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Spain

email: hermanns@tupi.dmt.upm.es

19th of April 2002





Contents

1 OpenMP Fortran Application Program Interface 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Historical remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Who is participating . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 About this document . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 The sentinels for OpenMP directives and conditional compilation . 4
1.2.2 The parallel region constructor . . . . . . . . . . . . . . . . . . . . 5

2 OpenMP constructs 9
2.1 Work-sharing constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 !$OMP DO/!$OMP END DO . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 !$OMP SECTIONS/!$OMP END SECTIONS . . . . . . . . . . . . . . . . 15
2.1.3 !$OMP SINGLE/!$OMP END SINGLE . . . . . . . . . . . . . . . . . . 16
2.1.4 !$OMP WORKSHARE/!$OMP END WORKSHARE . . . . . . . . . . . . . . 17

2.2 Combined parallel work-sharing constructs . . . . . . . . . . . . . . . . . . 20
2.2.1 !$OMP PARALLEL DO/!$OMP END PARALLEL DO . . . . . . . . . . . . 21
2.2.2 !$OMP PARALLEL SECTIONS/!$OMP END PARALLEL SECTIONS . . . . 21
2.2.3 !$OMP PARALLEL WORKSHARE/!$OMP END PARALLEL WORKSHARE . . 21

2.3 Synchronization constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 !$OMP MASTER/!$OMP END MASTER . . . . . . . . . . . . . . . . . . 22
2.3.2 !$OMP CRITICAL/!$OMP END CRITICAL . . . . . . . . . . . . . . . . 22
2.3.3 !$OMP BARRIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 !$OMP ATOMIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.5 !$OMP FLUSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.6 !$OMP ORDERED/!$OMP END ORDERED . . . . . . . . . . . . . . . . . 30

2.4 Data environment constructs . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4.1 !$OMP THREADPRIVATE (list) . . . . . . . . . . . . . . . . . . . . 32

3 PRIVATE, SHARED & Co. 37
3.1 Data scope attribute clauses . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 PRIVATE(list) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.2 SHARED(list) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.1.3 DEFAULT( PRIVATE | SHARED | NONE ) . . . . . . . . . . . . . . . 39

i



ii CONTENTS

3.1.4 FIRSTPRIVATE(list) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.5 LASTPRIVATE(list) . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.6 COPYIN(list) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1.7 COPYPRIVATE(list) . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.8 REDUCTION(operator:list) . . . . . . . . . . . . . . . . . . . . . 43

3.2 Other clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 IF(scalar logical expression) . . . . . . . . . . . . . . . . . . 46
3.2.2 NUM THREADS(scalar integer expression) . . . . . . . . . . . . . 47
3.2.3 NOWAIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.4 SCHEDULE(type, chunk) . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.5 ORDERED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 The OpenMP run-time library 55
4.1 Execution environment routines . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 OMP set num threads . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 OMP get num threads . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.3 OMP get max threads . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.4 OMP get thread num . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1.5 OMP get num procs . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.6 OMP in parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.7 OMP set dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.8 OMP get dynamic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.9 OMP set nested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.10 OMP get nested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Lock routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.1 OMP init lock and OMP init nest lock . . . . . . . . . . . . . . . 60
4.2.2 OMP set lock and OMP set nest lock . . . . . . . . . . . . . . . . 60
4.2.3 OMP unset lock and OMP unset nest lock . . . . . . . . . . . . . 61
4.2.4 OMP test lock and OMP test nest lock . . . . . . . . . . . . . . . 61
4.2.5 OMP destroy lock and OMP destroy nest lock . . . . . . . . . . . 62
4.2.6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Timing routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.1 OMP get wtime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.2 OMP get wtick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 The Fortran 90 module omp lib . . . . . . . . . . . . . . . . . . . . . . . . 66

5 The environment variables 69
5.1 OMP NUM THREADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 OMP SCHEDULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 OMP DYNAMIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 OMP NESTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Chapter 1

OpenMP Fortran Application
Program Interface

1.1 Introduction

In the necessity of more and more computational power, the developers of computing
systems started to think on using several of their existing computing machines in a joined
manner. This is the origin of parallel machines and the start of a new field for programmers
and researches.

Nowadays parallel computers are very common in research facilities as well as compa-
nies all over the world and are extensively used for complex computations, like simulations
of atomic explosions, folding of proteins or turbulent flows.

A challenge in parallel machines is the development of codes able of using the capabil-
ities of the available hardware in order to solve larger problems in less time. But parallel
programming is not an easy task, since a large variety of architectures exist. Mainly two
families of parallel machines can be identified:

Shared-memory architecture : these parallel machines are build up on a set of proces-
sors which have access to a common memory. Usually the name of SMP machines
is used for computers based on this architecture, where SMP stands for Symmetric
Multi Processing.

Distributed-memory architecture : in these parallel machines each processor has its
own private memory and information is interchanged between the processors through
messages. The name of clusters is commonly used for this type of computing
devices.

Each of the two families has its advantages and disadvantages and the actual parallel
programming standards try to exploit these advantages by focusing only on one of these
architectures.

In the last years a new industry standard has been created with the aim to serve
as a good basis for the development of parallel programs on shared-memory machines:
OpenMP.

1
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1.1.1 Historical remarks

Shared-memory machines exist nowadays for a long time. In the past, each vendor was de-
veloping its own ”standard” of compiler directives and libraries, which allowed a program
to make use of the capabilities of their specific parallel machine.

An earlier standardization effort, ANSI X3H5 was never formally adopted, since on one
hand no strong support of the vendors was existing and on the other hand distributed
memory machines, with their own more standard message passing libraries PVM and
MPI, appeared as a good alternative to shared-memory machines.

But in 1996-1997, a new interest in a standard shared-memory programming interface
appeared, mainly due to:

1. A renewed interest from the vendors side in shared-memory architectures.

2. The opinion by a part of the vendors, that the parallelization of programs using
message passing interfaces is cumbersome and long and that a more abstract pro-
gramming interface would be desirable.

OpenMP1 is the result of a large agreement between hardware vendors and compiler
developers and is considered to be an ”industry standard”: it specifies a set of compiler
directives, library routines, and environment variables that can be used to specify shared-
memory parallelism in Fortran and C/C++ programs.

OpenMP consolidates all this into a single syntax and semantics and finally delivers
the long-awaited promise of single source portability for shared-memory parallelism. But
OpenMP is even more: it also addresses the inability of previous shared-memory directive
sets to deal with coarse-grain parallelism2. In the past, limited support for coarse
grain work has led to developers to think that shared-memory parallel programming was
inherently limited to fine-grain parallelism3.

1.1.2 Who is participating

The OpenMP specification is owned, written and maintained by the OpenMP Archi-
tecture Review Board, which is a join of the companies actively taking part in the
development of the standard shared-memory programming interface. In the year 2000,
the permanent members of the OpenMP ARB were:

• US Department of Energy, through its ASCI program

• Compaq Computer Corp.

1MP stands for Multi Processing and Open means that the standard is defined through a specifi-
cation accessible to anyone.

2Coarse-grain parallelism means that the parallelism in the program is achieved through a decom-
position of the target domain into a set of subdomains that is distributed over the different processors of
the machine.

3Fine-grain parallelism means that the parallelism in the program is achieved by distributing the
work of the do-loops over the different processors, so that each processor computes part of the iterations.
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• Fujitsu

• Hewlett-Packard Company

• Intel Corp.

• International Business Machines

• Kuck & Associates, Inc.

• Silicon Graphics Incorporate

• Sun Microsystems

Additionally to the OpenMP ARB, a large number of companies contribute to the
development of OpenMP by using it in their programs and compilers and reporting prob-
lems, comments and suggestions to the OpenMP ARB.

1.1.3 About this document

This document has been created to serve as a good starting point for Fortran 95 pro-
grammers interested in learning OpenMP. Special importance has been given to graphical
interpretations and performance aspects of the different OpenMP directives and clauses,
since these are lacking in the OpenMP specifications released by the OpenMP ARB4. It is
advisable to complement the present document with these OpenMP specifications, since
some aspects and possibilities have not been addressed here for simplicity.

Only the Fortran 95 programming language is considered in the present document,
although most of the concepts and ideas are also applicable to the Fortran 77 programming
language. Since the author believes in the superiority of Fortran 95 over Fortran77 and in
the importance of a good programming methodology, the present document only presents
those features of OpenMP which are in agreement with such a programming philosophy.
This is the reason why it is advisable to have also a look at the OpenMP specifications,
since the selection of the concepts presented here are a personal choice of the author.

Since the existing documentation about OpenMP is not very extensive, the present
document has been released for free distribution over the Internet, while the copyright
of it is kept by the author. Any comments regarding the content of this document are
welcome and the author encourages people to send constructive comments and suggestions
in order to improve it.

At the time of writing this document (winter 2001-spring 2002) two different OpenMP
specifications are used in compilers: version 1.1 and version 2.0. Since the latter enhances
the capabilities of the former, it is necessary to differentiate what is valid for each version.
This is accomplished by using a different color for the text that only applies to the
OpenMP Fortran Application Program Interface, version 2.0.

4It has no sense that performance issues are addressed in a specification, since they are implementation
dependent and in general different for each machine.
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1.2 The basics

OpenMP represents a collection of compiler directives, library routines and environment
variables meant for parallel programming in shared-memory machines. A chapter is going
to be devoted to each of these elements, but before starting with the review of the available
compiler directives, it is necessary to have a look at some basic aspects of OpenMP.

Although named as ”basic aspects”, the information presented in this section is the
fundamental part of OpenMP which allows the inclusion of OpenMP commands in pro-
grams and the creation as well as destruction of parallel running regions of code.

1.2.1 The sentinels for OpenMP directives and conditional com-
pilation

One of the aims of the OpenMP standard is to offer the possibility of using the same
source code lines with an OpenMP-compliant compiler and with a normal compiler. This
can only be achieved by hiding the OpenMP directives and commands in such a way, that
a normal compiler is unable to see them. For that purpose the following two directive
sentinels are introduced:

!$OMP

!$

Since the first character is an exclamation mark ”!”, a normal compiler will interpret
the lines as comments and will neglect their content. But an OpenMP-compliant compiler
will identify the complete sequences and will proceed as follows:

!$OMP : the OpenMP-compliant compiler knows that the following information in the
line is an OpenMP directive. It is possible to extend an OpenMP directive over
several lines by placing the same sentinel in front of the following lines and using
the standard Fortran 95 method of braking source code lines:

!$OMP PARALLEL DEFAULT(NONE) SHARED(A, B) PRIVATE(C, D) &
!$OMP REDUCTION(+:A)

It is mandatory to include a white space between the directive sentinel !$OMP and
the following OpenMP directive, otherwise the directive sentinel is not correctly
identified and the line is treated as a comment.

!$ : the corresponding line is said to be affected by a conditional compilation. This
means that its content will only be available to the compiler in case of being
OpenMP-compliant. In such a case, the two characters of the sentinel are sub-
stituted by two white spaces so that the compiler is taking into account the line.
As in the previous case, it is possible to extend a source code line over several lines
as follows:
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!$ interval = L * OMP_get_thread_num() / &
!$ (OMP_get_num_threads() - 1)

Again, it is mandatory to include a white space between the conditional compilation
directive !$ and the following source code, otherwise the conditional compilation
directive is not correctly identified and the line is treated as a comment.

Both sentinels can appear in any column as long as they are preceded only by white
spaces; otherwise, they are interpreted as normal comments.

1.2.2 The parallel region constructor

The most important directive in OpenMP is the one in charge of defining the so called
parallel regions. Such a region is a block of code that is going to be executed by multiple
threads running in parallel.

Since a parallel region needs to be created/opened and destroyed/closed, two directives
are necessary, forming a so called directive-pair: !$OMP PARALLEL/!$OMP END PARALLEL.
An example of their use would be:

!$OMP PARALLEL
write(*,*) "Hello"

!$OMP END PARALLEL

Since the code enclosed between the two directives is executed by each thread, the
message Hello appears in the screen as many times as threads are being used in the
parallel region.

Before and after the parallel region, the code is executed by only one thread, which
is the normal behavior in serial programs. Therefore it is said, that in the program there
are also so called serial regions.

When a thread executing a serial region encounters a parallel region, it creates a team
of threads, and it becomes the master thread of the team. The master thread is a
member of the team as well and takes part in the computations. Each thread inside the
parallel region gets a unique thread number which ranges from zero, for the master
thread, up to Np − 1, where Np is the total number of threads within the team. In figure
1.1 the previous example is represented in a graphical way to clarify the ideas behind the
parallel region constructor.

At the beginning of the parallel region it is possible to impose clauses which fix certain
aspects of the way in which the parallel region is going to work: for example the scope of
variables, the number of threads, special treatments of some variables, etc. The syntaxis
to use is the following one:

!$OMP PARALLEL clause1 clause2 ...

...

!$OMP END PARALLEL
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serial region

parallel region

thread 0

thread 0 thread 1 thread Np

...

� � �

write(*,*) "Hello" write(*,*) "Hello" write(*,*) "Hello"
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Figure 1.1: Graphical representation of the example explaining the working principle of the
!$OMP PARALLEL/!$OMP END PARALLEL directive-pair.

Not all available clauses presented and explained in chapter 3 are allowed within the
opening-directive !$OMP PARALLEL, only the following ones:

• PRIVATE(list): see page 37.

• SHARED(list): see page 38.

• DEFAULT( PRIVATE | SHARED | NONE ): see page 39.

• FIRSTPRIVATE(list): see page 40.

• COPYIN(list): see page 42.

• REDUCTION(operator:list): see page 43.

• IF(scalar logical expression): see page 46.

• NUM THREADS(scalar integer expression): see page 47.

The !$OMP END PARALLEL directive denotes the end of the parallel region. Reached
that point, all the variables declared as local to each thread (PRIVATE) are erased and
all the threads are killed, except the master thread, which continues execution past the
end of the parallel region. It is necessary that the master thread waits for all the other
threads to finish their work before closing the parallel region; otherwise information would
get lost and/or work would not be done. This waiting is in fact nothing else than a
synchronization between the parallel running threads. Therefore, it is said that the
!$OMP END PARALLEL directive has an implied synchronization.

When including a parallel region into a code, it is necessary to satisfy two conditions
to ensure that the resulting program is compliant with the OpenMP specification:
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1. The !$OMP PARALLEL/!$OMP END PARALLEL directive-pair must appear in the same
routine of the program.

2. The code enclosed in a parallel region must be a structured block of code. This
means that it is not allowed to jump in or out of the parallel region, for example
using a GOTO command.

Despite these two rules there are not further restrictions to take into account when
creating parallel regions. Even though, it is necessary to be careful when using parallel
regions, since it is easy to achieve non-correct working programs, even when considering
the previous restrictions.

The block of code directly placed between the two directives !$OMP PARALLEL and !$OMP

END PARALLEL is said to be in the lexical extent of the directive-pair. The code included
in the lexical extent plus all the code called from inside the lexical extent is said to be in
the dynamic extent of the directive-pair. For example:

!$OMP PARALLEL
write(*,*) "Hello"
call be_friendly()

!$OMP END PARALLEL

In this case the code contained inside the subroutine be friendly is part of the dynamic
extent of the directive-pair, but is not part of the lexical extent. These two concepts are
important, since some of the clauses mentioned before apply only to the lexical extent,
while others apply to the dynamic extent.

It is possible to nest parallel regions into parallel regions. For example, if a thread in a
parallel team encounters a new parallel region, then it creates a new team and it becomes
the master thread of the new team. This second parallel region is called a nested parallel
region. An example of a nested parallel region would be:

!$OMP PARALLEL
write(*,*) "Hello"
!$OMP PARALLEL

write(*,*) "Hi"
!$OMP END PARALLEL

!$OMP END PARALLEL

If in both parallel regions the same number of threads Np is used, then a total number
of N2

p + Np messages will be printed on the screen5. The resulting tree structure is
represented graphically in figure 1.2 for the case of using two threads at each level of
nesting, Np = 2. Also shown in the same figure is the screen output associated to each of
the threads.

5There will be Np messages saying Hello and N2
p messages saying Hi.



8 1. OpenMP Fortran Application Program Interface
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Figure 1.2: Graphical representation of the example explaining the concept of nested parallel
regions.



Chapter 2

OpenMP constructs

If only the previous parallel region constructor would exist, then the only possible thing to
do would be that all the threads perform exactly the same task, but this is not the aim of
parallelism. Therefore, OpenMP defines additional constructs which allow to distribute
a given task over the different threads and achieve in this way a real parallel working
program.

Four different groups of OpenMP directives or constructs exist. Each group has a
different aim and the selection of one directive or another inside the same group depends
on the nature of the problem to be solved. Therefore, it is good to understand the
principles of each of these directives in order to perform the correct choices.

2.1 Work-sharing constructs

The first group of OpenMP directives looks forward to divide a given work into pieces
and to give one or more of these pieces to each parallel running thread. In this way the
work, which would be done by a single thread in a serial program, is distributed over a
team of threads achieving a faster running program1.

All work-sharing constructs must be placed inside dynamic extends of parallel regions
in order to be effective. If this is not the case, the work-sharing construct will still
work, but a team with only one thread will be used. The reason is that a work-sharing
construct is not able of creating new threads; a task reserved to the !$OMP PARALLEL/!$OMP
END PARALLEL directive-pair.

The following restrictions need to be taken into account when using a work-sharing
construct:

• Work-sharing constructs must be encountered by all threads in a team or by none
at all.

1Obviously, this is only true, if the team of threads is executed on more than one processor, which is
the case of SMP machines. Otherwise, when using a single processor, the computational overhead due to
the OpenMP directives as well as due to the need of executing several threads in a sequential way lead
to slower parallel programs than the corresponding serial versions!

9



10 2. OpenMP constructs

• Work-sharing constructs must be encountered in the same order by all threads in a
team.

All work-sharing constructs have an implied synchronization in their closing-directives.
This is in general necessary to ensure that all the information, required by the code
following the work-sharing construct, is uptodate. But such a thread synchronization
is not always necessary and therefore a mechanism of suppressing it exists, since it is a
resource wasting affair2. For that purpose a special clause exists which is linked to the
closing-directive: NOWAIT. Further information regarding this clause is given in chapter 3,
page 47.

2.1.1 !$OMP DO/!$OMP END DO

This directive-pair makes the immediately following do-loop to be executed in parallel.
For example

!$OMP DO
do i = 1, 1000

...
enddo

!$OMP END DO

distributes the do-loop over the different threads: each thread computes part of the
iterations. For example, if 10 threads are in use, then in general each thread computes
100 iterations of the do-loop: thread 0 computes from 1 to 100, thread 1 from 101 to 200
and so on. This is shown graphically in figure 2.1.

serial region

parallel region

thread 0

thread 0 thread 1 thread 9
...

� � �
!$OMP DO

do i = 1, 100 do i = 101, 200 do i = 901, 1000

�

E
x
e
c
u
t
i
o
n

Figure 2.1: Graphical representation of the example explaining the general working principle
of the !$OMP DO/!$OMP END DO directive-pair.

2Threads that reach the implied synchronization are idle until all the other threads reach the same
point.
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The way in which the work is distributed, and in general how the work-sharing con-
struct has to behave, can be controlled with the aid of clauses linked to the opening-
directive !$OMP DO. The syntax is as follows:

!$OMP DO clause1 clause2 ...

...

!$OMP END DO end_clause

Only the following clauses of those presented and explained in chapter 3 are allowed
in the opening-directive !$OMP DO:

• PRIVATE(list): see page 37.

• FIRSTPRIVATE(list): see page 40.

• LASTPRIVATE(list): see page 41.

• REDUCTION(operator:list): see page 43.

• SCHEDULE(type, chunk): see page 48.

• ORDERED: see page 52.

Additionally to the opening-directive clauses, it is possible to add to the closing-
directive the NOWAIT clause in order to avoid the implied synchronization. Also implied
to the closing-directive is an updating of the shared variables affected by the do-loop.
When the NOWAIT clause is added, this implied updating is also suppressed. Therefore,
care has to be taken, if after the do-loop the modified variables have to be used. In such
a case it is necessary to add an implied or an explicit updating of the shared variables, for
example using the !$OMP FLUSH directive. This side effect also happens in other directives,
although it will not be mentioned explicitly again. Therefore, it is convenient to read the
information regarding the !$OMP FLUSH directive in page 27 and the NOWAIT clause in
page 47 for further information. Also the concepts explained in chapter 3 are of use to
understand the impact of suppressing implied updates of the variables.

Since the work of a parallelized do-loop is distributed over a team of threads running
in parallel, it has no sense that one or more of these threads can branch into or out of
the block of code enclosed inside the directive-pair !$OMP DO/!$OMP END DO, for example
using a GOTO command. Therefore, this possibility is directly forbidden by the OpenMP
specification.

Since each thread is executing part of the iterations of the do-loop and the updates of
the modifications made to the variables are not ensured until the end of the work-sharing
construct, the following example will not work correctly using the !$OMP DO/!$OMP END

DO directive-pair for its parallelization:
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real(8) :: A(1000), B(1000)

do i = 1, 1000
B(i) = 10 * i
A(i) = A(i) + B(i)

enddo

because the correct value of the matrix B is not ensured until the end of the work-
sharing construct !$OMP END DO.

The fact that the iterations of the do-loop are distributed over the different threads
in an unpredictable way3, discards certain do-loops from being parallelized. For example:

real(8) :: A(1000)

do i = 1, 999
A(i) = A(i+1)

enddo

The reason for the incorrect working is that the value at the index i+1 is needed in
its unmodified state when performing the iteration i. This will lead to no trouble when
executed in a serial way, but when running in parallel the unmodified state of i+1 is not
granted at the time of computing iteration i. Therefore, an unpredictable result will be
obtained when running in parallel. This situation is known as racing condition: the
result of the code depends on the thread scheduling and on the speed of each processor.
By modifying the previous do-loop it is possible to achieve a parallelizable version leading
to the following parallelized code4:

real(8) :: A(1000), dummy(2:1000:2)

!Saves the even indices
!$OMP DO
do i = 2, 1000, 2

dummy(i) = A(i)
enddo

!$OMP END DO

!Updates even indices from odds
!$OMP DO
do i = 0, 998, 2

A(i) = A(i+1)
enddo

!$OMP END DO

!Updates odd indices with evens
!$OMP DO

3Although the expression ”unpredictable” usually means something negative, in this case it states
something that is inherent in the philosophy of OpenMP, namely the separation between the parallel
programming and the underlying hardware and work distribution.

4The presented modification is not the only possible one, but at least it allows the parallelization of
the do-loop at expense of additional memory requirements.
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do i = 1, 999, 2
A(i) = dummy(i+1)

enddo
!$OMP END DO

Although not shown explicitly in the previous source code, the complete set of do-loops
needs to be placed inside a parallel region; otherwise no parallelization of the do-loops
takes place. This discards the definition of the matrices A and B, since these cannot have
the private attribute (see chapter 3 for further information regarding private and shared
variables).

The technique of splitting the do-loop into several separated do-loops allows to solve
sometimes the problem, but it is necessary to evaluate the cost associated to the modifi-
cations in terms of time and memory requirements in order to see, if it is worth or not.
Another example of problematic do-loop is:

real(8) :: A(0:1000)

do i = 1, 1000
A(i) = A(i-1)

enddo

Now each iteration in the do-loop depends on the previous iteration, leading again to
a dependency with the order of execution of the iterations. But this time the previously
presented trick of splitting the do-loop does not help. Instead, it is necessary to impose
an ordering in the execution of the statements enclosed in the do-loop using the ORDERED

clause together with the !$OMP ORDERED/!$OMP END ORDERED directive-pair:

real(8) :: A(0:1000)

!$OMP DO ORDERED
do i = 1, 1000

!$OMP ORDERED
A(i) = A(i-1)

!$OMP END ORDERED
enddo

!$OMP END DO

Doing so, no gain is to expect from the parallelization of the do-loop in the example,
since the complete content of the do-loop has to be executed in an ordered way. Detailed
information regarding the !$OMP ORDERED/!$OMP END ORDERED directive-pair can be found
on page 30. When several nested do-loops are present, it is always convenient to parallelize
the outer most one, since then the amount of work distributed over the different threads
is maximal. Also the number of times in which the !$OMP DO/!$OMP END DO directive-
pair effectively acts is minimal, which implies a minimal overhead due to the OpenMP
directive. In the following example

do i = 1, 10
do j = 1, 10

!$OMP DO
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do k = 1, 10
A(i,j,k) = i * j * k

enddo
!$OMP END DO

enddo
enddo

the work to be computed in parallel is distributed i · j = 100 times and each thread
gets less than 10 iterations to compute, since only the innest do-loop is parallelized. By
changing the place of the OpenMP directive as follows:

!$OMP DO
do i = 1, 10

do j = 1, 10
do k = 1, 10
A(i,j,k) = i * j * k

enddo
enddo

enddo
!$OMP END DO

the work to be computed in parallel is distributed only once and the work given to
each thread has at least j · k = 100 iterations. Therefore, in this second case a better
performance of the parallelization is to expect.

It is possible to increase even more the efficiency of the resulting code, if the ordering
of the do-loops is modified as follows:

!$OMP DO
do k = 1, 10

do j = 1, 10
do i = 1, 10
A(i,j,k) = i * j * k

enddo
enddo

enddo
!$OMP END DO

This new version handles better the cache memory of each processor, since the fastest
changing do-loop acts on consecutive memory locations, leading to a faster code5. Of
course it is not always possible to modify the ordering of the do-loops: in such a case
it is necessary to look for a compromise between do-loop efficiency and parallelization
efficiency.

5Although the Fortran 90 standard does not specify the way in which arrays have to be stored in
memory, it is to expect that the column major form is used, since this was the standard in Fortran 77.
Even though, it is advisable to have a look at the documentation of the available compiler in order to
know the way in which arrays are stored in memory, since a significant speed up is achieved by cycling
in the correct way over arrays.
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2.1.2 !$OMP SECTIONS/!$OMP END SECTIONS

This directive-pair allows to assign to each thread a completely different task leading to
an MPMD model of execution6. Each section of code is executed once and only once
by a thread in the team. The syntax of the work-sharing construct is the following one:

!$OMP SECTIONS clause1 clause2 ...
!$OMP SECTION
...

!$OMP SECTION
...

...
!$OMP END SECTIONS end_clause

Each block of code, to be executed by one of the threads, starts with an !$OMP SECTION

directive and extends until the same directive is found again or until the closing-directive
!$OMP END SECTIONS is found. Any number of sections can be defined inside the present
directive-pair, but only the existing number of threads is used to distribute the different
blocks of code. This means, that if the number of sections is larger than the number
of available threads, then some threads will execute more than one section of code in a
serial fashion. This may lead to unefficient use of the available resources, if the number
of sections is not a multiply of the number of threads. As an example, if five sections
are defined in a parallel region with four threads, then three of the threads will be idle
waiting for the fourth thread to execute the remaining fifth section.

The opening-directive !$OMP SECTIONS accepts the following clauses:

• PRIVATE(list): see page 37.

• FIRSTPRIVATE(list): see page 40.

• LASTPRIVATE(list): see page 41.

• REDUCTION(operator:list): see page 43.

while the closing-directive !$OMP END SECTIONS only accepts the NOWAIT clause. The
following restrictions apply to the !$OMP SECTIONS/!$OMP END SECTIONS directive-pair:

• The code enclosed in each section must be a structured block of code: no branching
into or out of the block is allowed.

• All the !$OMP SECTION directives must be located in the lexical extend of the directive-
pair !$OMP SECTIONS/!$OMP END SECTIONS: they must be in the same routine.

A simple example of the use of the present directive-pair would be:

6MPMD stands for Multiple Programs Multiple Data and refers to the case of having completely
different programs/tasks which share or interchange information and which are running simultaneously
on different processors.
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!$OMP SECTIONS
!$OMP SECTION
write(*,*) "Hello"

!$OMP SECTION
write(*,*) "Hi"

!$OMP SECTION
write(*,*) "Bye"

!$OMP END SECTIONS

Now each of the messages Hello, Hi and Bye is printed only once on the screen. This
example is shown graphically in figure 2.2. The OpenMP specification does not specify
the way in which the different tasks are distributed over the team of threads, leaving this
point open to the compiler developers.

serial region

parallel region

thread 0

thread 0 thread 1 thread 2
� � �

!$OMP SECTIONS

write(*,*) "Hello" write(*,*) "Hi" write(*,*) "Bye"
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Figure 2.2: Graphical representation of the example explaining the working principle of the
!$OMP SECTIONS/!$OMP END SECTIONS directive-pair.

2.1.3 !$OMP SINGLE/!$OMP END SINGLE

The code enclosed in this directive-pair is only executed by one of the threads in the team,
namely the one who first arrives to the opening-directive !$OMP SINGLE. All the remaining
threads wait at the implied synchronization in the closing-directive !$OMP END SINGLE, if
the NOWAIT clause is not specified. The format of the directive-pair is as follows:

!$OMP SINGLE clause1 clause2 ...

...

!$OMP END SINGLE end_clause

where the end clause can be the clause NOWAIT or the clause COPYPRIVATE, but not
both at the same time. The functionality of the latter clause is explained on page 43 of
chapter 3. Only the following two clauses can be used in the opening-directive:
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• PRIVATE(list): see page 37.

• FIRSTPRIVATE(list): see page 40.

It is necessary that the code placed inside the directive-pair has no branch into or out
of it, since this is noncompliant with the OpenMP specification. An example of use of
the present directive-pair would be:

!$OMP SINGLE
write(*,*) "Hello"

!$OMP END SINGLE

Now the message Hello appears only once on the screen. It is necessary to real-
ize that all the other threads not executing the block of code enclosed in the !$OMP

SINGLE/!$OMP END SINGLE directive-pair are idle and waiting at the implied barrier in the
closing-directive.

Again, the use of the NOWAIT clause solves this problem, but then it is necessary to
ensure that the work done by the lonely thread is not required by all the other threads
for being able to continue correctly with their work.

The previous example is shown graphically in figure 2.3. To correctly interpret the
representation it is necessary to take into account the following rules:

• Solid lines represent work done simultaneously outside of the SINGLE region.

• Dotted lines represent the work and idle time associated to the threads not running
the block of code enclosed in the !$OMP SINGLE/!$OMP END SINGLE directive-pair
while this block of code is being executed by the lonely thread.

• A non-straight dotted line crossing a region has no work or latency associated to it.

• The traffic-lights represent the existence or not of an implied or explicit synchro-
nization which is acting or not on the corresponding thread.

In the presented example the previous rules lead to the following interpretation: thread
1 reaches the first the !$OMP SINGLE opening-directive. While the enclosed code is being
executed by thread 1, all the other threads finish their work located before the !$OMP

SINGLE and jump directly to the closing-directive !$OMP END SINGLE, where they wait for
thread 1 to finish. Thereafter, all the threads continue together.

2.1.4 !$OMP WORKSHARE/!$OMP END WORKSHARE

Until now parallelizable Fortran 95 commands, like array notation expressions or forall

and where statements, cannot be treated with the presented OpenMP directives in order
to distribute their work over a team of threads, since no explicit do-loops are visible. The
present work-sharing construct targets precisely these Fortran 95 commands and allows
their parallelization. Despite array notation expressions, forall statements and where

statements, also the following Fortran 95 transformational array intrinsic functions can
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parallel region
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...
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!$OMP END SINGLE
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Figure 2.3: Graphical representation of the example explaining the working principle of the
!$OMP SINGLE/!$OMP END SINGLE directive-pair.

be parallelized with the aid of the !$OMP WORKSHARE/!$OMP END WORKSHARE directive-pair:
matmul, dot product, sum, product, maxval, minval, count, any, all, spread, pack, unpack,
reshape, transpose, eoshift, cshift, minloc and maxloc. The syntax to be used is the
following one:

!$OMP WORKSHARE

...

!$OMP END WORKSHARE end_clause

where an implied synchronization exists in the closing-directive !$OMP END WORKSHARE,
if the NOWAIT clause is not specified on the closing-directive.

In contrast to the previously presented work-sharing constructs, the block of code
enclosed inside the present directive-pair is executed in such a way, that each statement
is completed before the next statement is started. The result is that the block of code
behaves exactly in the same way as if it would be executed in serial. For example,
the effects of one statement within the enclosed code must appear to occur before the
execution of the following statements, and the evaluation of the right hand side of an
assignment must appear to have been completed prior to the effects of assigning to the
left hand side. This means that the following example

real(8) :: A(1000), B(1000)
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!$OMP DO
do i = 1, 1000

B(i) = 10 * i
A(i) = A(i) + B(i)

enddo
!$OMP END DO

which was not working correctly, would work using the present directive-pair, if it is
rewritten, for example, as follows:

real(8) :: A(1000), B(1000)

!$OMP WORKSHARE
forall(i=1:1000)

B(i) = 10 * i
end forall

A = A + B
!$OMP END WORKSHARE

In order to achieve that the Fortran semantics is respected inside the !$OMP WORKSHARE/!$OMP
END WORKSHARE directive-pair, the OpenMP implementation is allowed to insert as many
synchronizations as it needs in order to fulfill the imposed requirement. The result is that
an overhead due to these additional synchronizations has to be accepted. The amount
of overhead depends on the ability of the OpenMP implementation to correctly interpret
and translate the sentences placed inside the directive-pair.

The working principle of the !$OMP WORKSHARE/!$OMP END WORKSHARE directive-pair re-
lies on dividing its work into separate units of work and distributing these units over
the different threads. These units of work are created using the following rules specified
in the OpenMP specification:

• Array expressions within a statement are splitted such that the evaluation of each
element of the array expression is considered as one unit of work.

• Evaluation of transformational array intrinsic functions may be freely subdivided
into any number of units of work.

• If the WORKSHARE directive is applied to an array assignment statement, the assign-
ment of each element is a unit of work.

• If the WORKSHARE directive is applied to a scalar assignment statement, the assignment
operation is a unit of work.

• If the WORKSHARE directive is applied to an elemental function with an array-type
argument, then the application of this function to each of the elements of the array
is considered to be a unit of work.

• If the WORKSHARE directive is applied to a where statement, the evaluation of the
mask expression and the masked assignments are workshared.
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• If the WORKSHARE directive is applied to a forall statement, the evaluation of the
mask expression, expressions occurring in the specification of the iteration space,
and the masked assignments are workshared.

• For ATOMIC directives and their corresponding assignments, the update of each scalar
variable is a single unit of work.

• For CRITICAL constructs, each construct is a single unit of work.

• If none of the rules above applies to a portion of the statement in the block of code,
then this portion is treated as a single unit of work.

Therefore, the application of the previous rules delivers a large amount of units of work
which are distributed over the different threads; how they are distributed is OpenMP-
implementation dependent.

In order to correctly use the !$OMP WORKSHARE directive, it is necessary to take into
account the following restrictions:

• The code enclosed inside the !$OMP WORKSHARE/!$OMP END WORKSHARE directive-pair
must be a structured block; no branching into or out of the block of code is allowed.

• The enclosed code must only contain array assignment statements, scalar assignment
statements, forall and where statements and !$OMP ATOMIC and !$OMP CRITICAL

directives.

• The enclosed code must not contain any user defined function calls unless the func-
tion is pure, which means it is free of side effects and has been declared with the
keyword elemental.

• Variables, which are referenced or modified inside the scope of the !$OMP WORKSHARE/!$OMP
END WORKSHARE directive-pair, must have the SHARED attribute; otherwise, the results
are unspecified.

The scope of the !$OMP WORKSHARE directive is limited to the lexical extent of the
directive-pair.

2.2 Combined parallel work-sharing constructs

The combined parallel work-sharing constructs are shortcuts for specifying a parallel
region that contains only one work-sharing construct. The behavior of these directives is
identical to that of explicitly specifying an !$OMP PARALLEL/!$OMP END PARALLEL directive-
pair enclosing a single work-sharing construct.

The reason of existence of these shortcuts is to give the OpenMP-implementation a
way of reducing the overhead cost associated to both OpenMP directive-pairs, when they
appear together.
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2.2.1 !$OMP PARALLEL DO/!$OMP END PARALLEL DO

This directive-pair provides a shortcut form for specifying a parallel region that contains
a single !$OMP DO/!$OMP END DO directive-pair. Its syntaxis is as follows:

!$OMP PARALLEL DO clause1 clause2 ...

...

!$OMP END PARALLEL DO

where the clauses that can be specified are those accepted by either the !$OMP PARALLEL

directive or the !$OMP DO directive.

2.2.2 !$OMP PARALLEL SECTIONS/!$OMP END PARALLEL SECTIONS

This directive-pair provides a shortcut form for specifying a parallel region that contains
a single !$OMP SECTIONS/!$OMP END SECTIONS directive-pair. The syntaxis to be used is
the following one:

!$OMP PARALLEL SECTIONS clause1 clause2 ...

...

!$OMP END PARALLEL SECTIONS

where the clauses that can be specified are those accepted by either the !$OMP PARALLEL

directive or the !$OMP SECTIONS directive.

2.2.3 !$OMP PARALLEL WORKSHARE/!$OMP END PARALLEL WORKSHARE

This directive-pair provides a shortcut form for specifying a parallel region that con-
tains a single !$OMP WORKSHARE/!$OMP END WORKSHARE directive-pair. The syntaxis looks
as follows:

!$OMP PARALLEL WORKSHARE clause1 clause2 ...

...

!$OMP END PARALLEL WORKSHARE

where the clauses that can be specified are those accepted by the !$OMP PARALLEL

directive, since the !$OMP WORKSHARE directive does not accept any clause.
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2.3 Synchronization constructs

In certain cases it is not possible to leave each thread on its own and it is necessary to bring
them back to an order. This is generally achieved through synchronizations of the threads.
These synchronizations can be explicit, like the ones introduced in the present section,
or implied to previously presented OpenMP directives. In both cases the functionality
is the same and it is convenient to read the present section in order to understand the
implications derived from the use or not use of the implied synchronizations.

2.3.1 !$OMP MASTER/!$OMP END MASTER

The code enclosed inside this directive-pair is executed only by the master thread of the
team. Meanwhile, all the other threads continue with their work: no implied synchroniza-
tion exists in the !$OMP END MASTER closing-directive. The syntaxis of the directive-pair
is as follows:

!$OMP MASTER

...

!$OMP END MASTER

In essence, this directive-pair is similar to using the !$OMP SINGLE/!$OMP END SINGLE

directive-pair presented before together with the NOWAIT clause, only that the thread to
execute the block of code is forced to be the master one instead of the first arriving one.

As in previous OpenMP directives, it is necessary that the block of code enclosed
inside the directive-pair is structured, which means that no branching into or out of the
block is allowed. A simple example of use would be:

!$OMP MASTER
write(*,*) "Hello"

!$OMP END MASTER

This example is also shown in a graphical way in figure 2.4, where threads 1 till Np

do not wait for the master thread at the closing-directive !$OMP END MASTER; instead,
they continue with their execution while the master thread executes the lines enclosed in
the directive-pair !$OMP MASTER/!$OMP END MASTER. After the closing-directive, the master
thread is behind the other threads in its duty.

2.3.2 !$OMP CRITICAL/!$OMP END CRITICAL

This directive-pair restricts the access to the enclosed code to only one thread at a time. In
this way it is ensured, that what is done in the enclosed code is done correctly. Examples
of application of this directive-pair could be to read an input from the keyboard/file or to
update the value of a shared variable. The syntaxis of the directive-pair is the following
one:
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Figure 2.4: Graphical representation of the example explaining the working principle of the
!$OMP MASTER/!$OMP END MASTER directive-pair.

!$OMP CRITICAL name

...

!$OMP END CRITICAL name

where the optional name argument identifies the critical section. Although it is not
mandatory, it is strongly recommended to give a name to each critical section.

When a thread reaches the beginning of a critical section, it waits there until no other
thread is executing the code in the critical section. Different critical sections using the
same name are treated as one common critical section, which means that only one thread
at a time is inside them. Moreover, all unnamed critical sections are considered as one
common critical section. This is the reason why it is recommended to give names to the
critical sections.

A simple example of use of the present directive-pair, which is also represented graph-
ically in figure 2.5, would be:

!$OMP CRITICAL write_file
write(1,*) data

!$OMP END CRITICAL write_file

What is shown in figure 2.5 is that thread 0 has to wait until thread Np has left the
CRITICAL region. Before thread Np, thread 1 was inside the CRITICAL region while thread
Np was waiting.
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parallel region

thread 0 thread 1 thread Np

...
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Figure 2.5: Graphical representation of the example explaining the working principle of the
!$OMP CRITICAL/!$OMP END CRITICAL directive-pair.

2.3.3 !$OMP BARRIER

This directive represents an explicit synchronization between the different threads in the
team. When encountered, each thread waits until all the other threads have reached this
point. Its syntaxis is very simple:

!$OMP BARRIER

Two restrictions need to be taken into account when using this explicit synchroniza-
tion:

• The !$OMP BARRIER directive must be encountered by all threads in a team or by
none at all. Several situations may not fulfill this condition. For example:

!$OMP CRITICAL
!$OMP BARRIER

!$OMP END CRITICAL

Since only one thread at a time is executing the content of the CRITICAL region, it is
impossible for the other threads to reach the explicit synchronization. The result is
that the program reaches a state without exit. This situation is called a deadlock
and it is necessary to avoid it.

Other examples, where also a deadlock happens, could be:
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!$OMP SINGLE
!$OMP BARRIER

!$OMP END SINGLE

!$OMP MASTER
!$OMP BARRIER

!$OMP END MASTER

!$OMP SECTIONS
!$OMP SECTION

!$OMP BARRIER
!$OMP SECTION

...
...
!$OMP END SECTIONS

These examples are quite obvious, but there are situations in which a deadlock may
happen and which are not so clear, for example if the explicit synchronization is
placed inside a do-loop or an if-construct. An example of the latter would be:

if(my_thread_ID < 5) then
!$OMP BARRIER

endif

In this example, if the total number of threads is smaller than five, then nothing
happens. But if the number of threads is larger than five, then there are threads
which are not reaching the synchronization, leading to a deadlock. The presented
logical statement of the if-construct is simple, but more complex ones, involving
results obtained by each thread, are feasible and of possible practical interest.

• The !$OMP BARRIER directive must be encountered in the same order by all threads
in a team.

The use of this directive should be restricted to cases, where it is really necessary to
synchronize all the threads, since it represents a waste of resources due to the idle being of
the waiting threads. Therefore, it is convenient to analyze the source code of the program
in order to see, if there is any way to avoid the synchronization. This remark also applies
to all the other explicit or implied synchronizations in OpenMP.

In figure 2.6 the effect of placing an !$OMP BARRIER directive on a team of threads is
represented. To see is that thread 1 has to wait at the explicit synchronization until
all the other threads reach the same point. Thread 0 will also need to wait at the
synchronization, since thread Np is behind. Finally, once all the threads have reached
the explicit synchronization, execution of the following code starts.
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Figure 2.6: Graphical representation of the effect of the !$OMP BARRIER directive on a team of
threads.

2.3.4 !$OMP ATOMIC

When a variable in use can be modified from all threads in a team, it is necessary to
ensure that only one thread at a time is writing/updating the memory location of the
considered variable, otherwise unpredictable results will occur. In the following example

!$OMP DO
do i = 1, 1000

a = a + i
enddo

!$OMP END DO

the desired result would be that a contains the sum of all values of the do-loop vari-
able i, but this will not be the case. The present directive targets to ensure that a
specific memory location is updated atomically, rather than exposing it to the possibility
of multiple, simultaneously writing threads. Its syntaxis is very simple:

!$OMP ATOMIC

This directive only affects the immediately following statement. Not all possible state-
ments are allowed, since most cannot be treated in an atomic way. Only the following
ones can be used together with the !$OMP ATOMIC directive:
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x = x operator expr

x = intrinsic_procedure(x, expr_list)

where again not all existing operators and intrinsic procedures are allowed, only:

operator = +, *, -, /, .AND., .OR., .EQV. or .NEQV.

intrincic_procedure = MAX, MIN, IAND, IOR or IEOR

The variable x, affected by the !$OMP ATOMIC directive, must be of scalar nature and
of intrinsic type. Obviously, the expression expr must also be a scalar expression.

All these limitations (and a few more appearing in the following explanations) are
necessary to ensure, that the statement can be treated in an atomic way and that this is
done in an efficient manner. Later on, a few additional words are going to be said about
the latter aspect.

Only the load and store of the variable x are atomic. This means that the evaluation
of expr can take place simultaneously in all threads. This feature, which leads to faster
executing codes, limits the nature of expr, since it cannot make use of the value of x!

It is possible to emulate the effect of the !$OMP ATOMIC directive using the !$OMP

CRITICAL/!$OMP END CRITICAL directive-pair as follows:

xtmp = expr
!$OMP CRITICAL x
x = x operator xtmp

!$OMP END CRITICAL x

The reason for existence of the present directive is to allow optimizations beyond
those possible with the !$OMP CRITICAL/!$OMP END CRITICAL directive-pair. It is left to
the OpenMP-implementation to exploit this. Therefore, the gain achieved by using the
!$OMP ATOMIC directive will be OpenMP-implementation dependent.

2.3.5 !$OMP FLUSH

This directive, whether explicit or implied, identifies a sequence point at which the im-
plementation is required to ensure that each thread in the team has a consistent view of
certain variables in memory: the same correct value has to be seen by all threads. This di-
rective must appear at the precise point in the code at which the data synchronization
is required.

At a first glance it seems that this directive is not necessary, since in general the
writing/updating of shared variables has been done in such a way, that only one thread
at a time is allowed to do that. But this is only true in theory, because what the OpenMP-
implementation does to simulate the ”one thread at a time” feature is not specified by
the OpenMP specification. This is not a fault, moreover it is a door left open to the
OpenMP-implementations so that they can try to optimize the resulting code. As an
example of this, in the following do-loop
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!$OMP DO
do i = 1, 10000

!$OMP ATOMIC
A = A + i

enddo
!$OMP END DO

the access to the variable A is treated atomically 10000 times, which is not efficient,
since only one thread at a time is working for 10000 times. An alternative formulation of
the previous do-loop could be:

Atmp = 0

!$OMP DO
do i = 1, 1000

Atmp = Atmp + i
enddo

!$OMP END DO

!$OMP ATOMIC
A = A + Atmp

where Atmp is a temporary variable local to each thread. In this case the variable A is
accessed atomically only Np times, where Np is the number of threads in the team. This
new version of the do-loop is much more efficient that the first one.

The same idea, but most probably done in a different way, could be exploited by the
compilers to optimize the use of the !$OMP ATOMIC directive. But in this optimized version
the variable A has not the correct value until the end. This may lead to errors, if not taken
into account.

The present directive is meant precisely to force the update of shared variables in
order to ensure the correct working of the following code. OpenMP-implementations must
ensure that their compilers introduce additional code to restore values from registers to
memory, for example, or to flush write buffers in certain hardware devices.

Another case, in which the present directive is also of importance, is when different
threads are working on different parts of a shared array. At a given point it may be
necessary to use information from parts affected by different threads. In such a case it
is necessary to ensure, that all the write/update processes have been performed before
reading from the array. This consistent view is achieved with the !$OMP FLUSH directive.

The format of the directive, which ensures the updating of all variables, is as follows:

!$OMP FLUSH

Since ensuring the consistent view of variables can be costly due to the transfer of
information between different memory locations, it may not be interesting to update all
the shared variables at a given point: the !$OMP FLUSH directive offers the possibility of
including a list with the names of the variables to be flushed:

!$OMP FLUSH (variable1, variable2, ...)
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These expressions represent explicit data synchronizations which can be introduced by
the user at specific points in the code. But there are also implied data synchronizations
associated to most of the previously presented OpenMP directives:

• !$OMP BARRIER

• !$OMP CRITICAL and !$OMP END CRITICAL

• !$OMP END DO

• !$OMP END SECTIONS

• !$OMP END SINGLE

• !$OMP END WORKSHARE

• !$OMP ORDERED and !$OMP END ORDERED

• !$OMP PARALLEL and !$OMP END PARALLEL

• !$OMP PARALLEL DO and !$OMP END PARALLEL DO

• !$OMP PARALLEL SECTIONS and !$OMP END PARALLEL SECTIONS

• !$OMP PARALLEL WORKSHARE and !$OMP END PARALLEL WORKSHARE

It should be noted that the data synchronization is not implied by the following
directives:

• !$OMP DO

• !$OMP MASTER and !$OMP END MASTER

• !$OMP SECTIONS

• !$OMP SINGLE

• !$OMP WORKSHARE

A very important remark is that implied data synchronizations are sup-
pressed, when the NOWAIT clause has been added to the corresponding closing-
directive to eliminate the implied thread synchronization!
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2.3.6 !$OMP ORDERED/!$OMP END ORDERED

In certain do-loops some of the statements executed at each iteration need to be evaluated
in the same order as if the do-loop would be executed sequentially. For example:

do i = 1, 100
A(i) = 2 * A(i-1)

enddo

In this do-loop it is necessary to have computed iteration 59 before being able of
computing correctly iteration 60, for instance. In such a situation a parallel treatment of
the entire do-loop is not possible! The following more general case

do i = 1, 100
block1

block2

block3
enddo

in which block2 needs to be evaluated in the correct order while the other two blocks
can be executed in any order, is going to be target. One possible solution to this problem
could be to split the do-loop into three do-loops and to parallelize only the first and the
last one. Another option is to use the present directive-pair to indicate to the compiler
the part of the code that needs to be executed sequentially. The result would be:

!$OMP DO ORDERED
do i = 1, 100
block1

!$OMP ORDERED
block2

!$OMP END ORDERED

block3
enddo
!$OMP END DO

where it is mandatory to add the ORDERED clause to the !$OMP DO opening-directive (see
page 52 for further information regarding the ORDERED clause). The sequence in which the
different blocks of code are executed, for the case of having a team with three threads, is
shown graphically in figure 2.7.

The !$OMP ORDERED/!$OMP END ORDERED directive-pair only makes sense inside the dy-
namic extent of parallelized do-loops. On one hand the directive-pair allows only one
thread at a time inside its scope and on the other hand it allows the entrance of the
threads only following the order of the loop iterations: no thread can enter the ORDERED

section until it is guaranteed that all previous iterations have been completed.
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Figure 2.7: Graphical representation of the sequence of execution of the example explaining
the working principle of the !$OMP ORDERED/!$OMP END ORDERED directive-pair.

In essence, this directive-pair is similar to the !$OMP CRITICAL/!$OMP END CRITICAL

directive-pair, but without the implied synchronization in the closing-directive and where
the order of entrance is specified by the sequence condition of the loop iterations.

Despite the typical restrictions, like for example the necessity of the enclosed code
to be a structured block, it is also necessary to take into account, that only one ORDERED

section is allowed to be executed by each iteration inside a parallelized do-loop. Therefore,
the following example would not be valid:

!$OMP DO ORDERED
do i = 1, 1000

...

!$OMP ORDERED
...
!$OMP END ORDERED

...

!$OMP ORDERED
...
!$OMP END ORDERED

...
enddo
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!$OMP END DO

Even though, it is possible to have a do-loop with different ORDERED sections, if and
only if only one of these sections is seen by each iteration. For example:

!$OMP DO ORDERED
do i = 1, 1000

...

if(i < 10) then
!$OMP ORDERED
write(4,*) i

!$OMP END ORDERED
else
!$OMP ORDERED
write(3,*) i

!$OMP END ORDERED
endif

...
enddo

!$OMP END DO

2.4 Data environment constructs

The last set of OpenMP directives is meant for controlling the data environment during
the execution in parallel. Two different kinds of data environment constructs can be
found:

• Those which are independent of other OpenMP constructs.

• Those which are associated to an OpenMP construct and which affect only that
OpenMP construct and its lexical extend (also known as data scope attribute
clauses).

The formers are going to be described in the present section, while the latters are
explained in chapter 3 due to their extend and importance. Also the remaining clauses,
which are not data environment constructs, are going to be presented in chapter 3, leading
to a unified view of all OpenMP clauses.

2.4.1 !$OMP THREADPRIVATE (list)

Sometimes it is of interest to have global variables, but with values which are specific
for each thread. An example could be a variable called my ID which stores the thread
identification number of each thread: this number will be different for each thread, but it
would be useful that its value is accessible from everywhere inside each thread and that
its value does not change from one parallel region to the next.
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The present OpenMP directive is meant for defining such variables by assigning the
THREADPRIVATE attribute to the variables included in the associated list. An example
would be:

!$OMP THREADPRIVATE(a, b)

which means that a and b will be local to each thread, but global inside it. The
variables to be included in list must be common blocks7 or named variables. The named
variables, if not declared in the scope of a Fortran 95 module, must have the save attribute
set.

The !$OMP THREADPRIVATE directive needs to be placed just after the declarations of
the variables and before the main part of the software unit, like in the following example:

real(8), save :: A(100), B
integer, save :: C

!$OMP THREADPRIVATE(A, B, C)

When the program enters the first parallel region, a private copy of each variable
marked as THREADPRIVATE is created for each thread. Initially, these copies have an unde-
fined value, unless a COPYIN clause has been specified at the opening-directive of the first
parallel region (further information on the COPYIN clause can be found on page 42).

On entry to a subsequent parallel region, if the dynamic thread adjustment mechanism
has been disabled, the status and value of all THREADPRIVATE variables will be the same
as at the end of the previous parallel region, unless a COPYIN clause is added to the
opening-directive.

An example showing an application of the present OpenMP directive would be:

integer, save :: a
!$OMP THREADPRIVATE(a)

!$OMP PARALLEL
a = OMP_get_thread_num()

!$OMP END PARALLEL

!$OMP PARALLEL
...

!$OMP END PARALLEL

In this example the variable a gets assigned the thread identification number of each
thread during the first parallel region8. In the second parallel region, the variable a

keeps the values assigned to it in the first parallel region, since it is THREADPRIVATE. This
example is shown graphically in figure 2.8, where the dotted lines represent the effect of
the THREADPRIVATE attribute.

7Although common blocks are still part of the Fortran 95 standard, they have been marked as obsoles-
cent and therefore should no longer be used when developing new programs. An improved functionality
can be achieved using Fortran 95 modules instead. This is the reason why no further reference to the use
of common blocks will be given in the present explanation of the !$OMP THREADPRIVATE directive.

8The run-time routine OMP get thread num, explained later on, returns the ID number of each
thread inside the team.
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Figure 2.8: Graphical representation of the example explaining the working principle of the
!$OMP THREADPRIVATE clause.
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Any variable which has the THREADPRIVATE attribute set can only appear in the clauses
COPYIN and COPYPRIVATE.



36 2. OpenMP constructs



Chapter 3

PRIVATE, SHARED & Co.

In many of the previously presented OpenMP directives it is possible to modify their way
of working by adding so called clauses. Two different kinds of clauses can be identified.
The first kind, called data scope attribute clauses, specify how each variable is handled
and who is allowed to see its value and to change it. The second kind includes all the
clauses which do not fit into the first kind.

Not all of the following data scope attribute clauses are allowed by all directives, but
the clauses that are valid on a particular directive are indicated in the previous descriptions
of the directives.

Although most of the examples presented in the following descriptions make use of the
directive-pair !$OMP PARALLEL/!$OMP END PARALLEL, this does not mean that their use is
only restricted to that directive-pair, but most of the concepts are easier to understand
with it than with other directive-pairs.

3.1 Data scope attribute clauses

3.1.1 PRIVATE(list)

Sometimes certain variables are going to have different values in each thread. This is only
possible if and only if each thread has its own copy of the variable. This clause fixes which
variables are going to be considered as local variables to each thread. For example

!$OMP PARALLEL PRIVATE(a, b)

says, that the variables a and b will have different values in each thread: they will be
local to each thread.

When a variable is said to be private, a new object of the same type is declared once
for each thread in the team and used by each thread inside the scope of the directive-pair
(in the previous example inside the parallel region) instead of the original variable. This
idea is shown in figure 3.1 in a graphical way.

Variables declared as private have an undefined value at the beginning of the scope
of the directive-pair, since they have just been created. Also when the scope of the

37
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Figure 3.1: Graphical representation of the effect of the PRIVATE clause on the variables a and
b of the presented example.

directive-pair finishes, the original variable will have an undefined value (which value
from the available ones should it have!?).

The fact, that a new object is created for each thread can be a very resource consuming
thing: for example, if a 5Gb array (a common size for direct numerical simulations or
complex chemically reacting flow applications) is specified to be private in a parallel
region with 10 threads, then the total memory requirement will be of 55Gb1, an amount
of storage not available on all SMP machines!

Variables that are used as counters for do-loops, forall commands or implicit do-loops
or are specified to be THREADPRIVATE become automatically private to each thread, even
though they are not explicitly included inside a PRIVATE clause at the beginning of the
scope of the directive-pair.

3.1.2 SHARED(list)

In contrast to the previous situation, sometimes there are variables which should be
available to all threads inside the scope of a directive-pair, because their values are needed
by all threads or because all threads have to update their values. For example

!$OMP PARALLEL SHARED(c, d)

says that the variables c and d are seen by all threads inside the scope of the !$OMP

PARALLEL/!$OMP END PARALLEL directive-pair. This example is shown in figure 3.2 in a
graphical way.

When a variable is said to be shared, nothing happens to it: no new memory is
reserved and its value before the starting-directive is conserved. This means that all

1Although it is allowed that one thread reuses the original memory location of the original variable,
this is something not required by the OpenMP standard and it is left open to the developers of each
OpenMP implementation to do it or not.
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Figure 3.2: Graphical representation of the effect of the SHARED clause on the variables c and
d of the presented example.

threads access to the same memory location for reading from/writing to the variable.
Therefore, declaring a variable as SHARED does not consume any additional resources.

That each thread in the team access the same memory location for a shared variable
does not guarantee that the threads are immediately aware of changes made to the variable
by another thread; an OpenMP implementation may store the new values of shared
variables in temporary variables and perform the update later on. It is possible to force
the update of the shared variables by using the directive !$OMP FLUSH.

Further more, since more than one thread can write exactly in the same memory
location at the same time, the result of the multiple write processes is clearly undefined.
This so called racing condition has always to be avoided and it is left to the programmer
to do that. One possible solution is to force the writing process to be atomically, for
example using the !$OMP ATOMIC directive.

3.1.3 DEFAULT( PRIVATE | SHARED | NONE )

When most of the variables used inside the scope of a directive-pair are going to be
private/shared, then it would be cumbersome to include all of them in one of the previous
clauses. To avoid this, it is possible to specify what OpenMP has to do, when nothing is
said about a specific variable: it is possible to specify a default setting. For example

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(a)

says that all variables excluding a are going to be private, while a is going to be shared
by all threads inside the scope of the parallel region. If no DEFAULT clause is specified, the
default behavior is the same as if DEFAULT(SHARED) were specified. Again, this example is
shown in figure 3.3.

Additionally to the two options PRIVATE and SHARED there is a third one: NONE. Speci-
fying DEFAULT(NONE) requires that each variable used inside the scope of the directive has
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Figure 3.3: Graphical representation of the effect of the DEFAULT clause on the variables of the
presented example.

to be explicitly listed in a data scope attribute clause at the beginning of the scope of the
directive-pair, unless the variable is THREADPRIVATE or is the counter for a do-loop, forall
command or implicit do-loop.

The effect of the DEFAULT clause is limited to the lexical extend of the directive-pair.
This means that variables declared in procedures called from the lexical extend are not
affected and will have the PRIVATE attribute.

3.1.4 FIRSTPRIVATE(list)

As already mentioned before, private variables have an undefined value at the beginning
of the scope of a directive-pair. But sometimes it is of interest that these local variables
have the value of the original variable before the starting-directive. This is achieved by
including the variable in a FIRSTPRIVATE clause as follows:

a = 2
b = 1

!$OMP PARALLEL PRIVATE(a) FIRSTPRIVATE(b)

In this example, variable a has an undefined value at the beginning of the parallel
region, while b has the value specified in the preceding serial region, namely b = 1. This
example is represented in figure 3.4.

When a variable is included in a FIRSTPRIVATE clause at the beginning of the scope of
a directive-pair, it automatically gets the PRIVATE status for that directive-pair and does
not have to be included again in an explicit PRIVATE clause.

Since the information stored in the original variable needs to be transferred to the new
private copies of it, to declare a variable as FIRSTPRIVATE can be a very costly operation
from the computational time point of view. Considering again the case of the 5Gb array
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Figure 3.4: Graphical representation of the example given in the description of the
FIRSTPRIVATE clause.

and the parallel region with 10 threads, if the array would be declared as FIRSTPRIVATE,
then 50Gb of information would need to be moved from one memory location to another,
which is a very costly operation.

3.1.5 LASTPRIVATE(list)

A variable declared as private at the beginning of the scope of a directive-pair will have
an undefined value at the end of it. This is sometimes not convenient. By including a
variable in a LASTPRIVATE clause, the original variable will be updated by the ”last” value
it gets inside the scope of the directive-pair, if this directive-pair would be executed in
serial mode. For example:

!$OMP DO PRIVATE(i) LASTPRIVATE(a)
do i = 1, 1000

a = i
enddo

!$OMP END DO

After the finishing of the scope of the !$OMP DO/!$OMP END DO directive-pair, the vari-
able a will be equal to 1000, which is the value it would have, if the OpenMP directive
would not exist. Another example would be using the !$OMP SECTIONS directive:

!$OMP SECTIONS LASTPRIVATE(a)
!$OMP SECTION
a = 1

!$OMP SECTION
a = 2

!$OMP END SECTIONS
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In this case the thread that executes the lexically last SECTION updates the original
variable a, leading to a = 2.

If the last iteration in the do-loop, or the lexically last SECTION, is not setting a value to
the variable specified in the LASTPRIVATE clause, then the variable will have an undefined
value after the scope of the directive-pair, like in the following example:

!$OMP SECTIONS LASTPRIVATE(a)
!$OMP SECTION
a = 1

!$OMP SECTION
a = 2

!$OMP SECTION
b = 3

!$OMP END SECTIONS

The process of updating the original variable by the ”last” value assigned inside the
scope of the directive-pair takes place at the synchronization between the different threads
implied in the closing-directive. Therefore, if this implied synchronization is non-existent
(because of the nature of the closing-directive or because it has been forced by a NOWAIT

clause), then the value of the variable will be undefined until an implied or explicit syn-
chronization is found. In this way it is ensured that the thread executing the sequentially
last iteration has computed the final value of that variable.

Since information is transferred from one memory location to another, to include
a variable inside a LASTPRIVATE clause can be very time consuming, if the size of the
variable is large. In contrast to the previous FIRSTPRIVATE clause, in the present case
only an amount of information equal to the size of the variable is moved, therefore not
depending on the number of threads existing in the parallel region.

3.1.6 COPYIN(list)

When a variable has been declared as THREADPRIVATE, its value in each thread can be
set equal to the value in the master thread by using the present clause. The following
example shows its use:

!$OMP THREADPRIVATE(a)

!$OMP PARALLEL
a = OMP_get_thread_num()

!$OMP END PARALLEL

!$OMP PARALLEL
...

!$OMP END PARALLEL

!$OMP PARALLEL COPYIN(a)
...

!$OMP END PARALLEL
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In this example the variable a gets assigned the thread identification number of each
thread during the first parallel region2. In the second parallel region, the variable a keeps
the values assigned to it in the first parallel region, since it is THREADPRIVATE. But in the
third parallel region, its COPYIN clause sets the value of a to zero in all threads, which is
the value of a in the master thread. In figure 3.5 this example is shown graphically.

The idea behind this clause is similar to FIRSTPRIVATE with the difference that it
applies to THREADPRIVATE variables instead to PRIVATE variables.

The computational cost associated to the use of the COPYIN clause will be similar as
for the use of the FIRSTPRIVATE clause, since the information stored in a variable needs to
be transferred to all its private copies in the threads.

3.1.7 COPYPRIVATE(list)

After a single thread inside a parallel region has executed a set of instructions enclosed
inside an !$OMP SINGLE/!$OMP END SINGLE directive-pair, it is possible to broadcast the
value of a private variable to the other threads in the team. For example in

!$OMP SINGLE
read(1,*) a

!$OMP END SINGLE COPYPRIVATE(a)

one thread reads the value of a from a file and, thereafter, updates the private copies
of the same variable in all the other threads by using the COPYPRIVATE clause.

The effect of the COPYPRIVATE clause on the variables in its list occurs after the execu-
tion of the code enclosed within the !$OMP SINGLE/!$OMP END SINGLE directive-pair, and
before any thread in the team has left the implied barrier in the closing-directive.

Since it is not allowed by the OpenMP specification to use a COPYPRIVATE and a NOWAIT

clause simultaneously in the same !$OMP END SINGLE closing-directive, the update of the
private variables in the list of COPYPRIVATE is always ensured after the closing-directive.

The presented COPYPRIVATE clause can only be used together with the !$OMP END

SINGLE closing-directive.

3.1.8 REDUCTION(operator:list)

When a variable has been declared as SHARED because all threads need to modify its value,
it is necessary to ensure that only one thread at a time is writing/updating the memory
location of the considered variable, otherwise unpredictable results will occur. In the
following example

!$OMP DO
do i = 1, 1000

a = a + i
enddo

!$OMP END DO

2The run-time routine OMP get thread num, explained later on, returns the ID number of each
thread inside the team.
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Figure 3.5: Graphical representation of the example given in the description of the COPYIN

clause.
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the desired result would be that a contains the sum of all values of the do-loop variable
i, but this will not be the case. By using the clause REDUCTION it is possible to solve this
problem, since only one thread at a time is allowed to update the value of a, ensuring that
the final result will be the correct one. In some sense the REDUCTION clause has the same
aim as the !$OMP ATOMIC and !$OMP CRITICAL directives, but done in a different way.

The previous example would then look as follows:

!$OMP DO REDUCTION(+:a)
do i = 1, 1000

a = a + i
enddo

!$OMP END DO

The syntax of the REDUCTION clause associates an operator to a list of variables so that
each time, inside the scope of the directive-pair, the operator appears together with one
of the variables of its associated list, the previously mentioned mechanism of protecting
the writing/updating process is used.

This mechanism of protecting the writing/updating process is defined as follows: a
private copy of each variable in list is created for each thread as if the PRIVATE clause
had been used; the resulting private copies are initialized following the rules shown in
table 3.1; at the end of the REDUCTION, the shared variable is updated to reflect the result
of combining the initialized value of the shared reduction variable with the final value of
each of the private copies using the specified operator.

This approach of defining the protecting mechanism minimizes the number of times in
which the writing/updating process of the original variable is “really” protected, since it
will be only equal to the number of threads inside the parallel region and will not depend
on the specific computations performed inside the parallel region. On the other hand,
an overhead in computational time and resources will be generated due to the need of
creating private copies of the variables and initialize them following the rules given in
table 3.1.

Since the original shared variable is only updated at the end of the REDUCTION process,
its value remains undefined until that point: the end of the REDUCTION process is linked
to the synchronization step between the different threads implied normally in the closing-
directive. If this implied synchronization is non-existent, then the value of the REDUCTION

variable will be undefined until an implied or explicit synchronization is found.
If a variable is included inside a REDUCTION clause, it is not possible for the OpenMP

implementation to guarantee a bit-identical result from one parallel run to another, since
the intermediate values of the REDUCTION variables may be combined in random order.
The REDUCTION clause is intended to be used only for statements involving the operators
and variables in one of the following ways:

x = x operator expr

x = intrinsic_procedure(x, expr_list)

where only the following operators and intrinsic procedures are allowed:
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Operator/Intrinsic Initialization

+ 0
∗ 1
- 0
.AND. .TRUE.
.OR. .FALSE.
.EQV. .TRUE.
.NEQV. .FALSE.
MAX smallest representable number
MIN largest representable number
IAND all bits on
IOR 0
IEOR 0

Table 3.1: Initialization rules for variables included in REDUCTION clauses.

operator = +, *, -, .AND., .OR., .EQV. or .NEQV.

intrincic_procedure = MAX, MIN, IAND, IOR or IEOR

The variable x, affected by the REDUCTION clause, must be of scalar nature and of
intrinsic type. Even though, x may be the scalar entry in an array which is not of
deferred shape or assumed size. If this is the case, the computational overhead due to the
creation and initialization of the private copies of the variables can be very large if x is a
large array.

Obviously, the expression expr must also be a scalar expression that does not make use
of the value of x, since this magnitude is only known at the end of the REDUCTION process.
Also, although it seems that the intrinsic procedures do not fulfill this condition, this is
not true, since only procedures of associative nature are allowed in the REDUCTION clause.

In an opening-directive it is possible to specify any number of REDUCTION clauses, but
a variable can appear only once in these REDUCTION clauses.

3.2 Other clauses

Additionally to the previously presented data scope attribute clauses, a few more clauses
are available, which are presented in the following subsections.

3.2.1 IF(scalar logical expression)

Maybe it is not always interesting to run certain source code lines in parallel, for example
if the computational cost of creating and closing the parallel region exceeds the possible
gain achieved by running the source code lines in parallel. In the following example

!$OMP PARALLEL IF(N > 1000)
!$OMP DO
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do i = 1, N
...

enddo
!$OMP END DO
!$OMP END PARALLEL

the do-loop is executed in parallel only, if the number of iterations is greater than
1000, otherwise the do-loop is executed in a serial fashion.

3.2.2 NUM THREADS(scalar integer expression)

For certain parallel running source code lines it could be desirable to use a fixed number
of threads, for example, if a certain set of tasks has been defined using an !$OMP SECTIONS

directive. The use of the clause would look as follows:

!$OMP PARALLEL NUM_THREADS(4)

where four threads are requested for the specific parallel region.

When a NUM THREADS clause is used at the beginning of a parallel region, it overwrites
any settings imposed by the environmental variable OMP NUM THREADS or by a call to the
run-time library subroutine OMP set num threads3. The specified number of threads only
affects the present parallel region and not the future ones.

3.2.3 NOWAIT

Under certain circumstances it is not necessary that all threads finish a given parallel
executed task at the same time, because the following operations are not depending on
what has been done before. In such cases it is possible to avoid the implied synchronization
present in many OpenMP directives by adding the NOWAIT clause to their closing-directive.
In the following example

!$OMP PARALLEL
!$OMP DO
do i = 1, 1000

a = i
enddo

!$OMP END DO NOWAIT
!$OMP DO
do i = 1, 1000

b = i
enddo

!$OMP END DO
!$OMP END PARALLEL

3The run-time routine OMP set num threads, explained later on, allows to specify the number of
threads to be used in the following parallel regions.
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it is not necessary to wait at the end of the first parallel do-loop for all the threads
to finish, since the second do-loop has nothing in common with the first one. Therefore,
a NOWAIT clause is added at the end of the first !$OMP END DO closing-directive. In this
way it is possible to speed up the computations, since a costly synchronization has been
eliminated.

But it is necessary to use the NOWAIT clause with care, since a wrong use of it can
leed to unexpected results without previous notice during the development phase of the
program. The programmer should also be aware of the fact that using the NOWAIT clause
also suppresses the implied data synchronizations.

3.2.4 SCHEDULE(type, chunk)

When a do-loop is parallelized and its iterations distributed over the different threads, the
most simple way of doing this is by giving to each thread the same number of iterations.
But this is not always the best choice, since the computational cost of the iterations may
not be equal for all of them. Therefore, different ways of distributing the iterations exist.
The present clause is meant to allow the programmer to specify the scheduling for each
do-loop using the following syntaxis:

!$OMP DO SCHEDULE(type, chunk)

The SCHEDULE clause accepts two parameters. The first one, type, specifies the way
in which the work is distributed over the threads. The second one, chunk, is an optional
parameter specifying the size of the work given to each thread: its precise meaning depends
on the type of scheduling used.

Four different options of scheduling exist, which are:

STATIC :when this option is specified, the pieces of work created from the iteration space
of the do-loop are distributed over the threads in the team following the order of
their thread identification number. This assignment of work is done at the beginning
of the do-loop and stays fixed during its execution.

By default, the number of pieces of work is equal to the number of threads in the
team and all pieces are approximately equal in size. The junction of all these pieces
is equal to the complete iteration space of the do-loop.

If the optional parameter chunk is specified, the size of the pieces is fixed to that
amount. In order to correctly distribute the total work from the iteration space, one
piece of work is allowed to have a different size than chunk. The resulting pieces of
work are distributed to the threads in a round-robin fashion.

To clarify the ideas, the following example with three threads is considered:

!$OMP DO SCHEDULE(STATIC, chunk)
do i = 1, 600
...

enddo
!$OMP END DO
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The 600 iterations are going to be distributed in different ways by changing the
value of chunk. The results are shown graphically in figure 3.6, where each block
represents a piece of work and the number inside it the thread identification number
processing the piece of work.
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Figure 3.6: Graphical representation of the example explaining the general working principle
of the SCHEDULE(STATIC,chunk) clause for different values of the optional parameter chunk.

In the first case, chunk = 150, four blocks of work are needed to cover the complete
iteration space. Since the total number of iterations is exactly four times the value
of chunk, all blocks are exactly equal in size. To distribute the different blocks
among the existing threads, a round-robin procedure is used leading to the presented
distribution. The resulting parallel running code is not very efficient, since thread
0 is going to work while all the other threads are waiting in an idle state.

In the second case, chunk = 250, the number of blocks equals the number of threads,
which is something good. But this time the sizes of the blocks are not equal, since
the total number of iterations is not an exact multiply of chunk. Even though, this
value of the optional parameter leads to a faster code than in the previous case,
because the latency times are smaller4.

In the third case, chunk = 300, the number of blocks is smaller than the number of
available threads. This means that thread 2 is not going to work for the present
do-loop. The resulting efficiency is worse than in the previous case and equal to the
first case.

In the last case, which corresponds to do not specify the optional parameter chunk,
OpenMP creates a number of blocks equal to the number of available threads and
with equal block sizes. In general this option leads to the best performance, if all
iterations require the same computational time. This remark also applies to the
previous cases and explanations.

4In the first case the fact, that thread 0 needs to compute in total 300 iterations, leads to a slower
code than in the second case, where the maximum number of iterations to compute by one thread is 250.
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DYNAMIC : in the previous scheduling method the problem of non homogeneous iterations
has been pointed out. In such a situation it turns out to be difficult to forecast
the optimal distribution of the iterations among the threads. A solution would be
to assign the different blocks of work in a dynamic way: as one thread finishes its
piece of work, it gets a new one. This idea is precisely what lies behind the present
scheduling method.

When SCHEDULE(DYNAMIC,chunk) is specified, the iteration space is divided into
pieces of work with a size equal to chunk. If this optional parameter is not given,
then a size equal to one iteration is considered. Thereafter, each thread gets one of
these pieces of work. When they have finished with their task, they get assigned a
new one until no pieces of work are left.

The best way to understand the working principle of this scheduling method is by
means of an example. In the top part of figure 3.7 12 different pieces of work are
shown. The length of each of these blocks represents the amount of computational
time required to compute them. These pieces of work are going to be distributed
over a team of three threads. The resulting execution schema is shown in the bottom
part of figure 3.7. Clearly to see is that each thread gets a new piece or work when
it finishes the previous one.

GUIDED : the previous dynamic method enhances the capabilities and performance with
respect to the static method, but it adds an overhead in computational cost due to
the handling and distributing of the different iteration packages. This overhead is
reduced as the size of the pieces of work increases, but then a larger non-equilibrium
between the different threads is to expect.

Another dynamic approach to this problem could be to have pieces of work with
decreasing sizes, so that their associated work is smaller and smaller as they are
assigned to the different threads. The decreasing law is of exponential nature so
that the following pieces of work have half the number of iterations as the previous
ones. This is what the present scheduling method does.

The optional parameter chunk specifies the smallest number of iterations grouped
into one piece of work. As before, the last piece of work may have a smaller number
of iterations than specified in chunk in order to cover completely the iteration space.
The number of pieces of work with equal size and the largest size in use are OpenMP-
implementation dependent.

In figure 3.8 an example of the resulting pieces of work is shown. The associated
do-loop has the following form:

!$OMP DO SCHEDULE(GUIDED,256)
do i = 1, 10230
...

enddo
!$OMP END DO
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Figure 3.7: Graphical representation of the example explaining the working principle of the
SCHEDULE(DYNAMIC,chunk) clause.
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Figure 3.8: Graphical representation of the effect of the SCHEDULE(GUIDED,chunk) clause on a
do-loop with 10230 iterations and with chunk = 256.

To see in figure 3.8 is that the last piece of work is smaller than the value specified
in chunk. This is necessary in order to fulfill the total number of iterations of the
do-loop, namely 10230.

Once the pieces of work have been created, the way in which they are distributed
among the available threads is the same as in the previous scheduling method
DYNAMIC.

RUNTIME : Any of the previous three scheduling methods needs to be fixed at the time of
compiling the source code. But it may be of interest to be able to modify during
runtime the way in which the work is distributed among the threads. This can be
achieved by specifying the RUNTIME scheduling method:

!$OMP DO SCHEDULE(RUNTIME)

If this is done, then the content of the environment variable OMP SCHEDULE speci-
fies the scheduling method to be used. More information about the OMP SCHEDULE

environment variable can be found on page 70.

3.2.5 ORDERED

When a do-loop includes statements, which need to be executed sequentially, like in the
following example:

do i = 1, 1000
A(i) = 2 * A(i-1)

enddo
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and the !$OMP ORDERED/!$OMP END ORDERED directive-pair is used to allow the paral-
lelization of the do-loop, then it is mandatory to add the ORDERED clause to the !$OMP DO

opening-directive to warn the compiler about the existence of the ORDERED section. The
previous example would look as follows:

!$OMP DO ORDERED
do i = 1, 1000

!$OMP ORDERED
A(i) = 2 * A(i-1)

!$OMP END ORDERED
enddo

!$OMP END DO
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Chapter 4

The OpenMP run-time library

In some of the examples presented in previous chapters it has been mentioned the existence
of a run-time library. It is the aim of the present chapter to introduce the so called
OpenMP Fortran API run-time library, describe the subroutines and functions it
includes and to explain its capabilities as well as its limitations.

The OpenMP run-time library is meant to serve as a control and query tool for the
parallel execution environment, which the programmer can use from inside its program.
Therefore, the run-time library is a set of external procedures with clearly defined inter-
faces. These interfaces are explicitly delivered by the OpenMP-implementation through
a Fortran 95 module named omp lib. In the following descriptions of the different rou-
tines, interfaces for them are shown: these may vary from one OpenMP-implementation
to another in the precision/size of the variables, but in essence will be all equal.

4.1 Execution environment routines

The following functions and subroutines, part of the OpenMP Fortran API run-time
library, allow to modify, from inside of a program, the conditions of the run-time environ-
ment that controls the parallel execution of the program:

4.1.1 OMP set num threads

This subroutine sets the number of threads to be used by subsequent parallel regions.
Therefore, it can only be called from outside of a parallel region. Its interface declaration
looks as follows:

subroutine OMP_set_num_threads(number_of_threads)
integer(kind = OMP_integer_kind), intent(in) :: number_of_threads
end subroutine OMP_set_num_threads

where number of threads is the number of threads to be set. If dynamic adjustment is
disabled, the value of number of threads is used as the number of threads for all subsequent
parallel regions prior to the next call to this subroutine; otherwise, if dynamic adjustment
is enabled, number of threads is the maximum number of threads that is allowed.

55
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The number of threads imposed by a call to this subroutine has always precedence
over the value specified in the OMP NUM THREADS environment variable.

4.1.2 OMP get num threads

This function allows to know the number of threads currently in the team executing
the parallel region from which it is called. Therefore, this function is meant to be used
from inside a parallel region; although when called from a serial region or from inside
a serialized nested parallel region, it returns the correct result, namely 1 thread. Its
interface declaration is:

function OMP_get_num_threads()
integer(kind = OMP_integer_kind) :: OMP_get_num_threads
end function OMP_get_num_threads

where the returned value will be the number of threads in use.

4.1.3 OMP get max threads

This function returns the maximum number of threads that can be used in the program.
Its result may differ from the one returned by the function OMP get num threads, if the
dynamic adjustment of threads is enabled; otherwise, the results will be equal. Its interface
declaration is equivalent to the one of the function OMP get num threads:

function OMP_get_max_threads()
integer(kind = OMP_integer_kind) :: OMP_get_max_threads
end function OMP_get_max_threads

where the returned value is the maximum allowed number of threads. Since the
returned value has nothing to do with the actual number of threads used in a given
parallel region, this function can be called from serial regions as well as from parallel
regions.

4.1.4 OMP get thread num

This function returns the identification number of the current thread within the team.
The identification numbers are between 0, the master thread, and OMP get num threads()

- 1, inclusive. The interface of this function is:

function OMP_get_thread_num()
integer(kind = OMP_integer_kind) :: OMP_get_thread_num
end function OMP_get_thread_num

This function returns 0, when called from inside a serial region or a serialized nested
parallel region, which is the identification number of the lonely master thread.
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4.1.5 OMP get num procs

This function returns the number of processors available to the program. Its interface
declaration is as follows:

function OMP_get_num_procs()
integer(kind = OMP_integer_kind) :: OMP_get_num_procs
end function OMP_get_num_procs

4.1.6 OMP in parallel

This function allows to know, if a given region of the program is being computed in parallel
or not. For that purpose, it looks at all the parallel regions which are surrounding the
block of source code enclosing the call to OMP in parallel and returns .TRUE., if at least
one of them is being executed in parallel; otherwise, it returns .FALSE.. The interface
declaration of this function is the following one:

function OMP_in_parallel()
logical(kind = OMP_logical_kind) :: OMP_in_parallel
end function OMP_in_parallel

Since the returned value will be .TRUE. as soon as one of the enclosing parallel regions is
being executed in parallel, this function returns .TRUE. from any point inside the dynamic
extent of that parallel region, even inside nested serialized parallel regions (which are not
considered as being executed in parallel!).

4.1.7 OMP set dynamic

The OMP set dynamic subroutine enables or disables dynamic adjustment of the number
of threads available for execution of parallel regions. Its interface is:

subroutine OMP_set_dynamic(enable)
logical(kind = OMP_logical_kind), intent(in) :: enable
end subroutine OMP_set_dynamic

When enable is set equal to .TRUE., the number of threads to be used by subsequent
parallel regions can be adjusted automatically by the run-time environment in order to
maximize the use of the SMP machine; otherwise, if enable is equal to .FALSE., the
dynamic adjustment is disabled.

As a consequence, the number of threads specified through the environment variable
OMP NUM THREADS or by a call to the run-time library subroutine OMP set num threads rep-
resents the maximum allowed number of threads which can be assigned to the program
by the run-time environment.

The working conditions specified in a call to OMP set dynamic have precedence over
the settings in the OMP DYNAMIC environment variable.

The default for dynamic thread adjustment is OpenMP-implementation dependent,
therefore a program needing a specific number of threads to run correctly should explicitly
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disable the dynamic adjustment feature in order to be sure. Also implementations are not
required to support dynamic adjustment, but they have at least to implement the present
interface for portability reasons.

4.1.8 OMP get dynamic

This function returns the status of the dynamic thread adjustment mechanism: it will re-
turn .TRUE., if it is enabled, and .FALSE., if it is disabled. If the OpenMP-implementation
does not implement dynamic thread adjustment, this function always returns .FALSE..
The interface declaration for this function is the following one:

function OMP_get_dynamic()
logical(kind = OMP_logical_kind) :: OMP_get_dynamic
end function OMP_get_dynamic

4.1.9 OMP set nested

This subroutine enables or disables the nested parallelism. Its interface declaration is:

subroutine OMP_set_nested(enable)
logical(kind = OMP_logical_kind), intent(in) :: enable
end subroutine OMP_set_nested

When enable is set equal to .TRUE., nested parallelism is enabled, while if it is equal
to .FALSE., it is disabled. The default setting is always .FALSE., which means that, by
default, nested parallel regions are serialized; that is, they are executed by a team with
only one thread.

The number of threads used to execute nested parallel regions is OpenMP-implemen-
tation dependent. As a result, OpenMP-compliant implementations are allowed to seri-
alize nested parallel regions even when nested parallelism is enabled.

A call to this subroutine overwrites the settings specified by the environment variable
OMP NESTED for the following nested parallel regions.

4.1.10 OMP get nested

This function returns the status of the nested parallelism mechanism: it will return .TRUE.,
if it is enabled, and .FALSE., if it is disabled. If the OpenMP-implementation does not
support nested parallelism, this function always returns .FALSE.. The interface declara-
tion for this function looks as follows:

function OMP_get_nested()
logical(kind = OMP_logical_kind) :: OMP_get_nested
end function OMP_get_nested
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4.2 Lock routines

The second group of subroutines and functions deal with so called locks. These locks
represent another synchronization mechanism different from the previously presented
OpenMP directives like !$OMP ATOMIC or !$OMP CRITICAL.

A lock has to be seen as a flag which can be set or unset. Each thread may look at the
status of the flag and handle in one way or the other depending on the status. Generally,
a thread that looks at an unset flag will set it in order to get some privileges and to warn
about that to the rest of the threads. The thread who sets a given lock is said to be
the ownership of the lock. Once the thread no longer needs the acquired privileges, it
unsets the lock: it releases the ownership.

The main difference between the previously presented synchronization directives and
the locks is that in the latter case the threads are not obliged to respect the lock. This
means that a given thread will not be affected by the status of the lock, if the thread is
not taking care about the status of the lock. Although this seems to be a useless feature,
it turns out to be extremely useful and also very flexible.

To show a possible application of the locks, consider the existence of a shared matrix
A(1:100,1:100) and a parallel region with four threads. Each of the threads needs to
modify values in the complete matrix A, but the order does not matter. In order to avoid
race conditions, the following solution could be adopted:

!$OMP PARALLEL SHARED(A)

!$OMP CRITICAL
... !works on the matrix A

!$OMP END CRITICAL

!$OMP END PARALLEL

In this example the full matrix A is given to one of the threads while the others are
waiting. This is clearly not a good option. Instead, the matrix could be divided into four
blocks, namely A1 = A(1:50,1:50), A2 = A(51:100,1:50), A3 = A(1:50,51:100) and A4

= A(51:100,51:100). Each of the threads is going to change values on all four blocks, but
now it seems feasible that each thread gets one of the blocks, thereafter another of the
blocks and so on. In this way racing conditions are avoided while allowing all the four
threads to work on the matrix A.

This splitting of the synchronization can be achieved by using locks, while there is no
means of doing the same using the previously presented OpenMP directives.

The natural sequence of using locks and the corresponding run-time library routines
is the following one:

1. First, a lock and its associated lock variable (used as identification mechanism inside
the program) need to be initialized.

2. Thereafter, a thread gets the ownership of a specified lock.

3. Meanwhile, all the threads potentially affected by the lock look at its state.



60 4. The OpenMP run-time library

4. Once it has finished its work, it releases the ownership so that another thread can
fetch it.

5. Finally, once the lock is no longer needed, it is necessary to eliminate it and its
associated lock variable.

Two different types of locks exist:

simple locks : these locks cannot be locked if they are already in a locked state.

nestable locks : these locks may be locked multiple times by the same thread before
being unlocked. They have associated a nesting counter which keeps track of the
number of times a nestable lock has been locked and released.

Each run-time library routine, which works with locks, has two different versions: one
which acts on simple locks and another which acts on nestable locks. It is not allowed to
call one kind of routines with the type of variable of the other kind!

The run-time library routines needed to handle locks are described in the following
subsections.

4.2.1 OMP init lock and OMP init nest lock

These subroutines initialize a lock: a simple one and a nestable one, respectively. It is
necessary to make a call to one of these subroutines before any other of the following
routines can be used. Their interface declarations are:

subroutine OMP_init_lock(svar)
integer(kind = OMP_lock_kind), intent(out) :: svar
end subroutine OMP_init_lock

subroutine OMP_init_nest_lock(nvar)
integer(kind = OMP_nest_lock_kind), intent(out) :: nvar
end subroutine OMP_init_nest_lock

where the passed argument, called lock variable, is associated with a lock. Once a
lock variable has been initialized, it can be used in subsequent calls to routines to refer
to the specified lock. If the lock variable is nestable, its nesting counter is set to zero.

It is not allowed to call these subroutines using a lock variable that has already been
associated to a lock, although it is not specified how an OpenMP-implementation has to
react in such a case.

4.2.2 OMP set lock and OMP set nest lock

When a thread wants to own a specific lock, it calls one of these subroutines. If the
specified lock is not owned by another thread, then it gets the ownership of that lock. If
the specified lock is already owned by another thread, then it has to wait until the other
thread releases its ownership over the lock. The interface declarations of these subroutines
are as follows:
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subroutine OMP_set_lock(svar)
integer(kind = OMP_lock_kind), intent(inout) :: svar
end subroutine OMP_set_lock

subroutine OMP_set_nest_lock(nvar)
integer(kind = OMP_nest_lock_kind), intent(inout) :: nvar
end subroutine OMP_set_nest_lock

A simple lock will be available if it is unlocked, while a nestable lock is available if it
is unlocked or if it is already owned by the thread executing the subroutine. In the latter
case, the nesting counter of a nestable lock variable is incremented by one when it is set.

4.2.3 OMP unset lock and OMP unset nest lock

These subroutines provide the means of releasing the ownership of a lock. Their interface
declaration is:

subroutine OMP_unset_lock(svar)
integer(kind = OMP_lock_kind), intent(inout) :: svar
end subroutine OMP_unset_lock

subroutine OMP_unset_nest_lock(nvar)
integer(kind = OMP_nest_lock_kind), intent(inout) :: nvar
end subroutine OMP_unset_nest_lock

In the first case, a call to the subroutine releases the calling thread from the ownership
of the simple lock associated to the corresponding lock variable svar, while in the second
case the call to the subroutine decreases by one the nesting counter of nvar and only
releases the calling thread, if the counter reaches zero.

To call these subroutines only makes sense, if the calling thread owns the corresponding
lock; the behaviour is unspecified if the calling thread does not own the lock!

4.2.4 OMP test lock and OMP test nest lock

These functions attempt to set a lock in the same way as the subroutines OMP set lock and
OMP set nest lock do, but they do not force the calling thread to wait until the specified
lock is available. Their interface declarations are the following ones:

function OMP_test_lock(svar)
logical(kind = OMP_logical_kind) :: OMP_test_lock
integer(kind = OMP_lock_kind), intent(inout) :: svar
end function OMP_test_lock

function OMP_test_nest_lock(nvar)
integer(kind = OMP_integer_kind) :: OMP_test_nest_lock
integer(kind = OMP_nest_lock_kind), intent(inout) :: nvar
end function OMP_test_nest_lock
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The OMP test lock function returns .TRUE. if the simple lock associated with svar is
successfully set; otherwise it returns .FALSE..

The OMP test nest lock function returns the new value of the nesting counter if the
nestable lock associated with nvar is successfully set; otherwise it returns zero.

4.2.5 OMP destroy lock and OMP destroy nest lock

Once a lock is no longer needed, it is necessary to uninitialize the corresponding lock
variable. The present subroutines are meant for that. Their interface declarations are:

subroutine OMP_destroy_lock(svar)
integer(kind = OMP_lock_kind), intent(inout) :: svar
end subroutine OMP_destroy_lock

subroutine OMP_destroy_nest_lock(nvar)
integer(kind = OMP_nest_lock_kind), intent(inout) :: nvar
end subroutine OMP_destroy_nest_lock

4.2.6 Examples

To show the use of these subroutines and functions, the following example is given:

program Main
use omp_lib
implicit none

integer(kind = OMP_lock_kind) :: lck
integer(kind = OMP_integer_kind) :: ID

call OMP_init_lock(lck)

!$OMP PARALLEL SHARED(LCK) PRIVATE(ID)
ID = OMP_get_thread_num()

call OMP_set_lock(lck)
write(*,*) "My thread is ", ID
call OMP_unset_lock(lck)

!$OMP END PARALLEL

call OMP_destroy_lock(lck)

end program Main

In this example the first thing done, is the association of the lock variable lck with
a simple lock, using OMP init lock. Once inside the parallel region, the threads ask for
the ownership of the lock lck with the aid of a call to OMP set lock. The write to screen
command following this call is only executed by the thread which owns the lock. Once
the work is done, the lock is released with the call to OMP unset lock so that another
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thread can perform the write process. Finally, since the lock is no longer needed after
the parallel region, it is eliminated with the aid of OMP destroy lock.

The previous example could also have been implemented using the OpenMP directive
!$OMP CRITICAL:

program Main
use omp_lib
implicit none

integer(kind = OMP_integer_kind) :: ID

!$OMP PARALLEL SHARED(LCK) PRIVATE(ID)
ID = OMP_get_thread_num()

!$OMP CRITICAL
write(*,*) "My thread is ", ID

!$OMP END CRITICAL

!$OMP END PARALLEL

end program Main

Looking at the previous example, the question rises about the necessity or use of the
run-time lock routines, if OpenMP directives are able of doing the same. Additionally to
the previously mentioned example with the matrix A, there are other cases where it is not
possible to emulate the effect of the lock routines using OpenMP directives. For example:

program Main
use omp_lib
implicit none

integer(kind = OMP_lock_kind) :: lck
integer(kind = OMP_integer_kind) :: ID

call OMP_init_lock(lck)

!$OMP PARALLEL SHARED(LCK) PRIVATE(ID)
ID = OMP_get_thread_num()

do while(.not.OMP_test_lock(lck))
... !work to do while the thread is waiting to get owner of the lock

enddo

... !work to do as the owner of the lock

!$OMP END PARALLEL

call OMP_destroy_lock(lck)

end program Main



64 4. The OpenMP run-time library

In this example all the other threads, which do not own the lock, are not idle; instead,
they are performing another task. This is something not possible to achieve using OpenMP
directives. For certain problems, this possibility can be very useful, since the latency times
due to synchronizations are filled in with work.

In the previous two examples simple locks are used. Nestable locks are useful when a
subroutine needing them may be called from different locations inside a program. Then,
it is not necessary to worry about who is calling. For example:

module data_types
use omp_lib, only: OMP_nest_lock_kind
implicit none

type number
integer :: n
integer(OMP_nest_lock_kind) :: lck

end type number

end module data_types
!---------------------------------------------------------!
program Main
use omp_lib
use data_types
implicit none

type(number) :: x

x%n = 0
call OMP_init_lock(x%lck)

!$OMP PARALLEL SECTIONS SHARED(x)
!$OMP SECTION
call add(x,20)

!$OMP SECTION
call substract(x,10)

!$OMP END PARALLEL

call OMP_destroy_lock(lck)

end program Main
!---------------------------------------------------------!
subroutine add(x,d)
use omp_lib
use data_types
implicit none
type(number) :: x
integer :: d

call OMP_set_nest_lock(x%lck)
x%n = x%n + d
call OMP_unset_nest_lock(x%lck)

end subroutine add
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!---------------------------------------------------------!
subroutine substract(x,d)
use omp_lib
use data_types
implicit none
type(number) :: x
integer :: d

call OMP_set_nest_lock(x%lck)
call add(x,-d)
call OMP_unset_nest_lock(x%lck)

end subroutine substract

The subroutine add is called once by each thread. In both calls the updating of the
variable x is correctly done, since a lock is allowing the access to only one thread at a
time. The reason why substract is imposing the lock relays on the fact that substract

is not obliged to know what the subroutine add internally does.

4.3 Timing routines

The last set of routines in the OpenMP Fortran API run-time library allows to measure
absolute values of wallclock times with the idea to serve as an evaluation tool for programs.

4.3.1 OMP get wtime

This function returns the absolute wallclock time in seconds. By two calls to this function,
it is possible to measure the time required to compute the commands enclosed between
the two calls, like in the following example:

start = OMP_get_wtime()
... !work to be timed
end = OMP_get_wtime()
time = end - start

The interface declaration for this function is:

function OMP_get_wtime()
real(8) :: OMP_get_wtime
end function OMP_get_wtime

The times returned by this function are ”per-thread times” by which is meant they are
not required to be globally consistent across all the threads participating in a program.
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4.3.2 OMP get wtick

This function returns the number of seconds between successive clock ticks. Its interface
declaration is:

function OMP_get_wtick()
real(8) :: OMP_get_wtick
end function OMP_get_wtick

4.4 The Fortran 90 module omp lib

The previously presented subroutines and functions have clearly defined interfaces which
need to be known by the calling program in order to call them correctly. This is achieved
through a Fortran 90 module called omp lib which has to be supplied by the OpenMP-
implementation. Even though, the following source code shows the content and aspect
such a module should at least have1:

module omp_lib
implicit none

!Defines standard variable precisions of the OpenMP-implementation
integer, parameter :: OMP_integer_kind = 4
integer, parameter :: OMP_logical_kind = 4
integer, parameter :: OMP_lock_kind = 8
integer, parameter :: OMP_nest_lock_kind = 8

!Defines the OpenMP version: OpenMP Fortran API v2.0
integer, parameter :: openmp_version = 200011

!Gives the explicit interface for each routine of the run-time library
interface
subroutine OMP_set_num_threads(number_of_threads)
integer(kind = OMP_integer_kind), intent(in) :: number_of_threads
end subroutine OMP_set_num_threads

function OMP_get_num_threads()
integer(kind = OMP_integer_kind) :: OMP_get_num_threads
end function OMP_get_num_threads

function OMP_get_max_threads()
integer(kind = OMP_integer_kind) :: OMP_get_max_threads
end function OMP_get_max_threads

function OMP_get_thread_num()
integer(kind = OMP_integer_kind) :: OMP_get_thread_num
end function OMP_get_thread_num

1The presented source code will not work with many Fortran 90 compilers, because they do not
allow the use of parameter constants inside interface declarations. To solve this, it is necessary to
substitute manually the values of these constants into the declarations.
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function OMP_get_num_procs()
integer(kind = OMP_integer_kind) :: OMP_get_num_procs
end function OMP_get_num_procs

function OMP_in_parallel()
logical(kind = OMP_logical_kind) :: OMP_in_parallel
end function OMP_in_parallel

subroutine OMP_set_dynamic(enable)
logical(kind = OMP_logical_kind), intent(in) :: enable
end subroutine OMP_set_dynamic

function OMP_get_dynamic()
logical(kind = OMP_logical_kind) :: OMP_get_dynamic
end function OMP_get_dynamic

subroutine OMP_set_nested(enable)
logical(kind = OMP_logical_kind), intent(in) :: enable
end subroutine OMP_set_nested

function OMP_get_nested()
logical(kind = OMP_logical_kind) :: OMP_get_nested
end function OMP_get_nested

subroutine OMP_init_lock(var)
integer(kind = OMP_lock_kind), intent(out) :: var
end subroutine OMP_init_lock

subroutine OMP_init_nest_lock(var)
integer(kind = OMP_nest_lock_kind), intent(out) :: var
end subroutine OMP_init_nest_lock

subroutine OMP_destroy_lock(var)
integer(kind = OMP_lock_kind), intent(inout) :: var
end subroutine OMP_destroy_lock

subroutine OMP_destroy_nest_lock(var)
integer(kind = OMP_nest_lock_kind), intent(inout) :: var
end subroutine OMP_destroy_nest_lock

subroutine OMP_set_lock(var)
integer(kind = OMP_lock_kind), intent(inout) :: var
end subroutine OMP_set_lock

subroutine OMP_set_nest_lock(var)
integer(kind = OMP_nest_lock_kind), intent(inout) :: var
end subroutine OMP_set_nest_lock

subroutine OMP_unset_lock(var)
integer(kind = OMP_lock_kind), intent(inout) :: var
end subroutine OMP_unset_lock

subroutine OMP_unset_nest_lock(var)
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integer(kind = OMP_nest_lock_kind), intent(inout) :: var
end subroutine OMP_unset_nest_lock

function OMP_test_lock(var)
logical(kind = OMP_logical_kind) :: OMP_test_lock
integer(kind = OMP_lock_kind), intent(inout) :: var
end function OMP_test_lock

function OMP_test_nest_lock(var)
integer(kind = OMP_integer_kind) :: OMP_test_nest_lock
integer(kind = OMP_nest_lock_kind), intent(inout) :: var
end function OMP_test_nest_lock

function OMP_get_wtime()
real(8) :: OMP_get_wtime
end function OMP_get_wtime

function OMP_get_wtick()
real(8) :: OMP_get_wtick
end function OMP_get_wtick

end interface

end module omp_lib



Chapter 5

The environment variables

The parallel environment, under which an OpenMP-parallel application runs, is controlled
by environment variables or equivalent platform-specific mechanisms. These variables
can be set from the command-line of the operating system or by calls to specific subrou-
tines from the OpenMP Fortran API run-time library.

The way in which these environment variables are set from within the command-
line of the operating system depends on the operating system itself. For example, on a
Linux/Unix machine using csh as shell, the setenv command does the job:

> setenv OMP_NUM_THREADS 4

If the sh, ksh or bash shells are used, then the previous example looks as follows:

> OMP_NUM_THREADS=4
> export OMP_NUM_THREADS

In both cases it is possible to see the value of a given environment variable with the
command echo:

> echo $OMP_NUM_THREADS
4
>

From within Microsoft Windows NT/2000/XP, the environment variables can be spec-
ified through the Control Panel (User Environment Variables) or by adding the corre-
sponding lines in the AUTOEXEC.BAT file (AUTOEXEC.BAT Environment variables). In
both cases the syntax is very simple:

OMP_NUM_THREADS = 4

The names of the environment variables must always be written in uppercase, while
the characters assigned to them are case insensitive and may have leading or trailing white
spaces.

In the rest of the present chapter the different environment variables are described,
giving their possible values and effects on the behavior of an OpenMP-parallel program:

69
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5.1 OMP NUM THREADS

This environment variable specifies the number of threads to be used during execution of
the parallel regions inside an OpenMP-parallel program.

In principle, any integer number greater than 0 can be set as the number of threads to
be used, although if this number is larger than the number of available physical processors,
then the parallel running program will in general be very slow !

When dynamic adjustment of the number of threads is enabled, the value given in
OMP NUM THREADS represents the maximum number of threads allowed.

Examples showing the syntaxis corresponding to Linux/Unix systems using the csh
and bash shells are, respectively:

> setenv OMP_NUM_THREADS 16

> OMP_NUM_THREADS=16
> export OMP_NUM_THREADS

5.2 OMP SCHEDULE

This environment variable affects the way in which !$OMP DO and !$OMP PARALLEL DO

directives work, if they have their scheduling set to RUNTIME:

!$OMP DO SCHEDULE(RUNTIME)

The schedule type and chunk size for all such loops can be specified at run time
by setting this environment variable to any of the recognized schedule types and to an
optional chunk size, using the same notation as inside the SCHEDULE clause. The possible
schedule types are STATIC, DYNAMIC or GUIDED: descriptions of them can be found in the
explanation of the !$OMP DO directive.

The default value for the OMP SCHEDULE environment variable is OpenMP-implemen-
tation dependent, so it is necessary to look at its documentation in order to know that.

If the optional chunk size is not set, a chunk size of 1 is assumed, except in the case of
a STATIC schedule, where the default chunk size is set equal to the total number of do-loop
iterations divided by the number of threads which act on the parallelized do-loop.

Examples showing the syntaxis corresponding to Linux/Unix systems using the csh
and bash shells are, respectively:

> setenv OMP_SCHEDULE "GUIDED,4"

> OMP_SCHEDULE=dynamic
> export OMP_SCHEDULE
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5.3 OMP DYNAMIC

In large SMP machines it is common that several different programs share the available
resources of the machine. Under such conditions it can happen that fixing the number of
threads to be used inside the parallel regions of a program may lead to unefficient use of
the resources.

Therefore, it is possible to enable the run-time environment of the SMP machine to
adjust the number of threads dynamically, in order to maximize the use of the machine.
This is done through the present environment variable which can be set equal to TRUE, if
dynamic assignment is allowed, or equal to FALSE, if a fixed number of threads are to be
used.

The default value for the OMP DYNAMIC environment variable is OpenMP-implemen-
tation dependent, so it is necessary to look at its documentation in order to know that.

Examples showing the syntaxis corresponding to Linux/Unix systems using the csh
and bash shells are, respectively:

> setenv OMP_DYNAMIC TRUE

> OMP_DYNAMIC=FALSE
> export OMP_DYNAMIC

5.4 OMP NESTED

This environment variable specifies what the run-time environment has to do, when nested
OpenMP directives are found.

If its value is set equal to TRUE, nested parallelism is enabled and a new set of threads
forming a new team is created to work on the nested directive. The result is a tree
structure as shown in figure 1.2, for the case of using two threads at each level of nesting.

If the environment variable OMP NESTED is set equal to FALSE, then the nested directives
are serialized; that is, they are executed by a team with only one thread.

Examples showing the syntaxis corresponding to Linux/Unix systems using the csh
and bash shells are, respectively:

> setenv OMP_NESTED TRUE

> OMP_NESTED=FALSE
> export OMP_NESTED


