

Programming Environment of Europe's flagship supercomputer, LUMI

Dr. Pekka Manninen

Director, LUMI CSC – IT Center for Science, Finland

LUMI: one of the fastest supercomputers in the world

- LUMI is an HPE Cray EX supercomputer manufactured by Hewlett Packard Enterprise
- HPL performance over 309 petaflop/s makes the system #3 in the world (Top500)
 - #3 on HPCG, #2 on HPL-MxP

High-performance computing,

Artificial intelligence,

Based on GPU technology

Data analytics

Size of two tennis courts

1 system

309

Pflop/s

Sustained performance

LUMI, the Queen of the North

LUMI is a Tier-o GPU-accelerated supercomputer that enables the convergence of high-performance computing, artificial intelligence, and high-performance data analytics.

Supplementary CPU partition, ~200,000 AMD EPYC CPU cores

Possibility for combining different resources within a single run. HPE Slingshot technology.

30 PB encrypted object storage (Ceph) for storing, sharing and staging data

3

LUMI compute node configurations

LUMI-G

2560 nodes with 4 x MI250X + 1 x AMD Trento processor, 512 GB host memory and 512 GB device memory (HBM2) 4 x 200 Gbit/s NIC Infinity Fabric

2x 64-core AMD Milan processors per node 1376 nodes with 256 GB, 128 with 512 GB and 32 with 1TB 1 x 200 Gbit/s NIC

LUMI-C

LUMI timeline

1st phase 04/2021

- LUMI-C

- storage

- Early Access

Platform

upgrade

In customer use 01/01/22

LUMI programming environment

- ROCm (Radeon Open Compute)
 - Usual set of accelerated scientific libraries (BLAS, FFT etc)
 - Usual machine learning frameworks and libraries (Tensorflow, PyTorch etc)
 - Compilers for the GPUs (AOCC)
 - Performance analysis tools
- Cray Programming Environment (CPE) stack
 - Cray Compiling Environment
 - GNU compilers
 - LibSci libraries, performance analysis tools, debuggers,...
- LUMI stack
 - Allows software installed in the user's space through EasyBuild in a way that is 100% compatible with the system stack
- More information: https://www.lumi-supercomputer.eu/may-we-introduce-lumi/

LUMI programming environment

- Traditional HPC programming models & languages supported
 - C, C++, Fortran, Python
- Parallel programming
 - MPI, OpenMP
 - PGAS (Fortran Coarrays, UPC, OpenSHMEM)
- GPU programming
 - OpenMP 5.1 offload
 - OpenACC: 3.0 for Fortran, no proper support in C/C++
 - HIP (Heterogeneous Interface for Portability)
 - hipSYCL

- Performance analysis tools
 - CrayPAT, Reveal
 - Tau
 - ROCprof
 - OmniPerf/OmniTrace
 - SCORE-P/Vampir
- Debuggers
 - ARM Forge
 - CPE debuggers (CCDB, gdb4hpc,...)
- Software installation and management
 - EasyBuild, Spack

LUMI

Preparing applications and workflows for LUMI

- Possibility of combining CPU and GPU nodes within one job perhaps only part of the application needs to be GPU-enabled
- CUDA codes needs to be converted to HIP
 - HIPify tools can automatize the effort (~25% code needs manual work)
- Recommended to port C/C++ OpenACC codes to OpenMP offload
- In case of major rewrites: Consider writing your application on top of modern frameworks and libraries
 - Kokkos, Alpaka etc, or domain-specific frameworks e.g. GridTools

