
OpenMP offloading on the Exascale Frontier:

An example application in pseudo-spectral algorithms

Stephen Nichols (ORNL) and P.K. Yeung (Georgia Tech)

E-mails: nicholss@ornl.gov; pk.yeung@ae.gatech.edu

OpenMP Users Telecon
October 27, 2023

CAAR Program for Frontier, and DOE INCITE Award 2023

Oak Ridge Leadership Computing Facility, USA

NSF Subaward via The Johns Hopkins University

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 1/20

An Outline of This Talk

Why use OpenMP offload, what are the alternatives

Pseudo-spectral methods, including domain decomposition

Code fragments showing how we use OpenMP
(incl. TARGET DATA MAP, TEAMS, UPDATE, GPU-aware MPI)

One remaining challenge: array reductions on the GPU

Performance data (for turbulence code) on Frontier

Science results (re: turbulence) achieved on Frontier, to date

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 2/20

GPU at the Exascale: Why OpenMP?

Code is written in Fortran

Underlying code base developed over many years by the PI and collaborators
(CPU version performed well on Blue Waters, Frontera, etc)

Includes features allowing interoperability with library packages in C

Emphasize in-house development: minimize dependence on external packages

Like most scientific codes, large nested loops do all the work

Distributed memory: communication among MPI processes is dominant

OpenMP Offloading

OpenMP already used in code for thread-level parallelization on CPU

Uses a familiar pattern of directives and clauses

OpenMP standards provide a higher degree of portability

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 3/20

Application: Fourier pseudo-spectral methods and 3D FFT

Fourier representation decomposes a complex signal into contributions from a wide
range of scale sizes. Inverse and forward transforms linked by reciprocal relations.

f (x) =
∑
k

f̂ (k) exp(ik · x) ⇐⇒ f̂ (k) =
∑
x

f (x) exp(−ik · x)

For nonlinear products: exact result is f̂g(k) =
∑

k′ f̂ (k
′)ĝ(k− k′),

but cost of convolution sum is prohibitive (∝ N6 operations in 3D)

“Pseudo”-spectral: multiply in physical space, then transform. Cost now scales as
N3 log2 N . Some numerical (aliasing) errors arise, but those are controllable.

We use this approach for fundamental studies in fluid turbulence, which is a
complex multi-scaled unsteady, 3D phenomenon governed by nonlinear PDEs.

FFTs have many other uses: imaging, materials science, and others.

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 4/20

Direct Numerical Simulations of Turbulence

DNS — computing all the details of the instantaneous, 3D fluid flow according to exact
governing equations (conservation of mass and momentum)

Due to their problem size, these simulations require Leadership Class facilities:

with memory to hold the problem

with reliable, high-speed communications

with technology to accelerate the solution process

with storage to hold the solution

In 2019: 184323 simulation on 200-PF/s “Summit” at OLCF (Ravikumar, Appelhans &
Yeung, SC’19), with batched-asynchronism, on 3072 nodes (≈ 67% of “Summit”).

On Frontier, we’re aiming higher yet: a 327683 simulation, resolving small
scales better and higher Reynolds numbers importance for turbulence theory

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 5/20

Pseudo-spectral DNS on a 3-D periodic domain

Take Fourier transform, project onto plane ⊥ to wavenumber vector k

∂û/∂t = −[∇̂·(uu)]⊥k − νk2û− f̂

Time advance: 2nd order Runge Kutta for nonlinear terms, integrating factor for viscous
terms. Starting with û(k) in wavenumber space, key tasks for each RK substep are:

3D FFT transform to physical space

form nonlinear terms in physical space

3D FFT transform of nonlinear terms back to wavenumber space

spatial differentation via Fourier space (e.g. ∂̂u/∂x = ikx û)

advance in time ... and then repeat

The 3D FFT transforms include intense computation AND communication

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 6/20

Domain Decomposition on an N3 grid: Slabs or Pencils?

Sub-divide in 1D: each parallel process
handles 1 slab (P up to N)

0

1

2

3

x

y

z
mz

my

FFT in x and z ; transpose into x − y
slabs; FFT in y

“All-to-all” communication among all
P processes

Sub-divide in 2D: each parallel process
handles 1 pencil (P up to N2)

0
1

2
3

x

y

z

mz

my
mx

FFT in x ; transpose; FFT in z ;
transpose; FFT in y

Action within row and column
sub-communicators, Pr and Pc

Actual choice deepends on memory per node or core and the problem size

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 7/20

What do the 3D FFT transforms look like?

Inverse transform from wavenumber space to physical space:
1D C2C FFT in y

pack send buffer, MPI AllToAll, unpack receive buffer

1D C2C FFT in z

(for ”pencils” only) pack send buffer, MPI AllToAll, unpack receive buffer

1D C2R FFT in x

Foward transform from physical space to wavenumber space:
1D R2C FFT in x

(for ”pencils” only) pack send buffer, MPI AllToAll, unpack receive buffer

1D C2C FFT in z

pack send buffer, MPI AllToAll, unpack receive buffer

1D C2C FFT in y

We’re doing a lot of FFT computations and MPI communications!

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 8/20

General Features of the Turbulence Code

Fortran 95 with iso-c-bindings

Custom 3D FFT packages for slab and pencil decompositions:

FFTW on the CPUs (for reference)

cuFFT/rocFFT libraries on Nvidia/AMD GPUs

CUDA Fortran or HIPFORT provides the fortran interfaces for the libraries

GPU-Direct MPI communications to avoid extra copies between CPU and GPU

OpenMP Offloading for computation and data management/movement:

TARGET DATA region for the entire time-evolution loop (with target data map)

Working/Computing loops (target teams distribute parallel do (simd))

Data management/movement (update to/from, use device ptr)

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 9/20

Code Snippet: MPI AllToAll Communications

If all calculations are done on the GPU, MPI via CPU requires extra data copies
between the host and device, but the form of the MPI call remains unchanged.

if (use gpu mpi .eq. 1) then
!$OMP TARGET DATA USE DEVICE PTR(upxz,upxy)
call MPI ALLTOALL (upxz, data size, MPI COMPLEX, upxy, data size, MPI COMPLEX,

MPI COMM WORLD, mpierr)
!$OMP END TARGET DATA

else !! on the CPU
!$OMP TARGET UPDATE FROM(upxz)
call MPI ALLTOALL (upxz, data size, MPI COMPLEX, upxy, data size, MPI COMPLEX,

MPI COMM WORLD, mpierr)
!$OMP TARGET UPDATE TO(upxy)

end if

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 10/20

Code Snippet: Typical cuFFT/rocFFT Function Call

!$OMP TARGET DATA MAP(tofrom:vxz)

........................

!$OMP TARGET DATA USE DEVICE PTR(vxz)

#ifdef USE NVIDIA

call cufftExecR2C(cu plan r2c,C LOC(vxz(1,1,1,ivar)),C LOC(vxz(1,1,1,ivar)))

#elif USE AMD

ierr = rocfft execute(roc plan r2c, C LOC(vxz(1,1,1,ivar)),C NULL PTR,
C NULL PTR)

#endif

!$OMP END TARGET DATA

........................

!$OMP END TARGET DATA

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 11/20

Code Snippet: Typical OpenMP Offload Kernel

!$OMP TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD COLLAPSE(4) &
!$OMP PRIVATE (ivar,y,z,x) &
!$OMP SHARED (nvar,my,nz,nxhp,factor,vxz)

do ivar=1,nvar
do y=1,my

do z=1,nz
do x=1,nxhp

vxz(x,z,y,ivar)=vxz(x,z,y,ivar)*factor
end do

end do
end do

end do

!$OMP END TARGET TEAMS DISTRIBUTE PARALLEL DO SIMD

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 12/20

Performant Array Reductions on GPUs Are Needed!

Array reductions work correctly on the MI250x GPUs but are not performant
— performance worsens as the problem size increases

OpenMP Atomics perform much better on the GPUs than the array reductions but
are still slower than performing array reductions on the CPU
— as with array reductions, performance worsens as the problem size increases

For now, array reductions are the last part of the computations that we perform
on the CPUs

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 13/20

Additional OpenMP + FFT Examples

Fortran+OpenMP Offloading:
— https://code.ornl.gov/gests-reproducers/fortran-rocfft-strided-c2c-example.git

C++ for strided transforms:
— separate branches for data management with OpenMP Offloading or HIP
— https://code.ornl.gov/gests-reproducers/rocfft-strided-c2c-example.git

C++ for stride = 1 transforms:
— https://code.ornl.gov/gests-reproducers/rocfft example code.git

More demo/example codes are available. Send me an email if you’re interested.

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 14/20

Suggestions for using Fortran + OpenMP Offloading

Be flexible in your coding

Each compiler has its own implementation that will mature at its own rate

Don’t over-load and/or over-optimize offloaded kernels/routines

Likely need to re-factor your code for best performance

Portability (functionality and correctness) before performance

A few iterations may be necessary for portability

“General” optimization for reasonable cross-platform performance

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 15/20

Wall time/step (secs) and weak scaling: Slabs code

Frontier: CCE 15.0.0, ROCM 5.4.0, using ∼ 42 GB of 64 GB memory per GPU

N3 #Nodes #MPI FFT Pack+Unpack MPI Other Total WS(%)
20483 1 8 1.360 0.243 1.846 0.643 4.09 -
40963 8 64 1.409 0.246 7.762 0.685 10.11 40.5
81923 64 512 1.580 0.255 8.152 0.764 10.75 94.0
163843 512 4096 2.196 0.268 8.360 0.700 11.53 93.2
327683 4096 32768 3.423 0.276 8.621 0.747 13.07 88.2

Low scalability from 1 node to 8 nodes due to communication across nodes being
slower than within the node. Yet, not much deterioration beyond 8 nodes.

From 40963 onwards, approx 90% weak scaling for every doubling of N

Slabs faster than pencils (by 1 sec at 327683) because of less pack+unpack.

But pencils code still needed for particle tracking, where we need 8192 nodes to
provide memory for 327683 grid. Some further improvements still possible.

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 16/20

Strong scaling and message sizes: Pencils Code

Get results faster by using more nodes than needed for memory requirements.
Hopefully, only minor increase in overall cost if strong scaling is high.

More nodes imply larger column communicator. Inter-mode MPI is slower.
Messages smaller than a certain size lead to latency issues and variability.

Can increase message size by doing alltoalls for several variables at a time. Memory
needed by larger communication buffers may still fit (using 2X, 4X, nodes, etc).

163843, 2048 nodes (vs. 13.0 secs on 512 nodes), over 8 time steps:
between 3.33 and 8.79 secs when using altoall 1 variable at a time
between 3.41 and 3.43 secs when using altoall up to 4 variables at a time

However benefit is not as great for 327683 at 8192 vs 4096 nodes.
— We may have reached the limits of the machine.

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 17/20

From Advances in Computing to Advances in Domain Science

Checkpointing, with flexibility
In Fourier space, where continuity equation allows some savings

Allow for change of domain decomposition and/or resolution

How many time steps do we need? By what criteria?
Studying the small scales: use the Kolmogorov time scale

Smaller ∆t (more time steps) if need to resolve small scales better (smaller ∆x),
increase Reynolds number, or improve resolution in time.

Extracting statistics from the raw numerical solution
On-the-fly processing can take significant resources, depending on how frequent

Post-processing is only option for some quantities, but results not time-resolved

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 18/20

Early Science results: Energy spectrum at Rλ up to 2550

Data from stationary states reached with N from 2048 to 16384, Rλ 650 to 2550 approx:

E (k) E (k)⟨ϵ⟩−2/3k5/3

k kη
Already seeing very conclusive results in inertial range (intermediate k) versus classical
Kolmogorov theory. Next: to resolve small scales better ... using 327683 simulations.

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 19/20

Summary and Next Steps

Turbulence simulations at the Exascale
Successfully developed a GPU turbulence code using Fourier pseudo-spectral
methods up to 327683 resolution on the world’s first Exascale supercomputer.

OpenMP offload between coherent CPU and GPU memories has played a major
role, with only minimal costs in host-device copies

Code has been used to obtain statistically isotropic turbulence at Taylor-scale
Reynolds number 2550, by reducing the viscosity while refining the grid spacing.

Extensions and future plans include:
Study of turbulent dispersion: tracking particles in the flow.

Study of turbulent mixing: a focus on case of very low diffusivity
(e.g. salinity in ocean) using a dual-resolution approach, with asynchronism.

Make selected datasets available via the Johns Hopkins Turbulence DataBase.

Nichols and Yeung OpenMP offload on Frontier October 27, 2023 20/20

