
Lawrence Livermore National Laboratory BRdeS-1

Science & Technology Principal Directorate - Computation Directorate

SC11 OpenMP Language Committee Report

November 15, 2011

Bronis R. de Supinski

OpenMP Language Committee Chair

Center for Applied Scientific Computing

Performance Measures x.x, x.x, and x.x

2

OpenMP is a vibrant growing organization

 ARB membership at an all-time high

• 13 permanent members (implementers)

 Most recent addition is Nvidia

• 8 auxilliary members (user institutions)

 Most recent addition is TACC

 Actively pursuing new specifications

• OpenMP 3.1 released in July 2011

• Significant progress already on OpenMP 4.0

• Planning always extends beyond the next specification

• Feedback from non-members always welcome

 International Workshop on OpenMP (IWOMP) going strong

3

OpenMP 3.1 specification recently finished and

work on the following one is already begun

 OpenMP 3.1

• Refine and extend existing specification

• Do not break existing code

• Minimal implementation burden beyond 3.0

• Enacted 87 tickets total

 OpenMP 4.0 (?)

• Draft planned for SC12 (adopting time-based releases)

• Address several major open issues for OpenMP

• Do not break existing code unnecessarily

• Already have passed 4 tickets

 Added UDRs, atomic swap

 Addressed some small questions on atomics

4

Despite incremental nature, we added

several important items for OpenMP 3.1

 Extend atomics to support capture and write functionality

 Add min and max reduction operators in C/C++

 Extensions to OpenMP tasking model

• Explicit task scheduling points (taskyield construct)

• Ability to save data environment overhead

 final and mergeable clauses

 omp_in_final runtime library routine

 Initial support for thread binding

 Now allow intent(in) and const-qualified types in

firstprivate clause

 Many clarifications, including improvements to examples

5

The final clause combines with new tasking

concepts to reduce tasking overhead

 Recognizing an existing concept and creating three new ones

• An undeferred task is a task for which execution is not

deferred with respect to its generating task region

• An included task is an undeferred task that is sequentially

included in generating task region (executed immediately)

• A merged task has the same data environment, including

ICVs, as its generating task region

• A final task forces its descendant tasks to be included

 New extensions to the task construct

• The mergeable clause suggests the task may be merged

• The final(expr) clause if true results in a final task

#pragma omp task if(0)

6

Additional kind of atomic operations

addresses an obvious deficiency

 Currently cannot capture a value atomically

int schedule (int upper) {

 static int iter = 0; int ret;

 ret = iter;

 #pragma omp atomic

 iter++;

 if (ret <= upper) { return ret; }

 else { return -1; } //no more iters

}

 Atomic capture provides the needed functionality

int schedule (int upper) {

 static int iter = 0; int ret;

 #pragma omp atomic capture

 ret = iter++; // atomic capture

 if (ret <= upper) { return ret; }

 else { return -1; } // no more iters

}

7

Adding initial high-level affinity support to the

OpenMP 3.1 specification, more planned for 4.0

 Control of nested thread team sizes (in OpenMP 3.1)

 Request binding of threads to resources (in OpenMP 3.1)

 Plan additional choices (compact, spread, a list) for 4.0

 Restrict the processor set for program execution

 Can also specify lists, groupings

 Planning new runtime library routines to observe and to

control bindings (get_place, get/set_place_partition)

 Considering environment variables to:

• Control thread placement within a processor set

• Control initial placement of shared data

• Adapt data placement at runtime

export OMP_NUM_THREADS=4,3,2

export OMP_PROC_BIND=TRUE

export OMP_PLACES 0,1,2,3,8,10,12,14

8

User Defined Reductions (UDRs) are a major

addition already adopted for OpenMP 4.0

 Use declare reduction directive to define new operators

 New operators used in reduction clause like predefined ops

 reduction-identifier gives a name to the operator

• Can be overloaded for different types

• Can be redefined in inner scopes

 typename-list is a list of types to which it applies

 combiner expression specifies how to combine values

 identity can specify the identity value of the operator

• Can be an expression or a brace initializer

#pragma omp declare reduction (reduction-identifier :

typename-list : combiner) [identity(identity-expr)]

9

A simple UDR example

 Declare the reduction operator

#pragma omp declare reduction (merge : std::vector<int> :

 omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end()))

 Use the reduction operator in a reduction clause

void schedule (std::vector<int> &v, std::vector<int> &filtered) {

 #pragma omp parallel for reduction (merge : filtered)

 for (std:vector<int>::iterator it = v.begin(); it < v.end();

it++)

 if (filter(*it)) filtered.push_back(*it);

}
 Private copies created for a reduction are initialized to the

identity that was specified for the operator and type

 Default identity defined if no identity clause present

 Compiler uses combiner to combine private copies

 omp_out refers to private copy that holds combined value

 omp_in refers to the other private copy

10

We are actively discussing several

major topics for OpenMP 4.0 and beyond

 Initial work to support Fortran 2003

 Development of an error model

• The done directive

• Callbacks for integrated error handling

 Interoperability and composability

• Interactions between thread models

• Interfaces to support interactions with distributed models

 Refinements to the OpenMP tasking model

• Specifying task dependencies (think data flow)

• Task reductions, task-only threads, omp while

 Affinity (previous slide)

 Sequentially consistent atomic operations

 How to specify subarrays in C

11

We are considering these and several other

topics for OpenMP 4.0 and beyond

 Other topics being considered for OpenMP 4.0

• Transactional memory and thread level speculation

• Additional task/thread synchronization mechanisms

• Extending OpenMP to Fortran 2003

• Extending OpenMP to additional languages

• Incorporating tools support

• Other miscellaneous extensions

 How can you help shape the future of OpenMP?

• Attend IWOMP, become a cOMPunity member

• Lobby your institution to join the OpenMP ARB

• Contact me and beg ;-)

