
Asynchronous 3-D FFTs using OpenMP offload for
extreme problem sizes

Kiran Ravikumar1, P.K. Yeung1, Stephen Nichols2,
Oscar Hernandez3*, John Levesque4, Dossay Oryspayev5

kiran.r@gatech.edu
pk.yeung@ae.gatech.edu

1Georgia Institute of Technology, 2Oak Ridge National Lab., 3NVIDIA, 4Cray (HPE), 5Brookhaven National Lab.
*Work performed while at ORNL and ECP SOLLVE project

OpenMP Users Monthly Teleconferences
May 28, 2021

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 1 / 22

What is the (3D) Fourier Transform, and why is it important?

Representing complex signals as sums of sines and cosines
In wavenumber: f (x) =

∑
k f̂ (k) exp(ikx) or in frequency: g(t) =

∑
ω ĝ(ω) exp(iωt)

Forward transform: obtain set of coefficients from function values
Inverse transform: obtain function values from the coefficients
Can be extended to 3D in space: f (x) =

∑
x f̂ (k) exp(ik · x)

Transforming one direction at a time:

f (x, y, z) = F−1
x

{
F−1

y

{
F−1

z

{
f̂ (kx, ky, kz)

}}}
As effective methods of numerical solution of PDEs

In some cases, equations governing f̂ may be more readily solved numerically
(which is our prime motivation in this talk)

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 2 / 22

Science Motivation: The Challenge of Fluid Turbulence

Disorderly fluctuations over a wide range of scales in 3D space and time
A physical problem of great complexity, and a critical factor in many disciplines

Governing equations are known, but mathematically intractable

Experiments, theory, modeling, computation all useful yet imperfect.

Better physical understanding is required (e.g. think Covid-19)

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 3 / 22

Computing Turbulence: Direct Numerical Simulations

Separate instantaneous velocity field into the sum of an averged state, and departures
(fluctuations) from that state
Form and solve (numerically) equations for the fluctuations

Simplified geometries: periodic boundary conditions compatible with Fourier
decompositions are numerically advantageous and physically useful.

State-of-the-art around 2000 was 10243

40963 (Kaneda et al) on Earth Simulator in Japan, 2003

In 2019 we reached world-leading 18, 4323 using CUDA Fortran on Summit

Looking towards even larger problem sizes using OpenMP offload for portability

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 4 / 22

Navier-Stokes equations and Fourier pseudo-spectral methods

Numerical solution of PDE governing velocity field u(x, t)

∂u/∂t + (u·∇)u = −∇(p/ρ) + ν∇2u + f

Fourier decomposition: u(x, t) =
∑

k û(k) exp(ik·x). In equation for Fourier
coefficients nonlinear terms lead to convolution integrals, requiring ∼ N6 operations
“Pseudo-spectral”: form products first by multiplication in physical space, before
transforming to wavenumber space. Fast Fourier Transform (FFT) ∝ N3 ln2 N
— but communication is required to make complete lines of data available.
Aliasing errors in nonlinear terms: use truncation and phase-shifts (Rogallo 1981)
Cost of simulation per step tied to a number of forward and backward transforms.

Efficient distributed 3D FFT on GPUs forms a key component

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 5 / 22

Domain Decomposition: 1D or 2D?

How best to distribute memory among P MPI tasks?
1D: Each MPI rank holds a slab
— one global transpose among all processes (x−y to x−z)

2D: Each rank holds a pencil
— two transposes, within row and column communicators

Pencils used for most large simulations (e.g. we ran
81923 using 262,144 MPI tasks on Blue Waters at NCSA)

Fatter nodes and more GPUs per node: return to slabs?
— GPU parallelism instead of distributed memory (MPI)
— fewer nodes (and MPI tasks) in communication
— associated pack and unpack operations are simplified

Slabs (1D)

0
1
2
3mz

Pencils (2D)

P0 P1

P2 P3

y
x

z mz

my

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 6 / 22

A basic (Synchronous) GPU algorithm
H2D copy of complete slab

FFT : (kx, ky, kz) → (kx, y, kz)

Pack

D2H: send buffer

MPI Alltoall

H2D: receive buffer

Unpack

FFT : (kx, y, kz) → (x, y, z)

Copy entire slab from CPU (host (H)) to GPU
(device (D)) and back to CPU at end

1D FFTs in y, z, x directions using cufft library

Pack and unpack data on GPU: faster than CPU

MPI Alltoall among all tasks to transpose
x−y to x−z slabs

D2H and H2D copies of send and receive buffers
before and after Alltoall

Similar operations to transform back to
wavenumber space from physical space

Large problem that may not fit on GPU? Any asynchronism possible?

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 7 / 22

New batched asynchronous algorithm

Divide slab into np pencils and process each
pencil separately (nyp = nxp = N/np)
Overlap operations on different pencils to hide
some data transfer and compute costs

ip− 2 ip
N

y
x

z

mz

nyp

Overlap using one stream each (in CUDA Fortran) for data transfer and compute
Overlap: Compute on ip, HtoD on ip + 1, DtoH on ip− 1 and all-to-all on ip− 2
Non-blocking all-to-all allows overlap, MPI_WAIT ensures completion
GPU-Direct can be used to avoid copies before and after all-to-all
Repeat until all pencils (np) processed on GPU and transposed

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 8 / 22

Batched asynchronism: Illustrated via operations in y and z

for ip = 1 → np

ip− 1: D2H (Pack) ip − 2 : A2A ip : Compute - y ip + 1 : H2D

for ip = 1 → np

ip − 1 : D2H ip : Compute - z
ip + 1 : MPI_WAIT

ip + 1 : H2D (Unpack)

Operations on same row executed asynchronously but launched from left to right
Pack and unpack: strided data copy to avoid reordering data before transpose
Non-blocking all-to-all allows overlap. Call MPI_WAIT before compute

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 9 / 22

How many tasks per node?

Based on Summit node architecture
6 tasks per node: 1 task per GPU
2 tasks per node: 3 GPUs per task
— OpenMP threads to launch operations to GPUs
— 3 times fewer MPI tasks, 3 times larger message size

Number of pencils per all-to-all
Does it affect the performance?
1 pencil at a time
— overlap MPI with data movement and compute

Entire slab (np pencils) at a time
— no MPI overlap with data movement and compute
— np times larger message size and fewer MPI calls

x
y

z

GPU 1
GPU 2
GPU 3

Each pencil further divided
vertically among multiple GPUs

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 10 / 22

MPI performance and strided copies

MPI performance occupies a significant fraction of runtime
Message size between processes in all-to-all increases as number of processes
decrease: reduce communication overhead and latency
Transpose multiple pencils together: further increases message size

Many strided copies are needed: compute on part of slab, pack, unpack
zero-copy (Appelhans 2018): GPU initiates many small transfers to/from host pinned
memory; uses GPU compute resources for data transfer
cudaMemCpy2DAsync: CUDA library call can handle simple strides without
using GPU compute resources

More details on optimization can be found in Ravikumar et al. 2019
Fewer MPI tasks; zero-copy & MemCpy2D: optimal strided copies

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 11 / 22

Batched asynchronous code performance (CUDA Fortran)
Performance data collected on Summit
— 2nd order Runge Kutta, 3 inverse and 5 forward transforms, 2 substages per timestep

Nodes Problem
Size

Time(s)

Sync CPU
(Pencils)

Async GPU

6 tasks/node
2 tasks/node

1 pencil/A2A 1 slab/A2A
16 30723 34.38 8.09 6.70 7.50
128 61443 40.18 12.17 8.66 8.07

1024 122883 47.57 13.63 12.62 10.14
3072 184323 41.96 25.44 22.30 14.24

2 tasks/node performs better than 6 task/node for all problem sizes tested
128 nodes and above: 1 slab/A2A better than 1 pencil/A2A
— suggests better overall performance without MPI overlapping GPU operations

18,4323: ∼ 3X speedup to pencils CPU version; communication bound code
K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 12 / 22

Porting to future exascale architectures

AMD CPU w/ 4 AMD GPUs per node
Program GPUs: HIP, OpenMP

2 Intel CPUs w/ 6 Intel GPUs per node
Program GPUs: oneAPI, OpenMP

Support for CUDA Fortran is not likely. Need efficient portable implementation.

OpenMP is widely accepted standard and a clear favorite for Fortran

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 13 / 22

Non-contiguous maps and strided copies

FFTs in y: need only a(1:nxp, 1:ny) on device
In CUDA Fortran use: cudaMemCpy2DAsync

How to do it in OpenMP?
MAP(to:a(1:nxp, 1:ny)): not 5.0 compliant
Using omp_target_memcpy_rect
— copy rectangular subvolume from a nD array
— similar to 2D strided copies in CUDA
— TASK for asynchronism (5.1: async version)
— need C-FORTRAN interface (5.0 and lower)
Using zero-copy kernels: GPU initiates many
small transfers to/from host pinned memory
[Appelhans GTC 2018]

Host
a(nx, ny)

Device

d_a(nxp, ny)

nx nxp

ny

1 omp_target_memcpy_rect (dst, src, elem_size, &
2 ndims, vol, dst_offset, src_offset, dst_dims, &
3 src_dims, dst_dev, src_dev)

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 14 / 22

OpenMP 4.5+: omp_target_memcpy_rect?

Copy rectangular subvolume from a
multi-dimensional array
Callable from C/C++, use C-Fortran interface
ndims: no. of dimensions in array
vol: no. of elements to copy in each dimension
offset: no. of elements from base of each
dimension, after which to copy data from/to
– In 5.0: from origin of dst (src), need clarity
dims: no. of elements in each dimension
Need to account for C vs. Fortran ordering
– first dimension along row (ny) even though in
Fortran it is along column

1 ! src on host of shape (nx, ny)
2 ! dst on device of shape (nxp, ny)
3

4 ! copy src (1:nxp, 1:ny) to dst (1:nxp, 1:ny)
5

6 num_dims = 2
7 vol (1) = ny ; vol (2) = nxp
8 dst_offset (1) = 0 ; dst_offset (2) = 0
9 src_offset (1) = 0 ; src_offset (2) = 0

10 dst_dims(1) = ny ; dst_dims(2) = nxp
11 src_dims(1) = ny ; src_dims(2) = nx
12

13 omp_target_memcpy_rect (dst, src , elem_size ,
ndims, vol , dst_offset , src_offset ,
dst_dims, src_dims, dst_dev , src_dev)

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 15 / 22

Zero-copy kernels for complex strided copies

1 TARGET ENTER DATA MAP(to:d_buf) &
2 DEPEND(IN:indep) DEPEND(OUT:tdep) NOWAIT
3

4 TARGET TEAMS DISTRIBUTE PARALLEL DO &
5 COLLAPSE(4) IS_DEVICE_PTR(h_buf) &
6 DEPEND(INOUT:tdep) NOWAIT
7 do yg=1,numtasks
8 do z=1,mz
9 do y1=1,my

10 do x=1,nx
11 y = my*(yg−1)+y1
12 d_buf(x,y,z) = h_buf(x,z ,y1,yg)
13 end do
14 end do
15 end do
16 end do
17 END TARGET TEAMS DISTRIBUTE PARALLEL DO
18

19 TARGET EXIT DATA MAP(from:d_buf) &
20 DEPEND(IN:tdep) DEPEND(OUT:outdep) NOWAIT

GPU threads copy data to device buffer
(d_buf) by directly accessing host
resident pinned memory (h_buf)
IS_DEVICE_PTR to make the host
buffer accessible to GPU threads
h_buf is dummy argument, separate
subroutine with h_buf passed into it
Strided read and write, transpose y and z
Uses GPU compute resources for copy,
slows down other computes
Best for more complex stride patterns,
like unpacking

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 16 / 22

Interoperability between OpenMP and non-blocking libraries

1 TARGET DATA MAP(tofrom: a)
2

3 TASK DEPEND(out:var)
4

5 TARGET DATA USE_DEVICE_PTR(a)
6 FFTExecute (a , forward, stream)
7 FFTExecute (a , inverse , stream)
8 END TARGET DATA
9

10 END TASK
11

12 ! Copy or compute on other data
13

14 TARGET TEAMS DISTRIBUTE DEPEND(IN:var) NOWAIT
15 a (:, :, :) = a (:, :, :) /nx
16 END TARGET TEAMS DISTRIBUTE
17

18 END TARGET DATA

A : launch FFT kernel to GPUs

B waits as dependent on A

C executes asynchronously

A finishes prematurely once FFTs
launched, does not wait for kernels
to finish executing on GPU

B starts to run before FFTs
complete on GPU, incorrect results

A©

B©

C©

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 17 / 22

Timeline: OpenMP and non-blocking library

Asynchronous execution of cudaFFT library and OpenMP TARGET loop

D2H

H2D
cuda FFT

Target Loop

TASK DEPEND used to establish synchronization between FFT & TARGET loop
Host thread launches FFT & then GPU compute before FFT completes
Detach in OpenMP 5.0: signals event completion for depending tasks to continue

OpenMP 5.0 features critical for asynchronism

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 18 / 22

DETACH to enforce synchronization
1 TARGET DATA MAP(tofrom: a)
2

3 TASK DEPEND(out:var) DETACH(event)
4

5 TARGET DATA USE_DEVICE_PTR(a)
6 FFTExecute (a , forward, stream)
7 FFTExecute (a , inverse , stream)
8 END TARGET DATA
9

10 cudaStreamAddCallback (stream, ptr_callback, C_LOC(event), 0)
11 END TASK
12

13 ! Copy or compute on other data
14

15 TARGET TEAMS DISTRIBUTE DEPEND(IN:var) NOWAIT
16 a (:, :, :) = a (:, :, :) /nx
17 END TARGET TEAMS DISTRIBUTE
18

19 END TARGET DATA

1 subroutine callback (stream, status , event)
2 type(c_ptr) :: event
3 integer(kind=omp_event_handle_kind) :: f_event
4 call C_F_POINTER (event, f_event)
5 call omp_fulfill_event(f_event)
6 end subroutine callback

A : launch FFT, add callback in
stream where FFT will run
B waits as dependent on A ,
C executes asynchronously
A finishes after event fulfilled by
callback

A©

B©

C©

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 19 / 22

Porting asynchronous CUDA Fortran to OpenMP
1 do ip=1,np
2 NEXT = mod(ip+1,3); CURR = mod(ip,3);
3 PREV = mod(ip−1,3); COMM = mod(ip−2,3);

4 cudaStreamWaitEvent (trans_stream, DtoH(NEXT), 0)
5 cudaMemCpy2DAsync (abuf(NEXT),a(ip+1),trans_stream)
6 cudaEventRecord (HtoD(NEXT),trans_stream)

7 cudaStreamWaitEvent (comp_stream, HtoD(CURR), 0)
8 FFTExecute (abuf(CURR), comp_stream)
9 cudaEventRecord (comp(CURR), comp_stream)

10 cudaStreamWaitEvent (trans_stream, comp(PREV), 0)
11 cudaMemCpy2DAsync (snd(ip-1), abuf(PREV), &
12 trans_stream)
13 cudaEventRecord (DtoH(PREV), trans_stream)

14 cudaEventSynchronize (DtoH(COMM))
15 MPI_IALLTOALL (snd(ip-2))
16 end do

1 do ip=1,np
2 NEXT = mod(ip+1,3); CURR = mod(ip,3);
3 PREV = mod(ip−1,3); COMM = mod(ip−2,3);

4 TASK DEPEND (IN:DtoH(NEXT), OUT:HtoD(NEXT))
5 omp_target_memcpy_rect (abuf(NEXT), a(ip+1))
6

7 TASK DEPEND (IN:HtoD(CURR), OUT:comp(CURR))
8 DETACH(event)
9 FFTExecute (abuf(CURR), comp_stream)

10 TASK DEPEND (IN:comp(PREV), OUT:DtoH(PREV))
11 omp_target_memcpy_rect (snd(ip−1), abuf(PREV))
12

13

14 TASK DEPEND(IN:DtoH(COMM))
15 MPI_IALLTOALL (snd(ip-2))
16 end do

DEPEND clause replaces cudaEventRecord & cudaStreamWaitEvent
omp_target_memcpy_rect replaces cudaMemCpy2DAsync

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 20 / 22

Performance: Non-Batched synchronous version
Summit (XL compiler) up to 1024 nodes (∼ 22% of full machine) using 1 task/GPU
Timings for 3 pairs of forward and inverse transforms

#
Nodes

Prob.
Size

Time (s)
CPU CUDA OMP

2 15363 5.21 2.39 2.41
16 30723 6.79 3.30 3.16

128 61443 9.10 5.26 5.01
1024 122883 10.59 4.30 4.12

0

2

4

6

8

10

12

CPU CUDA OMP CPU CUDA OMP

OpenMP & CUDA show similar performance (∼ 2.6X speedup for 12k3)
GPU: compute negligible but additional cost due to copies, 62% in MPI
OpenMP data copies slower than in CUDA, but compute faster !
OpenMP code also works with CCE compiler and AMD GPUs

128 node 1024 node
MPI

Compute
Copy

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 21 / 22

Summary and Future Work

Developed algorithm for Summit using CUDA Fortran to run 184323 problem size

Preliminary steps taken towards portability using OpenMP for offload

Some challenges of portability overcome, some pending full OMP 5.0 availability

Strided copy b/w small device & larger host arrays: omp_target_memcpy_rect

Synchronizing non-blocking GPU library calls & OpenMP tasks: DETACH

Future work towards 3D FFTs at massive scale, at resolution beyond 18,4323

Batched asynchronism algorithm (using DETACH) needed for optimal performance
A framework for portable GPU parallelism for communication-intensive applications

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 22 / 22

Batched async. algorithm: additional details

Before y ip = 1 ip = 2 ip = 3 ip = 4

After y Before z

ip = 1 ip = 2

ip = 3 ip = 4 y
x

z

H2D
Compute

D2H
MPI

After z

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 23 / 22

Timeline and asynchronous MPI analysis

Slab/A2A better to pencil/A2A?

Faster MPI of data as one large msg

Why is 2 tasks/node better than 6?

Each MPI longer: small P2P,
more tasks

Slow pack: 3X Cpy2D, high overhead

Use ZC: steals GPU resources slowing
2 tasks/node

Normalized timeline of 12, 2883 on 1024 nodes

0 T

2 tasks/node, 1 pencil/A2A

6 tasks/node, 1 pencil/A2A

2 tasks/node, 1 slab/A2A

H2D MemCpy2DAsync
D2H Pack MemCpy2DAsync
cuFFT 1st direction

H2D Unpack-Zero-Copy
D2H MemCpy2DAsync
cuFFT 2nd direction
MPI All to All

MPI dominates runtime; No MPI overlap shows best performance
K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 24 / 22

Performance: Batched version

OpenMP version: copy on host from large buffer
to small buffer before UPDATE (workaround)
– omp_target_memcpy_rect slow
compared to workaround and cudaMemCpy2D

6k3 OMP is 16.1s slower than CUDA async
– 12.4s to copy one buffer to another on host
– 3.7s (or 20%) saving due to asynchronism?

Work in progress: optimize OpenMP version
– Fast rectangular copy to avoid host operations
– DETACH will help enable asynchronism

Both OMP codes work with CCE & AMD GPUs

6 pencils per slab
Performance on Summit using XL
OpenMP version uses workaround

#
Nodes

Prob.
Size

Time (s)
CUDA OMP
async sync

4 30723 10.14 26.20
32 61443 13.53 29.64

Production code using CUDA: 18k3

on 3k nodes, ∼ 3X speedup

K.Ravikumar, et al. Asynchronous 3-D FFTs using OpenMP offload May 28, 2021 25 / 22

	Appendix

