
Experiences with OpenMP Target Offloading in the OpenMC
Monte Carlo Particle Transport Application

John Tramm, PhD
Assistant Computational Scientist

Argonne National Laboratory

OpenMP Monthly Telecon – Feb 25, 2022

Acknowledgement

This work is a collaborative project with major contributions from Paul
Romano, Johannes Doerfert, Amanda Lund, Patrick Shriwise, Andrew
Siegel, Gavin Ridley, and Andrew Pastrello.

This presentation has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of
Energy Office of Science laboratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for itself, and others acting on its
behalf, a paid-up nonexclusive, irrevocable worldwide license in said article
to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.
The Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan.
http://energy.gov/downloads/doe-public-access-plan.

2 2

What is Monte Carlo (MC) Particle Transport?

• Simulates individual
particles as they move
through and interact with
material geometries

• High-fidelity and general
purpose

• High computational cost

• Stochastic nature of
simulation creates many
challenges in terms of
running efficiently on HPC
architectures

3

Animation By:
Paul Romano

• Monte Carlo (MC) neutral particle
transport application

• Part of the ExaSMR ECP project

• Open source:

– Started by Paul Romano

– 52 contributors

– Primarily developed at ANL

• Modern C++, with parallelism expressed

via MPI + OpenMP

What is
?

Porting to OpenMP: Main Programming Challenges

Virtual functions Tagged unions

STL containers
(e.g., std::vector) Pointers

Nested, complex
data structures

Tons of mapping
code

Original CPU-Oriented Code OpenMP Offloading GPU Port

Porting to GPU: Main Algorithmic Challenges

History-Based
Algorithm

Event-Based
Algorithm

Legacy CPU-
Oriented

Optimizations

New, GPU-
Oriented

Optimizations

Unsorted Particle Sort in
Energy

Original CPU-Oriented Code OpenMP Offloading GPU Port

A Crisis of Divergence

"Event-Based" Parallelism
• Originally developed in the 80's for vector computers

• Only execute one low level event type at a time (kernel splitting)

• Parallelism expressed over particles requiring that event

• Greatly reduces thread divergence
• Opens the door to other GPU-centric optimizations

• Many smaller GPU kernels

"History-Based" Parallelism
• Each particle undergoes random series of different events (collisions,

movements, tallies, etc) from birth to death

• Parallelism expressed at high level over independent particles

• Single monolithic GPU kernel

Animation by Paul Romano

History-Based Transport Example

Algorithmic Challenges

History-Based Transport: Optimal for CPU

Algorithm 1 History-based algorithm in a full MC transport application

1: for each particle do . Independent

2: while particle is alive do . Dependent

3: Event A: Compute macroscopic cross sections

4: Event B: Sample distance to collision and collision type

5: Event C: Move particle to collision site

6: Event D: Process particle collision

7: Event ...

8: end while
9: end for

<latexit sha1_base64="NN5r2l7cHi//NNDeyoBEmYRhgAk=">AAAEtHicfVNNbxMxEN0uAZqUjxaOXCyqSlyIsj0Ayqk0LSqHiqLSDymJKq93klj12pbtjRqt9j9w5Ar/in/DeJOusknFSLsaj+fNjN+zYy24dZ3O343wUePxk6ebzdbWs+cvXm7vvLq0KjMMLpgSylzH1ILgEi4cdwKutQGaxgKu4tue37+agrFcyR9upmGY0rHkI86ow9DNTrg1iGHMZU7FWBnuJmnRag4Y1X47P8EBlJm99x0SUqUQLgklo0wIctojzlBptTKOUI0jzyv7KoLGIHzh7mRexwdXunFW9KNhq9kcfFEmB8omRFPjOBNQ+GhPpSlIl3+VCWjAn3Rl/GrCBeT3qYRbnI5P65ijGuLcUQf58RTX5HOXYJLOHJCUMqMsU5oz4j1LLDB/AruGOuySc5pqbJfgeahkQJwiqAHqhABCZbK08myvleh1yamaQnXGegHL3TrkqEvOjGKAk1WoCrKW3W63y9ixTEqKFj6Si9wjGzXmW/VIcbO922l3SiPrTrRwdoOFnd3sbPwcJIplnm4mqLX9qKPdMK8UHGQWNGW3dAx9dCVNwQ7z8toWZC/zt2qkDH44ehldRuQ0tXaWxpiZUjexq3s++NBeP3OjT8OcSy+wZPNGeFs92V4VlM+gxmKGDqrPnZd+Qg1lDl9KvUvFDalsz+sx5QnYpRcBcsqNkp6Ihwtwdlf8pwCOEAvFblfB2kKGDKsEinvwt/JtEjVaRt+RBQg1jFYVW3cu99tRpx193989OFyouRm8Cd4G74Io+BgcBCfBWXARsNCEv8Lf4Z/Gh8agwRowTw03FpjXQc0a8h97gYu/</latexit><latexit sha1_base64="NN5r2l7cHi//NNDeyoBEmYRhgAk=">AAAEtHicfVNNbxMxEN0uAZqUjxaOXCyqSlyIsj0Ayqk0LSqHiqLSDymJKq93klj12pbtjRqt9j9w5Ar/in/DeJOusknFSLsaj+fNjN+zYy24dZ3O343wUePxk6ebzdbWs+cvXm7vvLq0KjMMLpgSylzH1ILgEi4cdwKutQGaxgKu4tue37+agrFcyR9upmGY0rHkI86ow9DNTrg1iGHMZU7FWBnuJmnRag4Y1X47P8EBlJm99x0SUqUQLgklo0wIctojzlBptTKOUI0jzyv7KoLGIHzh7mRexwdXunFW9KNhq9kcfFEmB8omRFPjOBNQ+GhPpSlIl3+VCWjAn3Rl/GrCBeT3qYRbnI5P65ijGuLcUQf58RTX5HOXYJLOHJCUMqMsU5oz4j1LLDB/AruGOuySc5pqbJfgeahkQJwiqAHqhABCZbK08myvleh1yamaQnXGegHL3TrkqEvOjGKAk1WoCrKW3W63y9ixTEqKFj6Si9wjGzXmW/VIcbO922l3SiPrTrRwdoOFnd3sbPwcJIplnm4mqLX9qKPdMK8UHGQWNGW3dAx9dCVNwQ7z8toWZC/zt2qkDH44ehldRuQ0tXaWxpiZUjexq3s++NBeP3OjT8OcSy+wZPNGeFs92V4VlM+gxmKGDqrPnZd+Qg1lDl9KvUvFDalsz+sx5QnYpRcBcsqNkp6Ihwtwdlf8pwCOEAvFblfB2kKGDKsEinvwt/JtEjVaRt+RBQg1jFYVW3cu99tRpx193989OFyouRm8Cd4G74Io+BgcBCfBWXARsNCEv8Lf4Z/Gh8agwRowTw03FpjXQc0a8h97gYu/</latexit><latexit sha1_base64="NN5r2l7cHi//NNDeyoBEmYRhgAk=">AAAEtHicfVNNbxMxEN0uAZqUjxaOXCyqSlyIsj0Ayqk0LSqHiqLSDymJKq93klj12pbtjRqt9j9w5Ar/in/DeJOusknFSLsaj+fNjN+zYy24dZ3O343wUePxk6ebzdbWs+cvXm7vvLq0KjMMLpgSylzH1ILgEi4cdwKutQGaxgKu4tue37+agrFcyR9upmGY0rHkI86ow9DNTrg1iGHMZU7FWBnuJmnRag4Y1X47P8EBlJm99x0SUqUQLgklo0wIctojzlBptTKOUI0jzyv7KoLGIHzh7mRexwdXunFW9KNhq9kcfFEmB8omRFPjOBNQ+GhPpSlIl3+VCWjAn3Rl/GrCBeT3qYRbnI5P65ijGuLcUQf58RTX5HOXYJLOHJCUMqMsU5oz4j1LLDB/AruGOuySc5pqbJfgeahkQJwiqAHqhABCZbK08myvleh1yamaQnXGegHL3TrkqEvOjGKAk1WoCrKW3W63y9ixTEqKFj6Si9wjGzXmW/VIcbO922l3SiPrTrRwdoOFnd3sbPwcJIplnm4mqLX9qKPdMK8UHGQWNGW3dAx9dCVNwQ7z8toWZC/zt2qkDH44ehldRuQ0tXaWxpiZUjexq3s++NBeP3OjT8OcSy+wZPNGeFs92V4VlM+gxmKGDqrPnZd+Qg1lDl9KvUvFDalsz+sx5QnYpRcBcsqNkp6Ihwtwdlf8pwCOEAvFblfB2kKGDKsEinvwt/JtEjVaRt+RBQg1jFYVW3cu99tRpx193989OFyouRm8Cd4G74Io+BgcBCfBWXARsNCEv8Lf4Z/Gh8agwRowTw03FpjXQc0a8h97gYu/</latexit><latexit sha1_base64="NN5r2l7cHi//NNDeyoBEmYRhgAk=">AAAEtHicfVNNbxMxEN0uAZqUjxaOXCyqSlyIsj0Ayqk0LSqHiqLSDymJKq93klj12pbtjRqt9j9w5Ar/in/DeJOusknFSLsaj+fNjN+zYy24dZ3O343wUePxk6ebzdbWs+cvXm7vvLq0KjMMLpgSylzH1ILgEi4cdwKutQGaxgKu4tue37+agrFcyR9upmGY0rHkI86ow9DNTrg1iGHMZU7FWBnuJmnRag4Y1X47P8EBlJm99x0SUqUQLgklo0wIctojzlBptTKOUI0jzyv7KoLGIHzh7mRexwdXunFW9KNhq9kcfFEmB8omRFPjOBNQ+GhPpSlIl3+VCWjAn3Rl/GrCBeT3qYRbnI5P65ijGuLcUQf58RTX5HOXYJLOHJCUMqMsU5oz4j1LLDB/AruGOuySc5pqbJfgeahkQJwiqAHqhABCZbK08myvleh1yamaQnXGegHL3TrkqEvOjGKAk1WoCrKW3W63y9ixTEqKFj6Si9wjGzXmW/VIcbO922l3SiPrTrRwdoOFnd3sbPwcJIplnm4mqLX9qKPdMK8UHGQWNGW3dAx9dCVNwQ7z8toWZC/zt2qkDH44ehldRuQ0tXaWxpiZUjexq3s++NBeP3OjT8OcSy+wZPNGeFs92V4VlM+gxmKGDqrPnZd+Qg1lDl9KvUvFDalsz+sx5QnYpRcBcsqNkp6Ihwtwdlf8pwCOEAvFblfB2kKGDKsEinvwt/JtEjVaRt+RBQg1jFYVW3cu99tRpx193989OFyouRm8Cd4G74Io+BgcBCfBWXARsNCEv8Lf4Z/Gh8agwRowTw03FpjXQc0a8h97gYu/</latexit>

The problem: particles will undergo different events in different order,
resulting in very low (or zero) SIMD efficiency

8

kernel

Animation Source:
Paul Romano

Event-Based Transport: Optimal for GPU
• Solution: kernel splitting.

Parallelize over events
instead, execute all particles
that need that event in SIMD

• Host decides which event
kernel to launch based on
how many particles in that
queue

• Downside: buffering of
particles between events

• Upside: greatly reduced
branching, potential for
vectorization

Algorithm 1 Event-based algorithm in a full MC transport application

1: initialize bu↵er of particles
2: while any particles are still alive do . Dependent
3: for each alive particle do . Independent
4: Event A: Compute macroscopic cross sections
5: end for
6: for each alive particle do . Independent
7: Event B: Sample distance to collision and collision type
8: end for
9: for each alive particle do . Independent

10: Event C: Move particle to collision site
11: end for
12: for each alive particle do . Independent
13: Event D: Process particle collision
14: end for
15: for each alive particle do . Independent
16: Event ...
17: end for
18: sort/consolidate surviving particles . stream compaction
19: end while

<latexit sha1_base64="SVR5IBpwxKEsFIKtJERDMTZCJlA=">AAAGM3icrVS9bhNBEL4QG2Lzl0BBQTMQRaLB2GlArkKcICgigkJ+JNuK9vbG9ip7u6fdPQtzuheg4mV4GESHaCl4A2Z9jrGdCKXISpbm5u8bz3wzYSKFdfX696Uby6XyzVsrlertO3fv3V9de3BkdWo4HnIttTkJmUUpFB464SSeJAZZHEo8Ds9a3n48RGOFVh/dKMFuzPpK9ARnjlSna8tfOiH2hcqY7Gsj3CDOq5UOZ4k3Z7tDVO65zx/B1AGEAga9VErYa4EzTNlEGwcsoYKLvD6HZCFKn7aJPotXLSAJnrcb3Wql0jlwzGEmlHCCSfEZIUx7PTSge5Aw4wSXaHPveDwQEjOmRv/0wAyCdYLKodghjv1aOo4JNNvBBFVUwFc6b7TJkPFB4ThNkcNsyDvynw0qaht3Al43gdyS1CHEjBttuU4EBy9ZsMj9fy8K3VURoV0L6HYTDlicSISI+MAUR3AaaPRED8IDpqKZLz/k666g1YQ9PRM5j2+Fu3bEnSbsG82R2joFnSJeGexKULVabSFhYbXE6Rec5qmliEgBNjVDMRSqv8DJcxDr/OJRmXHCuJupc0xaoj8VMEf+6rwmP11dr9fq4wcXhcZEWA8mb/90belrJ9I89fBcMmvbjXriutl5B6qd1CIVc8b62CZRsRhtNxtfjRw2Ur/WPW3oR30Ya2cjMhZbO4pD8oyZG9hFm1deZmunrveqS9vs90TxAojOhWeNZyfR2NCqyBEJtES087RBA2aoaXSo5lGmvYHp2/DMGIrIb/70JKEaCqOVb8TlCQT/lP8nAZUQSs3PFoMTiyl1WEeYnwe/H59Gf5pmk8MkiGbYWJzYReFos9ao1xofNte3tifTXAkeB0+DZ0EjeBlsBW+D/eAw4Mt/So9KUHpS/lb+Uf5Z/lW43liaxDwM5l75919eERQl</latexit><latexit sha1_base64="SVR5IBpwxKEsFIKtJERDMTZCJlA=">AAAGM3icrVS9bhNBEL4QG2Lzl0BBQTMQRaLB2GlArkKcICgigkJ+JNuK9vbG9ip7u6fdPQtzuheg4mV4GESHaCl4A2Z9jrGdCKXISpbm5u8bz3wzYSKFdfX696Uby6XyzVsrlertO3fv3V9de3BkdWo4HnIttTkJmUUpFB464SSeJAZZHEo8Ds9a3n48RGOFVh/dKMFuzPpK9ARnjlSna8tfOiH2hcqY7Gsj3CDOq5UOZ4k3Z7tDVO65zx/B1AGEAga9VErYa4EzTNlEGwcsoYKLvD6HZCFKn7aJPotXLSAJnrcb3Wql0jlwzGEmlHCCSfEZIUx7PTSge5Aw4wSXaHPveDwQEjOmRv/0wAyCdYLKodghjv1aOo4JNNvBBFVUwFc6b7TJkPFB4ThNkcNsyDvynw0qaht3Al43gdyS1CHEjBttuU4EBy9ZsMj9fy8K3VURoV0L6HYTDlicSISI+MAUR3AaaPRED8IDpqKZLz/k666g1YQ9PRM5j2+Fu3bEnSbsG82R2joFnSJeGexKULVabSFhYbXE6Rec5qmliEgBNjVDMRSqv8DJcxDr/OJRmXHCuJupc0xaoj8VMEf+6rwmP11dr9fq4wcXhcZEWA8mb/90belrJ9I89fBcMmvbjXriutl5B6qd1CIVc8b62CZRsRhtNxtfjRw2Ur/WPW3oR30Ya2cjMhZbO4pD8oyZG9hFm1deZmunrveqS9vs90TxAojOhWeNZyfR2NCqyBEJtES087RBA2aoaXSo5lGmvYHp2/DMGIrIb/70JKEaCqOVb8TlCQT/lP8nAZUQSs3PFoMTiyl1WEeYnwe/H59Gf5pmk8MkiGbYWJzYReFos9ao1xofNte3tifTXAkeB0+DZ0EjeBlsBW+D/eAw4Mt/So9KUHpS/lb+Uf5Z/lW43liaxDwM5l75919eERQl</latexit><latexit sha1_base64="SVR5IBpwxKEsFIKtJERDMTZCJlA=">AAAGM3icrVS9bhNBEL4QG2Lzl0BBQTMQRaLB2GlArkKcICgigkJ+JNuK9vbG9ip7u6fdPQtzuheg4mV4GESHaCl4A2Z9jrGdCKXISpbm5u8bz3wzYSKFdfX696Uby6XyzVsrlertO3fv3V9de3BkdWo4HnIttTkJmUUpFB464SSeJAZZHEo8Ds9a3n48RGOFVh/dKMFuzPpK9ARnjlSna8tfOiH2hcqY7Gsj3CDOq5UOZ4k3Z7tDVO65zx/B1AGEAga9VErYa4EzTNlEGwcsoYKLvD6HZCFKn7aJPotXLSAJnrcb3Wql0jlwzGEmlHCCSfEZIUx7PTSge5Aw4wSXaHPveDwQEjOmRv/0wAyCdYLKodghjv1aOo4JNNvBBFVUwFc6b7TJkPFB4ThNkcNsyDvynw0qaht3Al43gdyS1CHEjBttuU4EBy9ZsMj9fy8K3VURoV0L6HYTDlicSISI+MAUR3AaaPRED8IDpqKZLz/k666g1YQ9PRM5j2+Fu3bEnSbsG82R2joFnSJeGexKULVabSFhYbXE6Rec5qmliEgBNjVDMRSqv8DJcxDr/OJRmXHCuJupc0xaoj8VMEf+6rwmP11dr9fq4wcXhcZEWA8mb/90belrJ9I89fBcMmvbjXriutl5B6qd1CIVc8b62CZRsRhtNxtfjRw2Ur/WPW3oR30Ya2cjMhZbO4pD8oyZG9hFm1deZmunrveqS9vs90TxAojOhWeNZyfR2NCqyBEJtES087RBA2aoaXSo5lGmvYHp2/DMGIrIb/70JKEaCqOVb8TlCQT/lP8nAZUQSs3PFoMTiyl1WEeYnwe/H59Gf5pmk8MkiGbYWJzYReFos9ao1xofNte3tifTXAkeB0+DZ0EjeBlsBW+D/eAw4Mt/So9KUHpS/lb+Uf5Z/lW43liaxDwM5l75919eERQl</latexit><latexit sha1_base64="SVR5IBpwxKEsFIKtJERDMTZCJlA=">AAAGM3icrVS9bhNBEL4QG2Lzl0BBQTMQRaLB2GlArkKcICgigkJ+JNuK9vbG9ip7u6fdPQtzuheg4mV4GESHaCl4A2Z9jrGdCKXISpbm5u8bz3wzYSKFdfX696Uby6XyzVsrlertO3fv3V9de3BkdWo4HnIttTkJmUUpFB464SSeJAZZHEo8Ds9a3n48RGOFVh/dKMFuzPpK9ARnjlSna8tfOiH2hcqY7Gsj3CDOq5UOZ4k3Z7tDVO65zx/B1AGEAga9VErYa4EzTNlEGwcsoYKLvD6HZCFKn7aJPotXLSAJnrcb3Wql0jlwzGEmlHCCSfEZIUx7PTSge5Aw4wSXaHPveDwQEjOmRv/0wAyCdYLKodghjv1aOo4JNNvBBFVUwFc6b7TJkPFB4ThNkcNsyDvynw0qaht3Al43gdyS1CHEjBttuU4EBy9ZsMj9fy8K3VURoV0L6HYTDlicSISI+MAUR3AaaPRED8IDpqKZLz/k666g1YQ9PRM5j2+Fu3bEnSbsG82R2joFnSJeGexKULVabSFhYbXE6Rec5qmliEgBNjVDMRSqv8DJcxDr/OJRmXHCuJupc0xaoj8VMEf+6rwmP11dr9fq4wcXhcZEWA8mb/90belrJ9I89fBcMmvbjXriutl5B6qd1CIVc8b62CZRsRhtNxtfjRw2Ur/WPW3oR30Ya2cjMhZbO4pD8oyZG9hFm1deZmunrveqS9vs90TxAojOhWeNZyfR2NCqyBEJtES087RBA2aoaXSo5lGmvYHp2/DMGIrIb/70JKEaCqOVb8TlCQT/lP8nAZUQSs3PFoMTiyl1WEeYnwe/H59Gf5pmk8MkiGbYWJzYReFos9ao1xofNte3tifTXAkeB0+DZ0EjeBlsBW+D/eAw4Mt/So9KUHpS/lb+Uf5Z/lW43liaxDwM5l75919eERQl</latexit>

9

kernel

kernel

kernel

kernel

kernel

kernel

Event Size Balance: How Many Kernels to Use?

10

of Event Kernels

Single Kernel

Many Work Items (Particles)

No SIMD

Hundreds of Events/Kernels

Few Work Items (Particles) per Event

Perfect SIMD

For MC, previous work suggests having

O(5-10) events is optimal balance

OpenMC Events

11

Particle Initialization

Calculate Cross Sections (Fuel)

Calculate Cross Sections (non-Fuel)

Advance Particle

Cross Surface

Collision

Particle Death

• All main event kernels in OpenMC have
been offloaded to device

• Some kernels are very large:
• Deep call stacks
• Functions scattered over many files
• O(1000's) lines of code per kernel

OpenMC Event Kernels

Initial GPU Results

12 12

97,159

602

58,529

382,117

0

100,000

200,000

300,000

400,000

CPU: 2x Xeon 8180M
(56c/112t)

GPU: A100
Baseline

GPU: A100
After Compiler

Fixes/Optimizations

GPU: A100
After Application

Algorithmic
Optimization

Pe
rfo

rm
an

ce
 [P

ar
tic

le
s/

se
c]

OpenMC Performance (Higher is Better)

First results with LLVM compiler
on A100 GPU were obtained in

mid 2021.

Performance of A100 was
equivalent to less than a single

CPU core!

Why?

Compiler Issues
• LLVM was the first compiler that allowed us to at least get correct results
• However, performance at first was very poor...
• Close collaboration with LLVM compiler team (particular Johannes

Doerfert) resulted in a several issues being identified (and promptly
remedied!) in compiler
• Extremely high costs for OpenMP #pragma omp target update clauses
• Unnecessary globalization of stack variables

• -fopenmp-cuda-mode flag and use of a cmake unity build was very
useful for improving performance as well
• Although upcoming device link time optimization (LTO) capabilities in LLVM will make

these steps unnecessary

13 13

Results of Compiler Optimizations

14 14

97,159

602

58,529

382,117

0

100,000

200,000

300,000

400,000

CPU: 2x Xeon 8180M
(56c/112t)

GPU: A100
Baseline

GPU: A100
After Compiler

Fixes/Optimizations

GPU: A100
After Application

Algorithmic
Optimization

Pe
rfo

rm
an

ce
 [P

ar
tic

le
s/

se
c]

OpenMC Performance (Higher is Better)

15 15

97,159

602

58,529

382,117

0

100,000

200,000

300,000

400,000

CPU: 2x Xeon 8180M
(56c/112t)

GPU: A100
Baseline

GPU: A100
After Compiler

Fixes/Optimizations

GPU: A100
After Application

Algorithmic
Optimization

Pe
rfo

rm
an

ce
 [P

ar
tic

le
s/

se
c]

OpenMC Performance (Higher is Better)

Improvements to LLVM
Clang compiler resulted in

~100x speedup of
OpenMC!

Results of Compiler Optimizations

16 16

97,159

602

58,529

382,117

0

100,000

200,000

300,000

400,000

CPU: 2x Xeon 8180M
(56c/112t)

GPU: A100
Baseline

GPU: A100
After Compiler

Fixes/Optimizations

GPU: A100
After Application

Algorithmic
Optimization

Pe
rfo

rm
an

ce
 [P

ar
tic

le
s/

se
c]

OpenMC Performance (Higher is Better)

Improvements to LLVM
Clang compiler resulted in

~100x speedup of
OpenMC!

GPU performance was
now reasonable enough to

begin real performance
optimization work of the

code.

Results of Compiler Optimizations

Application Optimization Highlights

• There were a variety of smaller optimizations each netting 5-10% that
were all helpful
• The two biggest changes however were:
• the removal of a legacy CPU-oriented optimization
• sorting of kernel work items

• The above two changes worked together to massively boost
performance!

17 17

Application Performance
Breakthrough
Removal of a legacy CPU-oriented optimization

18 18

XS Lookup Kernel

19 19

Particles in
Warp/Block

XS Data

Loads

Global Memory
......

On CPU, addition of a software cache removes
need to perform redundant search operations

in XS Data grid, but this ends up being
awkward on GPU

XS Lookup Kernel: With Micro XS Cache

20 20

Particles in
Warp/Block

XS Data

Micro XS
Cache

Loads

Stores

Global Memory

Global Memory

...

......

...

Cache may be re-used and will remove the need to search XS data arrays

XS Lookup Kernel: With Micro XS Cache, Sorted

21 21

Particles in
Warp/Block

XS Data

Micro XS
Cache

Stores

Global Memory

Global Memory

...

......

...

Loads

If we sort particles by energy before calling the kernel, all particles in a warp of 32 will access the same data

XS Lookup Kernel: With Micro XS Cache, Sorted

22 22

Particles in
Warp/Block

XS Data

Micro XS
Cache

Stores

Global Memory

Global Memory

...

......

...

Loads

If we sort particles by energy before calling the kernel, all particles in a warp of 32 will access the same data

Problem: While load bandwidth greatly
reduced, store bandwidth is unaffected

by particle sort

XS Lookup Kernel: Without Micro XS Cache, Sorted

23 23

Particles in
Warp/Block

XS Data
Global Memory

Loads

If we simply remove the XS cache, we have to perform more searching
operations, but as all operations are shared between adjacent threads in

a warp overall bandwidth is greatly reduced!

24 24

Loads

Stores

Global Memory

Global Memory

...

......

...

Global Memory

Loads

Original XS
Kernel

Optimized XS
Kernel

threads

threads

Final GPU Results

25 25

97,159

602

58,529

382,117

0

100,000

200,000

300,000

400,000

CPU: 2x Xeon 8180M
(56c/112t)

GPU: A100
Baseline

GPU: A100
After Compiler

Fixes/Optimizations

GPU: A100
After Application

Algorithmic
Optimization

Pe
rfo

rm
an

ce
 [P

ar
tic

le
s/

se
c]

OpenMC Performance (Higher is Better)

Algorithmic
optimizations to

OpenMC combined for
a ~7x speedup!

OpenMC performance
is now excellent on GPU

100,000

380,000

130,000

 -

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

 400,000

CPU
(2x 8180M, 56c/112t)

OpenMP GPU Offloading
(NVIDIA A100)

OpenMP GPU Offloading
(AMD MI100)

Pa
rt

ic
le

s/
se

c
OpenMC Depleted Fuel Inactive Batch Performance

Performance Portability

LLVM AOMP

Things I Really Like About OpenMP
▪ Ease of mapping data to device

– Especially OpenMP 5.0 custom mappers

▪ Familiarity
– Our development team already used to OpenMP

threading model
▪ Portability

– First party compiler support on NVIDIA, AMD, and Intel
GPUs

– LLVM Clang support for many GPU architectures
– Highly unified CPU + GPU codebase with minimal/no

"siloing"

▪ LLVM compiler team (particularly Johannes Doerfert) has
been very responsive and able to make fixes quickly à
allowed us to make rapid progress on performance
optimization

▪ Excellent Performance

27

LBNL

Cray/AMD/NVIDIA

ANL*

Cray/Intel

ORNL*

Cray/AMD

2021-2023

NERSC-9
Perlmutter

Aurora

First U.S. Exascale Systems*

Three different
types of GPUs, but
all support OpenMP
offloading!

Things I Don't Like About OpenMP

▪ New programming model, so in 2020 and 2021 compilers still had many
bugs / unsupported features
– In 2022, several compilers are rapidly approaching maturity!
– Our Compiler ßà Application codesign work will hopefully result in a smoother

path for future apps teams

▪ No "baked-in" way to do on-device parallel sorts & scans
– CUDA/HIP Thrust is sorely missed...
– Possible route forward via ompx library?

28

Overall:
I find the pros of using OpenMP far outweighed the cons, and would

highly recommend it to other GPU application teams.

• Despite initial struggles with compilers, LLVM
Clang and AMD AOMP are now able to compile
and run OpenMC.

• OpenMC showing impressive performance on
both A100 and MI100.

• Co-maturation of OpenMC and LLVM Clang
helped both teams make rapid progress

• We recommend OpenMP offloading model to
other apps teams

Speaker: John Tramm (jtramm@anl.gov)

Takeaways

Acknowledgement

This presentation has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S.
Department of Energy Office of Science laboratory, is operated under
Contract No. DE-AC02-06CH11357. The U.S. Government retains for
itself, and others acting on its behalf, a paid-up nonexclusive,
irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Government. The
Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access
Plan. http://energy.gov/downloads/doe-public-access-plan.

30 30

