
GCC/OpenMP Update

Tobias Burnus

Catherine Moore

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.

Agenda
• GCC Overview

• GCC Community

• GCC Release Cycle

• GCC 12 OpenMP Support

• Testing OpenMP @Siemens

• GCC Resources

• OpenMP 5.0 + 5.1 Support

• Specification Corner-Cases

• Command-Line Options & Tricks

• Conclusion

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 2

OpenMP Community in GCC

• Welcoming to new contributors

• Developer Certificate of Origin (DCO) or FSF copyright needed

• Siemens (funded by ORNL and the DOE)

• Six active developers, led by Tobias Burnus, working on OpenMP functionality and performance

• Major contributor; most of Fortran development

• OpenMP Patch Review

• Maintainer - Jakub Jelinek

• Reviews and contributes patches

• Others

• Participation on ad-hoc basis

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 3

GCC Release Cycle

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 4

Date Release Development Branch

April 2021 GCC 11 OG11 Branch

Spring 2022 GCC 12 OG12 Branch

Spring 2023 GCC 13 OG13 Branch

OG Development Branches

• GCC GIT branch devel/omp/gcc-11 etc.

• Maintained by Siemens developers

• Offers early access to OpenMP offloading features not in the official release

• Allows development to continue during GCC pre-release quiet periods

• Recommended for use for latest performance and functionality

• GCC Open Development: Usually May through November

GCC 12 OpenMP Support

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 5

AMD Offloading Support for MI100 is complete; Newer AMD offerings planned for 2022

OpenMP

Revision

Support Level NVIDIA Offloading AMD Offloading

OpenMP 4.5 Fully Supported Yes Yes

OpenMP 5.0 Partial Support Yes Yes

OpenMP 5.1 Minimal Support Yes Yes

Testing OpenMP @Siemens

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 6

Nightly and weekly tests targeting AMD M100 and NVIDIA Volta

Test suites

• sollve_vv

• omptest

• OvO

• Babelstream

• SPEC ACCEL

• SPEChpc 2021

• GCC's DejaGNU test suite

• C/C++

• gfortran

• libgomp

GCC Resources

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 7

GCC Offloading: https://gcc.gnu.org/wiki/Offloading

• Building GCC for offloading

• Options for building applications for offloading

OpenMP implementation status (development branch):

• https://gcc.gnu.org/onlinedocs/libgomp/OpenMP-Implementation-Status.html

Libgomp manual:

• GCC 11.2 (stable): https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libgomp/

• Development branch: https://gcc.gnu.org/onlinedocs/libgomp/

General help with GCC

• mailing list: https://gcc.gnu.org/pipermail/gcc-help/

https://gcc.gnu.org/wiki/Offloading
https://gcc.gnu.org/onlinedocs/libgomp/OpenMP-Implementation-Status.html
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libgomp/
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libgomp/
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libgomp/
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libgomp/
https://gcc.gnu.org/pipermail/gcc-help/

Agenda
• GCC Overview

• OpenMP 5.0 + 5.1 Support

• OpenMP Support in GCC

• OpenMP 5.0 + 5.1 Features Supported in GCC 12

• OpenMP 5.0 + 5.1 Features Unsupported, Planed for GCC 13

• Specification Corner-Cases

• Command-Line Options & Tricks

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 8

OpenMP Support in GCC

• GCC: Compiler for C, C++, Fortran, Ada, D, go, …

• C17 (steps to C2x), C++20 (steps to C++23)

• Fortran 2008 + coarray + interop TS, initial F2018

• OpenMP and OpenACC 2.6 with C/C++/Fortran

• Supported archs: aarch64, alpha, arc, arm, avr, bfin, …

• GCC offloading-support packages of Linux distributions

• Debian/Ubuntu: gcc-11-offload-{nvptx,amdgcn}

• (open)SUSE: cross-{nvptx,amdgcn}-gcc11

• Red Hat/Fedora: {gcc,libgomp}-offload-nvptx (currently no amdgcn)

New features

• GCC 9 (2019): OpenMP 4.5 (C/C++, Fortran mostly), some 5.0, OpenACC 2.5

• GCC 10 (2020): More of OpenMP 5.0, OpenACC 2.6

• GCC 11 (2021): More of OpenMP 5.0

• GCC 12 (2022): Some OpenMP 5.1, more 5.0 (esp. Fortran)

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 9

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 10

OpenMP 5.0 Features Supported in GCC 12

Iterators omp_fulfill_event runtime routine

target-offload-var ICV and OMP_TARGET_OFFLOAD env variable reduction and in_reduction clauses on taskloop and taskloop simd constructs

Nested-parallel changes to max-active-levels-var ICV taskloop construct cancelable by cancel construct

teams construct outside an enclosing target region mutexinouset dependence-type for depend clause

!= as relational-op in canonical loop form for C/C++ Predefined memory spaces, memory allocators, allocator traits

nonmonotonic as default loop schedule modifier for worksharing-loop constructs Memory management routines

Clauses if, nontemporal and order(concurrent) in simd construct use_device_addr clause on target data

atomic constructs in simd Implicit declare target directive

loop construct C/C++’s lvalue expressions in depend clauses

order(concurrent) clause Nested declare target directive

scan directive and in_scan modifier for the reduction clause Combined master constructs

in_reduction clause on task constructs depend clause on taskwait

task_reduction clause with taskgroup Weak memory ordering clauses on atomic and flush construct

task modifier to reduction clause depobj construct and depend objects

affinity clause to task construct Lock hints were renamed to synchronization hints

detach clause to task construct conditional modifier to lastprivate clause

close map-type-modifier defaultmap extensions

omp_get_supported_active_levels routine Runtime routines and environment variables to display runtime thread affinity

information

omp_pause_resource and omp_pause_resource_all runtime routines omp_get_device_num runtime routine

Supporting C++’s range-based for loop

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 11

OpenMP 5.1 Features Supported in GCC 12

OpenMP directive as C++ attribute specifiers

nothing directive

error directive

masked construct

scope directive

strict modifier in the grainsize and num_tasks clauses of the taskloop construct

thread_limit clause to target construct

Extensions to the atomic directive

seq_cst clause on a flush construct

private and firstprivate argument to default clause in C and C++

omp_set_num_teams, omp_set_teams_thread_limit runtime routines

omp_get_max_teams, omp_get_teams_thread_limit runtime routines

omp_calloc, omp_realloc runtime routines

omp_aligned_alloc and omp_aligned_calloc runtime routines

omp_alloctrait_key_t enum: omp_atv_serialized added, omp_atv_default changed

OMP_PLACES syntax extensions

OMP_NUM_TEAMS and OMP_TEAMS_THREAD_LIMIT environment variables

Support of strictly structured blocks in Fortran

Support of structured block sequences in C/C++

unconstrained and reproducible modifiers on order clause

omp_display_env runtime routine

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 12

OpenMP 5.0 Features Unsupported in GCC 12

Feature Development Branch Support Planned for GCC 13

Array shaping No Yes

Array sections with non-unit strides in C and C++ No Yes

metadirective directive Yes Yes

Collapse of associated loops that are imperfectly nested loops No Yes

allocate directive Yes Yes

Discontiguous array section with target update construct No Yes

C/C++’s lvalue expressions in to, from, and map clauses No Yes

declare mapper directive No Yes

OMPT interface No No

OMPD interface No No

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 13

OpenMP 5.1 Features Planned for GCC 13 – and beyond

omp_all_memory reserved locator

target_device trait in OpenMP Context omp_target_memcpy_async runtime routine

target_device selector set in context selectors omp_target_memcpy_rect_async runtime routine

C/C++’s declare variant directive: elision support of preprocessed code omp_get_mapped_ptr runtime routine

declare variant: new clauses adjust_args and append_args ompt_scope_endpoint_t enum: ompt_scope_beginend

dispatch construct ompt_sync_region_t enum additions

device-specific ICV settings the environment variables ompt_state_t enum: ompt_state_wait_barrier_implementation

assume directive ompt_state_t enum: ompt_state_wait_barrier_teams

Loop transformation constructs ompt_callback_target_data_op_emi_t, ompt_callback_target_emi_t

has_device_addr clause to target construct ompt_callback_target_map_emi_t and ompt_callback_target_submit_emi_t

iterators in target update motion clauses and map clauses ompt_callback_error_t type

indirect calls to the device version of a procedure or function in target regions nowait clause in taskwait directive

inoutset argument to the depend clause interop directive

present argument to defaultmap clause omp_interop_t object support in runtime routines

omp_target_is_accessible runtime routine

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 14

OpenMP 5.0 Features Partially Supported in GCC 12

declare variant directive – simd traits not handled correctly

requires directive – only fulfillable requirement are atomic_default_mem_order and dynamic_allocators

Non-rectangular loop nests – Fortran support missing, planned for GCC 13

in_reduction clause on target constructs – nowait is only a stub

ancestor modifier on device clause – reverse offload unsupported

Map-order clarifications

Mapping C/C++ pointer variables and to assign the address of device memory mapped by an array section

Mapping of Fortran pointer and allocatable variables, including pointer and allocatable components of variables

– Mapping of vars with allocatable components unspported, planned for GCC 13

OpenMP 5.1 Features Partially Supported in GCC 12

align clause/modifier in allocate directive/clause and allocator directive — Fortran support missing, planned for GCC 13

Planned for GCC 13:

• Unified shared memory support with NVIDIA GPUs

Agenda
• GCC Overview

• OpenMP 5.0 + 5.1 Support

• Specification Corner Cases

• OpenMP Specification

• Example for a Minor Spec Issue

• OMP_TARGET_OFFLOAD=mandatory

• Spec Work from Our Side

• Command-Line Options & Tricks

• Conclusion

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 15

OpenMP Specification

Roughly annual releases

• Either a new OpenMP release or a Technical Report (TR) as snapshot/preview

of the next release

• Dot releases have minor changes

• Main change in 5.2: reorganization and syntax representation

Stakeholders

• OpenMP Architecture Review Board (ARB) has 33 members

representing GCC: SIEMENS, SUSE, Red Hat (via IBM)

• Weekly language spec meeting (plus subcommittees meetings)

Issues keep popping up: unclear/underspecified, oversights,

missing updates after changes/extensions elsewhere

• Despite: text-change discussions, two-step voting, pre-merge proof reading,

and whole-document proof reading

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 16

OpenMP Specification – Example of a Minor Spec Issue

Fortran – Optional End-Directive and Strictly Structured Blocks

• Question: What ends the ‘end’

!$omp parallel ! Loosely structured block – no ‘block’ follows

!$omp parallel ! Strictly structured block – ‘block’ next

• block ! → ‘!$omp end parallel’ is optional

• x = x + 1

• end block

• !$omp end parallel ! ← ends outer or inner ‘parallel’?

• OpenMP 5.1: ?

• OpenMP 5.2 added: ‘An end-directive that immediately follows a directive ... is always paired

with that directive.’

→ Applies to inner

→ An additional ‘!$omp end parallel’ is missing

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 17

OMP_OFFLOAD_TARGET=mandatory (1/4)
When to Actually to Abort with an Error

OpenMP has (5.0 + 5.1)

“The mandatory value specifies that program execution is terminated if a

device construct or device memory routine is encountered and the device is not

available or is not supported by the implementation.”

Real-world situation

• System with installed GPU, CUDA installed but no device available due to

kernel issue (cuInit: no CUDA-capable device is detected)

→ omp_get_num_devices() == 0 (→ only host)

Question: Should fail with “mandatory” or not?

• GCC → host fallback/no fail – as no device exists, default device is the host

• LLVM → fails with the CUDA error

• User expectation: Hardware exists but does not work → should fail

And if no hardware exists → no fail or still a fail?

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 18

OMP_OFFLOAD_TARGET=mandatory (1/4)
When to Actually to Abort with an Error

OpenMP has (5.0 + 5.1)

“The mandatory value specifies that program execution is terminated if a

device construct or device memory routine is encountered and the device is not

available or is not supported by the implementation.”

Real-world situation

• System with installed GPU, CUDA installed but no device available due to

kernel issue (cuInit: no CUDA-capable device is detected)

→ omp_get_num_devices() == 0 (→ only host)

Question: Should fail with “mandatory” or not?

• GCC → host fallback/no fail – as no device exists, default device is the host

• LLVM → fails with the CUDA error

• User expectation: Hardware exists but does not work → should fail

And if no hardware exists → no fail or still a fail?

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 19

Workaround

Environment variable: ?

OMP_DEFAULT_DEVICE=kind(gpu)

would be useful, but does not exist

in OpenMP ≤ 5.2

Code:
if (omp_get_default_device()

== omp_get_initial_device())
→ error

OMP_OFFLOAD_TARGET=mandatory (2/4)
When to Actually to Abort with an Error

Question: What if no non-host device is available and …
void foo () {}

#pragma omp declare target to (foo)

int main () {

#pragma omp target if(false)

foo (); // Is this ok?

omp_set_default_device (omp_get_initial_device ());

#pragma omp target

foo (); // What about this?

#pragma omp target device(omp_get_initial_device ())

foo (); // Or this?

#pragma omp target device(omp_get_num_devices () + 42)

foo (); // This one is clearly an error

if (omp_get_num_devices () == 3)

{

#pragma omp target device (1)

foo (); // This would be an error if we can't offload to device 1

}

}

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 20

OMP_OFFLOAD_TARGET=mandatory (3/4)
When to Actually to Abort with an Error

Solution in OpenMP 5.2

• Definitions — “the constant omp_initial_device can be used as an alias for the host device

and the constant omp_invalid_device can be used to specify an invalid device number.

A conforming device number is either a non-negative integer that is less than or equal to

omp_get_num_devices() or equal to omp_initial_device or omp_invalid_device.”

• default-device-var initialization — “If target-offload-var is mandatory and the number of

non-host devices is zero then the default-device-var is initialized to omp_invalid_device.

Otherwise, the initial value is an implementation-defined non-negative integer that is less

than or, if target-offload-var is not mandatory, equal to omp_get_initial_device().”

• OMP_OFFLOAD_TARGET=mandatory — “The mandatory value specifies that the effect

of any device construct or device memory routine that uses a device that is unavailable or

not supported by the implementation, or uses a non-conforming device number, is as if the

omp_invalid_device device number was used.”

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 21

OMP_OFFLOAD_TARGET=mandatory (4/4)
When to Actually to Abort with an Error

Solution in OpenMP 5.2 (con'd)

• device_num clause – “If the device-description evaluates to

omp_invalid_device, runtime error termination is performed.”

• Device Memory Routines: “If the device_num, src_device_num, or

dst_device_num argument of a device memory routine has the value

omp_invalid_device, runtime error termination is performed.”

• Definition: “When runtime error termination is performed, the effect is as if an

error directive for which sev-level is fatal and action-time is execution is

encountered.”

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 22

Spec Work from Our Side

Mainly trying to fix issues and improve wording

• Usually found when implementing a feature and looking at the spec

• Sometimes found by chance or forwarding issues reported to us

• Taking care of issues found during the (sub)committee discussion

Recent examples (on going)

• Issues in Fortran part related to 5.1-added conditions support in ‘atomic’

• has_device_addr – trying to clarify semantics

• Extend OMP_DEFAULT_DEVICE (cf. mandatory discussion)

If you find a potential issue, bug, missing feature

• Check newer version of the spec – could be a bug which was fixed

• Contact some ARB member to take care of the bug (or participate if your org

is already a member – or asked your org to become a member)

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 23

Agenda
• GCC Overview

• OpenMP 5.0 + 5.1 Support

• Specification Corner Cases

• Command-line Options & Tricks

• GCC Command Line Options for Offloading

• Tricks & Tips – nvptx

• Tricks & Tips – GCN

• Conclusion

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 24

GCC Command Line Options for Offloading

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 25

Solution in OpenMP 5.2 (con'd)

• Generates offload code by default for OpenMP target regions with -fopenmp

(as configured; for instance for both nvptx and AMD GCN)

• -foffload=<disable|default|target-list> – restrict to those device types

• -foffload-options=<option> or -foffload-options=<target>=<options>

specify option to the offload compiler

Typical examples:

-foffload-options=-lgfortran -foffload-options=-lm

-foffload-options="-lgfortran -lm" -foffload-options=nvptx-none=-latomic

-foffload-options=amdgcn-amdhsa=-march=gfx906 -foffload-options=-lm

• Verbose optimization pass diagnostic: -fopt-info[-options[=filename]]

Example: -foffload-options=-fopt-info-loop-missed -fopt-info-omp-missed

Tricks & Tips
nvptx

JIT

GCC generates generic code, which is just-in-time compiled by CUDA

at startup – and cached in the user’s directory.

→ https://developer.nvidia.com/blog/cuda-pro-tip-understand-fat-binaries-jit-caching/

→ CUDA_CACHE_{DISABLE,MAXSIZE,PATH}

GCC compile flags for nvptx

Usually not needed due to JIT

https://gcc.gnu.org/onlinedocs/gcc/Nvidia-PTX-Options.html

Possible exceptions:

• -mptx=N.N (PTX ISA version), -misa=sm_XX

• “illegal memory access was encountered” – generic error; could be stack issue, if

so: -foffload=-msoft-stack-reserve-local=… might help.

Default 128 byte (note: multiplied by sm_count×thread_max ~ 20000)

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 26

https://gcc.gnu.org/onlinedocs/gcc/Nvidia-PTX-Options.html

Tricks & Tips
GCN

Hardware Specific Compilation

Native code for the specified GCN hardware is generated.

Use, e.g., -foffload-options=-march=fiji (GCN3, gfx803 – the default)

or for GCN5 GPUs: gfx900 (VEGA 10), gfx906 (VEGA 20), or gfx908.

ROCGDB

Offloading debugging is supported with ROCGDB.

→ Slides: https://linuxplumbersconf.org/event/11/contributions/997/

→ Video via ↑ or https://webinars.sw.siemens.com/debugging-

offloaded-kernels-on-amd

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 27

https://linuxplumbersconf.org/event/11/contributions/997/
https://webinars.sw.siemens.com/debugging-offloaded-kernels-on-amd/join

Conclusion

OpenMP in GCC

• OpenMP 5.0 mostly supported + intial 5.1 support in GCC 12

Planned and/or useful

• GCC 13: Most of OpenMP 5.0, more of 5.1

• Improve device support: unified shared memory, performance, …

• Diagnostic, documentation improvements

Specification

• Large – and the devil is in the details

Communitiy effort

• Both the spec and the compiler depends on feedback, support, and

work of users, developers (paid and hobby), and vendors

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 28

Disclaimer

© Siemens 2022

Subject to changes and errors. The information given in this document only contains general descriptions

and/or performance features which may not always specifically reflect those described, or which may

undergo modification in the course of further development of the products. The requested performance

features are binding only when they are expressly agreed upon in the concluded contract.

All product designations may be trademarks or other rights of

Siemens AG, its affiliated companies or other companies whose use by third parties for their own purposes

could violate the rights of the respective owner.

Unrestricted | © Siemens 2022 | 2022-Jan-28 | Siemens Digital Industries Software | Where today meets tomorrow.Page 29

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of

Science User Facility supported under Contract DE-AC05-00OR22725

Acknowledgement

