
© 2015 OpenMP ARB OMP1115F

OpenMP API 4.5 Fortran Page 1

OpenMP 4.5 API Fortran Syntax Reference Guide

Fortran

OpenMP Application Program Interface (API) is
a portable, scalable model that gives parallel
programmers a simple and flexible interface for
developing portable parallel applications. OpenMP

supports multi-platform shared-memory parallel
programming in C/C++ and Fortran on all architectures,
including Unix platforms and Windows platforms.
See www.openmp.org for specifications.

• Text in this color indicates functionality that is new or changed in the OpenMP API 4.5 specification.
• [n.n.n] Refers to sections in the OpenMP API 4.5 specification.
• [n.n.n] Refers to sections in the OpenMP API 4.0 specification.

®

Directives and Constructs for Fortran
OpenMP directives are specified in Fortran by using special comments that are identified by unique sentinels. Also, a special comment form is available for conditional Fortran
compilation. An OpenMP executable directive applies to the succeeding structured block. A structured-block is a block of executable statements with a single entry at the top and
a single exit at the bottom, or an OpenMP construct. OpenMP directives except SIMD and declare target directives may not appear in PURE or ELEMENTAL procedures.

parallel [2.5] [2.5]
Forms a team of threads and starts parallel execution.

!$omp parallel [clause[[,]clause] ...]
structured-block

!$omp end parallel
clause:

if([parallel :] scalar-logical-expression)
num_threads(scalar-integer-expression)
default(private | firstprivate | shared | none)
private(list)
firstprivate(list)
shared(list)
copyin(list)
reduction(reduction-identifier : list)
proc_bind(master | close | spread)

do [2.7.1] [2.5.1]
Specifies that the iterations of associated loops will be
executed in parallel by threads in the team.

!$omp do [clause[[,]clause] ...]
do-loops

[!$omp end do [nowait]]
clause:

private(list)
firstprivate(list)
lastprivate(list)
linear(list[: linear-step])
reduction(reduction-identifier : list)
schedule([modifier [, modifier] :] kind[, chunk_size])
collapse(n)
ordered [(n)]

kind:
• static: Iterations are divided into chunks of size

chunk_size and assigned to threads in the team in
round-robin fashion in order of thread number.

• dynamic: Each thread executes a chunk of iterations
then requests another chunk until no chunks remain
to be distributed.

• guided: Each thread executes a chunk of iterations
then requests another chunk until no chunks remain
to be assigned.

• auto: The decision regarding scheduling is delegated
to the compiler and/or runtime system.

• runtime: The schedule and chunk size are taken at
runtime from the run-sched-var ICV.

modifier:
• monotonic: Each thread executes the chunks that it is

assigned in increasing logical iteration order.
• nonmonotonic: Chunks are assigned to threads in any

order and the behavior of an application that depends
on execution order of the chunks is unspecified.

• simd: Ignored when the loop is not associated
with a SIMD construct, otherwise the
new_chunk_size for all except the first and last chunks
is chunk_size/simd_width * simd_width where
simd_width is an implementation-defined value.

sections [2.7.2] [2.5.2]
A noniterative worksharing construct that contains a set
of structured blocks that are to be distributed among and
executed by the threads in a team.

!$omp sections [clause[[,] clause] ...]
[!$omp section]
 structured-block
[!$omp section
 structured-block]
...

!$omp end sections [nowait]

clause:
private(list)
firstprivate(list)
lastprivate(list)
reduction(reduction-identifier : list)

single [2.7.3] [2.7.3]
Specifies that the associated structured block is executed
by only one of the threads in the team.

!$omp single [clause[[,]clause] ...]
structured-block

!$omp end single [end_clause[[,]end_clause] ...]
clause:

private(list)
firstprivate(list)

end_clause:
copyprivate(list)
nowait

workshare [2.7.4] [2.7.4]
Divides the execution of the enclosed structured block
into separate units of work, each executed only once by
one thread.

!$omp workshare
structured-block

!$omp end workshare [nowait]
The structured block must consist of only the following:

array or scalar assignments
FORALL or WHERE statements
WHERE, atomic, critical, or parallel constructs

simd [2.8.1] [2.8.1]
Applied to a loop to indicate that the loop can be
transformed into a SIMD loop.

!$omp simd [clause[[,]clause] ...]
do-loops

[!$omp end simd]
clause:

safelen(length)
simdlen(length)
linear(list[: linear-step])
aligned(list[: alignment])
private(list)
lastprivate(list)
reduction(reduction-identifier : list)
collapse(n)

declare simd [2.8.2] [2.8.2]
Applied to a function or a subroutine to enable the
creation of one or more versions that can process
multiple arguments using SIMD instructions from a single
invocation from a SIMD loop.

!$omp declare simd [(proc-name)] [clause[[,]clause] ...]
clause:

simdlen(length)
linear(linear-list[: linear-step])
aligned(argument-list[: alignment])
uniform(argument-list)
inbranch
notinbranch

do simd [2.8.3] [2.8.3]
Specifies a loop that can be executed concurrently using
SIMD instructions and that those iterations will also be
executed in parallel by threads in the team.

!$omp do simd [clause[[,]clause] ...]
do-loops

[!$omp end do simd [nowait]]
clause:

Any accepted by the simd or do directives with
identical meanings and restrictions.

task [2.9.1] [2.11.1]

Defines an explicit task. The data environment of the task
is created according to data-sharing attribute clauses on
task construct and any defaults that apply.
!$omp task [clause[[,]clause] ...]

structured-block
!$omp end task
clause may be:

if([task :] scalar-logical-expression)
final(scalar-logical-expression)
untied
default(private | firstprivate | shared | none)
mergeable
private(list)
firstprivate(list)
shared(list)
depend(dependence-type : list)
priority(priority-value)

Continued4

Page 2 OpenMP API 4.5 Fortran

© 2015 OpenMP ARB OMP1115F

Directives and Constructs for Fortran (continued)

taskloop [2.9.2]
Specifies that the iterations of one or more associated
loops will be executed in parallel using OpenMP tasks.
!$omp taskloop [clause[[,]clause] ...]

do-loops
[!$omp end taskloop]
clause:

if([taskloop :] scalar-logical-expression)
shared(list)
private(list)
firstprivate(list)
lastprivate(list)
default(private | firstprivate | shared | none)
grainsize(grain-size)
num_tasks(num-tasks)
collapse(n)
final(scalar-logical-expression)
priority(priority-value)
untied
mergeable
nogroup

taskloop simd [2.9.3]
Specifies that a loop that can be executed concurrently
using SIMD instructions, and that those iterations will also
be executed in parallel using OpenMP tasks.
!$omp taskloop simd [clause[[,]clause] ...]

do-loops
[!$omp end taskloop simd]
clause:

Any accepted by the simd or taskloop directives with
identical meanings and restrictions.

taskyield [2.9.4] [2.11.2]

Specifies that the current task can be suspended in favor
of execution of a different task.
!$omp taskyield

target data [2.10.1] [2.9.1]
Creates a device data environment for the extent of the
region.

!$omp target data clause[[[,]clause] ...]
structured-block
!$omp end target data
clause:

if([target data :] scalar-logical-expression)
device(scalar-integer-expression)
map([[map-type-modifier[,]] map-type :] list)
use_device_ptr(list)

target enter data [2.10.2]
Specifies that variables are mapped to a device data
environment.

!$omp target enter data [clause[[,]clause] ...]

clause:
if([target enter data :] scalar-logical-expression)
device(scalar-integer-expression)
map([[map-type-modifier[,]] map-type :] list)
depend(dependence-type : list)
nowait

target exit data [2.10.3]
Specifies that list items are unmapped from a device data
environment.

!$omp target exit data [clause[[,]clause] ...]

clause:
if([target exit data :] scalar-logical-expression)
device(scalar-integer-expression)
map([[map-type-modifier[,]] map-type :] list)
depend(dependence-type : list)
nowait

target [2.10.4] [2.9.2]
Map variables to a device data environment and execute
the construct on that device.

!$omp target [clause[[,]clause] ...]
structured-block
!$omp end target

clause:
if([target :] scalar-logical-expression)
device(scalar-integer-expression)
private(list)
firstprivate(list)
map([[map-type-modifier[,]] map-type :] list)
is_device_ptr(list)
defaultmap(tofrom : scalar)
nowait
depend(dependence-type : list)

target update [2.10.5] [2.9.3]
Makes the corresponding list items in the device data
environment consistent with their original list items,
according to the specified motion clauses.

!$omp target update clause clause[[[,]clause] ...]

clause: motion-clause or one of:
if([target update :] scalar-logical-expression)
device(scalar-integer-expression)
nowait
depend(dependence-type : list)

motion-clause:
to(list)
from(list)

declare target [2.10.6] [2.9.4]
A declarative directive that specifies that variables and
functions are mapped to a device.

!$omp declare target [clause[[,]clause] ...]

clause:
to(extended-list)
link(list)

!$omp declare target (extended-list)

extended-list: A comma-separated list of named variables,
procedure names, and named common blocks.

teams [2.10.7] [2.9.5]
Creates a league of thread teams where the master
thread of each team executes the region.

!$omp teams [clause[[,]clause] ...]
structured-block
!$omp end teams

clause:
num_teams(scalar-integer-expression)
thread_limit(scalar-integer-expression)
default(shared | firstprivate | private | none)
private(list)
firstprivate(list)
shared(list)
reduction(reduction-identifier : list)

distribute [2.10.8] [2.9.6]
Specifies loops which are executed by the thread teams.

!$omp distribute [clause[[,]clause] ...]
do-loops

[!$omp end distribute]

clause:
private(list)
firstprivate(list)
lastprivate(list)
collapse(n)
dist_schedule(kind[, chunk_size])

distribute simd [2.10.9] [2.9.7]
Specifies loops which are executed concurrently using
SIMD instructions.

!$omp distribute simd [clause[[,]clause] ...]
do-loops

[!$omp end distribute simd]

clause: Any of the clauses accepted by distribute or simd.

distribute parallel do [2.10.10] [2.9.8]
These constructs specify a loop that can be executed in
parallel by multiple threads that are members of multiple
teams.

!$omp distribute parallel do [clause[[,]clause] ...]
do-loops

[!$omp end distribute parallel do]

clause: Any accepted by the distribute or parallel do
directives.

distribute parallel do simd [2.10.11] [2.9.9]
These constructs specify a loop that can be executed
in parallel using SIMD semantics in the simd case by
multiple threads that are members of multiple teams.

!$omp distribute parallel do simd [clause[[,]clause] ...]
do-loops

[!$omp end distribute parallel do simd]

clause: Any accepted by the distribute or parallel do simd
directives.

parallel do [2.11.1] [2.10.1]
Shortcut for specifying a parallel construct containing one
or more associated loops and no other statements.

!$omp parallel do [clause[[,]clause] ...]
do-loops

[!$omp end parallel do]

clause: Any accepted by the parallel or do directives, with
identical meanings and restrictions.

parallel sections [2.11.2] [2.10.2]
Shortcut for specifying a parallel construct containing one
sections construct and no other statements.

!$omp parallel sections [clause[[,]clause] ...]
[!$omp section]
 structured-block
[!$omp section
 structured-block]
...

!$omp end parallel sections

clause: Any of the clauses accepted by the parallel or
sections directives, with identical meanings and
restrictions. The last section ends at the end parallel
sections directive. nowait cannot be specified on an
end parallel sections directive.

parallel workshare [2.11.3] [2.10.3]
Shortcut for specifying a parallel construct containing one
workshare construct and no other statements.

!$omp parallel workshare [clause[[,]clause] ...]
structured-block

!$omp end parallel workshare

clause: Any of the clauses accepted by the parallel
directive, with identical meanings and restrictions.

Continued4

© 2015 OpenMP ARB OMP1115F

OpenMP API 4.5 Fortran Page 3

Directives and Constructs for Fortran (continued)

parallel do simd [2.11.4] [2.10.4]
Shortcut for specifying a parallel construct containing one
do simd construct and no other statements.

!$omp parallel do simd [clause[[,]clause] ...]
do-loops

[!$omp end parallel do simd]

clause: Any accepted by the parallel or do simd directives
with identical meanings and restrictions. If an
end parallel do simd directive is not specified, then
an end parallel do simd directive is assumed at the
end of the do-loops.

target parallel [2.11.5]
Shortcut for specifying a target construct containing a
parallel construct and no other statements.

!$omp target parallel [clause[[,]clause] ...]
structured-block

!$omp end target parallel

clause: Any accepted by the target or parallel directives,
except for copyin, with identical meanings and
restrictions.

target parallel do [2.11.6]
Shortcut for specifying a target construct containing a
parallel do construct and no other statements.

!$omp target parallel do [clause[[,]clause] ...]
do-loops

[!$omp end target parallel do]

clause: Any accepted by the target or parallel do
directives, except for copyin, with identical meanings
and restrictions.

target parallel do simd [2.11.7]
Shortcut for specifying a target construct containing a
parallel do simd construct and no other statements.

!$omp target parallel do simd [clause[[,]clause] ...]
do-loops

[!$omp end target parallel do simd]

clause: Any accepted by the target or parallel do simd
directives, except for copyin, with identical meanings
and restrictions.

target simd [2.11.8]
Shortcut for specifying a target construct containing a
simd construct and no other statements.

!$omp target simd [clause[[,]clause] ...]
do-loops

[!$omp end target simd]

clause: Any accepted by the target or simd directives with
identical meanings and restrictions.

target teams [2.11.9] [2.10.5]
Shortcut for specifying a target construct containing a
teams construct and no other statements.

!$omp target teams [clause[[,]clause] ...]
structured-block

!$omp end target teams

clause:
Any accepted by the target or teams directives with
identical meanings and restrictions.

teams distribute [2.11.10] [2.10.6]
Shortcuts for specifying teams constructs containing a
distribute construct and no other statements.

!$omp teams distribute [clause[[,]clause] ...]
do-loops

[!$omp end teams distribute]

clause: Any accepted by the teams or distribute directives
with identical meanings and restrictions.

teams distribute simd [2.11.11] [2.10.7]
Shortcuts for specifying teams constructs containing a
distribute simd construct and no other statements.

!$omp teams distribute simd [clause[[,]clause] ...]
do-loops

[!$omp end teams distribute simd]

clause: Any accepted by the teams or distribute simd
directives with identical meanings and restrictions.

target teams distribute [2.11.12] [2.10.8]
Shortcuts for specifying a target construct containing a
teams distribute construct and no other statements.

!$omp target teams distribute [clause[[,]clause] ...]
do-loops

[!$omp end target teams distribute]

clause: Any accepted by the target or teams distribute
directives with identical meanings and restrictions.

target teams distribute simd [2.11.13] [2.10.9]
Shortcuts for specifying a target construct containing
a teams distribute simd construct and no other
statements.

!$omp target teams distribute simd [clause[[,]clause] ...]
do-loops

[!$omp end target teams distribute simd]

clause: Any accepted by the target or teams distribute
simd directives with identical meanings and
restrictions.

teams distribute parallel do [2.11.14] [2.10.10]
Shortcuts for specifying teams constructs containing a
distribute parallel do construct and no other statements.

!$omp teams distribute parallel do [clause[[,]clause] ...]
do-loops

[!$omp end teams distribute parallel do]

clause: Any clause used for teams or distribute
parallel do directives with identical meanings and
restrictions.

target teams distribute parallel do [2.11.15] [2.10.11]
Shortcut for specifying a target construct containing
a teams distribute parallel do construct and no other
statements.

!$omp target teams distribute parallel do &
!$omp [clause[[,]clause] ...]
 do-loops
[$omp end target teams distribute parallel do]

clause:
Any clause used for teams distribute parallel do
or target directives with identical meanings and
restrictions.

teams distribute parallel do simd [2.11.16] [2.10.12]
Shortcut for specifying a teams construct containing
a distribute parallel do simd construct and no other
statements.

!$omp teams distribute parallel do simd &
!$omp [clause[[,]clause] ...]
 do-loops
[!$omp end teams distribute parallel do simd]

clause: Any clause used for teams or distribute parallel
do simd directives with identical meanings and
restrictions.

target teams distribute parallel do simd
[2.11.17] [2.10.13]
Shortcut for specifying a target construct containing a
teams distribute parallel do simd construct and no other
statements.

!$omp target teams distribute parallel do simd &
!$omp [clause[[,]clause] ...]
do-loops
[!$omp end target teams distribute parallel do simd]

clause: Any clause used for teams distribute parallel do
simd or target directives with identical meanings and
restrictions.

master [2.13.1] [2.12.1]
Specifies a structured block that is executed by the
master thread of the team.

!$omp master
structured-block

!$omp end master

critical [2.13.2] [2.12.2]
Restricts execution of the associated structured block to a
single thread at a time.

!$omp critical [(name) [hint(hint-expression)]]
structured-block

!$omp end critical [(name)]

barrier [2.13.3] [2.12.3]
Placed only at a point where a base language statement
is allowed, this directive specifies an explicit barrier at the
point at which the construct appears.

!$omp barrier

taskwait [2.13.4] [2.12.4]
Specifies a wait on the completion of child tasks of the
current task.

!$omp taskwait

taskgroup [2.13.5] [2.12.5]
Specifies a wait on the completion of child tasks of the
current task, and waits for descendant tasks.

!$omp taskgroup
structured-block

!$omp end taskgroup

atomic [2.13.6] [2.12.6]
Ensures a specific storage location is accessed atomically.
May take one of the following seven forms:

!$omp atomic [seq_cst[,]] read [[,]seq_cst]
capture-statement

[!$omp end atomic]

!$omp atomic [seq_cst[,]] write [[,]seq_cst]
write-statement

[!$omp end atomic]

!$omp atomic [seq_cst[,]] update [[,]seq_cst]
update-statement

[!$omp end atomic]

!$omp atomic [seq_cst]
update-statement

[!$omp end atomic]

!$omp atomic [seq_cst[,]] capture [[,]seq_cst]
update-statement
capture-statement

!$omp end atomic

(atomic continues on the next page)

Continued4

Page 4 OpenMP API 4.5 Fortran

© 2015 OpenMP ARB OMP1115F

Directives and Constructs for Fortran (continued)

Runtime Library Routines for Fortran

Execution environment routines affect and monitor threads, processors, and the parallel environment. The library routines are external procedures.

Execution Environment Routines
omp_set_num_threads [3.2.1] [3.2.1]
Affects the number of threads used for subsequent parallel
regions not specifying a num_threads clause, by setting
the value of the first element of the nthreads-var ICV of the
current task to num_threads.

subroutine omp_set_num_threads(num_threads)
integer num_threads

omp_get_num_threads [3.2.2] [3.2.2]
Returns the number of threads in the current team. The
binding region for an omp_get_num_threads region is
the innermost enclosing parallel region. If called from the
sequential part of a program, this routine returns 1.

integer function omp_get_num_threads()

omp_get_max_threads [3.2.3] [3.2.3]
Returns an upper bound on the number of threads that
could be used to form a new team if a parallel construct
without a num_threads clause were encountered after
execution returns from this routine.

integer function omp_get_max_threads()

omp_get_thread_num [3.2.4] [3.2.4]
Returns the thread number of the calling thread, within the
current team.

integer function omp_get_thread_num()

omp_get_num_procs [3.2.5] [3.2.5]
Returns the number of processors that are available to the
device at the time the routine is called.

integer function omp_get_num_procs()

omp_in_parallel [3.2.6] [3.2.6]
Returns true if the active-levels-var ICV is greater than zero;
otherwise it returns false.

logical function omp_in_parallel()

omp_set_dynamic [3.2.7] [3.2.7]
Enables or disables dynamic adjustment of the number of
threads available for the execution of subsequent parallel
regions by setting the value of the dyn-var ICV.

subroutine omp_set_dynamic(dynamic_threads)
logical dynamic_threads

omp_get_dynamic [3.2.8] [3.2.8]
This routine returns the value of the dyn-var ICV, which
is true if dynamic adjustment of the number of threads is
enabled for the current task.

logical function omp_get_dynamic()

omp_get_cancellation [3.2.9] [3.2.9]
Returns the value of the cancel-var ICV, which is true if
cancellation is activated; otherwise it returns false.

logical function omp_get_cancellation()

omp_set_nested [3.2.10] [3.2.10]
Enables or disables nested parallelism, by setting the
nest-var ICV.

subroutine omp_set_nested(nested)
logical nested

omp_get_nested [3.2.11] [3.2.11]
Returns the value of the nest-var ICV, which indicates if
nested parallelism is enabled or disabled.

logical function omp_get_nested()

omp_set_schedule [3.2.12] [3.2.12]
Affects the schedule that is applied when runtime is used
as schedule kind, by setting the value of the run-sched-var
ICV.

subroutine omp_set_schedule(kind, chunk_size)
integer (kind=omp_sched_kind) kind
integer chunk_size
See kind for omp_get_schedule.

atomic (continued)

!$omp atomic [seq_cst[,]] capture [[,]seq_cst]
capture-statement
update-statement

!$omp end atomic

!$omp atomic [seq_cst[,]] capture [[,]seq_cst]
capture-statement
write-statement

!$omp end atomic

capture-stmt, write-stmt, or update-stmt may be:

capture-statement v = x
write-statement x = expr
update-statement x = x operator expr

x = expr operator x
x = intrinsic_procedure_name (x, expr_list)
x = intrinsic_procedure_name (expr_list, x)

intrinsic_procedure_name is one of MAX, MIN, IAND, IOR, IEOR
operator is one of +, *, -, /, .AND., .OR., .EQV., .NEQV.

flush [2.13.7] [2.12.7]
Makes a thread’s temporary view of memory consistent
with memory, and enforces an order on the memory
operations of the variables.

!$omp flush [(list)]

ordered [2.13.8] [2.12.8]
Specifies a structured block in a loop, simd, or loop SIMD
region that will be executed in the order of the loop
iterations.

!$omp ordered [clause[[,]clause] ...]
structured-block

!$omp end ordered

clause:
threads
simd

(ordered continues in the next column)

ordered (continued)
!$omp ordered clause[[[,]clause] ...]

clause:
depend (source)
depend (sink : vec)

cancel [2.14.1] [2.13.1]
Requests cancellation of the innermost enclosing region
of the type specified.

!$omp cancel construct-type-clause[[,]if-clause]

construct-type-clause:
parallel
sections
do
taskgroup

if-clause:
if(scalar-logical-expression)

cancellation point [2.14.2] [2.13.2]
Introduces a user-defined cancellation point at which
tasks check if cancellation of the innermost enclosing
region of the type specified has been activated.

!$omp cancellation point construct-type-clause

construct-type-clause:
parallel
sections
do
taskgroup

threadprivate [2.15.2] [2.14.2]
Specifies that variables are replicated, with each thread
having its own copy. Each copy of a threadprivate variable
is initialized once prior to the first reference to that copy.

!$omp threadprivate(list)

list:
A comma-separated list of named variables and
named common blocks. Common block names must
appear between slashes.

declare reduction [2.16] [2.15]
Declares a reduction-identifier that can be used in a
reduction clause.

!$omp declare reduction(
reduction-identifier : type-list : combiner)
[initializer-clause]

reduction-identifier:
A base language identifier, user defined operator, or
one of the following operators:

+, -, *, .and., .or., .eqv., .negv., or one of the
following intrinsic procedure names: max, min,
iand, ior, ieor.

type-list: A list of type specifiers

combiner: An assignment statement or a subroutine
name followed by an argument list

initializer-clause: initializer (initializer-expr) where
initializer-expr is omp_priv = initializer or
function-name (argument-list)

Continued4

© 2015 OpenMP ARB OMP1115F

OpenMP API 4.5 Fortran Page 5

Runtime Library Routines for Fortran (continued) Return types are shown in green.

omp_get_schedule [3.2.13] [3.2.13]
Returns the value of run-sched-var ICV, which is the
schedule applied when runtime schedule is used.

subroutine omp_get_schedule(kind, chunk_size)
integer (kind=omp_sched_kind) kind
integer chunk_size
kind for omp_set_schedule and omp_get_schedule is an

implementation-defined schedule or:
omp_sched_static = 1
omp_sched_dynamic = 2
omp_sched_guided = 3
omp_sched_auto = 4

omp_get_thread_limit [3.2.14] [3.2.14]
Returns the value of the thread-limit-var ICV, which is the
maximum number of OpenMP threads available.

integer function omp_get_thread_limit()

omp_set_max_active_levels [3.2.15] [3.2.15]
Limits the number of nested active parallel regions, by
setting max-active-levels-var ICV.

subroutine omp_set_max_active_levels(max_levels)
integer max_levels

omp_get_max_active_levels [3.2.16] [3.2.16]
Returns the value of max-active-levels-var ICV, which
determines the maximum number of nested active parallel
regions.

integer function omp_get_max_active_levels()

omp_get_level [3.2.17] [3.2.17]
For the enclosing device region, returns the levels-vars ICV,
which is the number of nested parallel regions that enclose
the task containing the call.

integer function omp_get_level()

omp_get_ancestor_thread_num [3.2.18] [3.2.18]
Returns, for a given nested level of the current thread, the
thread number of the ancestor of the current thread.

integer function omp_get_ancestor_thread_num(level)
integer level

omp_get_team_size [3.2.19] [3.2.19]
Returns, for a given nested level of the current thread,
the size of the thread team to which the ancestor or the
current thread belongs.

integer function omp_get_team_size(level)
integer level

omp_get_active_level [3.2.20] [3.2.20]
Returns the value of the active-level-vars ICV, which
determines the number of active, nested parallel regions
enclosing the task that contains the call.

integer function omp_get_active_level()

omp_in_final [3.2.21] [3.2.21]
Returns true if the routine is executed in a final task region;
otherwise, it returns false.

logical function omp_in_final()

omp_get_proc_bind [3.2.22] [3.2.22]
Returns the thread affinity policy to be used for the
subsequent nested parallel regions that do not specify a
proc_bind clause.

integer (kind=omp_proc_bind_kind)&
function omp_get_proc_bind()

Returns one of:
 omp_proc_bind_false = 0
 omp_proc_bind_true = 1
 omp_proc_bind_master = 2
 omp_proc_bind_close = 3
 omp_proc_bind_spread = 4

omp_get_ num_places [3.2.23]
Returns the number of places available to the execution
environment in the place list.

integer function omp_get_num_places()

omp_get_place_num_procs [3.2.24]
Returns the number of processors available to the
execution environment in the specified place.

integer function omp_get_place_num_procs(place_num)
integer place_num

omp_get_place_proc_ids [3.2.25]
Returns numerical identifiers of the processors available
to the execution environment in the specified place.

subroutine omp_get_place_proc_ids(place_num, ids)
integer place_num
integer ids (*)

omp_get_place_num [3.2.26]
Returns the place number of the place to which the
encountering thread is bound.

integer function omp_get_place_num()

omp_get_partition_num_places [3.2.27]
Returns the number of places in the place partition of the
innermost implicit task.

integer function omp_get_partition_num_places()

omp_get_partition_place_nums [3.2.28]
Returns the list of place numbers corresponding to the
places in the place-partition-var ICV of the innermost
implicit task.

subroutine omp_get_partition_place_nums(place_nums)
integer place_nums (*)

omp_set_default_device [3.2.29] [3.2.23]
Assigns the value of the default-device-var
ICV, which determines default target device.
subroutine omp_set_default_device(device_num)
integer device_num

omp_get_default_device [3.2.30] [3.2.24]
Returns the value of the default-device-var
ICV, which determines default target device.
integer function omp_get_default_device()

omp_get_num_devices [3.2.31] [3.2.25]
Returns the number of target devices.
integer function omp_get_num_devices()

omp_get_num_teams [3.2.32] [3.2.26]
Returns the number of teams in the current teams
region, or 1 if called from outside of a teams region.
integer function omp_get_num_teams()

omp_get_team_num [3.2.33] [3.2.27]
Returns the team number of the calling thread. The team
number is an integer between 0 and one less than the
value returned by omp_get_num_teams, inclusive.
integer function omp_get_team_num()

omp_is_initial_device [3.2.34] [3.2.28]
Returns true if the current task is executing on the host
device; otherwise, it returns false.
integer function omp_is_initial_device()

omp_get_initial_device [3.2.35]
Returns a device number representing the host device.
integer function omp_get_initial_device()

omp_get_max_task_priority [3.2.36]
Returns the maximum value that can be specified in the
priority clause.
integer function omp_get_max_task_priority()

Lock Routines
General-purpose lock routines. Two types of locks are
supported: simple locks and nestable locks. A nestable
lock can be set multiple times by the same task before
being unset; a simple lock cannot be set if it is already
owned by the task trying to set it.
Initialize lock [3.3.1] [3.3.1]
Initialize an OpenMP lock.
subroutine omp_init_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_init_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Initialize lock with hint [3.3.2]
Initialize an OpenMP lock with a hint.

subroutine omp_init_lock_with_hint(svar, hint)
integer (kind=omp_lock_kind) svar
integer (kind=omp_lock_hint_kind) hint

subroutine omp_init_nest_lock_with_hint(nvar, hint)
integer (kind=omp_nest_lock_kind) nvar
integer (kind=omp_lock_hint_kind) hint

omp_nest_lock_hint_kind:
omp_lock_hint_none = 0
omp_lock_hint_uncontended = 1
omp_lock_hint_contended = 2
omp_lock_hint_nonspeculative = 4
omp_lock_hint_speculative = 8

Destroy lock [3.3.3] [3.3.2]
Ensure that the OpenMP lock is uninitialized.
subroutine omp_destroy_lock(svar)
integer (kind=omp_lock_kind) svar
subroutine omp_destroy_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Set lock [3.3.4] [3.3.3]
Sets an OpenMP lock. The calling task region is suspended
until the lock is set.
subroutine omp_set_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_set_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Unset lock [3.3.5] [3.3.4]
Unsets an OpenMP lock.
subroutine omp_unset_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_unset_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Test lock [3.3.6] [3.3.5]
Attempt to set an OpenMP lock but do not suspend
execution of the task executing the routine.
logical function omp_test_lock(svar)
integer (kind=omp_lock_kind) svar

integer function omp_test_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Timing Routines
Timing routines support a portable wall clock timer. These
record elapsed time per-thread and are not guaranteed to
be globally consistent across all the threads participating in
an application.

omp_get_wtime [3.4.1] [3.4.1]
Returns elapsed wall clock time in seconds.
double precision function omp_get_wtime()

omp_get_wtick [3.4.2] [3.4.2]
Returns the precision of the timer (seconds between ticks)
used by omp_get_wtime.

double precision function omp_get_wtick()

Page 6 OpenMP API 4.5 Fortran

© 2015 OpenMP ARB OMP1115F

Clauses
The set of clauses that is valid on a particular directive is described with the directive. Most clauses accept a comma-separated list of list items. All list items appearing in a clause
must be visible, according to the scoping rules of the base language. Not all of the clauses listed in this section are valid on all directives.

If Clause [2.12]
The effect of the if clause depends on the construct to
which it is applied.

if([directive-name-modifier :] scalar-logical-expression))
For combined or composite constructs, it only applies
to the semantics of the construct named in the
directive-name-modifier if one is specified. If none is
specified for a combined or composite construct then
the if clause applies to all constructs to which an if clause
can apply.

Depend Clause [2.13.9]
Enforces additional constraints on the scheduling of
tasks or loop iterations. These constraints establish
dependences only between sibling tasks or between loop
iterations.

depend(dependence-type : list)
Where dependence-type may be in, out, or inout:

in: The generated task will be a dependent task of
all previously generated sibling tasks that reference
at least one of the list items in an out or inout
dependence-type list.

out and inout: The generated task will be a dependent
task of all previously generated sibling tasks that
reference at least one of the list items in an in, out, or
inout dependence-type list.

depend(dependence-type)
Where dependence-type may be source.

depend(dependence-type [: vec])
Where dependence-type may be sink and is the iteration
vector, which has the form:
x1 [± d1], x2 [± d2], . . . , xn [± dn]

Data Sharing Attribute Clauses [2.15.3] [2.9.3]
Data-sharing attribute clauses apply only to variables
whose names are visible in the construct on which the
clause appears.

default(private | firstprivate |shared | none)
Explicitly determines the default data-sharing attributes
of variables that are referenced in a parallel, teams, or
task generating construct, causing all variables referenced
in the construct that have implicitly determined data-
sharing attributes to be shared.

shared(list)
Declares one or more list items to be shared by tasks
generated by a parallel, teams, or task generating
construct. The programmer must ensure that storage
shared by an explicit task region does not reach the end
of its lifetime before the explicit task region completes its
execution.

private(list)
Declares one or more list items to be private to a task
or a SIMD lane. Each task that references a list item
that appears in a private clause in any statement in the
construct receives a new list item.

firstprivate(list)
Declares list items to be private to a task, and initializes
each of them with the value that the corresponding
original item has when the construct is encountered.

lastprivate(list)
Declares one or more list items to be private to an implicit
task or to a SIMD lane, and causes the corresponding
original list item to be updated after the end of the
region.

linear(linear-list[:linear-step])
Declares one or more list items to be private to a SIMD
lane and to have a linear relationship with respect to
the iteration space of a loop. Clause linear-list is list or
modifer(list). modifier may be one of ref, val, or uval.

reduction(reduction-identifier : list)
Specifies a reduction-identifier and one or more list items.
The reduction-identifier must match a previously declared
reduction-identifier of the same name and type for each
of the list items.

Implicitly Declared Fortran reduction-identifiers
Identifier Initializer Combiner

+ omp_priv = 0 omp_out = omp_in +
omp_out

* omp_priv = 1 omp_out = omp_in *
omp_out

- omp_priv = 0 omp_out = omp_in +
omp_out

.and. omp_priv = .true. omp_out = omp_in .and.
omp_out

.or. omp_priv = .false. omp_out = omp_in .or.
omp_out

.eqv. omp_priv = .true. omp_out = omp_in .eqv.
omp_out

.neqv. omp_priv = .false. omp_out = omp_in
.neqv. omp_out

max
omp_priv = Least
representable number in
the reduction list item type

omp_out = max(
omp_in, omp_out)

min
omp_priv = Largest
representable number in
the reduction list item type

omp_out = min(
omp_in, omp_out)

iand omp_priv = All bits on omp_out = iand(
omp_in, omp_out)

ior omp_priv = 0 omp_out = ior(
omp_in, omp_out)

ieor omp_priv = 0 omp_out = ieor(
omp_in, omp_out)

SIMD Clauses [2.8.1]

safelen(length)
If used then no two iterations executed concurrently
with SIMD instructions can have a greater distance in the
logical iteration space than its value.

collapse(n)
A constant positive integer expression that specifies how
many loops are associated with the loop construct.

simdlen(length)
A constant positive integer expression that specifies the
number of concurrent arguments of the function.

aligned(argument-list[:alignment])
Declares one or more list items to be aligned to the
specified number of bytes. alignment, if present, must
be a constant positive integer expression. If no optional
parameter is specified, implementation-defined default
alignments for SIMD instructions on the target platforms
are assumed.

uniform(argument-list)
Declares one or more arguments to have an invariant
value for all concurrent invocations of the function in the
execution of a single SIMD loop.

inbranch
Specifies that the function will always be called from
inside a conditional statement of a SIMD loop.

notinbranch
Specifies that the function will never be called from inside
a conditional statement of a SIMD loop.

Data Copying Clauses [2.14.4] [2.9.4]
copyin(list)
Copies the value of the master thread’s threadprivate
variable to the threadprivate variable of each other
member of the team executing the parallel region.

copyprivate(list)
Broadcasts a value from the data environment of one
implicit task to the data environments of the other
implicit tasks belonging to the parallel region.

Map Clause [2.14.5]
map([map-type:]ist)
Map a variable from the task’s data environment to the
device data environment associated with the construct.
map-type:

alloc: On entry to the region each new corresponding
list item has an undefined initial value.
to: On entry to the region each new corresponding list
item is initialized with the original list item’s value.
from: On exit from the region the corresponding list
item’s value is assigned to each original list item
tofrom: (Default) On entry to the region each new
corresponding list item is initialized with the original
list item’s value, and on exit from the region the
corresponding list item’s value is assigned to each
original list item.
release: On exit from the region, the corresponding list
item’s reference count is decremented by one.
delete: On exit from the region, the corresponding list
item’s reference count is set to zero.

map-type-modifer:
Must be always.

Defaultmap Clause [2.15.5.2]
defaultmap(tofrom:scalar)
Causes all scalar variables referenced in the construct
that have implicitly determined data-mapping attributes
to have the tofrom map-type.

Tasking Clauses [2.9]

final(scalar-logical-expr)
The generated task will be a final task if the final
expression evaluates to true.

mergeable
Specifies that the generated task is a mergeable task.

priority(priority-value)
A non-negative numerical scalar expression that specifies
a hint for the priority of the generated task.

grainsize(grain-size)
Causes the number of logical loop iterations assigned
to each created task to be greater than or equal to the
minimum of the value of the grain-size expression and
the number of logical loop iterations, but less than two
times the value of the grain-size expression.

num_tasks(num-tasks)
Create as many tasks as the minimum of the
num-tasks expression and the number of logical loop
iterations.

© 2015 OpenMP ARB OMP1115F

OpenMP API 4.5 Fortran Page 7

ICV Environment Variable Values
The host and target device ICVs are initialized before any OpenMP API construct or OpenMP API routine executes. After the initial values are assigned, the values of any
OpenMP environment variables that were set by the user are read and the associated ICVs for the host device are modified accordingly. The method for initializing a
target device’s ICVs is implementation defined.

Table of ICV Initial Values (Table 2.1) and Ways to Modify and to Retrieve ICV Values (Table 2.2) [2.3.2-3] [2.3.2-3]

ICV Environment variable Initial value Ways to modify value Ways to retrieve value Ref.

dyn-var OMP_DYNAMIC
Initial value is implementation defined if the
implementation supports dynamic adjustment of the
number of threads; otherwise, the initial value is false.

omp_set_dynamic() omp_get_dynamic() Sec 4.3

nest-var OMP_NESTED false omp_set_nested() omp_get_nested() Sec 4.6

nthreads-var OMP_NUM_THREADS Implementation defined. The value of this ICV is a list. omp_set_num_threads() omp_get_max_threads() Sec 4.2

run-sched-var OMP_SCHEDULE Implementation defined omp_set_schedule() omp_get_schedule() Sec 4.1

def-sched-var (none) Implementation defined (none) (none) ---

bind-var OMP_PROC_BIND Implementation defined. The value of this ICV is a list. (none) omp_get_proc_bind() Sec 4.4

stacksize-var OMP_STACKSIZE Implementation defined (none) (none) Sec 4.7

wait-policy-var OMP_WAIT_POLICY Implementation defined (none) (none) Sec 4.8

thread-limit-var OMP_THREAD_LIMIT Implementation defined thread_limit clause omp_get_thread_limit() Sec 4.10

max-active-levels-var OMP_MAX_ACTIVE_LEVELS The initial value is the number of levels of parallelism
that the implementation supports. omp_set_max_active_levels() omp_get_max_active_levels() Sec 4.9

active-levels-var (none) zero (none) omp_get_active_level() ---

levels-var (none) zero (none) omp_get_level() ---

place-partition-var OMP_PLACES Implementation defined (none)

omp_get_partition_num_places()
omp_get_partition_place_nums()
omp_get_place_num_procs()
omp_get_place_proc_ids()

Sec 4.5

cancel-var OMP_CANCELLATION false (none) omp_get_cancellation() Sec 4.11

default-device-var OMP_DEFAULT_DEVICE Implementation defined omp_set_default_device() omp_get_default_device() Sec 4.13

max-task-priority-var OMP_MAX_TASK_PRIORITY zero (none) omp_get_max_task_priority() Sec 4.14

Environment Variables [4]

Environment variable names are upper case, and the values assigned to them are case insensitive and may have leading and trailing white space.

[4.11] [4.11] OMP_CANCELLATION policy
Sets the cancel-var ICV. policy may be true or false.
If true, the effects of the cancel construct and of
cancellation points are enabled and cancellation is
activated

[4.13] [4.13] OMP_DEFAULT_DEVICE device
Sets the default-device-var ICV that controls the default
device number to use in device constructs.

[4.12] [4.12] OMP_DISPLAY_ENV var
If var is TRUE, instructs the runtime to display the
OpenMP version number and the value of the ICVs
associated with the environment variables as name=value
pairs. If var is VERBOSE, the runtime may also display
vendor-specific variables. If var is FALSE, no information
is displayed.

[4.3] [4.3] OMP_DYNAMIC dynamic
Sets the dyn-var ICV. If true, the implementation may
dynamically adjust the number of threads to use for
executing parallel regions.

[4.9] [4.9] OMP_MAX_ACTIVE_LEVELS levels
Sets the max-active-levels-var ICV that controls the
maximum number of nested active parallel regions.

[4.14] OMP_MAX_TASK_PRIORITY levels
Sets the max-task-priority-var ICV that controls the use of
task priorities.

[4.6] [4.6] OMP_NESTED nested
Sets the nest-var ICV to enable or to disable nested
parallelism. Valid values for nested are true or false.

[4.2] [4.2] OMP_NUM_THREADS list
Sets the nthreads-var ICV for the number of threads to
use for parallel regions.

[4.5] [4.5] OMP_PLACES places
Sets the place-partition-var ICV that defines the OpenMP
places available to the execution environment. places is
an abstract name (threads, cores, sockets, or imple-
mentation-defined), or a list of non-negative numbers.

[4.4] [4.4] OMP_PROC_BIND policy
Sets the value of the global bind-var ICV, which sets the
thread affinity policy to be used for parallel regions at
the corresponding nested level. policy can be the values
true, false, or a comma-separated list of master, close, or
spread in quotes.

[4.1] [4.1] OMP_SCHEDULE type[,chunk]
Sets the run-sched-var ICV for the runtime schedule type
and chunk size. Valid OpenMP schedule types are static,
dynamic, guided, or auto.

[4.7] [4.7] OMP_STACKSIZE size[B | K | M | G]
Sets the stacksize-var ICV that specifies the size
of the stack for threads created by the OpenMP
implementation. size is a positive integer that specifies
stack size. If unit is not specified, size is measured in
kilobytes (K).

[4.10] [4.10] OMP_THREAD_LIMIT limit
Sets the thread-limit-var ICV that controls the number of
threads participating in the OpenMP program.

[4.8] [4.8] OMP_WAIT_POLICY policy
Sets the wait-policy-var ICV that provides a hint to an
OpenMP implementation about the desired behavior
of waiting threads. Valid values for policy are ACTIVE
(waiting threads consume processor cycles while waiting)
and PASSIVE.

Page 8 OpenMP API 4.5 Fortran

© 2015 OpenMP ARB OMP1115F

Copyright © 2015 OpenMP Architecture Review Board.
Permission to copy without fee all or part of this material is
granted, provided the OpenMP Architecture Review Board
copyright notice and the title of this document appear.
Notice is given that copying is by permission of the OpenMP
Architecture Review Board. Products or publications

based on one or more of the OpenMP specifications must
acknowledge the copyright by displaying the following
statement: “OpenMP is a trademark of the OpenMP
Architecture Review Board. Portions of this product/
publication may have been derived from the OpenMP
Language Application Program Interface Specification.”

®

Notes

