
OpenMP on a
High Performance DSP

Eric Stotzer
SC 2012

TI Information – Selective Disclosure

High Performance Embedded Computing

Software Defined
Radio

High Performance
ImagingMission Critical

High Performance
Multimedia

Multichannel & Next
Generation Video –
H.265, SVC, etc.

Medical Imaging

Multicore DSP (TMS320C6678): Functional Diagram

Multicore Navigator

Te
ra

N
et

C66x
DSP

L1 L2

C66x
DSP

L1 L2

C66x
DSP

L1 L2

C66x
DSP

L1 L2

C66x
DSP

L1 L2

C66x
DSP

L1 L2

C66x
DSP

L1 L2

C66x
DSP

L1 L2

8 x CorePac

SRIO
x4

PCIe
x2

EMIF
16

TSIP
2x

I2C
SPI UART

Peripherals & IO

GbE
Switch

SGMIISGMII

IP Interfaces

Crypto

Packet
Accelerator

Network
CoProcessors

Power Management
Debug

Multicore Shared Memory Controller
(MSMC)

Shared Memory 4MB

DDR3-
64b

EDMA
SysMon

System Elements

Memory Subsystem

• multicore KeyStone SoC
• Fixed/Floating CorePac

• 8 CorePac @ 1.25 GHz
• 4.0 MB Shared L2
• 320G MAC, 160GFLOP, 60G DFLOPS
• ~10W

• Navigator
• Queue Manager, Packet DMA

• Multicore Shared Memory
Controller

• Low latency, high bandwidth memory access

• 3-port GigE Switch (Layer 2)
• PCIe gen-2, 2-lanes
• SRIO gen-2, 4-lanes
• HyperLink

• 50G Baud Expansion Port
• Transparent to Software

Hyper
Link
50

C66 core 8-way VLIW

KTH Linpack Results

5

• LINPACK running on C6678 achieves 30.9 Gflops, ~2.6 Gflops/J

Quad/Octal TMS320C6678 PCIe Cards
• 512 SP Gflops
• 128 DP Gflops
• 54 W
• 8 lane PCIe gen 2

• 1024 SP Gflops
• 256 DP Gflops
• 110 W
• 16 lane PCIe gen 3

Keystone SoC scalable multicore
architecture

• On-chip physical interconnect

Network on Chip

• RISC Cores
• Signal Processing Cores
• Acceleration

Programmable elements

• End point
• Switched

Integral I/O

• Tightly coupled hardware and
software

Interprocessor
Communications

RISC CoresRISC Cores

Risc CoresRisc Cores

N
et

w
or

k
on

 C
hi

p

N

et
w

or
k

on
 C

hi
p

Interprocessor CommunicationsInterprocessor Communications

I/O

Accelerators

DSP Cores

DSP Cores

Multicore ARM + DSP Functional Diagram

• 8x 66x DSP cores up to 1.4GHz
• 4x ARM A15 Cortex
• 1MB of local L2 cache RAM per C66 DSP

core
• 4MB shared across all ARM

C66x Fixed or Floating Point DSP

• Multicore Shared Memory Controller provides
low latency & high bandwidth memory access

• 6MB Shared L2 on-chip
• 2 x 72 bit DDR3, 72-bit (with ECC), 16 GB

total addressable, DIMM support (4 ranks
total)

Large On Chip & Off Chip Memory

• Network CoProcessor (IPv4/IPv6)
• Crypto Engine (IPSec, SRTP)

Acceleration

• 4 Port 1G Layer 2 Ethernet Switch
(IPv4/v6)

• 2x PCIe, 1x4 SRIO 2.1, EMIF16, USB
3.0, AIF2x6, UARTx2, SPI, I2C

Peripherals

Multicore Navigator

Te
ra

N
et

Network
CoProcessor

Power Management

Debug

Multicore Shared Memory Controller
(MSMC)

Shared Memory 6 MB
DDR3-

72b

EDMA

SysMon

System Elements

Memory Subsystem

Hyper
Link
2x

SRIO
x4

PCIe
2x

EMIF
16

USB
3.0

I2C3x
SPI3x

UART
2x

1GbE
Switch 4 ports

DDR3-
72b

Security
CoProcessor

Network
CoProcessors

C66X
DSP

L1 L2

C66X
DSP

L1 L2

C66X
DSP

L1 L2

C66x
DSP

L1 L2

C66X
DSP

L1 L2

C66X
DSP

L1 L2

C66X
DSP

L1 L2

C66x
DSP

L1 L2

Shared Memory 4 MB

ARM
Cortex
A15 CPU

ARM
Cortex
A15 CPU

ARM
Cortex
A15 CPU

ARM
Cortex
A15 CPU

Why OpenMP?

• Industry standard for shared memory parallel programming
– website: http://www.openmp.org

• Productivity and flexibility
– Data parallelism (omp parallel for)
– Task parallelism (omp tasks)

• Easy migration for existing code base: C/C++ based directives
(#pragma) used to express parallelism

• Language is evolving to support tasking models, heterogeneous
systems, and streaming programming models

• Embedded programmers want a standard parallel programming model
for high performance shared memory multicore devices

Multicore Software Development KitMulticore Software Development Kit

Operating System

SYS/BIOS

Application Binary Interface
OpenMP ABI

OpenMP Programming Layer

User Applications

Compiler
Directives

OpenMP
Library

Environment
Variables

Parallel Thread Interface

Master Thread Master Thread

Worker Thread

Worker Thread

Worker Thread

Worker Thread

Worker Thread

Worker Thread

OpenMP on a lightweight RTOS

• TI SYS/BIOS RTOS with IPC
product

• Each core is running
SYS/BIOS RTOS

• OpenMP master and worker
threads execute inside
dedicated SYS/BIOS tasks

• IPC is used for
communication and
synchronization

• OpenMP run-time state and
user data is allocated in
shared memory

Weak Memory Consistency
• Memory Consistency

– When is a write by one core seen by a read on another core
– Complicated by caches and memory latencies

• OpenMP Flush operation
– forces synchronization between a thread’s temporary view

and shared memory for shared data
– specified with flush directive or implicitly through other

barrier constructs
– Consistency only required at flush points!

Data Race Free
• Between flush points threads do not access the same data – that

would cause a data race!
• Does not require expensive hardware mechnanism to implement

cache coherency
• Optimize the memory system for this programming model (hybrid

software/hardware approach)

Flush temporary view

Write-back/Invalidate Caches

Each thread has it’s own
‘view’ (cached) of memory

Summary
• OpenMP is the industry standard for shared memory

parallel programming
• OpenMP can execute on an embedded RTOS or perhaps

even “bare-metal”
• Shared memory:

– precise hardware cache coherency is not required
– Exploit weak consistency: implement hybrid

software/hardware cache systems
• Texas Instruments has announced support for OpenMP on

its latest C66x multicore processor.
• Stop by!

BOOTH # 4828

Backup

Host Computer Target Board/simulator

Eclipse

PolyCore

ENEA
Optima

3L

Critical
Blue

Drivers and Platform software (boot, platform utilities, accelerators)

Multicore Software Development Kit

Code
Composer

StudioTM

Third
Party

Plug-Ins

SMP Linux
(ARM)

• SMP
• Virtualization
• High Perf Library

(Zero Copy)
• pthreads
• GDB

SYS/BIOS
(DSP)

Demonstration applications
& Examples

Optimized Libraries
• Math and signal processing
• Imaging and video
• Telecom and wireless

Multicore Programming Models
• Interprocessor Communication
• OpenMP runtime library
• Message Passing Interface (MPI)
• Open Event Machine

Instrumentation & Trace
• LTTng
• UIA
• cToolsLib

Networking and
Communication Services

• Network, IPSEC, Acceleration

Analyzer
Suite

Remote
Debug

CCS
Debugger

CodeGen
OpenMP

Editor

Standard Linux Development Tools
(host or target-based)

GDB

GDB

gprof

oprofile

grindsuite

Fault Management
Library

gcc

Trident

Multicore SDK (MCSDK) – Overview

15

3 Create optimized functions using
• Standard Programming
• Vector Programming
• OpenMP Programming

Discrete to Integrated
Getting from here To here

Parallel computing strategies with TI DSPs

1
Get started quickly with
• Optimized libraries
• Simple host/DSP interface

TI LIBS
BLAS, DSPLIB

FFT

User LIBS
TI Tools

3rd Party LIBS
VSIPL

2
Offload code simply with
• Directive-based programming
• OpenMP Accelerator Model

Accelerator Model

User LIBS
Custom fxn

x86

DSP

ARM+DSP
28nm

• Multicore performance
• Single core simplicity

KeyStone Tools

• Consistent environment from the desktop through
deployment

• Simulation models in functional and cycle approximate
simulators

• Integrates with commercial system modeling platforms
• KeyStone Analyzer

Develop HW and SW in parallel

• Eclipse Integrated Development Environment (IDE)
• Standard Linux distribution models

• Enabling commercial partnerships (e.g., Yocto)
• Industry standard programming environments

• OpenMP, Message Passing Interface (MPI)
• Leveraging 3P and open source tools

Leverages standards

• Optimized software and libraries for KeyStone devices
• Common APIs to simplify migration
• Maximize customer software investment
• Full multicore entitlement

Augmented by TI

Design

Develop Deploy

Technologies/Partners

Source: F. D. Igual, R. A. van de Geijn, and M. Ali, “Exploring the Capabilities of Multi-Core DSPs for Dense
Linear Algebra Operations”, Poster presented at SIAM-PP12.

