
My experience with OpenMP off-loading C++
classes

Jean-Luc Fattebert

Oak Ridge National Laboratory

2 Exascale Computing Project

Context: ExaAM project, an ECP application (PI: John
Turner, ORNL)

• What is Additive manufacturing?

– The process of joining materials to make
objects from 3D model data, usually layer
upon layer, as opposed to subtractive
manufacturing methodologies

• Goal

– Improve quality, reliability, and application
breadth of additive manufacturing for
metallic alloys

• Computational approach

– Coupling multiple codes modeling various
length-scales

3 Exascale Computing Project

Fine-scale Microstructure using
Phase-field model 𝜕ϕ

𝜕𝑡
= 𝑀 𝜀2∇2ϕ +𝑊ϕ(1 − ϕ)(1 − 2ϕ) +

𝜕𝑓

𝜕ϕ

Phase-field equation

C++11 Code: AMPE
https://github.com/LLNL/AMPE

solid liquid

+ a few other coupled equations

4 Exascale Computing Project

KKS phase-field model for alloys [Kim, Kim, Suzuki, Phys
Rev E (1999)]

• Case of binary alloy

– At every mesh point of discretization grid, given  (phase fraction) and c (alloy
composition), solve a set of nonlinear equations for cs and cL using a Newton
solver

• Ternary alloy

– Similar with 4 unknowns and 4 equations

• fS and fL known functions, parameterized with 10+ parameters each

𝑐 = ϕ𝑐𝑆 + [1 − ϕ]𝑐𝐿

𝜕𝑓𝑠

𝜕𝑐𝑆
=
𝜕𝑓𝐿

𝜕𝑐𝐿

5 Exascale Computing Project

Solvers initial C++ implementation

• Base class

– Newton solver

– Pure virtual functions to compute right handside and Jacobian

• Derived class

– Implements specific right handside and Jacobian computation

• CPU code

ϕ𝑐𝑆 + [1 − ϕ]𝑐𝐿-c=0

𝜕𝑓𝑠

𝜕𝑐𝑆
−

𝜕𝑓𝐿

𝜕𝑐𝐿
=0

#pragma omp parallel for
for(int i=0;i<N;i++)
{

BinaryAlloySolver s(T[i]);
double x[2];
s.solve(phi[i],c[i], x);
…

}

6 Exascale Computing Project

What can I do or not do with OpenMP4.5 offload?

• Things I knew I could not use within OpenMP region

– STL

• Things I suspected I could not use within OpenMP region

– virtual functions

– assert()

• Things I discovered I could not use within OpenMP region

– Classes with non-trivial constructors/destructors, or even classes with
declared a constructor and/or destructor

7 Exascale Computing Project

Strategy to offload code

• Platform: Summit @OLCF

• Compiler: gcc/10.2.0

• Compiler error messages not very specific/informative …

– No info on which specific function or what cannot be offloaded

• Use “toy” code to test what the compiler let me do or not

– “OpenMP Application Programming Interface, Examples”, Version 4.5.0 –
November 2016

– Step-by-step move closer to target code design

8 Exascale Computing Project

Moving towards a working C++ code

• Remove STL, assert

• Make constructors/destructors trivial

– Add setup functions to initialize objects

• Use Curiously Recurring Template Pattern (CRTP) to avoid virtual
functions

Limited C++: C code + class encapsulation + templates

9 Exascale Computing Project

Working Code

class CALPHADConcSolverBinary : public NewtonSolver<2, CALPHADConcSolverBinary>
{
public:
#pragma omp declare target

int ComputeConcentration(double* const conc, const double tol,
const int max_iters, const double alpha = 1.)

{
return NewtonSolver::ComputeSolution(conc, tol, max_iters, alpha);

}
#pragma omp end declare target

…
}

template <unsigned int Dimension, class SolverType>
Class NewtonSolver
{
#pragma omp declare target

void internalRHS(const double* const x, double* const fvec)
{

static_cast<SolverType*>(this)->RHS(x, fvec);
}

…
#pragma omp end declare target
}

10 Exascale Computing Project

Driver code

pragma omp target \
map (to: sol) map (tofrom: xdev) \
map (to: fA, fB, Lmix_L, Lmix_A) \
map (to: RTinv), map (from: nits)

{
#pragma omp teams distribute parallel for
for(int i=0;i<N;i++)
{

xdev[2*i]=sol[0];
xdev[2*i+1]=sol[1];

double hphi = 0.5+i*deviation;
double c0 = 0.3;

class Thermo4PFM::CALPHADConcSolverBinary solver;
solver.setup(c0, hphi, RTinv, Lmix_L, Lmix_A, fA, fB);
nits[i] = solver.ComputeConcentration(&xdev[2*i], 1.e-8, 50);

}
}

11 Exascale Computing Project

Performance

• 4.5X speedup GPU over CPU on Summit for ternary alloy problem (4
coupled equations)

– 6 GPU offload vs. 42 OpenMP CPU threads

• Performance currently limited by GPU registers memory

– Planning to replace some “double” with “float” to reduce memory requirements

12 Exascale Computing Project

Conclusion

• Working solution for gcc on Summit

– Requires some non-trivial code changes

– Still debugging some classes…

• Open source soon

– https://github.com/ORNL/Thermo4PFM

• Decent performance, to be improved with mixed precision

• XL compiler not working for me at the moment

• Better (and user friendly) documentation about porting C++ classes
would be really helpful

– Probably dependent on compiler, compiler version,…

• More targeted error messages at compile time would help too…

13 Exascale Computing Project

Acknowledgements

• Research supported by the Exascale Computing Project
(http://www.exascaleproject.org), a joint project of the U.S. Department of
Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software,
applications, and hardware technology, to support the nation’s exascale
computing imperative.

• This research used resources of the Oak Ridge Leadership Computing Facility at
the Oak Ridge National Laboratory, which is supported by the Office of Science
of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725

