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Hardware trend 

Intel’s	Xeon	Phi	
Knight’s	Corner	

Intel’s	Haswell	

IBM	Blue	Gene/Q	

Tilera	

Xtreme	DATA	

SGI	RASC 		

IBM	Cyclops64	

Intel’s	Sandybridge	

Convey	Computer	
CPU+FPGA	

CPUs	
Cell	BE	

IBM	Power	7	
Before	2000	

2010	

2015	and	moving	forward		

TI’s	Keystone	
ARM	+	DSP	

Intel’s	Xeon	phi	
Knights	Landing	
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Memory-	Hybrid	
Memory	Cube		

IBM	Power	9	

AMD	Kaveri	APU	

ARM	+	GPU	NVIDIA	
Jetson	TK1	

Qualcomm’s	Snapdragon	
CPU+GPU	



Today’s Embedded Systems 

A Self-Piloted Car  powered on NVidia Tegra TK1 Chip (ARM + GPU)  
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Programming Multicore Embedded 
Systems – A Real Challenge 
 •  Heterogeneous	systems	present	complexity	at	both	

silicon	and	system	level.			
•  Soaware	tool-chain	most	of	the	@mes	are	proprietary	

–  Too	@ed	to	hardware	
–  Programmers	spend	too	much	@me	on	dealing	with	low-level	details	

Proprietary	
–  Write	once,	never	reuse	
–  Portability	major	concern	

•  High	@me-to-market	(TTM)	solu@ons		
•  We	need	industry	standards	that	can	offer	portable	soaware	

solu@ons	and	target	more	than	one	plagorm	
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5	At	the	OpenMP	BoF	Session	during	SC14,	James	Cownie	from	Intel	showed	an	OpenMP	
Timeline		

OpenMP Timeline	



Briefly, on OpenMP Implementations 
•  Directives implemented via 

code modification and 
insertion of runtime library 
calls 

–  Typical approach is outlining of 
code in parallel region 

–  Or generation of micro tasks 
•  Runtime library responsible 

for managing threads 
–  Scheduling loops 
–  Scheduling tasks 
–  Implementing synchronization 
–  Collector API provides interface 

to give external tools state 
information 

•  Implementation effort is 
reasonable 

OpenMP Code Translation 

int main(void) 
{ 
int a,b,c; 
#pragma omp parallel \ 
private(c) 
do_sth(a,b,c); 
return 0; 
} 

_INT32 main() 
{ 
int a,b,c; 
/* microtask */ 
void __ompregion_main1() 
{ 
_INT32 __mplocal_c; 
/*shared variables are kept intact,  
substitute accesses to private 
variable*/ 
do_sth(a, b, __mplocal_c); 
} 
… 
/*OpenMP runtime calls */ 
__ompc_fork(&__ompregion_main1
); 
… 
} 
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Each compiler has custom run-time support. Quality of the 

runtime system has major impact on performance. 



•  Most	of	the	models	are	heavy-weight,	such	as	OpenMP,	
MPI	for	embedded	systems		

•  Require	par@cular	support	from	opera@ng	systems	and	
compilers		
–  Embedded	plagorms	are		some@mes	systems	are	even	bare-metal		

•  State-of-the-art	solu@ons	showcase	solu@ons	for	par@cular	
plagorms		
–  Portability	is	a	major	concern		

•  Complexity	in	programming	and	debugging(e.	g.	TBB)	
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How	suitable	are	the	state-of-the-art	models	
for	heterogeneous	embedded	systems?	



•  To	overcome	the	programming	challenges	of	
heterogeneous	mul@core	embedded	systems	and	
enable	mul@core	product	development,	Mul@core	
Associa@on	(MCA)	
hkp://www.mul@core-associa@on.org/index.php,	
an	industry	associa@on	defines	and	promotes	
open	specifica@on	for:		
•  Managing	 resources	 (cores/memory)	 using	

Mul@core	 Resource	 Management	 API	
(MRAPI),	

•  Communica@ng	 across	 cores/nodes	 using	
Mul@core	Communica@on	API	(MCAPI)	and		

•  Leverages	 task	parallelism	 for	 symmetric	 and	
asymmetric	 mul@core	 processors	 using	
Mul@core	Task	Management	API	(MTAPI).		
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Multicore Association (MCA) Industry Standards 



OpenMP + MCA: 
A Solution to Abstraction, Portability, 
Reuse OpenMP		

–  High-level	programming	interface	
–  Increases	programmer	

produc@vity	
–  Incremental	development	model	
–  Vocabularies	for	Heterogeneity	
	
Mul@core	Associa@on	libraries		
–  Provide	the	low-level	portability	

enablement	
–  MRAPI	–	Resource	Management	
–  MCAPI	–	Communica@on	

Management	
–  MTAPI	–	Task	Management	
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Prior Work  

•  Transla@on	of	OpenMP	to	MCA		
•  Extending	MRAPI	to	support	different	memory	
systems	
– On	PowerPC	processors	(IPDPSW	2015,	TECHCON	
2014,	LCTES	2013)		

•  Communica@ng	between	PowerPC	and	a	
specialized	accelerator	(Pakern	Matching	
Engine)		
– TECHCON	2014	
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MTAPI Framework  
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11	Sven Brehmer, MCA Talk at the OpenMP Booth, SC13	



Overview of MTAPI  
•  Industry	standardized	API	for	task-parallel	programming	for	

embedded	cores	
•  Contributed	by	leading	industry	companies	and	academia	
•  Has	the	poten@al	to	support	heterogeneous	systems,	with	different	

memory	models	or	different	ISAs	
•  Scalable	
•  MTAPI	specifica@on	is	designed	for	the	minimal	implementa@ons	in	

plain	C	that	can	be	built	on	top	of	a	wide	range	of	OS	or	even	bare	
metal	environment.		

•  Exis@ng	implementa@ons:		
–  UH-MTAPI	open-source	implementa@on	(on-going)	
–  Siemens	developed	an	open-source	implementa@on	of	the	MTAPI,	

part	of	a	larger	project	called	Embedded	Mul@core	Building	Blocks	
(EMBB)		
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Embedded Multicore Building Blocks 
Multicore Task Management API (MTAPI) 

MTAPI in a nut shell 

� Standardized API for task-parallel 
programming on a wide range of hardware 
architectures 

� Developed and driven by practitioners of 
market-leading companies 

� Part of Multicore-Association’s ecosystem 
(MRAPI, MCAPI, …) 

                   Contributing members: 

Working group lead 

Tasks 
 

Tasks Queues Heterogeneous Systems 
� Shared memory 
� Distributed memory 
� Different instruction 

set architectures 

•  Job:	 	 	An	MTAPI	job	describes	the	work	to	be	done.	It	is	an	abstrac@on	of	the	
processing	implemented	in	hardware	or	soaware	by	ac@ons.	Mul@ple	ac@ons	can	
implemented	the	same	job	based	on	different		architectures.	

•  Ac8on: 		An	MTAPI	ac@on	is	the	hardware	or	soaware	implementa@on	of	a	job.	A	
soaware	ac@on	consists	of	the	implementa@on	of	the	ac@on	func@on	on	the	target	
processors.		

•  Task:	 	 	An	MTAPI	task	represents	the	computa@on	associated	with	its	data	
environment.	A	task	is	a	lightweight	opera@on	with	fine	granularity.		

	

Overview of MTAPI 



2 Approaches to evaluate 

•  Evaluated	stand-alone	MTAPI	implementa@on	
– Code	wriken	using	MTAPI	

•  Evaluated	OpenMP’s	transla@on	to	MTAPI	
– Code	wriken	using	OpenMP	
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•  Test	beds:	
–  8	x86-64	Intel	Xeon	E5-2640	(15M	Cache,	2.5	GHz)	cores	
–  NVIDIA	Jetson	TK1	embedded	development	board	-	4-Plus-1	Quad-

Core	ARM	Cortex-A15	processor	and	a	Kepler	GPU	with	192	CUDA	
cores.	

•  Compiler:		
–  x86-:	GCC	4.7.2,	NVCC	V6.5.12	
–  Jetson:	GCC	4.8.4,	NVCC	V6.5.30	

•  Benchmarks:	1Rodinia	and	2BOTS.	
•  Reference	implementa@ons:		

–  3Siemens	MTAPI,	GNU’s	OpenMP	task	implementa@on	

	1Rodinia:
hkps://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelera@ng_Compute-

Intensive_Applica@ons_with_Accelerators		
2BOTS:	hkps://pm.bsc.es/projects/bots	

3Siemens-MTAPI:	hkps://github.com/siemens/embb	
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Testbed, Compiler and Benchmark 
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Intel 8 cores 
Priority scheduler and work-stealing 
scheduler. 

NVIDIA Jetson TK1 4 ARM cores  
Priority scheduler and work-stealing 
scheduler. 

Stand-alone UH-MTAPI Implementation – 
Evaluation, Benchmark: Sparse LU 
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Node 1 (e. g CPU/DSP) 
MTAPI Runtime Node 2 (e. g CUDA Node) 

MTAPI Runtime 

Node 3 (e. g Co-processor) 
MTAPI Runtime 

Applicati
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An MTAPI job can have more than 1 action 
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NVIDIA Jetson TK1 embedded development board ARM and GPU  
Priority scheduler and work-stealing scheduler. 

Stand-alone UH-MTAPI Implementation –  
Matrix-Matrix Multiplication  



OpenMP RTL translation to MTAPI  

• Parallel	Construct	incurs	MTAPI	resource	alloca@on	
– Rely	MTAPI	to	handle	thread	pool	

•  Task	Construct	
–  Task	ini@aliza@on	and	execu@on	
–  Enter	the	MTAPI	Task	Queue	

•  Taskwait	Construct	
– Wait	for	the	descendant	task	for	comple@on	

•  Taskgroup	Construct	
–  Simplified	task	synchroniza@on	mechanism	
–  Each	MTAPI	task	will	associated	with	a	group	ID	
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•  By	leveraging	MTAPI,	the	enhanced	
OpenMP	RTL	could	be	seamlessly	
mapped	to	various	possible	
architectures.		

•  Compiler	frontend	translates	OpenMP	
constructs	to	OpenMP	–	MTAPI	RTL	
func@on	calls.	

•  In	the	RTL,	we	implement	the	MTAPI	
func@on	calls	and	convert	OpenMP	tasks	
to	MTAPI	objects	

•  Our	RTL	will	be	linked	to	the	OpenMP	
applica@ons	during	the	run	@me.	

•  Thread	pool	and	other	computa@on	
resources	will	rely	on	MTAPI	for	
management		 schandra@udel.edu	 21	

OpenMP RTL translation to MTAPI  
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OpenMP-> MTAPI Implementation –  
Sparse LU  



Contributions 
•  Created	a	task-based	implementa@on	for	embedded	
systems	using	industry	standards	-	MTAPI	

•  Translated	OpenMP	to	MTAPI	
–  Further	abstrac@on	
–  Easier	to	program,	Less	tedious	
–  Faster	soaware	development	@me		
–  Faster	@me	to	market	solu@ons	(TTM)	
–  Code	once,	mul@ple	reuses		

•  Targeted	more	than	one	plagorm	
•  8	Intel	x86	cores		
•  4	ARM	cores	from	NVIDIA	Jetson	TK1	+	1	Kepler	GPU	with	192	
cores	

•  Comparable	performance,	lesser	to	no	overhead		
Peng	Sun,	Sunita	Chandrasekaran,	Barbara	Chapman,	“Deploying	OpenMP	Task	Parallelism	
on	Mul@core	Embedded	Systems	with	MCA	Task	APIs”,	In	Proc.	Of	IEEE	HPCC	(to	appear)		
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