
Performance Analysis of GPU-accelerated OpenMP
Applications using HPCToolkit

John Mellor-Crummey

Rice University

August 25, 2023

OpenMP Users Monthly Telecon

1

Outline
• Introduction to HPCToolkit

– Overview of HPCToolkit components and their workflow

– HPCToolkit's graphical user interfaces

• Analyzing the performance of GPU-accelerated codes with HPCToolkit

– GAMESS

– GEM

• Status

• Ongoing work

2

Rice University’s HPCToolkit Performance Tools
Measure and analyze performance of CPU and GPU-accelerated applications

• Easy: profile unmodified application binaries

• Fast: low-overhead measurement

• Informative: understand where an application spends its time and why

– call path profiles associate metrics with application source code contexts

– optional hierarchical traces to understand execution dynamics

• Broad audience

– application developers

– framework developers

– runtime and tool developers

3

HPCToolkit’s Workflow for CPU Applications

4

HPCToolkit’s Workflow for GPU-accelerated Applications

5

HPCToolkit’s Workflow for GPU-accelerated Applications

6

Step	1:

• Ensure	that	compilers	record	line	mappings	

• host	compiler/hipcc:	-g

• nvcc:	-lineinfo	

HPCToolkit’s Workflow for GPU-accelerated Applications

7

Step	2:

• hpcrun	collects	call	path	profiles	(and	

optionally,	traces)	of	events	of	interest

Call Stack Unwinding to Attribute Costs in Context

Call path sample

instruction pointer

return address

return address

return address

Calling context tree

• Unwind when timer or hardware counter overflows

– measurement overhead proportional to sampling frequency rather than call frequency

• Unwind to capture context for events such as GPU kernel launches

8

hpcrun: Measure CPU and/or GPU activity
• GPU profiling

– hpcrun -e gpu=xxx <app> ….

• GPU instrumentation (Intel GPU only)

– hpcrun -e gpu=level0,inst=count,latency <app>

• GPU PC sampling (NVIDIA GPU only)

– hpcrun -e gpu=nvidia,pc <app>

• CPU and GPU Tracing (in addition to profiling)

– hpcrun -e CPUTIME -e gpu=xxx -t <app>

•Use hpcrun with job launchers

– jsrun -n 32 -g 1 -a 1 hpcrun -e gpu=xxx <app>
– srun -n 1 -G 1 hpcrun -e gpu=xxx <app>
– aprun -n 16 -N 8 -d 8 hpcrun -e gpu=xxx <app>

9

 xxx ∈ {nvidia,amd,opencl,level0}

HPCToolkit’s Workflow for GPU-accelerated Applications

10

Step	3:

• hpcstruct	recovers	program	structure	

about	lines,	loops,	and	inlined	functions

hpcstruct: Analyze CPU and GPU Binaries Using Multiple Threads
• Usage

hpcstruct [--gpucfg yes] <measurement-directory>

• What it does

• Recover program structure information

• Files, functions, inlined templates or functions, loops, source lines

• In parallel, analyze all CPU and GPU binaries that were measured by HPCToolkit

⏤default: use size(CPU set)/2 threads

⏤analyze large application binaries with 16 threads

⏤analyze multiple small application binaries concurrently with 2 threads each

• Cache binary analysis results for reuse when analyzing other executions

11

NOTE: --gpucfg yes needed only for analysis of GPU binaries for interpreting PC samples on NVIDIA GPUs

HPCToolkit’s Workflow for GPU-accelerated Applications

12

Step	4:

• hpcprof/hpcprof-mpi	combines	

profiles	from	multiple	threads	and	
correlate	metrics	to	static	&	dynamic	
program	structure

hpcprof/hpcprof-mpi: Associate Measurements with Program Structure

• Analyze data from modest executions with multithreading

hpcprof <measurement-directory>

• Analyze data from large executions with distributed-memory parallelism + multithreading

jsrun -n 2 -a 1 -c 22 -b packed hpcprof-mpi <measurement-directory>

srun -N 2 -n 2 -c 126 hpcprof-mpi <measurement-directory>

13

HPCToolkit’s Workflow for GPU-accelerated Applications

14

Step	4:

• hpcviewer	-	interactively	explore	

profile	and	traces	for	GPU-accelerated	
applications

Code-centric Analysis with hpcviewer
• Profiling compresses out the temporal dimension

– Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

– N times per second, take a call path sample of each thread

– Organize the samples for each thread along a time line

– View how the execution evolves left to right

– What do we view? assign each procedure a color; view a depth slice of an execution

15

• function calls in full context

• inlined procedures

• inlined templates

• outlined OpenMP loops

• loops

source pane

navigation pane metric pane

view control

metric display

Understanding Temporal Behavior
• Profiling compresses out the temporal dimension

– Temporal patterns, e.g. serial sections and dynamic load imbalance are invisible in profiles

• What can we do? Trace call path samples

– N times per second, take a call path sample of each thread

– Organize the samples for each thread along a time line

– View how the execution evolves left to right

– What do we view? assign each procedure a color; view a depth slice of an execution

16

Time

Processes

Call

stack

Time-centric Analysis with hpcviewer

17

M
PI

 ra
nk

s,
O

pe
nM

P
Th

re
ad

s,
 G

PU
 s

tr
ea

m
s

Time

The color at a particular point in a
timeline indicates the CPU procedure
or GPU kernel active at that time at
the selected call stack depth

Depth view showing the history of calling contexts for the thread/GPU stream with the cursor

Call stack pane
shows full calling
context for the
cursor

Minimap indicates part of
execution trace shownA multi-level call stack based view of execution over time

hpcstruct Example: Analyze 7.7GB TensorFlow library (170MB text) in 77s

18

Case Studies
• GAMESS - an ab initio quantum chemistry package: Fortran + MPI + OpenMP offloading

• GEM - a gyrokinetic turbulence code that simulates both ions and electrons

19

Case Study: GAMESS
• General Atomic and Molecular Electronic Structure System (GAMESS)

– general ab initio quantum chemistry package

• Calculates the energies, structures, and properties of a wide range of chemical systems

• Experiments

• GPU-accelerated nodes at a Perlmutter hackathon

• Single node with 4 GPUs

• Five nodes with 20 GPUs

20

Perlmutter node at a glance

AMD Milan CPU

4 NVIDIA A100 GPUs

256 GB memory

21

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

GAMESS original All CPU threads and GPU streams

22

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

GAMESS original All CPU threads and GPU streams

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

23GAMESS original All GPU streams, whole execution

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

24GAMESS original GPU streams: 1 iteration

GPU load imbalance due to triangular iteration spaces

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

25GAMESS original

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

26GAMESS improved All CPU threads and GPU streams

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

27
GAMESS improved All GPU streams, whole execution

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

28
GAMESS improved All GPU streams: 2 iterations

Improved GPU load balance

Time-centric Analysis: GAMESS 4 ranks, 4 GPUs on Perlmutter

29GAMESS improved

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

30
GAMESS improved CPU Threads and GPU Streams

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

31
GAMESS improved

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

32GAMESS improved with better manual distribution of work in input

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

33GAMESS improved adding Rank 0 Thread 0 to GPU streams

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

341 CPU Stream, 2 GPU Streams: 6 Iterations

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

35

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

36

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

37

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

38GAMESS improved with PC Sampling

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

39

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

40

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

41

Time-centric Analysis: GAMESS 5 nodes, 40 ranks, 20 GPUs on Perlmutter

42

Case Study: GEM (Gyrokinetic Turbulence Code)
• GEM: a comprehensive electromagnetic delta-f particle-in-cell code that includes the full

dynamics of gyrokinetic ions and drift-kinetic electrons

– Developed by University of Colorado at Boulder, part of ECP WDMApp project

• Code is written in Fortran 90 + MPI + OpenACC, with ongoing porting efforts to OpenMP target
offload (https://dl.acm.org/doi/abs/10.1007/978-3-030-97759-7_7)

• Tested platforms: Perlmutter, Crusher, and Frontier using Cray compiler

– Frontier: 16 nodes, 8 MPI ranks per node, 4 OpenMP threads per rank, 1 GPU per rank, 2

GPU streams per GPU device

43

Frontier Wall-clock

Time Speedup

Without GPU offloading 290.88s 1 (base)

Naive GPU offloading 41.80s 6.96

Optimized GPU offloading 39.52s 7.36

https://dl.acm.org/doi/abs/10.1007/978-3-030-97759-7_7

First attempt: not all parallel loops should be offloaded

44

GPU streams
OpenMP threads
Rank 0 Thread 0

Too much data
movement
between CPU
& GPU

First attempt: not all parallel loops should be offloaded

45

Procedures
test_init_pmove
and test_pmove
have high data
movement compared
to GPU computation

% GCOPY = 100 x GXCOPY / GPUOP

Use CPU threads to reduce GPU idleness

46

GPU streams

OpenMP threads

Rank 0 Thread 0

Most OpenMP
threads are idle

10.6% of GPU idle
occurs when the
main CPU thread
executes fltm_
procedure.

Parallelizing this
procedure should
reduce GPU
idleness.

Final step: parallelizing fltm_ procedure to reduce GPU idleness

47

GPU streams

OpenMP threads

Rank 0 Thread 0

HPCToolkit Status on GPUs
• NVIDIA

– heterogeneous profiles

– GPU instruction-level execution and stalls using PC sampling

– traces

• AMD

– heterogeneous profiles

– no GPU instruction-level measurements within kernels

– measure OpenMP offloading using OMPT interface

– hardware counters to measure kernels

– traces

• Intel

– heterogeneous profiles

– GPU instruction-level measurements with instrumentation; heuristic latency attribution to instructions

– measure OpenMP offloading using OMPT interface

– traces

48

Ongoing Work
• Enhancing measurement to identify root causes of scalability losses

– identify measurement of delays caused by GPU and communication

• Developing comprehensive support for NVTX/ROCTX/Caliper/Kokkos Labels

• Support for instruction-level measurement and attribution on AMD and Intel GPUs

• Improving the scalability of hpcprof-mpi

– avoid unnecessary serialization of I/O

• Developing new GUI support for analysis of remote data

• Adding a Python-based interface for analysis of performance results

– developing a Python API to support arbitrary queries and analysis of profiles and traces

– developing a tool that presents high-level performance reports

– exploring automated analysis to identify notable features in executions

• e.g. load imbalance, trace line equivalence classes

49

