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➢ Software modernization through parallelization with MPI+X
○ High-level programming: X is OpenACC or OpenMP

➢ Parallware is a new tool to assist in parallelization
○ New & disruptive technology for extraction of parallelism
○ Supports OpenMP 2.5 => Interest in extension for accelerators

WHY PARALLWARE FOR OpenMP?
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Solve systems of mathematical equations to proof the existence of 
dependences between loop iterations

for(int i=1; i<n; i++) {
   A[i+1] = A[i] + 1;
}

Iteration at source:  I0 + 1
Iteration at sink:  I0 + ΔI
Forming an equality gets us: I0 + 1 = I0 + ΔI
Solving this gives us: ΔI = 1

for(int i=0; i<n; i++) {
   for(int j=0; j<n; j++) {
      for(int k=0; k<n; k++) {
         A[i+1][j][k] = A[i][j][k+1] + 1;
      }
   }
}

Forms equalities in each array dimension:
       I0 + 1 = I0 + ΔI
       J0 = J0 + ΔJ
       K0 = K0 + 1 + ΔK
Solutions: 
        ΔI = 1    ΔJ = 0    ΔK = -1
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01 void atmux(double* restrict y, … , int n)
08 {
09 for(int t = 0; t < n; t++)
10 y[t] = 0;
11
12 for(int i = 0; i < n; i++) {
13 for (int k = row_ptr[i]; k < row_ptr[i+1]; k++) {
14 y[col_ind[k]] += x[i] * val[k];
15 }
16 }
17 }

FLOW deps
OUTPUT deps
ANTI deps

$ icc atmux.c -std=c99 -c -O3 -xAVX -Wall -vec-report3 -opt-report3 -restrict -parallel -openmp -guide
icc (ICC) 13.1.1 20130313
...
HPO THREADIZER REPORT (atmux) LOG OPENED ON Fri Sep 25 18:04:15 2015
HPO Threadizer Report (atmux)
atmux.c(9:2-9:2):PAR:atmux:  loop was not parallelized: existence of parallel dependence
atmux.c(10:3-10:3):PAR:atmux:  potential ANTI dependence on y.
potential FLOW dependence on y.
atmux.c(9:2-9:2):PAR:atmux:  LOOP WAS AUTO-PARALLELIZED
atmux.c(12:2-12:2):PAR:atmux:  loop was not parallelized: existence of parallel dependence
atmux.c(13:3-13:3):PAR:atmux:  loop was not parallelized: existence of parallel dependence
...
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THERE ARE WELL-KNOWN PARALLELIZATION STRATEGIES
THAT APPLY TO “CLASSES OF CODES”

for(i=1; i<n; i++) {
   A[i] = A[i] + A[i-1];
}

sum = 0;
for(i=0; i<n; i++) {
   sum = sum + A[i];
}

for(i=0; i<n; i++) {
   A[i] = i;
}
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“SCALAR REDUCTION” CLASS

sum = 0.0;
for (i = 0; i < N; i++) {
   double x = (i + 0.5) / N;
   sum += sqrt(1 - x * x);
}
pi = 4.0 / N * sum;

“SPARSE REDUCTION” CLASS

for(t = 0; t < n; t++) {
   y[t] = 0;
}
for(i = 0; i < n; i++) {
   for (k = row_ptr[i]; k < row_ptr[i+1]; k++) {
      y[col_ind[k]] += x[i] * val[k];
   }
}

Computation of PI
Product sparse-matrix 
by vector (ATMUX)



FOCUS ON INFORMATION RELEVANT 
FOR THE EXTRACTION OF PARALLELISM

for(i=1; i<n; i++) {
   B[A[i]] += 2000;
}

r = 0;
for(i=0; i<n; i++) {
   r = r + A[i];
}

for(i=0; i<n; i++) {
   A[i] = 2000;
}

r = 0;
for(i=0; i<n; i++) {
   if ( A[i] > 0 ) {
      r = r + B[i];
   }
}

CONTEXTUAL
CLASSIFICATION

SYSTEM



GREAT CHALLENGE FOR PARALLELIZING COMPILERS

TUNING OF THE 
SYSTEM TO 

HANDLE SYNTAX 
VARIATIONS

sum = 0.0;
for (i = 0; i < N; i++) {
   double x = (i + 0.5) / N;
   sum += sqrt(1 - x * x);
}
pi = 4.0 / N * sum;

Computation of PI

sum = 0.0;
for (i = 0; i < N; i++) {
   sum += sqrt(1 - ((i + 0.5) / N) * ((i + 0.5) / N));
}
pi = 4.0 / N * sum;

double f(int i, int N) 
{
   return ((i + 0.5) / N);
}
----------------------------------------------
sum = 0.0;
for (i = 0; i < N; i++) {
   sum += sqrt(1 - f(i,N) * f(i,N) );
}
pi = 4.0 / N * sum;



 

Parallware technology:
- Hierarchical classification for 

dependence analysis

Advantages:
- Allows incremental detection of 

syntactical variants of code classes
- Fast & Extensible

Current state of development?
- Effective for first real codes 
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EXPERIMENTS: Performance-Portability

LAB CODES REAL CODES

Product matrix-vector

Product sparse matrix-vector

Matrix multiplication

Computation of PI

Laplace transform

Coulomb law

Mandelbrot sets

...

EP
BT

clvrleaf
CG
CSP
...

NPB SPECaccel others

QUAKE
CEM_MOM
CEM_FDTD
ShWaters

...

WACCPD: Second Workshop on Accelerator Programming Using Directives



WACCPD: Second Workshop on Accelerator Programming Using Directives
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Real benchmarks combine the features these simple benchmarks:
1. NPB_EP combines features of ATMUX and PRIME
2. NPB_BT combines features of ATMUX and MATMUL (ongoing work)

WACCPD: Second Workshop on Accelerator Programming Using Directives
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CPU performs better for small sizes

GPU outperforms CPU for large sizes (w/wo resident data)

Codes with HIGH arithmetic intensity perform well on CPU & GPU

 
WACCPD: Second Workshop on Accelerator Programming Using Directives
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Limited performance on the GPU
GPU benefits from source code optimizations (e.g. scalarization)

Codes with LOW arithmetic intensity show limited performance on GPU

WACCPD: Second Workshop on Accelerator Programming Using Directives

EXPERIMENTS: Performance-Portability
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CONCLUSIONS

➢ Technical roadmap for development of Parallware
○ Current support is OpenMP 2.5 

○ Support pragma-based standards OpenACC & OpenMP 4

○ Gains in programmability & productivity are clear

➢ Performance-portability needs to be demonstrated
○ CPU & GPU offer good performance with high arithmetic intensity

○ GPU offers limited performance with low arithmetic intensity

○ GPU benefits from source code optimizations that increase arith intensity

○ GPU have potential to execute sparse computations efficiently



 

FUTURE WORK

➢ Development of prototype of Parallware for accelerators
○ OpenACC pragmas “parallel”, “loop”, “data copy/copyin/copyout”

○ Focus on common capabilities in OpenACC & OpenMP 4

➢ Development of proof-of-concept for “tasking” paradigm
○ OpenMP 3 pragmas “task” & “taskwait”

○ OpenMP 4 pragmas “task depend(in/out/inout)”

➢ Well-known benchmark suites: SPECaccel, PolyBench

➢ Well-known compilers: Cray, GCC
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