
28 13

Summary of
OpenMP 3.0
Fortran Syntax

Download the full OpenMP API Specification at www.openmp.org.

Directives
An OpenMP executable directive applies to the succeeding structured
block or an OpenMP Construct. A “structured block” is a single state-
ment or a compound statement with a single entry at the top and a
single exit at the bottom.
In fixed form source files, the sentinel !omp, comp, or *$omp in-
troduce a directive and must start in column 1. An initial directive line
must contain a space or zero in column 6, and continuation lines must
have a character other than a space or zero in column 6. In free form
source files, the sentinel !$omp introduces a directive and can appear
in any column if preceded only by white space.

The parallel construct forms a team of threads and starts parallel
execution.
!$omp parallel [clause[[,]clause] ...]

structured-block
!$omp end parallel

clause:
if(scalar-expression)
num_threads(scalar-integer-expression
default(private|firstprivate|

shared | none)
private(list)
firstprivate(list)
shared(list)
copyin(list)
reduction({operator|intrinsic_procedure_name}:list)

The loop construct specifies that iterations of loops will be distributed
among and executed by the encountering team of threads.
!$omp do [clause[[,] clause] ...]

do-loops
[!$omp end do [nowait]]

clause:
private(list)
firstprivate(list)
lastprivate(list)
reduction({operator|intrinsic_procedure_name}:list)
schedule(kind[, chunk_size])
collapse(n)
ordered

Copyright © 1997-2009 OpenMP Architecture Review Board. Permission to
copy without fee all or part of this material is granted, provided the OpenMP
Architecture Review Board copyright notice and the title of this document
appear. Notice is given that copying is by permission of the OpenMP
Architecture Review Board. Products or publications based on one or more of
the OpenMP specifications must acknowledge the copyright by displaying the
following statement: “OpenMP is a trademark of the OpenMP Architecture
Review Board. Portions of this product/publication may have been derived from
the OpenMP Language Application Program Interface Specification.”

Rev 0309-001

Directives (continued)
The sections construct contains a set of structured blocks to be
distributed among and executed by encountering team of threads.
!$omp sections [clause[[,] clause] ...]

[!$omp section]
 structured-block
[!$omp section
 structured-block]
...

!$omp end sections [nowait]

clause:
private(list)
firstprivate(list)
lastprivate(list)
reduction({operator|intrinsic_procedure_name}: list)

The single construct specifies that the associated structured block
is executed by only one of the threads in the team (not necessarily the
master thread), in the context of its implicit task.
!$omp single [clause[[,] clause] ...]

structured-block
!$omp end single [end_clause[[,] end_clause] ...]
clause:

private(list)
firstprivate(list)

end_clause:
copyprivate(list)
nowait

The workshare construct divides the execution of the enclosed struc-
tured block into separate units of work.
!$omp workshare structured-block
!$omp end workshare [nowait]

The combined parallel worksharing constructs are a shortcut for
specifying a parallel construct containing one work-sharing construct
and no other statements.
!$omp parallel do [clause[[,] clause] ...]

do-loop
[!$omp end parallel do]
!$omp parallel sections [clause[[,]clause] ...]

[!$omp section]
 structured-block
[!$omp section
structured-block]
...

!$omp end parallel sections

clause:
any clause from parallel or sections

Directives (continued)
The parallel workshare construct is a shortcut for a parallel
construct containing one workshare construct and no other statements.
!$omp parallel workshare [clause[[,] clause] ...]

structured-block
!$omp end parallel workshare

clause:
any clause from parallel or sections

The task construct defines an explicit task.
!$omp task [clause[[,]clause] ...]

structured-block
!$omp end task

clause:
if(scalar-logical-expression)
untied
default(private|firstprivate|shared|none)
private(list)
firstprivate(list)
shared(list)

The master construct specifies a structured block that is executed by the
master thread of the team.
!$omp master

structured-block
!$omp end master

The critical construct restricts execution of the associated structured
block to a single thread at a time.
!$omp critical [(name)]

structured-block
!$omp end critical [(name)]

The barrier construct specifies an explicit barrier at the point at which
the construct appears.
!$omp barrier

The taskwait construct specifies a wait on the completion of child tasks
generated since the beginning of the current task.
!$omp taskwait

The atomic construct ensures that a specific storage location is updated
atomically, rather than exposing it to the possibility of multiple,
simultaneous writing threads.
!$omp atomic

statement
(See applicable statement on next page)

Details
Operators legally allowed in a reduction

Operator Initialization value Operator Initialization value
+ 0 | 0
* 1 ^ 0
- 0 && 1
& ~0 || 0

Schedule types for the loop construct
static Iterations are divided into chunks of chunk_size, chunks are

assigned to threads in team in order of thread number.

dynamic Each thread executes a chunk of iterations, then requests
another chunk until no chunks remain to be distributed.

guided Same as “dynamic,” however chunk sizes start large and
shrink to the indicated chunk_size as chunks are scheduled.

auto The decision regarding scheduling is delegated to the
compiler and/or runtime system.

runtime Schedule and chunk size are taken from run-sched-var ICV.

(See applicable clauses on next page.)

Directives (continued)
statement: one of the following forms:

x = x operator expr
x = expr operator x
x = intrinsic_procedure_name (x, expr_list)
x = intrinsic_procedure_name (expr_list, x)

The flush construct executes the OpenMP flush operation, which makes
a thread’s temporary view of memory consistent with memory, and
enforces an order on the memory operations of the variables.
!$omp flush [(list)]

The ordered construct specifies a structured block in a loop region
that will be executed in the order of the loop iterations. This sequential-
izes and orders the code within an ordered region while allowing code
outside the region to run in parallel.
#pragma !$omp ordered

structured-block
#pragma !$omp ordered

The threadprivate directive specifies that variables are replicated,
with each thread having its own copy.
!$omp threadprivate(list)

Clauses
Not all of the clauses are valid on all directives. The set of clauses
that is valid on a particular directive is described with the directive.
Most of the clauses accept a comma-separated list of list items. All
list items appearing in a clause must be visible.

Data Sharing Attribute Clauses
Data-sharing attribute clauses apply only to variables whose names are
visible in the construct on which the clause appears.
default(private|firstprivate|shared|none)

Controls the default data-sharing attributes of variables that are
referenced in a parallel or task construct.

shared(list)
Declares one or more list items to be shared by tasks generated by
a parallel or task construct.

private(list)
Declares one or more list items to be private to a task.

firstprivate(list)
Declares one or more list items to be private to a task, and initializes
each of them with the value that the corresponding original item has
when the construct is encountered.

Clauses (continued)
lastprivate(list)

Declares one or more list items to be private to an implicit task, and
causes the corresponding original item to be updated after the end of
the region.

reduction({operator|intrinsic_procedure_name}:list)
Declares accumulation into the list items using the indicated
associative operator. Accumulation occurs into a private copy for each
list item which is then combined with the original item.

Data Copying Clauses

These clauses support the copying of data values from private or thread-
private variables on one implicit task or thread to the corresponding
variables on other implicit tasks or threads in the team.

copyin(list)
Copies the value of the master thread’s threadprivate variable to the
threadprivate variable of each other member of the team executing
the parallel region.

copyprivate(list)
Broadcasts a value from the data environment of one implicit task
to the data environments of the other implicit tasks belonging to the
parallel region.

Runtime Library Routines
Execution environment routines affect and monitor threads, processors,
and the parallel environment. Lock routines support synchronization
with OpenMP locks. Timing routines support a portable wall clock
timer. Prototypes for the runtime library routines appear in the include
file “omp_lib.h” and the Fortran module “omp_lib”.

Execution Environment Routines
subroutine omp_set_num_threads (num_threads)
integer num_threads

Affects the number of threads used for subsequent parallel
regions that do not specify a num_threads clause.

integer function omp_get_num_threads()
Returns the number of threads in the current team.

integer function omp_get_max_threads()
Returns maximum number of threads that could be used to form a new
team using a “parallel” construct without a “num_threads” clause.

integer function omp_get_thread_num()
Returns the ID of the encountering thread where ID ranges from zero
to the size of the team minus 1.

integer function omp_get_num_procs()
Returns the number of processors available to the program.

Runtime Library Routines (continued)
logical function omp_in_parallel()

Returns true if the call to the routine is enclosed by an active
parallel region; otherwise, it returns false.

subroutine omp_set_dynamic (dynamic_threads)
logical dynamic_threads

Enables/disables dynamic adjustment of number of threads available.

logical function omp_get_dynamic()
Returns value of dyn-var internal control variable (ICV), determining
if dynamic adjustment of number of threads is enabled or disabled.

subroutine omp_set_nested(nested)
logical nested

Enables or disables nested parallelism, by setting the nest-var ICV.

logical function omp_get_nested()
Returns the value of the nest-var ICV, which determines if nested
parallelism is enabled or disabled.

subroutine omp_set_schedule(kind, modifier)
integer(kind=omp_sched_kind)kind
integer modifier

Affects the schedule that is applied when runtime is used as
schedule kind, by setting the value of the run-sched-var ICV.

subroutine omp_get_schedule(kind, modifier)
integer(kind=omp_sched_kind)kind
integer modifier

Returns the schedule applied when runtime schedule is used.

integer function omp_get_thread_limit()
Returns max number of OpenMP threads available to the program.

subroutine omp_set_max_active_levels(max_levels)
integer max_levels

Limits the number of nested active parallel regions, by setting the
max-active-levels-var ICV.

integer function omp_get_max_active_levels()
Returns the value of the max-activelevels-var ICV, which determines
the maximum number of nested active parallel regions.

integer function omp_get_level()
Returns the number of nested parallel regions enclosing the task
that contains the call.

integer function omp_get_ancestor_thread_num(level)
integer level

Returns, for a given nested level of the current thread, the thread
number of the ancestor or the current thread.

integer function omp_get_team_size(level)
integer level

Returns, for a given nested level of the current thread, the size of the
thread team to which the ancestor or the current thread belongs.

integer function omp_get_active_level()
Returns the number of nested, active parallel regions enclosing
the task that contains the call.

75 64

Runtime Library Routines (continued)
Lock Routines
subroutine omp_{init|destroy|set|unset}_[nest_]
lock(var)

integer(kind=omp_[nest_]lock_kind) var
These routines initialize, unitialize, set, or unset a (nested) OpenMP
lock.

logical function omp_test_[nest_]lock(var)
integer(kind=omp_[nest_]lock_kind) var

These routines attempt to set an OpenMP lock but do not suspend
execution of the task executing the routine.

Timing Routines
omp_get_wtime()

Returns elapsed wall clock time in seconds.

omp_get_wtick()
Returns the precision of the timer used by omp_get_wtime.

Environment Variables
Environment variable names are upper case, and the values assigned to
them are case insensitive and may have leading and trailing white space.

OMP_SCHEDULE type[,chunk]
Sets the run-sched-var ICV for the runtime schedule type and chunk
size. Valid OpenMP schedule types are static, dynamic, guided, or
auto. Chunk is a positive integer.

OMP_NUM_THREADS num
Sets nthreads-var ICV for number of threads for parallel regions.

OMP_DYNAMIC dynamic
Sets dyn-var ICV for the dynamic adjustment of threads to use for
parallel regions. Valid values for dynamic are true or false.

OMP_NESTED nested
Sets the nest-var ICV to enable or to disable nested parallelism. Valid
values for nested are true or false.

OMP_STACKSIZE size
Sets stacksize-var ICV that specifies size of stack for threads created by
the OpenMP implementation. Valid values for size (a positive integer)
are size, sizeB, sizeK, sizeM, sizeG. If units B, K, M or G are not specified,
size is measured in kilobytes (K).

OMP_WAIT_POLICY policy
Sets the wait-policy-var ICV that controls the desired behavior of
waiting threads. Valid values for policy are active (waiting threads
consume processor cycles while waiting) and passive.

OMP_MAX_ACTIVE_LEVELS levels
Sets the max-active-levels-var ICV that controls the maximum number
of nested active parallel regions.

OMP_THREAD_LIMIT limit
Sets the thread-limit-var ICV that controls the maximum number of
threads participating in the OpenMP program.

