
Mathialakan Thavappiragasam
Biophysics Group, Biosciences Division,

Oak Ridge National Laboratory

Performance Portability of Molecular Docking Application

for Exascale Architectures using OpenMP Offloading:

Challenges and Solutions.

Ada Sedova
Biophysics Group, Biosciences Division,

Oak Ridge National Laboratory

Wael Elwasif
Computer Science & Mathematics Division,

Oak Ridge National Laboratory

Thanks to:

➢ Performance Portability

Agenda

➢ miniMDock

➢ Translating CUDA to HIP

➢ Translating CUDA to OpenMP

Target Offloading

➢ Performance Evaluation and

Enhancement

33 ACM BCB 2020 September 21-24

• Diversity in computer architecture for HPC

Performance Portability

Intel® Xeon® Scalable processor
accelerated by Intel’s Xe compute
architecture.
>=1 EF

• Changing Computer Architectures: Changes on the HPC facilities. Heterogeneous multi-
node systems that uses accelerators such as GPUs together with CPUs have been taken
lead in providing performance for many different type of applications.

Leonardo: NVIDAI Ampere
architecture-based GPUs and NVIDIA®
Mellanox® HDR 200Gb/s InfiniBand
networking.
10 EF of AI Performance

AMD Radeon Instinct GPUs.
> 1.5 EF

Exascale systems …

44 ACM BCB 2020 September 21-24

OLCF Supercomputing Platforms

• OLCF Summit supercomputer: an IBM AC922

system consisting of 4608 large nodes each

with six NVIDIA Volta V100 GPUs and two

POWER9 CPU sockets providing 42 usable

cores per node.

P9 P9

DRAM

256 GBH
B

M

1
6
 G

B

G
P

U

7
 T

F

H
B

M

1
6
 G

B

G
P

U

7
 T

F

H
B

M

1
6
 G

B

G
P

U

7
 T

F

DRAM

256 GB H
B

M

1
6
 G

B

G
P

U

7
 T

F

H
B

M

1
6
 G

B

G
P

U

7
 T

F

H
B

M

1
6
 G

B

G
P

U

7
 T

F

TF 42 TF (6x7 TF)
HBM 96 GB (6x16 GB)
DRAM 512 GB (2x16x16 GB)
NET 25 GB/s (2x12.5 GB/s)
MMsg/s 83

N
IC

HBM/DRAM Bus (aggregate B/W)

NVLINK

X-Bus (SMP)

PCIe Gen4

EDR IB

HBM & DRAM speeds are aggregate (Read+Write).
All other speeds (X-Bus, NVLink, PCIe, IB) are bi-directional.

NVM
6.0 GB/s Read

2.2 GB/s Write

1
2
.5

 G
B

/s

1
2
.5

 G
B

/s

1
6
 G

B
/s

1
6
 G

B
/s

64

GB/s

1
3
5

 G
B

/s

1
3
5

 G
B

/s

5
0
 G

B
/s

50 GB/s

50 GB/s
5
0
 G

B
/s

50 GB/s

50 GB/s

5
0
 G

B
/s

5
0
 G

B
/s

5
0
 G

B
/s

5
0
 G

B
/s

9
0
0

 G

B
/s

9
0
0

 G

B
/s

9
0
0

 G

B
/s

9
0
0

 G

B
/s

9
0
0

 G

B
/s

9
0
0

 G

B
/s

200 PF > 1.5 EF

• Upcoming Frontier: Single AMD EPYC CPU with 4

AMD Radeon Instinct GPUs with AMD Infinity

Fabric links and coherent memory between

them within the node. The nodes are

connected with a Slingshot interconnect

network port for every GPU (100 GB/s

aggregate network bandwidth.)

55 ACM BCB 2020 September 21-24

Portability for Migration

Kokkos

OpenMP offload

CUDA

HIP

https://www.olcf.ornl.gov/frontier/

66 ACM BCB 2020 September 21-24

• How it was born:

– AutoDock-GPU: The COVID-19 pandemic has fueled a flurry of activity in

computational drug discovery, including the use of supercomputers and

GPU acceleration for massive virtual screens for therapeutics.

– miniAutoDock: Performance portability evaluation -

especially relevant as facilities transition from petascale systems and

prepare for upcoming exascale system.

– miniMDock: ECP proxy app,

https://proxyapps.exascaleproject.org/app/minimdock

– https://www.osti.gov/doecode/biblio/70713

–

miniMDock

• A set of protein and ligands
• Choosable local searching methods:

ADADELTA, Solis-wets, etc.
• OpenCL and CUDA versions,

OpenMP offload

• A single protein and ligand
• Solis-Wets local searching method.
• CUDA, HIP, Kokkos, OpenMP offload,

C++ Std-par

Enamine Database:

https://enamine.net

rcsb.org: 7cpa

AutoDock-GPU
miniMDock

https://proxyapps.exascaleproject.org/app/minimdock
https://www.osti.gov/doecode/biblio/70713

77 ACM BCB 2020 September 21-24

miniMDock: Design and Structure

• Targeting systems

• NVIDIA GPU – Evaluating on Summit

• AMD GPU – Evaluating on the Cray Frontier Center of Excellence and SPOCK

• Frontier
• Intel GPU

• The CUDA version was heavily optimized, including hardware-level optimizations
and warp-level primitives.

• Preloaded ligand-protein grids

• Common CPU based

code

• Docking on GPU

• Package of device codes
• CUDA, HIP kernels

• Kokkos framework

• OpenMP offload

• …

miniMDock: Software stack

88 ACM BCB 2020 September 21-24

miniMDock: Algorithm

• Initial and final data on CPU

• Computing on GPU

• Four GPU Kernels

• Lamarckian GA

• Random Optimizer

– Solis-Wets

• Iterative method

• Heavy worker - LS-Kernel

• Multiple runs

• Best scoring pose

99 ACM BCB 2020 September 21-24

• Porting Highly Optimized Kernels:

– Porting low level, architecture specific warp-level CUDA optimizations to a different
architecture is a challenging task due to the very nature of such optimizations.

– NVIDIA GPU with warp size 32 to AMD-GCN GPU with wavefront size 64

• Available/Evolving features:

– Differences in low level intrinsics and details, availability and semantics of shuffle
operations.

– The available warp vote (_any) and shuffle (_shfl) functions in AMD cannot be
directly mapped to functions in new CUDA versions because they have been
deprecated in CUDA 9.0 for all NVIDIA devices.

• Need of Two Versions:

– Portable code with optimized low-level kernels will necessitate the development
and maintenance of two versions of the kernels, even though HIP can provide a
functionally portable implementation that can run on both NVIDIA and AMD GPUs
systems.

Translating CUDA to HIP

1010 ACM BCB 2020 September 21-24

Translating CUDA to HIP - it requires manual translation

CUDA warp-level reduction HIP wavefront-level reduction

warp size: 32
warp mask: 31 (11111)
warp bits: 5

wavefront size: 64
wavefront mask: 63(111111)
wavefront bits: 6

• Architecture specific optimization

Four 16-wide SIMD vectors

1111 ACM BCB 2020 September 21-24

Translating CUDA to OpenMP Target Offload -challenges

1. Define global gpu kernel function
2. Choose grid size, nblocks and block size,

threads_pblock
3. Define shared variables explicitly
4. Assign work for master thread (threadIdx == 0)

explicitly
5. API specific data types, float3

1. Host function that utilizes OpenMP offloading
2. Set upper limit for league size, nteams and

team size threads_pteam
3. Define shared variable inside the league
4. Define for loop explicitly

• For teams – a set of single threaded team
• For a team

5. User defined data type, float3_struct

CUDA Kernel

OpenMP target offload Kernel

• Hierarchy of parallel constructs

1212 ACM BCB 2020 September 21-24

Translating CUDA to OpenMP Target Offload -challenges

• CUDA - Explicit thread synchronization

• #pragma omp barrier inside a team – doesn’t work
• Generate unique team of threads

• Implicit barrier at the end of each team

CUDA Kernel

OpenMP target offload Kernel

What can we do if device_function has
__synchthreads() ?

Generating unique team of threads
inside the target function – doesn’t work

• Thread synchronization

1313 ACM BCB 2020 September 21-24

Translating CUDA to OpenMP Target Offload -challenges

• Decompose the device function into a set of target functions – work for a single thread
• In the main kernel, Generate team for each and call those functions – redundant codes

CUDA device function
Code segment that deals target functions

• Thread synchronization

• Major issue with porting in a reverse direction
• Need to understand deeply – e.g. rotate atoms, nrotcyc x threads_pblock

• warp-level reduction vs team-level reduction
• May loss the performance

1414 ACM BCB 2020 September 21-24

Translating CUDA to OpenMP Target Offload –change strategy

• Direct conversion from CUDA

• More portable – fundamental features

• More hardware-level programming style.

• Manual work sharing for threads

• Explicit thread synchronization
• #pragma omp barrier

• Usable inside the device function

Code segment that deals target functions

• Using teams---parallel

CUDA Kernel

OpenMP target offload Kernel

1515 ACM BCB 2020 September 21-24

Performance Evaluation

Test case

SMALL MEDIUM LARGE

Ligand nsc1620 7cpa 3er5

Number of atoms 21 43 108

Number of
rotatable bonds 2 15 31

Heterogeneous Systems

Summit

CPU: IBM Power9
GPU: NVIDIA Tesla V100
Connection: NVLINK with
25 GB/s transfer rate

Compilers:
NVHPC 21.11
LLVM 14.0 and 15.0

Spock

CPU: AMD EPYC 7662
GPU: AMD MI100
Connection: PCIe Gen4
with 32 GB/s transfer rate

Compilers:
Rocm 4.5
AOMP 14.0.1
CCE 12.0.1

Docking parameters

Maximum number of energy evaluations: 2500000
Maximum umber of generations: 27000
Population size: 150
nrun : 10
Maximum number of iterations: 300

1616 ACM BCB 2020 September 21-24

Performance Enhancement by tunning parameters

On NVIDIA GPUs On AMD GPUs

• Tuning maximum thread register count

• Tuning team size: thread_limit()

NVIDIA nvhpc: -gpu=maxrregcount:60

• For default thread register count, team size 64 shows the best performance for both compilers
• Optimum value for maximum thread register count is 60 for NVHPC and 120 for LLVM

LLVM clang: -Xcuda-ptxas --maxrregcount=120

1717 ACM BCB 2020 September 21-24

Performance Enhancement by tunning parameters

• LTO: More sensitivity for the approach 1 (using distributive) ~ 40% improvement
• Step by step improvement for the second approach ~ 62% improvement

• Link Time Optimization for LLVM • Parameter tunning effects

-fopenmp-new-driver -foffload-lto -fopenmp-assume-no-thread-state

LLVM 15 and cuda/11.4.2

1818 ACM BCB 2020 September 21-24

Performance Evaluation OpenMP Target Offload on AMD and NVIDIA GPUs

On NVIDIA GPUs - V100 On AMD GPUs – MI100

• The 2nd approach gives better performance in general, except for ROCM (4.5) on Spock
• The NVHPC 21.11 is better than LLVM-clang 14/15 on Summit
• OpenMP-CCE 12.0.1 and AOMP 14.0.1 show the good performance on Spock

1919 ACM BCB 2020 September 21-24

• Best performance across platforms

• HIP gets better performance than CUDA for the

small input, otherwise CUDA gets better.

• OpenMP-LLVM on the NVIDIA GPU and OpenMP-

CCE on the AMD GPU provide identical

performance for the small input.

• OpenMP-CCE provides best performance for the

medium input.

• OpenMP-NVHPC and OpenMP-AOMP give better

performance for the large input.

• OpenMP-NVHPC outperforms for the large input.

(?...)

Performance Evaluation cross-platform

2020 ACM BCB 2020 September 21-24

• Vender specific APIs give better performance for molecular docking tools
on their own platforms – less portability.

• Directive based programming models are portable, to make sure those
are performance portable we need to put some efforts.

– Choose appropriate strategy

• Productive based

• Performance based

– Tunning the number of teams and team size

– Choose appropriate compiler

• Vender specific compilers give better performance – again not portable compilers.

• LLVM-Clang is a portable compiler and gives acceptable performance.

• Evolving and advancing compiler features …

– Tuning compiler parameters

Conclusion

2121 ACM BCB 2020 September 21-24

• NVIDIA staff, especially Oscar Hernadz and Scott LeGrand

• Scripps Research

• Joseph Huber

• ECP-SOLLVE team

• ORNL OLCF staff

• Biological Sciences staff

Acknowledgements

