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Remote OpenMP Offloading offers distributed compute resource 
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Implementation
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Remote OpenMP Offloading (Plugin)

* interface   2’   is   2   with two optional API functions exposed by the remote plugin.
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Networking Backends

gRPC (may be deprecated very soon)
(google’s Remote-Procedure-Call)

UCX
(Unified Communication X)

+ many out-of-the-box features:
thread pools, concurrency, compression, …

● optimized for small messages (< 2 MB)

- tied to (google’s) protobuf

- general purpose & little customization e.g., 
for compression, specialized networks and 
access kinds

 

+ highly configurable (RMA, AMO, Tag 
Matching, Active Message, Stream, …)

+ network layer aware (IP over InfiniBand)

- Using MPICH directly has better 
performance for large messages for now
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Implementation Notes 
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It has been only tested on NVIDIA GPUs, but it should extend to any accelerator targeted by LLVM.

It is known to work from x86 and ARM to remote GPUs, SmartNIC CPU and GPUs, etc.

The upstream has been broken for a while, but many performance updates + fixes are in-flight from 
Exasca||ab. 

Stony Brook has been working on a more efficient implementation, where they:
- Use CUDA-Aware Communication
- Improved NUMA Awareness through some fun techniques
- Presented at IWOMP this week



Evaluation
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28



RSBench/XSBench

- Monte Carlo simulation codes

- particle transport in reactors

- available for single-GPU OpenMP 
offload

- extended to multi-GPU OpenMP 
offload (easy to map)

- weak scaling in the Google cloud
(4 nodes, 1 NVIDIA T4 GPU each)

- strong scaling on ThetaGPU 
(15 nodes, 8 NVIDIA A100 GPUs each)

29

RSBench on Google Cloud



RSBench/XSBench

- Monte Carlo simulation codes

- particle transport in reactors

- available for single-GPU OpenMP 
offload

- extended to multi-GPU OpenMP 
offload (easy to map)

- weak scaling in the Google cloud
(4 nodes, 1 NVIDIA T4 GPU each)

- strong scaling on ThetaGPU 
(15 nodes, 8 NVIDIA A100 GPUs each)

30

XSBench on Google Cloud



RSBench/XSBench

- Monte Carlo simulation codes

- particle transport in reactors

- available for single-GPU OpenMP 
offload

- extended to multi-GPU OpenMP 
offload (easy to map)

- weak scaling in the Google cloud
(4 nodes, 1 NVIDIA T4 GPU each)

- strong scaling on ThetaGPU 
(15 nodes, 8 NVIDIA A100 GPUs each)

31

RSBench on ThetaGPU



RSBench/XSBench

- Monte Carlo simulation codes

- particle transport in reactors

- available for single-GPU OpenMP 
offload

- extended to multi-GPU OpenMP 
offload (easy to map)

- weak scaling in the Google cloud
(4 nodes, 1 NVIDIA T4 GPU each)

- strong scaling on ThetaGPU 
(15 nodes, 8 NVIDIA A100 GPUs each)

32

XSBench on ThetaGPU



RSBench/XSBench

- Monte Carlo simulation codes

- particle transport in reactors

- available for single-GPU OpenMP 
offload

- extended to multi-GPU OpenMP 
offload (easy to map)

- weak scaling in the Google cloud
(4 nodes, 1 NVIDIA T4 GPU each)

- strong scaling on ThetaGPU 
(15 nodes, 8 NVIDIA A100 GPUs each)

33

XSBench on ThetaGPU

The compute to memory transfer ratio determines 
the effectiveness of OpenMP Remote Offloading.
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Multi-Device Features

void array(float *A, int N) {
 int numD = omp_get_num_devices();

 for (int d = 0; d < numD; ++d) {
  int chunkBegin = …, chunkSize = …, chunkEnd = …; 
  #pragma omp target teams distribute     \
              parallel for default(firstprivate) \
              map(tofrom:A[chunkBegin:chunkSize])\
              device(d)
  for (int i = chunkBegin; i < chunkEnd; ++i)
    A[i] = A[i] * 2;
 }
}
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OpenMP Extension Sketch
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Multi-Device Features
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Questions?
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