
Accelerating HPC Applications on 

AMD Instinct™ GPUs with 

OpenMP® offloading: 
An Overview

Suyash Tandon, Member of Technical Staff

May 2023



2 |

CAUTIONARY STATEMENT

This presentation contains forward-looking statements concerning Advanced Micro Devices, Inc. (AMD) such as the features, functionality, performance, availability, timing and expected benefits of AMD’s current 

products, future products and markets, which are made pursuant to the Safe Harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are commonly identified by words such 

as "would," "may," "expects," "believes," "plans," "intends," "projects" and other terms with similar meaning. Investors are cautioned that the forward-looking statements in this presentation are based on current beliefs, 

assumptions and expectations, speak only as of the date of this presentation and involve risks and uncertainties that could cause actual results to differ materially from current expectations. Such statements are subject 

to certain known and unknown risks and uncertainties, many of which are difficult to predict and generally beyond AMD's control, that could cause actual results and other future events to differ materially from those 

expressed in, or implied or projected by, the forward-looking information and statements. Investors are urged to review in detail the risks and uncertainties in AMD’s Securities and Exchange Commission filings, 

including but not limited to AMD’s most recent reports on Forms 10-K and 10-Q.

AMD does not assume, and hereby disclaims, any obligation to update forward-looking statements made in this presentation, except as may be required by law.
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Agenda 1. Introduction to MI 200 hardware

2. Software stack and tools

3. Basics of OpenMP® offloading 

4. HIP & OpenMP® - compatibility

5. Case studies

6. Heterogenous memory management (HMM)
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From AMD MI100 to AMD MI210

• 32GB of HBM2 memory 

• 11.5 TFLOPS peak performance

• 1.2 TB/s peak memory bandwidth

• 120 CU

AMD CDNA™ 2 white paper: 

https://www.amd.com/system/files/documents/am

d-cdna2-white-paper.pdf

• 64GB of HBM2e memory

• 26.5 TFLOPS peak performance

• 1.6 TB/s peak memory bandwidth

• 108 CU

• 128 single precision FMA operations per cycle

• AMD CDNA 2 Matrix Core supports double-

precision data 
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SCIENTISTS TARGET APPLICATIONS FOR WIDE RANGE OF SYSTEMS

2012 2016 2018 2020 2021-2023
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ORNL
Cray/AMD/NVIDIA
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IBM BG/Q

LLNL
IBM BG/Q

Sequoia (10)

ANL
Cray/Intel KNL

LBNL
Cray/Intel Xeon®/ KNL
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Cray/Intel Xeon®/ KNL
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Pre-Exascale Systems [Aggregate Linpack (Rmax) = 323 PF!] First U.S Exascale Systems

Source: science.osti.gov/-media/ascr/ascac/pdf/meetings/201909/20190923_ASCAC-Helland-Barbara-Helland.pdf

Trinity (6)

Summit (1)

Sierra (2)

Crossroads
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IDEAL APPLICATION DEVELOPMENT FROM THE 
SCIENTIST’S PERSPECTIVE

Efficient use of 
hardware resources 
for energy consumed​

Scale from single to 
multi-node​

Support both CPUs 
and GPUs​

Execute application on 
various platform 
architectures​

Optimize time to 
solution for new 
research​

Abstract the computer 
science (code, data 
movement, scaling, etc)​
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c

PERFORMANCE VS PORTABILITY TRADEOFF
Portability drops as software is tuned for specific HW features
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GPU PROGRAMMING IS DIFFICULT – BUT EASIER IF HW IS ABSTRACTED

Domain Specific Language

Frameworks

Libraries

ISO Standard Languages

Directive Based Extensions

Accelerator Languages

HW Specific

GridTools, Devito

Kokkos, Legion, TF, PyTorch

Math, Communication

C++, Fortran, Python

OpenMP, OpenACC

OpenCL, HIP, CUDA, SYCL

GCN-ISA, PTX, oneAPI-L0
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5. Case studies

6. Heterogenous memory management (HMM)
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Open Software Platform For GPU Compute
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Compiler with OpenMP® support on AMD GPUs
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AMD development tools
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Agenda 1. Introduction to MI 200 hardware

2. Software stack and tools

3. Basics of OpenMP® offloading 

4. HIP & OpenMP® - compatibility

5. Case studies

6. Summary
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Basics of OpenMP® offloading
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Basics of OpenMP® offloading

!$OMP TARGET ENTER DATA MAP(ALLOC:A): Map A to the device. 
Initial value on device is undefined!

!$OMP TARGET ENTER DATA MAP(TO:A):    Map A to the device. 
Initialize with value from host.​​

!$OMP TARGET EXIT DATA MAP(DELETE:A): Unmap A from device.
Set allocation count to zero.​

!$OMP TARGET EXIT DATA MAP(RELEASE:A):Unmap A from device.
Decrement allocation count by one

!$OMP TARGET UPDATE(TO:A): Copy A from host to device
!$OMP TARGET UPDATE(FROM:A)​: Copy A from device to host
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Common errors

Host region (7ffc4df0dd20 to 7ffc4df1dd20) overlaps present region 

(7ffc4df19e80 to 7ffc4df22e80 index 42) but is not contained for A in hamil.f90

Data is mapped to device but is not 

deleted/released!

HSA_STATUS_ERROR_MEMORY_FAULT: Agent attempted to access an 

inaccessible address. code: 0x2b

Data is not present on GPU!
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Debugging with AOMP: LIBOMPTARGET_DEBUG
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Debugging with Cray compiler: CRAY_ACC_DEBUG
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Debugging with Cray compiler: –hlist=aimd

$ftn -hnoacc -homp -fopenmp -hlist=aimd -o ./teamsdis ./teamsdis.f90
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Profiling OpenMP® offloading code on AMD GPUs

Compile: 

Profile and collect HIP trace:

Open the .json file in chrome://tracing/ or https://ui.perfetto.dev/

$ftn -hnoacc -fopenmp -homp -o ./test ./test.f90

$rocprof –hip-trace ./test

chrome://tracing/
https://ui.perfetto.dev/
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HIP & OpenMP® – Hybrid programming:  compatible & competitive

Hybrid programming here stands for the interaction of OpenMP with a lower-level programming model like 

HIP. In other words, one can program with OpenMP in the style one might program with HIP.

OpenMP supports the following interactions:

▪ Calling low-level HIP kernels from OpenMP application code

▪ Calling HIP/ROCM math libraries (rocBLAS, rocFFT, etc.) from OpenMP application code

▪ Calling OpenMP kernels from low-level HIP application code



26 |

HIP & OpenMP® – Saxpy example

void example() {
float a = 2.0;
float * x;
float * y;
#pragma omp target data map(to:x[0:count]) map(tofrom:y [0:count])
{
compute_1(n, x);
compute_2(n, y);
#pragma omp target update to(x[0:count]) to(y[0:count])
saxpy(n, a, x, y)
compute_3(n, y);
}

}

void saxpy (size_t n, float a, 
float * x, float * y) {

#pragma omp target teams distribute parallel for …
for (size_t i = 0; i < n; ++i) {

y[i] = a * x[i] + y[i];
}

}
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HIP & OpenMP® – HIP kernel for saxpy()

A HIP version of the SAXPY kernel:

We need a way to translate the host pointer that was mapped by OpenMP directives and retrieve the 

associated device pointer.

__global__ void saxpy_kernel (size_t n, float a, float * x , float * y ){
size_t i = threadIdx.x + blockIdx.x * blockDim.x;
y[i] = a * x[i] + y[i];

}

Void saxpy_hip (size_t n, float a, float * x , float * y ){
assert(n % 256 == 0);
saxpy_kernel <<<n/256,256,0,NULL>>>(n, a, x , y);

}
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HIP & OpenMP® – Putting it together
__global__ void saxpy_kernel (size_t n, float a, float * x , float * y ){

size_t i = threadIdx.x + blockIdx.x * blockDim.x;
y[i] = a * x[i] + y[i];

}

Void saxpy_hip (size_t n, float a, float * x , float * y ){
assert(n % 256 == 0);
saxpy_kernel <<<n/256,256,0,NULL>>>(n, a, x , y);

}
--------------------------------------------------------------------------------------------------------------------
void example() {

float a = 2.0;
float * x = ...; //assume: x = 0xabcd
float * y = ...;
// allocate the device memory
#pragma omp target data map(to:x [0:count]) tofrom:y [0:count])
{
compute_1(n, x); // mapping table: x:[0xabcd ,0xef12 ], x = 0xabcd
compute_2(n, y);
#pragma omp target update to(x[0:count]) to(y[0:count]) // update x and y on the target
#pragma omp target data use_device_ptr (x,y)
{

saxpy_hip(n, a, x, y) // mapping table: 0xabcd ,0xef12 ], x = 0xef12
}
}
compute_3(n, y);

}

Translation unit 1

Translation unit 2
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HIP & OpenMP® – Fortran and DGEMM example

Courtesy: Justin Chang et al. (2022)
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HIP & OpenMP® – Babelstream case study

Full comparison of OpenMP Offloading vs HIP for all kernels in single precision and double precision

All experiments performed on a single Instinct MI100 using AOMP 13.06

Default Threads * Teams configuration already optimal for some kernels

Courtesy: Justin Chang et al. (2022)

Optimization for BabelStream would require 

a different number of Threads*Teams for 

each of the sub-benchmarks
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Case Study 1 – VASP (Vienna Ab Initio Simulation Package)

▪ A computer program for atomic scale materials modelling, e.g., electronic structure 

calculations and quantum-mechanical molecular dynamics

▪ Currently used by more than 1400 research groups in academia and industry worldwide

▪ Software license agreements with the University of Vienna

▪ ~550K lines of FORTRAN 90 code (some FORTRAN 77)
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Supporting concurrent directive-based paradigms in VASP

▪ Switch between different directive-based paradigms without letting them impact on each other

▪ Take advantage of source preprocessing

▪ Pros: switch between different directive-based paradigms

▪ Cons: makes the code messy

Used when VASP is compiled with OpenACC

Used when OpenMP (host) is 

enabled and OpenMP 

offloading/OpenACC is disabled 

Used when OpenMP 

offloading is enabled 
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Enable/disable offloading in different code paths

▪ Many of the VASP subroutines are called from different code paths

▪ How can we enable offloading for a subroutine in one path and disable offloading for others

▪ It would be useful for code development and debugging

We can call OMP_PUSH_EXEC_ON(.TRUE.) or 

OMP_PUSH_EXEC_ON(.FALSE.) to enable or disable 

offloading in different code paths
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Interface OMP offloading with ROCM libraries

▪ VASP uses FFT, BLAS, and LAPACK extensively

▪ Developed a wrapper to interface OMP target regions with ROCM libraries

▪ rocFFT

▪ rocBLAS

▪ rocSolver

WOPT%CW_RED(A), CEIG(B), and WA%CW_RED(C) are 

mapped to device with “omp target enter data map” directive
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Exponential of Complex Variables

Original Code:
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Exponential of Complex Variables

Workaround:

$ftn -hnoacc -fopenmp -homp -o ./exp ./exp_workaround2.f90

$ ./exp

R= (-1.1312035958327016,2.4717250246105067)

Exp(a+bj)=e^a*(cos(b)+sin(b)j)
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Mapping Scalar Variables

$ftn -hnoacc -fopenmp -homp -o ./enter_scalar

./enter_scalar.f90

$./enter_scalar

CE= 0.

Original Code: Workaround:

$ftn -hnoacc -fopenmp -homp -o 

./enter_scalar ./enter_scalar_workaround.f90

$./enter_scalar

CE= 1.
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▪ Pointer aliasing occurs a lot in VASP

▪ It can be challenging for the compilers to deal with pointer aliasing on device

▪ Set CRAY_ACC_DEBUG=3 as environment variable to get the log

▪ This issue is resolved in CCE15

Pointer aliasing
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Pointer aliasing (alternative methods)

Launch a kernel Using target data construct
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Pointer mismatch in subroutine calls

$./aliasing

ce=  (100.,100.)

ce=  (100.,100.)

ce=  (100.,100.)

ce=  (100.,100.)

ce=  (100.,100.)

ce=  (100.,100.)

ce=  (100.,100.)

ce=  (100.,100.)

ce=  (100.,100.)

ce=  (100.,100.)

:0:rocdevice.cpp            :2660: 1637590862517 us: 

86531: [tid:0x7fbe82217700] 

Device::callbackQueue aborting with error : 

HSA_STATUS_ERROR_MEMORY_APERTURE_V

IOLATION: The agent attempted to access memory 

beyond the largest legal address. code: 0x29

Aborted
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Pointer mismatch in subroutine calls (alternative method)
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Atomic update for complex(8)

Original code Alternative
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The overhead of subroutine call assuming there is no need for 

atomic update

Kernel time= 22 msKernel time= 80 ms
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Declare target

$make

ftn -fopenmp -c myddot.f90 -o myddot.o

!$omp parallel do simd reduction(+:RES)

ftn-7212 ftn: WARNING MYDDOT_VECTOR_GPU, File = myddot.f90, Line = 7

Variable "res" is used before it is defined.

ftn-7256 ftn: WARNING MYDDOT_VECTOR_GPU, File = myddot.f90, Line = 7

An OpenMP parallel construct in a target region is limited to a single thread.

Cray Fortran : Version 15.0.0.3 (20220920162820_088e5928c3724749216ddb6b2fbbcd2152ed2bb8)

Cray Fortran : Thu Jan 05, 2023  15:58:21

Cray Fortran : Compile time:  0.0472 seconds

Cray Fortran : 13 source lines

Cray Fortran : 0 errors, 2 warnings, 0 other messages, 0 ansi

Cray Fortran : "explain ftn-message number" gives more information about each message.

ftn -fopenmp -c reproducer.f90 -o reproducer.o

ftn -fopenmp myddot.o reproducer.o -o reproducer.x

error: reproducer.f90:28:0: in function reproducer_$ck_L25_1 void (i64, i64, i64, i64, i64, i64): unsupported call 

to variadic function myddot_vector_gpu_

make: *** [Makefile:8: reproducer] Error 1
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Declare target (alternative method)

▪ To get around the error, we can define function in the same file as 

function call

▪ It would be challenging to apply his workaround in the applications 

with many function/subroutine calls
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Case study 2 - MPAS

The Model for Prediction Across Scales (MPAS) is a collaborative project for developing atmosphere, ocean 

and other earth-system simulation components for use in climate, regional climate, and weather studies.​

▪ Finite volume solver for non-hydrostatic atmospheric equations. ​

▪ Written in FORTRAN. Uses directives for GPU acceleration​

▪ ~2.5k lines of !$acc code, still an ongoing effort​

▪ AMD approach: OpenMP® directives​

See https://mpas-dev.github.io/ and https://github.com/MPAS-Dev/MPAS-Model for more information
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MPAS code structure: Memory and data management

• All GPU memory buffers allocated at the first time step and is reused 

for subsequent time steps. 

• Updating the host from device occurs at  the end of every time step.

• Now we can strictly focus on porting and optimizing the compute 

kernels.
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Example #1: OPENACC code

Although the existing OpenACC

code may not be efficiently 

implemented, it still serves as a 

rough guideline for our OpenMP 

offloading port

First step of the porting & 

optimization process is to add 

existing OpenMP directives on top of 

the OpenACC directives
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Example #1: OpenMP® initial port

Note: number of vertical levels (nVertLevels) depends on mesh.

(e.g., nVertLevels = 26 in the JW Baroclinic Wave benchmark)

This may be okay for a hardware with shorter SIMD (warp). 

With warp size exceeding the nVertLevels use of recourses will 

be  suboptimal
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Example #1: OpenMP® initial optimization – number of threads

thread_limit(64)

Default number of threads is 256

Obvious step, reduce it to 64.

Still <50% utilization. How to ensure most threads 

are doing useful work for these smaller meshes? 

One approach could be to collapse the inner do 

loops
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Example #1: OpenMP® better optimization – collapsed do loops

Macro-definitions added at 

the top of each source file 

to distinguish do loops for 

the OpenACC backend 

from do loops for the new 

OpenMP offloading 

backend
End goal is to have one 

code with few adaptations 

for optimal use of different 

directive-based 

programming models

Can now use default number of threads 

(256)
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Example #2: OpenACC code

Collapsing inner loops not always possible

Caches local arrays into shared memory

No OpenMP equivalent for !$acc cache 
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Example #2: OpenMP® initial port

Directly apply thread_limit(64) trick

Suboptimal performance of RHS loop – register spills and scratch usage according to rocprof

Collapsing the loops not possible because of the reduction of q2 variable. 

However, can we rearrange the order of the parallel and sequential loops?



55 |

Example #2: OpenMP® optimization – rearranging and splitting loops

Rearrange order of the sequential and parallel 

do loops. Multiple parallel loops to minimize 

global memory reads/writes
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JW Baroclynic wave – Initial performance 

Overall GPU port (including the OpenACC backend) still in progress

Only a couple variables copied back to the host about ~7% of time integration

• The “ mpas update GPU data on host” event will significantly increase as more physics/variables are ported

• HMM can play a big role
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3. Basics of OpenMP® offloading 
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6. Heterogenous memory management (HMM)
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Heterogenous memory management (HMM)

HMM allows the same pointer to an object to be used both by the CPU and a device [GPU] even if the

physical location of the object were moved by the operating system or device driver. Furthermore, the

device driver can control the policy of whether the current physical location of the object is in CPU or

device memory.

https://www.kernel.org/doc/html/v5.0/vm/hmm.html

https://www.kernel.org/doc/html/v5.0/vm/hmm.html


59 |

OpenMP® programming on systems with HMM

#pragma omp requires unified_shared_memory
int main(){

double * X, * Y, *Z;
size_t N = ( size_t ) 1024*1024* sizeof (
X = new double[N];
Y = new double[N];
#pragma omp target teams distribute parallel for if( target:N >2000)
for (size_t i = 0; i < N; ++i)

X[i] = 0.000001*i
#pragma omp target teams distribute parallel for if( target:N >2000)
for (size_t i = 0; i < N; ++i)

Y[i ] = X[i]

delete[] X; delete[] Y;
return 0;

}

Highlights:

Uses system memory allocators.

“Pointer is a pointer” data can be accessed by

threads running on any device, regardless of the

current physical location of the data

HMM allows OS, driver, and HW to manage physical

memory location, while OpenMP directives are used

primarily for expressing parallelism and execution

space (HOST, DEVICE 0, DEVICE 1, etc.)

Footnotes: manual management of data, memory

location, and expression of parallelism (for example

using HIP programming models) may provide higher

performance. Some performance optimizations may

also be done via using additional directives, clauses,

and APIs
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Performance comparison of unified vs non-unified memory
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OpenMP® offloading with HMM – OpenFOAM® case-study

Memory allocations are decoupled from the “rest” of the code. 

This makes altering memory allocation easier but it also makes it 

difficult to understand the mapping between variables and 

memory allocations.
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OpenFOAM® initial porting with HMM - choosing the executing 

device and expressing parallelism
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HMM at work with OpenFOAM®

Current state: after adding about 60 lines of OpenMP® target directives ~50-60% of the code is executed on GPUs. 

Switching execution between the CPU and GPU does not require explicit data transfers – HMM is moving pages as needed.

OpenMP standard and implementation are evolving/improving.
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Summary

▪ OpenMP® offloading is compatible and competitive with HIP

▪ OpenMP® can interface to ROCm /HIP math libraries

▪ Performance of OpenMP® regions can be tuned by modifying the number of teams or 

threads

▪ Debugging and profiling OpenMP® offloading code on AMD GPUs

▪ Discussed the challenges in adding OpenMP® offloading support in HPC applications

▪ Compiler related challenges

▪ Having a standard benchmark for capturing the compiler related issues would be helpful

▪ Heterogeneous Memory Management (HMM) is available to use on AMD systems
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Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The 

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, 

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, 

firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to 

update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the 

content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF 

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD 

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO

EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING 

FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS 

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO 

CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY 

DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm™, EPYC™, Instinct™ and combinations thereof are trademarks of Advanced 

Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

The OpenMP® name and the OpenMP logo are registered trademarks of the OpenMP® Architecture Review Board
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