
OpenMP User’s Monthly Telecon

October 28, 2022

OpenMP tasking:
Extensions and optimizations for

performance, predictability and resilience

Sara Royuela
sara.royuela@bsc.es

2

Predictable Parallel Computing in OpenMP

Dr. Eduardo Quiñones
Team leader

Adrian Munera
PhD candidate

Chenle Yu
PhD candidate

Dr. Sara Royuela
Senior Researcher

PPC in the scope of OpenMP

3

Embedded Computing

High-Performance
Computing

Specification, compiler and runtime support in OpenMP

targeting performance, predictability and resilience in multiple domains

NVIDIA Jetson

NVIDIA A100

Kalray MPPA

AMD EPYC

Today

• The overhead of tasking

• The Task Dependency Graph

– Performance

– Memory consumption

– Interoperability with CUDA graphs

• The RISING Stars and the AMPERE project

4

Tasking overheads

5

Podobas, A., Brorsson, M., and Faxén, K. F.
In 3rd workshop on programmability issues for multi-core computers.

A comparison of some recent task-based parallel programming models. 2010.

Multisort Strassen

sp
ee

d
u

p

#threads

Motivation for tasking: focus on the
exposing parallelism rather than figuring
out how to fit in a specific machine.

Real limitations: fine granularities and
deep cut-offs introduce too much
overhead, reducing potential speed up.

OpenMP 3.1

coarse fine coarse fine

Tasking overheads

Real limitations: code transformation
might not be optimized, e.g., memory
allocations, synchronizations.

Diaz, J.M., Friedline, K., Pophale, S., Bernholdt, D.E., and Chandreasekaran, S.
Parallel Computing. Analysis of OpenMP 4.5 offloading in implementations:

correctness and overhead. 2019.

OpenMP 4.0

Motivation for tasking: implement
offloading capabilities to exploit
accelerator devices.

target target data target enter data 6

Tasking overheads

Motivation for tasking: taskloop could
eliminate the need for thread-parallelism.

Real limitations: the implementation is
crucial and determining granularity
becomes a challenge.

Podobas, A., and Karlsson, S.
In International Workshop on OpenMP.

Towards unifying OpenMP under the task-parallel paradigm. 2016.

7

OpenMP 4.5

Best (depends
on the case)

Tasking overheads

Real limitations: fine granularity
provides poor efficiency 17% - 77%;
acceptable granularity from tens of ms.

Olivier, S.L.. In International Workshop on OpenMP.
Evaluating the Efficiency of OpenMP Tasking for Unbalanced Computation on

Diverse CPU Architectures. 2020.

8

OpenMP 5.0

Motivation for tasking: many different
extensions that have changed the
internals of the implementations.

9

• Tasking is convenient to expose parallelism

• Implementation overheads limit its use for:

• Fine grained parallelism

• Loop parallelism

• Accelerator devices

Where are we

Let’s capitalize on the Task Dependency Graph!

Leveraging the Task Dependency Graph

A region of code that can be fully
represented as a TDG:

1. Taskified region:
a) All computations are enclosed in tasks.

b) Non-taskified code has no side effects
on the tasks (e.g., induction variables
in loops).

2. TDG shape:
a) Shape does not change across TDG

executions.

b) Provide information for recomputing
the TDG (e.g., a clause with the
variables shaping the TDG).

#pragma omp parallel

#pragma omp single

{

for (i=0; i<N_ITER; ++i) {

for (by=0; by < BY; by+=BS) {

for (bx=0; bx < BX; bx+=BS) {

if (bx==0 && by==0) {

#pragma omp task depend(…)

{…}

} else if (by==0) {

#pragma omp task depend(…)

{…}

} else if (bx==0) {

#pragma omp task depend(…)

{…}

} else {

#pragma omp task depend(…)

{…}

}

}

}

}

}

Pedestrian Detector

S=medium S=big
10

TDG-driven framework

11

❑ Goals:

❑ Methodology:

Reduce overhead due to task orchestration and dependency resolution

Eliminate the execution of user code to instantiate tasks

for (int it=0; it<IT; ++it)

#pragma omp taskgraph

for (int i=0; i<N; ++i){

#pragma omp task

{…}

…

}

Static analysis

Source code Compiler Runtime

...

...data known

data unknown

Iteration 1 Iteration N

CRTES HPC

How to define it:

→ User-defined: taskgraph directive

→ Automatically detected by the compiler:

→ Via analysis

→ taskloop

When to generate it:

At compile-time (CRTES)

At run-time (HPC)

Chenle, Y, Royuela, S, and Quiñones, E. Enhancing OpenMP Tasking Model: Performance and Portability, In International Workshop on OpenMP (IWOMP). 2021.

Compiler transformations

12

for (int it=0; it<IT; ++it)

#pragma omp taskgraph

for (int i=0; i<N; ++i){

#pragma omp task

{…}

…

}

for (int it=0; it<IT; ++it)

execute_TDG();

}

for (int it=0; it<IT; ++it)

if (first_time)

record_TDG();

else

execute_TDG();

}

struct kmp_record_info

kmp_tdg_1[N_inst] = {…}

for (int it=0; it<IT; ++it)

instantiate_task();

…

}

struct kmp_record_info

kmp_tdg_1[N_inst] = {…}

TDG generated
at compile-time

TDG generated
at run-time

No taskgraph

2. CFG

3. Loop unroll / Constant prop.

4. Dominator tree

5. Dependencies resolution

1. Meet conditions /
taskgraph region

No

Yes

Done

Not done

Runtime execution: LLVM vs. GCC

13

One thread pushes to a
single queue, from which
all threads pull.

Each thread pushes and
pulls from its own queue.

Work-stealing is allowed.

One thread pushes to its
queue and the rest steal
work from it.

Vanilla TDG

Can we reduce overhead?

14

#pragma omp parallel

#pragma omp single

{

for (int i=0; i<N_Tasks; ++i) {

int index = I % N_Cores;

#pragma omp task depend(out:deps[index])

fn();

}

}

N cores A = 1 task of 109 inst., B = 10 tasks of 108 inst., C = 102 tasks of 107 inst.,
D = 103 tasks of 106 inst., E = 104 tasks of 105 inst., F = 105 tasks of 104 inst.

Task orchestration overhead

#tasks 100 101 102 103 104 105

Vanilla 1.6 0.6 0.6 1.5 36.7 466.2

Taskgraph 0.2 0.1 0.2 0.3 9.9 132.2

✓ Reduce #instructions needed to orchestrate tasks
✓ Alleviate contention

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 =
𝑠𝑒𝑟𝑖𝑎𝑙_𝑡𝑖𝑚𝑒

#𝑡ℎ𝑟𝑒𝑎𝑑𝑠

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑
= 𝑇𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒 − 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

Synthetic

Scalability

15

NAS_LUNAS_CGHoG Object detectorHeat propagation simulation

Explicit tasks Taskloop

Speed-up of TDG-driven execution compared to vanilla task and taskloop implementations
using different number of threads and different task granularities

→ Negligible negative impact

→ Considerable positive impact for fine granularities and high thread contention

Chenle, Y, Royuela, S, and Quiñones, E. Taskgraph: A low contention OpenMP tasking framework, Submitted to IEEE Transactions on Parallel and Distributed Systems. 2022.

Portability

16

Heat diffusion simulatorSparseLU matrix decomposition

→ Coarse grained tasks provide comparable results

→ Fine grained tasks show certain stability

→ Benefits are portable across compilers/RTLs

Speed-up of TDG-driven execution compared to vanilla GCC and LLVM implementations
using different task granularities

Memory management

❑ Goals:

❑ Methodology:

17Munera, A, Royuela, S, and Quiñones, E. Towards a qualifiable OpenMP framework for embedded systems, In Design, Automation & Test in Europe (DATE). 2020.

1. Avoid dynamic allocation of task structures

2. Reduce and bound the memory requirements of the OpenMP RTL

1. Compiler: static generation of the required task structures

2. Runtime: lazy task creation (task created when dependencies fulfilled)

Space-Time Adaptive Processing

Memory consumptionUse of dynamic memoryPerformance speedup

18

Applicability

Many applications can be represented as a TDG!

3D Path Planning

(avionics)

Cholesky Factorization

(HPC)

Pedestrian detector

(automotive)

Infra-red sensor processing

(space)

The RISING stars project

19

❑ Enable a versatile and efficient data acquisition providing interoperability

between different programming models (OpenMP, CUDA)

❑ Expose data acquisition/transfer in the programming model

❑ Introduce real-time oriented features in the programming model to define

periodicity, preemption, migration, and allocation.

❑ Use cases: Adaptive optics, adaptive beamforming, the Square Kilometer

Array and Space Situational Awareness.

Interoperability

20

for (k=0; k<NB; k++) {

#pragma omp target depend(inout: Ah[k][k])

potrf(Ah[k][k], ts, ts);

for (i=k+1; i<NB; i++) {

#pragma omp task depend (in: Ah[k][k]) \

depend(inout: Ah[k][i])

trsm(Ah[k][k], Ah[k][i], ts, ts);

}

for (l=k+1; l<NB; l++){

for (j=k+1; j<l; j++){

#pragma omp task depend(in: Ah[k][l]) \

depend(in: Ah[k][j]) \

depend(inout: Ah[j][l])

gemm(Ah[k][l], Ah[k][j], Ah[j][l], ts, ts);

}

#pragma omp task depend(in: Ah[k][l]) \

depend(inout: Ah[l][l])

syrk(Ah[k][l], Ah[l][l], ts, ts);

}

}

...

cudaGraphNode_t node_17 ;

cudaKernelNodeParams nodeArgs_17 = { 0 } ;

nodeArgs_17.func = (void ∗) potrf;
void ∗ kernelArgs_17[3] = {&Ah[1][1], &ts , &ts} ;

nodeArgs_17.kernelParams = (void ∗∗) kernelArgs_17;
cudaGraphAddKernelNode(&node_17, graph[0], NULL, 0, &nodeArgs_17);

cudaGraphNode_t node_82 ;

cudaHostNodeParams nodeArgs_82 = {0} ;

nodeArgs_82.func = (void ∗) trsm;
void ∗ hostArgs_82[4] = {&Ah[1][1], &Ah[1][1], &ts, &ts};

nodeArgs_82.kernelParams = (void ∗∗) hostArgs_82;
cudaGraphAddHostNode(&node_82, graph[0], &node_17, 1, &nodeArgs_82);

...

TDG

saxpy cholesky

OpenMP synchronizations
take longer than CUDA graphs

Chenle, Y, Royuela, S, and Quiñones, E. OpenMP to CUDA graphs: a compiler-based transformation to enhance the programmability of NVIDIA devices,
In nternational Workshop on Software and Compilers for Embedded Systems (SCOPES). 2020.

CUDA memory management strategies

21

App
Graph
nodes

Unified memory
+ prefetch

Unified memory
(non-prefectch)

Zero copy cudaMemcpy cudaMemcpyAsync

Vector
addition

1024 739 865 687 448 435

32 592 738 595 344 343

Saxpy
1024 658 916 538 441 441

32 459 572 452 286 255

Nbody
1024 6080 6058 6464 6041 6094

32 762 775 806 764 765

Faster when there is no need
for unified memory

Pre-fetching reduces
page faults

Faster execution
when reducing the
number of nodes

Execution time in ms.

The AMPERE project

22

❑ Use of Domain Specific Modeling Languages and high-level
synthesis methods for building correct-by-construction systems.

❑ Use OpenMP to provide the performance needed to develop
complex Cyber-Physical Systems:

▪ Predictive Cruise Control (automotive)

▪ Obstacle Detection and Avoidance System (railway)

❑ Provide mechanisms to guarantee non-functional requirements:
time predictability, resilience and energy consumption.

OpenMP
task

AMALTHEA DSML to OpenMP

23

Goals:

1. Exploit parallelism
within OS tasks with
OpenMP (host and
target) tasks

2. Exploit heterogeneity
through specializations

void PeriodicTask() {

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(out:Image)

{ read_image(); }

#pragma omp task depend(in:Image)\

depend(out:ResultsA) cpu_omp

{ analysisA(); }

#pragma omp target depend(in:Image)\

depend(out:ResultsA)\

map(to:Image) map(from:ResultsA)\

gpu_omp

{ analysisB(); }

#pragma omp task depend(in:ResultsA, ResultsB)

{ read_image(); }

}

}

void analysisA_gpu() { … }

#pragma omp declare variant(analysisA_gpu)\

match(construct={target})\

implementation={extension(gpu_omp)}

void analysisA() {…}

Automatic

code generation

OS
task

https://gitlab.bsc.es/ampere-sw/wp2

AMALTHEA DSML to OpenMP: Performance

24

NVIDIA Jetson TX2 board
with a GPU and a 4-core ARM CPU

ODAS

WATERS

Democar

Correctness analysis for OpenMP

25

Goals:

1. Detect/resolve race conditions

2. Detect/correct wrong synchronizations (task dependencies, memory fences)

3. Detect inconsistencies in the data-sharing attributes

LLVM Compiler pipeline to
define/correct data-
sharing attributes:

A. Munera, S Royuela, R Ferrer, R Peñacoba, E Quiñones. Static analysis to enhance the programmability and performance in OmpSs-2, In ISC. 2020.
S. Royuela, R Ferrer, D Caballero, X Martorell. Compiler analysis for OpenMP tasks correctness, In CF. 2015.
S. Royuela, A Duran, X Martorell. Compiler automatic discovery of OmpSs task dependencies, In LCPC. 2012.
S. Royuela, A Duran, C Liao, DJ Quinlan. Auto-scoping for OpenMP tasks, In IWOMP. 2012.

Static analysis for OpenMP time predictability

26

Requirements:

1. Work-conserving scheduler for non-pessimistic WCRT analysis
2. Prescriptive task priorities to support fixed priority schedulers

3. Prescriptive implementation of Task Scheduling Points to allow
limited preemptive scheduling

➢ Taskyield, to alleviate pessimism and enhance schedulability

𝑅𝑘
𝑢𝑏 bounds the maximum observed execution time

Real-time system schedulable with at least 16 cores

Response time upper bound (𝑅𝑘
𝑢𝑏):

GOAL: Assess predictability of OpenMP to allow schedulability analysis

M. A. Serrano, et al. Response-time analysis of DAG tasks under fixed priority scheduling with limited preemptions, In DATE. 2016.
M. A. Serrano, et al. An analysis of lazy and eager limited preemption approaches under DAG-based global fixed priority scheduling, In ISORC. 2017.

Augmented OpenMP code

#pragma omp task redundancy(

spatial|temporal|spatial_temporal,

3, /*n replicas*/

var1:func1,

var2:func2)

{/*code*/}

Resilience with OpenMP

27

Spatial:

Each replica in a
different core

Temporal:

OpenMP mutexinoutset
between replicas

GOAL: Task-level replication for fault-detection

Data capturing

Replicated tasks

Consolidation function / variable to check

Engine control management system

• TDG1 (T10, T20, T50)

• TDG2 (T10, T50)

• TDG3 (T10, T20)

• TDG4 (T10)

TDG with replication

O. Tahan, et al. Using dynamic task level redundancy for OpenMP fault tolerance, In ISC. 2020.

PPC publications

Optimizations

1. C. Yu, S. Royuela, E. Quiñones, Enhancing OpenMP tasking model: Performance and portability, In IWOMP 2021.

2. A. Munera, S. Royuela, E. Quiñones, Towards a qualifiable OpenMP framework for embedded systems, In DATE 2020.

3. R. E. Vargas, S. Royuela, M. A. Serrano, X. Martorell, E. Quiñones, A Lightweight OpenMP4 Run-time for Embedded Systems, In ASP-DAC 2016.

Interoperability

4. C. Yu, S. Royuela, E. Quiñones, OpenMP to CUDA graphs: A compiler-based transformation to enhance the programmability of NVIDIA devices,
In SCOPES 2020.

5. S Royuela, L.M. Pinho, E. Quiñones, Enabling Ada and OpenMP runtimes interoperability through template-based execution, In JSA 2020.

6. S. Royuela, L.M. Pinho, E. Quinones, Converging Safety and High-performance Domains: Integrating OpenMP into Ada, In DATE 2018.

Functional safety

7. S. Royuela, A. Duran, M. A. Serrano, E. Quiñones, A functional safety OpenMP for critical real-time embedded systems, In IWOMP 2017.

8. S. Royuela, X. Martorell, E. Quinones, L. M. Pinho, OpenMP Tasking Model for Ada: Safety and Correctness, In AEiC 2017.

9. S. Royuela, R. Ferrer, D. Caballer, X. Martorell, Compiler analysis for OpenMP tasks correctness, In CF 2015.

Predictability and CRTES

10. M. A. Serrano, S. Royuela, E. Quiñones. Towards an OpenMP Specification for Critical Real-time Systems. In IWOMP 2018.

11. M. A. Serrano, A. Melani, S. Kehr, M. Bertogna, E. Quiñones, An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-based
Global Fixed Priority Scheduling, In ISORC 2017.

12. M. A. Serrano, A. Melani, M. Bertogna, E. Quiñones, Response-Time Analysis of DAG Tasks under Fixed Priority Scheduling with Limited
Preemptions, In DATE 2016.

13. M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna, E. Quiñones, Timing Characterization of OpenMP4 Tasking Model, In CASES 2015.

28

Projects and collaborations

29

OpenMP User’s Monthly Telecon

October 28, 2022

High-performance OpenMP tasking

Sara Royuela
sara.royuela@bsc.es

