
An Update on the Progress towards
Distributed OpenMP
Atmn Patel, Northwestern University
September 30th, 2022

Acknowledgements

We gratefully acknowledge the computing resources provided and operated by the
Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

Part of this research was supported by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations
(Office of Science and the National Nuclear Security Administration) responsible for
the planning and preparation of a capable exascale ecosystem, including software,
applications, hardware, advanced system engineering, and early testbed platforms, in
support of the nation’s exascale computing imperative.

Part of this research was supported by the Lawrence Livermore National Security,
LLC (“LLNS”) via MPO No. B642066.

2

Credits

This research direction was initiated under the supervision of Johannes Doerfert at
Argonne National Lab.

Since the initial work, the work has been taken over by the Exasca||ab at Stony Brook
University.

3

OpenMP Offload

GPU 0

4

Multi-GPU
OpenMP Offload

GPU 0

GPU 1

5

Remote Multi-GPU
OpenMP Offload

GPU 0

GPU 2-4 GPU 5-7 GPU 8-10

GPU 1

6

Remote Multi-GPU
OpenMP Offload

distributed environment →
 non-unified memory +
 non-unified address space

GPU 0

GPU 2-4 GPU 5-7 GPU 8-10

GPU 1

7

Remote Multi-GPU
OpenMP Offload

distributed environment →
 non-unified memory +
 non-unified address space

Benefits:

+ no compiler changes necessary *
GPU 0

GPU 2-4 GPU 5-7 GPU 8-10

GPU 1

8

Remote Multi-GPU
OpenMP Offload

distributed environment →
 non-unified memory +
 non-unified address space

Benefits:

+ no compiler changes necessary *

+ no user code changes necessary

GPU 0

GPU 2-4 GPU 5-7 GPU 8-10

GPU 1

9

Remote Multi-GPU
OpenMP Offload

distributed environment →
 non-unified memory +
 non-unified address space

Benefits:

+ no compiler changes necessary *

+ no user code changes necessary

+ composable (CPU, GPU, JIT, …)

GPU 0

GPU 2-4 GPU 5-7 GPU 8-10

GPU 1

10

Remote Multi-GPU
OpenMP Offload

distributed environment →
 non-unified memory +
 non-unified address space

Benefits:

+ no compiler changes necessary *

+ no user code changes necessary

+ composable (CPU, GPU, JIT, …)

Drawbacks:

- limited to the “host-centric” model

GPU 0

GPU 2-4 GPU 5-7 GPU 8-10

GPU 1

11

Remote Multi-GPU
OpenMP Offload

distributed environment →
 non-unified memory +
 non-unified address space

Benefits:

+ no compiler changes necessary *

+ no user code changes necessary

+ composable (CPU, GPU, JIT, …)

Drawbacks:

- limited to the “host-centric” model

- opaque topology

GPU 0

GPU 2-4 GPU 5-7 GPU 8-10

GPU 1

12

Remote Multi-GPU
OpenMP Offload

distributed environment →
 non-unified memory +
 non-unified address space

Benefits:

+ no compiler changes necessary *

+ no user code changes necessary

+ composable (CPU, GPU, JIT, …)

Drawbacks:

- limited to the “host-centric” model

- opaque topology

GPU 0

GPU 2-4 GPU 5-7 GPU 8-10

GPU 1

Remote OpenMP Offloading offers distributed compute resource
usage through a single, coherent parallel programming model.

13

Implementation

14

OpenMP in LLVM
https://openmp.llvm.org/docs

Slide originally presented at LLVM-Dev Meeting 2020 by Johannes Doerfert https://youtu.be/M0DrhQbjrro
15

https://youtu.be/M0DrhQbjrro

OpenMP in LLVM
https://openmp.llvm.org/docs

Slide originally presented at LLVM-Dev Meeting 2020 by Johannes Doerfert https://youtu.be/M0DrhQbjrro

Clang
OpenMP
Parser

OpenMP
Sema

OpenMP
CodeGen

16

https://youtu.be/M0DrhQbjrro

OpenMP in LLVM
https://openmp.llvm.org/docs

Slide originally presented at LLVM-Dev Meeting 2020 by Johannes Doerfert https://youtu.be/M0DrhQbjrro

Clang
OpenMP
Parser

OpenMP
Sema

OpenMP
CodeGen

OpenMP
runtimes

libomp.so
(classic, host)

libomptarget + plugins
(offloading, host)

libomptarget-nvptx
(offloading, device)

17

https://youtu.be/M0DrhQbjrro

OpenMP in LLVM
https://openmp.llvm.org/docs

Slide originally presented at LLVM-Dev Meeting 2020 by Johannes Doerfert https://youtu.be/M0DrhQbjrro

OpenMP
runtimes

libomp.so
(classic, host)

libomptarget + plugins
(offloading, host)

libomptarget-nvptx
(offloading, device)

Clang
OpenMP
Parser

OpenMP
Sema

OpenMP
CodeGen

18

https://youtu.be/M0DrhQbjrro

OpenMP in LLVM
https://openmp.llvm.org/docs

Slide originally presented at LLVM-Dev Meeting 2020 by Johannes Doerfert https://youtu.be/M0DrhQbjrro

Flang
OpenMP
Parser

OpenMP
Sema

OpenMP
CodeGen

OpenMP-IR-Builder
frontend independant OpenMP

LLVM-IR generation

favor simple and expressive
LLVM-IR

reusable for non-OpenMP
parallelism

OpenMP
runtimes

libomp.so
(classic, host)

libomptarget + plugins
(offloading, host)

libomptarget-nvptx
(offloading, device)

Clang
OpenMP
Parser

OpenMP
Sema

OpenMP
CodeGen

19

https://youtu.be/M0DrhQbjrro

OpenMP in LLVM
https://openmp.llvm.org/docs

Slide originally presented at LLVM-Dev Meeting 2020 by Johannes Doerfert https://youtu.be/M0DrhQbjrro

Flang
OpenMP
Parser

OpenMP
Sema

OpenMP
CodeGen

OpenMP-IR-Builder
frontend independant OpenMP

LLVM-IR generation

favor simple and expressive
LLVM-IR

reusable for non-OpenMP
parallelism

OpenMP-Opt
interprocedural

optimization pass

contains host & device
optimizations

run with -O1 and
higher

OpenMP
runtimes

libomp.so
(classic, host)

libomptarget + plugins
(offloading, host)

libomptarget-nvptx
(offloading, device)

Clang
OpenMP
Parser

OpenMP
Sema

OpenMP
CodeGen

20

https://youtu.be/M0DrhQbjrro

OpenMP in LLVM
https://openmp.llvm.org/docs

Slide originally presented at LLVM-Dev Meeting 2020 by Johannes Doerfert https://youtu.be/M0DrhQbjrro

Flang
OpenMP
Parser

OpenMP
Sema

OpenMP
CodeGen

OpenMP-IR-Builder
frontend independant OpenMP

LLVM-IR generation

favor simple and expressive
LLVM-IR

reusable for non-OpenMP
parallelism

OpenMP-Opt
interprocedural

optimization pass

contains host & device
optimizations

run with -O1 and
higher

OpenMP
runtimes

libomp.so
(classic, host)

libomptarget + plugins
(offloading, host)

libomptarget-nvptx
(offloading, device)

Clang
OpenMP
Parser

OpenMP
Sema

OpenMP
CodeGen

21

https://youtu.be/M0DrhQbjrro

Remote OpenMP Offloading (Plugin)

22

Remote OpenMP Offloading (Plugin)

23

Remote OpenMP Offloading (Plugin)

* interface 2’ is 2 with two optional API functions exposed by the remote plugin.

24

Networking Backends

gRPC (may be deprecated very soon)
(google’s Remote-Procedure-Call)

UCX
(Unified Communication X)

+ many out-of-the-box features:
thread pools, concurrency, compression, …

● optimized for small messages (< 2 MB)

- tied to (google’s) protobuf

- general purpose & little customization e.g.,
for compression, specialized networks and
access kinds

+ highly configurable (RMA, AMO, Tag
Matching, Active Message, Stream, …)

+ network layer aware (IP over InfiniBand)

- Using MPICH directly has better
performance for large messages for now

25

Implementation Notes

26

It has been only tested on NVIDIA GPUs, but it should extend to any accelerator targeted by LLVM.

It is known to work from x86 and ARM to remote GPUs, SmartNIC CPU and GPUs, etc.

The upstream has been broken for a while, but many performance updates + fixes are in-flight from
Exasca||ab.

Stony Brook has been working on a more efficient implementation, where they:
- Use CUDA-Aware Communication
- Improved NUMA Awareness through some fun techniques
- Presented at IWOMP this week

Evaluation

27

RSBench/XSBench

- Monte Carlo simulation codes

- particle transport in reactors

- available for single-GPU OpenMP
offload

- extended to multi-GPU OpenMP
offload (easy to map)

- weak scaling in the Google cloud
(4 nodes, 1 NVIDIA T4 GPU each)

- strong scaling on ThetaGPU
(15 nodes, 8 NVIDIA A100 GPUs each)

28

RSBench/XSBench

- Monte Carlo simulation codes

- particle transport in reactors

- available for single-GPU OpenMP
offload

- extended to multi-GPU OpenMP
offload (easy to map)

- weak scaling in the Google cloud
(4 nodes, 1 NVIDIA T4 GPU each)

- strong scaling on ThetaGPU
(15 nodes, 8 NVIDIA A100 GPUs each)

29

RSBench on Google Cloud

RSBench/XSBench

- Monte Carlo simulation codes

- particle transport in reactors

- available for single-GPU OpenMP
offload

- extended to multi-GPU OpenMP
offload (easy to map)

- weak scaling in the Google cloud
(4 nodes, 1 NVIDIA T4 GPU each)

- strong scaling on ThetaGPU
(15 nodes, 8 NVIDIA A100 GPUs each)

30

XSBench on Google Cloud

RSBench/XSBench

- Monte Carlo simulation codes

- particle transport in reactors

- available for single-GPU OpenMP
offload

- extended to multi-GPU OpenMP
offload (easy to map)

- weak scaling in the Google cloud
(4 nodes, 1 NVIDIA T4 GPU each)

- strong scaling on ThetaGPU
(15 nodes, 8 NVIDIA A100 GPUs each)

31

RSBench on ThetaGPU

RSBench/XSBench

- Monte Carlo simulation codes

- particle transport in reactors

- available for single-GPU OpenMP
offload

- extended to multi-GPU OpenMP
offload (easy to map)

- weak scaling in the Google cloud
(4 nodes, 1 NVIDIA T4 GPU each)

- strong scaling on ThetaGPU
(15 nodes, 8 NVIDIA A100 GPUs each)

32

XSBench on ThetaGPU

RSBench/XSBench

- Monte Carlo simulation codes

- particle transport in reactors

- available for single-GPU OpenMP
offload

- extended to multi-GPU OpenMP
offload (easy to map)

- weak scaling in the Google cloud
(4 nodes, 1 NVIDIA T4 GPU each)

- strong scaling on ThetaGPU
(15 nodes, 8 NVIDIA A100 GPUs each)

33

XSBench on ThetaGPU

The compute to memory transfer ratio determines
the effectiveness of OpenMP Remote Offloading.

Future Work

34

35

Multi-Device Features

void array(float *A, int N) {
 int numD = omp_get_num_devices();

 for (int d = 0; d < numD; ++d) {
 int chunkBegin = …, chunkSize = …, chunkEnd = …;
 #pragma omp target teams distribute \
 parallel for default(firstprivate) \
 map(tofrom:A[chunkBegin:chunkSize])\
 device(d)
 for (int i = chunkBegin; i < chunkEnd; ++i)
 A[i] = A[i] * 2;
 }
}

36

Multi-Device Features

void array(float *A, int N) {
 int numD = omp_get_num_devices();
 #pragma omp parallel for
 for (int d = 0; d < numD; ++d) {
 int chunkBegin = …, chunkSize = …, chunkEnd = …;
 #pragma omp target teams distribute \
 parallel for default(firstprivate) \
 map(tofrom:A[chunkBegin:chunkSize])\
 device(d)
 for (int i = chunkBegin; i < chunkEnd; ++i)
 A[i] = A[i] * 2;
 }
}

37

Multi-Device Features

void array(float *A, int N) {
 int numD = omp_get_num_devices();
 #pragma omp parallel for
 for (int d = 0; d < numD; ++d) {
 int chunkBegin = …, chunkSize = …, chunkEnd = …;
 #pragma omp target teams distribute \
 parallel for default(firstprivate) \
 map(tofrom:A[chunkBegin:chunkSize])\
 device(d)
 for (int i = chunkBegin; i < chunkEnd; ++i)
 A[i] = A[i] * 2;
 }
}

- missing bulk launch

38

Multi-Device Features

void array(float *A, int N) {
 int numD = omp_get_num_devices();
 #pragma omp parallel for
 for (int d = 0; d < numD; ++d) {
 int chunkBegin = …, chunkSize = …, chunkEnd = …;
 #pragma omp target teams distribute \
 parallel for default(firstprivate) \
 map(tofrom:A[chunkBegin:chunkSize])\
 device(d)
 for (int i = chunkBegin; i < chunkEnd; ++i)
 A[i] = A[i] * 2;
 }
}

- missing bulk launch
- missing auto chunking

OpenMP Extension Sketch

39

Multi-Device Features

void array(float *A, int N) {
 int numD = omp_get_num_devices();

 #pragma omp target teams distribute \
 parallel for default(firstprivate) \
 map(tofrom,chunked:A[:N]) \
 devices(0:numD)
 for (int i = 0; i < N; ++i)
 A[i] = A[i] * 2;

}

- missing bulk launch
- missing auto chunking

40

Multi-Device Features

40

GPU 0

GPU 1

GPU 2-4

- missing bulk launch
- missing auto chunking

41

Multi-Device Features

41

GPU 0

GPU 1

GPU 2-4CPU 5-9

- missing bulk launch
- missing auto chunking

+ omp_target_memcpy[_async,_rect](...,
 dst_device_num, src_device_num)

42

Multi-Device Features

- missing bulk launch
- missing auto chunking

+ omp_target_memcpy[_async,_rect](...,
 dst_device_num, src_device_num)

- missing device / topology information

GPU 0

GPU 1

GPU 2-4CPU 5-9

43

Multi-Device Features

- missing bulk launch
- missing auto chunking

+ omp_target_memcpy[_async,_rect](...,
 dst_device_num, src_device_num)

- missing device / topology information
- missing hierarchical / nested offloading

GPU 0

GPU 1

GPU 2-4CPU 5-9

44

Multi-Device Features

- missing bulk launch
- missing auto chunking

+ omp_target_memcpy[_async,_rect](...,
 dst_device_num, src_device_num)

- missing device / topology information
- missing hierarchical / nested offloading
- native collective communicationGPU 0

GPU 1

GPU 2-4CPU 5-9

Questions?

45

