
Sunita	Chandrasekaran	
University	of	Delaware	

Contact:	schandra@udel.edu	
	

OpenMP Booth @ SC15
#2036

OpenMP	for	Embedded	Systems	-		
A	Task-based	Programming	Model	for	Mul@core	
Embedded	Systems	using	Industry	Standards,	

OpenMP	and	MCA	

schandra@udel.edu	 1	

Hardware trend

Intel’s	Xeon	Phi	
Knight’s	Corner	

Intel’s	Haswell	

IBM	Blue	Gene/Q	

Tilera	

Xtreme	DATA	

SGI	RASC 		

IBM	Cyclops64	

Intel’s	Sandybridge	

Convey	Computer	
CPU+FPGA	

CPUs	
Cell	BE	

IBM	Power	7	
Before	2000	

2010	

2015	and	moving	forward		

TI’s	Keystone	
ARM	+	DSP	

Intel’s	Xeon	phi	
Knights	Landing	

2	

Memory-	Hybrid	
Memory	Cube		

IBM	Power	9	

AMD	Kaveri	APU	

ARM	+	GPU	NVIDIA	
Jetson	TK1	

Qualcomm’s	Snapdragon	
CPU+GPU	

Today’s Embedded Systems

A Self-Piloted Car powered on NVidia Tegra TK1 Chip (ARM + GPU)

3	

Programming Multicore Embedded
Systems – A Real Challenge
 •  Heterogeneous	systems	present	complexity	at	both	

silicon	and	system	level.			
•  Soaware	tool-chain	most	of	the	@mes	are	proprietary	

–  Too	@ed	to	hardware	
–  Programmers	spend	too	much	@me	on	dealing	with	low-level	details	

Proprietary	
–  Write	once,	never	reuse	
–  Portability	major	concern	

•  High	@me-to-market	(TTM)	solu@ons		
•  We	need	industry	standards	that	can	offer	portable	soaware	

solu@ons	and	target	more	than	one	plagorm	

schandra@udel.edu	 4	

5	At	the	OpenMP	BoF	Session	during	SC14,	James	Cownie	from	Intel	showed	an	OpenMP	
Timeline		

OpenMP Timeline	

Briefly, on OpenMP Implementations
•  Directives implemented via

code modification and
insertion of runtime library
calls

–  Typical approach is outlining of
code in parallel region

–  Or generation of micro tasks
•  Runtime library responsible

for managing threads
–  Scheduling loops
–  Scheduling tasks
–  Implementing synchronization
–  Collector API provides interface

to give external tools state
information

•  Implementation effort is
reasonable

OpenMP Code Translation

int main(void)
{
int a,b,c;
#pragma omp parallel \
private(c)
do_sth(a,b,c);
return 0;
}

_INT32 main()
{
int a,b,c;
/* microtask */
void __ompregion_main1()
{
_INT32 __mplocal_c;
/*shared variables are kept intact,
substitute accesses to private
variable*/
do_sth(a, b, __mplocal_c);
}
…
/*OpenMP runtime calls */
__ompc_fork(&__ompregion_main1
);
…
}

6
Each compiler has custom run-time support. Quality of the

runtime system has major impact on performance.

•  Most	of	the	models	are	heavy-weight,	such	as	OpenMP,	
MPI	for	embedded	systems		

•  Require	par@cular	support	from	opera@ng	systems	and	
compilers		
–  Embedded	plagorms	are		some@mes	systems	are	even	bare-metal		

•  State-of-the-art	solu@ons	showcase	solu@ons	for	par@cular	
plagorms		
–  Portability	is	a	major	concern		

•  Complexity	in	programming	and	debugging(e.	g.	TBB)	
7	

How	suitable	are	the	state-of-the-art	models	
for	heterogeneous	embedded	systems?	

•  To	overcome	the	programming	challenges	of	
heterogeneous	mul@core	embedded	systems	and	
enable	mul@core	product	development,	Mul@core	
Associa@on	(MCA)	
hkp://www.mul@core-associa@on.org/index.php,	
an	industry	associa@on	defines	and	promotes	
open	specifica@on	for:		
•  Managing	 resources	 (cores/memory)	 using	

Mul@core	 Resource	 Management	 API	
(MRAPI),	

•  Communica@ng	 across	 cores/nodes	 using	
Mul@core	Communica@on	API	(MCAPI)	and		

•  Leverages	 task	parallelism	 for	 symmetric	 and	
asymmetric	 mul@core	 processors	 using	
Mul@core	Task	Management	API	(MTAPI).		

8	

Multicore Association (MCA) Industry Standards

OpenMP + MCA:
A Solution to Abstraction, Portability,
Reuse OpenMP		

–  High-level	programming	interface	
–  Increases	programmer	

produc@vity	
–  Incremental	development	model	
–  Vocabularies	for	Heterogeneity	
	
Mul@core	Associa@on	libraries		
–  Provide	the	low-level	portability	

enablement	
–  MRAPI	–	Resource	Management	
–  MCAPI	–	Communica@on	

Management	
–  MTAPI	–	Task	Management	

9	

Prior Work

•  Transla@on	of	OpenMP	to	MCA		
•  Extending	MRAPI	to	support	different	memory	
systems	
– On	PowerPC	processors	(IPDPSW	2015,	TECHCON	
2014,	LCTES	2013)		

•  Communica@ng	between	PowerPC	and	a	
specialized	accelerator	(Pakern	Matching	
Engine)		
– TECHCON	2014	

schandra@udel.edu	 10	

MTAPI Framework
Node Node Node Node

tasks

CPU
core

memory

GPU

memory

DSP

CPU
core

CPU
core CPU

core

memory

sched. / lib. OS 1 OS 2

MTAPI runtime system (optionally MCAPI / MRAPI)

MTAPI tasks MTAPI tasks

MTAPI application

MTAPI tasks

Domain

11	Sven Brehmer, MCA Talk at the OpenMP Booth, SC13	

Overview of MTAPI
•  Industry	standardized	API	for	task-parallel	programming	for	

embedded	cores	
•  Contributed	by	leading	industry	companies	and	academia	
•  Has	the	poten@al	to	support	heterogeneous	systems,	with	different	

memory	models	or	different	ISAs	
•  Scalable	
•  MTAPI	specifica@on	is	designed	for	the	minimal	implementa@ons	in	

plain	C	that	can	be	built	on	top	of	a	wide	range	of	OS	or	even	bare	
metal	environment.		

•  Exis@ng	implementa@ons:		
–  UH-MTAPI	open-source	implementa@on	(on-going)	
–  Siemens	developed	an	open-source	implementa@on	of	the	MTAPI,	

part	of	a	larger	project	called	Embedded	Mul@core	Building	Blocks	
(EMBB)		

12	

schandra@udel.edu	 13	

Unrestricted © Siemens AG 2015. All rights reserved Page 15 Corporate Technology

Embedded Multicore Building Blocks
Multicore Task Management API (MTAPI)

MTAPI in a nut shell

� Standardized API for task-parallel
programming on a wide range of hardware
architectures

� Developed and driven by practitioners of
market-leading companies

� Part of Multicore-Association’s ecosystem
(MRAPI, MCAPI, …)

 Contributing members:

Working group lead

Tasks

Tasks Queues Heterogeneous Systems
� Shared memory
� Distributed memory
� Different instruction

set architectures

•  Job:	 	 	An	MTAPI	job	describes	the	work	to	be	done.	It	is	an	abstrac@on	of	the	
processing	implemented	in	hardware	or	soaware	by	ac@ons.	Mul@ple	ac@ons	can	
implemented	the	same	job	based	on	different		architectures.	

•  Ac8on: 		An	MTAPI	ac@on	is	the	hardware	or	soaware	implementa@on	of	a	job.	A	
soaware	ac@on	consists	of	the	implementa@on	of	the	ac@on	func@on	on	the	target	
processors.		

•  Task:	 	 	An	MTAPI	task	represents	the	computa@on	associated	with	its	data	
environment.	A	task	is	a	lightweight	opera@on	with	fine	granularity.		

	

Overview of MTAPI

2 Approaches to evaluate

•  Evaluated	stand-alone	MTAPI	implementa@on	
– Code	wriken	using	MTAPI	

•  Evaluated	OpenMP’s	transla@on	to	MTAPI	
– Code	wriken	using	OpenMP	

schandra@udel.edu	 14	

15	

START

Task
complet

e?

Task end

Switch to
another task Sched

uler

Get a task
from

scheduler

Process task

Child
task?

Task
complete

Switch to another
task

No

Yes

Communication Layer
Sender

(MCAPI
endpoint)

Receiver thread
(MCAPI
endpoint)

Local Node

Ready to receive
task from neighbor

nodes

Receive task

Process task

MCAPI
Layer

Create task

Wait for task

Create Job, Action,
Queue, Group

Initialize MTAPI
environment.

No

Yes

Send task back to
its origin node

Remote Node

Communication
Layer

MCAPI
Layer

MCAPI
Layer

Local
Task

Remote
Task

Worker Team

Stand-alone UH-MTAPI Implementation
MTAPI Work Flow

•  Test	beds:	
–  8	x86-64	Intel	Xeon	E5-2640	(15M	Cache,	2.5	GHz)	cores	
–  NVIDIA	Jetson	TK1	embedded	development	board	-	4-Plus-1	Quad-

Core	ARM	Cortex-A15	processor	and	a	Kepler	GPU	with	192	CUDA	
cores.	

•  Compiler:		
–  x86-:	GCC	4.7.2,	NVCC	V6.5.12	
–  Jetson:	GCC	4.8.4,	NVCC	V6.5.30	

•  Benchmarks:	1Rodinia	and	2BOTS.	
•  Reference	implementa@ons:		

–  3Siemens	MTAPI,	GNU’s	OpenMP	task	implementa@on	

	1Rodinia:
hkps://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelera@ng_Compute-

Intensive_Applica@ons_with_Accelerators		
2BOTS:	hkps://pm.bsc.es/projects/bots	

3Siemens-MTAPI:	hkps://github.com/siemens/embb	

	

16	

Testbed, Compiler and Benchmark

17	

Intel 8 cores
Priority scheduler and work-stealing
scheduler.

NVIDIA Jetson TK1 4 ARM cores
Priority scheduler and work-stealing
scheduler.

Stand-alone UH-MTAPI Implementation –
Evaluation, Benchmark: Sparse LU

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2 3 4
Sp

ee
d-

up
 V

S
se

ria
l

of threads

Jetson TK1

GCC-OpenMP
Siemens-MTAPI

UH-MTAPI(eager)
UH-MTAPI(ws)

 0

 2

 4

 6

 8

 10

 12

 14

 16

2 4 8 16

Sp
ee

d-
up

 V
S

se
ria

l

of threads

Eureka

GCC-OpenMP
Siemens-MTAPI

UH-MTAPI(eager)
UH-MTAPI(ws)

18	

Node 1 (e. g CPU/DSP)
MTAPI Runtime Node 2 (e. g CUDA Node)

MTAPI Runtime

Node 3 (e. g Co-processor)
MTAPI Runtime

Applicati
on

Task 1

Action III

implemented by

Action I

Action II

Implemented by

Task 2

Task 3

Job b

Job a

accomplishes

accomplishes

An MTAPI job can have more than 1 action

19	

NVIDIA Jetson TK1 embedded development board ARM and GPU
Priority scheduler and work-stealing scheduler.

Stand-alone UH-MTAPI Implementation –
Matrix-Matrix Multiplication

OpenMP RTL translation to MTAPI

• Parallel	Construct	incurs	MTAPI	resource	alloca@on	
– Rely	MTAPI	to	handle	thread	pool	

•  Task	Construct	
–  Task	ini@aliza@on	and	execu@on	
–  Enter	the	MTAPI	Task	Queue	

•  Taskwait	Construct	
– Wait	for	the	descendant	task	for	comple@on	

•  Taskgroup	Construct	
–  Simplified	task	synchroniza@on	mechanism	
–  Each	MTAPI	task	will	associated	with	a	group	ID	

20	

•  By	leveraging	MTAPI,	the	enhanced	
OpenMP	RTL	could	be	seamlessly	
mapped	to	various	possible	
architectures.		

•  Compiler	frontend	translates	OpenMP	
constructs	to	OpenMP	–	MTAPI	RTL	
func@on	calls.	

•  In	the	RTL,	we	implement	the	MTAPI	
func@on	calls	and	convert	OpenMP	tasks	
to	MTAPI	objects	

•  Our	RTL	will	be	linked	to	the	OpenMP	
applica@ons	during	the	run	@me.	

•  Thread	pool	and	other	computa@on	
resources	will	rely	on	MTAPI	for	
management		 schandra@udel.edu	 21	

OpenMP RTL translation to MTAPI

22	

OpenMP-> MTAPI Implementation –
Sparse LU

Contributions
•  Created	a	task-based	implementa@on	for	embedded	
systems	using	industry	standards	-	MTAPI	

•  Translated	OpenMP	to	MTAPI	
–  Further	abstrac@on	
–  Easier	to	program,	Less	tedious	
–  Faster	soaware	development	@me		
–  Faster	@me	to	market	solu@ons	(TTM)	
–  Code	once,	mul@ple	reuses		

•  Targeted	more	than	one	plagorm	
•  8	Intel	x86	cores		
•  4	ARM	cores	from	NVIDIA	Jetson	TK1	+	1	Kepler	GPU	with	192	
cores	

•  Comparable	performance,	lesser	to	no	overhead		
Peng	Sun,	Sunita	Chandrasekaran,	Barbara	Chapman,	“Deploying	OpenMP	Task	Parallelism	
on	Mul@core	Embedded	Systems	with	MCA	Task	APIs”,	In	Proc.	Of	IEEE	HPCC	(to	appear)		

Acknowledgment

•  Peng	Sun,	Ph.D.	student	
•  Suyang	Zhu,	M.S.	student	
•  Cheng	Wang,	Ph.D.	Student	
•  Freescale	Semiconductor		

schandra@udel.edu	 24	

