:9

!$omp target teams distribute [clause[[,] clause] ...]
do-loops

[!$omp end target teams distribute]

where clause can be any of the clauses accepted by the target or teams distribute10
directives with identical meanings and restrictions.11

If an end target teams distribute directive is not specified, an12
end target teams distribute directive is assumed at the end of the do-loops.13

Fortran

Description14

The semantics are identical to explicitly specifying a target directive immediately followed by a15
teams distribute directive.16

Restrictions17

The restrictions for the target and teams distribute constructs apply.18

CHAPTER 2. DIRECTIVES 139

Cross References1

• target construct, see Section 2.10.1 on page 95.2

• teams distribute construct, see Section 2.11.10 on page 136.3

• Data attribute clauses, see Section 2.15.3 on page 188.4

2.11.13 target teams distribute simdConstruct5

Summary6

The target teams distribute simd construct is a shortcut for specifying a target7
construct containing a teams distribute simd construct and no other statements.8

Syntax9

C / C++

The syntax of the target teams distribute simd construct is as follows:10

#pragma omp target teams distribute simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the target or teams distribute simd11
directives with identical meanings and restrictions.12

C / C++
Fortran

The syntax of the target teams distribute simd construct is as follows:13

!$omp target teams distribute simd [clause[[,] clause] ...]
do-loops

[!$omp end target teams distribute simd]

where clause can be any of the clauses accepted by the target or teams distribute simd14
directives with identical meanings and restrictions.15

If an end target teams distribute simd directive is not specified, an16
end target teams distribute simd directive is assumed at the end of the do-loops.17

Fortran

140 OpenMP API – Version 4.5 November 2015

Description1

The semantics are identical to explicitly specifying a target directive immediately followed by a2
teams distribute simd directive.3

Restrictions4

The restrictions for the target and teams distribute simd constructs apply.5

Cross References6

• target construct, see Section 2.10.1 on page 95.7

• teams distribute simd construct, see Section 2.11.11 on page 137.8

• Data attribute clauses, see Section 2.15.3 on page 188.9

2.11.14 Teams Distribute Parallel Loop Construct10

Summary11

The teams distribute parallel loop construct is a shortcut for specifying a teams construct12
containing a distribute parallel loop construct and no other statements.13

Syntax14

C / C++

The syntax of the teams distribute parallel loop construct is as follows:15

#pragma omp teams distribute parallel for [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the teams or distribute parallel for16
directives with identical meanings and restrictions.17

C / C++

CHAPTER 2. DIRECTIVES 141

Fortran

The syntax of the teams distribute parallel loop construct is as follows:1

!$omp teams distribute parallel do [clause[[,] clause] ...]
do-loops

[!$omp end teams distribute parallel do]

where clause can be any of the clauses accepted by the teams or distribute parallel do2
directives with identical meanings and restrictions.3

If an end teams distribute parallel do directive is not specified, an4
end teams distribute parallel do directive is assumed at the end of the do-loops.5

Fortran

Description6

The semantics are identical to explicitly specifying a teams directive immediately followed by a7
distribute parallel loop directive. The effect of any clause that applies to both constructs is as if it8
were applied to both constructs separately.9

Restrictions10

The restrictions for the teams and distribute parallel loop constructs apply.11

Cross References12

• teams construct, see Section 2.10.7 on page 114.13

• Distribute parallel loop construct, see Section 2.10.10 on page 121.14

• Data attribute clauses, see Section 2.15.3 on page 188.15

2.11.15 Target Teams Distribute Parallel Loop Construct16

Summary17

The target teams distribute parallel loop construct is a shortcut for specifying a target construct18
containing a teams distribute parallel loop construct and no other statements.19

142 OpenMP API – Version 4.5 November 2015

Syntax1

C / C++

The syntax of the target teams distribute parallel loop construct is as follows:2

#pragma omp target teams distribute parallel for [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the target or3
teams distribute parallel for directives with identical meanings and restrictions.4

C / C++
Fortran

The syntax of the target teams distribute parallel loop construct is as follows:5

!$omp target teams distribute parallel do [clause[[,] clause] ...]
do-loops

[!$omp end target teams distribute parallel do]

where clause can be any of the clauses accepted by the target or6
teams distribute parallel do directives with identical meanings and restrictions.7

If an end target teams distribute parallel do directive is not specified, an8
end target teams distribute parallel do directive is assumed at the end of the9
do-loops.10

Fortran

Description11

The semantics are identical to explicitly specifying a target directive immediately followed by a12
teams distribute parallel loop directive.13

Restrictions14

The restrictions for the target and teams distribute parallel loop constructs apply except for the15
following explicit modifications:16

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the17
directive must include a directive-name-modifier.18

• At most one if clause without a directive-name-modifier can appear on the directive.19

• At most one if clause with the parallel directive-name-modifier can appear on the directive.20

• At most one if clause with the target directive-name-modifier can appear on the directive.21

CHAPTER 2. DIRECTIVES 143

Cross References1

• target construct, see Section 2.10.4 on page 103.2

• Teams distribute parallel loop construct, see Section 2.11.14 on page 141.3

• if Clause, see Section 2.12 on page 147.4

• Data attribute clauses, see Section 2.15.3 on page 188.5

2.11.16 Teams Distribute Parallel Loop SIMD Construct6

Summary7

The teams distribute parallel loop SIMD construct is a shortcut for specifying a teams construct8
containing a distribute parallel loop SIMD construct and no other statements.9

Syntax10

C / C++

The syntax of the teams distribute parallel loop construct is as follows:11

#pragma omp teams distribute parallel for simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the teams or12
distribute parallel for simd directives with identical meanings and restrictions.13

C / C++
Fortran

The syntax of the teams distribute parallel loop construct is as follows:14

!$omp teams distribute parallel do simd [clause[[,] clause] ...]
do-loops

[!$omp end teams distribute parallel do simd]

where clause can be any of the clauses accepted by the teams or15
distribute parallel do simd directives with identical meanings and restrictions.16

If an end teams distribute parallel do simd directive is not specified, an17
end teams distribute parallel do simd directive is assumed at the end of the do-loops.18

Fortran

144 OpenMP API – Version 4.5 November 2015

Description1

The semantics are identical to explicitly specifying a teams directive immediately followed by a2
distribute parallel loop SIMD directive. The effect of any clause that applies to both constructs is as3
if it were applied to both constructs separately.4

Restrictions5

The restrictions for the teams and distribute parallel loop SIMD constructs apply.6

Cross References7

• teams construct, see Section 2.10.7 on page 114.8

• Distribute parallel loop SIMD construct, see Section 2.10.11 on page 122.9

• Data attribute clauses, see Section 2.15.3 on page 188.10

2.11.17 Target Teams Distribute Parallel Loop SIMD11

Construct12

Summary13

The target teams distribute parallel loop SIMD construct is a shortcut for specifying a target14
construct containing a teams distribute parallel loop SIMD construct and no other statements.15

Syntax16

C / C++

The syntax of the target teams distribute parallel loop SIMD construct is as follows:17

#pragma omp target teams distribute parallel for simd \
[clause[[,] clause] ...] new-line

for-loops

where clause can be any of the clauses accepted by the target or18
teams distribute parallel for simd directives with identical meanings and restrictions.19

C / C++

CHAPTER 2. DIRECTIVES 145

Fortran

The syntax of the target teams distribute parallel loop SIMD construct is as follows:1

!$omp target teams distribute parallel do simd [clause[[,] clause] ...]
do-loops

[!$omp end target teams distribute parallel do simd]

where clause can be any of the clauses accepted by the target or2
teams distribute parallel do simd directives with identical meanings and restrictions.3

If an end target teams distribute parallel do simd directive is not specified, an4
end target teams distribute parallel do simd directive is assumed at the end of the5
do-loops.6

Fortran

Description7

The semantics are identical to explicitly specifying a target directive immediately followed by a8
teams distribute parallel loop SIMD directive.9

Restrictions10

The restrictions for the target and teams distribute parallel loop SIMD constructs apply except11
for the following explicit modifications:12

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the13
directive must include a directive-name-modifier.14

• At most one if clause without a directive-name-modifier can appear on the directive.15

• At most one if clause with the parallel directive-name-modifier can appear on the directive.16

• At most one if clause with the target directive-name-modifier can appear on the directive.17

Cross References18

• target construct, see Section 2.10.4 on page 103.19

• Teams distribute parallel loop SIMD construct, see Section 2.11.16 on page 144.20

• if Clause, see Section 2.12 on page 147.21

• Data attribute clauses, see Section 2.15.3 on page 188.22

146 OpenMP API – Version 4.5 November 2015

2.12 if Clause1

Summary2

The semantics of an if clause are described in the section on the construct to which it applies. The3
if clause directive-name-modifier names the associated construct to which an expression applies,4
and is particularly useful for composite and combined constructs.5

Syntax6

C / C++

The syntax of the if clause is as follows:7

if([directive-name-modifier :] scalar-expression)

C / C++
Fortran

The syntax of the if clause is as follows:8

if([directive-name-modifier :] scalar-logical-expression)

Fortran

Description9

The effect of the if clause depends on the construct to which it is applied. For combined or10
composite constructs, the if clause only applies to the semantics of the construct named in the11
directive-name-modifier if one is specified. If no directive-name-modifier is specified for a12
combined or composite construct then the if clause applies to all constructs to which an if clause13
can apply.14

CHAPTER 2. DIRECTIVES 147

2.13 Master and Synchronization Constructs1

and Clauses2

OpenMP provides the following synchronization constructs:3

• the master construct;4

• the critical construct;5

• the barrier construct;6

• the taskwait construct;7

• the taskgroup construct;8

• the atomic construct;9

• the flush construct;10

• the ordered construct.11

2.13.1 master Construct12

Summary13

The master construct specifies a structured block that is executed by the master thread of the team.14

Syntax15

C / C++

The syntax of the master construct is as follows:16

#pragma omp master new-line
structured-block

C / C++
Fortran

The syntax of the master construct is as follows:17

!$omp master
structured-block

!$omp end master

Fortran

148 OpenMP API – Version 4.5 November 2015

Binding1

The binding thread set for a master region is the current team. A master region binds to the2
innermost enclosing parallel region. Only the master thread of the team executing the binding3
parallel region participates in the execution of the structured block of the master region.4

Description5

Other threads in the team do not execute the associated structured block. There is no implied6
barrier either on entry to, or exit from, the master construct.7

Restrictions8

C++
• A throw executed inside a master region must cause execution to resume within the same9
master region, and the same thread that threw the exception must catch it10

C++

2.13.2 critical Construct11

Summary12

The critical construct restricts execution of the associated structured block to a single thread at13
a time.14

Syntax15

C / C++

The syntax of the critical construct is as follows:16

#pragma omp critical [(name) [hint(hint-expression)]] new-line
structured-block

where hint-expression is an integer constant expression that evaluates to a valid lock hint (as17
described in Section 3.3.2 on page 273).18

C / C++

CHAPTER 2. DIRECTIVES 149

Fortran

The syntax of the critical construct is as follows:1

!$omp critical [(name) [hint(hint-expression)]]
structured-block

!$omp end critical [(name)]

where hint-expression is a constant expression that evaluates to a scalar value with kind2
omp_lock_hint_kind and a value that is a valid lock hint (as described in Section 3.3.2 on3
page 273).4

Fortran

Binding5

The binding thread set for a critical region is all threads in the contention group. The region is6
executed as if only a single thread at a time among all threads in the contention group is entering7
the region for execution, without regard to the team(s) to which the threads belong.8

Description9

An optional name may be used to identify the critical construct. All critical constructs10
without a name are considered to have the same unspecified name.11

C / C++

Identifiers used to identify a critical construct have external linkage and are in a name space12
that is separate from the name spaces used by labels, tags, members, and ordinary identifiers.13

C / C++
Fortran

The names of critical constructs are global entities of the program. If a name conflicts with14
any other entity, the behavior of the program is unspecified.15

Fortran

The threads of a contention group execute the critical region as if only one thread of the16
contention group is executing the critical region at a time. The critical construct enforces17
these execution semantics with respect to all critical constructs with the same name in all18
threads in the contention group, not just those threads in the current team.19

The presence of a hint clause does not affect the isolation guarantees provided by the critical20
construct. If no hint clause is specified, the effect is as if hint(omp_lock_hint_none) had21
been specified.22

150 OpenMP API – Version 4.5 November 2015

Restrictions1

• If the hint clause is specified, the critical construct must have a name.2

• If the hint clause is specified, each of the critical constructs with the same name must3
have a hint clause for which the hint-expression evaluates to the same value.4

C++
• A throw executed inside a critical region must cause execution to resume within the same5
critical region, and the same thread that threw the exception must catch it.6

C++

Fortran

The following restrictions apply to the critical construct:7

• If a name is specified on a critical directive, the same name must also be specified on the8
end critical directive.9

• If no name appears on the critical directive, no name can appear on the end critical10
directive.11

Fortran

Cross References12

• omp_init_lock_with_hint and omp_init_nest_lock_with_hint routines, see13
Section 3.3.2 on page 273.14

2.13.3 barrier Construct15

Summary16

The barrier construct specifies an explicit barrier at the point at which the construct appears.17
The barrier construct is a stand-alone directive.18

CHAPTER 2. DIRECTIVES 151

Syntax1

C / C++

The syntax of the barrier construct is as follows:2

#pragma omp barrier new-line

C / C++
Fortran

The syntax of the barrier construct is as follows:3

!$omp barrier

Fortran

Binding4

The binding thread set for a barrier region is the current team. A barrier region binds to the5
innermost enclosing parallel region.6

Description7

All threads of the team executing the binding parallel region must execute the barrier8
region and complete execution of all explicit tasks bound to this parallel region before any are9
allowed to continue execution beyond the barrier.10

The barrier region includes an implicit task scheduling point in the current task region.11

Restrictions12

The following restrictions apply to the barrier construct:13

• Each barrier region must be encountered by all threads in a team or by none at all, unless14
cancellation has been requested for the innermost enclosing parallel region.15

• The sequence of worksharing regions and barrier regions encountered must be the same for16
every thread in a team.17

152 OpenMP API – Version 4.5 November 2015

2.13.4 taskwait Construct1

Summary2

The taskwait construct specifies a wait on the completion of child tasks of the current task. The3
taskwait construct is a stand-alone directive.4

Syntax5

C / C++

The syntax of the taskwait construct is as follows:6

#pragma omp taskwait newline

C / C++
Fortran

The syntax of the taskwait construct is as follows:7

!$omp taskwait

Fortran

Binding8

The taskwait region binds to the current task region. The binding thread set of the taskwait9
region is the current team.10

Description11

The taskwait region includes an implicit task scheduling point in the current task region. The12
current task region is suspended at the task scheduling point until all child tasks that it generated13
before the taskwait region complete execution.14

2.13.5 taskgroup Construct15

Summary16

The taskgroup construct specifies a wait on completion of child tasks of the current task and17
their descendent tasks.18

CHAPTER 2. DIRECTIVES 153

Syntax1

C / C++

The syntax of the taskgroup construct is as follows:2

#pragma omp taskgroup new-line
structured-block

C / C++
Fortran

The syntax of the taskgroup construct is as follows:3

!$omp taskgroup
structured-block

!$omp end taskgroup

Fortran

Binding4

A taskgroup region binds to the current task region. A taskgroup region binds to the5
innermost enclosing parallel region.6

Description7

When a thread encounters a taskgroup construct, it starts executing the region. All child tasks8
generated in the taskgroup region and all of their descendants that bind to the same parallel9
region as the taskgroup region are part of the taskgroup set associated with the taskgroup10
region.11

There is an implicit task scheduling point at the end of the taskgroup region. The current task is12
suspended at the task scheduling point until all tasks in the taskgroup set complete execution.13

Cross References14

• Task scheduling, see Section 2.9.5 on page 94.15

154 OpenMP API – Version 4.5 November 2015

2.13.6 atomic Construct1

Summary2

The atomic construct ensures that a specific storage location is accessed atomically, rather than3
exposing it to the possibility of multiple, simultaneous reading and writing threads that may result4
in indeterminate values.5

Syntax6

In the following syntax, atomic-clause is a clause that indicates the semantics for which atomicity is7
enforced and is one of the following:8

read9

write10

update11

capture12

C / C++

The syntax of the atomic construct takes one of the following forms:13

#pragma omp atomic [seq_cst[,]] atomic-clause [[,]seq_cst] new-line
expression-stmt

or14

#pragma omp atomic [seq_cst] new-line
expression-stmt

or15

#pragma omp atomic [seq_cst[,]] capture [[,]seq_cst] new-line
structured-block

where expression-stmt is an expression statement with one of the following forms:16

• If atomic-clause is read:17
v = x;18

• If atomic-clause is write:19
x = expr;20

CHAPTER 2. DIRECTIVES 155

C/C++ (cont.)

• If atomic-clause is update or not present:1
x++;2
x--;3
++x;4
--x;5
x binop= expr;6
x = x binop expr;7
x = expr binop x;8

• If atomic-clause is capture:9
v = x++;10
v = x--;11
v = ++x;12
v = --x;13
v = x binop= expr;14
v = x = x binop expr;15
v = x = expr binop x;16

and where structured-block is a structured block with one of the following forms:17

{v = x; x binop= expr;}18
{x binop= expr; v = x;}19
{v = x; x = x binop expr;}20
{v = x; x = expr binop x;}21
{x = x binop expr; v = x;}22
{x = expr binop x; v = x;}23
{v = x; x = expr;}24
{v = x; x++;}25
{v = x; ++x;}26
{++x; v = x;}27
{x++; v = x;}28
{v = x; x--;}29
{v = x; --x;}30
{--x; v = x;}31
{x--; v = x;}32

In the preceding expressions:33

• x and v (as applicable) are both l-value expressions with scalar type.34

• During the execution of an atomic region, multiple syntactic occurrences of x must designate the35
same storage location.36

• Neither of v and expr (as applicable) may access the storage location designated by x.37

156 OpenMP API – Version 4.5 November 2015

• Neither of x and expr (as applicable) may access the storage location designated by v.1

• expr is an expression with scalar type.2

• binop is one of +, *, -, /, &, ˆ, |, <<, or >>.3

• binop, binop=, ++, and -- are not overloaded operators.4

• The expression x binop expr must be numerically equivalent to x binop (expr). This requirement5
is satisfied if the operators in expr have precedence greater than binop, or by using parentheses6
around expr or subexpressions of expr.7

• The expression expr binop x must be numerically equivalent to (expr) binop x. This requirement8
is satisfied if the operators in expr have precedence equal to or greater than binop, or by using9
parentheses around expr or subexpressions of expr.10

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is11
unspecified.12

C / C++
Fortran

The syntax of the atomic construct takes any of the following forms:13

!$omp atomic [seq_cst[,]] read [[,]seq_cst]
capture-statement

[!$omp end atomic]

or14

!$omp atomic [seq_cst[,]] write [[,]seq_cst]
write-statement

[!$omp end atomic]

or15

!$omp atomic [seq_cst[,]] update [[,]seq_cst]
update-statement

[!$omp end atomic]

or16

!$omp atomic [seq_cst]
update-statement

[!$omp end atomic]

or17

CHAPTER 2. DIRECTIVES 157

Fortran (cont.)

!$omp atomic [seq_cst[,]] capture [[,]seq_cst]
update-statement
capture-statement

!$omp end atomic

or1

!$omp atomic [seq_cst[,]] capture [[,]seq_cst]
capture-statement
update-statement

!$omp end atomic

or2

!$omp atomic [seq_cst[,]] capture [[,]seq_cst]
capture-statement
write-statement

!$omp end atomic

where write-statement has the following form (if atomic-clause is capture or write):3

x = expr4

where capture-statement has the following form (if atomic-clause is capture or read):5

v = x6

and where update-statement has one of the following forms (if atomic-clause is update,7
capture, or not present):8

x = x operator expr9

x = expr operator x10

x = intrinsic_procedure_name (x, expr_list)11

x = intrinsic_procedure_name (expr_list, x)12

In the preceding statements:13

• x and v (as applicable) are both scalar variables of intrinsic type.14

• x must not have the ALLOCATABLE attribute.15

• During the execution of an atomic region, multiple syntactic occurrences of x must designate the16
same storage location.17

158 OpenMP API – Version 4.5 November 2015

• None of v, expr, and expr_list (as applicable) may access the same storage location as x.1

• None of x, expr, and expr_list (as applicable) may access the same storage location as v.2

• expr is a scalar expression.3

• expr_list is a comma-separated, non-empty list of scalar expressions. If4
intrinsic_procedure_name refers to IAND, IOR, or IEOR, exactly one expression must appear in5
expr_list.6

• intrinsic_procedure_name is one of MAX, MIN, IAND, IOR, or IEOR.7

• operator is one of +, *, -, /, .AND., .OR., .EQV., or .NEQV..8

• The expression x operator expr must be numerically equivalent to x operator (expr). This9
requirement is satisfied if the operators in expr have precedence greater than operator, or by10
using parentheses around expr or subexpressions of expr.11

• The expression expr operator x must be numerically equivalent to (expr) operator x. This12
requirement is satisfied if the operators in expr have precedence equal to or greater than13
operator, or by using parentheses around expr or subexpressions of expr.14

• intrinsic_procedure_name must refer to the intrinsic procedure name and not to other program15
entities.16

• operator must refer to the intrinsic operator and not to a user-defined operator.17

• All assignments must be intrinsic assignments.18

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is19
unspecified.20

Fortran

Binding21

If the size of x is 8, 16, 32, or 64 bits and x is aligned to a multiple of its size, the binding thread set22
for the atomic region is all threads on the device. Otherwise, the binding thread set for the23
atomic region is all threads in the contention group. atomic regions enforce exclusive access24
with respect to other atomic regions that access the same storage location x among all threads in25
the binding thread set without regard to the teams to which the threads belong.26

Description27

The atomic construct with the read clause forces an atomic read of the location designated by x28
regardless of the native machine word size.29

The atomic construct with the write clause forces an atomic write of the location designated by30
x regardless of the native machine word size.31

CHAPTER 2. DIRECTIVES 159

The atomic construct with the update clause forces an atomic update of the location designated1
by x using the designated operator or intrinsic. Note that when no clause is present, the semantics2
are equivalent to atomic update. Only the read and write of the location designated by x are3
performed mutually atomically. The evaluation of expr or expr_list need not be atomic with respect4
to the read or write of the location designated by x. No task scheduling points are allowed between5
the read and the write of the location designated by x.6

The atomic construct with the capture clause forces an atomic update of the location7
designated by x using the designated operator or intrinsic while also capturing the original or final8
value of the location designated by x with respect to the atomic update. The original or final value9
of the location designated by x is written in the location designated by v depending on the form of10
the atomic construct structured block or statements following the usual language semantics. Only11
the read and write of the location designated by x are performed mutually atomically. Neither the12
evaluation of expr or expr_list, nor the write to the location designated by v, need be atomic with13
respect to the read or write of the location designated by x. No task scheduling points are allowed14
between the read and the write of the location designated by x.15

Any atomic construct with a seq_cst clause forces the atomically performed operation to16
include an implicit flush operation without a list.17

Note – As with other implicit flush regions, Section 1.4.4 on page 20 reduces the ordering that must18
be enforced. The intent is that, when the analogous operation exists in C++11 or C11, a sequentially19
consistent atomic construct has the same semantics as a memory_order_seq_cst atomic20
operation in C++11/C11. Similarly, a non-sequentially consistent atomic construct has the same21
semantics as a memory_order_relaxed atomic operation in C++11/C11.22

Unlike non-sequentially consistent atomic constructs, sequentially consistent atomic constructs23
preserve the interleaving (sequentially consistent) behavior of correct, data race free programs.24
However, they are not designed to replace the flush directive as a mechanism to enforce ordering25
for non-sequentially consistent atomic constructs, and attempts to do so require extreme caution.26
For example, a sequentially consistent atomic write construct may appear to be reordered with27
a subsequent non-sequentially consistent atomic write construct, since such reordering would28
not be observable by a correct program if the second write were outside an atomic directive.29

For all forms of the atomic construct, any combination of two or more of these atomic30
constructs enforces mutually exclusive access to the locations designated by x among threads in the31
binding thread set. To avoid race conditions, all accesses of the locations designated by x that could32
potentially occur in parallel must be protected with an atomic construct.33

atomic regions do not guarantee exclusive access with respect to any accesses outside of34
atomic regions to the same storage location x even if those accesses occur during a critical35
or ordered region, while an OpenMP lock is owned by the executing task, or during the36
execution of a reduction clause.37

160 OpenMP API – Version 4.5 November 2015

However, other OpenMP synchronization can ensure the desired exclusive access. For example, a1
barrier following a series of atomic updates to x guarantees that subsequent accesses do not form a2
race with the atomic accesses.3

A compliant implementation may enforce exclusive access between atomic regions that update4
different storage locations. The circumstances under which this occurs are implementation defined.5

If the storage location designated by x is not size-aligned (that is, if the byte alignment of x is not a6
multiple of the size of x), then the behavior of the atomic region is implementation defined.7

Restrictions8

The following restrictions apply to the atomic construct:9

• At most one seq_cst clause may appear on the construct.10

C / C++

• All atomic accesses to the storage locations designated by x throughout the program are required11
to have a compatible type.12

C / C++
Fortran

• All atomic accesses to the storage locations designated by x throughout the program are required13
to have the same type and type parameters.14

Fortran

• OpenMP constructs may not be encountered during execution of an atomic region.15

Cross References16

• critical construct, see Section 2.13.2 on page 149.17

• barrier construct, see Section 2.13.3 on page 151.18

• flush construct, see Section 2.13.7 on page 162.19

• ordered construct, see Section 2.13.8 on page 166.20

• reduction clause, see Section 2.15.3.6 on page 201.21

• lock routines, see Section 3.3 on page 270.22

CHAPTER 2. DIRECTIVES 161

2.13.7 flush Construct1

Summary2

The flush construct executes the OpenMP flush operation. This operation makes a thread’s3
temporary view of memory consistent with memory and enforces an order on the memory4
operations of the variables explicitly specified or implied. See the memory model description in5
Section 1.4 on page 17 for more details. The flush construct is a stand-alone directive.6

Syntax7

C / C++

The syntax of the flush construct is as follows:8

#pragma omp flush [(list)] new-line

C / C++
Fortran

The syntax of the flush construct is as follows:9

!$omp flush [(list)]

Fortran

Binding10

The binding thread set for a flush region is the encountering thread. Execution of a flush11
region affects the memory and the temporary view of memory of only the thread that executes the12
region. It does not affect the temporary view of other threads. Other threads must themselves13
execute a flush operation in order to be guaranteed to observe the effects of the encountering14
thread’s flush operation15

162 OpenMP API – Version 4.5 November 2015

Description1

A flush construct without a list, executed on a given thread, operates as if the whole2
thread-visible data state of the program, as defined by the base language, is flushed. A flush3
construct with a list applies the flush operation to the items in the list, and does not return until the4
operation is complete for all specified list items. An implementation may implement a flush with5
a list by ignoring the list, and treating it the same as a flush without a list.6

C / C++

If a pointer is present in the list, the pointer itself is flushed, not the memory block to which the7
pointer refers.8

C / C++
Fortran

If the list item or a subobject of the list item has the POINTER attribute, the allocation or9
association status of the POINTER item is flushed, but the pointer target is not. If the list item is a10
Cray pointer, the pointer is flushed, but the object to which it points is not. If the list item is of type11
C_PTR, the variable is flushed, but the storage that corresponds to that address is not flushed. If the12
list item or the subobject of the list item has the ALLOCATABLE attribute and has an allocation13
status of currently allocated, the allocated variable is flushed; otherwise the allocation status is14
flushed.15

Fortran

Note – Use of a flush construct with a list is extremely error prone and users are strongly16
discouraged from attempting it. The following examples illustrate the ordering properties of the17
flush operation. In the following incorrect pseudocode example, the programmer intends to prevent18
simultaneous execution of the protected section by the two threads, but the program does not work19
properly because it does not enforce the proper ordering of the operations on variables a and b.20
Any shared data accessed in the protected section is not guaranteed to be current or consistent21
during or after the protected section. The atomic notation in the pseudocode in the following two22
examples indicates that the accesses to a and b are ATOMIC writes and captures. Otherwise both23
examples would contain data races and automatically result in unspecified behavior.24

CHAPTER 2. DIRECTIVES 163

Incorrect example:
a = b = 0

thread 1 thread 2

atomic(b = 1) atomic(a = 1)

flush(b) flush(a)
flush(a) flush(b)
atomic(tmp = a) atomic(tmp = b)

if (tmp == 0) then if (tmp == 0) then

protected section protected section
end if end if

1

The problem with this example is that operations on variables a and b are not ordered with respect2
to each other. For instance, nothing prevents the compiler from moving the flush of b on thread 1 or3
the flush of a on thread 2 to a position completely after the protected section (assuming that the4
protected section on thread 1 does not reference b and the protected section on thread 2 does not5
reference a). If either re-ordering happens, both threads can simultaneously execute the protected6
section.7

The following pseudocode example correctly ensures that the protected section is executed by not8
more than one of the two threads at any one time. Execution of the protected section by neither9
thread is considered correct in this example. This occurs if both flushes complete prior to either10
thread executing its if statement.11

Correct example:
a = b = 0

thread 1 thread 2

atomic(b = 1) atomic(a = 1)

flush(a,b) flush(a,b)

atomic(tmp = a) atomic(tmp = b)

if (tmp == 0) then if (tmp == 0) then

protected section protected section

end if end if

12

13

164 OpenMP API – Version 4.5 November 2015

The compiler is prohibited from moving the flush at all for either thread, ensuring that the1
respective assignment is complete and the data is flushed before the if statement is executed.2

A flush region without a list is implied at the following locations:3

• During a barrier region.4

• At entry to a target update region whose corresponding construct has a to clause.5

• At exit from a target update region whose corresponding construct has a from clause.6

• At entry to and exit from parallel, critical, target and target data regions.7

• At entry to and exit from an ordered region, if a threads clause or a depend clause is8
present, or if no clauses are present.9

• At entry to a target enter data region.10

• At exit from a target exit data region.11

• At exit from worksharing regions unless a nowait is present.12

• At entry to and exit from the atomic operation (read, write, update, or capture) performed in a13
sequentially consistent atomic region.14

• During omp_set_lock and omp_unset_lock regions.15

• During omp_test_lock, omp_set_nest_lock, omp_unset_nest_lock and16
omp_test_nest_lock regions, if the region causes the lock to be set or unset.17

• Immediately before and immediately after every task scheduling point.18

• During a cancel or cancellation point region, if the cancel-var ICV is true and19
cancellation has been activated.20

A flush region with a list is implied at the following locations:21

• At entry to and exit from the atomic operation (read, write, update, or capture) performed in a22
non-sequentially consistent atomic region, where the list contains only the storage location23
designated as x according to the description of the syntax of the atomic construct in24
Section 2.13.6 on page 155.25

Note – A flush region is not implied at the following locations:26

• At entry to worksharing regions.27

• At entry to or exit from a master region.28

CHAPTER 2. DIRECTIVES 165

2.13.8 ordered Construct1

Summary2

The ordered construct either specifies a structured block in a loop, simd, or loop SIMD region3
that will be executed in the order of the loop iterations, or it is a stand-alone directive that specifies4
cross-iteration dependences in a doacross loop nest. The ordered construct sequentializes and5
orders the execution of ordered regions while allowing code outside the region to run in parallel.6

Syntax7

C / C++

The syntax of the ordered construct is as follows:8

#pragma omp ordered [clause[[,] clause]] new-line
structured-block

where clause is one of the following:9

threads10

simd11

or12

#pragma omp ordered clause [[[,] clause] ...] new-line

where clause is one of the following:13

depend(source)14

depend(sink : vec)15

C / C++

166 OpenMP API – Version 4.5 November 2015

Fortran

The syntax of the ordered construct is as follows:1

!$omp ordered [clause[[,] clause]]
structured-block

!$omp end ordered

where clause is one of the following:2

threads3

simd4

or5

!$omp ordered clause [[[,] clause] ...]

where clause is one of the following:6

depend(source)7

depend(sink : vec)8

Fortran

If the depend clause is specified, the ordered construct is a stand-alone directive.9

Binding10

The binding thread set for an ordered region is the current team. An ordered region binds to11
the innermost enclosing simd or loop SIMD region if the simd clause is present, and otherwise it12
binds to the innermost enclosing loop region. ordered regions that bind to different regions13
execute independently of each other.14

CHAPTER 2. DIRECTIVES 167

Description1

If no clause is specified, the ordered construct behaves as if the threads clause had been2
specified. If the threads clause is specified, the threads in the team executing the loop region3
execute ordered regions sequentially in the order of the loop iterations. If any depend clauses4
are specified then those clauses specify the order in which the threads in the team execute ordered5
regions. If the simd clause is specified, the ordered regions encountered by any thread will use6
only a single SIMD lane to execute the ordered regions in the order of the loop iterations.7

When the thread executing the first iteration of the loop encounters an ordered construct, it can8
enter the ordered region without waiting. When a thread executing any subsequent iteration9
encounters an ordered construct without a depend clause, it waits at the beginning of the10
ordered region until execution of all ordered regions belonging to all previous iterations has11
completed. When a thread executing any subsequent iteration encounters an ordered construct12
with one or more depend(sink:vec) clauses, it waits until its dependences on all valid13
iterations specified by the depend clauses are satisfied before it completes execution of the14
ordered region. A specific dependence is satisfied when a thread executing the corresponding15
iteration encounters an ordered construct with a depend(source) clause.16

Restrictions17

Restrictions to the ordered construct are as follows:18

• At most one threads clause can appear on an ordered construct.19

• At most one simd clause can appear on an ordered construct.20

• At most one depend(source) clause can appear on an ordered construct.21

• Either depend(sink:vec) clauses or depend(source) clauses may appear on an22
ordered construct, but not both.23

• The loop or loop SIMD region to which an ordered region arising from an ordered24
construct without a depend clause binds must have an ordered clause without the parameter25
specified on the corresponding loop or loop SIMD directive.26

• The loop region to which an ordered region arising from an ordered construct with any27
depend clauses binds must have an ordered clause with the parameter specified on the28
corresponding loop directive.29

• An ordered construct with the depend clause specified must be closely nested inside a loop30
(or parallel loop) construct.31

• An ordered region arising from an ordered construct with the simd clause specified must32
be closely nested inside a simd or loop SIMD region.33

• An ordered region arising from an ordered construct with both the simd and threads34
clauses must be closely nested inside a loop SIMD region.35

168 OpenMP API – Version 4.5 November 2015

• During execution of an iteration of a loop or a loop nest within a loop, simd, or loop SIMD1
region, a thread must not execute more than one ordered region arising from an ordered2
construct without a depend clause.3

C++
• A throw executed inside a ordered region must cause execution to resume within the same4
ordered region, and the same thread that threw the exception must catch it.5

C++

Cross References6

• loop construct, see Section 2.7.1 on page 56.7

• simd construct, see Section 2.8.1 on page 72.8

• parallel loop construct, see Section 2.11.1 on page 124.9

• depend Clause, see Section 2.13.9 on page 16910

2.13.9 depend Clause11

Summary12

The depend clause enforces additional constraints on the scheduling of tasks or loop iterations.13
These constraints establish dependences only between sibling tasks or between loop iterations.14

Syntax15

The syntax of the depend clause is as follows:16

depend(dependence-type : list)

where dependence-type is one of the following:17

in18

out19

inout20

or21

CHAPTER 2. DIRECTIVES 169

depend(dependence-type)

where dependence-type is:1

source2

or3

depend(dependence-type : vec)

where dependence-type is:4

sink5

and where vec is the iteration vector, which has the form:6

x1 [± d1], x2 [± d2], . . . , xn [± dn]7

where n is the value specified by the ordered clause in the loop directive, xi denotes the loop8
iteration variable of the i-th nested loop associated with the loop directive, and di is a constant9
non-negative integer.10

Description11

Task dependences are derived from the dependence-type of a depend clause and its list items12
when dependence-type is in, out, or inout.13

For the in dependence-type, if the storage location of at least one of the list items is the same as the14
storage location of a list item appearing in an out or inout dependence-type list of a task15
construct from which a sibling task was previously generated, then the generated task will be a16
dependent task of that sibling task.17

For the out and inout dependence-types, if the storage location of at least one of the list items is18
the same as the storage location of a list item appearing in an in, out, or inout dependence-type19
list of a task construct from which a sibling task was previously generated, then the generated task20
will be a dependent task of that sibling task.21

Fortran

If a list item has the ALLOCATABLE attribute and its allocation status is "not currently allocated",22
the behavior is unspecified. If a list item has the POINTER attribute and its association status is23
disassociated or undefined, the behavior is unspecified.24

Fortran

The list items that appear in the depend clause may include array sections.25

170 OpenMP API – Version 4.5 November 2015

Note – The enforced task dependence establishes a synchronization of memory accesses performed1
by a dependent task with respect to accesses performed by the predecessor tasks. However, it is the2
responsibility of the programmer to synchronize properly with respect to other concurrent accesses3
that occur outside of those tasks.4

The source dependence-type specifies the satisfaction of cross-iteration dependences that arise5
from the current iteration.6

The sink dependence-type specifies a cross-iteration dependence, where the iteration vector vec7
indicates the iteration that satisfies the dependence.8

If the iteration vector vec does not occur in the iteration space, the depend clause is ignored. If all9
depend clauses on an ordered construct are ignored then the construct is ignored.10

Note – If the iteration vector vec does not indicate a lexicographically earlier iteration, it can cause11
a deadlock.12

Restrictions13

Restrictions to the depend clause are as follows:14

• List items used in depend clauses of the same task or sibling tasks must indicate identical15
storage locations or disjoint storage locations.16

• List items used in depend clauses cannot be zero-length array sections.17

• A variable that is part of another variable (such as an element of a structure) but is not an array18
element or an array section cannot appear in a depend clause.19

• For a vec element of sink dependence-type of the form xi + di or xi − di if the loop iteration20
variable xi has an integral or pointer type, the expression xi + di or xi − di for any value of the21
loop iteration variable xi that can encounter the ordered construct must be computable in the22
loop iteration variable’s type without overflow.23

C++
• For a vec element of sink dependence-type of the form xi + di or xi − di if the loop iteration24
variable xi is of a random access iterator type other than pointer type, the expression (xi - lbi)25
+ di or (xi - lbi) − di for any value of the loop iteration variable xi that can encounter the26
ordered construct must be computable in the type that would be used by std::distance applied27
to variables of the type of xi without overflow.28

C++

CHAPTER 2. DIRECTIVES 171

Cross References1

• Array sections, see Section 2.4 on page 44.2

• task construct, see Section 2.9.1 on page 83.3

• Task scheduling constraints, see Section 2.9.5 on page 94.4

• ordered construct, see Section 2.13.8 on page 166.5

2.14 Cancellation Constructs6

2.14.1 cancel Construct7

Summary8

The cancel construct activates cancellation of the innermost enclosing region of the type9
specified. The cancel construct is a stand-alone directive.10

Syntax11

C / C++

The syntax of the cancel construct is as follows:12

#pragma omp cancel construct-type-clause [[,] if-clause] new-line

where construct-type-clause is one of the following:13

parallel14

sections15

for16

taskgroup17

and if-clause is18

if (scalar-expression)19

C / C++

172 OpenMP API – Version 4.5 November 2015

Fortran

The syntax of the cancel construct is as follows:1

!$omp cancel construct-type-clause [[,] if-clause]

where construct-type-clause is one of the following:2

parallel3

sections4

do5

taskgroup6

and if-clause is7

if (scalar-logical-expression)8

Fortran

Binding9

The binding thread set of the cancel region is the current team. The binding region of the10
cancel region is the innermost enclosing region of the type corresponding to the11
construct-type-clause specified in the directive (that is, the innermost parallel, sections,12
loop, or taskgroup region).13

Description14

The cancel construct activates cancellation of the binding region only if the cancel-var ICV is15
true, in which case the cancel construct causes the encountering task to continue execution at the16
end of the binding region if construct-type-clause is parallel, for, do, or sections. If the17
cancel-var ICV is true and construct-type-clause is taskgroup, the encountering task continues18
execution at the end of the current task region. If the cancel-var ICV is false, the cancel19
construct is ignored.20

Threads check for active cancellation only at cancellation points that are implied at the following21
locations:22

• cancel regions;23

• cancellation point regions;24

• barrier regions;25

• implicit barriers regions.26

CHAPTER 2. DIRECTIVES 173

When a thread reaches one of the above cancellation points and if the cancel-var ICV is true, then:1

• If the thread is at a cancel or cancellation point region and construct-type-clause is2
parallel, for, do, or sections, the thread continues execution at the end of the canceled3
region if cancellation has been activated for the innermost enclosing region of the type specified.4

• If the thread is at a cancel or cancellation point region and construct-type-clause is5
taskgroup, the encountering task checks for active cancellation of all of the taskgroup sets to6
which the encountering task belongs, and continues execution at the end of the current task7
region if cancellation has been activated for any of the taskgroup sets.8

• If the encountering task is at a barrier region, the encountering task checks for active cancellation9
of the innermost enclosing parallel region. If cancellation has been activated, then the10
encountering task continues execution at the end of the canceled region.11

Note – If one thread activates cancellation and another thread encounters a cancellation point, the12
order of execution between the two threads is non-deterministic. Whether the thread that13
encounters a cancellation point detects the activated cancellation depends on the underlying14
hardware and operating system.15

When cancellation of tasks is activated through the cancel taskgroup construct, the tasks that16
belong to the taskgroup set of the innermost enclosing taskgroup region will be canceled. The17
task that encountered the cancel taskgroup construct continues execution at the end of its18
task region, which implies completion of that task. Any task that belongs to the innermost19
enclosing taskgroup and has already begun execution must run to completion or until a20
cancellation point is reached. Upon reaching a cancellation point and if cancellation is active, the21
task continues execution at the end of its task region, which implies the task’s completion. Any22
task that belongs to the innermost enclosing taskgroup and that has not begun execution may be23
discarded, which implies its completion.24

When cancellation is active for a parallel, sections, or loop region, each thread of the25
binding thread set resumes execution at the end of the canceled region if a cancellation point is26
encountered. If the canceled region is a parallel region, any tasks that have been created by a27
task construct and their descendent tasks are canceled according to the above taskgroup28
cancellation semantics. If the canceled region is a sections, or loop region, no task cancellation29
occurs.30

C++
The usual C++ rules for object destruction are followed when cancellation is performed.31

C++

174 OpenMP API – Version 4.5 November 2015

Fortran

All private objects or subobjects with ALLOCATABLE attribute that are allocated inside the1
canceled construct are deallocated.2

Fortran

If the canceled construct contains a reduction or lastprivate clause, the final value of the3
reduction or lastprivate variable is undefined.4

When an if clause is present on a cancel construct and the if expression evaluates to false, the5
cancel construct does not activate cancellation. The cancellation point associated with the6
cancel construct is always encountered regardless of the value of the if expression.7

Note – The programmer is responsible for releasing locks and other synchronization data structures8
that might cause a deadlock when a cancel construct is encountered and blocked threads cannot9
be canceled. The programmer is also responsible for ensuring proper synchronizations to avoid10
deadlocks that might arise from cancellation of OpenMP regions that contain OpenMP11
synchronization constructs.12

Restrictions13

The restrictions to the cancel construct are as follows:14

• The behavior for concurrent cancellation of a region and a region nested within it is unspecified.15

• If construct-type-clause is taskgroup, the cancel construct must be closely nested inside a16
task construct and the cancel region must be closely nested inside a taskgroup region. If17
construct-type-clause is sections, the cancel construct must be closely nested inside a18
sections or section construct. Otherwise, the cancel construct must be closely nested19
inside an OpenMP construct that matches the type specified in construct-type-clause of the20
cancel construct.21

• A worksharing construct that is canceled must not have a nowait clause.22

• A loop construct that is canceled must not have an ordered clause.23

• During execution of a construct that may be subject to cancellation, a thread must not encounter24
an orphaned cancellation point. That is, a cancellation point must only be encountered within25
that construct and must not be encountered elsewhere in its region.26

CHAPTER 2. DIRECTIVES 175

Cross References1

• cancel-var ICV, see Section 2.3.1 on page 36.2

• cancellation point construct, see Section 2.14.2 on page 176.3

• omp_get_cancellation routine, see Section 3.2.9 on page 240.4

2.14.2 cancellation point Construct5

Summary6

The cancellation point construct introduces a user-defined cancellation point at which7
implicit or explicit tasks check if cancellation of the innermost enclosing region of the type8
specified has been activated. The cancellation point construct is a stand-alone directive.9

Syntax10

C / C++

The syntax of the cancellation point construct is as follows:11

#pragma omp cancellation point construct-type-clause new-line

where construct-type-clause is one of the following:12

parallel13

sections14

for15

taskgroup16

C / C++

176 OpenMP API – Version 4.5 November 2015

Fortran

The syntax of the cancellation point construct is as follows:1

!$omp cancellation point construct-type-clause

where construct-type-clause is one of the following:2

parallel3

sections4

do5

taskgroup6

Fortran

Binding7

The binding thread set of the cancellation point construct is the current team. The binding8
region of the cancellation point region is the innermost enclosing region of the type9
corresponding to the construct-type-clause specified in the directive (that is, the innermost10
parallel, sections, loop, or taskgroup region).11

Description12

This directive introduces a user-defined cancellation point at which an implicit or explicit task must13
check if cancellation of the innermost enclosing region of the type specified in the clause has been14
requested. This construct does not implement any synchronization between threads or tasks.15

When an implicit or explicit task reaches a user-defined cancellation point and if the cancel-var16
ICV is true, then:17

• If the construct-type-clause of the encountered cancellation point construct is18
parallel, for, do, or sections, the thread continues execution at the end of the canceled19
region if cancellation has been activated for the innermost enclosing region of the type specified.20

• If the construct-type-clause of the encountered cancellation point construct is21
taskgroup, the encountering task checks for active cancellation of all taskgroup sets to which22
the encountering task belongs and continues execution at the end of the current task region if23
cancellation has been activated for any of them.24

CHAPTER 2. DIRECTIVES 177

Restrictions1

• A cancellation point construct for which construct-type-clause is taskgroup must be2
closely nested inside a task construct, and the cancellation point region must be closely3
nested inside a taskgroup region. A cancellation point construct for which4
construct-type-clause is sections must be closely nested inside a sections or section5
construct. Otherwise, a cancellation point construct must be closely nested inside an6
OpenMP construct that matches the type specified in construct-type-clause.7

Cross References8

• cancel-var ICV, see Section 2.3.1 on page 36.9

• cancel construct, see Section 2.14.1 on page 172.10

• omp_get_cancellation routine, see Section 3.2.9 on page 240.11

2.15 Data Environment12

This section presents a directive and several clauses for controlling the data environment during the13
execution of target, teams, parallel, simd, task generating, and worksharing regions.14

• Section 2.15.1 on page 179 describes how the data-sharing attributes of variables referenced in15
target, teams, parallel, simd, task generating, and worksharing regions are determined.16

• The threadprivate directive, which is provided to create threadprivate memory, is17
described in Section 2.15.2 on page 183.18

• Clauses that may be specified on directives to control the data-sharing attributes of variables19
referenced in target, teams, parallel, simd, task generating, or worksharing constructs20
are described in Section 2.15.3 on page 18821

• Clauses that may be specified on directives to copy data values from private or threadprivate22
variables on one thread to the corresponding variables on other threads in the team are described23
in Section 2.15.4 on page 211.24

• Clauses that may be specified on directives to control the data-mapping of variables to a device25
data environment are described in Section 2.15.5.1 on page 216.26

178 OpenMP API – Version 4.5 November 2015

2.15.1 Data-sharing Attribute Rules1

This section describes how the data-sharing attributes of variables referenced in target,2
parallel, task, taskloop, simd, and worksharing regions are determined. The following3
two cases are described separately:4

• Section 2.15.1.1 on page 179 describes the data-sharing attribute rules for variables referenced in5
a construct.6

• Section 2.15.1.2 on page 183 describes the data-sharing attribute rules for variables referenced in7
a region, but outside any construct.8

2.15.1.1 Data-sharing Attribute Rules for Variables Referenced9
in a Construct10

The data-sharing attributes of variables that are referenced in a construct can be predetermined,11
explicitly determined, or implicitly determined, according to the rules outlined in this section.12

Specifying a variable on a firstprivate, lastprivate, linear, reduction, or13
copyprivate clause of an enclosed construct causes an implicit reference to the variable in the14
enclosing construct. Specifying a variable on a map clause of an enclosed construct may cause an15
implicit reference to the variable in the enclosing construct. Such implicit references are also16
subject to the data-sharing attribute rules outlined in this section.17

Certain variables and objects have predetermined data-sharing attributes as follows:18

C / C++

• Variables appearing in threadprivate directives are threadprivate.19

• Variables with automatic storage duration that are declared in a scope inside the construct are20
private.21

• Objects with dynamic storage duration are shared.22

• Static data members are shared.23

• The loop iteration variable(s) in the associated for-loop(s) of a for, parallel for,24
taskloop, or distribute construct is (are) private.25

• The loop iteration variable in the associated for-loop of a simd construct with just one26
associated for-loop is linear with a linear-step that is the increment of the associated for-loop.27

• The loop iteration variables in the associated for-loops of a simd construct with multiple28
associated for-loops are lastprivate.29

CHAPTER 2. DIRECTIVES 179

• Variables with static storage duration that are declared in a scope inside the construct are shared.1

• If an array section is a list item in a map clause on the target construct and the array section is2
derived from a variable for which the type is pointer then that variable is firstprivate.3

C / C++
Fortran

• Variables and common blocks appearing in threadprivate directives are threadprivate.4

• The loop iteration variable(s) in the associated do-loop(s) of a do, parallel do, taskloop,5
or distribute construct is (are) private.6

• The loop iteration variable in the associated do-loop of a simd construct with just one7
associated do-loop is linear with a linear-step that is the increment of the associated do-loop.8

• The loop iteration variables in the associated do-loops of a simd construct with multiple9
associated do-loops are lastprivate.10

• A loop iteration variable for a sequential loop in a parallel or task generating construct is11
private in the innermost such construct that encloses the loop.12

• Implied-do indices and forall indices are private.13

• Cray pointees have the same the data-sharing attribute as the storage with which their Cray14
pointers are associated.15

• Assumed-size arrays are shared.16

• An associate name preserves the association with the selector established at the ASSOCIATE17
statement.18

Fortran

Variables with predetermined data-sharing attributes may not be listed in data-sharing attribute19
clauses, except for the cases listed below. For these exceptions only, listing a predetermined20
variable in a data-sharing attribute clause is allowed and overrides the variable’s predetermined21
data-sharing attributes.22

180 OpenMP API – Version 4.5 November 2015

C / C++

• The loop iteration variable(s) in the associated for-loop(s) of a for, parallel for,1
taskloop, or distribute construct may be listed in a private or lastprivate clause.2

• The loop iteration variable in the associated for-loop of a simd construct with just one3
associated for-loop may be listed in a linear clause with a linear-step that is the increment of4
the associated for-loop.5

• The loop iteration variables in the associated for-loops of a simd construct with multiple6
associated for-loops may be listed in a lastprivate clause.7

• Variables with const-qualified type having no mutable member may be listed in a8
firstprivate clause, even if they are static data members.9

C / C++
Fortran

• The loop iteration variable(s) in the associated do-loop(s) of a do, parallel do, taskloop,10
or distribute construct may be listed in a private or lastprivate clause.11

• The loop iteration variable in the associated do-loop of a simd construct with just one12
associated do-loop may be listed in a linear clause with a linear-step that is the increment of13
the associated loop.14

• The loop iteration variables in the associated do-loops of a simd construct with multiple15
associated do-loops may be listed in a lastprivate clause.16

• Variables used as loop iteration variables in sequential loops in a parallel or task generating17
construct may be listed in data-sharing clauses on the construct itself, and on enclosed18
constructs, subject to other restrictions.19

• Assumed-size arrays may be listed in a shared clause.20

Fortran

Additional restrictions on the variables that may appear in individual clauses are described with21
each clause in Section 2.15.3 on page 188.22

Variables with explicitly determined data-sharing attributes are those that are referenced in a given23
construct and are listed in a data-sharing attribute clause on the construct.24

Variables with implicitly determined data-sharing attributes are those that are referenced in a given25
construct, do not have predetermined data-sharing attributes, and are not listed in a data-sharing26
attribute clause on the construct.27

Rules for variables with implicitly determined data-sharing attributes are as follows:28

• In a parallel, teams, or task generating construct, the data-sharing attributes of these29
variables are determined by the default clause, if present (see Section 2.15.3.1 on page 189).30

CHAPTER 2. DIRECTIVES 181

• In a parallel construct, if no default clause is present, these variables are shared.1

• For constructs other than task generating constructs or target constructs, if no default2
clause is present, these variables reference the variables with the same names that exist in the3
enclosing context.4

• In a target construct, variables that are not mapped after applying data-mapping attribute5
rules (see Section 2.15.5 on page 215) are firstprivate.6

C++
• In an orphaned task generating construct, if no default clause is present, formal arguments7
passed by reference are firstprivate.8

C++

Fortran

• In an orphaned task generating construct, if no default clause is present, dummy arguments9
are firstprivate.10

Fortran

• In a task generating construct, if no default clause is present, a variable for which the11
data-sharing attribute is not determined by the rules above and that in the enclosing context is12
determined to be shared by all implicit tasks bound to the current team is shared.13

• In a task generating construct, if no default clause is present, a variable for which the14
data-sharing attribute is not determined by the rules above is firstprivate.15

Additional restrictions on the variables for which data-sharing attributes cannot be implicitly16
determined in a task generating construct are described in Section 2.15.3.4 on page 196.17

182 OpenMP API – Version 4.5 November 2015

2.15.1.2 Data-sharing Attribute Rules for Variables Referenced1
in a Region but not in a Construct2

The data-sharing attributes of variables that are referenced in a region, but not in a construct, are3
determined as follows:4

C / C++

• Variables with static storage duration that are declared in called routines in the region are shared.5

• File-scope or namespace-scope variables referenced in called routines in the region are shared6
unless they appear in a threadprivate directive.7

• Objects with dynamic storage duration are shared.8

• Static data members are shared unless they appear in a threadprivate directive.9

• In C++, formal arguments of called routines in the region that are passed by reference have the10
same data-sharing attributes as the associated actual arguments.11

• Other variables declared in called routines in the region are private.12

C / C++
Fortran

• Local variables declared in called routines in the region and that have the save attribute, or that13
are data initialized, are shared unless they appear in a threadprivate directive.14

• Variables belonging to common blocks, or accessed by host or use association, and referenced in15
called routines in the region are shared unless they appear in a threadprivate directive.16

• Dummy arguments of called routines in the region that are passed by reference have the same17
data-sharing attributes as the associated actual arguments.18

• Cray pointees have the same data-sharing attribute as the storage with which their Cray pointers19
are associated.20

• Implied-do indices, forall indices, and other local variables declared in called routines in the21
region are private.22

Fortran

2.15.2 threadprivate Directive23

Summary24

The threadprivate directive specifies that variables are replicated, with each thread having its25
own copy. The threadprivate directive is a declarative directive.26

CHAPTER 2. DIRECTIVES 183

Syntax1

C / C++

The syntax of the threadprivate directive is as follows:2

#pragma omp threadprivate(list) new-line

where list is a comma-separated list of file-scope, namespace-scope, or static block-scope variables3
that do not have incomplete types.4

C / C++
Fortran

The syntax of the threadprivate directive is as follows:5

!$omp threadprivate(list)

where list is a comma-separated list of named variables and named common blocks. Common6
block names must appear between slashes.7

Fortran

Description8

Each copy of a threadprivate variable is initialized once, in the manner specified by the program,9
but at an unspecified point in the program prior to the first reference to that copy. The storage of all10
copies of a threadprivate variable is freed according to how static variables are handled in the base11
language, but at an unspecified point in the program.12

A program in which a thread references another thread’s copy of a threadprivate variable is13
non-conforming.14

The content of a threadprivate variable can change across a task scheduling point if the executing15
thread switches to another task that modifies the variable. For more details on task scheduling, see16
Section 1.3 on page 14 and Section 2.9 on page 83.17

In parallel regions, references by the master thread will be to the copy of the variable in the18
thread that encountered the parallel region.19

During a sequential part references will be to the initial thread’s copy of the variable. The values of20
data in the initial thread’s copy of a threadprivate variable are guaranteed to persist between any21
two consecutive references to the variable in the program.22

184 OpenMP API – Version 4.5 November 2015

The values of data in the threadprivate variables of non-initial threads are guaranteed to persist1
between two consecutive active parallel regions only if all of the following conditions hold:2

• Neither parallel region is nested inside another explicit parallel region.3

• The number of threads used to execute both parallel regions is the same.4

• The thread affinity policies used to execute both parallel regions are the same.5

• The value of the dyn-var internal control variable in the enclosing task region is false at entry to6
both parallel regions.7

If these conditions all hold, and if a threadprivate variable is referenced in both regions, then8
threads with the same thread number in their respective regions will reference the same copy of that9
variable.10

C / C++

If the above conditions hold, the storage duration, lifetime, and value of a thread’s copy of a11
threadprivate variable that does not appear in any copyin clause on the second region will be12
retained. Otherwise, the storage duration, lifetime, and value of a thread’s copy of the variable in13
the second region is unspecified.14

If the value of a variable referenced in an explicit initializer of a threadprivate variable is modified15
prior to the first reference to any instance of the threadprivate variable, then the behavior is16
unspecified.17

C / C++
C++

The order in which any constructors for different threadprivate variables of class type are called is18
unspecified. The order in which any destructors for different threadprivate variables of class type19
are called is unspecified.20

C++

Fortran

A variable is affected by a copyin clause if the variable appears in the copyin clause or it is in a21
common block that appears in the copyin clause.22

If the above conditions hold, the definition, association, or allocation status of a thread’s copy of a23
threadprivate variable or a variable in a threadprivate common block, that is not affected by any24
copyin clause that appears on the second region, will be retained. Otherwise, the definition and25
association status of a thread’s copy of the variable in the second region are undefined, and the26
allocation status of an allocatable variable will be implementation defined.27

If a threadprivate variable or a variable in a threadprivate common block is not affected by any28
copyin clause that appears on the first parallel region in which it is referenced, the variable or29
any subobject of the variable is initially defined or undefined according to the following rules:30

CHAPTER 2. DIRECTIVES 185

• If it has the ALLOCATABLE attribute, each copy created will have an initial allocation status of1
not currently allocated.2

• If it has the POINTER attribute:3

– if it has an initial association status of disassociated, either through explicit initialization or4
default initialization, each copy created will have an association status of disassociated;5

– otherwise, each copy created will have an association status of undefined.6

• If it does not have either the POINTER or the ALLOCATABLE attribute:7

– if it is initially defined, either through explicit initialization or default initialization, each copy8
created is so defined;9

– otherwise, each copy created is undefined.10

Fortran

Restrictions11

The restrictions to the threadprivate directive are as follows:12

• A threadprivate variable must not appear in any clause except the copyin, copyprivate,13
schedule, num_threads, thread_limit, and if clauses.14

• A program in which an untied task accesses threadprivate storage is non-conforming.15

C / C++

• A variable that is part of another variable (as an array or structure element) cannot appear in a16
threadprivate clause unless it is a static data member of a C++ class.17

• A threadprivate directive for file-scope variables must appear outside any definition or18
declaration, and must lexically precede all references to any of the variables in its list.19

• A threadprivate directive for namespace-scope variables must appear outside any20
definition or declaration other than the namespace definition itself, and must lexically precede all21
references to any of the variables in its list.22

• Each variable in the list of a threadprivate directive at file, namespace, or class scope must23
refer to a variable declaration at file, namespace, or class scope that lexically precedes the24
directive.25

• A threadprivate directive for static block-scope variables must appear in the scope of the26
variable and not in a nested scope. The directive must lexically precede all references to any of27
the variables in its list.28

• Each variable in the list of a threadprivate directive in block scope must refer to a variable29
declaration in the same scope that lexically precedes the directive. The variable declaration must30
use the static storage-class specifier.31

186 OpenMP API – Version 4.5 November 2015

• If a variable is specified in a threadprivate directive in one translation unit, it must be1
specified in a threadprivate directive in every translation unit in which it is declared.2

• The address of a threadprivate variable is not an address constant.3

C / C++
C++

• A threadprivate directive for static class member variables must appear in the class4
definition, in the same scope in which the member variables are declared, and must lexically5
precede all references to any of the variables in its list.6

• A threadprivate variable must not have an incomplete type or a reference type.7

• A threadprivate variable with class type must have:8

– an accessible, unambiguous default constructor in case of default initialization without a given9
initializer;10

– an accessible, unambiguous constructor accepting the given argument in case of direct11
initialization;12

– an accessible, unambiguous copy constructor in case of copy initialization with an explicit13
initializer14

C++

Fortran

• A variable that is part of another variable (as an array or structure element) cannot appear in a15
threadprivate clause.16

• The threadprivate directive must appear in the declaration section of a scoping unit in17
which the common block or variable is declared. Although variables in common blocks can be18
accessed by use association or host association, common block names cannot. This means that a19
common block name specified in a threadprivate directive must be declared to be a20
common block in the same scoping unit in which the threadprivate directive appears.21

• If a threadprivate directive specifying a common block name appears in one program unit,22
then such a directive must also appear in every other program unit that contains a COMMON23
statement specifying the same name. It must appear after the last such COMMON statement in the24
program unit.25

• If a threadprivate variable or a threadprivate common block is declared with the BIND attribute,26
the corresponding C entities must also be specified in a threadprivate directive in the C27
program.28

• A blank common block cannot appear in a threadprivate directive.29

• A variable can only appear in a threadprivate directive in the scope in which it is declared.30
It must not be an element of a common block or appear in an EQUIVALENCE statement.31

CHAPTER 2. DIRECTIVES 187

• A variable that appears in a threadprivate directive must be declared in the scope of a1
module or have the SAVE attribute, either explicitly or implicitly.2

Fortran

Cross References3

• dyn-var ICV, see Section 2.3 on page 36.4

• Number of threads used to execute a parallel region, see Section 2.5.1 on page 50.5

• copyin clause, see Section 2.15.4.1 on page 211.6

2.15.3 Data-Sharing Attribute Clauses7

Several constructs accept clauses that allow a user to control the data-sharing attributes of variables8
referenced in the construct. Data-sharing attribute clauses apply only to variables for which the9
names are visible in the construct on which the clause appears.10

Not all of the clauses listed in this section are valid on all directives. The set of clauses that is valid11
on a particular directive is described with the directive.12

Most of the clauses accept a comma-separated list of list items (see Section 2.1 on page 26). All list13
items appearing in a clause must be visible, according to the scoping rules of the base language.14
With the exception of the default clause, clauses may be repeated as needed. A list item that15
specifies a given variable may not appear in more than one clause on the same directive, except that16
a variable may be specified in both firstprivate and lastprivate clauses.17

C++
If a variable referenced in a data-sharing attribute clause has a type derived from a template, and18
there are no other references to that variable in the program, then any behavior related to that19
variable is unspecified.20

C++

188 OpenMP API – Version 4.5 November 2015

Fortran

A named common block may be specified in a list by enclosing the name in slashes. When a named1
common block appears in a list, it has the same meaning as if every explicit member of the common2
block appeared in the list. An explicit member of a common block is a variable that is named in a3
COMMON statement that specifies the common block name and is declared in the same scoping unit4
in which the clause appears.5

Although variables in common blocks can be accessed by use association or host association,6
common block names cannot. As a result, a common block name specified in a data-sharing7
attribute clause must be declared to be a common block in the same scoping unit in which the8
data-sharing attribute clause appears.9

When a named common block appears in a private, firstprivate, lastprivate, or10
shared clause of a directive, none of its members may be declared in another data-sharing11
attribute clause in that directive. When individual members of a common block appear in a12
private, firstprivate, lastprivate, reduction, or linear clause of a directive,13
the storage of the specified variables is no longer Fortran associated with the storage of the common14
block itself.15

Fortran

2.15.3.1 default Clause16

Summary17

The default clause explicitly determines the data-sharing attributes of variables that are18
referenced in a parallel, teams, or task generating construct and would otherwise be implicitly19
determined (see Section 2.15.1.1 on page 179).20

Syntax21

C / C++
The syntax of the default clause is as follows:22

default(shared | none)

C / C++
Fortran

The syntax of the default clause is as follows:23

default(private | firstprivate | shared | none)

Fortran

CHAPTER 2. DIRECTIVES 189

Description1

The default(shared) clause causes all variables referenced in the construct that have2
implicitly determined data-sharing attributes to be shared.3

Fortran

The default(firstprivate) clause causes all variables in the construct that have implicitly4
determined data-sharing attributes to be firstprivate.5

The default(private) clause causes all variables referenced in the construct that have6
implicitly determined data-sharing attributes to be private.7

Fortran

The default(none) clause requires that each variable that is referenced in the construct, and8
that does not have a predetermined data-sharing attribute, must have its data-sharing attribute9
explicitly determined by being listed in a data-sharing attribute clause.10

Restrictions11

The restrictions to the default clause are as follows:12

• Only a single default clause may be specified on a parallel, task, taskloop or13
teams directive.14

2.15.3.2 shared Clause15

Summary16

The shared clause declares one or more list items to be shared by tasks generated by a17
parallel, teams, or task generating construct.18

Syntax19

The syntax of the shared clause is as follows:20

shared(list)

190 OpenMP API – Version 4.5 November 2015

Description1

All references to a list item within a task refer to the storage area of the original variable at the point2
the directive was encountered.3

The programmer must ensure, by adding proper synchronization, that storage shared by an explicit4
task region does not reach the end of its lifetime before the explicit task region completes its5
execution.6

Fortran

The association status of a shared pointer becomes undefined upon entry to and on exit from the7
parallel, teams, or task generating construct if it is associated with a target or a subobject of a8
target that is in a private, firstprivate, lastprivate, or reduction clause in the9
construct.10

Under certain conditions, passing a shared variable to a non-intrinsic procedure may result in the11
value of the shared variable being copied into temporary storage before the procedure reference,12
and back out of the temporary storage into the actual argument storage after the procedure13
reference. When this situation occurs is implementation defined.14

Note – Use of intervening temporary storage may occur when the following three conditions hold15
regarding an actual argument in a reference to a non-intrinsic procedure:16

1. The actual argument is one of the following:17

• A shared variable.18

• A subobject of a shared variable.19

• An object associated with a shared variable.20

• An object associated with a subobject of a shared variable.21

2. The actual argument is also one of the following:22

• An array section.23

• An array section with a vector subscript.24

• An assumed-shape array.25

• A pointer array.26

3. The associated dummy argument for this actual argument is an explicit-shape array or an27
assumed-size array.28

CHAPTER 2. DIRECTIVES 191

These conditions effectively result in references to, and definitions of, the temporary storage during1
the procedure reference. Any references to (or definitions of) the shared storage that is associated2
with the dummy argument by any other task must be synchronized with the procedure reference to3
avoid possible race conditions.4

Fortran

Restrictions5

The restrictions for the shared clause are as follows:6
C

• A variable that is part of another variable (as an array or structure element) cannot appear in a7
shared clause.8

C

C++
• A variable that is part of another variable (as an array or structure element) cannot appear in a9
shared clause except if the shared clause is associated with a construct within a class10
non-static member function and the variable is an accessible data member of the object for which11
the non-static member function is invoked.12

C++

Fortran

• A variable that is part of another variable (as an array or structure element) cannot appear in a13
shared clause.14

Fortran

2.15.3.3 private Clause15

Summary16

The private clause declares one or more list items to be private to a task or to a SIMD lane.17

Syntax18

The syntax of the private clause is as follows:19

private(list)

192 OpenMP API – Version 4.5 November 2015

Description1

Each task that references a list item that appears in a private clause in any statement in the2
construct receives a new list item. Each SIMD lane used in a simd construct that references a list3
item that appears in a private clause in any statement in the construct receives a new list item.4
Language-specific attributes for new list items are derived from the corresponding original list item.5
Inside the construct, all references to the original list item are replaced by references to the new list6
item. In the rest of the region, it is unspecified whether references are to the new list item or the7
original list item.8

C++
If the construct is contained in a member function, it is unspecified anywhere in the region if9
accesses through the implicit this pointer refer to the new list item or the original list item.10

C++

Therefore, if an attempt is made to reference the original item, its value after the region is also11
unspecified. If a SIMD construct or a task does not reference a list item that appears in a private12
clause, it is unspecified whether SIMD lanes or the task receive a new list item.13

The value and/or allocation status of the original list item will change only:14

• if accessed and modified via pointer,15

• if possibly accessed in the region but outside of the construct,16

• as a side effect of directives or clauses, or17

Fortran

• if accessed and modified via construct association.18

Fortran

List items that appear in a private, firstprivate, or reduction clause in a parallel19
construct may also appear in a private clause in an enclosed parallel, worksharing, task,20
taskloop, simd, or target construct.21

List items that appear in a private or firstprivate clause in a task or taskloop22
construct may also appear in a private clause in an enclosed parallel, task, taskloop,23
simd, or target construct.24

List items that appear in a private, firstprivate, lastprivate, or reduction clause25
in a worksharing construct may also appear in a private clause in an enclosed parallel,26
task, simd, or target construct.27

CHAPTER 2. DIRECTIVES 193

C / C++

A new list item of the same type, with automatic storage duration, is allocated for the construct.1
The storage and thus lifetime of these list items lasts until the block in which they are created exits.2
The size and alignment of the new list item are determined by the type of the variable. This3
allocation occurs once for each task generated by the construct and once for each SIMD lane used4
by the construct.5

The new list item is initialized, or has an undefined initial value, as if it had been locally declared6
without an initializer.7

C / C++
C++

If the type of a list item is a reference to a type T then the type will be considered to be T for all8
purposes of this clause.9

The order in which any default constructors for different private variables of class type are called is10
unspecified. The order in which any destructors for different private variables of class type are11
called is unspecified.12

C++

Fortran

If any statement of the construct references a list item, a new list item of the same type and type13
parameters is allocated. This allocation occurs once for each task generated by the construct and14
once for each SIMD lane used by the construct. The initial value of the new list item is undefined.15
The initial status of a private pointer is undefined.16

For a list item or the subobject of a list item with the ALLOCATABLE attribute:17

• if the allocation status is “not currently allocated”, the new list item or the subobject of the new18
list item will have an initial allocation status of "not currently allocated".19

• if the allocation status is “currently allocated”, the new list item or the subobject of the new list20
item will have an initial allocation status of "currently allocated".21

• If the new list item or the subobject of the new list item is an array, its bounds will be the same as22
those of the original list item or the subobject of the original list item.23

A list item that appears in a private clause may be storage-associated with other variables when24
the private clause is encountered. Storage association may exist because of constructs such as25
EQUIVALENCE or COMMON. If A is a variable appearing in a private clause on a construct and26
B is a variable that is storage-associated with A, then:27

• The contents, allocation, and association status of B are undefined on entry to the region.28

• Any definition of A, or of its allocation or association status, causes the contents, allocation, and29
association status of B to become undefined.30

194 OpenMP API – Version 4.5 November 2015

• Any definition of B, or of its allocation or association status, causes the contents, allocation, and1
association status of A to become undefined.2

A list item that appears in a private clause may be a selector of an ASSOCIATE construct. If the3
construct association is established prior to a parallel region, the association between the4
associate name and the original list item will be retained in the region.5

Finalization of a list item of a finalizable type or subojects of a list item of a finalizable type occurs6
at the end of the region. The order in which any final subroutines for different variables of a7
finalizable type are called is unspecified.8

Fortran

Restrictions9

The restrictions to the private clause are as follows:10

C
• A variable that is part of another variable (as an array or structure element) cannot appear in a11
private clause.12

C

C++
• A variable that is part of another variable (as an array or structure element) cannot appear in a13
private clause except if the private clause is associated with a construct within a class14
non-static member function and the variable is an accessible data member of the object for which15
the non-static member function is invoked.16

• A variable of class type (or array thereof) that appears in a private clause requires an17
accessible, unambiguous default constructor for the class type.18

C++

C / C++

• A variable that appears in a private clause must not have a const-qualified type unless it is19
of class type with a mutable member. This restriction does not apply to the firstprivate20
clause.21

• A variable that appears in a private clause must not have an incomplete type or be a reference22
to an incomplete type.23

C / C++

CHAPTER 2. DIRECTIVES 195

Fortran

• A variable that is part of another variable (as an array or structure element) cannot appear in a1
private clause.2

• A variable that appears in a private clause must either be definable, or an allocatable variable.3
This restriction does not apply to the firstprivate clause.4

• Variables that appear in namelist statements, in variable format expressions, and in expressions5
for statement function definitions, may not appear in a private clause.6

• Pointers with the INTENT(IN) attribute may not appear in a private clause. This restriction7
does not apply to the firstprivate clause.8

Fortran

2.15.3.4 firstprivate Clause9

Summary10

The firstprivate clause declares one or more list items to be private to a task, and initializes11
each of them with the value that the corresponding original item has when the construct is12
encountered.13

Syntax14

The syntax of the firstprivate clause is as follows:15

firstprivate(list)

196 OpenMP API – Version 4.5 November 2015

Description1

The firstprivate clause provides a superset of the functionality provided by the private2
clause.3

A list item that appears in a firstprivate clause is subject to the private clause semantics4
described in Section 2.15.3.3 on page 192, except as noted. In addition, the new list item is5
initialized from the original list item existing before the construct. The initialization of the new list6
item is done once for each task that references the list item in any statement in the construct. The7
initialization is done prior to the execution of the construct.8

For a firstprivate clause on a parallel, task, taskloop, target, or teams9
construct, the initial value of the new list item is the value of the original list item that exists10
immediately prior to the construct in the task region where the construct is encountered. For a11
firstprivate clause on a worksharing construct, the initial value of the new list item for each12
implicit task of the threads that execute the worksharing construct is the value of the original list13
item that exists in the implicit task immediately prior to the point in time that the worksharing14
construct is encountered.15

To avoid race conditions, concurrent updates of the original list item must be synchronized with the16
read of the original list item that occurs as a result of the firstprivate clause.17

If a list item appears in both firstprivate and lastprivate clauses, the update required18
for lastprivate occurs after all the initializations for firstprivate.19

C / C++

For variables of non-array type, the initialization occurs by copy assignment. For an array of20
elements of non-array type, each element is initialized as if by assignment from an element of the21
original array to the corresponding element of the new array.22

C / C++
C++

For variables of class type, a copy constructor is invoked to perform the initialization. The order in23
which copy constructors for different variables of class type are called is unspecified.24

C++

Fortran

If the original list item does not have the POINTER attribute, initialization of the new list items25
occurs as if by intrinsic assignment, unless the original list item has the allocation status of not26
currently allocated, in which case the new list items will have the same status.27

If the original list item has the POINTER attribute, the new list items receive the same association28
status of the original list item as if by pointer assignment.29

Fortran

CHAPTER 2. DIRECTIVES 197

Restrictions1

The restrictions to the firstprivate clause are as follows:2

• A list item that is private within a parallel region must not appear in a firstprivate3
clause on a worksharing construct if any of the worksharing regions arising from the worksharing4
construct ever bind to any of the parallel regions arising from the parallel construct.5

• A list item that is private within a teams region must not appear in a firstprivate clause6
on a distribute construct if any of the distribute regions arising from the7
distribute construct ever bind to any of the teams regions arising from the teams8
construct.9

• A list item that appears in a reduction clause of a parallel construct must not appear in a10
firstprivate clause on a worksharing, task, or taskloop construct if any of the11
worksharing or task regions arising from the worksharing, task, or taskloop construct ever12
bind to any of the parallel regions arising from the parallel construct.13

• A list item that appears in a reduction clause of a teams construct must not appear in a14
firstprivate clause on a distribute construct if any of the distribute regions15
arising from the distribute construct ever bind to any of the teams regions arising from the16
teams construct.17

• A list item that appears in a reduction clause of a worksharing construct must not appear in a18
firstprivate clause in a task construct encountered during execution of any of the19
worksharing regions arising from the worksharing construct.20

C++
• A variable of class type (or array thereof) that appears in a firstprivate clause requires an21
accessible, unambiguous copy constructor for the class type.22

C++

C / C++

• A variable that appears in a firstprivate clause must not have an incomplete C/C++ type or23
be a reference to an incomplete type.24

• If a list item in a firstprivate clause on a worksharing construct has a reference type then it25
must bind to the same object for all threads of the team.26

C / C++
Fortran

• Variables that appear in namelist statements, in variable format expressions, or in expressions for27
statement function definitions, may not appear in a firstprivate clause.28

Fortran

198 OpenMP API – Version 4.5 November 2015

2.15.3.5 lastprivate Clause1

Summary2

The lastprivate clause declares one or more list items to be private to an implicit task or to a3
SIMD lane, and causes the corresponding original list item to be updated after the end of the region.4

Syntax5

The syntax of the lastprivate clause is as follows:6

lastprivate(list)

Description7

The lastprivate clause provides a superset of the functionality provided by the private8
clause.9

A list item that appears in a lastprivate clause is subject to the private clause semantics10
described in Section 2.15.3.3 on page 192. In addition, when a lastprivate clause appears on11
the directive that identifies a worksharing construct or a SIMD construct, the value of each new list12
item from the sequentially last iteration of the associated loops, or the lexically last section13
construct, is assigned to the original list item.14

C / C++

For an array of elements of non-array type, each element is assigned to the corresponding element15
of the original array.16

C / C++

Fortran

If the original list item does not have the POINTER attribute, its update occurs as if by intrinsic17
assignment.18

CHAPTER 2. DIRECTIVES 199

If the original list item has the POINTER attribute, its update occurs as if by pointer assignment.1

Fortran

List items that are not assigned a value by the sequentially last iteration of the loops, or by the2
lexically last section construct, have unspecified values after the construct. Unassigned3
subcomponents also have unspecified values after the construct.4

The original list item becomes defined at the end of the construct if there is an implicit barrier at5
that point. To avoid race conditions, concurrent reads or updates of the original list item must be6
synchronized with the update of the original list item that occurs as a result of the lastprivate7
clause.8

If the lastprivate clause is used on a construct to which nowait is applied, accesses to the9
original list item may create a data race. To avoid this, synchronization must be inserted to ensure10
that the sequentially last iteration or lexically last section construct has stored and flushed that list11
item.12

If the lastprivate clause is used on a distribute simd, distribute parallel loop, or13
distribute parallel loop SIMD, accesses to the original list item may create a data race. To avoid14
this, synchronization must be inserted to ensure that the sequentially last iteration has stored and15
flushed that list item.16

If a list item appears in both firstprivate and lastprivate clauses, the update required17
for lastprivate occurs after all initializations for firstprivate.18

Restrictions19

The restrictions to the lastprivate clause are as follows:20

• A list item that is private within a parallel region, or that appears in the reduction clause21
of a parallel construct, must not appear in a lastprivate clause on a worksharing22
construct if any of the corresponding worksharing regions ever binds to any of the corresponding23
parallel regions.24

C++
• A variable of class type (or array thereof) that appears in a lastprivate clause requires an25
accessible, unambiguous default constructor for the class type, unless the list item is also26
specified in a firstprivate clause.27

• A variable of class type (or array thereof) that appears in a lastprivate clause requires an28
accessible, unambiguous copy assignment operator for the class type. The order in which copy29
assignment operators for different variables of class type are called is unspecified.30

C++

200 OpenMP API – Version 4.5 November 2015

C / C++

• A variable that appears in a lastprivate clause must not have a const-qualified type unless1
it is of class type with a mutable member.2

• A variable that appears in a lastprivate clause must not have an incomplete C/C++ type or3
be a reference to an incomplete type.4

• If a list item in a lastprivate clause on a worksharing construct has a reference type then it5
must bind to the same object for all threads of the team.6

C / C++
Fortran

• A variable that appears in a lastprivate clause must be definable.7

• If the original list item has the ALLOCATABLE attribute, the corresponding list item in the8
sequentially last iteration or lexically last section must have an allocation status of allocated upon9
exit from that iteration or section.10

• Variables that appear in namelist statements, in variable format expressions, or in expressions for11
statement function definitions, may not appear in a lastprivate clause.12

Fortran

2.15.3.6 reduction Clause13

Summary14

The reduction clause specifies a reduction-identifier and one or more list items. For each list15
item, a private copy is created in each implicit task or SIMD lane, and is initialized with the16
initializer value of the reduction-identifier. After the end of the region, the original list item is17
updated with the values of the private copies using the combiner associated with the18
reduction-identifier.19

CHAPTER 2. DIRECTIVES 201

Syntax1

C / C++

The syntax of the reduction clause is as follows:2

reduction(reduction-identifier : list)

where:3
C

reduction-identifier is either an identifier or one of the following operators: +, -, *, &, |, ˆ, && and4
||5

C

C++
reduction-identifier is either an id-expression or one of the following operators: +, -, *, &, |, ˆ, &&6
and ||7

C++

Table 2.7 lists each reduction-identifier that is implicitly declared at every scope for arithmetic8
types and its semantic initializer value. The actual initializer value is that value as expressed in the9
data type of the reduction list item.10

TABLE 2.7: Implicitly Declared C/C++ reduction-identifiers

Identifier Initializer Combiner

+ omp_priv = 0 omp_out += omp_in

* omp_priv = 1 omp_out *= omp_in

- omp_priv = 0 omp_out += omp_in

& omp_priv = 0 omp_out &= omp_in

| omp_priv = 0 omp_out |= omp_in

ˆ omp_priv = 0 omp_out ˆ= omp_in

&& omp_priv = 1 omp_out = omp_in && omp_out

|| omp_priv = 0 omp_out = omp_in || omp_out

table continued on next page

202 OpenMP API – Version 4.5 November 2015

table continued from previous page

Identifier Initializer Combiner

max omp_priv = Least
representable number in the
reduction list item type

omp_out = omp_in > omp_out ?
omp_in : omp_out

min omp_priv = Largest
representable number in the
reduction list item type

omp_out = omp_in < omp_out ?
omp_in : omp_out

1

C / C++

Fortran

The syntax of the reduction clause is as follows:2

reduction(reduction-identifier : list)

where reduction-identifier is either a base language identifier, or a user-defined operator, or one of3
the following operators: +, -, *, .and., .or., .eqv., .neqv., or one of the following intrinsic4
procedure names: max, min, iand, ior, ieor.5

Table 2.8 lists each reduction-identifier that is implicitly declared for numeric and logical types and6
its semantic initializer value. The actual initializer value is that value as expressed in the data type7
of the reduction list item.8

TABLE 2.8: Implicitly Declared Fortran reduction-identifiers

Identifier Initializer Combiner

+ omp_priv = 0 omp_out = omp_in + omp_out

* omp_priv = 1 omp_out = omp_in * omp_out

- omp_priv = 0 omp_out = omp_in + omp_out

.and. omp_priv = .true. omp_out = omp_in .and. omp_out

.or. omp_priv = .false. omp_out = omp_in .or. omp_out

.eqv. omp_priv = .true. omp_out = omp_in .eqv. omp_out

table continued on next page

CHAPTER 2. DIRECTIVES 203

table continued from previous page

Identifier Initializer Combiner

.neqv. omp_priv = .false. omp_out = omp_in .neqv. omp_out

max omp_priv = Least
representable number in the
reduction list item type

omp_out = max(omp_in, omp_out)

min omp_priv = Largest
representable number in the
reduction list item type

omp_out = min(omp_in, omp_out)

iand omp_priv = All bits on omp_out = iand(omp_in, omp_out)

ior omp_priv = 0 omp_out = ior(omp_in, omp_out)

ieor omp_priv = 0 omp_out = ieor(omp_in, omp_out)

Fortran

In the above tables, omp_in and omp_out correspond to two identifiers that refer to storage of the1
type of the list item. omp_out holds the final value of the combiner operation.2

Any reduction-identifier that is defined with the declare reduction directive is also valid. In3
that case, the initializer and combiner of the reduction-identifier are specified by the4
initializer-clause and the combiner in the declare reduction directive.5

Description6

The reduction clause can be used to perform some forms of recurrence calculations (involving7
mathematically associative and commutative operators) in parallel.8

For parallel and worksharing constructs, a private copy of each list item is created, one for each9
implicit task, as if the private clause had been used. For the simd construct, a private copy of10
each list item is created, one for each SIMD lane as if the private clause had been used. For the11
teams construct, a private copy of each list item is created, one for each team in the league as if12
the private clause had been used. The private copy is then initialized as specified above. At the13
end of the region for which the reduction clause was specified, the original list item is updated14
by combining its original value with the final value of each of the private copies, using the15
combiner of the specified reduction-identifier.16

204 OpenMP API – Version 4.5 November 2015

Fortran

If the original list item has the POINTER attribute, the private copy of the list item is associated1
with a private target.2

Fortran

The reduction-identifier specified in the reduction clause must match a previously declared3
reduction-identifier of the same name and type for each of the list items. This match is done by4
means of a name lookup in the base language.5

C / C++

The list items that appear in the reduction clause may include array sections.6

C / C++
C++

If the type is a derived class, then any reduction-identifier that matches its base classes is also a7
match, if there is no specific match for the type.8

If the reduction-identifier is not an id-expression, then it is implicitly converted to one by9
prepending the keyword operator (for example, + becomes operator+).10

If the reduction-identifier is qualified then a qualified name lookup is used to find the declaration.11

If the reduction-identifier is unqualified then an argument-dependent name lookup must be12
performed using the type of each list item.13

C++

If the list item is an array or array section, it will be treated as if a reduction clause would be14
applied to each separate element of the array section. The elements of each private array section15
will be allocated contiguously.16

If nowait is not used, the reduction computation will be complete at the end of the construct;17
however, if the reduction clause is used on a construct to which nowait is also applied, accesses to18
the original list item will create a race and, thus, have unspecified effect unless synchronization19
ensures that they occur after all threads have executed all of their iterations or section constructs,20
and the reduction computation has completed and stored the computed value of that list item. This21
can most simply be ensured through a barrier synchronization.22

The location in the OpenMP program at which the values are combined and the order in which the23
values are combined are unspecified. Therefore, when comparing sequential and parallel runs, or24
when comparing one parallel run to another (even if the number of threads used is the same), there25
is no guarantee that bit-identical results will be obtained or that side effects (such as floating-point26
exceptions) will be identical or take place at the same location in the OpenMP program.27

To avoid race conditions, concurrent reads or updates of the original list item must be synchronized28
with the update of the original list item that occurs as a result of the reduction computation.29

CHAPTER 2. DIRECTIVES 205

Restrictions1

The restrictions to the reduction clause are as follows:2

• A list item that appears in a reduction clause of a worksharing construct must be shared in3
the parallel regions to which any of the worksharing regions arising from the worksharing4
construct bind.5

• A list item that appears in a reduction clause of the innermost enclosing worksharing or6
parallel construct may not be accessed in an explicit task.7

• Any number of reduction clauses can be specified on the directive, but a list item can appear8
only once in the reduction clauses for that directive.9

• For a reduction-identifier declared with the declare reduction construct, the directive10
must appear before its use in a reduction clause.11

• If a list item is an array section, it must specify contiguous storage and it cannot be a zero-length12
array section.13

• If a list item is an array section, accesses to the elements of the array outside the specified array14
section result in unspecified behavior.15

C / C++

• The type of a list item that appears in a reduction clause must be valid for the16
reduction-identifier. For a max or min reduction in C, the type of the list item must be an17
allowed arithmetic data type: char, int, float, double, or _Bool, possibly modified with18
long, short, signed, or unsigned. For a max or min reduction in C++, the type of the19
list item must be an allowed arithmetic data type: char, wchar_t, int, float, double, or20
bool, possibly modified with long, short, signed, or unsigned.21

• A list item that appears in a reduction clause must not be const-qualified.22

• If a list item in a reduction clause on a worksharing construct has a reference type then it23
must bind to the same object for all threads of the team.24

• The reduction-identifier for any list item must be unambiguous and accessible.25

C / C++

206 OpenMP API – Version 4.5 November 2015

Fortran

• The type and the rank of a list item that appears in a reduction clause must be valid for the1
combiner and initializer.2

• A list item that appears in a reduction clause must be definable.3

• A procedure pointer may not appear in a reduction clause.4

• A pointer with the INTENT(IN) attribute may not appear in the reduction clause.5

• An original list item with the POINTER attribute or any pointer component of an original list6
item that is referenced in the combiner must be associated at entry to the construct that contains7
the reduction clause. Additionally, the list item or the pointer component of the list item must8
not be deallocated, allocated, or pointer assigned within the region.9

• An original list item with the ALLOCATABLE attribute or any allocatable component of an10
original list item that is referenced in the combiner must be in the allocated state at entry to the11
construct that contains the reduction clause. Additionally, the list item or the allocatable12
component of the list item must be neither deallocated nor allocated within the region.13

• If the reduction-identifier is defined in a declare reduction directive, the14
declare reduction directive must be in the same subprogram, or accessible by host or use15
association.16

• If the reduction-identifier is a user-defined operator, the same explicit interface for that operator17
must be accessible as at the declare reduction directive.18

• If the reduction-identifier is defined in a declare reduction directive, any subroutine or19
function referenced in the initializer clause or combiner expression must be an intrinsic function,20
or must have an explicit interface where the same explicit interface is accessible as at the21
declare reduction directive.22

Fortran

2.15.3.7 linear Clause23

Summary24

The linear clause declares one or more list items to be private to a SIMD lane and to have a25
linear relationship with respect to the iteration space of a loop.26

CHAPTER 2. DIRECTIVES 207

Syntax1

C
The syntax of the linear clause is as follows:2

linear(linear-list[: linear-step])

where linear-list is one of the following3

list4

modifier(list)5

where modifier is one of the following:6

val7

C

C++
The syntax of the linear clause is as follows:8

linear(linear-list[: linear-step])

where linear-list is one of the following9

list10

modifier(list)11

where modifier is one of the following:12

ref13

val14

uval15

C++

208 OpenMP API – Version 4.5 November 2015

Fortran

The syntax of the linear clause is as follows:1

linear(linear-list[: linear-step])

where linear-list is one of the following2

list3

modifier(list)4

where modifier is one of the following:5

ref6

val7

uval8

Fortran

Description9

The linear clause provides a superset of the functionality provided by the private clause. A10
list item that appears in a linear clause is subject to the private clause semantics described in11
Section 2.15.3.3 on page 192 except as noted. If linear-step is not specified, it is assumed to be 1.12

When a linear clause is specified on a construct, the value of the new list item on each iteration13
of the associated loop(s) corresponds to the value of the original list item before entering the14
construct plus the logical number of the iteration times linear-step. The value corresponding to the15
sequentially last iteration of the associated loop(s) is assigned to the original list item.16

When a linear clause is specified on a declarative directive, all list items must be formal17
parameters (or, in Fortran, dummy arguments) of a function that will be invoked concurrently on18
each SIMD lane. If no modifier is specified or the val or uval modifier is specified, the value of19
each list item on each lane corresponds to the value of the list item upon entry to the function plus20
the logical number of the lane times linear-step. If the uval modifier is specified, each invocation21
uses the same storage location for each SIMD lane; this storage location is updated with the final22
value of the logically last lane. If the ref modifier is specified, the storage location of each list23
item on each lane corresponds to an array at the storage location upon entry to the function indexed24
by the logical number of the lane times linear-step.25

CHAPTER 2. DIRECTIVES 209

Restrictions1

• The linear-step expression must be invariant during the execution of the region associated with2
the construct. Otherwise, the execution results in unspecified behavior.3

• A list-item cannot appear in more than one linear clause.4

• A list-item that appears in a linear clause cannot appear in any other data-sharing attribute5
clause.6

C
• A list-item that appears in a linear clause must be of integral or pointer type.7

C

C++
• A list-item that appears in a linear clause without the ref modifier must be of integral or8
pointer type, or must be a reference to an integral or pointer type.9

• The ref or uval modifier can only be used if the list-item is of a reference type.10

• If a list item in a linear clause on a worksharing construct has a reference type then it must11
bind to the same object for all threads of the team.12

• If the list item is of a reference type and the ref modifier is not specified and if any write to the13
list item occurs before any read of the list item then the result is unspecified.14

C++

Fortran

• A list-item that appears in a linear clause without the ref modifier must be of type15
integer.16

• The ref or uval modifier can only be used if the list-item is a dummy argument without the17
VALUE attribute.18

• Variables that have the POINTER attribute and Cray pointers may not appear in a linear clause.19

• The list item with the ALLOCATABLE attribute in the sequentially last iteration must have an20
allocation status of allocated upon exit from that iteration.21

• If the list item is a dummy argument without the VALUE attribute and the ref modifier is not22
specified and if any write to the list item occurs before any read of the list item then the result is23
unspecified.24

Fortran

210 OpenMP API – Version 4.5 November 2015

2.15.4 Data Copying Clauses1

This section describes the copyin clause (allowed on the parallel directive and combined2
parallel worksharing directives) and the copyprivate clause (allowed on the single directive).3

These clauses support the copying of data values from private or threadprivate variables on one4
implicit task or thread to the corresponding variables on other implicit tasks or threads in the team.5

The clauses accept a comma-separated list of list items (see Section 2.1 on page 26). All list items6
appearing in a clause must be visible, according to the scoping rules of the base language. Clauses7
may be repeated as needed, but a list item that specifies a given variable may not appear in more8
than one clause on the same directive.9

Fortran

An associate name preserves the association with the selector established at the ASSOCIATE10
statement. A list item that appears in a data copying clause may be a selector of an ASSOCIATE11
construct. If the construct association is established prior to a parallel region, the association12
between the associate name and the original list item will be retained in the region.13

Fortran

2.15.4.1 copyin Clause14

Summary15

The copyin clause provides a mechanism to copy the value of the master thread’s threadprivate16
variable to the threadprivate variable of each other member of the team executing the parallel17
region.18

Syntax19

The syntax of the copyin clause is as follows:20

copyin(list)

CHAPTER 2. DIRECTIVES 211

Description1

C / C++

The copy is done after the team is formed and prior to the start of execution of the associated2
structured block. For variables of non-array type, the copy occurs by copy assignment. For an array3
of elements of non-array type, each element is copied as if by assignment from an element of the4
master thread’s array to the corresponding element of the other thread’s array.5

C / C++
C++

For class types, the copy assignment operator is invoked. The order in which copy assignment6
operators for different variables of class type are called is unspecified.7

C++

Fortran

The copy is done, as if by assignment, after the team is formed and prior to the start of execution of8
the associated structured block.9

On entry to any parallel region, each thread’s copy of a variable that is affected by a copyin10
clause for the parallel region will acquire the allocation, association, and definition status of the11
master thread’s copy, according to the following rules:12

• If the original list item has the POINTER attribute, each copy receives the same association13
status of the master thread’s copy as if by pointer assignment.14

• If the original list item does not have the POINTER attribute, each copy becomes defined with15
the value of the master thread’s copy as if by intrinsic assignment, unless it has the allocation16
status of not currently allocated, in which case each copy will have the same status.17

Fortran

212 OpenMP API – Version 4.5 November 2015

Restrictions1

The restrictions to the copyin clause are as follows:2

C / C++

• A list item that appears in a copyin clause must be threadprivate.3

• A variable of class type (or array thereof) that appears in a copyin clause requires an4
accessible, unambiguous copy assignment operator for the class type.5

C / C++
Fortran

• A list item that appears in a copyin clause must be threadprivate. Named variables appearing6
in a threadprivate common block may be specified: it is not necessary to specify the whole7
common block.8

• A common block name that appears in a copyin clause must be declared to be a common block9
in the same scoping unit in which the copyin clause appears.10

Fortran

2.15.4.2 copyprivate Clause11

Summary12

The copyprivate clause provides a mechanism to use a private variable to broadcast a value13
from the data environment of one implicit task to the data environments of the other implicit tasks14
belonging to the parallel region.15

To avoid race conditions, concurrent reads or updates of the list item must be synchronized with the16
update of the list item that occurs as a result of the copyprivate clause.17

Syntax18

The syntax of the copyprivate clause is as follows:19

copyprivate(list)

CHAPTER 2. DIRECTIVES 213

Description1

The effect of the copyprivate clause on the specified list items occurs after the execution of the2
structured block associated with the single construct (see Section 2.7.3 on page 67), and before3
any of the threads in the team have left the barrier at the end of the construct.4

C / C++

In all other implicit tasks belonging to the parallel region, each specified list item becomes5
defined with the value of the corresponding list item in the implicit task associated with the thread6
that executed the structured block. For variables of non-array type, the definition occurs by copy7
assignment. For an array of elements of non-array type, each element is copied by copy assignment8
from an element of the array in the data environment of the implicit task associated with the thread9
that executed the structured block to the corresponding element of the array in the data environment10
of the other implicit tasks11

C / C++
C++

For class types, a copy assignment operator is invoked. The order in which copy assignment12
operators for different variables of class type are called is unspecified.13

C++

Fortran

If a list item does not have the POINTER attribute, then in all other implicit tasks belonging to the14
parallel region, the list item becomes defined as if by intrinsic assignment with the value of the15
corresponding list item in the implicit task associated with the thread that executed the structured16
block.17

If the list item has the POINTER attribute, then, in all other implicit tasks belonging to the18
parallel region, the list item receives, as if by pointer assignment, the same association status of19
the corresponding list item in the implicit task associated with the thread that executed the20
structured block.21

The order in which any final subroutines for different variables of a finalizable type are called is22
unspecified.23

Fortran

Note – The copyprivate clause is an alternative to using a shared variable for the value when24
providing such a shared variable would be difficult (for example, in a recursion requiring a different25
variable at each level).26

214 OpenMP API – Version 4.5 November 2015

Restrictions1

The restrictions to the copyprivate clause are as follows:2

• All list items that appear in the copyprivate clause must be either threadprivate or private in3
the enclosing context.4

• A list item that appears in a copyprivate clause may not appear in a private or5
firstprivate clause on the single construct.6

C++
• A variable of class type (or array thereof) that appears in a copyprivate clause requires an7
accessible unambiguous copy assignment operator for the class type.8

C++

Fortran

• A common block that appears in a copyprivate clause must be threadprivate.9

• Pointers with the INTENT(IN) attribute may not appear in the copyprivate clause.10

• The list item with the ALLOCATABLE attribute must have the allocation status of allocated when11
the intrinsic assignment is performed.12

Fortran

2.15.5 Data-mapping Attribute Rules and Clauses13

This section describes how the data-mapping attributes of any variable referenced in a target14
region are determined. When specified, explicit map clauses on target data and target15
directives determine these attributes. Otherwise, the following data-mapping rules apply for16
variables referenced in a target construct that are not declared in the construct and do not appear17
in data-sharing attribute or map clauses:18

Certain variables and objects have predetermined data-mapping attributes as follows:19

• If a variable appears in a to or link clause on a declare target directive then it is treated20
as if it had appeared in a map clause with a map-type of tofrom.21

C / C++

• A variable that is of type pointer is treated as if it had appeared in a map clause as a zero-length22
array section.23

C / C++

CHAPTER 2. DIRECTIVES 215

C++
• A variable that is of type reference to pointer is treated as if it had appeared in a map clause as a1
zero-length array section.2

C++

Otherwise, the following implicit data-mapping attribute rules apply:3

• If a defaultmap(tofrom:scalar) clause is not present then a scalar variable is not4
mapped, but instead has an implicit data-sharing attribute of firstprivate (see Section 2.15.1.1 on5
page 179).6

• If a defaultmap(tofrom:scalar) clause is present then a scalar variable is treated as if it7
had appeared in a map clause with a map-type of tofrom.8

• If a variable is not a scalar then it is treated as if it had appeared in a map clause with a map-type9
of tofrom.10

2.15.5.1 map Clause11

Summary12

The map clause specifies how an original list item is mapped from the current task’s data13
environment to a corresponding list item in the device data environment of the device identified by14
the construct.15

Syntax16

The syntax of the map clause is as follows:17

map([[map-type-modifier[,]] map-type :] list)

where map-type is one of the following:18

to19

from20

tofrom21

alloc22

release23

delete24

and map-type-modifier is always.25

216 OpenMP API – Version 4.5 November 2015

Description1

The list items that appear in a map clause may include array sections and structure elements.2

The map-type and map-type-modifier specify the effect of the map clause, as described below.3

The original and corresponding list items may share storage such that writes to either item by one4
task followed by a read or write of the other item by another task without intervening5
synchronization can result in data races.6

If the map clause appears on a target, target data, or target enter data construct then7
on entry to the region the following sequence of steps occurs:8

1. If a corresponding list item of the original list item is not present in the device data environment,9
then:10

a) A new list item with language-specific attributes is derived from the original list item and11
created in the device data environment.12

b) The new list item becomes the corresponding list item to the original list item in the device13
data environment.14

c) The corresponding list item has a reference count that is initialized to zero.15

2. The corresponding list item’s reference count is incremented by one.16

3. If the corresponding list item’s reference count is one or the always map-type-modifier is17
present, then:18

a) If the map-type is to or tofrom, then the corresponding list item is assigned the value of19
the original list item.20

4. If the corresponding list item’s reference count is one, then:21

a) If the map-type is from or alloc, the value of the corresponding list item is undefined.22

If the map clause appears on a target, target data, or target exit data construct then23
on exit from the region the following sequence of steps occurs:24

1. If a corresponding list item of the original list item is not present in the device data environment,25
then the list item is ignored.26

2. If a corresponding list item of the original list item is present in the device data environment,27
then:28

a) If the corresponding list item’s reference count is greater than zero, then:29

i. If the map-type is tofrom, from or release, then the corresponding list item’s30
reference count is decremented by one.31

ii. If the map-type is delete, then the corresponding list item’s reference count is set to32
zero.33

CHAPTER 2. DIRECTIVES 217

b) If the corresponding list item’s reference count is zero or the always map-type-modifier is1
present, then:2

i. If the map-type is from or tofrom, then the original list item is assigned the value of3
the corresponding list item.4

c) If the corresponding list item’s reference count is zero, then the corresponding list item is5
removed from the device data environment6

C / C++

If a new list item is created then a new list item of the same type, with automatic storage duration, is7
allocated for the construct. The size and alignment of the new list item are determined by the type8
of the variable. This allocation occurs if the region references the list item in any statement.9

C / C++
Fortran

If a new list item is created then a new list item of the same type, type parameter, and rank is10
allocated.11

Fortran

The map-type determines how the new list item is initialized.12

If a map-type is not specified, the map-type defaults to tofrom.13

Restrictions14

• A list item cannot appear in both a map clause and a data-sharing attribute clause on the same15
construct.16

• If a list item is an array section, it must specify contiguous storage.17

• At most one list item can be an array item derived from a given variable in map clauses of the18
same construct.19

• List items of map clauses in the same construct must not share original storage.20

• If any part of the original storage of a list item has corresponding storage in the device data21
environment, all of the original storage must have corresponding storage in the device data22
environment.23

• If a list item is an element of a structure, and a different element of the structure has a24
corresponding list item in the device data environment prior to a task encountering the construct25
associated with the map clause, then the list item must also have a correspnding list item in the26
device data environment prior to the task encountering the construct.27

• If a list item is an element of a structure, only the rightmost symbol of the variable reference can28
be an array section.29

218 OpenMP API – Version 4.5 November 2015

• If variables that share storage are mapped, the behavior is unspecified.1

• A list item must have a mappable type.2

• threadprivate variables cannot appear in a map clause.3

C++
• If the type of a list item is a reference to a type T then the type will be considered to be T for all4
purposes of this clause.5

C++

C / C++

• Initialization and assignment are through bitwise copy.6

• A variable for which the type is pointer and an array section derived from that variable must not7
appear as list items of map clauses of the same construct.8

• A list item cannot be a variable that is a member of a structure with a union type.9

• A bit-field cannot appear in a map clause.10

C / C++
Fortran

• The value of the new list item becomes that of the original list item in the map initialization and11
assignment.12

• A list item must not contain any components that have the ALLOCATABLE attribute.13

• If the allocation status of a list item with the ALLOCATABLE attribute is unallocated upon entry14
to a target region, the list item must be unallocated upon exit from the region.15

• If the allocation status of a list item with the ALLOCATABLE attribute is allocated upon entry to16
a target region, the allocation status of the corresponding list item must not be changed and17
must not be reshaped in the region.18

• If an array section of an allocatable array is mapped and the size of the section is smaller than19
that of the whole array, the target region must not have any reference to the whole array.20

Fortran

2.15.5.2 defaultmap Clause21

Summary22

The defaultmap clause explicitly determines the data-mapping attributes of variables that are23
referenced in a target construct and would otherwise be implicitly determined.24

CHAPTER 2. DIRECTIVES 219

Syntax1

C / C++

The syntax of the defaultmap clause is as follows:2

defaultmap(tofrom:scalar)

C / C++
Fortran

The syntax of the defaultmap clause is as follows:3

defaultmap(tofrom:scalar)

Fortran

Description4

The defaultmap(tofrom:scalar) clause causes all scalar variables referenced in the5
construct that have implicitly determined data-mapping attributes to have the tofrom map-type.6

2.16 declare reduction Directive7

Summary8

The following section describes the directive for declaring user-defined reductions. The9
declare reduction directive declares a reduction-identifier that can be used in a10
reduction clause. The declare reduction directive is a declarative directive.11

220 OpenMP API – Version 4.5 November 2015

Syntax1

C

#pragma omp declare reduction(reduction-identifier : typename-list :
combiner)[initializer-clause] new-line

where:2

• reduction-identifier is either a base language identifier or one of the following operators: +, -, *,3
&, |, ˆ, && and ||4

• typename-list is a list of type names5

• combiner is an expression6

• initializer-clause is initializer(initializer-expr) where initializer-expr is7
omp_priv = initializer or function-name(argument-list)8

C

C++

#pragma omp declare reduction(reduction-identifier : typename-list :
combiner) [initializer-clause] new-line

where:9

• reduction-identifier is either an id-expression or one of the following operators: +, -, *, &, |, ˆ,10
&& and ||11

• typename-list is a list of type names12

• combiner is an expression13

• initializer-clause is initializer(initializer-expr) where initializer-expr is14
omp_priv initializer or function-name(argument-list)15

C++

CHAPTER 2. DIRECTIVES 221

Fortran

!$omp declare reduction(reduction-identifier : type-list : combiner)
[initializer-clause]

where:1

• reduction-identifier is either a base language identifier, or a user-defined operator, or one of the2
following operators: +, -, *, .and., .or., .eqv., .neqv., or one of the following intrinsic3
procedure names: max, min, iand, ior, ieor.4

• type-list is a list of type specifiers5

• combiner is either an assignment statement or a subroutine name followed by an argument list6

• initializer-clause is initializer(initializer-expr), where initializer-expr is7
omp_priv = expression or subroutine-name(argument-list)8

Fortran

Description9

Custom reductions can be defined using the declare reduction directive; the10
reduction-identifier and the type identify the declare reduction directive. The11
reduction-identifier can later be used in a reduction clause using variables of the type or types12
specified in the declare reduction directive. If the directive applies to several types then it is13
considered as if there were multiple declare reduction directives, one for each type.14

Fortran

If a type with deferred or assumed length type parameter is specified in a declare reduction15
directive, the reduction-identifier of that directive can be used in a reduction clause with any16
variable of the same type and the same kind parameter, regardless of the length type Fortran17
parameters with which the variable is declared.18

Fortran

The visibility and accessibility of this declaration are the same as those of a variable declared at the19
same point in the program. The enclosing context of the combiner and of the initializer-expr will be20
that of the declare reduction directive. The combiner and the initializer-expr must be correct21
in the base language as if they were the body of a function defined at the same point in the program.22

222 OpenMP API – Version 4.5 November 2015

Fortran

If the reduction-identifier is the same as the name of a user-defined operator or an extended1
operator, or the same as a generic name that is one of the allowed intrinsic procedures, and if the2
operator or procedure name appears in an accessibility statement in the same module, the3
accessibility of the corresponding declare reduction directive is determined by the4
accessibility attribute of the statement.5

If the reduction-identifier is the same as a generic name that is one of the allowed intrinsic6
procedures and is accessible, and if it has the same name as a derived type in the same module, the7
accessibility of the corresponding declare reduction directive is determined by the8
accessibility of the generic name according to the base language.9

Fortran
C++

The declare reduction directive can also appear at points in the program at which a static10
data member could be declared. In this case, the visibility and accessibility of the declaration are11
the same as those of a static data member declared at the same point in the program.12

C++

The combiner specifies how partial results can be combined into a single value. The combiner can13
use the special variable identifiers omp_in and omp_out that are of the type of the variables14
being reduced with this reduction-identifier. Each of them will denote one of the values to be15
combined before executing the combiner. It is assumed that the special omp_out identifier will16
refer to the storage that holds the resulting combined value after executing the combiner.17

The number of times the combiner is executed, and the order of these executions, for any18
reduction clause is unspecified.19

Fortran

If the combiner is a subroutine name with an argument list, the combiner is evaluated by calling the20
subroutine with the specified argument list.21

If the combiner is an assignment statement, the combiner is evaluated by executing the assignment22
statement.23

Fortran

As the initializer-expr value of a user-defined reduction is not known a priori the initializer-clause24
can be used to specify one. Then the contents of the initializer-clause will be used as the initializer25
for private copies of reduction list items where the omp_priv identifier will refer to the storage to26
be initialized. The special identifier omp_orig can also appear in the initializer-clause and it will27
refer to the storage of the original variable to be reduced.28

The number of times that the initializer-expr is evaluated, and the order of these evaluations, is29
unspecified.30

CHAPTER 2. DIRECTIVES 223

C / C++

If the initializer-expr is a function name with an argument list, the initializer-expr is evaluated by1
calling the function with the specified argument list. Otherwise, the initializer-expr specifies how2
omp_priv is declared and initialized.3

C / C++

C
If no initializer-clause is specified, the private variables will be initialized following the rules for4
initialization of objects with static storage duration.5

C

C++
If no initializer-expr is specified, the private variables will be initialized following the rules for6
default-initialization.7

C++

Fortran

If the initializer-expr is a subroutine name with an argument list, the initializer-expr is evaluated by8
calling the subroutine with the specified argument list.9

If the initializer-expr is an assignment statement, the initializer-expr is evaluated by executing the10
assignment statement.11

If no initializer-clause is specified, the private variables will be initialized as follows:12

• For complex, real, or integer types, the value 0 will be used.13

• For logical types, the value .false. will be used.14

• For derived types for which default initialization is specified, default initialization will be used.15

• Otherwise, not specifying an initializer-clause results in unspecified behavior.16

Fortran

C / C++

If reduction-identifier is used in a target region then a declare target construct must be17
specified for any function that can be accessed through the combiner and initializer-expr.18

C / C++

224 OpenMP API – Version 4.5 November 2015

Fortran

If reduction-identifier is used in a target region then a declare target construct must be1
specified for any function or subroutine that can be accessed through the combiner and2
initializer-expr.3

Fortran

Restrictions4

• Only the variables omp_in and omp_out are allowed in the combiner.5

• Only the variables omp_priv and omp_orig are allowed in the initializer-clause.6

• If the variable omp_orig is modified in the initializer-clause, the behavior is unspecified.7

• If execution of the combiner or the initializer-expr results in the execution of an OpenMP8
construct or an OpenMP API call, then the behavior is unspecified.9

• A reduction-identifier may not be re-declared in the current scope for the same type or for a type10
that is compatible according to the base language rules.11

• At most one initializer-clause can be specified.12

C / C++

• A type name in a declare reduction directive cannot be a function type, an array type, a13
reference type, or a type qualified with const, volatile or restrict.14

C / C++

C
• If the initializer-expr is a function name with an argument list, then one of the arguments must be15
the address of omp_priv.16

C

C++
• If the initializer-expr is a function name with an argument list, then one of the arguments must be17
omp_priv or the address of omp_priv.18

C++

CHAPTER 2. DIRECTIVES 225

Fortran

• If the initializer-expr is a subroutine name with an argument list, then one of the arguments must1
be omp_priv.2

• If the declare reduction directive appears in the specification part of a module and the3
corresponding reduction clause does not appear in the same module, the reduction-identifier must4
be the same as the name of a user-defined operator, one of the allowed operators that is extended5
or a generic name that is the same as the name of one of the allowed intrinsic procedures.6

• If the declare reduction directive appears in the specification of a module, if the7
corresponding reduction clause does not appear in the same module, and if the8
reduction-identifier is the same as the name of a user-defined operator or an extended operator, or9
the same as a generic name that is the same as one of the allowed intrinsic procedures then the10
interface for that operator or the generic name must be defined in the specification of the same11
module, or must be accessible by use association.12

• Any subroutine or function used in the initializer clause or combiner expression must be13
an intrinsic function, or must have an accessible interface.14

• Any user-defined operator or extended operator used in the initializer clause or combiner15
expression must have an accessible interface.16

• If any subroutine, function, user-defined operator, or extended operator is used in the17
initializer clause or combiner expression, it must be accessible to the subprogram in18
which the corresponding reduction clause is specified.19

• If the length type parameter is specified for a character type, it must be a constant, a colon or an *.20

• If a character type with deferred or assumed length parameter is specified in a21
declare reduction directive, no other declare reduction directive with Fortran22
character type of the same kind parameter and the same reduction-identifier is allowed in the23
same scope.24

• Any subroutine used in the initializer clause or combiner expression must not have any25
alternate returns appear in the argument list.26

Fortran

Cross References27

• reduction clause, Section 2.15.3.6 on page 201.28

226 OpenMP API – Version 4.5 November 2015

2.17 Nesting of Regions1

This section describes a set of restrictions on the nesting of regions. The restrictions on nesting are2
as follows:3

• A worksharing region may not be closely nested inside a worksharing, explicit task,4
taskloop, critical, ordered, atomic, or master region.5

• A barrier region may not be closely nested inside a worksharing, explicit task, taskloop,6
critical, ordered, atomic, or master region.7

• A master region may not be closely nested inside a worksharing, atomic, explicit task, or8
taskloop region.9

• An ordered region arising from an ordered construct without any clause or with the10
threads or depend clause may not be closely nested inside a critical, ordered,11
atomic, explicit task, or taskloop region.12

• An ordered region arising from an ordered construct without any clause or with the13
threads or depend clause must be closely nested inside a loop region (or parallel loop14
region) with an ordered clause.15

• An ordered region arising from an ordered construct with the simd clause must be closely16
nested inside a simd (or loop SIMD) region.17

• An ordered region arising from an ordered construct with both the simd and threads18
clauses must be closely nested inside a loop SIMD region.19

• A critical region may not be nested (closely or otherwise) inside a critical region with20
the same name. This restriction is not sufficient to prevent deadlock.21

• OpenMP constructs may not be encountered during execution of an atomic region.22

• An ordered construct with the simd clause is the only OpenMP construct that can be23
encountered during execution of a simd region.24

• If a target, target update, target data, target enter data, or25
target exit data construct is encountered during execution of a target region, the26
behavior is unspecified.27

• If specified, a teams construct must be contained within a target construct. That target28
construct must not contain any statements or directives outside of the teams construct.29

• distribute, distribute simd, distribute parallel loop, distribute parallel loop SIMD,30
and parallel regions, including any parallel regions arising from combined constructs,31
are the only OpenMP regions that may be strictly nested inside the teams region.32

• The region associated with the distribute construct must be strictly nested inside a teams33
region.34

CHAPTER 2. DIRECTIVES 227

• If construct-type-clause is taskgroup, the cancel construct must be closely nested inside a1
task construct and the cancel region must be closely nested inside a taskgroup region. If2
construct-type-clause is sections, the cancel construct must be closely nested inside a3
sections or section construct. Otherwise, the cancel construct must be closely nested4
inside an OpenMP construct that matches the type specified in construct-type-clause of the5
cancel construct.6

• A cancellation point construct for which construct-type-clause is taskgroup must be7
closely nested inside a task construct, and the cancellation point region must be closely8
nested inside a taskgroup region. A cancellation point construct for which9
construct-type-clause is sections must be closely nested inside a sections or section10
construct. Otherwise, a cancellation point construct must be closely nested inside an11
OpenMP construct that matches the type specified in construct-type-clause.12

228 OpenMP API – Version 4.5 November 2015

CHAPTER 31

Runtime Library Routines2

This chapter describes the OpenMP API runtime library routines and is divided into the following3
sections:4

• Runtime library definitions (Section 3.1 on page 230).5

• Execution environment routines that can be used to control and to query the parallel execution6
environment (Section 3.2 on page 231).7

• Lock routines that can be used to synchronize access to data (Section 3.3 on page 270).8

• Portable timer routines (Section 3.4 on page 279).9

• Device memory routines that can be used to allocate memory and to manage pointers on target10
devices (Section 3.5 on page 282).11

Throughout this chapter, true and false are used as generic terms to simplify the description of the12
routines.13

C / C++
true means a nonzero integer value and false means an integer value of zero.14

C / C++

Fortran
true means a logical value of .TRUE. and false means a logical value of .FALSE..15

Fortran

Fortran
Restrictions16

The following restriction applies to all OpenMP runtime library routines:17

• OpenMP runtime library routines may not be called from PURE or ELEMENTAL procedures.18

Fortran

229

3.1 Runtime Library Definitions1

For each base language, a compliant implementation must supply a set of definitions for the2
OpenMP API runtime library routines and the special data types of their parameters. The set of3
definitions must contain a declaration for each OpenMP API runtime library routine and a4
declaration for the simple lock, nestable lock, schedule, and thread affinity policy data types. In5
addition, each set of definitions may specify other implementation specific values.6

C / C++

The library routines are external functions with “C” linkage.7

Prototypes for the C/C++ runtime library routines described in this chapter shall be provided in a8
header file named omp.h. This file defines the following:9

• The prototypes of all the routines in the chapter.10

• The type omp_lock_t.11

• The type omp_nest_lock_t.12

• The type omp_lock_hint_t.13

• The type omp_sched_t.14

• The type omp_proc_bind_t.15

See Section Section B.1 on page 327 for an example of this file.16

C / C++
Fortran

The OpenMP Fortran API runtime library routines are external procedures. The return values of17
these routines are of default kind, unless otherwise specified.18

Interface declarations for the OpenMP Fortran runtime library routines described in this chapter19
shall be provided in the form of a Fortran include file named omp_lib.h or a Fortran 9020
module named omp_lib. It is implementation defined whether the include file or the21
module file (or both) is provided.22

These files define the following:23

• The interfaces of all of the routines in this chapter.24

• The integer parameter omp_lock_kind.25

• The integer parameter omp_nest_lock_kind.26

• The integer parameter omp_lock_hint_kind.27

• The integer parameter omp_sched_kind.28

• The integer parameter omp_proc_bind_kind.29

230 OpenMP API – Version 4.5 November 2015

• The integer parameter openmp_version with a value yyyymm where yyyy and mm are1
the year and month designations of the version of the OpenMP Fortran API that the2
implementation supports. This value matches that of the C preprocessor macro _OPENMP, when3
a macro preprocessor is supported (see Section 2.2 on page 33).4

See Section B.1 on page 331 and Section B.3 on page 335 for examples of these files.5

It is implementation defined whether any of the OpenMP runtime library routines that take an6
argument are extended with a generic interface so arguments of different KIND type can be7
accommodated. See Appendix B.4 for an example of such an extension.8

Fortran

3.2 Execution Environment Routines9

This section describes routines that affect and monitor threads, processors, and the parallel10
environment.11

3.2.1 omp_set_num_threads12

Summary13

The omp_set_num_threads routine affects the number of threads to be used for subsequent14
parallel regions that do not specify a num_threads clause, by setting the value of the first15
element of the nthreads-var ICV of the current task.16

Format17

C / C++

void omp_set_num_threads(int num_threads);

C / C++
Fortran

subroutine omp_set_num_threads(num_threads)
integer num_threads

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 231

Constraints on Arguments1

The value of the argument passed to this routine must evaluate to a positive integer, or else the2
behavior of this routine is implementation defined.3

Binding4

The binding task set for an omp_set_num_threads region is the generating task.5

Effect6

The effect of this routine is to set the value of the first element of the nthreads-var ICV of the7
current task to the value specified in the argument.8

Cross References9

• nthreads-var ICV, see Section 2.3 on page 36.10

• parallel construct and num_threads clause, see Section 2.5 on page 46.11

• Determining the number of threads for a parallel region, see Section 2.5.1 on page 50.12

• omp_get_max_threads routine, see Section 3.2.3 on page 233.13

• OMP_NUM_THREADS environment variable, see Section 4.2 on page 293.14

3.2.2 omp_get_num_threads15

Summary16

The omp_get_num_threads routine returns the number of threads in the current team.17

Format18

C / C++

int omp_get_num_threads(void);

C / C++

232 OpenMP API – Version 4.5 November 2015

Fortran

integer function omp_get_num_threads()

Fortran

Binding1

The binding region for an omp_get_num_threads region is the innermost enclosing2
parallel region.3

Effect4

The omp_get_num_threads routine returns the number of threads in the team executing the5
parallel region to which the routine region binds. If called from the sequential part of a6
program, this routine returns 1.7

Cross References8

• parallel construct, see Section 2.5 on page 46.9

• Determining the number of threads for a parallel region, see Section 2.5.1 on page 50.10

• omp_set_num_threads routine, see Section 3.2.1 on page 231.11

• OMP_NUM_THREADS environment variable, see Section 4.2 on page 293.12

3.2.3 omp_get_max_threads13

Summary14

The omp_get_max_threads routine returns an upper bound on the number of threads that15
could be used to form a new team if a parallel construct without a num_threads clause were16
encountered after execution returns from this routine.17

CHAPTER 3. RUNTIME LIBRARY ROUTINES 233

Format1

C / C++

int omp_get_max_threads(void);

C / C++
Fortran

integer function omp_get_max_threads()

Fortran

Binding2

The binding task set for an omp_get_max_threads region is the generating task.3

Effect4

The value returned by omp_get_max_threads is the value of the first element of the5
nthreads-var ICV of the current task. This value is also an upper bound on the number of threads6
that could be used to form a new team if a parallel region without a num_threads clause were7
encountered after execution returns from this routine.8

Note – The return value of the omp_get_max_threads routine can be used to dynamically9
allocate sufficient storage for all threads in the team formed at the subsequent active parallel10
region.11

Cross References12

• nthreads-var ICV, see Section 2.3 on page 36.13

• parallel construct, see Section 2.5 on page 46.14

• num_threads clause, see Section 2.5 on page 46.15

• Determining the number of threads for a parallel region, see Section 2.5.1 on page 50.16

• omp_set_num_threads routine, see Section 3.2.1 on page 231.17

• OMP_NUM_THREADS environment variable, see Section 4.2 on page 293.18

234 OpenMP API – Version 4.5 November 2015

3.2.4 omp_get_thread_num1

Summary2

The omp_get_thread_num routine returns the thread number, within the current team, of the3
calling thread.4

Format5

C / C++

int omp_get_thread_num(void);

C / C++
Fortran

integer function omp_get_thread_num()

Fortran

Binding6

The binding thread set for an omp_get_thread_num region is the current team. The binding7
region for an omp_get_thread_num region is the innermost enclosing parallel region.8

Effect9

The omp_get_thread_num routine returns the thread number of the calling thread, within the10
team executing the parallel region to which the routine region binds. The thread number is an11
integer between 0 and one less than the value returned by omp_get_num_threads, inclusive.12
The thread number of the master thread of the team is 0. The routine returns 0 if it is called from13
the sequential part of a program.14

Note – The thread number may change during the execution of an untied task. The value returned15
by omp_get_thread_num is not generally useful during the execution of such a task region.16

Cross References17

• omp_get_num_threads routine, see Section 3.2.2 on page 232.18

CHAPTER 3. RUNTIME LIBRARY ROUTINES 235

3.2.5 omp_get_num_procs1

Summary2

The omp_get_num_procs routine returns the number of processors available to the device.3

Format4

C / C++

int omp_get_num_procs(void);

C / C++
Fortran

integer function omp_get_num_procs()

Fortran

Binding5

The binding thread set for an omp_get_num_procs region is all threads on a device. The effect6
of executing this routine is not related to any specific region corresponding to any construct or API7
routine.8

Effect9

The omp_get_num_procs routine returns the number of processors that are available to the10
device at the time the routine is called. This value may change between the time that it is11
determined by the omp_get_num_procs routine and the time that it is read in the calling12
context due to system actions outside the control of the OpenMP implementation.13

Cross References14

None.15

3.2.6 omp_in_parallel16

Summary17

The omp_in_parallel routine returns true if the active-levels-var ICV is greater than zero;18
otherwise, it returns false.19

236 OpenMP API – Version 4.5 November 2015

Format1

C / C++

int omp_in_parallel(void);

C / C++
Fortran

logical function omp_in_parallel()

Fortran

Binding2

The binding task set for an omp_in_parallel region is the generating task.3

Effect4

The effect of the omp_in_parallel routine is to return true if the current task is enclosed by an5
active parallel region, and the parallel region is enclosed by the outermost initial task6
region on the device; otherwise it returns false.7

Cross References8

• active-levels-var, see Section 2.3 on page 36.9

• parallel construct, see Section 2.5 on page 46.10

• omp_get_active_level routine, see Section 3.2.20 on page 252.11

3.2.7 omp_set_dynamic12

Summary13

The omp_set_dynamic routine enables or disables dynamic adjustment of the number of14
threads available for the execution of subsequent parallel regions by setting the value of the15
dyn-var ICV.16

CHAPTER 3. RUNTIME LIBRARY ROUTINES 237

Format1

C / C++

void omp_set_dynamic(int dynamic_threads);

C / C++

Fortran

subroutine omp_set_dynamic(dynamic_threads)
logical dynamic_threads

Fortran

Binding2

The binding task set for an omp_set_dynamic region is the generating task.3

Effect4

For implementations that support dynamic adjustment of the number of threads, if the argument to5
omp_set_dynamic evaluates to true, dynamic adjustment is enabled for the current task;6
otherwise, dynamic adjustment is disabled for the current task. For implementations that do not7
support dynamic adjustment of the number of threads this routine has no effect: the value of8
dyn-var remains false.9

Cross References10

• dyn-var ICV, see Section 2.3 on page 36.11

• Determining the number of threads for a parallel region, see Section 2.5.1 on page 50.12

• omp_get_num_threads routine, see Section 3.2.2 on page 232.13

• omp_get_dynamic routine, see Section 3.2.8 on page 239.14

• OMP_DYNAMIC environment variable, see Section 4.3 on page 294.15

238 OpenMP API – Version 4.5 November 2015

3.2.8 omp_get_dynamic1

Summary2

The omp_get_dynamic routine returns the value of the dyn-var ICV, which determines whether3
dynamic adjustment of the number of threads is enabled or disabled.4

Format5

C / C++

int omp_get_dynamic(void);

C / C++
Fortran

logical function omp_get_dynamic()

Fortran

Binding6

The binding task set for an omp_get_dynamic region is the generating task.7

Effect8

This routine returns true if dynamic adjustment of the number of threads is enabled for the current9
task; it returns false, otherwise. If an implementation does not support dynamic adjustment of the10
number of threads, then this routine always returns false.11

Cross References12

• dyn-var ICV, see Section 2.3 on page 36.13

• Determining the number of threads for a parallel region, see Section 2.5.1 on page 50.14

• omp_set_dynamic routine, see Section 3.2.7 on page 237.15

• OMP_DYNAMIC environment variable, see Section 4.3 on page 294.16

CHAPTER 3. RUNTIME LIBRARY ROUTINES 239

3.2.9 omp_get_cancellation1

Summary2

The omp_get_cancellation routine returns the value of the cancel-var ICV, which3
determines if cancellation is enabled or disabled.4

Format5

C / C++

int omp_get_cancellation(void);

C / C++
Fortran

logical function omp_get_cancellation()

Fortran

Binding6

The binding task set for an omp_get_cancellation region is the whole program.7

Effect8

This routine returns true if cancellation is enabled. It returns false otherwise.9

Cross References10

• cancel-var ICV, see Section 2.3.1 on page 36.11

• cancel construct, see Section 2.14.1 on page 17212

• OMP_CANCELLATION environment variable, see Section 4.11 on page 30013

3.2.10 omp_set_nested14

Summary15

The omp_set_nested routine enables or disables nested parallelism, by setting the nest-var16
ICV.17

240 OpenMP API – Version 4.5 November 2015

Format1

C / C++

void omp_set_nested(int nested);

C / C++
Fortran

subroutine omp_set_nested(nested)
logical nested

Fortran

Binding2

The binding task set for an omp_set_nested region is the generating task.3

Effect4

For implementations that support nested parallelism, if the argument to omp_set_nested5
evaluates to true, nested parallelism is enabled for the current task; otherwise, nested parallelism is6
disabled for the current task. For implementations that do not support nested parallelism, this7
routine has no effect: the value of nest-var remains false.8

Cross References9

• nest-var ICV, see Section 2.3 on page 36.10

• Determining the number of threads for a parallel region, see Section 2.5.1 on page 50.11

• omp_set_max_active_levels routine, see Section 3.2.15 on page 246.12

• omp_get_max_active_levels routine, see Section 3.2.16 on page 248.13

• omp_get_nested routine, see Section 3.2.11 on page 242.14

• OMP_NESTED environment variable, see Section 4.6 on page 297.15

CHAPTER 3. RUNTIME LIBRARY ROUTINES 241

3.2.11 omp_get_nested1

Summary2

The omp_get_nested routine returns the value of the nest-var ICV, which determines if nested3
parallelism is enabled or disabled.4

Format5

C / C++

int omp_get_nested(void);

C / C++
Fortran

logical function omp_get_nested()

Fortran

Binding6

The binding task set for an omp_get_nested region is the generating task.7

Effect8

This routine returns true if nested parallelism is enabled for the current task; it returns false,9
otherwise. If an implementation does not support nested parallelism, this routine always returns10
false.11

Cross References12

• nest-var ICV, see Section 2.3 on page 36.13

• Determining the number of threads for a parallel region, see Section 2.5.1 on page 50.14

• omp_set_nested routine, see Section 3.2.10 on page 240.15

• OMP_NESTED environment variable, see Section 4.6 on page 297.16

242 OpenMP API – Version 4.5 November 2015

3.2.12 omp_set_schedule1

Summary2

The omp_set_schedule routine affects the schedule that is applied when runtime is used as3
schedule kind, by setting the value of the run-sched-var ICV.4

Format5

C / C++

void omp_set_schedule(omp_sched_t kind, int chunk_size);

C / C++
Fortran

subroutine omp_set_schedule(kind, chunk_size)
integer (kind=omp_sched_kind) kind
integer chunk_size

Fortran

Constraints on Arguments6

The first argument passed to this routine can be one of the valid OpenMP schedule kinds (except for7
runtime) or any implementation specific schedule. The C/C++ header file (omp.h) and the8
Fortran include file (omp_lib.h) and/or Fortran 90 module file (omp_lib) define the valid9
constants. The valid constants must include the following, which can be extended with10
implementation specific values:11

CHAPTER 3. RUNTIME LIBRARY ROUTINES 243

C / C++

typedef enum omp_sched_t {
omp_sched_static = 1,
omp_sched_dynamic = 2,
omp_sched_guided = 3,
omp_sched_auto = 4

} omp_sched_t;

C / C++
Fortran

integer(kind=omp_sched_kind), parameter :: omp_sched_static = 1
integer(kind=omp_sched_kind), parameter :: omp_sched_dynamic = 2
integer(kind=omp_sched_kind), parameter :: omp_sched_guided = 3
integer(kind=omp_sched_kind), parameter :: omp_sched_auto = 4

Fortran

Binding1

The binding task set for an omp_set_schedule region is the generating task.2

Effect3

The effect of this routine is to set the value of the run-sched-var ICV of the current task to the4
values specified in the two arguments. The schedule is set to the schedule type specified by the first5
argument kind. It can be any of the standard schedule types or any other implementation specific6
one. For the schedule types static, dynamic, and guided the chunk_size is set to the value of7
the second argument, or to the default chunk_size if the value of the second argument is less than 1;8
for the schedule type auto the second argument has no meaning; for implementation specific9
schedule types, the values and associated meanings of the second argument are implementation10
defined.11

Cross References12

• run-sched-var ICV, see Section 2.3 on page 36.13

• Determining the schedule of a worksharing loop, see Section 2.7.1.1 on page 64.14

• omp_get_schedule routine, see Section 3.2.13 on page 245.15

• OMP_SCHEDULE environment variable, see Section 4.1 on page 292.16

244 OpenMP API – Version 4.5 November 2015

3.2.13 omp_get_schedule1

Summary2

The omp_get_schedule routine returns the schedule that is applied when the runtime schedule3
is used.4

Format5

C / C++

void omp_get_schedule(omp_sched_t * kind, int * chunk_size);

C / C++
Fortran

subroutine omp_get_schedule(kind, chunk_size)
integer (kind=omp_sched_kind) kind
integer chunk_size

Fortran

Binding6

The binding task set for an omp_get_schedule region is the generating task.7

Effect8

This routine returns the run-sched-var ICV in the task to which the routine binds. The first9
argument kind returns the schedule to be used. It can be any of the standard schedule types as10
defined in Section 3.2.12 on page 243, or any implementation specific schedule type. The second11
argument is interpreted as in the omp_set_schedule call, defined in Section 3.2.12 on12
page 243.13

Cross References14

• run-sched-var ICV, see Section 2.3 on page 36.15

• Determining the schedule of a worksharing loop, see Section 2.7.1.1 on page 64.16

• omp_set_schedule routine, see Section 3.2.12 on page 243.17

• OMP_SCHEDULE environment variable, see Section 4.1 on page 292.18

CHAPTER 3. RUNTIME LIBRARY ROUTINES 245

3.2.14 omp_get_thread_limit1

Summary2

The omp_get_thread_limit routine returns the maximum number of OpenMP threads3
available to participate in the current contention group.4

Format5

C / C++

int omp_get_thread_limit(void);

C / C++
Fortran

integer function omp_get_thread_limit()

Fortran

Binding6

The binding thread set for an omp_get_thread_limit region is all threads on the device. The7
effect of executing this routine is not related to any specific region corresponding to any construct8
or API routine.9

Effect10

The omp_get_thread_limit routine returns the value of the thread-limit-var ICV.11

Cross References12

• thread-limit-var ICV, see Section 2.3 on page 36.13

• OMP_THREAD_LIMIT environment variable, see Section 4.10 on page 300.14

3.2.15 omp_set_max_active_levels15

Summary16

The omp_set_max_active_levels routine limits the number of nested active parallel17
regions on the device, by setting the max-active-levels-var ICV18

246 OpenMP API – Version 4.5 November 2015

Format1

C / C++

void omp_set_max_active_levels(int max_levels);

C / C++
Fortran

subroutine omp_set_max_active_levels(max_levels)
integer max_levels

Fortran

Constraints on Arguments2

The value of the argument passed to this routine must evaluate to a non-negative integer, otherwise3
the behavior of this routine is implementation defined.4

Binding5

When called from a sequential part of the program, the binding thread set for an6
omp_set_max_active_levels region is the encountering thread. When called from within7
any explicit parallel region, the binding thread set (and binding region, if required) for the8
omp_set_max_active_levels region is implementation defined.9

Effect10

The effect of this routine is to set the value of the max-active-levels-var ICV to the value specified11
in the argument.12

If the number of parallel levels requested exceeds the number of levels of parallelism supported by13
the implementation, the value of the max-active-levels-var ICV will be set to the number of parallel14
levels supported by the implementation.15

This routine has the described effect only when called from a sequential part of the program. When16
called from within an explicit parallel region, the effect of this routine is implementation17
defined.18

Cross References19

• max-active-levels-var ICV, see Section 2.3 on page 36.20

• omp_get_max_active_levels routine, see Section 3.2.16 on page 248.21

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 4.9 on page 300.22

CHAPTER 3. RUNTIME LIBRARY ROUTINES 247

3.2.16 omp_get_max_active_levels1

Summary2

The omp_get_max_active_levels routine returns the value of the max-active-levels-var3
ICV, which determines the maximum number of nested active parallel regions on the device.4

Format5

C / C++

int omp_get_max_active_levels(void);

C / C++
Fortran

integer function omp_get_max_active_levels()

Fortran

Binding6

When called from a sequential part of the program, the binding thread set for an7
omp_get_max_active_levels region is the encountering thread. When called from within8
any explicit parallel region, the binding thread set (and binding region, if required) for the9
omp_get_max_active_levels region is implementation defined.10

Effect11

The omp_get_max_active_levels routine returns the value of the max-active-levels-var12
ICV, which determines the maximum number of nested active parallel regions on the device.13

Cross References14

• max-active-levels-var ICV, see Section 2.3 on page 36.15

• omp_set_max_active_levels routine, see Section 3.2.15 on page 246.16

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 4.9 on page 300.17

248 OpenMP API – Version 4.5 November 2015

3.2.17 omp_get_level1

Summary2

The omp_get_level routine returns the value of the levels-var ICV.3

Format4

C / C++

int omp_get_level(void);

C / C++
Fortran

integer function omp_get_level()

Fortran

Binding5

The binding task set for an omp_get_level region is the generating task.6

Effect7

The effect of the omp_get_level routine is to return the number of nested parallel regions8
(whether active or inactive) enclosing the current task such that all of the parallel regions are9
enclosed by the outermost initial task region on the current device.10

Cross References11

• levels-var ICV, see Section 2.3 on page 36.12

• omp_get_active_level routine, see Section 3.2.20 on page 252.13

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 4.9 on page 300.14

CHAPTER 3. RUNTIME LIBRARY ROUTINES 249

3.2.18 omp_get_ancestor_thread_num1

Summary2

The omp_get_ancestor_thread_num routine returns, for a given nested level of the current3
thread, the thread number of the ancestor of the current thread.4

Format5

C / C++

int omp_get_ancestor_thread_num(int level);

C / C++
Fortran

integer function omp_get_ancestor_thread_num(level)
integer level

Fortran

Binding6

The binding thread set for an omp_get_ancestor_thread_num region is the encountering7
thread. The binding region for an omp_get_ancestor_thread_num region is the innermost8
enclosing parallel region.9

Effect10

The omp_get_ancestor_thread_num routine returns the thread number of the ancestor at a11
given nest level of the current thread or the thread number of the current thread. If the requested12
nest level is outside the range of 0 and the nest level of the current thread, as returned by the13
omp_get_level routine, the routine returns -1.14

Note – When the omp_get_ancestor_thread_num routine is called with a value of15
level=0, the routine always returns 0. If level=omp_get_level(), the routine has the16
same effect as the omp_get_thread_num routine.17

250 OpenMP API – Version 4.5 November 2015

Cross References1

• omp_get_thread_num routine, see Section 3.2.4 on page 235.2

• omp_get_level routine, see Section 3.2.17 on page 249.3

• omp_get_team_size routine, see Section 3.2.19 on page 251.4

3.2.19 omp_get_team_size5

Summary6

The omp_get_team_size routine returns, for a given nested level of the current thread, the size7
of the thread team to which the ancestor or the current thread belongs.8

Format9

C / C++

int omp_get_team_size(int level);

C / C++
Fortran

integer function omp_get_team_size(level)
integer level

Fortran

Binding10

The binding thread set for an omp_get_team_size region is the encountering thread. The11
binding region for an omp_get_team_size region is the innermost enclosing parallel12
region.13

CHAPTER 3. RUNTIME LIBRARY ROUTINES 251

Effect1

The omp_get_team_size routine returns the size of the thread team to which the ancestor or2
the current thread belongs. If the requested nested level is outside the range of 0 and the nested3
level of the current thread, as returned by the omp_get_level routine, the routine returns -1.4
Inactive parallel regions are regarded like active parallel regions executed with one thread.5

Note – When the omp_get_team_size routine is called with a value of level=0, the routine6
always returns 1. If level=omp_get_level(), the routine has the same effect as the7
omp_get_num_threads routine.8

Cross References9

• omp_get_num_threads routine, see Section 3.2.2 on page 232.10

• omp_get_level routine, see Section 3.2.17 on page 249.11

• omp_get_ancestor_thread_num routine, see Section 3.2.18 on page 250.12

3.2.20 omp_get_active_level13

Summary14

The omp_get_active_level routine returns the value of the active-level-vars ICV..15

Format16

C / C++

int omp_get_active_level(void);

C / C++

252 OpenMP API – Version 4.5 November 2015

Fortran

integer function omp_get_active_level()

Fortran

Binding1

The binding task set for the an omp_get_active_level region is the generating task.2

Effect3

The effect of the omp_get_active_level routine is to return the number of nested, active4
parallel regions enclosing the current task such that all of the parallel regions are enclosed5
by the outermost initial task region on the current device.6

Cross References7

• active-levels-var ICV, see Section 2.3 on page 36.8

• omp_get_level routine, see Section 3.2.17 on page 249.9

3.2.21 omp_in_final10

Summary11

The omp_in_final routine returns true if the routine is executed in a final task region;12
otherwise, it returns false.13

Format14

C / C++

int omp_in_final(void);

C / C++
Fortran

logical function omp_in_final()

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 253

Binding1

The binding task set for an omp_in_final region is the generating task.2

Effect3

omp_in_final returns true if the enclosing task region is final. Otherwise, it returns false.4

Cross References5

• task construct, see Section 2.9.1 on page 83.6

3.2.22 omp_get_proc_bind7

Summary8

The omp_get_proc_bind routine returns the thread affinity policy to be used for the9
subsequent nested parallel regions that do not specify a proc_bind clause.10

Format11

C / C++

omp_proc_bind_t omp_get_proc_bind(void);

C / C++
Fortran

integer (kind=omp_proc_bind_kind) function omp_get_proc_bind()

Fortran

254 OpenMP API – Version 4.5 November 2015

Constraints on Arguments1

The value returned by this routine must be one of the valid affinity policy kinds. The C/ C++ header2
file (omp.h) and the Fortran include file (omp_lib.h) and/or Fortran 90 module file (omp_lib)3
define the valid constants. The valid constants must include the following:4

C / C++

typedef enum omp_proc_bind_t {5
omp_proc_bind_false = 0,6
omp_proc_bind_true = 1,7
omp_proc_bind_master = 2,8
omp_proc_bind_close = 3,9
omp_proc_bind_spread = 410

} omp_proc_bind_t;11

C / C++
Fortran

integer (kind=omp_proc_bind_kind), &12
parameter :: omp_proc_bind_false = 013

integer (kind=omp_proc_bind_kind), &14
parameter :: omp_proc_bind_true = 115

integer (kind=omp_proc_bind_kind), &16
parameter :: omp_proc_bind_master = 217

integer (kind=omp_proc_bind_kind), &18
parameter :: omp_proc_bind_close = 319

integer (kind=omp_proc_bind_kind), &20
parameter :: omp_proc_bind_spread = 421

Fortran

Binding22

The binding task set for an omp_get_proc_bind region is the generating task23

Effect24

The effect of this routine is to return the value of the first element of the bind-var ICV of the current25
task. See Section 2.5.2 on page 52 for the rules governing the thread affinity policy.26

CHAPTER 3. RUNTIME LIBRARY ROUTINES 255

Cross References1

• bind-var ICV, see Section 2.3 on page 36.2

• Controlling OpenMP thread affinity, see Section 2.5.2 on page 52.3

• OMP_PROC_BIND environment variable, see Section 4.4 on page 294.4

3.2.23 omp_get_num_places5

Summary6

The omp_get_num_places routine returns the number of places available to the execution7
environment in the place list.8

Format9

C / C++

int omp_get_num_places(void);

C / C++
Fortran

integer function omp_get_num_places()

Fortran

Binding10

The binding thread set for an omp_get_num_places region is all threads on a device. The11
effect of executing this routine is not related to any specific region corresponding to any construct12
or API routine.13

Effect14

The omp_get_num_places routine returns the number of places in the place list. This value is15
equivalent to the number of places in the place-partition-var ICV in the execution environment of16
the initial task.17

256 OpenMP API – Version 4.5 November 2015

Cross References1

• place-partition-var ICV, see Section 2.3 on page 36.2

• OMP_PLACES environment variable, see Section 4.5 on page 295.3

3.2.24 omp_get_place_num_procs4

Summary5

The omp_get_place_num_procs routine returns the number of processors available to the6
execution environment in the specified place.7

Format8

C / C++

int omp_get_place_num_procs(int place_num);

C / C++
Fortran

integer function omp_get_place_num_procs(place_num)
integer place_num

Fortran

Binding9

The binding thread set for an omp_get_place_num_procs region is all threads on a device.10
The effect of executing this routine is not related to any specific region corresponding to any11
construct or API routine.12

Effect13

The omp_get_place_num_procs routine returns the number of processors associated with14
the place numbered place_num. The routine returns zero when place_num is negative, or is equal15
to or larger than the value returned by omp_get_num_places().16

CHAPTER 3. RUNTIME LIBRARY ROUTINES 257

Cross References1

• OMP_PLACES environment variable, see Section 4.5 on page 295.2

3.2.25 omp_get_place_proc_ids3

Summary4

The omp_get_place_proc_ids routine returns the numerical identifiers of the processors5
available to the execution environment in the specified place.6

Format7

C / C++

void omp_get_place_proc_ids(int place_num, int *ids);

C / C++
Fortran

subroutine omp_get_place_proc_ids(place_num, ids)
integer place_num
integer ids(*)

Fortran

Binding8

The binding thread set for an omp_get_place_proc_ids region is all threads on a device.9
The effect of executing this routine is not related to any specific region corresponding to any10
construct or API routine.11

Effect12

The omp_get_place_proc_ids routine returns the numerical identifiers of each processor13
associated with the place numbered place_num. The numerical identifiers are non-negative, and14
their meaning is implementation defined. The numerical identifiers are returned in the array ids and15
their order in the array is implementation defined. The array must be sufficiently large to contain16
omp_get_place_num_procs(place_num) integers; otherwise, the behavior is unspecified.17
The routine has no effect when place_num has a negative value, or a value equal or larger than18
omp_get_num_places().19

258 OpenMP API – Version 4.5 November 2015

Cross References1

• omp_get_place_num_procs routine, see Section 3.2.24 on page 257.2

• omp_get_num_places routine, see Section 3.2.23 on page 256.3

• OMP_PLACES environment variable, see Section 4.5 on page 295.4

3.2.26 omp_get_place_num5

Summary6

The omp_get_place_num routine returns the place number of the place to which the7
encountering thread is bound.8

Format9

C / C++

int omp_get_place_num(void);

C / C++
Fortran

integer function omp_get_place_num()

Fortran

Binding10

The binding thread set for an omp_get_place_num region is the encountering thread.11

Effect12

When the encountering thread is bound to a place, the omp_get_place_num routine returns the13
place number associated with the thread. The returned value is between 0 and one less than the14
value returned by omp_get_num_places(), inclusive. When the encountering thread is not15
bound to a place, the routine returns -1.16

CHAPTER 3. RUNTIME LIBRARY ROUTINES 259

Cross References1

• Controlling OpenMP thread affinity, see Section 2.5.2 on page 52.2

• omp_get_num_places routine, see Section 3.2.23 on page 256.3

• OMP_PLACES environment variable, see Section 4.5 on page 295.4

3.2.27 omp_get_partition_num_places5

Summary6

The omp_get_partition_num_places routine returns the number of places in the place7
partition of the innermost implicit task.8

Format9

C / C++

int omp_get_partition_num_places(void);

C / C++
Fortran

integer function omp_get_partition_num_places()

Fortran

Binding10

The binding task set for an omp_get_partition_num_places region is the encountering11
implicit task.12

Effect13

The omp_get_partition_num_places routine returns the number of places in the14
place-partition-var ICV.15

260 OpenMP API – Version 4.5 November 2015

Cross References1

• place-partition-var ICV, see Section 2.3 on page 36.2

• Controlling OpenMP thread affinity, see Section 2.5.2 on page 52.3

• OMP_PLACES environment variable, see Section 4.5 on page 295.4

3.2.28 omp_get_partition_place_nums5

Summary6

The omp_get_partition_place_nums routine returns the list of place numbers7
corresponding to the places in the place-partition-var ICV of the innermost implicit task.8

Format9

C / C++

void omp_get_partition_place_nums(int *place_nums);

C / C++
Fortran

subroutine omp_get_partition_place_nums(place_nums)
integer place_nums(*)

Fortran

Binding10

The binding task set for an omp_get_partition_place_nums region is the encountering11
implicit task.12

Effect13

The omp_get_partition_place_nums routine returns the list of place numbers14
corresponding to the places in the place-partition-var ICV of the innermost implicit task. The array15
must be sufficiently large to contain omp_get_partition_num_places() integers;16
otherwise, the behavior is unspecified.17

CHAPTER 3. RUNTIME LIBRARY ROUTINES 261

Cross References1

• place-partition-var ICV, see Section 2.3 on page 36.2

• Controlling OpenMP thread affinity, see Section 2.5.2 on page 52.3

• omp_get_partition_num_places routine, see Section 3.2.27 on page 260.4

• OMP_PLACES environment variable, see Section 4.5 on page 295.5

3.2.29 omp_set_default_device6

Summary7

The omp_set_default_device routine controls the default target device by assigning the8
value of the default-device-var ICV.9

Format10

C / C++

void omp_set_default_device(int device_num);

C / C++
Fortran

subroutine omp_set_default_device(device_num)
integer device_num

Fortran

Binding11

The binding task set for an omp_set_default_device region is the generating task.12

Effect13

The effect of this routine is to set the value of the default-device-var ICV of the current task to the14
value specified in the argument. When called from within a target region the effect of this15
routine is unspecified.16

262 OpenMP API – Version 4.5 November 2015

Cross References1

• default-device-var, see Section 2.3 on page 36.2

• omp_get_default_device, see Section 3.2.30 on page 263.3

• OMP_DEFAULT_DEVICE environment variable, see Section 4.13 on page 3024

3.2.30 omp_get_default_device5

Summary6

The omp_get_default_device routine returns the default target device.7

Format8

C / C++

int omp_get_default_device(void);

C / C++
Fortran

integer function omp_get_default_device()

Fortran

Binding9

The binding task set for an omp_get_default_device region is the generating task.10

Effect11

The omp_get_default_device routine returns the value of the default-device-var ICV of the12
current task. When called from within a target region the effect of this routine is unspecified.13

Cross References14

• default-device-var, see Section 2.3 on page 36.15

• omp_set_default_device, see Section 3.2.29 on page 262.16

• OMP_DEFAULT_DEVICE environment variable, see Section 4.13 on page 302.17

CHAPTER 3. RUNTIME LIBRARY ROUTINES 263

3.2.31 omp_get_num_devices1

Summary2

The omp_get_num_devices routine returns the number of target devices.3

Format4

C / C++

int omp_get_num_devices(void);

C / C++
Fortran

integer function omp_get_num_devices()

Fortran

Binding5

The binding task set for an omp_get_num_devices region is the generating task.6

Effect7

The omp_get_num_devices routine returns the number of available target devices. When8
called from within a target region the effect of this routine is unspecified.9

Cross References10

None.11

3.2.32 omp_get_num_teams12

Summary13

The omp_get_num_teams routine returns the number of teams in the current teams region.14

264 OpenMP API – Version 4.5 November 2015

Format1

C / C++

int omp_get_num_teams(void);

C / C++
Fortran

integer function omp_get_num_teams()

Fortran

Binding2

The binding task set for an omp_get_num_teams region is the generating task3

Effect4

The effect of this routine is to return the number of teams in the current teams region. The routine5
returns 1 if it is called from outside of a teams region.6

Cross References7

• teams construct, see Section 2.10.7 on page 114.8

CHAPTER 3. RUNTIME LIBRARY ROUTINES 265

3.2.33 omp_get_team_num1

Summary2

The omp_get_team_num routine returns the team number of the calling thread.3

Format4

C / C++

int omp_get_team_num(void);

C / C++
Fortran

integer function omp_get_team_num()

Fortran

Binding5

The binding task set for an omp_get_team_num region is the generating task.6

Effect7

The omp_get_team_num routine returns the team number of the calling thread. The team8
number is an integer between 0 and one less than the value returned by9
omp_get_num_teams(), inclusive. The routine returns 0 if it is called outside of a teams10
region.11

Cross References12

• teams construct, see Section 2.10.7 on page 114.13

• omp_get_num_teams routine, see Section 3.2.32 on page 264.14

266 OpenMP API – Version 4.5 November 2015

3.2.34 omp_is_initial_device1

Summary2

The omp_is_initial_device routine returns true if the current task is executing on the host3
device; otherwise, it returns false.4

Format5

C / C++

int omp_is_initial_device(void);

C / C++
Fortran

logical function omp_is_initial_device()

Fortran

Binding6

The binding task set for an omp_is_initial_device region is the generating task.7

Effect8

The effect of this routine is to return true if the current task is executing on the host device;9
otherwise, it returns false.10

Cross References11

• target construct, see Section 2.10.4 on page 10312

3.2.35 omp_get_initial_device13

Summary14

The omp_get_initial_device routine returns a device number representing the host device.15

CHAPTER 3. RUNTIME LIBRARY ROUTINES 267

Format1

C / C++

int omp_get_initial_device(void);

C / C++
Fortran

integer function omp_get_initial_device()

Fortran

Binding2

The binding task set for an omp_get_initial_device region is the generating task.3

Effect4

The effect of this routine is to return the device number of the host device. The value of the device5
number is implementation defined. If it is between 0 and one less than6
omp_get_num_devices() then it is valid for use with all device constructs and routines; if it is7
outside that range, then it is only valid for use with the device memory routines and not in the8
device clause. When called from within a target region the effect of this routine is unspecified.9

Cross References10

• target construct, see Section 2.10.4 on page 10311

• Device memory routines, see Section 3.5 on page 282.12

3.2.36 omp_get_max_task_priority13

Summary14

The omp_get_max_task_priority routine returns the maximum value that can be specified15
in the priority clause.16

268 OpenMP API – Version 4.5 November 2015

Format1

C / C++

int omp_get_max_task_priority(void);

C / C++
Fortran

integer function omp_get_max_task_priority()

Fortran

Binding2

The binding thread set for an omp_get_max_task_priority region is all threads on the3
device. The effect of executing this routine is not related to any specific region corresponding to4
any construct or API routine.5

Effect6

The omp_get_max_task_priority routine returns the value of the max-task-priority-var7
ICV, which determines the maximum value that can be specified in the priority clause.8

Cross References9

• max-task-priority-var, see Section 2.3 on page 36.10

• task construct, see Section 2.9.1 on page 83.11

CHAPTER 3. RUNTIME LIBRARY ROUTINES 269

3.3 Lock Routines1

The OpenMP runtime library includes a set of general-purpose lock routines that can be used for2
synchronization. These general-purpose lock routines operate on OpenMP locks that are3
represented by OpenMP lock variables. OpenMP lock variables must be accessed only through the4
routines described in this section; programs that otherwise access OpenMP lock variables are5
non-conforming.6

An OpenMP lock can be in one of the following states: uninitialized, unlocked, or locked. If a lock7
is in the unlocked state, a task can set the lock, which changes its state to locked. The task that sets8
the lock is then said to own the lock. A task that owns a lock can unset that lock, returning it to the9
unlocked state. A program in which a task unsets a lock that is owned by another task is10
non-conforming.11

Two types of locks are supported: simple locks and nestable locks. A nestable lock can be set12
multiple times by the same task before being unset; a simple lock cannot be set if it is already13
owned by the task trying to set it. Simple lock variables are associated with simple locks and can14
only be passed to simple lock routines. Nestable lock variables are associated with nestable locks15
and can only be passed to nestable lock routines.16

Each type of lock can also have a lock hint that contains information about the intended usage of the17
lock by the application code. The effect of the lock hint is implementation defined. An OpenMP18
implementation can use this hint to select a usage-specific lock, but lock hints do not change the19
mutual exclusion semantics of locks. A conforming implementation can safely ignore the lock hint.20

Constraints on the state and ownership of the lock accessed by each of the lock routines are21
described with the routine. If these constraints are not met, the behavior of the routine is22
unspecified.23

The OpenMP lock routines access a lock variable such that they always read and update the most24
current value of the lock variable. It is not necessary for an OpenMP program to include explicit25
flush directives to ensure that the lock variable’s value is consistent among different tasks.26

Binding27

The binding thread set for all lock routine regions is all threads in the contention group. As a28
consequence, for each OpenMP lock, the lock routine effects relate to all tasks that call the routines,29
without regard to which teams the threads in the contention group executing the tasks belong.30

Simple Lock Routines31

C / C++

The type omp_lock_t represents a simple lock. For the following routines, a simple lock variable32
must be of omp_lock_t type. All simple lock routines require an argument that is a pointer to a33
variable of type omp_lock_t.34

C / C++

270 OpenMP API – Version 4.5 November 2015

Fortran

For the following routines, a simple lock variable must be an integer variable of1
kind=omp_lock_kind.2

Fortran

The simple lock routines are as follows:3

• The omp_init_lock routine initializes a simple lock.4

• The omp_init_lock_with_hint routine initializes a simple lock and attaches a hint to it.5

• The omp_destroy_lock routine uninitializes a simple lock.6

• The omp_set_lock routine waits until a simple lock is available, and then sets it.7

• The omp_unset_lock routine unsets a simple lock.8

• The omp_test_lock routine tests a simple lock, and sets it if it is available.9

Nestable Lock Routines10

C / C++

The type omp_nest_lock_t represents a nestable lock. For the following routines, a nestable11
lock variable must be of omp_nest_lock_t type. All nestable lock routines require an12
argument that is a pointer to a variable of type omp_nest_lock_t.13

C / C++
Fortran

For the following routines, a nestable lock variable must be an integer variable of14
kind=omp_nest_lock_kind.15

Fortran

The nestable lock routines are as follows:16

• The omp_init_nest_lock routine initializes a nestable lock.17

• The omp_init_nest_lock_with_hint routine initializes a nestable lock and attaches a18
hint to it.19

• The omp_destroy_nest_lock routine uninitializes a nestable lock.20

• The omp_set_nest_lock routine waits until a nestable lock is available, and then sets it.21

• The omp_unset_nest_lock routine unsets a nestable lock.22

• The omp_test_nest_lock routine tests a nestable lock, and sets it if it is available23

CHAPTER 3. RUNTIME LIBRARY ROUTINES 271

Restrictions1

OpenMP lock routines have the following restrictions:2

• The use of the same OpenMP lock in different contention groups results in unspecified behavior.3

3.3.1 omp_init_lock and omp_init_nest_lock4

Summary5

These routines initialize an OpenMP lock without a hint.6

Format7

C / C++

void omp_init_lock(omp_lock_t *lock);
void omp_init_nest_lock(omp_nest_lock_t *lock);

C / C++
Fortran

subroutine omp_init_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_init_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Fortran

Constraints on Arguments8

A program that accesses a lock that is not in the uninitialized state through either routine is9
non-conforming.10

Effect11

The effect of these routines is to initialize the lock to the unlocked state; that is, no task owns the12
lock. In addition, the nesting count for a nestable lock is set to zero.13

272 OpenMP API – Version 4.5 November 2015

3.3.2 omp_init_lock_with_hint and1

omp_init_nest_lock_with_hint2

Summary3

These routines initialize an OpenMP lock with a hint. The effect of the hint is4
implementation-defined. The OpenMP implementation can ignore the hint without changing5
program semantics.6

Format7

C / C++

void omp_init_lock_with_hint(omp_lock_t *lock,
omp_lock_hint_t hint);

void omp_init_nest_lock_with_hint(omp_nest_lock_t *lock,
omp_lock_hint_t hint);

C / C++
Fortran

subroutine omp_init_lock_with_hint(svar, hint)
integer (kind=omp_lock_kind) svar
integer (kind=omp_lock_hint_kind) hint

subroutine omp_init_nest_lock_with_hint(nvar, hint)
integer (kind=omp_nest_lock_kind) nvar
integer (kind=omp_lock_hint_kind) hint

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 273

Constraints on Arguments1

A program that accesses a lock that is not in the uninitialized state through either routine is2
non-conforming.3

The second argument passed to this routine (hint) can be one of the valid OpenMP lock hints below4
or any implementation-defined hint. The C/C++ header file (omp.h) and the Fortran include file5
(omp_lib.h) and/or Fortran 90 module file (omp_lib) define the valid lock hint constants. The6
valid constants must include the following, which can be extended with implementation-defined7
values:8

C / C++

typedef enum omp_lock_hint_t {9
omp_lock_hint_none = 0,10
omp_lock_hint_uncontended = 1,11
omp_lock_hint_contended = 2,12
omp_lock_hint_nonspeculative = 4,13
omp_lock_hint_speculative = 814

} omp_lock_hint_t;15

C / C++
Fortran

integer (kind=omp_lock_hint_kind), &16
parameter :: omp_lock_hint_none = 017

integer (kind=omp_lock_hint_kind), &18
parameter :: omp_lock_hint_uncontended = 119

integer (kind=omp_lock_hint_kind), &20
parameter :: omp_lock_hint_contended = 221

integer (kind=omp_lock_hint_kind), &22
parameter :: omp_lock_hint_nonspeculative = 423

integer (kind=omp_lock_hint_kind), &24
parameter :: omp_lock_hint_speculative = 825

Fortran

The hints can be combined by using the + or | operators in C/C++ or the + operator in Fortran.26
The effect of the combined hint is implementation defined and can be ignored by the27
implementation. Combining omp_lock_hint_none with any other hint is equivalent to28
specifying the other hint. The following restrictions apply to combined hints; violating these29
restrictions results in unspecified behavior:30

• the hints omp_lock_hint_uncontended and omp_lock_hint_contended cannot be31
combined,32

• the hints omp_lock_hint_nonspeculative and omp_lock_hint_speculative33
cannot be combined.34

274 OpenMP API – Version 4.5 November 2015

Note – Future OpenMP specifications may add additional hints to the omp_lock_hint_t type1
and the omp_lock_hint_kind kind. Implementers are advised to add implementation-defined2
hints starting from the most significant bit of the omp_lock_hint_t type and3
omp_lock_hint_kind kind and to include the name of the implementation in the name of the4
added hint to avoid name conflicts with other OpenMP implementations.5

Effect6

The effect of these routines is to initialize the lock to the unlocked state and, optionally, to choose a7
specific lock implementation based on the hint. After initialization no task owns the lock. In8
addition, the nesting count for a nestable lock is set to zero.9

3.3.3 omp_destroy_lock and10

omp_destroy_nest_lock11

Summary12

These routines ensure that the OpenMP lock is uninitialized.13

Format14

C / C++

void omp_destroy_lock(omp_lock_t *lock);
void omp_destroy_nest_lock(omp_nest_lock_t *lock);

C / C++
Fortran

subroutine omp_destroy_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_destroy_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 275

Constraints on Arguments1

A program that accesses a lock that is not in the unlocked state through either routine is2
non-conforming.3

Effect4

The effect of these routines is to change the state of the lock to uninitialized.5

3.3.4 omp_set_lock and omp_set_nest_lock6

Summary7

These routines provide a means of setting an OpenMP lock. The calling task region behaves as if it8
was suspended until the lock can be set by this task.9

Format10

C / C++

void omp_set_lock(omp_lock_t *lock);
void omp_set_nest_lock(omp_nest_lock_t *lock);

C / C++
Fortran

subroutine omp_set_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_set_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Fortran

Constraints on Arguments11

A program that accesses a lock that is in the uninitialized state through either routine is12
non-conforming. A simple lock accessed by omp_set_lock that is in the locked state must not13
be owned by the task that contains the call or deadlock will result.14

276 OpenMP API – Version 4.5 November 2015

Effect1

Each of these routines has an effect equivalent to suspension of the task executing the routine until2
the specified lock is available.3

Note – The semantics of these routines is specified as if they serialize execution of the region4
guarded by the lock. However, implementations may implement them in other ways provided that5
the isolation properties are respected so that the actual execution delivers a result that could arise6
from some serialization.7

A simple lock is available if it is unlocked. Ownership of the lock is granted to the task executing8
the routine.9

A nestable lock is available if it is unlocked or if it is already owned by the task executing the10
routine. The task executing the routine is granted, or retains, ownership of the lock, and the nesting11
count for the lock is incremented.12

3.3.5 omp_unset_lock and omp_unset_nest_lock13

Summary14

These routines provide the means of unsetting an OpenMP lock.15

Format16

C / C++

void omp_unset_lock(omp_lock_t *lock);
void omp_unset_nest_lock(omp_nest_lock_t *lock);

C / C++
Fortran

subroutine omp_unset_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_unset_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 277

Constraints on Arguments1

A program that accesses a lock that is not in the locked state or that is not owned by the task that2
contains the call through either routine is non-conforming.3

Effect4

For a simple lock, the omp_unset_lock routine causes the lock to become unlocked.5

For a nestable lock, the omp_unset_nest_lock routine decrements the nesting count, and6
causes the lock to become unlocked if the resulting nesting count is zero.7

For either routine, if the lock becomes unlocked, and if one or more task regions were effectively8
suspended because the lock was unavailable, the effect is that one task is chosen and given9
ownership of the lock.10

3.3.6 omp_test_lock and omp_test_nest_lock11

Summary12

These routines attempt to set an OpenMP lock but do not suspend execution of the task executing13
the routine.14

Format15

C / C++

int omp_test_lock(omp_lock_t *lock);
int omp_test_nest_lock(omp_nest_lock_t *lock);

C / C++
Fortran

logical function omp_test_lock(svar)
integer (kind=omp_lock_kind) svar
integer function omp_test_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Fortran

278 OpenMP API – Version 4.5 November 2015

Constraints on Arguments1

A program that accesses a lock that is in the uninitialized state through either routine is2
non-conforming. The behavior is unspecified if a simple lock accessed by omp_test_lock is in3
the locked state and is owned by the task that contains the call.4

Effect5

These routines attempt to set a lock in the same manner as omp_set_lock and6
omp_set_nest_lock, except that they do not suspend execution of the task executing the7
routine.8

For a simple lock, the omp_test_lock routine returns true if the lock is successfully set;9
otherwise, it returns false.10

For a nestable lock, the omp_test_nest_lock routine returns the new nesting count if the lock11
is successfully set; otherwise, it returns zero.12

3.4 Timing Routines13

This section describes routines that support a portable wall clock timer.14

3.4.1 omp_get_wtime15

Summary16

The omp_get_wtime routine returns elapsed wall clock time in seconds.17

Format18

C / C++

double omp_get_wtime(void);

C / C++
Fortran

double precision function omp_get_wtime()

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 279

Binding1

The binding thread set for an omp_get_wtime region is the encountering thread. The routine’s2
return value is not guaranteed to be consistent across any set of threads.3

Effect4

The omp_get_wtime routine returns a value equal to the elapsed wall clock time in seconds5
since some “time in the past”. The actual “time in the past” is arbitrary, but it is guaranteed not to6
change during the execution of the application program. The time returned is a “per-thread time”,7
so it is not required to be globally consistent across all threads participating in an application.8

Note – It is anticipated that the routine will be used to measure elapsed times as shown in the9
following example:10

C / C++

double start;
double end;
start = omp_get_wtime();
... work to be timed ...
end = omp_get_wtime();
printf("Work took %f seconds\n", end - start);

C / C++
Fortran

DOUBLE PRECISION START, END
START = omp_get_wtime()
... work to be timed ...
END = omp_get_wtime()
PRINT *, "Work took", END - START, "seconds"

Fortran

280 OpenMP API – Version 4.5 November 2015

3.4.2 omp_get_wtick1

Summary2

The omp_get_wtick routine returns the precision of the timer used by omp_get_wtime.3

Format4

C / C++

double omp_get_wtick(void);

C / C++
Fortran

double precision function omp_get_wtick()

Fortran

Binding5

The binding thread set for an omp_get_wtick region is the encountering thread. The routine’s6
return value is not guaranteed to be consistent across any set of threads.7

Effect8

The omp_get_wtick routine returns a value equal to the number of seconds between successive9
clock ticks of the timer used by omp_get_wtime.10

CHAPTER 3. RUNTIME LIBRARY ROUTINES 281

C / C++

3.5 Device Memory Routines1

This section describes routines that support allocation of memory and management of pointers in2
the data environments of target devices.3

3.5.1 omp_target_alloc4

Summary5

The omp_target_alloc routine allocates memory in a device data environment.6

Format7

void* omp_target_alloc(size_t size, int device_num);

Effect8

The omp_target_alloc routine returns the device address of a storage location of size bytes.9
The storage location is dynamically allocated in the device data environment of the device specified10
by device_num, which must be greater than or equal to zero and less than the result of11
omp_get_num_devices() or the result of a call to omp_get_initial_device(). When12
called from within a target region the effect of this routine is unspecified.13

The omp_target_alloc routine returns NULL if it cannot dynamically allocate the memory in14
the device data environment.15

The device address returned by omp_target_alloc can be used in an is_device_ptr16
clause, Section 2.10.4 on page 103.17

Pointer arithmetic is not supported on the device address returned by omp_target_alloc.18

Freeing the storage returned by omp_target_alloc with any routine other than19
omp_target_free results in unspecified behavior.20

Cross References21

• target construct, see Section 2.10.4 on page 10322

• omp_get_num_devices routine, see Section 3.2.31 on page 26423

• omp_get_initial_device routine, see Section 3.2.35 on page 26724

• omp_target_free routine, see Section 3.5.2 on page 28325

282 OpenMP API – Version 4.5 November 2015

C/C++ (cont.)

3.5.2 omp_target_free1

Summary2

The omp_target_free routine frees the device memory allocated by the3
omp_target_alloc routine.4

Format5

void omp_target_free(void * device_ptr, int device_num);

Constraints on Arguments6

A program that calls omp_target_free with a non-NULL pointer that does not have a value7
returned from omp_target_alloc is non-conforming. The device_num must be greater than or8
equal to zero and less than the result of omp_get_num_devices() or the result of a call to9
omp_get_initial_device().10

Effect11

The omp_target_free routine frees the memory in the device data environment associated12
with device_ptr. If device_ptr is NULL, the operation is ignored.13

Synchronization must be inserted to ensure that all accesses to device_ptr are completed before the14
call to omp_target_free.15

When called from within a target region the effect of this routine is unspecified.16

Cross References17

• target construct, see Section 2.10.4 on page 10318

• omp_get_num_devices routine, see Section 3.2.31 on page 26419

• omp_get_initial_device routine, see Section 3.2.35 on page 26720

• omp_target_alloc routine, see Section 3.5.1 on page 28221

CHAPTER 3. RUNTIME LIBRARY ROUTINES 283

C/C++ (cont.)

3.5.3 omp_target_is_present1

Summary2

The omp_target_is_present routine tests whether a host pointer has corresponding storage3
on a given device.4

Format5

int omp_target_is_present(void * ptr, int device_num);

Constraints on Arguments6

The value of ptr must be a valid host pointer or NULL. The device_num must be greater than or7
equal to zero and less than the result of omp_get_num_devices() or the result of a call to8
omp_get_initial_device().9

Effect10

This routine returns true if the specified pointer would be found present on device device_num by a11
map clause; otherwise, it returns false.12

When called from within a target region the effect of this routine is unspecified.13

Cross References14

• target construct, see Section 2.10.4 on page 10315

• map clause, see Section 2.15.5.1 on page 216.16

• omp_get_num_devices routine, see Section 3.2.31 on page 26417

• omp_get_initial_device routine, see Section 3.2.35 on page 26718

284 OpenMP API – Version 4.5 November 2015

C/C++ (cont.)

3.5.4 omp_target_memcpy1

Summary2

The omp_target_memcpy routine copies memory between any combination of host and device3
pointers.4

Format5

int omp_target_memcpy(void * dst, void * src, size_t length,
size_t dst_offset, size_t src_offset,
int dst_device_num, int src_device_num);

Constraints on Arguments6

Each device must be compatible with the device pointer specified on the same side of the copy. The7
dst_device_num and src_device_num must be greater than or equal to zero and less than the result8
of omp_get_num_devices() or equal to the result of a call to9
omp_get_initial_device().10

Effect11

length bytes of memory at offset src_offset from src in the device data environment of device12
src_device_num are copied to dst starting at offset dst_offset in the device data environment of13
device dst_device_num. The return value is zero on success and non-zero on failure. The host14
device and host device data environment can be referenced with the device number returned by15
omp_get_initial_device. This routine contains a task scheduling point.16

When called from within a target region the effect of this routine is unspecified.17

Cross References18

• target construct, see Section 2.10.4 on page 10319

• omp_get_initial_device routine, see Section 3.2.35 on page 26720

• omp_target_alloc routine, see Section 3.5.1 on page 28221

CHAPTER 3. RUNTIME LIBRARY ROUTINES 285

C/C++ (cont.)

3.5.5 omp_target_memcpy_rect1

Summary2

The omp_target_memcpy_rect routine copies a rectangular subvolume from a3
multi-dimensional array to another multi-dimensional array. The copies can use any combination of4
host and device pointers.5

Format6

int omp_target_memcpy_rect(
void * dst, void * src,
size_t element_size,
int num_dims,
const size_t* volume,
const size_t* dst_offsets,
const size_t* src_offsets,
const size_t* dst_dimensions,
const size_t* src_dimensions,
int dst_device_num, int src_device_num);

Constraints on Arguments7

The length of the offset and dimension arrays must be at least the value of num_dims. The8
dst_device_num and src_device_num must be greater than or equal to zero and less than9
the result of omp_get_num_devices() or equal to the result of a call to10
omp_get_initial_device().11

The value of num_dims must be between 1 and the implementation-defined limit, which must be at12
least three.13

286 OpenMP API – Version 4.5 November 2015

C/C++ (cont.)

Effect1

This routine copies a rectangular subvolume of src, in the device data environment of device2
src_device_num, to dst, in the device data environment of device dst_device_num. The volume is3
specified in terms of the size of an element, number of dimensions, and constant arrays of length4
num_dims. The maximum number of dimensions supported is at least three, support for higher5
dimensionality is implementation defined. The volume array specifies the length, in number of6
elements, to copy in each dimension from src to dst. The dst_offsets (src_offsets) parameter7
specifies number of elements from the origin of dst (src) in elements. The dst_dimensions8
(src_dimensions) parameter specifies the length of each dimension of dst (src)9

The routine returns zero if successful. If both dst and src are NULL pointers, the routine returns the10
number of dimensions supported by the implementation for the specified device numbers. The host11
device and host device data environment can be referenced with the device number returned by12
omp_get_initial_device. Otherwise, it returns a non-zero value. The routine contains a13
task scheduling point.14

When called from within a target region the effect of this routine is unspecified.15

Cross References16

• target construct, see Section 2.10.4 on page 10317

• omp_get_initial_device routine, see Section 3.2.35 on page 26718

• omp_target_alloc routine, see Section 3.5.1 on page 28219

3.5.6 omp_target_associate_ptr20

Summary21

The omp_target_associate_ptr routine maps a device pointer, which may be returned22
from omp_target_alloc or implementation-defined runtime routines, to a host pointer.23

Format24

int omp_target_associate_ptr(void * host_ptr, void * device_ptr,
size_t size, size_t device_offset,
int device_num);

CHAPTER 3. RUNTIME LIBRARY ROUTINES 287

C/C++ (cont.)

Constraints on Arguments1

The value of device_ptr value must be a valid pointer to device memory for the device denoted by2
the value of device_num. The device_num argument must be greater than or equal to zero and less3
than the result of omp_get_num_devices() or equal to the result of a call to4
omp_get_initial_device().5

Effect6

The omp_target_associate_ptr routine associates a device pointer in the device data7
environment of device device_num with a host pointer such that when the host pointer appears in a8
subsequent map clause, the associated device pointer is used as the target for data motion9
associated with that host pointer. The device_offset parameter specifies what offset into device_ptr10
will be used as the base address for the device side of the mapping. The reference count of the11
resulting mapping will be infinite. After being successfully associated, the buffer pointed to by the12
device pointer is invalidated and accessing data directly through the device pointer results in13
unspecified behavior. The pointer can be retrieved for other uses by disassociating it. When called14
from within a target region the effect of this routine is unspecified.15

The routine returns zero if successful. Otherwise it returns a non-zero value.16

Only one device buffer can be associated with a given host pointer value and device number pair.17
Attempting to associate a second buffer will return non-zero. Associating the same pair of pointers18
on the same device with the same offset has no effect and returns zero. Associating pointers that19
share underlying storage will result in unspecified behavior. The omp_target_is_present20
function can be used to test whether a given host pointer has a corresponding variable in the device21
data environment.22

Cross References23

• target construct, see Section 2.10.4 on page 10324

• map clause, see Section 2.15.5.1 on page 216.25

• omp_target_alloc routine, see Section 3.5.1 on page 28226

• omp_target_disassociate_ptr routine, see Section 3.5.6 on page 28727

288 OpenMP API – Version 4.5 November 2015

C/C++ (cont.)

3.5.7 omp_target_disassociate_ptr1

Summary2

The omp_target_disassociate_ptr removes the associated pointer for a given device3
from a host pointer.4

Format5

int omp_target_disassociate_ptr(void * ptr, int device_num);

Constraints on Arguments6

The device_num must be greater than or equal to zero and less than the result of7
omp_get_num_devices() or equal to the result of a call to8
omp_get_initial_device().9

Effect10

The omp_target_disassociate_ptr removes the associated device data on device11
device_num from the presence table for host pointer ptr. A call to this routine on a pointer that is12
not NULL and does not have associated data on the given device results in unspecified behavior.13
The reference count of the mapping is reduced to zero, regardless of its current value.14

When called from within a target region the effect of this routine is unspecified.15

After a call to omp_target_disassociate_ptr, the contents of the device buffer are16
invalidated.17

Cross References18

• target construct, see Section 2.10.4 on page 10319

• omp_target_associate_ptr routine, see Section 3.5.6 on page 28720

C / C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 289

CHAPTER 41

Environment Variables2

This chapter describes the OpenMP environment variables that specify the settings of the ICVs that3
affect the execution of OpenMP programs (see Section 2.3 on page 36). The names of the4
environment variables must be upper case. The values assigned to the environment variables are5
case insensitive and may have leading and trailing white space. Modifications to the environment6
variables after the program has started, even if modified by the program itself, are ignored by the7
OpenMP implementation. However, the settings of some of the ICVs can be modified during the8
execution of the OpenMP program by the use of the appropriate directive clauses or OpenMP API9
routines.10

The environment variables are as follows:11

• OMP_SCHEDULE sets the run-sched-var ICV that specifies the runtime schedule type and chunk12
size. It can be set to any of the valid OpenMP schedule types.13

• OMP_NUM_THREADS sets the nthreads-var ICV that specifies the number of threads to use for14
parallel regions.15

• OMP_DYNAMIC sets the dyn-var ICV that specifies the dynamic adjustment of threads to use for16
parallel regions.17

• OMP_PROC_BIND sets the bind-var ICV that controls the OpenMP thread affinity policy.18

• OMP_PLACES sets the place-partition-var ICV that defines the OpenMP places that are19
available to the execution environment.20

• OMP_NESTED sets the nest-var ICV that enables or disables nested parallelism.21

• OMP_STACKSIZE sets the stacksize-var ICV that specifies the size of the stack for threads22
created by the OpenMP implementation.23

• OMP_WAIT_POLICY sets the wait-policy-var ICV that controls the desired behavior of waiting24
threads.25

• OMP_MAX_ACTIVE_LEVELS sets the max-active-levels-var ICV that controls the maximum26
number of nested active parallel regions.27

290

• OMP_THREAD_LIMIT sets the thread-limit-var ICV that controls the maximum number of1
threads participating in a contention group.2

• OMP_CANCELLATION sets the cancel-var ICV that enables or disables cancellation.3

• OMP_DISPLAY_ENV instructs the runtime to display the OpenMP version number and the4
initial values of the ICVs, once, during initialization of the runtime.5

• OMP_DEFAULT_DEVICE sets the default-device-var ICV that controls the default device6
number.7

• OMP_MAX_TASK_PRIORITY sets the max-task-priority-var ICV that specifies the maximum8
value that can be specified in the priority clause of the task construct.9

The examples in this chapter only demonstrate how these variables might be set in Unix C shell10
(csh) environments. In Korn shell (ksh) and DOS environments the actions are similar, as follows:11

• csh:12

setenv OMP_SCHEDULE "dynamic"

• ksh:13

export OMP_SCHEDULE="dynamic"

• DOS:14

set OMP_SCHEDULE=dynamic

CHAPTER 4. ENVIRONMENT VARIABLES 291

4.1 OMP_SCHEDULE1

The OMP_SCHEDULE environment variable controls the schedule type and chunk size of all loop2
directives that have the schedule type runtime, by setting the value of the run-sched-var ICV.3

The value of this environment variable takes the form:4

type[, chunk]5

where6

• type is one of static, dynamic, guided, or auto7

• chunk is an optional positive integer that specifies the chunk size8

If chunk is present, there may be white space on either side of the “,”. See Section 2.7.1 on9
page 56 for a detailed description of the schedule types.10

The behavior of the program is implementation defined if the value of OMP_SCHEDULE does not11
conform to the above format.12

Implementation specific schedules cannot be specified in OMP_SCHEDULE. They can only be13
specified by calling omp_set_schedule, described in Section 3.2.12 on page 243.14

Examples:15

setenv OMP_SCHEDULE "guided,4"
setenv OMP_SCHEDULE "dynamic"

Cross References16

• run-sched-var ICV, see Section 2.3 on page 36.17

• Loop construct, see Section 2.7.1 on page 56.18

• Parallel loop construct, see Section 2.11.1 on page 124.19

• omp_set_schedule routine, see Section 3.2.12 on page 243.20

• omp_get_schedule routine, see Section 3.2.13 on page 245.21

292 OpenMP API – Version 4.5 November 2015

4.2 OMP_NUM_THREADS1

The OMP_NUM_THREADS environment variable sets the number of threads to use for parallel2
regions by setting the initial value of the nthreads-var ICV. See Section 2.3 on page 36 for a3
comprehensive set of rules about the interaction between the OMP_NUM_THREADS environment4
variable, the num_threads clause, the omp_set_num_threads library routine and dynamic5
adjustment of threads, and Section 2.5.1 on page 50 for a complete algorithm that describes how the6
number of threads for a parallel region is determined.7

The value of this environment variable must be a list of positive integer values. The values of the8
list set the number of threads to use for parallel regions at the corresponding nested levels.9

The behavior of the program is implementation defined if any value of the list specified in the10
OMP_NUM_THREADS environment variable leads to a number of threads which is greater than an11
implementation can support, or if any value is not a positive integer.12

Example:13

setenv OMP_NUM_THREADS 4,3,2

Cross References14

• nthreads-var ICV, see Section 2.3 on page 36.15

• num_threads clause, Section 2.5 on page 46.16

• omp_set_num_threads routine, see Section 3.2.1 on page 231.17

• omp_get_num_threads routine, see Section 3.2.2 on page 232.18

• omp_get_max_threads routine, see Section 3.2.3 on page 233.19

• omp_get_team_size routine, see Section 3.2.19 on page 251.20

CHAPTER 4. ENVIRONMENT VARIABLES 293

4.3 OMP_DYNAMIC1

The OMP_DYNAMIC environment variable controls dynamic adjustment of the number of threads2
to use for executing parallel regions by setting the initial value of the dyn-var ICV. The value of3
this environment variable must be true or false. If the environment variable is set to true, the4
OpenMP implementation may adjust the number of threads to use for executing parallel5
regions in order to optimize the use of system resources. If the environment variable is set to6
false, the dynamic adjustment of the number of threads is disabled. The behavior of the program7
is implementation defined if the value of OMP_DYNAMIC is neither true nor false.8

Example:9

setenv OMP_DYNAMIC true

Cross References10

• dyn-var ICV, see Section 2.3 on page 36.11

• omp_set_dynamic routine, see Section 3.2.7 on page 237.12

• omp_get_dynamic routine, see Section 3.2.8 on page 239.13

4.4 OMP_PROC_BIND14

The OMP_PROC_BIND environment variable sets the initial value of the bind-var ICV. The value15
of this environment variable is either true, false, or a comma separated list of master,16
close, or spread. The values of the list set the thread affinity policy to be used for parallel17
regions at the corresponding nested level.18

If the environment variable is set to false, the execution environment may move OpenMP threads19
between OpenMP places, thread affinity is disabled, and proc_bind clauses on parallel20
constructs are ignored.21

Otherwise, the execution environment should not move OpenMP threads between OpenMP places,22
thread affinity is enabled, and the initial thread is bound to the first place in the OpenMP place list.23

The behavior of the program is implementation defined if the value in the OMP_PROC_BIND24
environment variable is not true, false, or a comma separated list of master, close, or25
spread. The behavior is also implementation defined if an initial thread cannot be bound to the26
first place in the OpenMP place list.27

294 OpenMP API – Version 4.5 November 2015

Examples:1

setenv OMP_PROC_BIND false
setenv OMP_PROC_BIND "spread, spread, close"

Cross References2

• bind-var ICV, see Section 2.3 on page 36.3

• proc_bind clause, see Section 2.5.2 on page 52.4

• omp_get_proc_bind routine, see Section 3.2.22 on page 254.5

4.5 OMP_PLACES6

A list of places can be specified in the OMP_PLACES environment variable. The7
place-partition-var ICV obtains its initial value from the OMP_PLACES value, and makes the list8
available to the execution environment. The value of OMP_PLACES can be one of two types of9
values: either an abstract name describing a set of places or an explicit list of places described by10
non-negative numbers.11

The OMP_PLACES environment variable can be defined using an explicit ordered list of12
comma-separated places. A place is defined by an unordered set of comma-separated non-negative13
numbers enclosed by braces. The meaning of the numbers and how the numbering is done are14
implementation defined. Generally, the numbers represent the smallest unit of execution exposed by15
the execution environment, typically a hardware thread.16

Intervals may also be used to define places. Intervals can be specified using the <lower-bound> :17
<length> : <stride> notation to represent the following list of numbers: “<lower-bound>,18
<lower-bound> + <stride>, ..., <lower-bound> + (<length>- 1)*<stride>.” When <stride> is19
omitted, a unit stride is assumed. Intervals can specify numbers within a place as well as sequences20
of places.21

An exclusion operator “!” can also be used to exclude the number or place immediately following22
the operator.23

Alternatively, the abstract names listed in Table 4.1 should be understood by the execution and24
runtime environment. The precise definitions of the abstract names are implementation defined. An25
implementation may also add abstract names as appropriate for the target platform.26

The abstract name may be appended by a positive number in parentheses to denote the length of the27
place list to be created, that is abstract_name(num-places). When requesting fewer places than28

CHAPTER 4. ENVIRONMENT VARIABLES 295

available on the system, the determination of which resources of type abstract_name are to be1
included in the place list is implementation defined. When requesting more resources than2
available, the length of the place list is implementation defined.3

TABLE 4.1: Defined Abstract Names for OMP_PLACES

Abstract Name Meaning

threads Each place corresponds to a single hardware thread on the
target machine.

cores Each place corresponds to a single core (having one or more
hardware threads) on the target machine.

sockets Each place corresponds to a single socket (consisting of one or
more cores) on the target machine.

4

The behavior of the program is implementation defined when the execution environment cannot5
map a numerical value (either explicitly defined or implicitly derived from an interval) within the6
OMP_PLACES list to a processor on the target platform, or if it maps to an unavailable processor.7
The behavior is also implementation defined when the OMP_PLACES environment variable is8
defined using an abstract name.9

The following grammar describes the values accepted for the OMP_PLACES environment variable.10

〈list〉 |= 〈p-list〉 | 〈aname〉
〈p-list〉 |= 〈p-interval〉 | 〈p-list〉,〈p-interval〉

〈p-interval〉 |= 〈place〉:〈len〉:〈stride〉 | 〈place〉:〈len〉 | 〈place〉 | !〈place〉
〈place〉 |= {〈res-list〉}
〈res-list〉 |= 〈res-interval〉 | 〈res-list〉,〈res-interval〉

〈res-interval〉 |= 〈res〉:〈num-places〉:〈stride〉 | 〈res〉:〈num-places〉 | 〈res〉 | !〈res〉
〈aname〉 |= 〈word〉(〈num-places〉) | 〈word〉
〈word〉 |= sockets | cores | threads | <implementation-defined abstract name>
〈res〉 |= non-negative integer

〈num-places〉 |= positive integer
〈stride〉 |= integer
〈len〉 |= positive integer

296 OpenMP API – Version 4.5 November 2015

Examples:1

setenv OMP_PLACES threads
setenv OMP_PLACES "threads(4)"
setenv OMP_PLACES "{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}"
setenv OMP_PLACES "{0:4},{4:4},{8:4},{12:4}"
setenv OMP_PLACES "{0:4}:4:4"

where each of the last three definitions corresponds to the same 4 places including the smallest2
units of execution exposed by the execution environment numbered, in turn, 0 to 3, 4 to 7, 8 to 11,3
and 12 to 15.4

Cross References5

• place-partition-var, Section 2.3 on page 36.6

• Controlling OpenMP thread affinity, Section 2.5.2 on page 52.7

• omp_get_num_places routine, see Section 3.2.23 on page 256.8

• omp_get_place_num_procs routine, see Section 3.2.24 on page 257.9

• omp_get_place_proc_ids routine, see Section 3.2.25 on page 258.10

• omp_get_place_num routine, see Section 3.2.26 on page 259.11

• omp_get_partition_num_places routine, see Section 3.2.27 on page 260.12

• omp_get_partition_place_nums routine, see Section 3.2.28 on page 261.13

4.6 OMP_NESTED14

The OMP_NESTED environment variable controls nested parallelism by setting the initial value of15
the nest-var ICV. The value of this environment variable must be true or false. If the16
environment variable is set to true, nested parallelism is enabled; if set to false, nested17
parallelism is disabled. The behavior of the program is implementation defined if the value of18
OMP_NESTED is neither true nor false.19

Example:20

setenv OMP_NESTED false

CHAPTER 4. ENVIRONMENT VARIABLES 297

Cross References1

• nest-var ICV, see Section 2.3 on page 36.2

• omp_set_nested routine, see Section 3.2.10 on page 240.3

• omp_get_team_size routine, see Section 3.2.19 on page 251.4

4.7 OMP_STACKSIZE5

The OMP_STACKSIZE environment variable controls the size of the stack for threads created by6
the OpenMP implementation, by setting the value of the stacksize-var ICV. The environment7
variable does not control the size of the stack for an initial thread.8

The value of this environment variable takes the form:9

size | sizeB | sizeK | sizeM | sizeG10

where:11

• size is a positive integer that specifies the size of the stack for threads that are created by the12
OpenMP implementation.13

• B, K, M, and G are letters that specify whether the given size is in Bytes, Kilobytes (1024 Bytes),14
Megabytes (1024 Kilobytes), or Gigabytes (1024 Megabytes), respectively. If one of these letters15
is present, there may be white space between size and the letter.16

If only size is specified and none of B, K, M, or G is specified, then size is assumed to be in Kilobytes.17

The behavior of the program is implementation defined if OMP_STACKSIZE does not conform to18
the above format, or if the implementation cannot provide a stack with the requested size.19

Examples:20

setenv OMP_STACKSIZE 2000500B
setenv OMP_STACKSIZE "3000 k "
setenv OMP_STACKSIZE 10M
setenv OMP_STACKSIZE " 10 M "
setenv OMP_STACKSIZE "20 m "
setenv OMP_STACKSIZE " 1G"
setenv OMP_STACKSIZE 20000

298 OpenMP API – Version 4.5 November 2015

Cross References1

• stacksize-var ICV, see Section 2.3 on page 36.2

4.8 OMP_WAIT_POLICY3

The OMP_WAIT_POLICY environment variable provides a hint to an OpenMP implementation4
about the desired behavior of waiting threads by setting the wait-policy-var ICV. A compliant5
OpenMP implementation may or may not abide by the setting of the environment variable.6

The value of this environment variable takes the form:7

ACTIVE | PASSIVE8

The ACTIVE value specifies that waiting threads should mostly be active, consuming processor9
cycles, while waiting. An OpenMP implementation may, for example, make waiting threads spin.10

The PASSIVE value specifies that waiting threads should mostly be passive, not consuming11
processor cycles, while waiting. For example, an OpenMP implementation may make waiting12
threads yield the processor to other threads or go to sleep.13

The details of the ACTIVE and PASSIVE behaviors are implementation defined.14

Examples:15

setenv OMP_WAIT_POLICY ACTIVE
setenv OMP_WAIT_POLICY active
setenv OMP_WAIT_POLICY PASSIVE
setenv OMP_WAIT_POLICY passive

Cross References16

• wait-policy-var ICV, see Section 2.3 on page 36.17

CHAPTER 4. ENVIRONMENT VARIABLES 299

4.9 OMP_MAX_ACTIVE_LEVELS1

The OMP_MAX_ACTIVE_LEVELS environment variable controls the maximum number of nested2
active parallel regions by setting the initial value of the max-active-levels-var ICV.3

The value of this environment variable must be a non-negative integer. The behavior of the4
program is implementation defined if the requested value of OMP_MAX_ACTIVE_LEVELS is5
greater than the maximum number of nested active parallel levels an implementation can support,6
or if the value is not a non-negative integer.7

Cross References8

• max-active-levels-var ICV, see Section 2.3 on page 36.9

• omp_set_max_active_levels routine, see Section 3.2.15 on page 246.10

• omp_get_max_active_levels routine, see Section 3.2.16 on page 248.11

4.10 OMP_THREAD_LIMIT12

The OMP_THREAD_LIMIT environment variable sets the maximum number of OpenMP threads13
to use in a contention group by setting the thread-limit-var ICV.14

The value of this environment variable must be a positive integer. The behavior of the program is15
implementation defined if the requested value of OMP_THREAD_LIMIT is greater than the16
number of threads an implementation can support, or if the value is not a positive integer.17

Cross References18

• thread-limit-var ICV, see Section 2.3 on page 36.19

• omp_get_thread_limit routine, see Section 3.2.14 on page 246.20

4.11 OMP_CANCELLATION21

The OMP_CANCELLATION environment variable sets the initial value of the cancel-var ICV.22

300 OpenMP API – Version 4.5 November 2015

The value of this environment variable must be true or false. If set to true, the effects of the1
cancel construct and of cancellation points are enabled and cancellation is activated. If set to2
false, cancellation is disabled and the cancel construct and cancellation points are effectively3
ignored.4

Cross References5

• cancel-var, see Section 2.3.1 on page 36.6

• cancel construct, see Section 2.14.1 on page 172.7

• cancellation point construct, see Section 2.14.2 on page 176.8

• omp_get_cancellation routine, see Section 3.2.9 on page 240.9

4.12 OMP_DISPLAY_ENV10

The OMP_DISPLAY_ENV environment variable instructs the runtime to display the OpenMP11
version number and the value of the ICVs associated with the environment variables described in12
Chapter 4, as name = value pairs. The runtime displays this information once, after processing the13
environment variables and before any user calls to change the ICV values by runtime routines14
defined in Chapter 3.15

The value of the OMP_DISPLAY_ENV environment variable may be set to one of these values:16

TRUE | FALSE | VERBOSE17

The TRUE value instructs the runtime to display the OpenMP version number defined by the18
_OPENMP version macro (or the openmp_version Fortran parameter) value and the initial ICV19
values for the environment variables listed in Chapter 4. The VERBOSE value indicates that the20
runtime may also display the values of runtime variables that may be modified by vendor-specific21
environment variables. The runtime does not display any information when the22
OMP_DISPLAY_ENV environment variable is FALSE or undefined. For all values of the23
environment variable other than TRUE, FALSE, and VERBOSE, the displayed information is24
unspecified.25

The display begins with "OPENMP DISPLAY ENVIRONMENT BEGIN", followed by the26
_OPENMP version macro (or the openmp_version Fortran parameter) value and ICV values, in27
the format NAME ’=’ VALUE. NAME corresponds to the macro or environment variable name,28
optionally prepended by a bracketed device-type. VALUE corresponds to the value of the macro or29
ICV associated with this environment variable. Values should be enclosed in single quotes. The30
display is terminated with "OPENMP DISPLAY ENVIRONMENT END".31

CHAPTER 4. ENVIRONMENT VARIABLES 301

Example:1

% setenv OMP_DISPLAY_ENV TRUE

The above example causes an OpenMP implementation to generate output of the following form:2

OPENMP DISPLAY ENVIRONMENT BEGIN
_OPENMP=’201511’
[host] OMP_SCHEDULE=’GUIDED,4’
[host] OMP_NUM_THREADS=’4,3,2’
[device] OMP_NUM_THREADS=’2’
[host,device] OMP_DYNAMIC=’TRUE’
[host] OMP_PLACES=’0:4,4:4,8:4,12:4’
...

OPENMP DISPLAY ENVIRONMENT END

4.13 OMP_DEFAULT_DEVICE3

The OMP_DEFAULT_DEVICE environment variable sets the device number to use in device4
constructs by setting the initial value of the default-device-var ICV.5

The value of this environment variable must be a non-negative integer value.6

Cross References7

• default-device-var ICV, see Section 2.3 on page 36.8

• device constructs, Section 2.10 on page 95.9

302 OpenMP API – Version 4.5 November 2015

4.14 OMP_MAX_TASK_PRIORITY1

The OMP_MAX_TASK_PRIORITY environment variable controls the use of task priorities by2
setting the initial value of the max-task-priority-var ICV. The value of this environment variable3
must be a non-negative integer.4

Example:5

% setenv OMP_MAX_TASK_PRIORITY 20

Cross References6

• max-task-priority-var ICV, see Section 2.3 on page 36.7

• Tasking Constructs, see Section 2.9 on page 83.8

• omp_get_max_task_priority routine, see Section 3.2.36 on page 268.9

CHAPTER 4. ENVIRONMENT VARIABLES 303

APPENDIX A1

Stubs for Runtime Library Routines2

This section provides stubs for the runtime library routines defined in the OpenMP API. The stubs3
are provided to enable portability to platforms that do not support the OpenMP API. On these4
platforms, OpenMP programs must be linked with a library containing these stub routines. The stub5
routines assume that the directives in the OpenMP program are ignored. As such, they emulate6
serial semantics executing on the host.7

Note that the lock variable that appears in the lock routines must be accessed exclusively through8
these routines. It should not be initialized or otherwise modified in the user program.9

In an actual implementation the lock variable might be used to hold the address of an allocated10
memory block, but here it is used to hold an integer value. Users should not make assumptions11
about mechanisms used by OpenMP implementations to implement locks based on the scheme12
used by the stub procedures.13

Fortran

Note – In order to be able to compile the Fortran stubs file, the include file omp_lib.h was split14
into two files: omp_lib_kinds.h and omp_lib.h and the omp_lib_kinds.h file included15
where needed. There is no requirement for the implementation to provide separate files.16

Fortran

304

A.1 C/C++ Stub Routines1

#include <stdio.h>2
#include <stdlib.h>3
#include "omp.h"4

5
void omp_set_num_threads(int num_threads)6
{7
}8

9
int omp_get_num_threads(void)10
{11

return 1;12
}13

14
int omp_get_max_threads(void)15
{16

return 1;17
}18

19
int omp_get_thread_num(void)20
{21

return 0;22
}23

24
int omp_get_num_procs(void)25
{26

return 1;27
}28

29
int omp_in_parallel(void)30
{31

return 0;32
}33

34
void omp_set_dynamic(int dynamic_threads)35
{36
}37

38
int omp_get_dynamic(void)39
{40

return 0;41
}42

43
int omp_get_cancellation(void)44
{45

return 0;46

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 305

}1
2

void omp_set_nested(int nested)3
{4
}5

6
int omp_get_nested(void)7
{8

return 0;9
}10

11
void omp_set_schedule(omp_sched_t kind, int chunk_size)12
{13
}14

15
void omp_get_schedule(omp_sched_t *kind, int *chunk_size)16
{17

*kind = omp_sched_static;18
*chunk_size = 0;19

}20
21

int omp_get_thread_limit(void)22
{23

return 1;24
}25

26
void omp_set_max_active_levels(int max_active_levels)27
{28
}29

30
int omp_get_max_active_levels(void)31
{32

return 0;33
}34

35
int omp_get_level(void)36
{37

return 0;38
}39

40
int omp_get_ancestor_thread_num(int level)41
{42

if (level == 0)43
{44

return 0;45
}46
else47

306 OpenMP API – Version 4.5 November 2015

{1
return -1;2

}3
}4

5
int omp_get_team_size(int level)6
{7

if (level == 0)8
{9

return 1;10
}11
else12
{13

return -1;14
}15

}16
17

int omp_get_active_level(void)18
{19

return 0;20
}21

22
int omp_in_final(void)23
{24

return 1;25
}26

27
omp_proc_bind_t omp_get_proc_bind(void)28
{29

return omp_proc_bind_false;30
}31

32
int omp_get_num_places(void)33
{34

return 0;35
}36

37
int omp_get_place_num_procs(int place_num)38
{39

return 0;40
}41

42
void omp_get_place_proc_ids(int place_num, int *ids)43
{44
}45

46
int omp_get_place_num(void)47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 307

{1
return -1;2

}3
4

int omp_get_partition_num_places(void)5
{6

return 0;7
}8

9
void omp_get_partition_place_nums(int *place_nums)10
{11
}12

13
void omp_set_default_device(int device_num)14
{15
}16

17
int omp_get_default_device(void)18
{19

return 0;20
}21

22
int omp_get_num_devices(void)23
{24

return 0;25
}26

27
int omp_get_num_teams(void)28
{29

return 1;30
}31

32
int omp_get_team_num(void)33
{34

return 0;35
}36

37
int omp_is_initial_device(void)38
{39

return 1;40
}41

42
int omp_get_initial_device(void)43
{44

return -10;45
}46

47

308 OpenMP API – Version 4.5 November 2015

int omp_get_max_task_priority(void)1
{2

return 0;3
}4

5
struct __omp_lock6
{7

int lock;8
};9

10
enum { UNLOCKED = -1, INIT, LOCKED };11

12
void omp_init_lock(omp_lock_t *arg)13
{14

struct __omp_lock *lock = (struct __omp_lock *)arg;15
lock->lock = UNLOCKED;16

}17
18

void omp_init_lock_with_hint(omp_lock_t *arg, omp_lock_hint_t hint)19
{20

omp_init_lock(arg);21
}22

23
void omp_destroy_lock(omp_lock_t *arg)24
{25

struct __omp_lock *lock = (struct __omp_lock *)arg;26
lock->lock = INIT;27

}28
29

void omp_set_lock(omp_lock_t *arg)30
{31

struct __omp_lock *lock = (struct __omp_lock *)arg;32
if (lock->lock == UNLOCKED)33
{34

lock->lock = LOCKED;35
}36
else if (lock->lock == LOCKED)37
{38

fprintf(stderr, "error: deadlock in using lock variable\n");39
exit(1);40

}41
42

else43
{44

fprintf(stderr, "error: lock not initialized\n");45
exit(1);46

}47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 309

}1
2

void omp_unset_lock(omp_lock_t *arg)3
{4

struct __omp_lock *lock = (struct __omp_lock *)arg;5
if (lock->lock == LOCKED)6
{7

lock->lock = UNLOCKED;8
}9
else if (lock->lock == UNLOCKED)10
{11

fprintf(stderr, "error: lock not set\n");12
exit(1);13

}14
else15
{16

fprintf(stderr, "error: lock not initialized\n");17
exit(1);18

}19
}20

21
int omp_test_lock(omp_lock_t *arg)22
{23

struct __omp_lock *lock = (struct __omp_lock *)arg;24
if (lock->lock == UNLOCKED)25
{26

lock->lock = LOCKED;27
return 1;28

}29
else if (lock->lock == LOCKED)30
{31

return 0;32
}33
else34
{35

fprintf(stderr, "error: lock not initialized\ n");36
exit(1);37

}38
}39

40
struct __omp_nest_lock41
{42

short owner;43
short count;44

};45
46

enum { NOOWNER = -1, MASTER = 0 };47

310 OpenMP API – Version 4.5 November 2015

1
void omp_init_nest_lock(omp_nest_lock_t *arg)2
{3

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;4
nlock->owner = NOOWNER;5
nlock->count = 0;6

}7
8

void omp_init_nest_lock_with_hint(omp_nest_lock_t *arg,9
omp_lock_hint_t hint)10

{11
omp_init_nest_lock(arg);12

}13
14

void omp_destroy_nest_lock(omp_nest_lock_t *arg)15
{16

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;17
nlock->owner = NOOWNER;18
nlock->count = UNLOCKED;19

}20
21

void omp_set_nest_lock(omp_nest_lock_t *arg)22
{23

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;24
if (nlock->owner == MASTER && nlock->count >= 1)25
{26

nlock->count++;27
}28
else if (nlock->owner == NOOWNER && nlock->count == 0)29
{30

nlock->owner = MASTER;31
nlock->count = 1;32

}33
else34
{35

fprintf(stderr, "error: lock corrupted or not initialized\n");36
exit(1);37

}38
}39

40
void omp_unset_nest_lock(omp_nest_lock_t *arg)41
{42

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;43
if (nlock->owner == MASTER && nlock->count >= 1)44
{45

nlock->count--;46
if (nlock->count == 0)47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 311

{1
nlock->owner = NOOWNER;2

}3
}4
else if (nlock->owner == NOOWNER && nlock->count == 0)5
{6

fprintf(stderr, "error: lock not set\n");7
exit(1);8

}9
else10
{11

fprintf(stderr, "error: lock corrupted or not initialized\n");12
exit(1);13

}14
}15

16
int omp_test_nest_lock(omp_nest_lock_t *arg)17
{18

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;19
omp_set_nest_lock(arg);20
return nlock->count;21

}22
23

double omp_get_wtime(void)24
{25
/* This function does not provide a working26
* wallclock timer. Replace it with a version27
* customized for the target machine.28
*/29

return 0.0;30
}31

32
double omp_get_wtick(void)33
{34
/* This function does not provide a working35
* clock tick function. Replace it with36
* a version customized for the target machine.37
*/38

return 365. * 86400.;39
}40

41
void * omp_target_alloc(size_t size, int device_num)42
{43

if (device_num != -10)44
return NULL;45

return malloc(size)46
}47

312 OpenMP API – Version 4.5 November 2015

1
void omp_target_free(void *device_ptr, int device_num)2
{3

free(device_ptr);4
}5

6
int omp_target_is_present(void *ptr, int device_num)7
{8

return 1;9
}10

11
int omp_target_memcpy(void *dst, void *src, size_t length,12

size_t dst_offset, size_t src_offset,13
int dst_device, int src_device)14

{15
// only the default device is valid in a stub16
if (dst_device != -10 || src_device != -1017

|| ! dst || ! src)18
return EINVAL;19

memcpy((char *)dst + dst_offset,20
(char *)src + src_offset,21
length);22

return 0;23
}24

25
int omp_target_memcpy_rect(26

void *dst, void *src,27
size_t element_size,28
int num_dims,29
const size_t *volume,30
const size_t *dst_offsets,31
const size_t *src_offsets,32
const size_t *dst_dimensions,33
const size_t *src_dimensions,34
int dst_device_num, int src_device_num)35

{36
int ret=0;37
// Both null, return number of dimensions supported,38
// this stub supports an arbitrary number39
if (dst == NULL && src == NULL) return INT_MAX;40

41
if (!volume || !dst_offsets || !src_offsets42

|| !dst_dimensions || !src_dimensions43
|| num_dims < 1) {44

ret = EINVAL;45
goto done;46

}47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 313

if (num_dims == 1) {1
ret = omp_target_memcpy(dst, src,2

element_size * volume[0],3
dst_offsets[0] * element_size,4
src_offsets[0] * element_size,5
dst_device_num, src_device_num);6

if(ret) goto done;7
} else {8

size_t dst_slice_size = element_size;9
size_t src_slice_size = element_size;10
for (int i=1; i < num_dims; i++) {11

dst_slice_size *= dst_dimensions[i];12
src_slice_size *= src_dimensions[i];13

}14
size_t dst_off = dst_offsets[0] * dst_slice_size;15
size_t src_off = src_offsets[0] * src_slice_size;16
for (size_t i=0; i < volume[0]; i++) {17

ret = omp_target_memcpy_rect(18
(char *)dst + dst_off + dst_slice_size*i,19
(char *)src + src_off + src_slice_size*i,20
element_size,21
num_dims - 1,22
volume + 1,23
dst_offsets + 1,24
src_offsets + 1,25
dst_dimensions + 1,26
src_dimensions + 1,27
dst_device_num,28
src_device_num);29

if (ret) goto done;30
}31

}32
done:33

return ret;34
}35

36
int omp_target_associate_ptr(void *host_ptr, void *device_ptr,37

size_t size, size_t device_offset,38
int device_num)39

{40
// No association is possible because all host pointers41
// are considered present42
return EINVAL;43

}44
45

int omp_target_disassociate_ptr(void *ptr, int device_num)46
{47

314 OpenMP API – Version 4.5 November 2015

return EINVAL;1
}2

3

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 315

A.2 Fortran Stub Routines1

subroutine omp_set_num_threads(num_threads)2
integer num_threads3
return4

end subroutine5
6

integer function omp_get_num_threads()7
omp_get_num_threads = 18
return9

end function10
11

integer function omp_get_max_threads()12
omp_get_max_threads = 113
return14

end function15
16

integer function omp_get_thread_num()17
omp_get_thread_num = 018
return19

end function20
21

integer function omp_get_num_procs()22
omp_get_num_procs = 123
return24

end function25
26

logical function omp_in_parallel()27
omp_in_parallel = .false.28
return29

end function30
31

subroutine omp_set_dynamic(dynamic_threads)32
logical dynamic_threads33
return34

end subroutine35
36

logical function omp_get_dynamic()37
omp_get_dynamic = .false.38
return39

end function40
41

logical function omp_get_cancellation()42
omp_get_cancellation = .false.43
return44

end function45
46

316 OpenMP API – Version 4.5 November 2015

subroutine omp_set_nested(nested)1
logical nested2
return3

end subroutine4
5

logical function omp_get_nested()6
omp_get_nested = .false.7
return8

end function9
10

subroutine omp_set_schedule(kind, chunk_size)11
include ’omp_lib_kinds.h’12
integer (kind=omp_sched_kind) kind13
integer chunk_size14
return15

end subroutine16
17

subroutine omp_get_schedule(kind, chunk_size)18
include ’omp_lib_kinds.h’19
integer (kind=omp_sched_kind) kind20
integer chunk_size21
kind = omp_sched_static22
chunk_size = 023
return24

end subroutine25
26

integer function omp_get_thread_limit()27
omp_get_thread_limit = 128
return29

end function30
31

subroutine omp_set_max_active_levels(max_level)32
integer max_level33

end subroutine34
35

integer function omp_get_max_active_levels()36
omp_get_max_active_levels = 037
return38

end function39
40

integer function omp_get_level()41
omp_get_level = 042
return43

end function44
45

integer function omp_get_ancestor_thread_num(level)46
integer level47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 317

if (level .eq. 0) then1
omp_get_ancestor_thread_num = 02

else3
omp_get_ancestor_thread_num = -14

end if5
return6

end function7
8

integer function omp_get_team_size(level)9
integer level10
if (level .eq. 0) then11

omp_get_team_size = 112
else13

omp_get_team_size = -114
end if15
return16

end function17
18

integer function omp_get_active_level()19
omp_get_active_level = 020
return21

end function22
23

logical function omp_in_final()24
omp_in_final = .true.25
return26

end function27
28

function omp_get_proc_bind()29
include ’omp_lib_kinds.h’30
integer (kind=omp_proc_bind_kind) omp_get_proc_bind31
omp_get_proc_bind = omp_proc_bind_false32

end function33
34

integer function omp_get_num_places()35
return 036

end function37
38

integer function omp_get_place_num_procs(place_num)39
integer place_num40
return 041

end function42
43

subroutine omp_get_place_proc_ids(place_num, ids)44
integer place_num45
integer ids(*)46
return47

318 OpenMP API – Version 4.5 November 2015

end subroutine1
2

integer function omp_get_place_num()3
return -14

end function5
6

integer function omp_get_partition_num_places()7
return 08

end function9
10

subroutine omp_get_partition_place_nums(place_nums)11
integer place_nums(*)12
return13

end subroutine14
15

subroutine omp_set_default_device(device_num)16
integer device_num17
return18

end subroutine19
20

integer function omp_get_default_device()21
omp_get_default_device = 022
return23

end function24
25

integer function omp_get_num_devices()26
omp_get_num_devices = 027
return28

end function29
30

integer function omp_get_num_teams()31
omp_get_num_teams = 132
return33

end function34
35

integer function omp_get_team_num()36
omp_get_team_num = 037
return38

end function39
40

logical function omp_is_initial_device()41
omp_is_initial_device = .true.42
return43

end function44
45

integer function omp_get_initial_device()46
omp_get_initial_device = -1047

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 319

return1
end function2

3
integer function omp_get_max_task_priority()4
omp_get_max_task_priority = 05
return6

end function7
8

subroutine omp_init_lock(lock)9
! lock is 0 if the simple lock is not initialized10
! -1 if the simple lock is initialized but not set11
! 1 if the simple lock is set12
include ’omp_lib_kinds.h’13
integer(kind=omp_lock_kind) lock14

15
lock = -116
return17

end subroutine18
19

subroutine omp_init_lock_with_hint(lock, hint)20
include ’omp_lib_kinds.h’21
integer(kind=omp_lock_kind) lock22
integer(kind=omp_lock_hint_kind) hint23

24
call omp_init_lock(lock)25
return26

end subroutine27
28

subroutine omp_destroy_lock(lock)29
include ’omp_lib_kinds.h’30
integer(kind=omp_lock_kind) lock31

32
lock = 033
return34

end subroutine35
36

subroutine omp_set_lock(lock)37
include ’omp_lib_kinds.h’38
integer(kind=omp_lock_kind) lock39

40
if (lock .eq. -1) then41
lock = 142

elseif (lock .eq. 1) then43
print *, ’error: deadlock in using lock variable’44
stop45

else46
print *, ’error: lock not initialized’47

320 OpenMP API – Version 4.5 November 2015

stop1
endif2
return3

end subroutine4
5

subroutine omp_unset_lock(lock)6
include ’omp_lib_kinds.h’7
integer(kind=omp_lock_kind) lock8

9
if (lock .eq. 1) then10

lock = -111
elseif (lock .eq. -1) then12

print *, ’error: lock not set’13
stop14

else15
print *, ’error: lock not initialized’16
stop17

endif18
return19

end subroutine20
21

logical function omp_test_lock(lock)22
include ’omp_lib_kinds.h’23
integer(kind=omp_lock_kind) lock24

25
if (lock .eq. -1) then26

lock = 127
omp_test_lock = .true.28

elseif (lock .eq. 1) then29
omp_test_lock = .false.30

else31
print *, ’error: lock not initialized’32
stop33

endif34
35

return36
end function37

38
subroutine omp_init_nest_lock(nlock)39
! nlock is40
! 0 if the nestable lock is not initialized41
! -1 if the nestable lock is initialized but not set42
! 1 if the nestable lock is set43
! no use count is maintained44
include ’omp_lib_kinds.h’45
integer(kind=omp_nest_lock_kind) nlock46

47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 321

nlock = -11
2

return3
end subroutine4

5
subroutine omp_init_nest_lock_with_hint(nlock, hint)6
include ’omp_lib_kinds.h’7
integer(kind=omp_nest_lock_kind) nlock8
integer(kind=omp_lock_hint_kind) hint9

10
call omp_init_nest_lock(nlock)11
return12

end subroutine13
14

subroutine omp_destroy_nest_lock(nlock)15
include ’omp_lib_kinds.h’16
integer(kind=omp_nest_lock_kind) nlock17

18
nlock = 019

20
return21

end subroutine22
23

subroutine omp_set_nest_lock(nlock)24
include ’omp_lib_kinds.h’25
integer(kind=omp_nest_lock_kind) nlock26

27
if (nlock .eq. -1) then28
nlock = 129

elseif (nlock .eq. 0) then30
print *, ’error: nested lock not initialized’31
stop32

else33
print *, ’error: deadlock using nested lock variable’34
stop35

endif36
37

return38
end subroutine39

40
subroutine omp_unset_nest_lock(nlock)41
include ’omp_lib_kinds.h’42
integer(kind=omp_nest_lock_kind) nlock43

44
if (nlock .eq. 1) then45
nlock = -146

elseif (nlock .eq. 0) then47

322 OpenMP API – Version 4.5 November 2015

print *, ’error: nested lock not initialized’1
stop2

else3
print *, ’error: nested lock not set’4
stop5

endif6
7

return8
end subroutine9

10
integer function omp_test_nest_lock(nlock)11
include ’omp_lib_kinds.h’12
integer(kind=omp_nest_lock_kind) nlock13

14
if (nlock .eq. -1) then15

nlock = 116
omp_test_nest_lock = 117

elseif (nlock .eq. 1) then18
omp_test_nest_lock = 019

else20
print *, ’error: nested lock not initialized’21
stop22

endif23
24

return25
end function26

27
double precision function omp_get_wtime()28
! this function does not provide a working29
! wall clock timer. replace it with a version30
! customized for the target machine.31

32
omp_get_wtime = 0.0d033

34
return35

end function36
37

double precision function omp_get_wtick()38
! this function does not provide a working39
! clock tick function. replace it with40
! a version customized for the target machine.41
double precision one_year42
parameter (one_year=365.d0*86400.d0)43

44
omp_get_wtick = one_year45

46
return47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 323

end function1

324 OpenMP API – Version 4.5 November 2015

This page intentionally left blank1

APPENDIX B1

Interface Declarations2

This appendix gives examples of the C/C++ header file, the Fortran include file and Fortran3
module that shall be provided by implementations as specified in Chapter 3. It also includes an4
example of a Fortran 90 generic interface for a library routine. This is a non-normative section,5
implementation files may differ.6

326

B.1 Example of the omp.h Header File1

#ifndef _OMP_H_DEF2
#define _OMP_H_DEF3

4
/*5
* define the lock data types6
*/7

typedef void *omp_lock_t;8
9

typedef void *omp_nest_lock_t;10
11

/*12
* define the lock hints13
*/14

typedef enum omp_lock_hint_t15
{16
omp_lock_hint_none = 0,17
omp_lock_hint_uncontended = 1,18
omp_lock_hint_contended = 2,19
omp_lock_hint_nonspeculative = 4,20
omp_lock_hint_speculative = 821

/* , Add vendor specific constants for lock hints here,22
starting from the most-significant bit. */23

} omp_lock_hint_t;24
25

/*26
* define the schedule kinds27
*/28

typedef enum omp_sched_t29
{30
omp_sched_static = 1,31
omp_sched_dynamic = 2,32
omp_sched_guided = 3,33
omp_sched_auto = 434

/* , Add vendor specific schedule constants here */35
} omp_sched_t;36

37
/*38
* define the proc bind values39
*/40
typedef enum omp_proc_bind_t41
{42
omp_proc_bind_false = 0,43
omp_proc_bind_true = 1,44
omp_proc_bind_master = 2,45
omp_proc_bind_close = 3,46

APPENDIX B. INTERFACE DECLARATIONS 327

omp_proc_bind_spread = 41
} omp_proc_bind_t;2

3
/*4
* exported OpenMP functions5
*/6

#ifdef __cplusplus7
extern "C"8
{9
#endif10

11
extern void omp_set_num_threads(int num_threads);12
extern int omp_get_num_threads(void);13
extern int omp_get_max_threads(void);14
extern int omp_get_thread_num(void);15
extern int omp_get_num_procs(void);16
extern int omp_in_parallel(void);17
extern void omp_set_dynamic(int dynamic_threads);18
extern int omp_get_dynamic(void);19
extern int omp_get_cancellation(void);20
extern void omp_set_nested(int nested);21
extern int omp_get_nested(void);22
extern void omp_set_schedule(omp_sched_t kind, int chunk_size);23
extern void omp_get_schedule(omp_sched_t *kind, int *chunk_size);24
extern int omp_get_thread_limit(void);25
extern void omp_set_max_active_levels(int max_active_levels);26
extern int omp_get_max_active_levels(void);27
extern int omp_get_level(void);28
extern int omp_get_ancestor_thread_num(int level);29
extern int omp_get_team_size(int level);30
extern int omp_get_active_level(void);31
extern int omp_in_final(void);32
extern omp_proc_bind_t omp_get_proc_bind(void);33
extern int omp_get_num_places(void);34
extern int omp_get_place_num_procs(int place_num);35
extern void omp_get_place_proc_ids(int place_num, int *ids);36
extern int omp_get_place_num(void);37
extern int omp_get_partition_num_places(void);38
extern void omp_get_partition_place_nums(int *place_nums);39
extern void omp_set_default_device(int device_num);40
extern int omp_get_default_device(void);41
extern int omp_get_num_devices(void);42
extern int omp_get_num_teams(void);43
extern int omp_get_team_num(void);44
extern int omp_is_initial_device(void);45
extern int omp_get_initial_device(void);46
extern int omp_get_max_task_priority(void);47

328 OpenMP API – Version 4.5 November 2015

1
extern void omp_init_lock(omp_lock_t *lock);2
extern void omp_init_lock_with_hint(omp_lock_t *lock,3

omp_lock_hint_t hint);4
extern void omp_destroy_lock(omp_lock_t *lock);5
extern void omp_set_lock(omp_lock_t *lock);6
extern void omp_unset_lock(omp_lock_t *lock);7
extern int omp_test_lock(omp_lock_t *lock);8

9
extern void omp_init_nest_lock(omp_nest_lock_t *lock);10
extern void omp_init_nest_lock_with_hint(omp_nest_lock_t *lock,11

omp_lock_hint_t hint);12
extern void omp_destroy_nest_lock(omp_nest_lock_t *lock);13
extern void omp_set_nest_lock(omp_nest_lock_t *lock);14
extern void omp_unset_nest_lock(omp_nest_lock_t *lock);15
extern int omp_test_nest_lock(omp_nest_lock_t *lock);16

17
extern double omp_get_wtime(void);18
extern double omp_get_wtick(void);19

20
extern void * omp_target_alloc(size_t size, int device_num);21
extern void omp_target_free(void * device_ptr, int device_num);22
extern int omp_target_is_present(void * ptr, int device_num);23
extern int omp_target_memcpy(void *dst, void *src, size_t length,24

size_t dst_offset, size_t src_offset,25
int dst_device_num, int src_device_num);26

extern int omp_target_memcpy_rect(27
void *dst, void *src,28
size_t element_size,29
int num_dims,30
const size_t *volume,31
const size_t *dst_offsets,32
const size_t *src_offsets,33
const size_t *dst_dimensions,34
const size_t *src_dimensions,35
int dst_device_num, int src_device_num);36

extern int omp_target_associate_ptr(void * host_ptr,37
void * device_ptr,38
size_t size,39
size_t device_offset,40
int device_num);41

extern int omp_target_disassociate_ptr(void * ptr,42
int device_num);43

44
#ifdef __cplusplus45
}46
#endif47

APPENDIX B. INTERFACE DECLARATIONS 329

1
#endif2

330 OpenMP API – Version 4.5 November 2015

B.2 Example of an Interface Declaration include1

File2

omp_lib_kinds.h:3

integer omp_lock_kind4
integer omp_nest_lock_kind5
integer omp_lock_hint_kind6

! this selects an integer that is large enough to hold a 64 bit integer7
parameter (omp_lock_kind = selected_int_kind(10))8
parameter (omp_nest_lock_kind = selected_int_kind(10))9
parameter (omp_lock_hint_kind = selected_int_kind(10))10

11
integer omp_sched_kind12

! this selects an integer that is large enough to hold a 32 bit integer13
parameter (omp_sched_kind = selected_int_kind(8))14
integer (omp_sched_kind) omp_sched_static15
parameter (omp_sched_static = 1)16
integer (omp_sched_kind) omp_sched_dynamic17
parameter (omp_sched_dynamic = 2)18
integer (omp_sched_kind) omp_sched_guided19
parameter (omp_sched_guided = 3)20
integer (omp_sched_kind) omp_sched_auto21
parameter (omp_sched_auto = 4)22

23
integer omp_proc_bind_kind24
parameter (omp_proc_bind_kind = selected_int_kind(8))25
integer (omp_proc_bind_kind) omp_proc_bind_false26
parameter (omp_proc_bind_false = 0)27
integer (omp_proc_bind_kind) omp_proc_bind_true28
parameter (omp_proc_bind_true = 1)29
integer (omp_proc_bind_kind) omp_proc_bind_master30
parameter (omp_proc_bind_master = 2)31
integer (omp_proc_bind_kind) omp_proc_bind_close32
parameter (omp_proc_bind_close = 3)33
integer (omp_proc_bind_kind) omp_proc_bind_spread34
parameter (omp_proc_bind_spread = 4)35

36
integer (omp_lock_hint_kind) omp_lock_hint_none37
parameter (omp_lock_hint_none = 0)38
integer (omp_lock_hint_kind) omp_lock_hint_uncontended39
parameter (omp_lock_hint_uncontended = 1)40
integer (omp_lock_hint_kind) omp_lock_hint_contended41
parameter (omp_lock_hint_contended = 2)42
integer (omp_lock_hint_kind) omp_lock_hint_nonspeculative43
parameter (omp_lock_hint_nonspeculative = 4)44

APPENDIX B. INTERFACE DECLARATIONS 331

integer (omp_lock_hint_kind) omp_lock_hint_speculative1
parameter (omp_lock_hint_speculative = 8)2

omp_lib.h:3

! default integer type assumed below4
! default logical type assumed below5
! OpenMP API v4.56

7
include ’omp_lib_kinds.h’8
integer openmp_version9
parameter (openmp_version = 201511)10

11
external omp_set_num_threads12
external omp_get_num_threads13
integer omp_get_num_threads14
external omp_get_max_threads15
integer omp_get_max_threads16
external omp_get_thread_num17
integer omp_get_thread_num18
external omp_get_num_procs19
integer omp_get_num_procs20
external omp_in_parallel21
logical omp_in_parallel22
external omp_set_dynamic23
external omp_get_dynamic24
logical omp_get_dynamic25
external omp_get_cancellation26
logical omp_get_cancellation27
external omp_set_nested28
external omp_get_nested29
logical omp_get_nested30
external omp_set_schedule31
external omp_get_schedule32
external omp_get_thread_limit33
integer omp_get_thread_limit34
external omp_set_max_active_levels35
external omp_get_max_active_levels36
integer omp_get_max_active_levels37
external omp_get_level38
integer omp_get_level39
external omp_get_ancestor_thread_num40
integer omp_get_ancestor_thread_num41
external omp_get_team_size42
integer omp_get_team_size43
external omp_get_active_level44
integer omp_get_active_level45
external omp_set_default_device46

332 OpenMP API – Version 4.5 November 2015

external omp_get_default_device1
integer omp_get_default_device2
external omp_get_num_devices3
integer omp_get_num_devices4
external omp_get_num_teams5
integer omp_get_num_teams6
external omp_get_team_num7
integer omp_get_team_num8
external omp_is_initial_device9
logical omp_is_initial_device10
external omp_get_initial_device11
integer omp_get_initial_device12
external omp_get_max_task_priority13
integer omp_get_max_task_priority14

15
external omp_in_final16
logical omp_in_final17

18
integer (omp_proc_bind_kind) omp_get_proc_bind19
external omp_get_proc_bind20
integer omp_get_num_places21
external omp_get_num_places22
integer omp_get_place_num_procs23
external omp_get_place_num_procs24
external omp_get_place_proc_ids25
integer omp_get_place_num26
external omp_get_place_num27
integer omp_get_partition_num_places28
external omp_get_partition_num_places29
external omp_get_partition_place_nums30

31
external omp_init_lock32
external omp_init_lock_with_hint33
external omp_destroy_lock34
external omp_set_lock35
external omp_unset_lock36
external omp_test_lock37
logical omp_test_lock38

39
external omp_init_nest_lock40
external omp_init_nest_lock_with_hint41
external omp_destroy_nest_lock42
external omp_set_nest_lock43
external omp_unset_nest_lock44
external omp_test_nest_lock45
integer omp_test_nest_lock46

47

APPENDIX B. INTERFACE DECLARATIONS 333

external omp_get_wtick1
double precision omp_get_wtick2
external omp_get_wtime3
double precision omp_get_wtime4

334 OpenMP API – Version 4.5 November 2015

B.3 Example of a Fortran Interface Declaration1

module2

! the "!" of this comment starts in column 13
!234564

5
module omp_lib_kinds6
integer, parameter :: omp_lock_kind = selected_int_kind(10)7
integer, parameter :: omp_nest_lock_kind = selected_int_kind(10)8
integer, parameter :: omp_lock_hint_kind = selected_int_kind(10)9
integer (kind=omp_lock_hint_kind), parameter ::10

& omp_lock_hint_none = 011
integer (kind=omp_lock_hint_kind), parameter ::12

& omp_lock_hint_uncontended = 113
integer (kind=omp_lock_hint_kind), parameter ::14

& omp_lock_hint_contended = 215
integer (kind=omp_lock_hint_kind), parameter ::16

& omp_lock_hint_nonspeculative = 417
integer (kind=omp_lock_hint_kind), parameter ::18

& omp_lock_hint_speculative = 819
20

integer, parameter :: omp_sched_kind = selected_int_kind(8)21
integer(kind=omp_sched_kind), parameter ::22

& omp_sched_static = 123
integer(kind=omp_sched_kind), parameter ::24

& omp_sched_dynamic = 225
integer(kind=omp_sched_kind), parameter ::26

& omp_sched_guided = 327
integer(kind=omp_sched_kind), parameter ::28

& omp_sched_auto = 429
30

integer, parameter :: omp_proc_bind_kind = selected_int_kind(8)31
integer (kind=omp_proc_bind_kind), parameter ::32

& omp_proc_bind_false = 033
integer (kind=omp_proc_bind_kind), parameter ::34

& omp_proc_bind_true = 135
integer (kind=omp_proc_bind_kind), parameter ::36

& omp_proc_bind_master = 237
integer (kind=omp_proc_bind_kind), parameter ::38

& omp_proc_bind_close = 339
integer (kind=omp_proc_bind_kind), parameter ::40

& omp_proc_bind_spread = 441
end module omp_lib_kinds42

43
module omp_lib44

45

APPENDIX B. INTERFACE DECLARATIONS 335

use omp_lib_kinds1
2

! OpenMP API v4.53
integer, parameter :: openmp_version = 2015114

5
interface6

7
subroutine omp_set_num_threads (num_threads)8
integer, intent(in) :: num_threads9

end subroutine omp_set_num_threads10
11

function omp_get_num_threads ()12
integer :: omp_get_num_threads13

end function omp_get_num_threads14
15

function omp_get_max_threads ()16
integer :: omp_get_max_threads17

end function omp_get_max_threads18
19

function omp_get_thread_num ()20
integer :: omp_get_thread_num21

end function omp_get_thread_num22
23

function omp_get_num_procs ()24
integer :: omp_get_num_procs25

end function omp_get_num_procs26
27

function omp_in_parallel ()28
logical :: omp_in_parallel29

end function omp_in_parallel30
31

subroutine omp_set_dynamic (dynamic_threads)32
logical, intent(in) ::dynamic_threads33

end subroutine omp_set_dynamic34
35

function omp_get_dynamic ()36
logical :: omp_get_dynamic37

end function omp_get_dynamic38
39

function omp_get_cancellation ()40
logical :: omp_get_cancellation41

end function omp_get_cancellation42
43

subroutine omp_set_nested (nested)44
logical, intent(in) :: nested45

end subroutine omp_set_nested46
47

336 OpenMP API – Version 4.5 November 2015

function omp_get_nested ()1
logical :: omp_get_nested2

end function omp_get_nested3
4

subroutine omp_set_schedule (kind, chunk_size)5
use omp_lib_kinds6
integer(kind=omp_sched_kind), intent(in) :: kind7
integer, intent(in) :: chunk_size8

end subroutine omp_set_schedule9
10

subroutine omp_get_schedule (kind, chunk_size)11
use omp_lib_kinds12
integer(kind=omp_sched_kind), intent(out) :: kind13
integer, intent(out)::chunk_size14

end subroutine omp_get_schedule15
16

function omp_get_thread_limit ()17
integer :: omp_get_thread_limit18

end function omp_get_thread_limit19
20

subroutine omp_set_max_active_levels (max_levels)21
integer, intent(in) :: max_levels22

end subroutine omp_set_max_active_levels23
24

function omp_get_max_active_levels ()25
integer :: omp_get_max_active_levels26

end function omp_get_max_active_levels27
28

function omp_get_level()29
integer :: omp_get_level30

end function omp_get_level31
32

function omp_get_ancestor_thread_num (level)33
integer, intent(in) :: level34
integer :: omp_get_ancestor_thread_num35

end function omp_get_ancestor_thread_num36
37

function omp_get_team_size (level)38
integer, intent(in) :: level39
integer :: omp_get_team_size40

end function omp_get_team_size41
42

function omp_get_active_level ()43
integer :: omp_get_active_level44

end function omp_get_active_level45
46

function omp_in_final ()47

APPENDIX B. INTERFACE DECLARATIONS 337

logical :: omp_in_final1
end function omp_in_final2

3
function omp_get_proc_bind ()4
use omp_lib_kinds5
integer(kind=omp_proc_bind_kind) :: omp_get_proc_bind6
omp_get_proc_bind = omp_proc_bind_false7

end function omp_get_proc_bind8
9

function omp_get_num_places ()10
integer :: omp_get_num_places11
end function omp_get_num_places12

13
function omp_get_place_num_procs (place_num)14
integer, intent(in) :: place_num15
integer :: omp_get_place_num_procs16
end function omp_get_place_num_procs17

18
subroutine omp_get_place_proc_ids (place_num, ids)19
integer, intent(in) :: place_num20
integer, intent(out) :: ids(*)21
end subroutine omp_get_place_proc_ids22

23
function omp_get_place_num ()24
integer :: omp_get_place_num25
end function omp_get_place_num26

27
function omp_get_partition_num_places ()28
integer :: omp_get_partition_num_places29
end function omp_get_partition_num_places30

31
subroutine omp_get_partition_place_nums (place_nums)32
integer, intent(out) :: place_nums(*)33
end subroutine omp_get_partition_place_nums34

35
subroutine omp_set_default_device (device_num)36
integer :: device_num37

end subroutine omp_set_default_device38
39

function omp_get_default_device ()40
integer :: omp_get_default_device41

end function omp_get_default_device42
43

function omp_get_num_devices ()44
integer :: omp_get_num_devices45

end function omp_get_num_devices46
47

338 OpenMP API – Version 4.5 November 2015

function omp_get_num_teams ()1
integer :: omp_get_num_teams2

end function omp_get_num_teams3
4

function omp_get_team_num ()5
integer :: omp_get_team_num6

end function omp_get_team_num7
8

function omp_is_initial_device ()9
logical :: omp_is_initial_device10

end function omp_is_initial_device11
12

function omp_get_initial_device ()13
integer :: omp_get_initial_device14

end function omp_get_initial_device15
16

function omp_get_max_task_priority ()17
integer :: omp_get_max_task_priority18

end function omp_get_max_task_priority19
20

subroutine omp_init_lock (svar)21
use omp_lib_kinds22
integer(kind=omp_lock_kind), intent(out) :: svar23

end subroutine omp_init_lock24
25

subroutine omp_init_lock_with_hint (svar, hint)26
use omp_lib_kinds27
integer(kind=omp_lock_kind), intent(out) :: svar28
integer(kind=omp_lock_hint_kind), intent(in) :: hint29

end subroutine omp_init_lock_with_hint30
31

subroutine omp_destroy_lock (svar)32
use omp_lib_kinds33
integer(kind=omp_lock_kind), intent(inout) :: svar34

end subroutine omp_destroy_lock35
36

subroutine omp_set_lock (svar)37
use omp_lib_kinds38
integer(kind=omp_lock_kind), intent(inout) :: svar39

end subroutine omp_set_lock40
41

subroutine omp_unset_lock (svar)42
use omp_lib_kinds43
integer(kind=omp_lock_kind), intent(inout) :: svar44

end subroutine omp_unset_lock45
46

function omp_test_lock (svar)47

APPENDIX B. INTERFACE DECLARATIONS 339

use omp_lib_kinds1
logical :: omp_test_lock2
integer(kind=omp_lock_kind), intent(inout) :: svar3

end function omp_test_lock4
5

subroutine omp_init_nest_lock (nvar)6
use omp_lib_kinds7
integer(kind=omp_nest_lock_kind), intent(out) :: nvar8

end subroutine omp_init_nest_lock9
10

subroutine omp_init_nest_lock_with_hint (nvar, hint)11
use omp_lib_kinds12
integer(kind=omp_nest_lock_kind), intent(out) :: nvar13
integer(kind=omp_lock_hint_kind), intent(in) :: hint14

end subroutine omp_init_nest_lock_with_hint15
16

subroutine omp_destroy_nest_lock (nvar)17
use omp_lib_kinds18
integer(kind=omp_nest_lock_kind), intent(inout) :: nvar19

end subroutine omp_destroy_nest_lock20
21

subroutine omp_set_nest_lock (nvar)22
use omp_lib_kinds23
integer(kind=omp_nest_lock_kind), intent(inout) :: nvar24

end subroutine omp_set_nest_lock25
26

subroutine omp_unset_nest_lock (nvar)27
use omp_lib_kinds28
integer(kind=omp_nest_lock_kind), intent(inout) :: nvar29

end subroutine omp_unset_nest_lock30
31

function omp_test_nest_lock (nvar)32
use omp_lib_kinds33
integer :: omp_test_nest_lock34
integer(kind=omp_nest_lock_kind), intent(inout) :: nvar35

end function omp_test_nest_lock36
37

function omp_get_wtick ()38
double precision :: omp_get_wtick39

end function omp_get_wtick40
41

function omp_get_wtime ()42
double precision :: omp_get_wtime43

end function omp_get_wtime44
45

end interface46
47

340 OpenMP API – Version 4.5 November 2015

end module omp_lib1

APPENDIX B. INTERFACE DECLARATIONS 341

B.4 Example of a Generic Interface for a Library1

Routine2

Any of the OpenMP runtime library routines that take an argument may be extended with a generic3
interface so arguments of different KIND type can be accommodated.4

The OMP_SET_NUM_THREADS interface could be specified in the omp_lib module as follows:5

interface omp_set_num_threads

subroutine omp_set_num_threads_4(num_threads)
use omp_lib_kinds
integer(4), intent(in) :: num_threads

end subroutine omp_set_num_threads_4

subroutine omp_set_num_threads_8(num_threads)
use omp_lib_kinds
integer(8), intent(in) :: num_threads

end subroutine omp_set_num_threads_8

end interface omp_set_num_threads

342 OpenMP API – Version 4.5 November 2015

APPENDIX C1

OpenMP Implementation-Defined2

Behaviors3

This appendix summarizes the behaviors that are described as implementation defined in this API.4
Each behavior is cross-referenced back to its description in the main specification. An5
implementation is required to define and document its behavior in these cases.6

• Processor: a hardware unit that is implementation defined (see Section 1.2.1 on page 2).7

• Device: an implementation defined logical execution engine (see Section 1.2.1 on page 2).8

• Device address: an address in a device data environment (see Section 1.2.6 on page 11).9

• Memory model: the minimum size at which a memory update may also read and write back10
adjacent variables that are part of another variable (as array or structure elements) is11
implementation defined but is no larger than required by the base language (see Section 1.4.1 on12
page 17).13

• Memory model: Implementations are allowed to relax the ordering imposed by implicit flush14
operations when the result is only visible to programs using non-sequentially consistent atomic15
directives (see Section 1.4.4 on page 20).16

• Internal control variables: the initial values of dyn-var, nthreads-var, run-sched-var,17
def-sched-var, bind-var, stacksize-var, wait-policy-var, thread-limit-var, max-active-levels-var,18
place-partition-var, and default-device-var are implementation defined. The method for19
initializing a target device’s internal control variable is implementation defined (see Section 2.3.220
on page 37).21

• Dynamic adjustment of threads: providing the ability to dynamically adjust the number of22
threads is implementation defined . Implementations are allowed to deliver fewer threads (but at23
least one) than indicated in Algorithm 2-1 even if dynamic adjustment is disabled (see24
Section 2.5.1 on page 50).25

343

• Thread affinity: For the close thread affinity policy, if T > P and P does not divide T evenly,1
the exact number of threads in a particular place is implementation defined. For the spread2
thread affinity, if T > P and P does not divide T evenly, the exact number of threads in a3
particular subpartition is implementation defined. The determination of whether the affinity4
request can be fulfilled is implementation defined. If not, the number of threads in the team and5
their mapping to places become implementation defined (see Section 2.5.2 on page 52).6

• Loop directive: the integer type (or kind, for Fortran) used to compute the iteration count of a7
collapsed loop is implementation defined. The effect of the schedule(runtime) clause8
when the run-sched-var ICV is set to auto is implementation defined. The simd_width used9
when a simd schedule modifier is specified is implementation defined (see Section 2.7.1 on10
page 56).11

• sections construct: the method of scheduling the structured blocks among threads in the12
team is implementation defined (see Section 2.7.2 on page 65).13

• single construct: the method of choosing a thread to execute the structured block is14
implementation defined (see Section 2.7.3 on page 67)15

• simd construct: the integer type (or kind, for Fortran) used to compute the iteration count for16
the collapsed loop is implementation defined. The number of iterations that are executed17
concurrently at any given time is implementation defined. If the alignment parameter is not18
specified in the aligned clause, the default alignments for the SIMD instructions are19
implementation defined (see Section 2.8.1 on page 72).20

• declare simd construct: if the parameter of the simdlen clause is not a constant positive21
integer expression, the number of concurrent arguments for the function is implementation22
defined. If the alignment parameter of the aligned clause is not specified, the default23
alignments for SIMD instructions are implementation defined (see Section 2.8.2 on page 76).24

• taskloop construct: The number of loop iterations assigned to a task created from a25
taskloop construct is implementation defined, unless the grainsize or num_tasks26
clauses are specified. The integer type (or kind, for Fortran) used to compute the iteration count27
for the collapsed loop is implementation defined (see Section 2.9.2 on page 87).28

• is_device_ptr clause: Support for pointers created outside of the OpenMP device data29
management routines is implementation defined (see Section 2.10.4 on page 103).30

• teams construct: the number of teams that are created is implementation defined but less than31
or equal to the value of the num_teams clause if specified. The maximum number of threads32
participating in the contention group that each team initiates is implementation defined but less33
than or equal to the value of the thread_limit clause if specified (see Section 2.10.7 on34
page 114).35

• distribute construct: the integer type (or kind, for Fortran) used to compute the iteration36
count for the collapsed loop is implementation defined (see Section 2.10.8 on page 117).37

• distribute construct: If no dist_schedule clause is specified then the schedule for the38

344 OpenMP API – Version 4.5 November 2015

distribute construct is implementation defined (see Section 2.10.8 on page 117).1

• critical construct: the effect of using a hint clause is implementation defined (see2
Section 2.13.2 on page 149).3

• atomic construct: a compliant implementation may enforce exclusive access between4
atomic regions that update different storage locations. The circumstances under which this5
occurs are implementation defined. If the storage location designated by x is not size-aligned6
(that is, if the byte alignment of x is not a multiple of the size of x), then the behavior of the7
atomic region is implementation defined (see Section 2.13.6 on page 155).8

Fortran

• threadprivate directive: if the conditions for values of data in the threadprivate objects of9
threads (other than an initial thread) to persist between two consecutive active parallel regions do10
not all hold, the allocation status of an allocatable variable in the second region is11
implementation defined (see Section 2.15.2 on page 183).12

• shared clause: passing a shared variable to a non-intrinsic procedure may result in the value of13
the shared variable being copied into temporary storage before the procedure reference, and back14
out of the temporary storage into the actual argument storage after the procedure reference.15
Situations where this occurs other than those specified are implementation defined (see16
Section 2.15.3.2 on page 190).17

• Runtime library definitions: it is implementation defined whether the include file omp_lib.h18
or the module omp_lib (or both) is provided. It is implementation defined whether any of the19
OpenMP runtime library routines that take an argument are extended with a generic interface so20
arguments of different KIND type can be accommodated (see Section 3.1 on page 230).21

Fortran

• omp_set_num_threads routine: if the argument is not a positive integer the behavior is22
implementation defined (see Section 3.2.1 on page 231).23

• omp_set_schedule routine: for implementation specific schedule types, the values and24
associated meanings of the second argument are implementation defined. (see Section 3.2.12 on25
page 243).26

• omp_set_max_active_levels routine: when called from within any explicit parallel27
region the binding thread set (and binding region, if required) for the28
omp_set_max_active_levels region is implementation defined and the behavior is29
implementation defined. If the argument is not a non-negative integer then the behavior is30
implementation defined (see Section 3.2.15 on page 246).31

• omp_get_max_active_levels routine: when called from within any explicit parallel32
region the binding thread set (and binding region, if required) for the33
omp_get_max_active_levels region is implementation defined (see Section 3.2.16 on34
page 248).35

APPENDIX C. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 345

• omp_get_place_proc_ids routine: the meaning of the nonnegative numerical identifiers1
returned by the omp_get_place_proc_ids routine is implementation defined (see2
Section 3.2.25 on page 258).3

• omp_get_initial_device routine: the value of the device number is implementation4
defined (see Section 3.2.35 on page 267).5

• omp_init_lock_with_hint and omp_init_nest_lock_with_hint routines: if6
hints are stored with a lock variable, the effect of the hints on the locks are implementation7
defined (see Section 3.3.2 on page 273).8

• omp_target_memcpy_rect routine: the maximum number of dimensions supported is9
implementation defined, but must be at least three (see Section 3.5.5 on page 286).10

• OMP_SCHEDULE environment variable: if the value does not conform to the specified format11
then the result is implementation defined (see Section 4.1 on page 292).12

• OMP_NUM_THREADS environment variable: if any value of the list specified in the13
OMP_NUM_THREADS environment variable leads to a number of threads that is greater than the14
implementation can support, or if any value is not a positive integer, then the result is15
implementation defined (see Section 4.2 on page 293).16

• OMP_PROC_BIND environment variable: if the value is not true, false, or a comma17
separated list of master, close, or spread, the behavior is implementation defined. The18
behavior is also implementation defined if an initial thread cannot be bound to the first place in19
the OpenMP place list (see Section 4.4 on page 294).20

• OMP_DYNAMIC environment variable: if the value is neither true nor false the behavior is21
implementation defined (see Section 4.3 on page 294).22

• OMP_NESTED environment variable: if the value is neither true nor false the behavior is23
implementation defined (see Section 4.6 on page 297).24

• OMP_STACKSIZE environment variable: if the value does not conform to the specified format25
or the implementation cannot provide a stack of the specified size then the behavior is26
implementation defined (see Section 4.7 on page 298).27

• OMP_WAIT_POLICY environment variable: the details of the ACTIVE and PASSIVE28
behaviors are implementation defined (see Section 4.8 on page 299).29

• OMP_MAX_ACTIVE_LEVELS environment variable: if the value is not a non-negative integer30
or is greater than the number of parallel levels an implementation can support then the behavior31
is implementation defined (see Section 4.9 on page 300).32

• OMP_THREAD_LIMIT environment variable: if the requested value is greater than the number33
of threads an implementation can support, or if the value is not a positive integer, the behavior of34
the program is implementation defined (see Section 4.10 on page 300).35

• OMP_PLACES environment variable: the meaning of the numbers specified in the environment36
variable and how the numbering is done are implementation defined. The precise definitions of37

346 OpenMP API – Version 4.5 November 2015

the abstract names are implementation defined. An implementation may add1
implementation-defined abstract names as appropriate for the target platform. When creating a2
place list of n elements by appending the number n to an abstract name, the determination of3
which resources to include in the place list is implementation defined. When requesting more4
resources than available, the length of the place list is also implementation defined. The behavior5
of the program is implementation defined when the execution environment cannot map a6
numerical value (either explicitly defined or implicitly derived from an interval) within the7
OMP_PLACES list to a processor on the target platform, or if it maps to an unavailable processor.8
The behavior is also implementation defined when the OMP_PLACES environment variable is9
defined using an abstract name (see Section 4.5 on page 295).10

APPENDIX C. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 347

APPENDIX D1

Features History2

This appendix summarizes the major changes between recent versions of the OpenMP API since3
version 2.5.4

D.1 Version 4.0 to 4.5 Differences5

• Support for several features of Fortran 2003 was added (see Section 1.6 on page 21 for features6
that are still not supported).7

• A parameter was added to the ordered clause of the loop construct (see Section 2.7.1 on8
page 56) and clauses were added to the ordered construct (see Section 2.13.8 on page 166) to9
support doacross loop nests and use of the simd construct on loops with loop-carried backward10
dependences.11

• The linear clause was added to the loop construct (see Section 2.7.1 on page 56).12

• The simdlen clause was added to the simd construct (see Section 2.8.1 on page 72) to support13
specification of the exact number of iterations desired per SIMD chunk.14

• The priority clause was added to the task construct (see Section 2.9.1 on page 83) to15
support hints that specify the relative execution priority of explicit tasks. The16
omp_get_max_task_priority routine was added to return the maximum supported17
priority value (see Section 3.2.36 on page 268) and the OMP_MAX_TASK_PRIORITY18
environment variable was added to control the maximum priority value allowed (see19
Section 4.14 on page 303).20

• Taskloop constructs (see Section 2.9.2 on page 87 and Section 2.9.3 on page 91) were added to21
support nestable parallel loops that create OpenMP tasks.22

348

• To support interaction with native device implementations, the use_device_ptr clause was1
added to the target data construct (see Section 2.10.1 on page 95) and the2
is_device_ptr clause was added to the target construct (see Section 2.10.4 on page 103).3

• The nowait and depend clauses were added to the target construct (see Section 2.10.4 on4
page 103) to improve support for asynchronous execution of target regions.5

• The private, firstprivate and defaultmap clauses were added to the target6
construct (see Section 2.10.4 on page 103).7

• The declare target directive was extended to allow mapping of global variables to be8
deferred to specific device executions and to allow an extended-list to be specified in C/C++ (see9
Section 2.10.6 on page 110).10

• To support unstructured data mapping for devices, the target enter data (see11
Section 2.10.2 on page 97) and target exit data (see Section 2.10.3 on page 100)12
constructs were added and the map clause (see Section 2.15.5.1 on page 216) was updated.13

• To support a more complete set of device construct shortcuts, the target parallel (see14
Section 2.11.5 on page 129), target parallel loop (see Section 2.11.6 on page 131), target parallel15
loop SIMD (see Section 2.11.7 on page 132), and target simd (see Section 2.11.8 on16
page 134), combined constructs were added.17

• The if clause was extended to take a directive-name-modifier that allows it to apply to18
combined constructs (see Section 2.12 on page 147).19

• The hint clause was addded to the critical construct (see Section 2.13.2 on page 149).20

• The source and sink dependence types were added to the depend clause (see Section 2.13.921
on page 169) to support doacross loop nests.22

• The implicit data-sharing attribute for scalar variables in target regions was changed to23
firstprivate (see Section 2.15.1.1 on page 179).24

• Use of some C++ reference types was allowed in some data sharing attribute clauses (see25
Section 2.15.3 on page 188).26

• Semantics for reductions on C/C++ array sections were added and restrictions on the use of27
arrays and pointers in reductions were removed (see Section 2.15.3.6 on page 201).28

• The ref, val, and uval modifiers were added to the linear clause (see Section 2.15.3.7 on29
page 207).30

• Support was added to the map clauses to handle structure elements (see Section 2.15.5.1 on31
page 216).32

• Query functions for OpenMP thread affinity were added (see Section 3.2.23 on page 256 to33
Section 3.2.28 on page 261).34

APPENDIX D. FEATURES HISTORY 349

• The lock API was extended with lock routines that support storing a hint with a lock to select a1
desired lock implementation for a lock’s intended usage by the application code (see2
Section 3.3.2 on page 273).3

• Device memory routines were added to allow explicit allocation, deallocation, memory transfers4
and memory associations (see Section 3.5 on page 282).5

• C/C++ Grammar (previously Appendix B) was moved to a separate document.6

D.2 Version 3.1 to 4.0 Differences7

• Various changes throughout the specification were made to provide initial support of Fortran8
2003 (see Section 1.6 on page 21).9

• C/C++ array syntax was extended to support array sections (see Section 2.4 on page 44).10

• The proc_bind clause (see Section 2.5.2 on page 52), the OMP_PLACES environment11
variable (see Section 4.5 on page 295), and the omp_get_proc_bind runtime routine (see12
Section 3.2.22 on page 254) were added to support thread affinity policies.13

• SIMD constructs were added to support SIMD parallelism (see Section 2.8 on page 72).14

• Device constructs (see Section 2.10 on page 95), the OMP_DEFAULT_DEVICE environment15
variable (see Section 4.13 on page 302), the omp_set_default_device,16
omp_get_default_device, omp_get_num_devices, omp_get_num_teams,17
omp_get_team_num, and omp_is_initial_device routines were added to support18
execution on devices.19

• Implementation defined task scheduling points for untied tasks were removed (see Section 2.9.520
on page 94).21

• The depend clause (see Section 2.13.9 on page 169) was added to support task dependences.22

• The taskgroup construct (see Section 2.13.5 on page 153) was added to support more flexible23
deep task synchronization.24

• The reduction clause (see Section 2.15.3.6 on page 201) was extended and the25
declare reduction construct (see Section 2.16 on page 220) was added to support user26
defined reductions.27

• The atomic construct (see Section 2.13.6 on page 155) was extended to support atomic swap28
with the capture clause, to allow new atomic update and capture forms, and to support29
sequentially consistent atomic operations with a new seq_cst clause.30

350 OpenMP API – Version 4.5 November 2015

• The cancel construct (see Section 2.14.1 on page 172), the cancellation point1
construct (see Section 2.14.2 on page 176), the omp_get_cancellation runtime routine2
(see Section 3.2.9 on page 240) and the OMP_CANCELLATION environment variable (see3
Section 4.11 on page 300) were added to support the concept of cancellation.4

• The OMP_DISPLAY_ENV environment variable (see Section 4.12 on page 301) was added to5
display the value of ICVs associated with the OpenMP environment variables.6

• Examples (previously Appendix A) were moved to a separate document.7

D.3 Version 3.0 to 3.1 Differences8

• The final and mergeable clauses (see Section 2.9.1 on page 83) were added to the task9
construct to support optimization of task data environments.10

• The taskyield construct (see Section 2.9.4 on page 93) was added to allow user-defined task11
scheduling points.12

• The atomic construct (see Section 2.13.6 on page 155) was extended to include read, write,13
and capture forms, and an update clause was added to apply the already existing form of the14
atomic construct.15

• Data environment restrictions were changed to allow intent(in) and const-qualified types16
for the firstprivate clause (see Section 2.15.3.4 on page 196).17

• Data environment restrictions were changed to allow Fortran pointers in firstprivate (see18
Section 2.15.3.4 on page 196) and lastprivate (see Section 2.15.3.5 on page 199).19

• New reduction operators min and max were added for C and C++20

• The nesting restrictions in Section 2.17 on page 227 were clarified to disallow closely-nested21
OpenMP regions within an atomic region. This allows an atomic region to be consistently22
defined with other OpenMP regions so that they include all code in the atomic construct.23

• The omp_in_final runtime library routine (see Section 3.2.21 on page 253) was added to24
support specialization of final task regions.25

• The nthreads-var ICV has been modified to be a list of the number of threads to use at each26
nested parallel region level. The value of this ICV is still set with the OMP_NUM_THREADS27
environment variable (see Section 4.2 on page 293), but the algorithm for determining the28
number of threads used in a parallel region has been modified to handle a list (see Section 2.5.129
on page 50).30

APPENDIX D. FEATURES HISTORY 351

• The bind-var ICV has been added, which controls whether or not threads are bound to processors1
(see Section 2.3.1 on page 36). The value of this ICV can be set with the OMP_PROC_BIND2
environment variable (see Section 4.4 on page 294).3

• Descriptions of examples (previously Appendix A) were expanded and clarified.4

• Replaced incorrect use of omp_integer_kind in Fortran interfaces (see Section B.3 on5
page 335 and Section B.4 on page 342) with selected_int_kind(8).6

D.4 Version 2.5 to 3.0 Differences7

The concept of tasks has been added to the OpenMP execution model (see Section 1.2.5 on page 98
and Section 1.3 on page 14).9

• The task construct (see Section 2.9 on page 83) has been added, which provides a mechanism10
for creating tasks explicitly.11

• The taskwait construct (see Section 2.13.4 on page 153) has been added, which causes a task12
to wait for all its child tasks to complete.13

• The OpenMP memory model now covers atomicity of memory accesses (see Section 1.4.1 on14
page 17). The description of the behavior of volatile in terms of flush was removed.15

• In Version 2.5, there was a single copy of the nest-var, dyn-var, nthreads-var and run-sched-var16
internal control variables (ICVs) for the whole program. In Version 3.0, there is one copy of17
these ICVs per task (see Section 2.3 on page 36). As a result, the omp_set_num_threads,18
omp_set_nested and omp_set_dynamic runtime library routines now have specified19
effects when called from inside a parallel region (see Section 3.2.1 on page 231,20
Section 3.2.7 on page 237 and Section 3.2.10 on page 240).21

• The definition of active parallel region has been changed: in Version 3.0 a parallel22
region is active if it is executed by a team consisting of more than one thread (see Section 1.2.223
on page 2).24

• The rules for determining the number of threads used in a parallel region have been modified25
(see Section 2.5.1 on page 50).26

• In Version 3.0, the assignment of iterations to threads in a loop construct with a static27
schedule kind is deterministic (see Section 2.7.1 on page 56).28

• In Version 3.0, a loop construct may be associated with more than one perfectly nested loop. The29
number of associated loops may be controlled by the collapse clause (see Section 2.7.1 on30
page 56).31

352 OpenMP API – Version 4.5 November 2015

• Random access iterators, and variables of unsigned integer type, may now be used as loop1
iterators in loops associated with a loop construct (see Section 2.7.1 on page 56).2

• The schedule kind auto has been added, which gives the implementation the freedom to choose3
any possible mapping of iterations in a loop construct to threads in the team (see Section 2.7.1 on4
page 56).5

• Fortran assumed-size arrays now have predetermined data-sharing attributes (see6
Section 2.15.1.1 on page 179).7

• In Fortran, firstprivate is now permitted as an argument to the default clause (see8
Section 2.15.3.1 on page 189).9

• For list items in the private clause, implementations are no longer permitted to use the storage10
of the original list item to hold the new list item on the master thread. If no attempt is made to11
reference the original list item inside the parallel region, its value is well defined on exit12
from the parallel region (see Section 2.15.3.3 on page 192).13

• In Version 3.0, Fortran allocatable arrays may appear in private, firstprivate,14
lastprivate, reduction, copyin and copyprivate clauses. (see Section 2.15.2 on15
page 183, Section 2.15.3.3 on page 192, Section 2.15.3.4 on page 196, Section 2.15.3.5 on16
page 199, Section 2.15.3.6 on page 201, Section 2.15.4.1 on page 211 and Section 2.15.4.2 on17
page 213).18

• In Version 3.0, static class members variables may appear in a threadprivate directive (see19
Section 2.15.2 on page 183).20

• Version 3.0 makes clear where, and with which arguments, constructors and destructors of21
private and threadprivate class type variables are called (see Section 2.15.2 on page 183,22
Section 2.15.3.3 on page 192, Section 2.15.3.4 on page 196, Section 2.15.4.1 on page 211 and23
Section 2.15.4.2 on page 213).24

• The runtime library routines omp_set_schedule and omp_get_schedule have been25
added; these routines respectively set and retrieve the value of the run-sched-var ICV (see26
Section 3.2.12 on page 243 and Section 3.2.13 on page 245).27

• The thread-limit-var ICV has been added, which controls the maximum number of threads28
participating in the OpenMP program. The value of this ICV can be set with the29
OMP_THREAD_LIMIT environment variable and retrieved with the30
omp_get_thread_limit runtime library routine (see Section 2.3.1 on page 36,31
Section 3.2.14 on page 246 and Section 4.10 on page 300).32

• The max-active-levels-var ICV has been added, which controls the number of nested active33
parallel regions. The value of this ICV can be set with the OMP_MAX_ACTIVE_LEVELS34
environment variable and the omp_set_max_active_levels runtime library routine, and35
it can be retrieved with the omp_get_max_active_levels runtime library routine (see Section 2.3.136
on page 36, Section 3.2.15 on page 246, Section 3.2.16 on page 248 and Section 4.9 on page 300).37

APPENDIX D. FEATURES HISTORY 353

• The stacksize-var ICV has been added, which controls the stack size for threads that the OpenMP1
implementation creates. The value of this ICV can be set with the OMP_STACKSIZE2
environment variable (see Section 2.3.1 on page 36 and Section 4.7 on page 298).3

• The wait-policy-var ICV has been added, which controls the desired behavior of waiting threads.4
The value of this ICV can be set with the OMP_WAIT_POLICY environment variable (see5
Section 2.3.1 on page 36 and Section 4.8 on page 299).6

• The omp_get_level runtime library routine has been added, which returns the number of7
nested parallel regions enclosing the task that contains the call (see Section 3.2.17 on8
page 249).9

• The omp_get_ancestor_thread_num runtime library routine has been added, which10
returns, for a given nested level of the current thread, the thread number of the ancestor (see11
Section 3.2.18 on page 250).12

• The omp_get_team_size runtime library routine has been added, which returns, for a given13
nested level of the current thread, the size of the thread team to which the ancestor belongs (see14
Section 3.2.19 on page 251).15

• The omp_get_active_level runtime library routine has been added, which returns the16
number of nested, active parallel regions enclosing the task that contains the call (see17
Section 3.2.20 on page 252).18

• In Version 3.0, locks are owned by tasks, not by threads (see Section 3.3 on page 270).19

354 OpenMP API – Version 4.5 November 2015

Index

Symbols
_OPENMP macro, 301
_OPENMP macro, 33

A
affinity, 52
array sections, 44
atomic, 155
atomic construct, 345
attribute clauses, 188
attributes, data-mapping, 215
attributes, data-sharing, 179
auto, 61

B
barrier, 151

C
C/C++ stub routines, 305
cancel, 172
cancellation constructs, 172

cancel, 172
cancellation point, 176

cancellation point, 176
canonical loop form, 53
clauses

attribute data-sharing, 188
collapse, 57, 58
copyin, 211
copyprivate, 213
data copying, 211
data-sharing, 188
default, 189
defaultmap, 219
depend, 169
firstprivate, 196
if Clause, 147
lastprivate, 199

linear, 207
map, 216
private, 192
reduction, 201
schedule, 59
shared, 190

combined constructs, 124
parallel loop construct, 124
parallel loop SIMD construct, 128
parallel sections, 125
parallel workshare, 127
target parallel, 129
target parallel loop, 131
target parallel loop SIMD, 132
target simd, 134
target teams, 135
target teams distribute, 139
target teams distribute parallel loop

construct, 142
target teams distribute parallel loop

SIMD construct, 145
target teams distribute simd,

140
teams distribute, 136
teams distribute parallel loop construct,

141
teams distribute parallel loop SIMD

construct, 144
teams distribute simd, 137

compilation sentinels, 34
compliance, 21
conditional compilation, 33
constructs

atomic, 155
barrier, 151
cancel, 172
cancellation constructs, 172

355

cancellation point, 176
combined constructs, 124
critical, 149
declare simd, 76
declare target, 110
device constructs, 95
distribute, 117
distribute parallel do, 121
distribute parallel do simd,

122
distribute parallel for, 121
distribute parallel for simd,

122
distribute parallel loop, 121
distribute parallel loop SIMD, 122
distribute simd, 119
do Fortran, 56
flush, 162
for, C/C++, 56
loop, 56
Loop SIMD, 81
master, 148
ordered, 166
parallel, 46
parallel do Fortran, 124
parallel for C/C++, 124
parallel loop construct, 124
parallel loop SIMD construct, 128
parallel sections, 125
parallel workshare, 127
sections, 65
simd, 72
single, 67
target, 103
target data, 95
target enter data, 97
target exit data, 100
target parallel, 129
target parallel do, 131
target parallel do simd, 132
target parallel for, 131
target parallel for simd, 132
target parallel loop, 131

target parallel loop SIMD, 132
target simd, 134
target teams, 135
target teams distribute, 139
target teams distribute parallel loop

construct, 142
target teams distribute parallel loop

SIMD construct, 145
target teams distribute simd,

140
target update, 107
task, 83
taskgroup, 153
tasking constructs, 83
taskloop, 87
taskloop simd, 91
taskwait, 153
taskyield, 93
teams, 114
teams distribute, 136
teams distribute parallel loop construct,

141
teams distribute parallel loop SIMD

construct, 144
teams distribute simd, 137
workshare, 69
worksharing, 56

controlling OpenMP thread affinity, 52
copyin, 211
copyprivate, 213
critical, 149

D
data copying clauses, 211
data environment, 178
data terminology, 11
data-mapping rules and clauses, 215
data-sharing attribute clauses, 188
data-sharing attribute rules, 179
declare reduction, 220
declare simd, 76
declare target, 110
default, 189
defaultmap, 219

356 OpenMP API – Version 4.5 November 2015

depend, 169
device constructs, 95

declare target, 110
device constructs, 95
distribute, 117
distribute parallel loop, 121
distribute parallel loop SIMD, 122
distribute simd, 119
target, 103
target update, 107
teams, 114

device data environments, 18, 97, 100
device memory routines, 282
directive format, 26
directives, 25

declare reduction, 220
declare target, 110
threadprivate, 183

distribute, 117
distribute parallel loop construct, 121
distribute parallel loop SIMD construct, 122
distribute simd, 119
do, Fortran, 56
do simd, 81
dynamic, 60
dynamic thread adjustment, 343

E
environment variables, 290

OMP_CANCELLATION, 300
OMP_DEFAULT_DEVICE, 302
OMP_DISPLAY_ENV, 301
OMP_DYNAMIC, 294
OMP_MAX_ACTIVE_LEVELS, 300
OMP_MAX_TASK_PRIORITY, 303
OMP_NESTED, 297
OMP_NUM_THREADS, 293
OMP_PLACES, 295
OMP_PROC_BIND, 294
OMP_SCHEDULE, 292
OMP_STACKSIZE, 298
OMP_THREAD_LIMIT, 300
OMP_WAIT_POLICY, 299

execution environment routines, 231

execution model, 14

F
features history, 348
firstprivate, 196
fixed source form conditional compilation

sentinels, 34
fixed source form directives, 28
flush, 162
flush operation, 19
for, C/C++, 56
for simd, 81
free source form conditional compilation

sentinel, 34
free source form directives, 29

G
glossary, 2
guided, 60

H
header files, 230, 326
history of features, 348

I
ICVs (internal control variables), 36
if Clause, 147
implementation, 343
implementation terminology, 13
include files, 230, 326
interface declarations, 326
internal control variables, 343
internal control variables (ICVs), 36
introduction, 1

L
lastprivate, 199
linear, 207
lock routines, 270
loop, 56
loop SIMD Construct, 81
loop terminology, 8

M
map, 216

Index 357

master, 148
master and synchronization constructs and

clauses, 148
memory model, 17
modifying and retrieving ICV values, 39
modifying ICV’s, 37

N
nesting of regions, 227
normative references, 21

O
omp_get_num_teams, 264
OMP_CANCELLATION, 300
OMP_DEFAULT_DEVICE, 302
omp_destroy_lock, 275
omp_destroy_nest_lock, 275
OMP_DISPLAY_ENV, 301
OMP_DYNAMIC, 294
omp_get_active_level, 252
omp_get_ancestor_thread_num,

250
omp_get_cancellation, 240
omp_get_default_device, 263
omp_get_dynamic, 239
omp_get_initial_device, 267
omp_get_level, 249
omp_get_max_active_levels, 248
omp_get_max_task_priority, 268
omp_get_max_threads, 233
omp_get_nested, 242
omp_get_num_devices, 264
omp_get_num_places, 256
omp_get_num_procs, 236
omp_get_num_threads, 232
omp_get_partition_num_places,

260
omp_get_partition_place_nums,

261
omp_get_place_num, 259
omp_get_place_num_procs, 257
omp_get_place_proc_ids, 258
omp_get_proc_bind, 254
omp_get_schedule, 245

omp_get_team_num, 266
omp_get_team_size, 251
omp_get_thread_limit, 246
omp_get_thread_num, 235
omp_get_wtick, 281
omp_get_wtime, 279
omp_in_final, 253
omp_in_parallel, 236
omp_init_lock, 272, 273
omp_init_nest_lock, 272, 273
omp_is_initial_device, 267
OMP_MAX_ACTIVE_LEVELS, 300
OMP_MAX_TASK_PRIORITY, 303
OMP_NESTED, 297
OMP_NUM_THREADS, 293
OMP_PLACES, 295
OMP_PROC_BIND, 294
OMP_SCHEDULE, 292
omp_set_default_device, 262
omp_set_dynamic, 237
omp_set_lock, 276
omp_set_max_active_levels, 246
omp_set_nest_lock, 276
omp_set_nested, 240
omp_set_num_threads, 231
omp_set_schedule, 243
OMP_STACKSIZE, 298
omp_target_alloc, 282
omp_target_associate_ptr, 287
omp_target_disassociate_ptr,

289
omp_target_free, 283
omp_target_is_present, 284
omp_target_memcpy, 285
omp_target_memcpy_rect, 286
omp_test_lock, 278
omp_test_nest_lock, 278
OMP_THREAD_LIMIT, 300
omp_unset_lock, 277
omp_unset_nest_lock, 277
OMP_WAIT_POLICY, 299
OpenMP compliance, 21
ordered, 166

358 OpenMP API – Version 4.5 November 2015

P
parallel, 46
parallel loop construct, 124
parallel loop SIMD construct, 128
parallel sections, 125
parallel workshare, 127
private, 192

R
read, atomic, 155
reduction, 201
runtime library definitions, 230
runtime library routines, 229

S
scheduling, 94
sections, 65
shared, 190
simd, 72
SIMD Constructs, 72
Simple Lock Routines, 270
single, 67
stand-alone directives, 32
stub routines, 305
synchronization constructs, 148
synchronization terminology, 9

T
target, 103
target data, 95
target memory routines, 282
target parallel, 129
target parallel loop construct, 131
target parallel loop SIMD construct, 132
target simd, 134
target teams, 135
target teams distribute, 139
target teams distribute parallel loop

construct, 142
target teams distribute parallel loop SIMD

construct, 145
target teams distribute simd, 140
target update, 107
task, 83

task scheduling, 94
taskgroup, 153
tasking constructs, 83
tasking terminology, 9
taskloop, 87
taskloop simd, 91
taskwait, 153
taskyield, 93
teams, 114
teams distribute, 136
teams distribute parallel loop construct, 141
teams distribute parallel loop SIMD

construct, 144
teams distribute simd, 137
thread affinity, 52
threadprivate, 183
timer, 279
timing routines, 279

U
update, atomic, 155

V
variables, environment, 290

W
wall clock timer, 279
workshare, 69
worksharing

constructs, 56
parallel, 124
scheduling, 64

worksharing constructs, 56
write, atomic, 155

Index 359

	Introduction
	Scope
	Glossary
	Threading Concepts
	OpenMP Language Terminology
	Loop Terminology
	Synchronization Terminology
	Tasking Terminology
	Data Terminology
	Implementation Terminology

	Execution Model
	Memory Model
	Structure of the OpenMP Memory Model
	Device Data Environments
	The Flush Operation
	OpenMP Memory Consistency

	OpenMP Compliance
	Normative References
	Organization of this Document

	Directives
	Directive Format
	Fixed Source Form Directives
	Free Source Form Directives
	Stand-Alone Directives

	Conditional Compilation
	Fixed Source Form Conditional Compilation Sentinels
	Free Source Form Conditional Compilation Sentinel

	Internal Control Variables
	ICV Descriptions
	ICV Initialization
	Modifying and Retrieving ICV Values
	How ICVs are Scoped
	How the Per-Data Environment ICVs Work

	ICV Override Relationships

	Array Sections
	parallel Construct
	Determining the Number of Threads for a parallel Region
	Controlling OpenMP Thread Affinity

	Canonical Loop Form
	Worksharing Constructs
	Loop Construct
	Determining the Schedule of a Worksharing Loop

	sections Construct
	single Construct
	workshare Construct

	SIMD Constructs
	simd Construct
	declare simd Construct
	Loop SIMD Construct

	Tasking Constructs
	task Construct
	taskloop Construct
	taskloop simd Construct
	taskyield Construct
	Task Scheduling

	Device Constructs
	target data Construct
	target enter data Construct
	target exit data Construct
	target Construct
	target update Construct
	declare target Directive
	teams Construct
	distribute Construct
	distribute simd Construct
	Distribute Parallel Loop Construct
	Distribute Parallel Loop SIMD Construct

	Combined Constructs
	Parallel Loop Construct
	parallel sections Construct
	parallel workshare Construct
	Parallel Loop SIMD Construct
	target parallel Construct
	Target Parallel Loop Construct
	Target Parallel Loop SIMD Construct
	target simd Construct
	target teams Construct
	teams distribute Construct
	teams distribute simd Construct
	target teams distribute Construct
	target teams distribute simd Construct
	Teams Distribute Parallel Loop Construct
	Target Teams Distribute Parallel Loop Construct
	Teams Distribute Parallel Loop SIMD Construct
	Target Teams Distribute Parallel Loop SIMD Construct

	if Clause
	Master and Synchronization Constructs and Clauses
	master Construct
	critical Construct
	barrier Construct
	taskwait Construct
	taskgroup Construct
	atomic Construct
	flush Construct
	ordered Construct
	depend Clause

	Cancellation Constructs
	cancel Construct
	cancellation point Construct

	Data Environment
	Data-sharing Attribute Rules
	Data-sharing Attribute Rules for Variables Referenced in a Construct
	Data-sharing Attribute Rules for Variables Referenced in a Region but not in a Construct

	threadprivate Directive
	Data-Sharing Attribute Clauses
	default Clause
	shared Clause
	private Clause
	firstprivate Clause
	lastprivate Clause
	reduction Clause
	linear Clause

	Data Copying Clauses
	copyin Clause
	copyprivate Clause

	Data-mapping Attribute Rules and Clauses
	map Clause
	defaultmap Clause

	declare reduction Directive
	Nesting of Regions

	Runtime Library Routines
	Runtime Library Definitions
	Execution Environment Routines
	omp_set_num_threads
	omp_get_num_threads
	omp_get_max_threads
	omp_get_thread_num
	omp_get_num_procs
	omp_in_parallel
	omp_set_dynamic
	omp_get_dynamic
	omp_get_cancellation
	omp_set_nested
	omp_get_nested
	omp_set_schedule
	omp_get_schedule
	omp_get_thread_limit
	omp_set_max_active_levels
	omp_get_max_active_levels
	omp_get_level
	omp_get_ancestor_thread_num
	omp_get_team_size
	omp_get_active_level
	omp_in_final
	omp_get_proc_bind
	omp_get_num_places
	omp_get_place_num_procs
	omp_get_place_proc_ids
	omp_get_place_num
	omp_get_partition_num_places
	omp_get_partition_place_nums
	omp_set_default_device
	omp_get_default_device
	omp_get_num_devices
	omp_get_num_teams
	omp_get_team_num
	omp_is_initial_device
	omp_get_initial_device
	omp_get_max_task_priority

	Lock Routines
	omp_init_lock and omp_init_nest_lock
	omp_init_lock_with_hint and omp_init_nest_lock_with_hint
	omp_destroy_lock and omp_destroy_nest_lock
	omp_set_lock and omp_set_nest_lock
	omp_unset_lock and omp_unset_nest_lock
	omp_test_lock and omp_test_nest_lock

	Timing Routines
	omp_get_wtime
	omp_get_wtick

	Device Memory Routines
	omp_target_alloc
	omp_target_free
	omp_target_is_present
	omp_target_memcpy
	omp_target_memcpy_rect
	omp_target_associate_ptr
	omp_target_disassociate_ptr

	Environment Variables
	OMP_SCHEDULE
	OMP_NUM_THREADS
	OMP_DYNAMIC
	OMP_PROC_BIND
	OMP_PLACES
	OMP_NESTED
	OMP_STACKSIZE
	OMP_WAIT_POLICY
	OMP_MAX_ACTIVE_LEVELS
	OMP_THREAD_LIMIT
	OMP_CANCELLATION
	OMP_DISPLAY_ENV
	OMP_DEFAULT_DEVICE
	OMP_MAX_TASK_PRIORITY

	Stubs for Runtime Library Routines
	C/C++ Stub Routines
	Fortran Stub Routines

	Interface Declarations
	Example of the omp.h Header File
	Example of an Interface Declaration include File
	Example of a Fortran Interface Declaration module
	Example of a Generic Interface for a Library Routine

	OpenMP Implementation-Defined Behaviors
	Features History
	Version 4.0 to 4.5 Differences
	Version 3.1 to 4.0 Differences
	Version 3.0 to 3.1 Differences
	Version 2.5 to 3.0 Differences

	Index

