
HPE COMPILER GPU OFFLOADING

Steve Abbott
HPE Cray Programming Environment
& CORAL-2 Centers of Excellence
April 29, 2022

Ordered chronologically

• “Experiences in Implementing OpenMP offload support in Fortran” by Kostas Makrides (HPE) &
Aaron Black (LLNL).

• “Asynchronous 3-D FFTs using OpenMP offload for extreme problem sizes” by Kiran Ravikumar
(Georgia Tech) et al

• “Using OpenMP to Harness GPUs for Core-Collapse Supernova Simulations with GenASiS” by
Reuben Budiardja (ORNL).

• “OpenMP experiences with Thornado” by Austin Harris (ORNL).

2

SOME RELEVANT PREVIOUS TALKS WITH SOME USER EXPERIENCE

https://www.openmp.org/wp-content/uploads/OpenMP_UsersTelecon_v3_review_April_30_2021.pdf
https://www.openmp.org/wp-content/uploads/2021_05_28_async_3D_FFT.pdf
https://www.openmp.org/wp-content/uploads/2021_08_27_OpenMP_UserCall_Budiardja_Using_OpenMP_to_Harness_GPUs_for_Core-Collapse_Supernova_Simulations_with_GenASiS.pdf
https://www.openmp.org/wp-content/uploads/thornado_OpenMP_Telecon_Feb_2022_public.pdf

• Broader HPE Cray PE accelerator support
• General compiler overview
• Offloading models
• Offloading feature highlights and best practices

OUTLINE

3

NVIDIA
Programming
Environment

NVIDIA
compilers

AMD
Programming
Environment

AMD AOCC
and ROCm
compilers

PROVIDING THE USER WITH COMPILER CHOICE

HPE Cray
Programming
Environment

Compiling
Environment

(CCE)

Intel
Programming
Environment

Intel® C, C++,
and Fortran

compilers

GNU
Programming
Environment

GNU Compiler
Collection

Cray MPI and SHMEM

Performance Analysis Tools

Debugger Support Tools

Third Party Products

Scientific and Math Libraries

Environment Setup and Compiling Support

Provides compiler and library
choice, performance, and
programmability
• Multiple programming

environments
• Compiler interoperability
• Automatically uses our math,

scientific, and communication
libraries with chosen compiler

• Can use debug and profiling
tools with chosen compiler

Comprehensive set of tools for developing, porting, debugging, and tuning of HPC applications
on HPE & HPE Cray systems

HPE CRAY PROGRAMMING ENVIRONMENT

5

3rd party HPE –authored

Debugging

Debuggers

Valgrind for HPC
Memory debugging at scale

Tool for Abnormal Termination
Processing

Manage core files at scale

GDB for HPC
Parallelized gdb for HPC

TotalView

DDT

Setup & Runtime

Environment Setup

Modules / Lmod

Tool Enablement
(for Spack, CMake, EasyBuild, etc)

Development

Optimized Libraries

LAPACK & ScaLAPACK

LibSci (BLAS)

FFTW

Deep Learning Plug-in

LibSci_ACC

IRT

NetCDF HDF5

DL / AI Tools

I/O Libraries

Programming Languages

C

Programming Environments

Compiling Environment

GNU

NVIDIA HPC SDK

Intel Programming Environment

AMD Programming Environment

OpenMP | OpenACC

AMD ROCm HIP | NVIDIA CUDA

UPC | Fortran co-arrays

HPE Cray MPI

SHMEM

Programming Models

Python

Comparative Debugger
Compare two versions of an application

Fortran C++

R

Performance Analysis Tool (PAT)
Whole program performance analysis,

exposing wide set of indicators, identifying
bottlenecks and automatically generating

suggestions to improve performance.

Performance Analysis &
Optimization

Visualization Tool
Complements text reports with summary

of performance data in graphs and
charts, allowing users to drill down and

resolve issues

Code Parallelization Assistant
Reveal hidden potential of an application

via code restructuring

Supported systems:

• HPE Cray EX supercomputers
• HPE Apollo 2000
• HPE Apollo 6500
• HPE ProLiant DL systems
• Legacy Cray systems

HPE Added-value to 3rd party

Chapel
Stack Trace Analysis Tool

Stack tracing at scale

Chapel

COMPILING ENVIRONMENT ADVANTAGES

Focus on compliance and
language support:

• Languages: Fortran, C/C++

• Programming models: OpenMP,
OpenACC, and PGAS

• Encourage coding safety with
strict standards compliance

• Support current versions of
specifications

Focus on application
portability and
investment protection

• Classic Cray Fortran compiler

• Fortran 2018 (w. co-arrays)
• Proprietary front end,

optimizer; HPE-modified LLVM
backend

• C and C++ compiler

• C11 and C++17; UPC

• HPE-modified closed-source
build of Clang+LLVM compiler

• Offloading support
• OpenMP 5.0 and partial 5.1

• OpenACC 2.7 – focus on
Fortran, 3.0 in 2022

• HIP – AMD GPUs only

Performance and
programmability

• Performance analysis tools
exploit compiler’s whole
program analysis

• Interfaces through CCE’s
Program Library technology,
an application-wide repository

• Code Parallelization Assistant
leverages compiler analyses

• Compiler optimization
feedback also supplied by
performance reports for
application tuning

Integration with
Program Development
Tools

• Providing consistency across
all HPE and Cray HPC systems

• NVIDIA GPUs – Cray XC
and CS systems today, Cray
EX in 2022

• AMD GPUs – HPE Cray EX
and Apollo systems

• Supporting:
• x86-64 (both Intel and

AMD) processors

• ARM-based processors

• NVIDIA accelerators

• AMD accelerators

Fully integrated
heterogeneous
optimization capability

GENERAL COMPILER OVERVIEW

8

• A major part of the broader HPE Cray Programming Environment (CPE) supported on HPE systems
• Compilers + Math & Communication Libraries + Debuggers + Performance Analysis Tools

• Fortran compiler
• Proprietary front end and optimizer; HPE-modified LLVM backend
• Fortran 2018 support (including coarray teams)

• C and C++ compiler
• HPE-modified closed-source build of Clang+LLVM complier
• C11 and C++17 support
• UPC support

• Offloading support
• NVIDIA GPUs
• AMD GPUs
• OpenMP 4.5 and near-complete 5.0
• OpenACC 2.0 – Fortran only
• HIP – AMD GPUs only

HPE CRAY COMPILING ENVIRONMENT (CCE)

9

• Two major releases a year (~Q2 and ~Q4)
• CCE codebase and version based off latest Clang major release (lag by ~2 months)

• Monthly minor updates in between
• Continue for 4 months after each major release

• Examples
• CCE 12.0 – based on Clang 12.0 – Jun 2021
• CCE 13.0 – based on Clang 13.0 – Nov 2021
• CCE 14.0 – based on Clang 14.0 – May 2022
• CCE 15.0 – based on Clang 15.0 – Nov 2022 (tentative)

• Release cadence and versioning changed in CCE 10.0
• Older versions of CCE do not correspond to Clang/LLVM version numbers

CCE COMPILER RELEASE AND VERSIONING

10

• Man pages of interest
• cc, CC, ftn – CCE compiler driver documentation
• craycc, crayCC, crayftn – CCE C, C++, and Fortran compiler documentation
• intro_openmp – CCE OpenMP documentation
• intro_openacc – CCE OpenACC documentation
• intro_directives – CCE compiler directives

• PDF manuals
• Search at: https://support.hpe.com/hpesc/public/home

– S-2179 for the release overview
– S-3901 for the Fortran reference manual
– S-5212 for the C/C++ quick reference guide

• Release information
• module help cce/X.y.z

CCE COMPILER DOCUMENTATION

11

https://support.hpe.com/hpesc/public/home

CCE OFFLOADING MODELS

12

• Uses proprietary OpenMP runtime libraries
• Supports cross-language and cross-vendor OpenMP interoperability
• Implements HPE-optimized code generation for OpenMP offload regions
• Supports asynchronous ”nowait” GPU operations with ”depend” clauses
• Supports OpenMP allocators (e.g., CPU “pinned”, GPU “shared” and “managed”)
• Full OpenMP 4.5 support for Fortran, C, and C++
• OpenMP 5.x – in progress, implementation phased in over several CCE releases

• See release notes and intro_openmp man page for full list of supported features
• OpenMP 5.0 is near complete as of CCE 14.0 (May 2022)
• OpenMP 5.1/5.2 support in progress for 2022-2023

13

CCE OPENMP SUPPORT

14

CCE OPENMP 5.0 STATUS
CCE 10.0 (May 2020) CCE 11.0 (Nov 2020) CCE 12.0 (Jun 2021) CCE 14.0 (May 2022)

• OMP_TARGET_OFFLOAD
• reverse offload
• implicit declare target
• omp_get_device_num
• OMP_DISPLAY_AFFINITY
• OMP_AFFINITY_FORMAT
• set/get affinity display
• display/capture affinity
• requires
• unified_address
• unified_shared_memory
• atomic_default_mem_order
• dynamic_allocators
• reverse_offload
• combined master constructs
• acq/rel memory ordering (Fortran)
• deprecate nested-var
• taskwait depend
• simd nontemporal (Fortran)
• lvalue map/motion list items
• allow != in canonical loop
• close modifier (C/C++)
• extend defaultmap (C/C++)

• noncontig update
• map Fortran DVs
• host teams
• use_device_addr
• nested declare target
• allocator routines
• OMP_ALLOCATOR
• allocate directive
• allocate clause
• order(concurrent)
• atomic hints
• default nonmonotonic
• imperfect loop collapse
• pause resources
• atomics in simd
• simd in simd
• detachable tasks
• omp_control_tool
• OMPT
• OMPD
• declare variant (Fortran)
• loop construct
• metadirectives (Fortran)
• pointer attach
• array shaping
• acq/rel memory ordering (C/C++)
• device_type (C/C++)
• non-rectangular loop collapse (C/C++)

• device_type (Fortran)
• affinity clause
• conditional lastprivate (C/C++)
• simd if (C/C++)
• iterator in depend (C/C++)
• depobj for depend (C/C++)
• task reduction (C/C++)
• task modifier (C/C++)
• simd nontemporal (C/C++)
• scan (C/C++)
• lvalue list items for depend
• mutexinoutset (C/C++)
• taskloop cancellation (C/C++)

• task reduction (Fortran)
• task modifier (Fortran)
• target task reduction (Fortran)
• simd if (Fortran)

Future CCE Release

• loop construct (C/C++)
• mapper (Fortran)
• iterator in depend (Fortran)
• non-rectangular loop collapse (Fortran)
• depobj for depend (Fortran)
• uses_allocators
• concurrent maps
• taskloop cancellation (Fortran)
• scan (Fortran)
• target task reduction (C/C++)

CCE 13.0 (Nov 2021)

• declare variant (C/C++)
• metadirectives (C/C++)
• mapper (C/C++)
• extend defaultmap (Fortran)
• close modifier (Fortran)
• mutexinoutset (Fortran)

Refer to CCE release
notes or intro_openmp
man page for current

implementation status

• OpenMP CPU interoperability
• CCE’s libcraymp behaves as drop-in replacement for Clang’s libomp and GNU’s libgomp
• GNU OpenMP interface support is currently limited to OpenMP 3.1 constructs

• OpenMP GPU interoperability
• CCE’s libcrayacc behaves as drop-in replacement for Clang’s libomptarget
• No planned support for GNU OpenMP offload interface
• Device code relies on each vendor’s device runtime library
• Each vendor’s device code is linked into a separate “device image”
• CCE OpenMP offload linker tool handles device unbundling and linking
• Requires linking with CCE, or manually invoking the CCE OpenMP offload linker tool

OPENMP INTEROPERABILITY

15

• CCE supports OpenACC 2.0+ for Fortran
• C/C++ OpenACC support was dropped in CCE 10.0
• Full OpenACC 3.2 support planned for a future CCE release
• CCE OpenMP and OpenACC implementations share a common codebase

• Significant overlap in both compiler and runtime library
• Same performance should be achievable with either model

CCE OPENACC SUPPORT

16

CCE OPENMP/OPENACC FLAGS

Capability CCE Fortran Flags CCE C/C++ Flags

Enable/Disable OpenMP
(disabled at default)

-f[no-]openmp
-h[no]omp

-f[no-]openmp

Enable/Disable OpenACC
(enabled at default)

-h[no]acc N/A

Enable HIP N/A -x hip --rocm-path=$ROCM_PATH –L $ROCM_PATH/lib –lamdhip64

Offloading Target
All CCE Compilers

(accel modules)
CCE C/C++ (optional flags)

Native Host CPU craype-accel-host (default without flags; no warning)

NVIDIA Volta craype-accel-nvidia70 -fopenmp-targets=nvptx64 -Xopenmp-target -march=sm_70

AMD MI100 craype-accel-amd-gfx908 -fopenmp-targets=amdgcn-amd-amdhsa
-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908

AMD MI250X craype-accel-amd-gfx90a -fopenmp-targets=amdgcn-amd-amdhsa
-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx90a

17

• CCE HIP offloading relies on ROCm headers, host libraries, and device bitcode libraries
• CCE OpenMP offloading relies on ROCm host libraries and device bitcode libraries
• Device bitcode libraries require a matching LLVM version between CCE and ROCm
• CCE OpenMP interoperability relies on compatible Clang OpenMP runtime ABI

18

CCE - ROCM COMPATIBILITY/INTEROPERABILITY

HIP/OpenMP (CCE Only) OpenMP Interop (CCE + ROCm)

CCE 13.0.0 ROCm 4.1 – 4.5 ROCm 4.2 – 4.3

CCE 13.0.1 ROCm 4.1 – 4.5 ROCm 4.2 – 4.5

CCE 13.0.x ROCm 4.1 – 4.5 ROCm 4.2 – 4.5

CCE 14.0.0 ROCm 5.0 – 5.1 ROCm 5.0 – 5.1

• CUDA API stability means compatibility is less constrained
• CCE runtime uses the CUDA Driver API
• Offload regions are compiled to PTX and passed to NVIDIA toolchain for assembly
• Testing may be limited to what’s supported by underlying system software releases

19

CCE - CUDA COMPATIBILITY

• CCE 11.0 (Nov 2020) introduced support for compiling HIP source files targeting AMD GPUs
• CCE HIP support leverages AMD’s open-source HIP implementation in upstream Clang/LLVM
• CCE relies on HIP header files and runtime libraries from a standard AMD ROCm install
• CCE does not provide a “hipcc” wrapper – invoke the “CC” compiler driver directly

20

CCE HIP SUPPORT

CCE HIP Flag Description
-x hip Enables HIP compilation for subsequent input files (avoid on link line or follow with “-x none”)

--offload-arch=gfx90a Specifies the MI250X offload target architecture

--rocm-path=<ROCM_PATH> Specifies the location of a ROCm install; not required when $ROCM_PATH environment variable is set

-f[no-]gpu-rdc Enables (disables) relocatable device code, producing bundled HIP offload object files and allowing cross-
file references in HIP device code (default: -fno-gpu-rdc)

--hip-link Enables device linking for bundled HIP offload object files; required when compiling with -fgpu-rdc

-mllvm -amdgpu-early-inline-all=true
-mllvm -amdgpu-function-calls=false

Optimization flags that AMD’s “hipcc” wrapper script provides; may provide additional performance benefit

CCE OFFLOADING FEATURE HIGHLIGHTS
AND BEST PRACTICES

21

THE MULTIPLE DIMENSIONS OF GPU PARALLELISM

AMD NVIDIA Description

Work group Threadblock / CTA

• Loosely-coupled, course-grained parallelism
• Collective synchronization prohibited
• Performs best with massive parallelism
• Performance scales with more powerful GPUs

Wavefront Warp
• Fine-grained, independent parallelism
• NVIDIA warp size is 32 threads
• AMD wavefront size is 64 work items

Work item Thread
• Fine-grained, lock-step parallelism
• Performs best with stride-1 data accesses
• Performs best with non-divergent control flow

22

OPENACC/OPENMP CONSTRUCT MAPPING TO GPU

NVIDIA AMD CCE Fortran
OpenACC

CCE Fortran
OpenMP

CCE C/C++
OpenMP

Clang C/C++
OpenMP

Threadblock Work group acc gang omp teams omp teams omp teams

Warp Wavefront acc worker

omp simd
omp parallel
omp simd

omp parallel

Thread Work item acc vector

• Current best practice:
• Use “teams” to express GPU threadblock/work group parallelism
• Use “parallel for simd” to express GPU thread/work item parallelism

• Future direction:
• Improve CCE support for “parallel” and ”simd” in accelerator regions
• Upstream Clang is expanding support for “simd” in accelerator regions

Long-term goal: let users express parallelism with any construct they think
makes sense, and CCE will map to available hardware parallelism

23

• Environment variable CRAY_ACC_DEBUG=[1-3]
• Emits runtime debug messages for offload activity (allocate, free, transfer, kernel launch, etc)

24

RUNTIME OFFLOADING MESSAGES

program main
integer :: aaa(1000)
aaa = 0
!$omp target teams distribute map(aaa)
do i=1,1000
aaa(i) = 1

end do

if (sum(abs(aaa)) .ne. 1000) then
print *, "FAIL"
call exit(-1)

end if
print *, "PASS"

end program main

ACC: Version 4.0 of HIP already initialized, runtime
version 3241
ACC: Get Device 0
ACC: Set Thread Context
ACC: Start transfer 1 items from hello_gpu.f90:4
ACC: allocate, copy to acc 'aaa(:)' (4000 bytes)
ACC: End transfer (to acc 4000 bytes, to host 0 bytes)
ACC: Execute kernel main_$ck_L4_1 blocks:8 threads:128
from hello_gpu.f90:4
ACC: Start transfer 1 items from hello_gpu.f90:7
ACC: copy to host, free 'aaa(:)' (4000 bytes)
ACC: End transfer (to acc 0 bytes, to host 4000 bytes)
PASS

• OpenMP offload “nowait” constructs map to independent GPU streams
• “depend” clauses are handled with necessary stream synchronization

• Task “detach” support introduced in CCE 11.0 (Nov 2020)
• Cross-device dependences are not yet optimized well – overly conservative synchronization
• Multi-threaded use of GPU is optimized as of CCE 13.0 (Nov 2021) – relaxed locking strategy

25

ASYNC OFFLOAD CAPABILITIES

• CCE’s default runtime behavior for OpenMP map clauses is to allocate/transfer GPU memory
• Dynamically enable GPU managed memory for OpenMP map clauses

• Set env var CRAY_ACC_USE_UNIFIED_MEM=1
• Triggers runtime check to skip explicit allocate/transfer for managed memory

26

CCE OPENMP UNIFIED MEMORY DETECTION

• Dynamically enable GPU unified memory for OpenMP map clauses
• Set env vars CRAY_ACC_USE_UNIFIED_MEM=1 and HSA_XNACK=1
• Skips explicit allocate/transfer for all system memory
• Global ”declare target” variables will still be allocated separately (compiler statically emits a device copy)

• Statically enable GPU unified memory for OpenMP map clauses
• Compile with “requires unified_shared_memory” directive
• Set env var HSA_XNACK=1

27

CCE OPENMP UNIFIED SHARED MEMORY SUPPORT FOR AMD MI250X

• CCE is one component of the broader HPE Cray Programming Environment
• Consistent development environment across a wide variety of CPU and GPU targets
• Support for the latest base language standards

• Fortran 2018 support (including coarray teams)
• C11 and C++17 support

• Support for several on-node parallel/offloading models
• OpenMP 4.5, working towards 5.2
• OpenACC 2.0, working towards 3.2
• HIP

• Please reach out or file bugs if you have questions or encounter issues

28

HPE COMPILER SUMMARY

THANK YOU
Steve Abbott
stephen.abbott@hpe.com

29

30

CCE OPENMP ALLOCATOR SPECIALIZATION

Use Case Allocator Mechanism Notes

“Pinned” CPU memory Allocator with “pinned” trait set • Maps to hipMallocHost

“Shared” GPU memory omp_cgroup_mem_alloc predefined allocator • Maps to static allocation in LDS memory
• Must be lexically specified on “allocate”

clause on “teams” construct
• Currently supported for Fortran only

“Managed” memory cray_omp_get_managed_memory_allocator_handle() • Maps to hipMallocManaged
• CCE-specific extension
• Topic of interest for OpenMP committee

