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OUTLINE

▪ QMCPACK redesign

▪ GPU and OpenMP porting tips

▪ QMCPACK on AMD and INTEL GPUs
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ELECTRONIC STRUCTURE METHODS
QMC can be the new sweet spot
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PETASCALE TO EXASCALE CHALLENGE
How large problem can we solve?
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TiO2 polymorphs

216 atoms with 1536 electrons, 10 meV/f.u.

YL et al. New J. Phys. 18 113049 (2016)

Metal organic framework

153 atoms with 594 electrons, 10 

meV total energy.

A Benali, YL, et al. J. Phys. Chem. C, 

122, 16683 (2018)

What is next?

1. Solve faster and more 

petascale problems

2. Solve much larger 

problems

1k atoms

10k electrons



PRE AND EXASCALE SYSTEMS IN 2023
Need to make the code work on all machines
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Argonne Aurora

Oak Ridge Frontier
NERSC Perlmutter

Argonne Polaris

Make QMCPACK run well everywhere 

including CPU-only systems

On-node performance is the focus



QMCPACK
◼ QMCPACK, is a modern high-performance open-

source Quantum Monte Carlo (QMC) simulation code 

for electronic structure calculations of molecular, quasi-

2D and solid-state systems.

◼ The code is C/C++ and adopts MPI+X 

(OpenMP/CUDA)

◼ Monte Carlo: massive Markov chains (walkers) 

evolving in parallel. 1st level concurrency. Good for MPI 

and coarse level threads.

◼ Quantum: The computation in each walker can be 

heavy when solving many body systems (electrons). 

2nd level concurrency. Good for fine level threads and 

SIMD.

◼ Math libraries: BLAS/LAPACK, HDF5, FFTW
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DIFFUSION MONTE CARLO SCHEMATICS
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Possible new configurationsOld configurations Random walking

New configurations

Population

w=0.8

w=1.6

w=2.4

w=0.3

Load balancing 

communication

Walker



WALKER BASED PARALLELISM

▪ Weak scaling efficiency 99% on 2/3 Mira and 95% on almost full Titan.

▪ Weak scaling, fix work per node. Strong scaling, fix the total number of samples.

▪ Equilibration excluded.

Works extreme well on petascale supercomputers
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A HIGH-PERFORMANCE DESIGN FOR 

HIERARCHICAL PARALLELISM



CLASSIC CPU IMPLEMENTATION
Multi-threaded by OpenMP
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CUDA-BASED GPU IMPLEMENTATION
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TRACING ON NVDIA GPUS
Single thread + GPU idle gaps
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UNIFY BOTH IMPLEMENTATIONS
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DESIGN GOALS
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• CPU or GPU specialization used only at lower levels. 

• Reimplement GPU kernels using OpenMP offload for portability. Walker 

batching is needed for good GPU performance.

• Leverage multi-threading using OpenMP. Preferably load balanced.



NEW DESIGN WITH CROWDS
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seq.

seq.

batched

para.

Population

crowd

crowd

crowd

crowd

• lock-step walkers within a crowd

• Independent crowds

• Decay to legacy implementations



OPENMP OFFLOAD GPU IMPLEMENTATION

▪ Use portable OpenMP target feature

– Portable on NVIDIA, AMD, Intel GPUs. Fallback on CPU as well.

– Multiple compilers. GNU, Clang, AOMP, NVHPC, OneAPI

▪ Multiple crowds (CPU threads) to launch kernels to GPUs

– Maximize GPU utilization. Overlapping compute and transfer by OpenMP.

▪ Specialized in CUDA/HIP to call NVIDIA/AMD accelerated libraries.

– cuBLAS/cuSolver, hipBLAS/rocSolver, MKL

A bit more software technology to handle GPUs 
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HOW LLVM MADE OPENMP FAST

▪ #pragma omp target map(always, tofrom: vec[:N])

– Assuming vec[:N] mapped already

– Turns into async H2D, Kernel Launch, async D2H, StreamSynchronize.

▪ A pool of CUDA streams services multiple threads.

– Keep GPU busy

– Overlapping kernel and transfers

▪ Opt-out atomic transfer behaviors.

– Coordinate data shared by multiple tasks/threads ahead of time.

– Environment variable LIBOMPTARGET_MAP_FORCE_ATOMIC=0

LLVM LIBOMPTARGET implementation
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CROWDS ON OPENMP THREADS
Overlapping kernels and transfers.
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MULTI-THREADED OFFLOAD

▪ Using pinned memory to keep CPU cores submitting work to GPUs.

– Method 1. Pin host memory using vendor APIs like cudaHostRegister

– Method 2. allocated pinned memory using vendor APIs like cudaMallocHost.

– Method 3. Use OpenMP extension llvm/omp_target_alloc_host

▪ Avoid allocating/deallocating GPU memory on the fly

– Allocating/deallocating operations are very slow

– Serialization prevents concurrent execution.

A few more tips
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ONE VS A FEW CROWDS
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▪ 7 cores per GPU on OLCF 

Summit

▪ Fixed 7 crowds

▪ Small walker count, 

performance drops 

▪ Large walker count, 

performance improves.



V100 VS A100
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▪ GPU acceleration is significant

▪ The larger HBM helps 

throughput. Very similar to ML.

▪ A100 is almost 3X when 

running 256 atom problem.

▪ 16 GB is the bottleneck on 

V100



LESSONS LEARNED SO FAR

▪ Understand how to make CPU and GPU work efficiently

▪ Analyze the compute pattern and map the existing concurrency to proper 

parallelism given by the hardware

▪ OpenMP + vendor libraries strategy works

– ~100 CUDA kernels down to ~10 CUDA kernels + ~10 offload regions

– Very maintainable code with decent performance

What is needed for a performance portable code
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MY OPINION ABOUT

GPU AND OPENMP PORTING



MANAGE MORE LEVEL OF PARALLELISM

▪ Put effort in make the algorithm/design work better for GPUs.

– Minimize data movement needs.

▪ At least two level of parallelism

– CPU has core+SIMD

– GPU has SM+SIMT lanes

– In QMCPACK we have CPU threads + two level inside GPU kernel
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DATA MOVEMENT IS THE KEY OF PORTING

▪ Data locality is the top priority

– Interconnect is slower than memory. We write performant MPI code

– Memory is slower than cache. We implement cache friendly algorithms.

– CPU-GPU bus is slower than GPU memory. We need to first worry about 

data transfer.

▪ Avoid any programming model which

– Ignores the performance difference from host and GPU memory spaces.

– Doesn’t pro i e exp icit  ata mo ement contro 

▪ GPU 101 teaches kernel programming. It is not the key.

▪ Managing data movement requires understanding the whole algorithm and 

implementation. This needs domain expert knowledge.
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PRE-ARRANGE MEMORY ALLOCATION

▪ Accelerator memory resource 

allocation/deallocation is orders of 

magnitude slower than that on the  

host.

▪ These operations may also block 

asynchronous execution.

Move beyond textbook example
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// simple case

#pragma omp target map(array[:100])

for(int i ...) { // operations on array }

// optimized case

// pre-arrange allocation

#pragma omp target enter data \

  map(alloc: array[:100])

…

// use always to enforce transfer

#pragma omp target map(always, array[:100])

for(int i ...) { // operations on array }



CUDA LANGUAGE IS NOT THE BEST CHOICE

▪ Must be protected under macro. Macro means more test variants needed.

▪ Doesn’t run on hosts  ithout    s 

– Running and debugging on host are lot smoother and should catch most user 

errors

– Host tooling are richer. Address and thread sanitizers, code coverage.

▪ No reduction operation support by the language. SYCL does better.

▪ Restrict it to only serving library calls.

▪ Scientist needs to spend time on methods, algorithms. Leave the engineers to 

worry absolute performance.

▪ VASP, Quantum ESPRESSO, QMCPACK all reduced exposure to CUDA.

For scientists
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Directives instead of kernels

const int N=100;

int array[N];

#pragma omp target \

       map(from, a[:N])

for(int i=0; i<N; i++)

 array[i] = I;

const int N=100;

int array[N];

int* array_d = (int*) omp_target_alloc(0, N*sizeof(int));

#pragma omp target is_ptr(array_d)

for(int i=0; i<N; i++)

 array_d[i] = I;

omp_target_memcpy(array, array_d, 0);

DO NOT USE OPENMP LIKE CUDA

Do this

Don’t  o this



#pragma omp target enter data 

map(alloc: a[:100])

▪ Prons:

– No side effect when turned off

– Fall back to host for debugging
OMP_TARGET_OFFLOAD=disabled

▪ Cons:

– Less verbose

int * a_dev = 

omp_target_alloc(omp_get_default_d

evice(), 100);

▪ Prons:

– Explicit device control

▪ Cons:

– Need #ifdef _OPENMP

– Complicated fallback logic

OPENMP API
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Choosing OpenMP programing style carefully

OPENMP DIRECTIVE

PORTABILITY AT THE SOURCE CODE



AMD AND INTEL



AMD?
Summit vs Spock
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▪ Runs reasonably well on 

MI100

▪ Not fully bug free but 

improves month by month

▪ Performance is decent.

– HIP is close to legacy 

CUDA

– OpenMP prevails in 

certain cases

▪ Expecting further software 

improvements.

V100 SXM2 MI100

Bandwidth 900 GB/s 1.23 TB/s

FP64 FLOPS 7.8 TFLOPS 11.5 TFLOPS

FP32 FLOPS 15.7 TFLOPS 23.1 TFLOPS



33



CONCLUSION

▪ The new design of hierarchical parallelism maximized performance on hardware. 

doi: 10.1109/HiPar56574.2022.00008.

▪ My OpenMP GPU porting tips. 

https://www.youtube.com/watch?v=iPGMYVViQzM OpenMP offload optimization 

guide

▪ AMD and INTEL GPU performance
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