
OpenMP offloaded Quantum ESPRESSO

December 1st, 2023
OpenMP Users Monthly Teleconferences

Ferrari-Ruffino Fabrizio
 CNR-IOM

Bellentani Laura
HPC - CINECA

QUANTUM ESPRESSO ON ACCELERATORS

Quantum mechanics for materials

no input parameters for material
modeling

AB INITIO QUANTUM MECHANICS

reduces costs,
accelerates discoveries

Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds, Nature
Nanotechnology 13, 246 (2018). doi:10.1038/s41565-017-0035-5

QUANTUM ESPRESSO is an integrated
parallel suite of Open-Source computer codes

for electronic-structure calculations and
materials modeling at the nanoscale.

http://dx.doi.org/10.1038/s41565-017-0035-5

Quantum mechanics for materials

Quantum mechanics for materials

Quantum mechanics for materials

Quantum mechanics for materials

Quantum mechanics for materials

Quantum mechanics for materials

Quantum mechanics for materials

Coe for HPC applications in material
science

exploit frontier HPC
for material science research in strong

link with scientific communities

CODE PORTING

HTC ECOSYSTEM

CO-DESIGN

Materials design at the Exascale

ICSC National Research Centre

Flagship codes

for High Performance Computing, Big Data and Quantum Computing

The Quantum ESPRESSO suite

Quantum ESPRESSO is an
open initiative involving a
large community of
developers and
contributors from different
regions of the world

Geographic distribution of the authors of the articles citing the main reference articles as QuantumESPRESSO

Data provided by the courtesy of the Quantum
ESPRESSO foundation

35000+ download of the code from
the website in 2022, mostly from
Europe, USA, India and China

Geographic
distribution and
main professional
fields of people
who have
downloaded QE
from the website
since the
beginning of 2022

The Quantum ESPRESSO suite

DENSITY FUNCTIONAL THEORY

PLANE WAVES &
PSEUDOPOTENTIAL

DUAL SPACE TECHNIQUE

ψ(r) → ψ(k) → ψ(r)

The Quantum ESPRESSO suite

DENSITY FUNCTIONAL THEORY

PLANE WAVES &
PSEUDOPOTENTIAL

DUAL SPACE TECHNIQUE

ψ(r) → ψ(k) → ψ(r)

The Quantum ESPRESSO suite

PW

Quantum ESPRESSO on HPC clusters

MPI + OpenMP

Quantum ESPRESSO on HPC clusters

R&G 0

GPU 0

R&G 1

GPU 1

pool 0

MPI + OpenMPMPI + OpenMP + GPU

Quantum ESPRESSO on HPC clusters

R&G 2

GPU 2

R&G 3

GPU 3

pool 1

20

routine duplication

single source code

DIRECTIVE-BASED
PROGRAMMING MODELS

MAINTAINABLE

PORTABLE

SINGLE SOURCE CODE

The transition from CUDA to Openacc

Towards a portable GPU version

MAINTAINABILITY

PORTABILITY
directives

PERFORMANCE
multiple back-ends

FLEXIBILITY

Modularity supports interoperability and new programming models

Towards a portable GPU version

MAINTAINABILITY

PORTABILITY
directives

PERFORMANCE
multiple back-ends

FLEXIBILITY

Modularity supports interoperability and new programming models

Fortran / CUDAF + OpenACC

V
<7.2

Towards a portable GPU version

MAINTAINABILITY

PORTABILITY
directives

PERFORMANCE
multiple back-ends

FLEXIBILITY

Modularity supports interoperability and new programming models

Fortran / CUDAF + OpenACC

OpenACC
NVIDIA

OpenMP5
AMD - Intel

V
<7.2

V
>7.2

Towards a portable GPU version

MAINTAINABILITY

PORTABILITY
directives

PERFORMANCE
multiple back-ends

FLEXIBILITY

Modularity supports interoperability and new programming models

Fortran / CUDAF + OpenACC

OpenACC
NVIDIA

OpenMP5
AMD - Intel

Fortran + OpenACC + OpenMP5

NVIDIA - Intel - AMD

V
<7.2

V
>7.2

G
O

A
L

Towards a portable GPU version

SLAB DECOMPOSITION

R planes distributed on z

G sticks distributed on x and y to balance the
workload

MPI DISTRIBUTED 3D FFTs

Local 1D and 2D FFTs
+

MPI collective communications (All-to-all)

FFTXlib

SLAB DECOMPOSITION

R planes distributed on z

G sticks distributed on x and y to balance the
workload

MPI DISTRIBUTED 3D FFTs

Local 1D and 2D FFTs
+

MPI collective communications (All-to-all)

FFTXlib

✳ batching of FFTs
✳ non blocking MPI communications
✳ overlap data/computation/communication by using streams
✳ exploits GPUdirect

Batched FFTs for the GPU driver

Performance assessment

16GB

80GB

pools

Quantum ESPRESSO: one further step towards the
exascale, I. Carnimeo et al., Journal of Chemical Theory
and Computation
J. Chem. Theory Comput. 19, 6992 (2023)

● Significant improvement from GPU to CPU

● Time to solution decreases with GPU memory

● Pool distribution can be added to further speedup

EXPANDING QE PORTABILITY WITH OpenMP

Outline

● Porting roadmap of QE and present status of the porting;

● transition from CUDA to directive based porting (openACC and OpenMP);

● results from first basic OpenMP porting;

● FFTs in QE (FFTXlib library);

● streams management in FFTXlib;

● results from running on LUMI;

● summary & outlook.

◆ Until v 6.8;

◆ from v 7.0;

◆ under development;

◆ current goal.

On the porting roadmap

Fortran / CUDAF + OpenACC

OpenACC
NVIDIA®

OpenMP5
AMD® - Intel®

Fortran + OpenACC + OpenMP5

NVIDIA® - Intel® - AMD®

Fortran CUDA
 Fortran◆ J. Chem. Phys. 152,

154105 (2020)

◆ J. Chem. Theory Comput.
19, 6992 (2023)

QE & OpenMP5

● Main parts of FFTXlib ported for Intel® with OpenMP5 (Giacomo Rossi);

● Intel® Hackathon (May 2022);

● first scratch of PWscf porting with omp on Intel® DevCloud (June 2022);

● AMD® collaboration (Ossian O’Reilly) for low-level libraries porting (starting July 2022);

● LUMI available to QE developers (October 2022);

● MAX-3 kick-off - preliminary porting (Modena, February 2023);

● develop_omp5 branch on QE official repository: https://gitlab.com/QEF/q-e (July 2023);

● LUMI Hackathon at CSC (Helsinki, September 2023).

https://gitlab.com/QEF/q-e

OMP porting of QE

FFTXlibLinear Albebra
(BLAS/Lapack)

PWscf

ModulesKS_Solvers

Basic features:

- loop offloading;

- global variables
offloading and pinning;

- manage different
backends (linear algebra
and FFTs);

- streams and/or tasks (for
async batched FFTs).

Ported:

● FFTs (cpu driver);

● KS_Solver (except diagonalization);

● Interfaces for mathematical libraries;

● qe instrumentation routines (rocprof)
have been added.

To be ported:

● diagonalization (zhegv);

● forces, stress;

● codes other than PW.

Status of OMP porting in PWscf

CUF only

if (use_gpu) then
 arg_d = arg
endif

if (use_gpu) then
 call abc(arg_d)
else
 call abc(arg)
endif

interface abc
 subroutine abc_cpu(v)
 subroutine abc_gpu(v_d)
end interface

H
os

t t
o

D
ev

ic
e

R
ou

tin
e

ca
lls

In
te

rfa
ce

s
OpenMP5 Offload

CUF only

if (use_gpu) then
 arg_d = arg
endif

if (use_gpu) then
 call abc(arg_d)
else
 call abc(arg)
endif

interface abc
 subroutine abc_cpu(v)
 subroutine abc_gpu(v_d)
end interface

H
os

t t
o

D
ev

ic
e

R
ou

tin
e

ca
lls

In
te

rfa
ce

s

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc(arg)
!$acc end host_data

OpenMP5 Offload

CUF only CUF interfaces
OpenACC parent code

CUF only

if (use_gpu) then
 arg_d = arg
endif

if (use_gpu) then
 call abc(arg_d)
else
 call abc(arg)
endif

interface abc
 subroutine abc_cpu(v)
 subroutine abc_gpu(v_d)
end interface

H
os

t t
o

D
ev

ic
e

R
ou

tin
e

ca
lls

In
te

rfa
ce

s

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc(arg)
!$acc end host_data

OpenACC only

call abc_acc(arg)

subroutine abc_acc(v)

OpenMP5 Offload

CUF only

if (use_gpu) then
 arg_d = arg
endif

if (use_gpu) then
 call abc(arg_d)
else
 call abc(arg)
endif

interface abc
 subroutine abc_cpu(v)
 subroutine abc_gpu(v_d)
end interface

H
os

t t
o

D
ev

ic
e

R
ou

tin
e

ca
lls

In
te

rfa
ce

s

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc(arg)
!$acc end host_data

OpenACC only

call abc_acc(arg)

OpenACC +
OpenMP5

#if def __OPENACC
 call abc_acc(arg)
#elif def __OPENMP
 call abc_omp(arg)
#endif

!$acc update device(arg)
!$omp target update to(arg)

OpenMP5 Offload

CUF only

if (use_gpu) then
 arg_d = arg
endif

if (use_gpu) then
 call abc(arg_d)
else
 call abc(arg)
endif

interface abc
 subroutine abc_cpu(v)
 subroutine abc_gpu(v_d)
end interface

H
os

t t
o

D
ev

ic
e

R
ou

tin
e

ca
lls

In
te

rfa
ce

s

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc(arg)
!$acc end host_data

OpenACC only

call abc_acc(arg)

subroutine abc_acc(v)

OpenACC +
OpenMP5

#if def __OPENACC
 call abc_acc(arg)
#elif def __OPENMP
 call abc_omp(arg)
#endif

!$acc update device(arg)
!$omp target update to(arg)

subroutine abc_acc(v)
subroutine abc_omp(v)

OpenMP5 Offload

CUF only

if (use_gpu) then
 arg_d = arg
endif

if (use_gpu) then
 call abc(arg_d)
else
 call abc(arg)
endif

interface abc
 subroutine abc_cpu(v)
 subroutine abc_gpu(v_d)
end interface

H
os

t t
o

D
ev

ic
e

R
ou

tin
e

ca
lls

In
te

rfa
ce

s

CUF interfaces
OpenACC parent code

!$acc update device(arg)

!$acc host_data use_device(arg)
call abc(arg)
!$acc end host_data

OpenACC only

call abc(arg, offload)

OpenACC +
OpenMP5

call abc(arg, offload)

!$acc update device(arg)
!$omp target update to(arg)

interface abc
 subroutine abc_cpu(v, offload)
 subroutine abc_acc(v, offload)
 subroutine abc_omp(v, offload)
end interface

OpenMP5 Offload

 Courtesy of Ivan Carnimeo (SISSA)

H
os

t t
o

D
ev

ic
e

R
ou

tin
e

ca
lls

In
te

rfa
ce

s

OpenACC +
OpenMP5

call abc(arg, offload)

!$acc update device(arg)
!$omp target update to(arg)

interface abc
 subroutine abc_cpu(v, offload)
 subroutine abc_acc(v, offload)
 subroutine abc_omp(v, offload)
end interface

devXlib +
OpenACC +OpenMP5

call abc(arg, offload)

call devXlib(arg, offload)

The Yambo group in
Modena is developing

a portable library
(devXlib) to manage

porting to
multiplatform

heterogeneous
architectures

…
Main developers:

A .Ferretti (CNR-NANO)
N. Spallanzani (CNR-NANO)

G. Rossi (Intel)

OpenMP5 Offload

 Courtesy of Ivan Carnimeo (SISSA)

devXlib

 Courtesy of Giacomo Rossi (Intel®)

Wrappers instead of interfaces

Some notes

● We need both offloaded and non-offloaded low level routines (e.g.
FFTXlib, LAXlib) at the same time;

● dispatch construct currently not available on all compilers: not an
option at the moment (in general);

● we use wrappers with offloading switch to sort CPU and GPU low
level library calls;

● duplication (“_omp”) of low level routines still necessary (avoidable?
In the future?);

● omp target for GPU protected from openACC and from CPU omp.

Explicit
streams

gpu/cpu
interface

cuBlas

Backends

Linear Algebra

rocBlas

oneMKL

Fourier transforms

cuFFT

hipFFT

oneMKL

No need
c_bind

Exchange-Correlation library - XClib

XC-potential

● The XC potential is a function of
the density;

● Calculated with a loop over the
density grid;

● At each iteration (grid point) a
functional routine is called.

Exchange-Correlation library - XClib

Reference benchmark: Ausurf 112 (1 scf step). Starting results (April 2023) with
basic porting only:

The total time on LUMI is still bigger
than the reference one from M100.
The main reasons:

● diagonalization backend to be
implemented (~70%);

● batched FFTs (~15%);

● smaller routines to be
ported(~15%)

Parent code porting - starting results

FFTXlib - slab decomposition

xy

xy

z

z

G-space
(sticks)

R-space
 (slabs)

FFTXlib - slab decomposition

P0
P1 P2 P3

G-space
(sticks)

FFT(z)
GZ→RZ

FFT(xy)
GXY→RXY

memcpy2d

MPI All2All

R-space
 (slabs)

xy

z

xy

z

fft1d

mcpy_rect

all2all

H2D

fft2d

GPU-non-aware

FFTXlib - standard flow

fft2d

mcpy_rect

all2all

D2H

fft1d

GPU-non-aware

fft1d

mcpy_rect

all2all

fft2d

GPU-aware

fft2d

mcpy_rect

all2all

fft1d

GPU-aware

Inverse DirectLUMI run -
4mpi,4gpu

Reference benchmark: Ausurf 112 (1 scf step). FFTXlib calls, preliminary results:

3d FFTs with SLAB decomposition (standard
case):

● reference runs: M100 (V100 gpus)

● overall match between LUMI and
M100;

● H2D-D2H part of the FFT looks a bit
slower on LUMI side (still under
investigation).

FFTXlib - basic porting

FFTXlib - many bands

band

sub-batch

 batch

Ψ(G,n) Ψ(R,n)

xy

z

xy

z

FFTXlib - slab decomp. & many bands

P0
P2 P3P1

FFT(z) x4
GZ→RZ

batch

sub-batch

Memcpy2d x4

MPI Send/
 Recv x4

FFT(xy)x4
GXY→RXY

G-space x4
(sticks)

R-space x4
(slabs)

xy

z

xy

z

fft1d

cpy2dfft1d
fft1d
fft1d cpy2d

cpy2d

cpy2d

mpi1

mpi2

mpi3

mpi4

mcpy

mcpy

mcpy

mcpy

fft2d

fft2d

fft2d

fft2d

Call to
inFFT

CPU GPU (streams)

● Batched 3d-FFT of the wave-function;

● the input array divided in 4 batches (on
bands);

● 1 stream for FFTs, 4 streams for data
movements;

● 4 async mpi communications (ISEND, IRECV).

Notes:

○ non-asynchronous memcpy;

○ memcpy operations D2H/H2D much more
time consuming than FFT calls;

○ memcpy operations D2D same order of FFT
calls.

Batched FFTs in QE - HIP

Hip streams & OMP

● Besides ffts and memcpy, few loops converted into hip-kernels

● Pinning variables in order to get asynchronicity with data
movements from/to streams

fft1d

cpy2d fft1d

fft1d
fft1dcpy2d

cpy2d

cpy2d

mpi1

mpi2

mpi3

mpi4

mcpy

mcpy

mcpy

mcpy

fft2d

fft2d

fft2d

fft2d

Call to
inFFT

CPU GPU (streams) ● Need to set up pure OMP porting of batched
FFTs for the Intel® side;

● setting up a starting scheme by using omp
task with hip streams and detach clause;

Batched FFTs in QE - OMP task+HIP

fft1d

cpy2d fft1d
fft1d

fft1dcpy2d

cpy2d

cpy2d

mpi1

mpi2

mpi3

mpi4

mcpy

mcpy

mcpy

mcpy

fft2d

fft2d

fft2d

fft2d

Call to
inFFT

● Starting point: oneMKL does not get
explicit streams as input;

● Simplest scheme given by n tasks
associated to n subbatches;

● still in progress

Batched FFTs in QE - OMP task+dep

Streams with multiple standards

● Full implementation of hip-based streams FFTs (both aware and
non-aware);

● implementation of omp task+hip streams;
● OpenMP tasks only version in progress.

Streamed FFTXlib tested by benchmarking the vloc_psi routine of
PWscf: it is the part of the scf iteration that relies the most on FFTs.

 Next:
- Merge of hip streamed code with the cuda one;
- Aim: hip-cuda streams and omp tasks with minimal code duplication.

Results

● Gold surface;
● 112 atoms;
● ~1600

electrons.

● vloc_psi only.

Results (2)

● CrI3;
● 480 atoms;
● ~2700

electrons;

● vloc_psi only.

What’s next

● Complete the porting of PWscf minor routines;

● complete the openMP task based version of the batched FFTs to enable
them on Intel® architectures.

➔ Medium-large size benchmarks by the first half of the next year.

● Port QE codes other than PWscf (PHonon, CP, EELS, …);

● test openMP on Nvidia® architectures;

● incorporate DevXlib.

● Pietro Delugas, SISSA
● Ivan Carnimeo, SISSA
● Fabrizio Ferrari Ruffino, CNR-IOM
● Oscar Baseggio, SISSA
● Riccardo Bertossa, SISSA
● Aurora Ponzi, CNR-IOM
● Stefano Baroni, SISSA, CNR-IOM
● Paolo Giannozzi, UniUD, CNR-IOM

QE dev group

● Filippo Spiga
● Louis Stuber

Nvidia®

● Fabio Affinito
● Laura Bellentani
● Sergio Orlandini

CINECA

● Giacomo Rossi

Intel®

● Francesca Garofalo
QE Foundation

● Ossian O’Reilly
● Jakub Kurzak

AMD®

Acknowledgments

● Ye Luo
ANL

THANK YOU

