
Manuel Arenaz
Appentra Solutions

University of Coruña (Spain)

OpenMP & Parallware

OUTLINE

➢ Live demo

➢ Why developing Parallware for OpenMP?

➢ Experiments on performance-portability

➢ Conclusions & Future work

OUTLINE

➢ Live demo

➢ Why developing Parallware for OpenMP?

➢ Experiments on performance-portability

➢ Conclusions & Future work

➢ Software modernization through parallelization with MPI+X
○ High-level programming: X is OpenACC or OpenMP

➢ Parallware is a new tool to assist in parallelization
○ New & disruptive technology for extraction of parallelism
○ Supports OpenMP 2.5 => Interest in extension for accelerators

WHY PARALLWARE FOR OpenMP?

The HPC workflow

WHY PARALLWARE FOR OpenMP?

CLASSICAL
DEPENDENCE

ANALYSIS

HIERARCHICAL
CLASSIFICATION

FOR
DEPENDENCE

ANALYSIS

WHY PARALLWARE FOR OpenMP?

Solve systems of mathematical equations to proof the existence of
dependences between loop iterations

for(int i=1; i<n; i++) {
 A[i+1] = A[i] + 1;
}

Iteration at source: I0 + 1
Iteration at sink: I0 + ΔI
Forming an equality gets us: I0 + 1 = I0 + ΔI
Solving this gives us: ΔI = 1

for(int i=0; i<n; i++) {
 for(int j=0; j<n; j++) {
 for(int k=0; k<n; k++) {
 A[i+1][j][k] = A[i][j][k+1] + 1;
 }
 }
}

Forms equalities in each array dimension:
 I0 + 1 = I0 + ΔI
 J0 = J0 + ΔJ
 K0 = K0 + 1 + ΔK
Solutions:
 ΔI = 1 ΔJ = 0 ΔK = -1

WHY PARALLWARE FOR OpenMP?

01 void atmux(double* restrict y, … , int n)
08 {
09 for(int t = 0; t < n; t++)
10 y[t] = 0;
11
12 for(int i = 0; i < n; i++) {
13 for (int k = row_ptr[i]; k < row_ptr[i+1]; k++) {
14 y[col_ind[k]] += x[i] * val[k];
15 }
16 }
17 }

FLOW deps
OUTPUT deps
ANTI deps

$ icc atmux.c -std=c99 -c -O3 -xAVX -Wall -vec-report3 -opt-report3 -restrict -parallel -openmp -guide
icc (ICC) 13.1.1 20130313
...
HPO THREADIZER REPORT (atmux) LOG OPENED ON Fri Sep 25 18:04:15 2015
HPO Threadizer Report (atmux)
atmux.c(9:2-9:2):PAR:atmux: loop was not parallelized: existence of parallel dependence
atmux.c(10:3-10:3):PAR:atmux: potential ANTI dependence on y.
potential FLOW dependence on y.
atmux.c(9:2-9:2):PAR:atmux: LOOP WAS AUTO-PARALLELIZED
atmux.c(12:2-12:2):PAR:atmux: loop was not parallelized: existence of parallel dependence
atmux.c(13:3-13:3):PAR:atmux: loop was not parallelized: existence of parallel dependence
...

WHY PARALLWARE FOR OpenMP?

THERE ARE WELL-KNOWN PARALLELIZATION STRATEGIES
THAT APPLY TO “CLASSES OF CODES”

for(i=1; i<n; i++) {
 A[i] = A[i] + A[i-1];
}

sum = 0;
for(i=0; i<n; i++) {
 sum = sum + A[i];
}

for(i=0; i<n; i++) {
 A[i] = i;
}

WHY PARALLWARE FOR OpenMP?

“SCALAR REDUCTION” CLASS

sum = 0.0;
for (i = 0; i < N; i++) {
 double x = (i + 0.5) / N;
 sum += sqrt(1 - x * x);
}
pi = 4.0 / N * sum;

“SPARSE REDUCTION” CLASS

for(t = 0; t < n; t++) {
 y[t] = 0;
}
for(i = 0; i < n; i++) {
 for (k = row_ptr[i]; k < row_ptr[i+1]; k++) {
 y[col_ind[k]] += x[i] * val[k];
 }
}

Computation of PI
Product sparse-matrix
by vector (ATMUX)

FOCUS ON INFORMATION RELEVANT
FOR THE EXTRACTION OF PARALLELISM

for(i=1; i<n; i++) {
 B[A[i]] += 2000;
}

r = 0;
for(i=0; i<n; i++) {
 r = r + A[i];
}

for(i=0; i<n; i++) {
 A[i] = 2000;
}

r = 0;
for(i=0; i<n; i++) {
 if (A[i] > 0) {
 r = r + B[i];
 }
}

CONTEXTUAL
CLASSIFICATION

SYSTEM

GREAT CHALLENGE FOR PARALLELIZING COMPILERS

TUNING OF THE
SYSTEM TO

HANDLE SYNTAX
VARIATIONS

sum = 0.0;
for (i = 0; i < N; i++) {
 double x = (i + 0.5) / N;
 sum += sqrt(1 - x * x);
}
pi = 4.0 / N * sum;

Computation of PI

sum = 0.0;
for (i = 0; i < N; i++) {
 sum += sqrt(1 - ((i + 0.5) / N) * ((i + 0.5) / N));
}
pi = 4.0 / N * sum;

double f(int i, int N)
{
 return ((i + 0.5) / N);
}
--
sum = 0.0;
for (i = 0; i < N; i++) {
 sum += sqrt(1 - f(i,N) * f(i,N));
}
pi = 4.0 / N * sum;

Parallware technology:
- Hierarchical classification for

dependence analysis

Advantages:
- Allows incremental detection of

syntactical variants of code classes
- Fast & Extensible

Current state of development?
- Effective for first real codes

WHY PARALLWARE FOR OpenMP?

OUTLINE

➢ Live demo

➢ Why developing Parallware for OpenMP?

➢ Experiments on performance-portability

➢ Conclusions & Future work

EXPERIMENTS: Performance-Portability

LAB CODES REAL CODES

Product matrix-vector

Product sparse matrix-vector

Matrix multiplication

Computation of PI

Laplace transform

Coulomb law

Mandelbrot sets

...

EP
BT

clvrleaf
CG
CSP
...

NPB SPECaccel others

QUAKE
CEM_MOM
CEM_FDTD
ShWaters

...

WACCPD: Second Workshop on Accelerator Programming Using Directives

WACCPD: Second Workshop on Accelerator Programming Using Directives

EXPERIMENTS: Performance-Portability

Real benchmarks combine the features these simple benchmarks:
1. NPB_EP combines features of ATMUX and PRIME
2. NPB_BT combines features of ATMUX and MATMUL (ongoing work)

WACCPD: Second Workshop on Accelerator Programming Using Directives

EXPERIMENTS: Performance-Portability

CPU performs better for small sizes

GPU outperforms CPU for large sizes (w/wo resident data)

Codes with HIGH arithmetic intensity perform well on CPU & GPU

WACCPD: Second Workshop on Accelerator Programming Using Directives

EXPERIMENTS: Performance-Portability

Limited performance on the GPU
GPU benefits from source code optimizations (e.g. scalarization)

Codes with LOW arithmetic intensity show limited performance on GPU

WACCPD: Second Workshop on Accelerator Programming Using Directives

EXPERIMENTS: Performance-Portability

OUTLINE

➢ Live demo

➢ Why developing Parallware for OpenMP?

➢ Experiments on performance-portability

➢ Conclusions & Future work

CONCLUSIONS

➢ Technical roadmap for development of Parallware
○ Current support is OpenMP 2.5

○ Support pragma-based standards OpenACC & OpenMP 4

○ Gains in programmability & productivity are clear

➢ Performance-portability needs to be demonstrated
○ CPU & GPU offer good performance with high arithmetic intensity

○ GPU offers limited performance with low arithmetic intensity

○ GPU benefits from source code optimizations that increase arith intensity

○ GPU have potential to execute sparse computations efficiently

FUTURE WORK

➢ Development of prototype of Parallware for accelerators
○ OpenACC pragmas “parallel”, “loop”, “data copy/copyin/copyout”

○ Focus on common capabilities in OpenACC & OpenMP 4

➢ Development of proof-of-concept for “tasking” paradigm
○ OpenMP 3 pragmas “task” & “taskwait”

○ OpenMP 4 pragmas “task depend(in/out/inout)”

➢ Well-known benchmark suites: SPECaccel, PolyBench

➢ Well-known compilers: Cray, GCC

Manuel Arenaz
Appentra Solutions

University of Coruña (Spain)

OpenMP &
Parallware

