
Fortran features in OpenMP
Kelvin Li (kli@ca.ibm.com)

IBM Canada Lab

Content

• associate construct
• mapping Fortran pointers and allocatables
• runtime routines

It is not ...

• An exhaustive list
• A how-to-write-best OpenMP program in Fortran material

It is ...

• Some minor points about some Fortran specific behavior in the
OpenMP spec
• Hope that it helps in writing or porting Fortran code to OpenMP
• Get feedback and comments about the current features

Associate construct

• “The ASSOCIATE construct associates named entities with expressions or variables during
the execution of its block. These named construct entities are associating entities. The
names are associate names.”

• added in F2003
• supported in OMP4.0
• useful in associating with multiple occurrence of any complex expression in a block of

code

associate (associate-name => selector)
...

end associate

Associate construct

• “Execution of an ASSOCIATE construct causes evaluation of every expression
within every selector that is a variable designator and evaluation of every other
selector, followed by execution of its block. During execution of that block each
associate name identifies an entity which is associated with the corresponding
selector. ...” (F2018)
• can associate with an expression or a variable

associate (z => xdt%x(i) + xdt%y(i-1) + xdt%z(i+1))
... = z

...

... = z
end associate

associate (z => xdt%x(i))
... = z

z = z + const
end associate

Associate construct

Not quite the same as reference type in C++
• the binding cannot be changed within a given scope
• cannot bind to an expression

{
float &z = xdt.x[i];
... = z;

z = z + const;
}

associate (z => xdt%x(i))
... = z

z = z + const
end associate

associate (z => xdt%x(i) + xdt%y(i-1) + xdt%z(i+1))
... = z
xdt%x(i) = 1
... = z

end associate

float &z = xdt.x[i] + xdt.y[i-1] + xdt.z[i+1]; // invalid

Associate construct
What OpenMP spec says about the associate construct?
• have a predetermined data-sharing attribute:

“An associate name that may appear in a variable definition context is shared if its association
occurs outside of the construct and otherwise it has the same data-sharing attribute as the
selector with which it is associated.” (OMP5.2)

• when the association is established is important
• before encountering the OMP construct, OR
• during the execution of the OMP construct

associate (z => x)

!$omp parallel private(z) ! invalid
z = z + 1

!$omp end parallel

end associate

associate (z => x + y)

!$omp parallel private(z) ! invalid
t = z + 1

!$omp end parallel

end associate

z has the predetermined data-sharing attribute of shared
and it is not allowed to appear in any data-sharing attribute
clause.

z cannot appear in a variable definition context hence “x + y”
is not allowed to be a variable list item.

Associate construct

What OpenMP spec says about the associate construct?
• “A privatized list item may be a selector of an ASSOCIATE or SELECT TYPE construct. If

the construct association is established prior to a parallel region, the association
between the associate name and the original list item will be retained in the region.”
(OMP5.2)

A construct association is established between z and private x.
Any reference of z in the associate construct is to the private x.

!$omp parallel private(x)

associate(z => x)
z = z + 1

end associate

!$omp end parallel

!$omp parallel private(y)

associate(z => x + y)
t = z + 1

end associate

!$omp end parallel

A construct association is established between z and private x.
Any reference of z inside the associate construct is to
(x + private y).

Associate construct
How about using it in offloading?

associate (z => dt%a%x(1:5))

!$omp target map(z)
z = z + 1

!$omp end target

end associate

associate (z => dt%a%x(1) + dt%a%y(1))

!$omp target map(z) ! invalid
z = z + 1

!$omp end parallel

end associate

dt%a%x can appear in a variable definition context, it is
allowed on the map clause (mapping z is as if mapping
dt%a%x)

z is not allowed on the map clause as it cannot appear
in a variable definition context

Mapping Fortran variables

• mapping Fortran pointer and allocatable is always intriguing (or confusing)
• some behaviors are different from C/C++ due to different language characteristics
• handling pointers and allocatables usually has more stuff going on under the

hook
• an implementation usually has a descriptor (a.k.a. a dope vector) to represent the

allocatable, pointer variables and other entities – to store bounds, rank, extent, and other
necessary information

• but the base language standard does not say anything about descriptors prior to F2018
• makes the description in the spec difficult

Mapping Fortran variables

• mapping allocatable variables – the easier one!
• mapping a derived type with allocatable components - it is a

DEEP copy
• alternatives if only a few allocatable components are needed

• map components individually – map what is needed
• use declare mapper

type dt
real, allocatable :: a(:)
real, allocatable :: b(:)
...
real, allocatable :: z(:)

end type
type(dt) :: xdt

! all components are allocated
!$omp target map(xdt)

...
!$omp end target map

type dt
real, allocatable :: a(:)
real, allocatable :: b(:)
...
real, allocatable :: z(:)

end type
type(dt) :: xdt

! all components are allocated
!$omp target map(xdt%a, xdt%b)

! only xdt%a and xdt%b are needed
...

!$omp end target map

type dt
real, allocatable :: a(:)
real, allocatable :: b(:)
...
real, allocatable :: z(:)

end type
type(dt) :: xdt
!$omp declare mapper(myMap : type(dt)::t) map(t%a, t%b)

! all components are allocated
!$omp target map(mapper(myMap): xdt)

! only xdt%a and xdt%b are needed
...

!$omp end target map

Mapping Fortran variables

• be careful if you map before allocate
• “If the allocation status of an original list item that has the ALLOCATABLE attribute is

changed while a corresponding list item is present in the device data environment, the
allocation status of the corresponding list item is unspecified until the list item is again
mapped with an always modifier on entry to a target, target data or target enter data
region.”

module m
real, allocatable :: x(:)

!$omp declare target enter(x)
end module

use m
allocate(x(10))

!$omp target map(always, tofrom: x)
x(1:N) = ...

!$omp end target

!$omp target data map(x)
allocate(x(10))

!$omp target map(always, tofrom: x)
x(1:N) = ...

!$omp end target

!$om end target data

allocation occurs on the
host but not on the device

Mapping Fortran pointer

• involve at least two objects (i.e. pointer and pointer target)
• “For map clauses on map-entering constructs, if any list item has a base pointer for which a

corresponding pointer exists in the data environment upon entry to the region and either a new
list item or the corresponding pointer is created in the device data environment on entry to the
region, then:

The corresponding pointer variable is associated with a pointer target that has the same rank and
bounds as the pointer target of the original pointer, such that the corresponding list item can be
accessed through the pointer in a target region.”

real, pointer :: p(:)
real, target :: t(10)

!$omp target enter data map(t)
!$omp target map(p)

p(1::2) = ...
p(2::2) = ...

!$omp end target

Mapping Fortran pointer

• derived types with pointer components are NOT deep copy
• need to map the component individually

type dt
real, pointer :: p(:)
...

end type
type(dt) :: xdt

xdt%p => t(:)

!$omp target map(xdt)

... = associated(xdt%p) ! F
!$omp end target

type dt
real, pointer :: p(:)
...

end type
type(dt) :: xdt

xdt%p => t(:)

!$omp target map(xdt, xdt%p)

... = associated(xdt%p) ! T
!$omp end target

Fortran interface for runtime routines

• quite a few bind(c) routines

omp_target_alloc
omp_target_free
omp_target_is_present
omp_target_is_accessible
omp_target_memcpy
omp_target_memcpy_rect
omp_target_memcpy_async
omp_target_memcpy_rect_async
omp_target_associate_ptr
omp_target_disassociate_ptr
omp_get_mapped_ptr

omp_init_allocator
omp_destroy_allocator
omp_set_default_allocator
omp_get_default_allocator
omp_alloc
omp_aligned_alloc
omp_free
omp_calloc
omp_aligned_calloc
omp_realloc

Fortran interface for runtime routines

• for the bind(c) routines
• advantages

• get around some difficulties to have a Fortran entity to interop with the C counterpart (e.g.
handling void*)

• allow implementation to directly call the runtime routines (likely written in C or C++ or both)

• disadvantages
• the C interop data type used in the routines may proliferate to the other part of the program

(if portability is a concern)
• some extra steps may need to take before calling the routines

Fortran interface for runtime routines
• TKR (type, kind and rank)

• type compatible
• same kind type parameter
• matching rank

• for example, omp_target_alloc

interface
type(c_ptr) function omp_target_alloc(size, device_num) bind(c)
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t, c_int
integer(c_size_t), value :: size
integer(c_int), value :: device_num
end function

end function
!
type(c_ptr) :: cptr
integer(c_size_t) :: sz
integer :: dev

cptr = omp_target_alloc(sz, dev)

The kind type parameter of the default integer is
assumed to be the same as integer(c_int).

This call may result in incompatible interface with
some implementations.

Fortran interface for runtime routines

• TKR (type, kind and rank)
• type compatible
• same kind type parameter
• matching rank

• for example, omp_target_alloc

interface
type(c_ptr) function omp_target_alloc(size, device_num) bind(c)
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t, c_int
integer(c_size_t), value :: size
integer(c_int), value :: device_num
end function

end function
!
type(c_ptr) :: cptr
integer(c_size_t) :: sz
integer :: dev

cptr = omp_target_alloc(sz, dev)

type(c_ptr) :: cptr
integer(c_size_t) :: sz
integer :: dev
integer(c_int) :: c_dev

c_dev = dev
cptr = omp_target_alloc(sz, c_dev)

type(c_ptr) :: cptr
integer(c_size_t) :: sz
!!! integer :: dev
integer(c_int) :: c_dev

cptr = omp_target_alloc(sz, int(c_dev,kind=c_int))

Fortran interface for runtime routines

• some extra steps may need get access to things that are returned from the routine
• may need to “translate / convert” it to a Fortran entity etc.

• for example, omp_target_alloc

type(c_ptr) :: cptr
integer(c_size_t) :: sz
integer(c_int) :: dev
real :: fptr(:,:)

cptr = omp_target_alloc(sz, dev)

!$omp target is_device_ptr(cptr)
call c_f_pointer(cptr, fptr, [N,4])

do i=1,N
fptr(i,:) = ...

enddo
!$omp end target

Need to associate a Fortran data pointer with
the target of the C pointer by calling
c_f_pointer procedure.

Fortran interface for runtime routines

• using C interoperability feature to define Fortran interfaces
• does it add extra burden to users porting code to OpenMP?
• any feedback is welcome

Fortran interface for runtime routines

• some missing pieces
• not all the OMP runtime routines have Fortran interface

• OMPT and OMPD routines – probably the chance of the tooling written in
Fortran is quite low

• interoperability routines – an open issue in the language committee
• is it needed?
• any input is welcome

• some future features
• Will the F2018 interoperability features help (e.g. assumed-type
type(*), assumed-rank dimension(..) etc.)?

