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• Diversity in computer architecture for HPC

Performance Portability

Intel® Xeon® Scalable processor 
accelerated by Intel’s Xe compute 
architecture.
>=1 EF

• Changing Computer Architectures: Changes on the HPC facilities. Heterogeneous multi-
node systems that uses accelerators such as GPUs together with CPUs have been taken 
lead in providing performance for many different type of applications.

Leonardo: NVIDAI Ampere 
architecture-based GPUs and NVIDIA® 
Mellanox® HDR 200Gb/s InfiniBand 
networking. 
10 EF of AI Performance

AMD Radeon Instinct GPUs. 
> 1.5 EF

Exascale systems …
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OLCF Supercomputing Platforms

• OLCF Summit supercomputer: an IBM AC922

system consisting of 4608 large nodes each

with six NVIDIA Volta V100 GPUs and two

POWER9 CPU sockets providing 42 usable

cores per node.
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• Upcoming Frontier: Single AMD EPYC CPU with 4

AMD Radeon Instinct GPUs with AMD Infinity

Fabric links and coherent memory between

them within the node. The nodes are

connected with a Slingshot interconnect

network port for every GPU (100 GB/s

aggregate network bandwidth.)
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Portability for Migration

Kokkos

OpenMP offload

CUDA

HIP

https://www.olcf.ornl.gov/frontier/
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• How it was born:

– AutoDock-GPU: The COVID-19 pandemic has fueled a flurry of activity in 

computational drug discovery, including the use of supercomputers and 

GPU acceleration for massive virtual screens for therapeutics.

– miniAutoDock: Performance portability evaluation -

especially relevant as facilities transition from petascale systems and 

prepare for upcoming exascale system.

– miniMDock: ECP proxy app, 

https://proxyapps.exascaleproject.org/app/minimdock

– https://www.osti.gov/doecode/biblio/70713

–

miniMDock

• A set of protein and ligands
• Choosable local searching methods: 

ADADELTA, Solis-wets, etc.
• OpenCL and CUDA versions, 

OpenMP offload

• A single protein and ligand
• Solis-Wets local searching method.
• CUDA, HIP, Kokkos, OpenMP offload, 

C++ Std-par 

Enamine Database:

https://enamine.net

rcsb.org: 7cpa

AutoDock-GPU
miniMDock

https://proxyapps.exascaleproject.org/app/minimdock
https://www.osti.gov/doecode/biblio/70713
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miniMDock: Design and Structure

• Targeting systems

• NVIDIA GPU – Evaluating on Summit

• AMD GPU – Evaluating on the Cray Frontier Center of Excellence and SPOCK

• Frontier
• Intel GPU

• The CUDA version was heavily optimized, including hardware-level optimizations 
and warp-level primitives. 

• Preloaded ligand-protein grids

• Common CPU based 

code

• Docking on GPU

• Package of device codes
• CUDA, HIP kernels

• Kokkos framework

• OpenMP offload

• …

miniMDock: Software stack
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miniMDock: Algorithm

• Initial and final data on CPU

• Computing on GPU

• Four GPU Kernels

• Lamarckian GA

• Random Optimizer 

– Solis-Wets

• Iterative method

• Heavy worker - LS-Kernel

• Multiple runs

• Best scoring pose
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• Porting Highly Optimized Kernels:

– Porting low level, architecture specific warp-level CUDA optimizations to a different
architecture is a challenging task due to the very nature of such optimizations.

– NVIDIA GPU with warp size 32 to AMD-GCN GPU with wavefront size 64

• Available/Evolving features:

– Differences in low level intrinsics and details, availability and semantics of shuffle
operations.

– The available warp vote (_any) and shuffle (_shfl) functions in AMD cannot be
directly mapped to functions in new CUDA versions because they have been
deprecated in CUDA 9.0 for all NVIDIA devices.

• Need of Two Versions:

– Portable code with optimized low-level kernels will necessitate the development
and maintenance of two versions of the kernels, even though HIP can provide a
functionally portable implementation that can run on both NVIDIA and AMD GPUs
systems.

Translating CUDA to HIP
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Translating CUDA to HIP - it requires manual translation

CUDA warp-level reduction HIP wavefront-level reduction

warp size: 32
warp mask: 31 (11111)
warp bits: 5

wavefront size: 64
wavefront mask: 63(111111)
wavefront bits: 6

• Architecture specific optimization

Four 16-wide SIMD vectors
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Translating CUDA to OpenMP Target Offload -challenges

1. Define global gpu kernel function
2. Choose grid size, nblocks and block size, 

threads_pblock
3. Define shared variables explicitly 
4. Assign work for master thread (threadIdx == 0) 

explicitly
5. API specific data types, float3

1. Host function that utilizes OpenMP offloading
2. Set upper limit for league size, nteams and 

team size threads_pteam
3. Define shared variable inside the league
4. Define for loop explicitly

• For teams – a set of single threaded team
• For a team

5. User defined data type, float3_struct

CUDA Kernel

OpenMP target offload Kernel

• Hierarchy of parallel constructs 
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Translating CUDA to OpenMP Target Offload -challenges

• CUDA - Explicit thread synchronization

• #pragma omp barrier inside a team – doesn’t work
• Generate unique team of threads

• Implicit barrier at the end of each team

CUDA Kernel

OpenMP target offload Kernel

What can we do if device_function has 
__synchthreads() ?

Generating unique team of threads 
inside the target function – doesn’t work

• Thread synchronization
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Translating CUDA to OpenMP Target Offload -challenges

• Decompose the device function into a set of target functions – work for a single thread
• In the main kernel, Generate team for each and call those functions – redundant codes

CUDA device function
Code segment that deals target functions

• Thread synchronization

• Major issue with porting in a reverse direction
• Need to understand deeply – e.g.  rotate atoms, nrotcyc x threads_pblock

• warp-level reduction vs team-level reduction
• May loss the performance
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Translating CUDA to OpenMP Target Offload –change strategy

• Direct conversion from CUDA

• More portable – fundamental features 

• More hardware-level programming style.

• Manual work sharing for threads

• Explicit thread synchronization
• #pragma omp barrier

• Usable inside the device function

Code segment that deals target functions

• Using teams---parallel

CUDA Kernel

OpenMP target offload Kernel
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Performance Evaluation

Test case

SMALL MEDIUM LARGE

Ligand nsc1620 7cpa 3er5

Number of atoms 21 43 108

Number of 
rotatable bonds 2 15 31

Heterogeneous Systems

Summit

CPU: IBM Power9
GPU: NVIDIA Tesla V100
Connection: NVLINK with 
25 GB/s transfer rate

Compilers:
NVHPC 21.11
LLVM 14.0 and 15.0

Spock

CPU: AMD EPYC 7662
GPU: AMD MI100
Connection: PCIe Gen4 
with 32 GB/s transfer rate

Compilers:
Rocm 4.5
AOMP 14.0.1
CCE 12.0.1

Docking parameters 

Maximum number of energy evaluations: 2500000
Maximum umber of generations: 27000
Population size: 150
nrun : 10 
Maximum number of iterations: 300
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Performance Enhancement by tunning parameters

On NVIDIA GPUs On AMD GPUs

• Tuning maximum thread register count

• Tuning team size: thread_limit()

NVIDIA nvhpc: -gpu=maxrregcount:60

• For default thread register count, team size 64 shows the best performance for both compilers
• Optimum value for maximum thread register count is 60 for NVHPC and 120 for LLVM

LLVM clang: -Xcuda-ptxas --maxrregcount=120
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Performance Enhancement by tunning parameters

• LTO: More sensitivity for the approach 1 (using distributive ) ~ 40% improvement 
• Step by step improvement for the second approach ~ 62% improvement

• Link Time Optimization for LLVM • Parameter tunning effects

-fopenmp-new-driver -foffload-lto -fopenmp-assume-no-thread-state

LLVM 15 and cuda/11.4.2
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Performance Evaluation OpenMP Target Offload on AMD and NVIDIA GPUs

On NVIDIA GPUs - V100 On AMD GPUs – MI100

• The 2nd approach gives better performance in general, except for ROCM (4.5) on Spock
• The NVHPC 21.11 is better than LLVM-clang 14/15 on Summit 
• OpenMP-CCE 12.0.1 and AOMP 14.0.1 show the good performance on Spock
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• Best performance across platforms 

• HIP gets better performance than CUDA for the 

small input, otherwise CUDA gets better.

-------------------------------------------------------------------------

• OpenMP-LLVM on the NVIDIA GPU and OpenMP-

CCE on the AMD GPU provide identical 

performance for the small input.

• OpenMP-CCE provides best performance for the 

medium input.

• OpenMP-NVHPC and OpenMP-AOMP give better 

performance for the large input. 

• OpenMP-NVHPC outperforms for the large input. 

(?...)

-------------------------------------------------------------------------

Performance Evaluation cross-platform
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• Vender specific APIs give better performance for molecular docking tools 
on their own platforms – less portability.

• Directive based programming models are portable, to make sure those 
are performance portable we need to put some efforts.

– Choose appropriate strategy

• Productive based 

• Performance based

– Tunning the number of teams and team size

– Choose appropriate compiler

• Vender specific compilers give better performance – again not portable compilers.

• LLVM-Clang is a portable compiler and gives acceptable performance.

• Evolving and advancing compiler features …

– Tuning compiler parameters

Conclusion
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