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Introduction: The Genomics Big Data Problem

Genomic sequencing is being leveraged for a wide range of applications such as helping plant breeders
select for traits for higher-yielding, more nutritious, and disease-resistant crops; diagnosing and treating
diseases; and tracing the ancestry of organisms in the tree of life. With the cost of this technology dropping
precipitously since the advent of High-Throughput Sequencing (HTS)[3], sequence data are being generated
at an accelerating pace, challenging the ability to store, process, and analyze it.

Much performance-critical software in this space is coded in C or C++, with POSIX threads (pthreads)
being the most commonly-used shared-memory parallel programming API. However, this common choice
of pthreads by application programmers should be reevaluated: OpenMP support is nearly ubiquitous
in C/C++ compilers; OpenMP tasks can succinctly express task parallelism that previously required a
non-standard library or bespoke implementation in the lower-level pthreads API; and OpenMP runtimes
provide a well-tested means of controlling thread affinity and task execution that would be challenging to
replicate in bespoke pthreads libraries.

In this case study, OpenMP task parallelism is retrofitted into an existing nontrivial pthreads-based bioin-
formatics application to improve the parallel efficiency and take advantage of additional opportunities for
concurrency. Replacing separate groups of pthreads utilized in application and library code with OpenMP
tasks generated in both allows concurrent execution of application and library code by the same OpenMP
team of threads, facilitating higher processor utilization while elegantly avoiding the load-balancing challenges
that nested thread teams would pose.

Sequence Alignment Sorting

An HTS workflow can involve many software applications (see Figure 1), each with its own performance
characteristics and challenges. Many HTS workflows use an application called a sequence aligner to align
sequence reads (short segments of DNA generated from the organism(s) of interest) to a reference genome
assembly. The resulting sequence alignments are typically then sorted by their position on the reference
genome to make downstream analysis much more efficient.

SAMtools is a command-line utility that is commonly used to sort (and perform other operations on) sequence
alignment data. SAMtools leverages the co-developed library HTSlib for I/O of supported sequence alignment
file formats. Both are coded in C.

A Binary Alignment/Map (BAM) file is one such sequence alignment file format supported by HTSlib[1]. A
BAM file partitions an ordering of sequence alignments into a sequence of ≤ 64 KiB blocks, each of which is
compressed using a “gunzip-compatible” format called BGZF and then concatenated into a single file or data
stream.

Reading, decoding, sorting, encoding, and writing large sequence alignment files (tens or hundreds of GBs)
can be time-consuming and resource intensive. Initially developed as a single-threaded application, SAMtools
has added pthreads-based multithreading to handle increasingly-larger sequence alignment data sets. However,
performance analysis (using HPCToolkit[4]) of SAMtools 1.3.1 on an internal (in-memory) sort of a 24.6 GiB
BAM file (102.6 GiB uncompressed) revealed substantial room for improvement: almost 80% of the total
execution time was single-threaded, and there was much processor idle time during the multithreaded phase
(see Table 1).
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Figure 1: Initial stages of a hypothetical HTS workflow

Table 1: SAMtools 1.3.1 internal sort execution profile

SAMtools Sort Execution Phase Execution time (seconds) Comments
Reading / Decoding 336 single-threaded
Sorting 195 single-threaded for internal sort
Encoding 175 multi-threaded (pthreads) but

with low parallel efficiency
Deallocating Data Structures 111 > 4 × 1011 calls to free() (2 for

each BAM record)

OpenMP Task Parallelism

SAMtools and HTSlib were augmented with OpenMP task parallelism as described below to:

1. Overlap decoding of BGZF blocks (HTSlib) and sorting of groups of uncompressed sequence alignment
records (SAMtools)

2. Improve the parallel efficiency of BGZF encoding the resulting sorted sequence alignments (HTSlib)

A high-level overview of how this was achieved for internal sorting is described below. Additional non-
OpenMP-related optimizations, as well as optimizations for external (out-of-core) sorting, are presented the
associated journal article[2].

The master thread repeatedly calls an HTSlib-OpenMP routine (bam_read1(), described in Listing 2) to
return the next sequence alignment record in the input (unsorted) BAM file. After collecting the next
220 records (an empirically chosen number), or upon reaching the end of the input file, the master thread
generates a sort task to sort those ≤ 220 records (see Listing 1).
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Listing 1: Abstraction of SAMtools-OpenMP parallel regions for BAM file sorting

// Define a threadprivate merge-sort buffer for up to 2^20 pointers to BAM records
// to avoid overhead from repeated memory allocation/deallocation.
// (pthreads version mallocs and frees a buffer for each chunk sorted by each thread)
#define NBAM_PER_SORT 1048576
static bam1_t *sort_tmp[NBAM_PER_SORT];
#pragma omp threadprivate(sort_tmp)

#pragma omp parallel
#pragma omp master
while (bam_read1(...) != EOF) {

if (/*global sort buffer full*/ ) {
sort(/*current partition of <= NBAM_PER_SORT records*/ , sort_tmp)
// wait for any sort tasks to finish
#pragma omp taskwait
while(/*in-memory merge of sorted partitions*/ )

// generates encode() OpenMP tasks
bgzf_write(/*output to a temporary BAM file*/ )

} else {
if (/*NBAM_PER_SORT sequence alignment records read since last sort task*/ ) {

#pragma omp task
sort(/*current partition of NBAM_PER_SORT records*/ , sort_tmp)

}
}

}

sort(/*last partition of <= NBAM_PER_SORT records*/ , sort_tmp) // in master thread

#pragma omp parallel
#pragma omp master
while (/*merge in-memory partitions with any written to temporary file*/ )

bgzf_write(/*output to final BAM file*/ ) // generates encode() OpenMP tasks

Inside bam_read1(), the master thread immediately returns the next sequence alignment record if the BGZF
block(s) containing it have already been read, decoded (decompressed), and cached.

Otherwise, the master thread reads ahead a fixed number of BGZF blocks, creating tasks to decode them.
While a dedicated read-ahead thread could avoid input “stalls”, it was not attempted due to the difficulty
of implementing in OpenMP in a manner that preserved backwards-compatibility in the existing HTSlib
bam_read1() routine.

Decoding is less computationally-intensive than encoding. How much work should each task do (i.e., how
many BGZF blocks should each task decode)? Too coarse-grained, and load imbalance can result. Too
fine-grained, and the overhead of task creation, task scheduling, and task switching can outweigh performance
benefits from the additional exposed concurrency.

To answer this question, a task microbenchmark[5] was created to simulate the creation, scheduling, and
execution (with a very lightweight kernel) of over a half million tasks (corresponding to the number of BGZF
blocks in the benchmark BAM file). Compiled with GCC 6.2.0 and run with 32 threads on a NERSC Cori
Haswell node, the microbenchmark completed in under 1.5 seconds. This suggested that the finest level
of task granularity possible in this case—one BGZF block per task—could maximize concurrency without
substantially impacting performance.
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A taskgroup construct awaits the completion of the read-ahead tasks before the immediate next sequence
alignment record is returned. A taskgroup is preferred over a taskwait construct, as the latter would also
(unnecessarily) wait for the completion of concurrently-executing sort tasks generated by the master thread
in the SAMtools-OpenMP code.

The resulting algorithm is presented in Listing 2.

Listing 2: Simplification of OpenMP-related code invoked during HTSlib-OpenMP bam_read1()

// Return next decoded BAM record in BGZF stream
bam_read1(...) {

if (/*next BAM record in current decoded BGZF block*/ )
return /* next BAM record in current block */ ;

else {
// master thread checks if next BAM record is in a cached decoded BGZF block.
// not necessary to call within an OpenMP critical section, as updates to the
// cache are done only from the taskgroup section below
if (load_block_from_cache(...))

return /* next BAM record in cached decoded BGZF block */ ;
else {

// next record not in a cached decoded BGZF block.
// In the master thread, read ahead a fixed number of BGZF blocks.
// Decode and cache each one in a separate OpenMP task.
#pragma omp taskgroup
{

while (/*read ahead a fixed number of BGZF blocks*/ ) {
#pragma omp task
{

decode(/*BGZF block*/ );
#pragma omp critical (cache)

// evicts another cached block if cache buffer full
cache(/*decoded block*/ );

} // task
} // while

} // taskgroup
load_block_from_cache(...); // now the decoded BGZF block should be cached
return /* next BAM record in cached decoded BGZF block */ ;

} // else
} // else

} // bam_read1()

After all partitions of ≤ 220 sequence alignment records have been sorted, the master thread merges these
into a circular buffer, and calls an HTSlib routine bgzf_write(), which buffers input data into 64 KiB blocks
and (possibly repeatedly) calls an HTSlib-OpenMP routine (described here as encode()) that generates an
OpenMP task to BGZF encode (compress) and output its input block.

The encode() routine (see Listing 3) coordinates the BGZF compression of blocks from an input circular
buffer to an intermediate circular buffer before output occurs. If the input circular buffer is almost full (i.e.,
only one unused 64 KiB slot remains), the master thread spin-waits in a loop until the subsequent slot is
available, blocking in encode(). In this case, OpenMP taskyield construct allows the master thread to
participate in the execution of compression tasks to help drain the input circular buffer1.

1At least in principle: taskyield is a no-op in GCC 6.2.0 (https://gcc.gnu.org/ml/gcc-patches/2011-08/msg00080.html), so
the effective behavior of this loop is to spin-wait
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Instead of using a dedicated writer thread/task, which would be syntactically-difficult to implement while
maintaining API compatibility, the OpenMP tasks generated in encode() that perform compression also
perform the output. A ticket-lock-based algorithm is used to serialize and order the output. A notable
modification to the usual ticket lock algorithm is that instead of spin-waiting on the ticket lock when a
task cannot immediately output its compressed block due to ordering constraints, the task “abandons” its
compressed block for another task to output (specifically, the task that outputs the preceding block) so the
executing thread can execute another task. Correspondingly, a task that has acquired the ticket lock (and
entered the following critical section) can output not only the block it compressed, but also all subsequent
consecutive “abandoned” compressed blocks, updating the ticket lock value as it proceeds.

Listing 3: Algorithm for HTSlib-OpenMP routine invoked by the master thread that generates OpenMP
tasks for concurrent block compression and ordered output without a dedicated writer thread/task.

// Generate an OpenMP task to compress and ouptut data of length Ul
// starting at U[(*next_ticket) % NSLOTS]
encode(char U[NSLOTS][SLOT_SIZE], // (input) circular buffer for uncompressed blocks

char C[NSLOTS][SLOT_SIZE], // circular buffer for compressed blocks before output
int U_len[NSLOTS], // if U_len[slot] > 0, U[slot] is in use
int C_len[NSLOTS], // if C_len[slot] > 0, C[slot] is in use
const int Ul, // length in bytes of input uncompressed block in

// U[(*next_ticket) % NSLOTS]
int *next_ticket, // sequentially-increasing ticket-lock value to order

// output (initially 0)
int *now_serving) // ticket-lock value of next slot in C[] to be output

{ // (initially 0)
int my_ticket = (*next_ticket)++;
int slot = my_ticket % NSLOTS; // U[slot] contains input uncompressed data
int next_slot = (slot + 1) % NSLOTS;
do {

int u_len_private;
#pragma omp atomic read
u_len_private = U_len[next_slot];
if (u_len_private == 0) break; // U[next_slot] is unused
// else U[next_slot] is still in use (this algorithm leaves it unused so encode()
// may subsequently be safely invoked). taskyield pauses task generation & allows
// the master thread to execute other (compress) tasks instead of spin-waiting
// (if supported by the OpenMP runtime; otherwise this may be just a spin wait)
#pragma omp taskyield

} while(true);
U_len[slot] = Ul; // mark U[slot] as in use
#pragma omp task firstprivate(U, C, U_len, C_len, now_serving, my_ticket)
{

size_t compressed_length;
// BGZF encode U[slot] into C[slot]
compress(C[slot], &compressed_length, U[slot], U_len[slot]);
// Store compressed data length in C_len[slot] to indicate C[slot] is ready for
// (possibly another task to) output. Need sequential consistency so another
// thread can see updated data in C[slot].
#pragma omp atomic write seq_cst
C_len[slot] = compressed_length;
int now_serving_private;
#pragma omp atomic read
now_serving_private = *now_serving;
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// if it is this task's C[slot] turn to be output, then enter critical section.
// otherwise leave C[slot] for the task that outputs the previous slot in C[].
if (now_serving_private == my_ticket)
#pragma omp critical (encode)
{

// need to check the value of now_serving *again* in case another task
// previously in the critical section already output C[slot]
#pragma omp atomic read
now_serving_private = now_serving;
// if another task has not output our C[slot], then now_serving will not have
// changed; otherwise, it is some other C[slot]'s turn, and there will
// (eventually) be another task whose turn it is (according to now_serving)
// waiting to enter the critical region to output it, so we exit the task region
if (now_serving_private == my_ticket)
// output C[slot] and any subsequent consecutive slots in C[] that were
// "abandoned" by other tasks
do {

output(C[slot], compressed_length);
C_len[slot] = 0; // mark C[slot] as having no compressed data to output
// Mark U[slot] as unused so the master thread can write new uncompressed
//data into U[slot] and generate a task to compress it into C[slot]
#pragma omp atomic write
U_len[slot] = 0;
slot = (slot + 1) % NBLOCKS;
#pragma omp atomic update
(*now_serving)++; // next slot in C[]'s turn to be output
// Get the length (in bytes) of compressed data in the next slot of C[].
// Need sequentially-consistent atomic read so the thread executing this
// task can see data in C[slot] that was flushed during another task's
// sequentially-consistent atomic write to C_len[slot]
#pragma omp atomic read seq_cst
compressed_length = C_len[slot];

} while (compressed_length > 0); // compressed data to output in next C[] slot
} // critical

} // task
} // encode()

Thread Affinity

A node of the benchmark system, the NERSC Cori supercomputer[6] (data partition), features two 16-core /
32-thread Intel Xeon “Haswell” processors.

At ≤ 32 OpenMP threads, threads were evenly distributed between processor cores on different sock-
ets by specifying environment variables OMP_PROC_BIND=spread and OMP_PLACES=cores
(OMP_PLACES=threads was not used due to an issue—reported to and subsequently fixed by GCC
developers—concerning thread affinity on SMT processors[7]).

A ~15% slowdown was observed at 64 OpenMP threads (two per processor core). Performance analysis
suggested this was due to contention between the master thread, which executes all code outside of OpenMP
tasks, and the other thread sharing the same processor core. This was resolved by using 63 threads per
processor core (OMP_PLACES={0,32},{1}:31,{33}:31), granting the master thread its own core,
resulting in a modest (< 5%) performance gain vs. 32 threads.
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Figure 2: Internal sort of a 24.6 GiB BAM file containing alignments for approximately 207 million sequence
reads

Results

BAM sorting with SAMtools

On a single node of the NERSC Cori supercomputer, SAMtools OpenMP was almost 6X faster than SAMtools
1.3.1 for the internal sort at the largest thread count (Figure 2).

An external sort of a much larger (271.4 GiB) BAM file, using the Cori Burst Buffer for input, output, and
intermediate files, was about 2X faster at the largest thread count.

The replacement pthreads code with OpenMP resulted in a net reduction of about 170 source lines of
code—even after the addition of code for OpenMP task parallelism where no parallelism previously existed
and other optimizations. Code clarity and maintainability are generally enhanced when less code is used to
express an idea.
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Parallel Compression on Knights Landing

bgzip-openmp

bgzip is a small (< 300 SLOC) command-line utility distributed with HTSlib that performs BGZF (de-
)compression of an input file. The OpenMP-enabled version (bgzip-openmp) is merely an insertion of two
lines of OpenMP directives (see Listing 4) to invoke the OpenMP-enabled HTSlib bgzf_write() routine (in
which encode() tasks are generated) on each up-to-64 KiB input block by the master thread from within an
OpenMP parallel region.

Listing 4: Two OpenMP directives were added in bgzip-openmp to activate OpenMP-task-optimized com-
pression in HTSlib-OpenMP.

#pragma omp parallel
#pragma omp master
while((bytes = read(input_file, buffer, 65536)) > 0)

if (bgzf_write(output_bgzf_file, buffer, bytes) < 0) error(...)

pigz

pigz is a long-standing (1.0 release in January 2007) command-line utility dedicated to providing fast parallel
gzip-compatible compression on modern multi-core processors. pigz uses pthreads to coordinate the initial
(“main”) thread, p compression threads, and a write thread for the compressed data.

Comparing pigz and bgzip-openmp

At their core, bgzip-openmp and pigz effectively provide a different parallel coordination layer to the same
zlib compression library. To validate the scalability of the OpenMP implementation against the current “gold
standard” pthreads implementation, both bgzip-openmp and pigz 2.4 were benchmarked on a NERSC Cori
compute node featuring a 68-core Intel Xeon Phi “Knights Landing” (KNL) processor. Each KNL processor
core supports simultaneous multithreading of 4 threads.

pigz was invoked with --independent --blocksize 64 to mimic the BGZF format, while bgzip-openmp
was invoked with environment variables OMP_PLACES=threads OMP_PROC_BIND=true to allow the OpenMP
runtime to control thread affinity. To eliminate performance variance due to I/O across a shared network
to a shared file system, the input 10 GiB text file staged to memory (/dev/shm), and compressed output
written to /dev/null.

The results (Figure 3) show that pigz and bgzip-openmp provide comparable performance up to 1 thread
per KNL processor core. (Note that the pigz --processors p option causes the creation of p compression
threads, in addition to the main thread and write thread. The bgzip-openmp --threads t option controls
the total number of OpenMP threads, with t − 1 threads dedicated to executing compression tasks, and the
master thread participating in compression task execution only if determined by the OpenMP runtime. The
“advantage” of the extra compression thread in pigz disappears at higher thread counts.) The performance of
bgzip-openmp sees further performance improvement at 2 threads per KNL processor core (136 threads total),
whereas pigz suffers a severe performance degradation past 1 thread per core.
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Conclusion

This proof of concept exemplifies a parallel library design pattern enabled by OpenMP whereby the library
implements otherwise-latent OpenMP task regions that are activated by an OpenMP parallel region in the
calling application. The resulting tasks generated by the library are executed by the same OpenMP team of
threads as the calling application, allowing the calling application to create as many threads as there are
hardware resources to execute them without the increased likelihood of load imbalance or oversubscription
due to the library creating its own threads.

More specifically, the bgzip-openmp example, besides illustrating that latent OpenMP task parallelism can
be trivially activated by the calling OpenMP application, suggests that an OpenMP-enabled zlib (or other
compression library) exposing a high-level interface such as bgzf_write() could possibly be beneficial for
genomics and other big-data applications that utilize compression.
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