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OUTLINE

= QMCPACK redesign
» GPU and OpenMP porting tips
» QMCPACK on AMD and INTEL GPUs
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ELECTRONIC STRUCTURE METHODS

QMC can be the new sweet spot Time scale: picosecond = 1012 seconds

Length scale: 10 nm = 10-® meters
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PETASCALE TO EXASCALE CHALLENGE

How large problem can we solve?

What is next?

1. Solve faster and more
petascale problems

2. Solve much larger
problems

Metal organic framework

153 atoms with 594 electrons, 10
meV total energy.

A Benali, YL, et al. J. Phys. Chem. C, 1k atomS

Tio2 polymorphs 122, 16683 (2018) 10k electrons

216 atoms with 1536 electrons, 10 meV/f.u.
YL et al. New J. Phys. 18 113049 (2016)
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PRE AND EXASCALE SYSTEMS IN 2023

Need to make the code work on all machines Oak Ridge Frontier
NERSC Perlmutter ' :
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Make QMCPACK run well everywhere
including CPU-only systems
On-node performance is the focus
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Q M C PA C K ¢« C @ ® @ https://qmepack.org v e O T

« QMCPACK, is a modern high-performance open- QMCPACK B3
source Quantum Monte Carlo (QMC) simulation code
for electronic structure calculations of molecular, quasi-
2D and solid-state systems.

« The code is C/C++ and adopts MPI+X
(OpenMP/CUDA)

« Monte Carlo: massive Markov chains (walkers)
evolving in parallel. 15t level concurrency. Good for MPI
and coarse level threads.

About QMCPACK ~ Downloads Documentation ~ Nexus F

» Quantum: The computation in each walker can be
heavy when solving many body systems (electrons). | Correlated Defects via QMC: Mn dope
2nd |eve| Concurrency GOOd for flne Ievel threads and ‘ Quantum Monte Carlo is applied to phosphors for the first time.
SIMD.

» Math libraries: BLAS/LAPACK, HDF5, FFTV\;
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DIFFUSION MONTE CARLO SCHEMATICS

Old configurations Random walking Possible new configurations

° 7 New configurations
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WALKER BASED PARALLELISM

Works extreme well on petascale supercomputers

» Weak scaling efficiency 99% on 2/3 Mira and 95% on almost full Titan.
» Weak scaling, fix work per node. Strong scaling, fix the total number of samples.
= Equilibration excluded.
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A HIGH-PERFORMANCE DESIGN FOR
HIERARCHICAL PARALLELISM
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CLASSIC CPU IMPLEMENTATION
Multi-threaded by OpenMP

4
Algorithm 2 Pseudocode for the multi-threade:
mentation. "
I: for MC generation = 1---M do  seq. & Target
2:  #pragma omp parallel for g ) problem
3 for walker‘ =1.--N, do para 8 % / S|Ze Space
4 for particle k =1---Ndo  seq. © O
5: "'5 N
6: end for{particle} i %
7. end for{walker} S O
. >
8: end for{MC generation} =

-4
v

Threads are used for weak scaling. Number of walkers
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CUDA-BASED GPU IMPLEMENTATION

Algorithm 3 Pseudocode for the CUDA-based implementa- 4

tion.
1: for MC generation = 1--- M do S€C. " Target
2:  for particle k =1---N do Se(q. CC) / problem
3: Algorithm 1. Line 5,6,7,8,9 over all the N,, walkers = .
4:  end for{particle} batched g SIZ€ Space
5. local energy E;, = HU,(R)/U1(R) over N, D)
6: reweight and branch walkers based on Ej — Er 5
7.  update 7 and load balance via MPIL. i Legacy CUDA drivé
8. end for{MC generation} g
Z
Diverge APIs T

Number of walkers
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TRACING ON NVDIA GPUS
Single thread + GPU idle gaps

Timeline View v \
11s-32.105ms  +782.11lms +782.115ms  +782.12ms +782.125ms  +782.13
- Processes (2)
~[1192809] gm
~ Threads (1)
~[1192809] q
CUDA APl cudaMemc...! (one bodv f...)[cudaMemcpVT.../([CudaMemMcoV...) (one bodV F...0(C

Profiler ovel

» [All Streams.
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UNIFY BOTH IMPLEMENTATIONS
By design

Target problem Target problem

g size space. é’ size space.
5 Performance 2 Performance
% required % required
© ©
5 . S Performance portable
_g Legacy GPU driver _g Batched driver
) =}
b4 Z

Number of walkers Number of walkers
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DESIGN GOALS

« CPU or GPU specialization used only at lower levels.

* Reimplement GPU kernels using OpenMP offload for portability. Walker
batching is needed for good GPU performance.

« Leverage multi-threading using OpenMP. Preferably load balanced.
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NEW DESIGN WITH CROWDS

Algorithm 4 Pseudocode for the batched DMC driver.

1: for MC generation =1---M do seq,. Populatlon

2:  #pragma omp parallel for

3 for crowd — 1---C do para. crowd crowd

4: for particle k =1---N do Seq.

5: Algorithm 1. Line 5,6,7,8,9 over all walkers with crowd crowd
in this crowd batched

: end for{particle} X
7: local energy £y = HVY7(R)/¥r(R) over this

crowd . ) L
8: reweight and branch walkers based on Ef — Ep lock step walkers within a crowd
9: update F7 and load balance via MPL * Independent crowds

10:  end for{crowd} CG
11: end for{MC generation}

Decay to legacy implementations
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OPENMP OFFLOAD GPU IMPLEMENTATION

A bit more software technology to handle GPUs

» Use portable OpenMP target feature
— Portable on NVIDIA, AMD, Intel GPUs. Fallback on CPU as well.
— Multiple compilers. GNU, Clang, AOMP, NVHPC, OneAPI

= Multiple crowds (CPU threads) to launch kernels to GPUs
— Maximize GPU utilization. Overlapping compute and transfer by OpenMP.

» Specialized in CUDA/HIP to call NVIDIA/AMD accelerated libraries.
— cuBLAS/cuSolver, hipBLAS/rocSolver, MKL
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HOW LLVM MADE OPENMP FAST
LLVM LIBOMPTARGET implementation

= #pragma omp target map(always, tofrom: vec[:N])
— Assuming vec[:N] mapped already
— Turns into async H2D, Kernel Launch, async D2H, StreamSynchronize.

= A pool of CUDA streams services multiple threads.
— Keep GPU busy
— Overlapping kernel and transfers

» Opt-out atomic transfer behaviors.
— Coordinate data shared by multiple tasks/threads ahead of time.
— Environment variable LIBOMPTARGET MAP_FORCE_ATOMIC=0
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CROWDS ON OPENMP THREADS

Overlapping kernels and transfers.

£ Timeline View
23s-55ms +695.965ms +695.975ms +695.985ms +695.995ms +696.005ms +696.015ms +696.025

- Processes (2)
~[1149876] gmcpack

~ Threads (4) GPU API calls from multiple threads
- [1149876] gmcpack

CUDA API gemvN b... [CudaMemcpVA... hm

Profiler overhead
- [1149903] gmcpack

CUDA API [CUMemcpVvHIoD...) [Com.) | C————cuMemcpvDtoHAsSVvnC )  ...| (
- [1149902] gmcpack
CUDA API BCcD (MOMmPReilogdinaeI0307m [(cuStreamSynchro...

- [1149904] gmcpack

CUDA API __omp offlo...) H
-~ CUDA HW (NVIDIA GeForce 5 » = - » -
(] ] @ g @
] =
» [All Streams]
Overlap transfer and compute Concurrent execution
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MULTI-THREADED OFFLOAD

A few more tips

» Using pinned memory to keep CPU cores submitting work to GPUSs.
— Method 1. Pin host memory using vendor APIs like cudaHostRegister
— Method 2. allocated pinned memory using vendor APIs like cudaMallocHost.
— Method 3. Use OpenMP extension llvm/omp_target _alloc_host

= Avoid allocating/deallocating GPU memory on the fly
— Allocating/deallocating operations are very slow
— Serialization prevents concurrent execution.
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ONE VS A FEW CROWDS

= 7 cores per GPU on OLCF al

Summit 35 |
= Fixed 7 crowds 30 |

= Small walker count,
performance drops

25 +

20
= Large walker count,
performance improves.

Throughput per GPU

15 -

10 -

CUDA-based GPU driver —m— |
Batched driver —&—

0 500 1000 1500 2000 2500 3000
Number of walkers
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V100 VS A100

" 0) v3.11, Clang 12, P9 CPU s
1) v3.15, Clang 15, V100 16GB s
2) v3.15, Clang 15, A100 40GB s

V100 16GB reference

= GPU acceleration is significant

= The larger HBM helps
throughput. Very similar to ML.

= A100 is almost 3X when
running 256 atom problem.

= 16 GB is the bottleneck on
V100

Throughput rescaled by V100

16 32 64 128 256
Number of atoms
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LESSONS LEARNED SO FAR

What is needed for a performance portable code

= Understand how to make CPU and GPU work efficiently

= Analyze the compute pattern and map the existing concurrency to proper
parallelism given by the hardware

= OpenMP + vendor libraries strategy works
— ~100 CUDA kernels down to ~10 CUDA kernels + ~10 offload regions
— Very maintainable code with decent performance
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MY OPINION ABOUT
GPU AND OPENMP PORTING
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MANAGE MORE LEVEL OF PARALLELISM

= Put effort in make the algorithm/design work better for GPUs.
— Minimize data movement needs.

= At least two level of parallelism
— CPU has core+SIMD
— GPU has SM+SIMT lanes
— In QMCPACK we have CPU threads + two level inside GPU kernel
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DATA MOVEMENT IS THE KEY OF PORTING

= Data locality is the top priority
— Interconnect is slower than memory. We write performant MPI code
— Memory is slower than cache. We implement cache friendly algorithms.
— CPU-GPU bus is slower than GPU memory. We need to first worry about
data transfer.

= Avoid any programming model which
— Ignores the performance difference from host and GPU memory spaces.
— Doesn’t provide explicit data movement control

» GPU 101 teaches kernel programming. It is not the key.

= Managing data movement requires understanding the whole algorithm and
implementation. This needs domain expert knowledge.
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PRE-ARRANGE MEMORY ALLOCATION

Move beyond textbook example

= Accelerator memory resource
allocation/deallocation is orders of
magnitude slower than that on the
host.

» These operations may also block
asynchronous execution.

,V?F;% 4.5, DEPARTMENT OF  Argonne National Laboratary is a
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I/ simple case
#pragma omp target map(array[:100])
for(inti ...) {// operations on array }

// optimized case

Il pre-arrange allocation

#pragma omp target enter data \
map(alloc: array[:100])

/[ use always to enforce transfer

#pragma omp target map(always, array[:100])
for(inti ...) { // operations on array }

27 Argonne &



CUDA LANGUAGE IS NOT THE BEST CHOICE

For scientists

= Must be protected under macro. Macro means more test variants needed.

= Doesn’t run on hosts without GPUs.
— Running and debugging on host are lot smoother and should catch most user
errors
— Host tooling are richer. Address and thread sanitizers, code coverage.

= No reduction operation support by the language. SYCL does better.
= Restrict it to only serving library calls.

= Scientist needs to spend time on methods, algorithms. Leave the engineers to
worry absolute performance.

= VASP, Quantum ESPRESSO, QMCPACK all reduced exposure to CUDA.
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DO NOT USE OPENMP LIKE CUDA

Directives instead of kernels

const int N=100; const int N=100; Don’t do this

int array[N]; int array[N];

#pragma omp target \ int* array_d = (int*) omp_target_alloc(0, N*sizeof(int));
map(from, a[:N]) #pragma omp target is_ptr(array_d)

for(int i=0; I<N; i++) for(int i=0; I<N; I++)

array[i] = I; array _d[i] =1,

omp_target_memcpy(array, array_d, 0);
Do this
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PORTABILITY AT THE SOURCE CODE
Choosing OpenMP programing style carefully

OPENMP DIRECTIVE OPENMP API

#pragma omp target enter data
map(alloc: a[:100])

= Prons:
— No side effect when turned off

— Fall back to host for debugging
OMP_TARGET_OFFLOAD=disabled

= Cons:
— Less verbose

int *a_dev =

omp_target_alloc(omp_get_default_d

evice(), 100);

= Prons:
— Explicit device control

= Cons:
— Need #ifdef  OPENMP
— Complicated fallback logic
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AMD AND INTEL
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MI100

V100 SXM2

900 GB/s 1.23 TB/s

Bandwidth

11.5 TFLOPS

15.7 TFLOPS 23.1 TFLOPS

FP64 FLOPS 7.8 TFLOPS

FP32 FLOPS

Summit vs Spock

AMD?

00
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3) Legacy CUDA2HIP GCC 9.3 ROCM 4.2 MI100 s

2) Offload+CUDA Clang 14dev CUDA 11.0 V100 16GB
4) Offload+CUDA2HIP AOMP 14.0-1 ROCM 4.5 MI100

1) Legacy CUDA GCC 7.4 CUDA 10.1 Summit V100 16GB s
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= Runs reasonably well on
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= Performance is decent.
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certain cases

— HIP is close to legacy
CUDA
— OpenMP prevails in
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= Expecting further software
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Aurora 1.21

Computing
Quantum
Mechanical
Properties faster.

QMCPACK performance

Relative DMC samples/sec/card

B Intel Data Center GPU Max Series

B NvidiaH100

16

threads per card

i | °

3 el

3 ) ° '. Isc High Performance Intel does not control or audit third-party data. You should consult
5 i . The HPC Evmnt. other sources to evaluate accuracy




CONCLUSION

= The new design of hierarchical parallelism maximized performance on hardware.
doi: 10.1109/HiPar56574.2022.00008.

= My OpenMP GPU porting tips.
https://www.youtube.com/watch?v=iPGMYVViQzM OpenMP offload optimization
guide

= AMD and INTEL GPU performance
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