
Data Consistency 
Debugging for OpenMP 

Target Offload

1

Lechen Yu, Vivek Sarkar
Georgia Institute of Technology
{lechen.yu,vsarkar}@gatech.edu



Acknowledgments

● This research was supported by the Exascale Computing Project 
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy 
Office of Science and the National Nuclear Security Administration, in 
particular its subproject on Scaling OpenMP with LLVM for Exascale 
performance and portability (SOLLVE).

2



Background - OpenMP

● A popular parallel programming model for intra-node parallelism
● Supports multiple parallel paradigms

○ SPMD
○ Task parallelism
○ Heterogeneous parallelism

● For heterogeneous parallelism, OpenMP introduced device directives
○ Target constructs  -  compute kernel
○ Map clauses         -  data movement

● Observation: Optimal, or even correct, usage of OpenMP data mapping 
constructs can be non-trivial and error-prone

3

 



OpenMP Target Offloading

● Target - an abstraction of accelerator
○ Independent processing units
○ Separate memory space (if unified memory is not used)

● Target region - code region to be executed on a target
○ Declared by a target construct
○ Execution can be synchronous/asynchronous (nowait clauses)

● Data mapping - data movement to/from target device
○ Declared by map clauses

4



Example with target and map clauses

int a = b = c = d = 0;

// kernel on the target
#pragma omp target   \

map(alloc:a)     \
map(to:b)        \
map(from:c)      \
map(tofrom:d)

{
a = 1;
b = 1;
c = 1;
d = 1;

}

5

Map-type When to 
Synchronize 

Data

Semantics

alloc Never Allocate an uninitialized 
storage on the target

to Enter the 
target region

Update the variable from host 
to target

from Exit the target 
region

Update the variable from 
target to host

tofrom Both A combination of ‘to’ and 
‘from’

1
2
3
4
5
6
7
8
9
10
11
12
13
14



Introduction - Consistency
● Result from incorrect usage of target constructs and map clauses

○ We refer to these errors as “data consistency” or “data mapping” issues

● Make a single variable have inconsistent values between the host and 
accelerator

○ Manually detecting and debugging data mapping issues can be challenging

● Data inconsistencies can lead to multiple kinds of memory issues
○ Use of Uninitialized Memory (UUM)
○ Use of Stale Data (USD)
○ Buffer Overflow (BO)
○ Data Race

 6



Examples of Memory Issues that can 
result in Data Inconsistencies
● Example

7

int a[2] = {0, 0};
// a's map-type should be "tofrom”
#pragma omp target map(alloc:a[0:1])
{
   a[0] = a[0] + 1;
}
print(a[0])

Use of uninitialized memory

Use of stale data

1
2
3
4
5
6
7

● line 5: when reading the copy on the device, it does not return the 
value of the original variable.

● line 7: when reading the original variable, it does not retrieve the 
updated value from the device.



● Buffer Overflow (BO) resulting from 
data mapping issues

8

int a[2] = {0, 0};
// the array section should be 
// a[0:2]
#pragma omp target   \ 
    map(tofrom:a[0:1])
{
   a[1] = a[1] + 1;
}
print(a[1])

● Data Race resulting from data mapping 
issues

int a[2] = {0, 0};
// the target region executes
// asynchronously
#pragma omp target nowait \
    map(tofrom:a[0:2]) 
{
   a[1] = a[1] + 1;
}
print(a[1])

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

Buffer 
Overflow Data Race

Examples of Memory Issues that can 
result in Data Inconsistencies



Outline for the rest of the talk

● Static analysis of memory consistency errors
○ OMPSan: Static Verification of OpenMP's Data Mapping 

Constructs [IWOMP 2019]

 

● Dynamic analysis of memory consistency errors
○ ARBALEST: Dynamic Detection of Data Mapping Issues 

in Heterogeneous OpenMP Applications [IPDPS 2021]

9



OmpSan - Static Data 
Inconsistency Detector

10

Prithayan Barua, J. Shirako, Whitney Tsang, Jeeva Paudel, Wang Chen, Vivek 
Sarkar.  “OMPSan: Static Verification of OpenMP's Data Mapping Constructs”
IWOMP 2019 (Recipient of Best Paper Award)

Paper link: https://link.springer.com/chapter/10.1007/978-3-030-28596-8_1

https://link.springer.com/chapter/10.1007/978-3-030-28596-8_1


OmpSan - How to Formally Define Data Inconsistency 

● Assumption: OpenMP application is expected to yield the same result if 
all OpenMP directives are ignored (serial-elision property)

○ Desirable property for most OpenMP programs

● Definition:
○ A data inconsistency occurs when there exists a different def-use relation between the 

OpenMP program and its serial-elision version (the same program with all OpenMP 
constructs ignored)

11



OmpSan: compare use-def relations in 
OpenMP vs. sequential code

12

int a = 0;

#pragma omp target \
        map(alloc:a)
{
  a = 1;
}

print(a)

OpenMP def-use Sequential def-use



OmpSan - Implementation

13

Clang 
Front End

Clang 
Front End

OpenMP 
Program

OpenM
P 

Enab
led

OpenMP 
Disabled

Infra Memory Access 
and Data Transfer

Reaching Definition
Analysis

Reaching Definition
Analysis

Def-Use
Comparison



OmpSan - Evaluation

● Benchmarks
○ DataRaceOnAccelerator (DRACC)

■ Micro-benchmark suite for OpenMP 
■ Designed to evaluate correctness tools’ capabilities on detecting memory issues
■ 16 micro-benchmarks have data inconsistency

○ SPEC ACCEL 1.3
■ Performance benchmark suite for OpenMP target  offloading

○ Ported NAS parallel benchmark
■ Performance benchmark suite originally using OpenMP SPMD constructs
■ Ported by the research team at University of Delaware

14
DRACC: https://github.com/RWTH-HPC/DRACC

https://github.com/RWTH-HPC/DRACC


OmpSan - Evaluation

15

Benchmark Result

DRACC Detected all 16 data inconsistency

SPEC-ACCEL No false positive reported

NAS No false positive reported



Outline for the rest of the talk

● Static analysis of memory consistency errors
○ OMPSan: Static Verification of OpenMP's Data Mapping 

Constructs [IWOMP 2019]

 

● Dynamic analysis of memory consistency errors
○ ARBALEST: Dynamic Detection of Data Mapping Issues 

in Heterogeneous OpenMP Applications [IPDPS 2021]

16



ARBALEST - Dynamic Data 
Inconsistency Detector

17

Lechen Yu, Joachim Protze, Oscar Hernandez, and Vivek Sarkar.  "ARBALEST: Dynamic 
detection of data mapping issues in heterogeneous openmp applications”           

Paper Link: https://ieeexplore.ieee.org/document/9460498

https://ieeexplore.ieee.org/document/9460498


ARBALEST - Introduction

● Static analysis tools may be incapable of tackling all categories of data 
inconsistency

○ Some of them require the precise runtime information
■ Array bound
■ Reference count

● To the best of our knowledge, existing dynamic analysis tools can only 
detect a subset of data inconsistency

○ No dynamic analysis tool is designed for data inconsistency in OpenMP programs

18



ARBALEST - Introduction

● A dynamic data inconsistency detector for OpenMP programs

● Built on top of Archer, the state-of-the-art OpenMP data race detector

● Extend Archer’s infrastructure to tackle all four categories of data 
inconsistency

19



● Extends Archer Race Detector for 
OpenMP programs executing on 
multicore CPU

● Launches all target regions on the 
host

● Use OpenMP Tool interface (OMPT)  
to intercept OpenMP construct calls

● IPDPS 21’s implementation uses LLVM 
9.0

ARBALEST

Device 
Directive Calls 

        Memory Accesses to Mapped Variables 

VSM based Dynamic Analysis

Bug Report Generation

Execution 
Trace

OMPT 
Callbacks

Memory 
Location

ARBALEST

OpenMP
Application

Instrumen-
tation

OpenMP 
Runtime

Archer / 
TSan

1. Archer: https://github.com/llvm/llvm-project/tree/main/openmp/tools/archer
20

○ Use host as a virtual “device” to simulate 
target offloading

https://github.com/llvm/llvm-project/tree/main/openmp/tools/archer


VSM (Variable State Machine)

21

● A state machine to track the validity of each variable

● A read/write/data movement triggers the state transition

● At any state, a read operation having no corresponding state transition 
indicates a data inconsistency



VSM

22

State Device 
with 
Valid 
Value

Illegal 
Operations

Invalid None read_host
read_target

Host Host read_target

Target Target read_host

Consistent Both None

Invalid Host

Target Consistent

allocate   update_host
release   update_target

allocate   read_host
release   write_host

read_target
write_target

read_host       update_host
read_target    update_target

write_target

update_host

write_host

update_host

update_target
release

write_host
release

write_target

update_target
write

_host

write
_tar

get



VSM Examples

23

int a[2] = {0, 0};
// a's map-type should be "tofrom”
#pragma omp target map(to:a[0:2])
{
   a[0] = a[0] + 1;
}
print(a[0])

1
2
3
4
5
6
7

Invalid Host

Target Consistent
write_target

write_host

update_targetrelease

Invalid Host

Target Consistent

Data 
Inconsistency 

Detected!

read_target



Add VSM into Archer

● Reserve four bits of Archer’s 
shadow state for VSM

● First two bits represent the state 
in VSM

● Remaining two bits are used to 
distinguish UUM from USD 

24
Sanitizer Shadow State: https://github.com/google/sanitizers/wiki/ThreadSanitizerAlgorithm#shadow-state 

https://github.com/google/sanitizers/wiki/ThreadSanitizerAlgorithm#shadow-state


Other modifications to Archer

● Revise Archer’s instrumentation pass to add a boundary check for array 
access

○ Capture all pointer arithmetic on array / pointer
○ At runtime, examine whether the result and the base pointer belong to the same mapped 

variable

● Annotate data movement as read/write to shared memory on the host
○ Host-to-target: read operations
○ Target-to-host: write operations
○ Construct shadow words for read/write and invoke Archer’s race detection routine

25



Evaluation Setup

● Evaluated precision and performance using two sets of benchmarks
○ Compared with four dynamic analysis tools

■ AddressSanitizer
■ MemorySanitizer

● These tools can capture a subset of data inconsistency
○ Designed for memory issues
○ May report a data inconsistency when the bug further leads to memory issues they can detect

■ Archer
■ Valgrind

26



Evaluation Setup

● Precision evaluations are conducted on DRACC benchmark suite
○ 56 OpenMP micro-benchmarks designed for precision evaluation
○ 16 out of 56 micro-benchmarks have data inconsistency

● Performance evaluations are conducted on SPEC-ACCEL 1.2 benchmark 
suite

○ ‘test’ input was used for these evaluations
○ All tools execute OpenMP programs on the CPU when debugging data 

inconsistency/memory issues 

27



Precision Evaluations

28



Performance Evaluations - Time Overhead

29

120x 16x

77x

10x

38x



Why ARBALEST does more checks than Archer

● Archer

30

● ARBALEST

int a[2] = {0, 0};

#pragma omp target   \ 
    map(to:a[0:2])
{
   a[1] = a[1] + 1;
}

print(a[1])

a[1] = 0

1
2
3
4
5
6
7
8
9
10
11

● read in line 9 will be skipped by Archer’s 
instrument pass because the succeeding 
write in line 10

int a[2] = {0, 0};

#pragma omp target   \ 
    map(to:a[0:2])
{
   a[1] = a[1] + 1;
}
// check VSM
print(a[1])
// check race & update VSM
a[1] = 0

1
2
3
4
5
6
7
8
9
10
11

● ARBALEST instruments both line 9 and 
line 11, carrying out more checks



Performance Evaluations - Space Overhead

31



Work in Progress - Implement ARBALEST in LLVM 15

● We have built a new prototype of ARBALEST on top of LLVM 15

● Make ARBALEST compatible with those new features in LLVM Sanitizers
○ Archer/ThreadSanitizer in LLVM 15 uses SSE2 instruction set to accelerate data race 

detection
○ Uses a concise shadow memory layout, reducing shadow state’s size from 64 bits to 32 bits
○ We have successfully embed VSM into the new format of Archer’s shadow word

● Introduce a new OMPT event to better model the behavior of a map clause
○ e.g., target map(to: array) indicates three target-data-op events for array
○ allocation, association, and data transfer
○ using a single event to record all data ops related to a map clause

32



Get Access to These Tools

● The prototype of these two tools are hosted on Georgia Tech’s GitHub 
Enterprise

● We are testing them with more benchmarks and real-world OpenMP 
applications

● Please email us if you want to get access

33



Work in Progress

● Explore the probability of detecting data inconsistency on the native 
device, e.g., GPU

34



● OmpSan - Static Data 
Inconsistency Detector

35

● ARBALEST - Dynamic Data 
Inconsistency Detector

Takeaway


