
LESSONS LEARNED IN
DESIGNING
PERFORMANCE PORTABLE
QMCPACK USING OPENMP
OFFLOAD TO GPUS

erhtjhtyhy

YE LUO
Argonne National Laboratory

Jun 30th OpenMP Users Monthly Telecon

ACKNOWLEDGEMENT

▪ Lead PI: Paul Kent

▪ This research was supported by the

Exascale Computing Project (17-SC-

20-SC), a joint project of the U.S.

Department of Energy’s Office of

Science and National Nuclear Security

Administration, responsible for

delivering a capable exascale

ecosystem, including software,

applications, and hardware technology,

to support the nation’s exascale

computing imperative.

Exascale Computing Project : application development

2

OUTLINE

▪ QMCPACK redesign

▪ GPU and OpenMP porting tips

▪ QMCPACK on AMD and INTEL GPUs

3

ELECTRONIC STRUCTURE METHODS
QMC can be the new sweet spot

4

2,000 10,000 100,00050

system

size

(electrons)

TB

N3

DFT

 N2-3

QMC

 N3-4

CC

 N7

CI

 N!

accuracy

(eV)

0.5+0.05-0.10.001-0.01exact

chemical

bonds

cohesion,

barriers
superconductivity,

magnetism

quantum

chemistry

not

ab initio

Time scale: picosecond = 10-12 seconds

Length scale: 10 nm = 10-8 meters

PETASCALE TO EXASCALE CHALLENGE
How large problem can we solve?

5

TiO2 polymorphs

216 atoms with 1536 electrons, 10 meV/f.u.

YL et al. New J. Phys. 18 113049 (2016)

Metal organic framework

153 atoms with 594 electrons, 10

meV total energy.

A Benali, YL, et al. J. Phys. Chem. C,

122, 16683 (2018)

What is next?

1. Solve faster and more

petascale problems

2. Solve much larger

problems

1k atoms

10k electrons

PRE AND EXASCALE SYSTEMS IN 2023
Need to make the code work on all machines

6

Argonne Aurora

Oak Ridge Frontier
NERSC Perlmutter

Argonne Polaris

Make QMCPACK run well everywhere

including CPU-only systems

On-node performance is the focus

QMCPACK
◼ QMCPACK, is a modern high-performance open-

source Quantum Monte Carlo (QMC) simulation code

for electronic structure calculations of molecular, quasi-

2D and solid-state systems.

◼ The code is C/C++ and adopts MPI+X

(OpenMP/CUDA)

◼ Monte Carlo: massive Markov chains (walkers)

evolving in parallel. 1st level concurrency. Good for MPI

and coarse level threads.

◼ Quantum: The computation in each walker can be

heavy when solving many body systems (electrons).

2nd level concurrency. Good for fine level threads and

SIMD.

◼ Math libraries: BLAS/LAPACK, HDF5, FFTW
7

DIFFUSION MONTE CARLO SCHEMATICS

8

Possible new configurationsOld configurations Random walking

New configurations

Population

w=0.8

w=1.6

w=2.4

w=0.3

Load balancing

communication

Walker

WALKER BASED PARALLELISM

▪ Weak scaling efficiency 99% on 2/3 Mira and 95% on almost full Titan.

▪ Weak scaling, fix work per node. Strong scaling, fix the total number of samples.

▪ Equilibration excluded.

Works extreme well on petascale supercomputers

9

tr
o
n
g
 s
c
a
 in
g
 s
p
e
e

u
p

 o e counts

i ea

 itan

 ira

e
a

s
c
a
 in
g
 e
ff
ic
ie
n
c
y

 o e counts

i ea

 itan

 ira

A HIGH-PERFORMANCE DESIGN FOR

HIERARCHICAL PARALLELISM

CLASSIC CPU IMPLEMENTATION
Multi-threaded by OpenMP

11

seq.

seq.

Number of walkers
N

u
m

.
o
f
e
le

c
tr

o
n
s

C
la

s
s
ic

 C
P

U

d
ri
v
e
r

Target

problem

size spacepara.

Threads are used for weak scaling.

CUDA-BASED GPU IMPLEMENTATION

12

Number of walkers

N
u
m

.
o

f
e

le
c
tr

o
n
s

Legacy CUDA driver

Target

problem

size space

seq.

seq.

batched

Diverge APIs

TRACING ON NVDIA GPUS
Single thread + GPU idle gaps

13

UNIFY BOTH IMPLEMENTATIONS

 um er of a ers

u
m

e
r
o
f
e
 e
c
tr
o
n
s

e
g
a
c
y

ri
 e
r

 egacy ri er

 arget pro em

si e space

 erformance

re uire

By design

14

 um er of a ers

u
m

e
r
o
f
e
 e
c
tr
o
n
s

 erformance porta e

 atche ri er

 arget pro em

si e space

 erformance

re uire

DESIGN GOALS

15

• CPU or GPU specialization used only at lower levels.

• Reimplement GPU kernels using OpenMP offload for portability. Walker

batching is needed for good GPU performance.

• Leverage multi-threading using OpenMP. Preferably load balanced.

NEW DESIGN WITH CROWDS

16

seq.

seq.

batched

para.

Population

crowd

crowd

crowd

crowd

• lock-step walkers within a crowd

• Independent crowds

• Decay to legacy implementations

OPENMP OFFLOAD GPU IMPLEMENTATION

▪ Use portable OpenMP target feature

– Portable on NVIDIA, AMD, Intel GPUs. Fallback on CPU as well.

– Multiple compilers. GNU, Clang, AOMP, NVHPC, OneAPI

▪ Multiple crowds (CPU threads) to launch kernels to GPUs

– Maximize GPU utilization. Overlapping compute and transfer by OpenMP.

▪ Specialized in CUDA/HIP to call NVIDIA/AMD accelerated libraries.

– cuBLAS/cuSolver, hipBLAS/rocSolver, MKL

A bit more software technology to handle GPUs

17

HOW LLVM MADE OPENMP FAST

▪ #pragma omp target map(always, tofrom: vec[:N])

– Assuming vec[:N] mapped already

– Turns into async H2D, Kernel Launch, async D2H, StreamSynchronize.

▪ A pool of CUDA streams services multiple threads.

– Keep GPU busy

– Overlapping kernel and transfers

▪ Opt-out atomic transfer behaviors.

– Coordinate data shared by multiple tasks/threads ahead of time.

– Environment variable LIBOMPTARGET_MAP_FORCE_ATOMIC=0

LLVM LIBOMPTARGET implementation

18

CROWDS ON OPENMP THREADS
Overlapping kernels and transfers.

19

MULTI-THREADED OFFLOAD

▪ Using pinned memory to keep CPU cores submitting work to GPUs.

– Method 1. Pin host memory using vendor APIs like cudaHostRegister

– Method 2. allocated pinned memory using vendor APIs like cudaMallocHost.

– Method 3. Use OpenMP extension llvm/omp_target_alloc_host

▪ Avoid allocating/deallocating GPU memory on the fly

– Allocating/deallocating operations are very slow

– Serialization prevents concurrent execution.

A few more tips

20

ONE VS A FEW CROWDS

21

▪ 7 cores per GPU on OLCF

Summit

▪ Fixed 7 crowds

▪ Small walker count,

performance drops

▪ Large walker count,

performance improves.

V100 VS A100

22

▪ GPU acceleration is significant

▪ The larger HBM helps

throughput. Very similar to ML.

▪ A100 is almost 3X when

running 256 atom problem.

▪ 16 GB is the bottleneck on

V100

LESSONS LEARNED SO FAR

▪ Understand how to make CPU and GPU work efficiently

▪ Analyze the compute pattern and map the existing concurrency to proper

parallelism given by the hardware

▪ OpenMP + vendor libraries strategy works

– ~100 CUDA kernels down to ~10 CUDA kernels + ~10 offload regions

– Very maintainable code with decent performance

What is needed for a performance portable code

23

MY OPINION ABOUT

GPU AND OPENMP PORTING

MANAGE MORE LEVEL OF PARALLELISM

▪ Put effort in make the algorithm/design work better for GPUs.

– Minimize data movement needs.

▪ At least two level of parallelism

– CPU has core+SIMD

– GPU has SM+SIMT lanes

– In QMCPACK we have CPU threads + two level inside GPU kernel

25

DATA MOVEMENT IS THE KEY OF PORTING

▪ Data locality is the top priority

– Interconnect is slower than memory. We write performant MPI code

– Memory is slower than cache. We implement cache friendly algorithms.

– CPU-GPU bus is slower than GPU memory. We need to first worry about

data transfer.

▪ Avoid any programming model which

– Ignores the performance difference from host and GPU memory spaces.

– Doesn’t pro i e exp icit ata mo ement contro

▪ GPU 101 teaches kernel programming. It is not the key.

▪ Managing data movement requires understanding the whole algorithm and

implementation. This needs domain expert knowledge.

26

PRE-ARRANGE MEMORY ALLOCATION

▪ Accelerator memory resource

allocation/deallocation is orders of

magnitude slower than that on the

host.

▪ These operations may also block

asynchronous execution.

Move beyond textbook example

27

// simple case

#pragma omp target map(array[:100])

for(int i ...) { // operations on array }

// optimized case

// pre-arrange allocation

#pragma omp target enter data \

 map(alloc: array[:100])

…

// use always to enforce transfer

#pragma omp target map(always, array[:100])

for(int i ...) { // operations on array }

CUDA LANGUAGE IS NOT THE BEST CHOICE

▪ Must be protected under macro. Macro means more test variants needed.

▪ Doesn’t run on hosts ithout s

– Running and debugging on host are lot smoother and should catch most user

errors

– Host tooling are richer. Address and thread sanitizers, code coverage.

▪ No reduction operation support by the language. SYCL does better.

▪ Restrict it to only serving library calls.

▪ Scientist needs to spend time on methods, algorithms. Leave the engineers to

worry absolute performance.

▪ VASP, Quantum ESPRESSO, QMCPACK all reduced exposure to CUDA.

For scientists

28

29

Directives instead of kernels

const int N=100;

int array[N];

#pragma omp target \

 map(from, a[:N])

for(int i=0; i<N; i++)

 array[i] = I;

const int N=100;

int array[N];

int* array_d = (int*) omp_target_alloc(0, N*sizeof(int));

#pragma omp target is_ptr(array_d)

for(int i=0; i<N; i++)

 array_d[i] = I;

omp_target_memcpy(array, array_d, 0);

DO NOT USE OPENMP LIKE CUDA

Do this

Don’t o this

#pragma omp target enter data

map(alloc: a[:100])

▪ Prons:

– No side effect when turned off

– Fall back to host for debugging
OMP_TARGET_OFFLOAD=disabled

▪ Cons:

– Less verbose

int * a_dev =

omp_target_alloc(omp_get_default_d

evice(), 100);

▪ Prons:

– Explicit device control

▪ Cons:

– Need #ifdef _OPENMP

– Complicated fallback logic

OPENMP API

30

Choosing OpenMP programing style carefully

OPENMP DIRECTIVE

PORTABILITY AT THE SOURCE CODE

AMD AND INTEL

AMD?
Summit vs Spock

32

▪ Runs reasonably well on

MI100

▪ Not fully bug free but

improves month by month

▪ Performance is decent.

– HIP is close to legacy

CUDA

– OpenMP prevails in

certain cases

▪ Expecting further software

improvements.

V100 SXM2 MI100

Bandwidth 900 GB/s 1.23 TB/s

FP64 FLOPS 7.8 TFLOPS 11.5 TFLOPS

FP32 FLOPS 15.7 TFLOPS 23.1 TFLOPS

33

CONCLUSION

▪ The new design of hierarchical parallelism maximized performance on hardware.

doi: 10.1109/HiPar56574.2022.00008.

▪ My OpenMP GPU porting tips.

https://www.youtube.com/watch?v=iPGMYVViQzM OpenMP offload optimization

guide

▪ AMD and INTEL GPU performance

34

	Slide 1: Lessons Learned in Designing Performance Portable QMCPACK Using OpenMP Offload to GPUs
	Slide 2: acknowledgement
	Slide 3: Outline
	Slide 4: Electronic Structure Methods
	Slide 5: Petascale to Exascale Challenge
	Slide 6: PRE and Exascale systems in 2023
	Slide 7
	Slide 8: Diffusion Monte Carlo Schematics
	Slide 9: Walker based parallelism
	Slide 10
	Slide 11: Classic CPU implementation
	Slide 12: CUDA-based GPU implementation
	Slide 13: Tracing on NVDIA GPUs
	Slide 14: Unify both implementations
	Slide 15: Design goals
	Slide 16: New design with Crowds
	Slide 17: OpenMP offload GPU implementation
	Slide 18: How LLVM made OpenMP fast
	Slide 19: Crowds on OpenMP threads
	Slide 20: Multi-threaded offload
	Slide 21: One vs a few crowds
	Slide 22: V100 vs A100
	Slide 23: Lessons learned so far
	Slide 24
	Slide 25: Manage more level of parallelism
	Slide 26: Data movement is the key of porting
	Slide 27: Pre-arrange memory allocation
	Slide 28: CUDA language is not the best choice
	Slide 29: Do nOT use OpenMP like CUDA
	Slide 30: Portability at the source code
	Slide 31
	Slide 32: AMD?
	Slide 33
	Slide 34: Conclusion
	Slide 35

