
Accelerating HPC Applications on

AMD Instinct™ GPUs with

OpenMP® offloading:
An Overview

Suyash Tandon, Member of Technical Staff

May 2023

2 |

CAUTIONARY STATEMENT

This presentation contains forward-looking statements concerning Advanced Micro Devices, Inc. (AMD) such as the features, functionality, performance, availability, timing and expected benefits of AMD’s current

products, future products and markets, which are made pursuant to the Safe Harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are commonly identified by words such

as "would," "may," "expects," "believes," "plans," "intends," "projects" and other terms with similar meaning. Investors are cautioned that the forward-looking statements in this presentation are based on current beliefs,

assumptions and expectations, speak only as of the date of this presentation and involve risks and uncertainties that could cause actual results to differ materially from current expectations. Such statements are subject

to certain known and unknown risks and uncertainties, many of which are difficult to predict and generally beyond AMD's control, that could cause actual results and other future events to differ materially from those

expressed in, or implied or projected by, the forward-looking information and statements. Investors are urged to review in detail the risks and uncertainties in AMD’s Securities and Exchange Commission filings,

including but not limited to AMD’s most recent reports on Forms 10-K and 10-Q.

AMD does not assume, and hereby disclaims, any obligation to update forward-looking statements made in this presentation, except as may be required by law.

3 |

Agenda 1. Introduction to MI 200 hardware

2. Software stack and tools

3. Basics of OpenMP® offloading

4. HIP & OpenMP® - compatibility

5. Case studies

6. Heterogenous memory management (HMM)

4 | Roadmaps Subject to Change

5 |

COMPUTE

ENGINE

COMPUTE

ENGINE

COMPUTE

ENGINE

COMPUTE

ENGINE

6 |

7 |

From AMD MI100 to AMD MI210

• 32GB of HBM2 memory

• 11.5 TFLOPS peak performance

• 1.2 TB/s peak memory bandwidth

• 120 CU

AMD CDNA™ 2 white paper:

https://www.amd.com/system/files/documents/am

d-cdna2-white-paper.pdf

• 64GB of HBM2e memory

• 26.5 TFLOPS peak performance

• 1.6 TB/s peak memory bandwidth

• 108 CU

• 128 single precision FMA operations per cycle

• AMD CDNA 2 Matrix Core supports double-

precision data

8 |

SCIENTISTS TARGET APPLICATIONS FOR WIDE RANGE OF SYSTEMS

2012 2016 2018 2020 2021-2023

Titan (9)

ORNL
Cray/AMD/NVIDIA

ANL
IBM BG/Q

LLNL
IBM BG/Q

Sequoia (10)

ANL
Cray/Intel KNL

LBNL
Cray/Intel Xeon®/ KNL

LANL/SNL
Cray/Intel Xeon®/ KNL

ORNL
IBM/NVIDIA

LLNL
IBM/NVIDIA

LBNL
Cray/AMD/NVIDIA

LANL/SNL
HPE/Intel

ORNL
HPE/AMD/AMD

ANL
Intel/Cray

LLNL
HPE/AMD/AMD

Pre-Exascale Systems [Aggregate Linpack (Rmax) = 323 PF!] First U.S Exascale Systems

Source: science.osti.gov/-media/ascr/ascac/pdf/meetings/201909/20190923_ASCAC-Helland-Barbara-Helland.pdf

Trinity (6)

Summit (1)

Sierra (2)

Crossroads

9 |

IDEAL APPLICATION DEVELOPMENT FROM THE
SCIENTIST’S PERSPECTIVE

Efficient use of
hardware resources
for energy consumed​

Scale from single to
multi-node​

Support both CPUs
and GPUs​

Execute application on
various platform
architectures​

Optimize time to
solution for new
research​

Abstract the computer
science (code, data
movement, scaling, etc)​

10 |

c

PERFORMANCE VS PORTABILITY TRADEOFF
Portability drops as software is tuned for specific HW features

11 |

GPU PROGRAMMING IS DIFFICULT – BUT EASIER IF HW IS ABSTRACTED

Domain Specific Language

Frameworks

Libraries

ISO Standard Languages

Directive Based Extensions

Accelerator Languages

HW Specific

GridTools, Devito

Kokkos, Legion, TF, PyTorch

Math, Communication

C++, Fortran, Python

OpenMP, OpenACC

OpenCL, HIP, CUDA, SYCL

GCN-ISA, PTX, oneAPI-L0

12 |

Agenda 1. Introduction to MI 200 hardware

2. Software stack and tools

3. Basics of OpenMP® offloading

4. HIP & OpenMP® - compatibility

5. Case studies

6. Heterogenous memory management (HMM)

13 |

Open Software Platform For GPU Compute

14 |

Compiler with OpenMP® support on AMD GPUs

15 |

AMD development tools

A
tt

ai
n

ab
le

 F
LO

P
s/

s

1000

100

16 |

Agenda 1. Introduction to MI 200 hardware

2. Software stack and tools

3. Basics of OpenMP® offloading

4. HIP & OpenMP® - compatibility

5. Case studies

6. Summary

17 |

Basics of OpenMP® offloading

18 |

Basics of OpenMP® offloading

!$OMP TARGET ENTER DATA MAP(ALLOC:A): Map A to the device.
Initial value on device is undefined!

!$OMP TARGET ENTER DATA MAP(TO:A): Map A to the device.
Initialize with value from host.​​

!$OMP TARGET EXIT DATA MAP(DELETE:A): Unmap A from device.
Set allocation count to zero.​

!$OMP TARGET EXIT DATA MAP(RELEASE:A):Unmap A from device.
Decrement allocation count by one

!$OMP TARGET UPDATE(TO:A): Copy A from host to device
!$OMP TARGET UPDATE(FROM:A)​: Copy A from device to host

19 |

Common errors

Host region (7ffc4df0dd20 to 7ffc4df1dd20) overlaps present region

(7ffc4df19e80 to 7ffc4df22e80 index 42) but is not contained for A in hamil.f90

Data is mapped to device but is not

deleted/released!

HSA_STATUS_ERROR_MEMORY_FAULT: Agent attempted to access an

inaccessible address. code: 0x2b

Data is not present on GPU!

20 |

Debugging with AOMP: LIBOMPTARGET_DEBUG

21 |

Debugging with Cray compiler: CRAY_ACC_DEBUG

22 |

Debugging with Cray compiler: –hlist=aimd

$ftn -hnoacc -homp -fopenmp -hlist=aimd -o ./teamsdis ./teamsdis.f90

23 |

Profiling OpenMP® offloading code on AMD GPUs

Compile:

Profile and collect HIP trace:

Open the .json file in chrome://tracing/ or https://ui.perfetto.dev/

$ftn -hnoacc -fopenmp -homp -o ./test ./test.f90

$rocprof –hip-trace ./test

chrome://tracing/
https://ui.perfetto.dev/

24 |

Agenda 1. Introduction to MI 200 hardware

2. Software stack and tools

3. Basics of OpenMP® offloading

4. HIP & OpenMP® - compatibility

5. Case studies

6. Heterogenous memory management (HMM)

25 |

HIP & OpenMP® – Hybrid programming: compatible & competitive

Hybrid programming here stands for the interaction of OpenMP with a lower-level programming model like

HIP. In other words, one can program with OpenMP in the style one might program with HIP.

OpenMP supports the following interactions:

▪ Calling low-level HIP kernels from OpenMP application code

▪ Calling HIP/ROCM math libraries (rocBLAS, rocFFT, etc.) from OpenMP application code

▪ Calling OpenMP kernels from low-level HIP application code

26 |

HIP & OpenMP® – Saxpy example

void example() {
float a = 2.0;
float * x;
float * y;
#pragma omp target data map(to:x[0:count]) map(tofrom:y [0:count])
{
compute_1(n, x);
compute_2(n, y);
#pragma omp target update to(x[0:count]) to(y[0:count])
saxpy(n, a, x, y)
compute_3(n, y);
}

}

void saxpy (size_t n, float a,
float * x, float * y) {

#pragma omp target teams distribute parallel for …
for (size_t i = 0; i < n; ++i) {

y[i] = a * x[i] + y[i];
}

}

27 |

HIP & OpenMP® – HIP kernel for saxpy()

A HIP version of the SAXPY kernel:

We need a way to translate the host pointer that was mapped by OpenMP directives and retrieve the

associated device pointer.

__global__ void saxpy_kernel (size_t n, float a, float * x , float * y){
size_t i = threadIdx.x + blockIdx.x * blockDim.x;
y[i] = a * x[i] + y[i];

}

Void saxpy_hip (size_t n, float a, float * x , float * y){
assert(n % 256 == 0);
saxpy_kernel <<<n/256,256,0,NULL>>>(n, a, x , y);

}

28 |

HIP & OpenMP® – Putting it together
__global__ void saxpy_kernel (size_t n, float a, float * x , float * y){

size_t i = threadIdx.x + blockIdx.x * blockDim.x;
y[i] = a * x[i] + y[i];

}

Void saxpy_hip (size_t n, float a, float * x , float * y){
assert(n % 256 == 0);
saxpy_kernel <<<n/256,256,0,NULL>>>(n, a, x , y);

}
--
void example() {

float a = 2.0;
float * x = ...; //assume: x = 0xabcd
float * y = ...;
// allocate the device memory
#pragma omp target data map(to:x [0:count]) tofrom:y [0:count])
{
compute_1(n, x); // mapping table: x:[0xabcd ,0xef12], x = 0xabcd
compute_2(n, y);
#pragma omp target update to(x[0:count]) to(y[0:count]) // update x and y on the target
#pragma omp target data use_device_ptr (x,y)
{

saxpy_hip(n, a, x, y) // mapping table: 0xabcd ,0xef12], x = 0xef12
}
}
compute_3(n, y);

}

Translation unit 1

Translation unit 2

29 |

HIP & OpenMP® – Fortran and DGEMM example

Courtesy: Justin Chang et al. (2022)

30 |

HIP & OpenMP® – Babelstream case study

Full comparison of OpenMP Offloading vs HIP for all kernels in single precision and double precision

All experiments performed on a single Instinct MI100 using AOMP 13.06

Default Threads * Teams configuration already optimal for some kernels

Courtesy: Justin Chang et al. (2022)

Optimization for BabelStream would require

a different number of Threads*Teams for

each of the sub-benchmarks

31 |

Agenda 1. Introduction to MI 200 hardware

2. Software stack and tools

3. Basics of OpenMP® offloading

4. HIP & OpenMP® - compatibility

5. Case studies

6. Heterogenous memory management (HMM)

32 |

Case Study 1 – VASP (Vienna Ab Initio Simulation Package)

▪ A computer program for atomic scale materials modelling, e.g., electronic structure

calculations and quantum-mechanical molecular dynamics

▪ Currently used by more than 1400 research groups in academia and industry worldwide

▪ Software license agreements with the University of Vienna

▪ ~550K lines of FORTRAN 90 code (some FORTRAN 77)

33 |

Supporting concurrent directive-based paradigms in VASP

▪ Switch between different directive-based paradigms without letting them impact on each other

▪ Take advantage of source preprocessing

▪ Pros: switch between different directive-based paradigms

▪ Cons: makes the code messy

Used when VASP is compiled with OpenACC

Used when OpenMP (host) is

enabled and OpenMP

offloading/OpenACC is disabled

Used when OpenMP

offloading is enabled

34 |

Enable/disable offloading in different code paths

▪ Many of the VASP subroutines are called from different code paths

▪ How can we enable offloading for a subroutine in one path and disable offloading for others

▪ It would be useful for code development and debugging

We can call OMP_PUSH_EXEC_ON(.TRUE.) or

OMP_PUSH_EXEC_ON(.FALSE.) to enable or disable

offloading in different code paths

35 |

Interface OMP offloading with ROCM libraries

▪ VASP uses FFT, BLAS, and LAPACK extensively

▪ Developed a wrapper to interface OMP target regions with ROCM libraries

▪ rocFFT

▪ rocBLAS

▪ rocSolver

WOPT%CW_RED(A), CEIG(B), and WA%CW_RED(C) are

mapped to device with “omp target enter data map” directive

36 |

Exponential of Complex Variables

Original Code:

37 |

Exponential of Complex Variables

Workaround:

$ftn -hnoacc -fopenmp -homp -o ./exp ./exp_workaround2.f90

$./exp

R= (-1.1312035958327016,2.4717250246105067)

Exp(a+bj)=e^a*(cos(b)+sin(b)j)

38 |

Mapping Scalar Variables

$ftn -hnoacc -fopenmp -homp -o ./enter_scalar

./enter_scalar.f90

$./enter_scalar

CE= 0.

Original Code: Workaround:

$ftn -hnoacc -fopenmp -homp -o

./enter_scalar ./enter_scalar_workaround.f90

$./enter_scalar

CE= 1.

39 |

▪ Pointer aliasing occurs a lot in VASP

▪ It can be challenging for the compilers to deal with pointer aliasing on device

▪ Set CRAY_ACC_DEBUG=3 as environment variable to get the log

▪ This issue is resolved in CCE15

Pointer aliasing

40 |

Pointer aliasing (alternative methods)

Launch a kernel Using target data construct

41 |

Pointer mismatch in subroutine calls

$./aliasing

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

:0:rocdevice.cpp :2660: 1637590862517 us:

86531: [tid:0x7fbe82217700]

Device::callbackQueue aborting with error :

HSA_STATUS_ERROR_MEMORY_APERTURE_V

IOLATION: The agent attempted to access memory

beyond the largest legal address. code: 0x29

Aborted

42 |

Pointer mismatch in subroutine calls (alternative method)

43 |

Atomic update for complex(8)

Original code Alternative

44 |

The overhead of subroutine call assuming there is no need for

atomic update

Kernel time= 22 msKernel time= 80 ms

45 |

Declare target

$make

ftn -fopenmp -c myddot.f90 -o myddot.o

!$omp parallel do simd reduction(+:RES)

ftn-7212 ftn: WARNING MYDDOT_VECTOR_GPU, File = myddot.f90, Line = 7

Variable "res" is used before it is defined.

ftn-7256 ftn: WARNING MYDDOT_VECTOR_GPU, File = myddot.f90, Line = 7

An OpenMP parallel construct in a target region is limited to a single thread.

Cray Fortran : Version 15.0.0.3 (20220920162820_088e5928c3724749216ddb6b2fbbcd2152ed2bb8)

Cray Fortran : Thu Jan 05, 2023 15:58:21

Cray Fortran : Compile time: 0.0472 seconds

Cray Fortran : 13 source lines

Cray Fortran : 0 errors, 2 warnings, 0 other messages, 0 ansi

Cray Fortran : "explain ftn-message number" gives more information about each message.

ftn -fopenmp -c reproducer.f90 -o reproducer.o

ftn -fopenmp myddot.o reproducer.o -o reproducer.x

error: reproducer.f90:28:0: in function reproducer_$ck_L25_1 void (i64, i64, i64, i64, i64, i64): unsupported call

to variadic function myddot_vector_gpu_

make: *** [Makefile:8: reproducer] Error 1

46 |

Declare target (alternative method)

▪ To get around the error, we can define function in the same file as

function call

▪ It would be challenging to apply his workaround in the applications

with many function/subroutine calls

47 |

Case study 2 - MPAS

The Model for Prediction Across Scales (MPAS) is a collaborative project for developing atmosphere, ocean

and other earth-system simulation components for use in climate, regional climate, and weather studies.​

▪ Finite volume solver for non-hydrostatic atmospheric equations. ​

▪ Written in FORTRAN. Uses directives for GPU acceleration​

▪ ~2.5k lines of !$acc code, still an ongoing effort​

▪ AMD approach: OpenMP® directives​

See https://mpas-dev.github.io/ and https://github.com/MPAS-Dev/MPAS-Model for more information

48 |

MPAS code structure: Memory and data management

• All GPU memory buffers allocated at the first time step and is reused

for subsequent time steps.

• Updating the host from device occurs at the end of every time step.

• Now we can strictly focus on porting and optimizing the compute

kernels.

49 |

Example #1: OPENACC code

Although the existing OpenACC

code may not be efficiently

implemented, it still serves as a

rough guideline for our OpenMP

offloading port

First step of the porting &

optimization process is to add

existing OpenMP directives on top of

the OpenACC directives

50 |

Example #1: OpenMP® initial port

Note: number of vertical levels (nVertLevels) depends on mesh.

(e.g., nVertLevels = 26 in the JW Baroclinic Wave benchmark)

This may be okay for a hardware with shorter SIMD (warp).

With warp size exceeding the nVertLevels use of recourses will

be suboptimal

51 |

Example #1: OpenMP® initial optimization – number of threads

thread_limit(64)

Default number of threads is 256

Obvious step, reduce it to 64.

Still <50% utilization. How to ensure most threads

are doing useful work for these smaller meshes?

One approach could be to collapse the inner do

loops

52 |

Example #1: OpenMP® better optimization – collapsed do loops

Macro-definitions added at

the top of each source file

to distinguish do loops for

the OpenACC backend

from do loops for the new

OpenMP offloading

backend
End goal is to have one

code with few adaptations

for optimal use of different

directive-based

programming models

Can now use default number of threads

(256)

53 |

Example #2: OpenACC code

Collapsing inner loops not always possible

Caches local arrays into shared memory

No OpenMP equivalent for !$acc cache

54 |

Example #2: OpenMP® initial port

Directly apply thread_limit(64) trick

Suboptimal performance of RHS loop – register spills and scratch usage according to rocprof

Collapsing the loops not possible because of the reduction of q2 variable.

However, can we rearrange the order of the parallel and sequential loops?

55 |

Example #2: OpenMP® optimization – rearranging and splitting loops

Rearrange order of the sequential and parallel

do loops. Multiple parallel loops to minimize

global memory reads/writes

56 |

JW Baroclynic wave – Initial performance

Overall GPU port (including the OpenACC backend) still in progress

Only a couple variables copied back to the host about ~7% of time integration

• The “ mpas update GPU data on host” event will significantly increase as more physics/variables are ported

• HMM can play a big role

57 |

Agenda 1. Introduction to MI 200 hardware

2. Software stack and tools

3. Basics of OpenMP® offloading

4. HIP & OpenMP® - compatibility

5. Case studies

6. Heterogenous memory management (HMM)

58 |

Heterogenous memory management (HMM)

HMM allows the same pointer to an object to be used both by the CPU and a device [GPU] even if the

physical location of the object were moved by the operating system or device driver. Furthermore, the

device driver can control the policy of whether the current physical location of the object is in CPU or

device memory.

https://www.kernel.org/doc/html/v5.0/vm/hmm.html

https://www.kernel.org/doc/html/v5.0/vm/hmm.html

59 |

OpenMP® programming on systems with HMM

#pragma omp requires unified_shared_memory
int main(){

double * X, * Y, *Z;
size_t N = (size_t) 1024*1024* sizeof (
X = new double[N];
Y = new double[N];
#pragma omp target teams distribute parallel for if(target:N >2000)
for (size_t i = 0; i < N; ++i)

X[i] = 0.000001*i
#pragma omp target teams distribute parallel for if(target:N >2000)
for (size_t i = 0; i < N; ++i)

Y[i] = X[i]

delete[] X; delete[] Y;
return 0;

}

Highlights:

Uses system memory allocators.

“Pointer is a pointer” data can be accessed by

threads running on any device, regardless of the

current physical location of the data

HMM allows OS, driver, and HW to manage physical

memory location, while OpenMP directives are used

primarily for expressing parallelism and execution

space (HOST, DEVICE 0, DEVICE 1, etc.)

Footnotes: manual management of data, memory

location, and expression of parallelism (for example

using HIP programming models) may provide higher

performance. Some performance optimizations may

also be done via using additional directives, clauses,

and APIs

60 |

Performance comparison of unified vs non-unified memory

61 |

OpenMP® offloading with HMM – OpenFOAM® case-study

Memory allocations are decoupled from the “rest” of the code.

This makes altering memory allocation easier but it also makes it

difficult to understand the mapping between variables and

memory allocations.

62 |

OpenFOAM® initial porting with HMM - choosing the executing

device and expressing parallelism

63 |

HMM at work with OpenFOAM®

Current state: after adding about 60 lines of OpenMP® target directives ~50-60% of the code is executed on GPUs.

Switching execution between the CPU and GPU does not require explicit data transfers – HMM is moving pages as needed.

OpenMP standard and implementation are evolving/improving.

64 |

Summary

▪ OpenMP® offloading is compatible and competitive with HIP

▪ OpenMP® can interface to ROCm /HIP math libraries

▪ Performance of OpenMP® regions can be tuned by modifying the number of teams or

threads

▪ Debugging and profiling OpenMP® offloading code on AMD GPUs

▪ Discussed the challenges in adding OpenMP® offloading support in HPC applications

▪ Compiler related challenges

▪ Having a standard benchmark for capturing the compiler related issues would be helpful

▪ Heterogeneous Memory Management (HMM) is available to use on AMD systems

65 |

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes,

firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to

update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the

content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO

EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING

FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO

CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY

DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm™, EPYC™, Instinct™ and combinations thereof are trademarks of Advanced

Micro Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

The OpenMP® name and the OpenMP logo are registered trademarks of the OpenMP® Architecture Review Board

	Slide 1: Accelerating HPC Applications on AMD Instinct™ GPUs with OpenMP® offloading: An Overview
	Slide 2: Cautionary Statement
	Slide 3: Agenda
	Slide 4
	Slide 5
	Slide 6
	Slide 7: From AMD MI100 to AMD MI210
	Slide 8: SCIENTISTS TARGET APPLICATIONS FOR WIDE RANGE OF SYSTEMS
	Slide 9
	Slide 10: PERFORMANCE VS PORTABILITY TRADEOFF
	Slide 11: GPU PROGRAMMING IS DIFFICULT – BUT EASIER IF HW IS ABSTRACTED
	Slide 12: Agenda
	Slide 13
	Slide 14: Compiler with OpenMP® support on AMD GPUs
	Slide 15: AMD development tools
	Slide 16: Agenda
	Slide 17: Basics of OpenMP® offloading
	Slide 18: Basics of OpenMP® offloading
	Slide 19: Common errors
	Slide 20: Debugging with AOMP: LIBOMPTARGET_DEBUG
	Slide 21: Debugging with Cray compiler: CRAY_ACC_DEBUG
	Slide 22: Debugging with Cray compiler: –hlist=aimd
	Slide 23: Profiling OpenMP® offloading code on AMD GPUs
	Slide 24: Agenda
	Slide 25: HIP & OpenMP® – Hybrid programming: compatible & competitive
	Slide 26: HIP & OpenMP® – Saxpy example
	Slide 27: HIP & OpenMP® – HIP kernel for saxpy()
	Slide 28: HIP & OpenMP® – Putting it together
	Slide 29: HIP & OpenMP® – Fortran and DGEMM example
	Slide 30: HIP & OpenMP® – Babelstream case study
	Slide 31: Agenda
	Slide 32: Case Study 1 – VASP (Vienna Ab Initio Simulation Package)
	Slide 33: Supporting concurrent directive-based paradigms in VASP
	Slide 34: Enable/disable offloading in different code paths
	Slide 35: Interface OMP offloading with ROCM libraries
	Slide 36: Exponential of Complex Variables
	Slide 37: Exponential of Complex Variables
	Slide 38: Mapping Scalar Variables
	Slide 39
	Slide 40
	Slide 41: Pointer mismatch in subroutine calls
	Slide 42: Pointer mismatch in subroutine calls (alternative method)
	Slide 43: Atomic update for complex(8)
	Slide 44: The overhead of subroutine call assuming there is no need for atomic update
	Slide 45: Declare target
	Slide 46: Declare target (alternative method)
	Slide 47: Case study 2 - MPAS
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56: JW Baroclynic wave – Initial performance
	Slide 57: Agenda
	Slide 58: Heterogenous memory management (HMM)
	Slide 59: OpenMP® programming on systems with HMM
	Slide 60: Performance comparison of unified vs non-unified memory
	Slide 61: OpenMP® offloading with HMM – OpenFOAM® case-study
	Slide 62: OpenFOAM® initial porting with HMM - choosing the executing device and expressing parallelism
	Slide 63: HMM at work with OpenFOAM®
	Slide 64: Summary
	Slide 65: Disclaimer
	Slide 66

