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Context: ExaAM project, an ECP application (PI: John 
Turner, ORNL)

• What is Additive manufacturing?

– The process of joining materials to make 
objects from 3D model data, usually layer 
upon layer, as opposed to subtractive 
manufacturing methodologies

• Goal

– Improve quality, reliability, and application 
breadth of additive manufacturing for 
metallic alloys

• Computational approach

– Coupling multiple codes modeling various 
length-scales
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Fine-scale Microstructure using 
Phase-field model 𝜕ϕ

𝜕𝑡
= 𝑀 𝜀2∇2ϕ +𝑊ϕ(1 − ϕ)(1 − 2ϕ) +

𝜕𝑓

𝜕ϕ

Phase-field equation

C++11 Code: AMPE
https://github.com/LLNL/AMPE

solid liquid

+ a few other coupled equations
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KKS phase-field model for alloys [Kim, Kim, Suzuki, Phys
Rev E (1999)]

• Case of binary alloy

– At every mesh point of discretization grid, given  (phase fraction) and c (alloy 
composition), solve a set of nonlinear equations for cs and cL using a Newton 
solver

• Ternary alloy

– Similar with 4 unknowns and 4 equations

• fS and fL known functions, parameterized with 10+ parameters each

𝑐 = ϕ𝑐𝑆 + [1 − ϕ]𝑐𝐿

𝜕𝑓𝑠

𝜕𝑐𝑆
=
𝜕𝑓𝐿

𝜕𝑐𝐿
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Solvers initial C++ implementation

• Base class

– Newton solver

– Pure virtual functions to compute right handside and Jacobian 

• Derived class

– Implements specific right handside and Jacobian computation

• CPU code

ϕ𝑐𝑆 + [1 − ϕ]𝑐𝐿-c=0

𝜕𝑓𝑠

𝜕𝑐𝑆
−

𝜕𝑓𝐿

𝜕𝑐𝐿
=0

#pragma omp parallel for
for(int i=0;i<N;i++)
{

BinaryAlloySolver s(T[i]);
double x[2];
s.solve(phi[i],c[i], x);
…

}
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What can I do or not do with OpenMP4.5 offload?

• Things I knew I could not use within OpenMP region

– STL

• Things I suspected I could not use within OpenMP region

– virtual functions

– assert()

• Things I discovered I could not use within OpenMP region

– Classes with non-trivial constructors/destructors, or even classes with 
declared a constructor and/or destructor
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Strategy to offload code

• Platform: Summit @OLCF

• Compiler: gcc/10.2.0

• Compiler error messages not very specific/informative …

– No info on which specific function or what cannot be offloaded

• Use “toy” code to test what the compiler let me do or not

– “OpenMP Application Programming Interface, Examples”, Version 4.5.0 –
November 2016

– Step-by-step move closer to target code design
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Moving towards a working C++ code

• Remove STL, assert

• Make constructors/destructors trivial

– Add setup functions to initialize objects

• Use Curiously Recurring Template Pattern (CRTP) to avoid virtual 
functions

Limited C++: C code + class encapsulation + templates
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Working Code

class CALPHADConcSolverBinary : public NewtonSolver<2, CALPHADConcSolverBinary>
{
public:
#pragma omp declare target

int ComputeConcentration(double* const conc, const double tol,
const int max_iters, const double alpha = 1.)

{
return NewtonSolver::ComputeSolution(conc, tol, max_iters, alpha);

}
#pragma omp end declare target

…
}

template <unsigned int Dimension, class SolverType>
Class NewtonSolver
{
#pragma omp declare target

void internalRHS(const double* const x, double* const fvec)
{

static_cast<SolverType*>(this)->RHS(x, fvec);
}

…
#pragma omp end declare target
}
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Driver code

# pragma omp target \
map (to: sol ) map ( tofrom: xdev ) \
map (to: fA, fB, Lmix_L, Lmix_A) \
map (to: RTinv), map ( from: nits)

{
#pragma omp teams distribute parallel for
for(int i=0;i<N;i++)
{

xdev[2*i]=sol[0];
xdev[2*i+1]=sol[1];

double hphi = 0.5+i*deviation;
double c0 = 0.3;

class Thermo4PFM::CALPHADConcSolverBinary solver;
solver.setup(c0, hphi, RTinv, Lmix_L, Lmix_A, fA, fB);
nits[i] = solver.ComputeConcentration(&xdev[2*i], 1.e-8, 50);

}
}
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Performance

• 4.5X speedup GPU over CPU on Summit for ternary alloy problem (4 
coupled equations)

– 6 GPU offload vs. 42 OpenMP CPU threads

• Performance currently limited by GPU registers memory

– Planning to replace some “double” with “float” to reduce memory requirements
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Conclusion

• Working solution for gcc on Summit

– Requires some non-trivial code changes

– Still debugging some classes…

• Open source soon

– https://github.com/ORNL/Thermo4PFM

• Decent performance, to be improved with mixed precision

• XL compiler not working for me at the moment

• Better (and user friendly) documentation about porting C++ classes 
would be really helpful

– Probably dependent on compiler, compiler version,…

• More targeted error messages at compile time would help too…
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