—1

Hewlett Packard
Enterprise

OpenMP Offload Performance Analysis with
“HPE Performance Analysis Tools (PAT)”
(formerly CrayPAT)

Marcus Wagner
CORAL-2 Centers of Excellence

August/26/2022

Outline

e This presentation builds on Steven Abbott's presentation "HPE COMPILER GPU OFFLOADING*
https://www.openmp.org/wp-content/uploads/2022-04-29-ECP-OMP-Telecon-HPE-Compiler.pdf

e Documentation Resources
e Disclaimer:
« This is not a comprehensive reference for, or infroduction to anything; instead
o It is meant to be an easy show-and-tell how to get started with PAT for OpenMP offloading
o For more details, please, refer to the documentation or, as always - ask, email, discuss
e Claim:
o | claim ownership of mistakes in this presentation. If you find or suspect a problem, please, let me know.

e What are the "HPE Performance Analysis Tools (PAT)", formerly CrayPAT?

e Build and run an example code (miniQMC - the QMCpack miniapp) with OpenMP offloading to AMD
MI250X and show PAT performance analysis using different PAT components.

e Acknowledgements
e The End

E—

https://www.openmp.org/wp-content/uploads/2022-04-29-ECP-OMP-Telecon-HPE-Compiler.pdf

Documentation Resources

e https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html
e https://www.openmp.org/wp-content/uploads/2022-04-29-ECP-OMP-Telecon-HPE-Compiler.pdf
e https://support.hpe.com # look for:

o HPE Performance Analysis Tools User Guide (22.06) (S-8014)

o HPE Cray Fortran Reference Manual (14.0) (§-3901)

e HPE Cray Clang C and C++ Quick Reference (14.0) (§-2179)

o # where: 1st (number) = software version, 2nd (S-number) = const. document ID independent of SW version
e man pages relevant in this context:

o cc, CC, ftn : CCE compiler drivers

e craycg, crayCC, crayftn : CCE compilers

« infro_openmp, intro_directives, intro_mpi

e infro_craypat, pat_build, pat_opts, pat_help, pat_report, pat_run, grid_order, app2, reveal

https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html
https://www.openmp.org/wp-content/uploads/2022-04-29-ECP-OMP-Telecon-HPE-Compiler.pdf
https://support.hpe.com/

The of Profiling

 Profile your code

e The compiler/runtime will not do all the optimisation for you.
 Profile your code yourself

« Don't believe what anyone tells you. They're wrong.
 Profile on the hardware you want to run on

o Don't profile on your laptop if you plan to run on a Cray/HPE system;
* Profile your code running the full-sized problem

o The profile will almost certainly be qualitatively different for a test case.
» Keep profiling your code as you optimise

« Concentrate your efforts on the thing that slows your code down.

o This will change as you optimise.

« So keep on profiling.

E—

Side-Note on “Obvious” Perf. Hotspot: (crayfin loopmark listing: -h list=a)
Is line 2515 below compute “/” bound? - No, not that obvious after all.©

2508. + l------—-——————— - < do ie = nets, nete
2500. 1 ! add hyperviscosity to RHS. apply to Q at timelevel n0O, Qdp(n0)/dp
2510. + 1 2-—————-——————————- < do k = kbeg, kend
2511. 1 2 Vps—-———————--———~ <> dp(:,:,k) = elem(ie)%derivedSdp(:,:,k) - &
rhs multlpller*dt*elem(le)%der1ved°d1vdp _proj (:,:,k)
! Changing “dp = (...)” to “dp = 1./(” does not help below
2512. 1 2-————————— > enddo
2513. + 1 b-—-----——————————- < do g = gbeg, gend
2514, + 1 b b-———————————-————— < do k= kbeg, kend
2515. 1 bb Vps———-—-—---- <> Qtens biharmonic(:,:,k,q,ie) = & ' 4.0% of wall time goes into the “/” line
elem(ie) $state%Qdp(:,:,k,q,n0 gdp)/ dp(:,:,k) ! ... but .
! ... changing “/” to “*” does not help
2516. 1 bb if (rhs multiplier == 1) then
2517. + 1 b b fVCw——-———-=-—-——--- <> gmin (k,qg, ie)= &
min (gmin (k, g, ie),minval (Qtens biharmonic(:,:,k,qg,ie)))
2518. l1bb f--—-—————————- <> gmax (k,q, ie)= &
max (gmax (k, g, ie) ,maxval (Qtens biharmonic(:,:,k,qg,ie)))
2519. 1 bb else
2520. + 1 b b fvCw—————————- <> gmin(k,q, ie)=minval (Qtens biharmonic(:,:,k,q,ie))
2521. lbbf--—————————- <> gmax (k,q, ie) =maxval (Qtens biharmonic(:,:,k,q,ie))
2522. 1 bb endif
2523. 1 bbb > enddo
2524. 1 b-——— - > enddo
2525. l-————————— - > enddo

Why does “/” =2 “*” not help? See SFILE_NAME.opt CCE compiler listing, line 2515 (-hlist=d)

$kbeg + $I L2514 1031 + 16 * $I L2514 1079, hybrld gbeg + ST L2513 1060 + 16 * $T L2513 1085, nets + SI L2508 1089)
= (((elem%base addr) (nets + $I L2508 1089, 0)%state%qgdp) (1 ¥+ $I LZ515 910, 1 + ST L2515 972, hybrid%kbeg +

ST L2514 1031 + 16 * SI L2514 1079, hybrldoqbe + $I L2513 1060 F 16 * $I L2513 1085, n0 qdp) * 1.0 / dp(l +
§I7L2515°910, 1 + $I L2515 972, hybridskbeg + gI L25T4 103T + 16 * SI L25T4 1079)) -

One “/” and many integer operations, incl. some muITlpllcaTions - array index and offset arithmetic.
This “/” statement is NOT floating-point bound. Memory BW and Integer Ops dominate time.

E— | s

What are the "HPE Performance Analysis Tools (PAT)", formerly CrayPAT?

e The Performance Analysis Tools (Perftools, PAT, formerly CrayPAT) are a suite of utilities to

capture performance data during program execution, and to analyze and visualize those data
afterwards.

e PLEASE, use them when running in a parallel file system (gpfs, lustre) but not in SHOME,
because a lot of data can be generated, and the system administrator and the other users may
smite you with their wrath if you fill up SHOME © ; besides, running in SHOME is also slower.

e PAT can tell you about many things about performance in much detail on- and off-node, such as
CPU and GPU performance, cache, OpenMP, MPI, 10 and specific packages without having to
manually instrument your original source code, but you can (and may want to) do a little
instrumentation, e.g., fo bypass the initialization phase of your run for taking data, since that
may have different performance characteristics than the steady-state run phase of your code.

E— | ¢

PAT programming interfaces

 Perftools-lite: Simple interface that produces reports to stdout. There are five Perftools-lite submodules:
 perftools-lite - Lowest overhead sampling experiment identifies key program bottlenecks.
 perftools-lite-events - Produces a summarized trace, detailed MPI statistics, including sync. overhead.
o perftools-lite-loops - Provides loop work estimates (must be used with CCE).
« perftools-lite-gpu - Focuses on the program’s use of GPU accelerators.
 perftools-lite-hbm - Reports memory traffic info. (must be used with CCE and only for Intel procs).

e Perftools - (Traditional CrayPAT) Advanced interface that provides full data collection and analysis
capability, including full traces with timeline displays. It includes the following components:

« pat_build - Utility that instruments programs for performance data collection.

o pat_report — After the instrumented program generated by pat_built was run, pat_report can generate
text reports from the collected profile data and export the data to other apps.

 Perftools-preload - Runtime instrumentation version of perftools, which eliminates the instrumentation
step by pat_build. Not covered here, due to Prep- and Presentation-Time constraints.

E— | 7

And then, there are...

e Apprentice2 (app2)

« An interactive X Window System tool for visualizing and manipulating performance analysis data captured during
program execution. Mac and Windows clients are also available.

e Installing Apprentice2 on Laptop
module load perftools-base/22.06.0 # or your favorite version
module load perftools # will match above version
cd $SCRAYPAT ROOT/share/desktop installers

o download Apprentice2installer-22.06.0-3.exe to laptop # windows
« download Apprentice2lnstaller-22.06.0-3.dmg to laptop # apple
« double-click on installer on laptop and follow directions to install

e Reveal

« Source code visualization and analysis tool, good to point out where to add what OpenMP directives, but so far
focused on CPU. Not covered here, due to Prep- and Presentation-Time constraints.

E— | o

PAT Overview

e PAT assist the user with application performance analysis and optimization
e Provides concrete suggestions instead of just reporting data.

o Work on user codes aft realistic core counts with thousands of processes/threads integrate into large codes with
millions of lines of code

o (To optimize for the BlueWaters/NCSA acceptance, | ran VPIC with CrayPAT in 2013 on 180224 MPI-ranks with
4 OpenMP-threads on 720896 cores, 22528 nodes. This is a data point which shows that PAT can scale.
Fine-print: The 1-hour time limit on interactive sessions was too short to read in all *.xf profile data from that run.
But pat_report can be run from within a batch job. ©
Keep that in mind, though, if you run a job on many nodes with perftools-lite-XXX where the equiv. of pat_report is
automatically done at the end on the first allocated node only — while the other still allocated nodes remain idle.)

e PAT is a universal tool (different compilers, hardware, performance aspects - io, communication, compute,
memory, on-node, inter-node)

Basic functionality available to all compilers on the system

Additional functionality available for the Cray compiler (loop profiling)

Requires no source code or Makefile modification

Automatic instrumentation at group (function) level such as mpi, io, omp (see "man pat_build " -g trace-group)

Requires object files and archives for instrumentation and to be compiled with the {cc, CC, ftn} drivers
while a perftools module was loaded. (If you really don't want to use {cc,CC.ftn} - a workaround shown later.)

E— |

PAT Overview (cont.)

e PAT is able to generate instrumentation on optimized code.

e |[t’'s not necessary or helpful to add extra "-G/-g" flags for performance analysis with PAT,
because then you would profile a code you normally don't run;
you want to know the hot-spots in the optimized code.

e Instead, build your code as usual and let pat_build do the instrumentation of your optimized code.
e pat_build creates new stand-alone instrumented program while preserving original binary.

e Side note 1: In general for CCE, be careful with the "-g" compilation flag which corresponds to "-G0",
because —g is heavy-handed (more so than with other compilers) and will turn off optimization.
Instead, try "-G2" or, if that's not enough, "-G1".

e Side note 2: When you build an application with a perftools module loaded
(except for the perftools-base/* modules where this is not the case and this note does not apply)
PAT will keep some temp files in SHOME/ .craypat/
Therefore, you may want to periodically clean out old files under SHOME/.craypat/

E—

10

Sampling and Event Tracing

e CrayPAT provides two fundamental ways of profiling:

e 1. Sampling

« By taking regular snapshots of the applications call stack we can create a statistical profile of
where the application spends most time.

« Snapshots can be taken at regular intervals in time or when some other external event occurs,
like a hardware counter overflowing

e 2. Event Tracing

« Alternatively, we can record performance information every time a specific program event occurs,
e.g., entering or exiting a function.

« We can get accurate information about specific regions of the code every time the event occurs
« Event tracing code can be added automatically or included manually through API calls.

E—

11

Sampling vs. Tracing

e Sampling

o Advantages
—Only need fo instrument main routine
—Low Overhead - depends only on sampling frequency
—Smaller volumes of data produced

« Disadvantages
—-Only statistical averages available
—Limited information from performance counters

e Event Tracing
o Advantages
—More accurate and more detailed information
—Data collected from every traced function call not statistical averages
e Disadvantages
—Increased overheads as number of function calls increases
—Potentially huge volumes of data generated

o Automatic Profile Analysis (APA) combines the two approaches.

E—

12

Examples of Doing a Sampling vs. Tracing Experiment

*module load perftools-base

emodule load perftools

*make clean

*make

e Sampling:
« pat build a.out # generates a.out+pat

e Tracing:
« pat build -w —-g mpi,omp,10,hip a.out # generates a.out+pat

esrun [srun opts] a.out+pat [a.out opts]

*pat report -1 a.out+pat experiment-data-dir > pat report.out.dflt
« where experiment-data-dir looks like <my prog>+pat+<PID>-<node>[s|t]

« first pat report invocation generates *.ap2 files from *.xf files -
don’t need to keep those *.xf files anymore

*Oor, €.g.,
*pat report -0 acc time -s show ca=fu,so,ll experiment-data-dir
« for accelerator kernels also showing callers by function, source, line

* pat report -O -h displays a 1list of all pre-defined report options
that pat report provides with a short description

E—

13

An Example of some Output from a (dated) Sampling Experiment

$> make

(sample_profile) ...OK

> cat job.out

i

i

Experiment: lite
Number of PEs (MPI ranks): 48
Numbers of PEs per Node: 24
Numbers of Threads per PE: 1
Number of Cores per Socket: 12

Execution start time: Wed Oct 14

Avg CPU Power: 291.59 watts

INFO: A maximum of 51 functions from group 'io' will be traced.

H CrayPat-lite Performance Statistics

lite/sample_profile

PEs on each of 2 Nodes

14:07:17 2015

System name and speed: momll 2501 MHz

Avg Process Time: 5.14 secs

High Memory: 2,070 MBytes 43.13 MBytes per PE
MFLOPS: Not supported (see observation below)

I/0 Read Rate: 4.803892 MBytes/sec

I/0 Write Rate: 88.963763 MBytes/sec

IAvg CPU Energy: 1,499 joules 749.50 joules per node

145.80 watts per node

INFO: A maximum of 208 functions from group 'mpi' will be traced.
INFO: A maximum of 20 functions from group 'realtime’ will be traced.
INFO: A maximum of 56 functions from group 'syscall' will be traced.
INFO: creating the CrayPat-instrumented executable '/a/certain/dir/cp2k.pdbg’

S

#
#
#

i

CrayPat/X: Version 6.3.0 Revision 14378 (xf 14041) 09/15/15 10:48:06

Table 1: Profile by Function Group and Function (top 8 functions shown)

Samp% | Samp | Imb. | Imb. |Group
| | Samp | Samp% | Function

I I I | PE=HIDE
100.0% | 263.4 | - -- |Total
| __
| 78.0% | 205.3 | - -~ |MPI
[[=mmm === oo
|| 62.4% | 164.4 | 115.6 | 42.2% |mpi_bcast
|| 10.4% | 27.4 | 186.6 | 89.1% |MPI_ALLREDUCE
|| 4.7% | 12.4 | 86.6 | 89.3% |MPI_IPROBE
| |===
| 13.1% | 34.5 | - -- |USER
[[=mmm === e
|| 3.3% | 8.6 | 61.4 | 89.5% |__message_passing_MOD_mp_probe
|| 2.8% | 7.5 | 8.5 | 54.4% |__fist_nonbond_force_MOD_force_nonbond
|| 2.0% | 5.2 | 5.8 | 53.6% |__ewalds_MOD_ewald_evaluate
|| 1.12% | 2.9 | 3.1 | 52.5% |__splines_methods_MOD_potential_s
| |===
| 8.2% | 21.5 | - -~ |ETC
[[=mmm ===
|| 2.5% | 6.6 9.4 | 59.7% |__memmove_ssse3
|| 1.7% | 4.4 | 4.6 | 52.7% |__memset_sse2

14

An Example of some Output from a (dated) Trace Experiment

> cat job.out

Table 1: Profile by Function Group and Function (top 4 functions shown)
Time% | Time | Imb. | Imb. | Calls |Group

| | Time | Time% | | Function

| | | | | PE=HIDE
100.0% | 3.075490 | -- | -- | 562,739.2 |Total
g
| 74.2% | 2.282250 | -- -- | 9,855.8 |MPI_SYNC
[=== o oo oo
|| 50.8% | 1.562708 | 1.551026 | 99.3% | 3,131.2 |mpi_bcast_(sync)
|| 12.9% | ©.396947 | ©.396920 | 100.0% | 1.0 |mpi_init_(sync)
|| 10.5% | ©.322147 | 0.293341 | 91.1% | 6,721.6 |mpi_allred_(sync)
| I===
| 19.2% | 0.590622 | -- -- 2.0 |USER
e e e T L e LR R L EEERTRPEEEEES
|| 19.2% | ©.590584 | ©.661898 | 54.0% | 1.0 |main
| |===
| 5.4% | 0.166062 | -- -- | 552,576.7 |MPI
11y g
I

Load-Imbalance - What is it? Do we care?

e |[t’s the fraction of time that rest of team is not engaged in useful work on the given function.

e |dentifies computational code regions and synchronization calls that could benefit most from load
balance optimization.

e Estimates how much overall fime could be saved if corresponding code had a perfect balance.
e Represents an upper bound on "potential savings® due to better load-balancing.

» Assumes other processes are waiting, not doing useful work while slowest member finishes.
 Perfectly balanced code segment has imbalance of zero.

e Imbalance time = (Maximum - Average) time # user functions

e Tmbalance time (Average - Minimum) time # MPI sync + barrier

e Tmbalance% = 100% * [(Imbal/Max)time] * [ntasks/ (ntasks-1)]

16

Automatic Profile Analysis (APA)

e What if you have to optimize a code you don’t know in less time than you have
and you don’t even know enough about it to ask productive questions?

o Let PAT tell you what it thinks you should look at.

module load perftools-base ; module load perftools

make clean ; make

pat build a.out

srun a.out+pat

pat report -1 a.out+pat exp-data-dir > pat report.out.dflt
pat build -0 exp-data-dir/build-options.apa

The text file *.apa contains instructions for pat_build

what to instrument and how, based on the first profile run with a.out+pat.

The 1st sampling run tells PAT what it should instrument for tracing in the 2nd run.

srun a.out+apa
pat report exptapatdata-dir > pat report.out.apa.dflt

E—

17

Apprentice2 - Graphic Representation of Performance Data
e Apprentice2 is a post-processing performance data visualization tool; takes *.ap2 files as input.
e Main features:
« Call graph profile
Communication statistics
Time-line view for Communication and IO.

Activity view

Pair-wise communication statistics
e Text reports

e Helps identify:
e Load imbalance

e Excessive communication
« Network contention
« Excessive serialization
e |/O Problems
e module load perftools-base

o App2 my_program.ap2 # opens an X-window ; if no X-forwarding then
install app2 on laptop, download *.ap2 to laptop and open *.ap2 in app2-GUI

E—

18

CRAY APPRENTICE?

E—

3 Apprentice2 (on eslogin006)
File Help

w About Apprentice2) ¥ Espresso+pat+d7254-3184Lap2 ﬂ'

El

8O aaA

w Overview ﬂ |

Function/Region Profile

40.7% = MPI Waitall
18.9% = calc_... orce_parts
6.1% = MPI Recv

Load Imbalance

4.49s = MPI Waitall
2.65s = calc_ ... orce _parts
1.46s = MPI Recv

Profile

CPU

Programming_Model
54.93%

\

Memory Utilization

Process HiMem (MBytes) 34.779

10011
10101

10011
10101

Data Movement
MPI Msg MBytes 944.003

Wallclock time: 60,000000s

Espresso+pat+47254-3184t.ap2 (54,192 events in 0,255s)

A

CALL TREE VIEW

{Width & inclusive time L

File

@,y IO uE

w Overview & ¥ Call Graph x|

mrwfl Filtered
/Load balance overview: \ - nodes or
Height <> Max time (c-0.0251 =g 4705) (e=0.388 e0.5031) sub tree
Middle bar <> Average time g
Lower bar <& Min time DUH Button:

: _—1 mvtie:ac?s)ﬂ'nl’l Provides hints for

mpi/ waitall

Yellow represents

FEer=u.|:2t.;l3)[3]

\imbalance time ferformance
, uning
: MRSl -
Function
List Zoom
. I>Iz‘
7] search] B o\
h

CALL TREE VIEW - FUNCTION LIST

Eile Help
=R SRV | g
- Overview J " Call Graph xl
Info =
ImbTime|Name

0.3702 mpi_waitall_[7] ::-n%f:{HBSQ

0.3103 mpi_waitall_[4] -

0.1586 mpi waitall_[10] / \

0.1226 mpi_waitall_[6] (:I-"IZI.tI:I-JI-IB}

0.1108 mpi_waitall_[1] 1 1 .

0.1017 mpi_waitall_[3] nghT mouse CIICk' /

0.0917 calcl_ o mpi_waitall 511}]

. =0.041I2

0.0673 cale3_ VIeW menu: {c=0/3993' S=0.2033) -

0.0649 calc2_

0.0249 mpi_waitall_[9] H

0.0161 mpi_isend_[13] e'g" FIITer calc3_ calc2

- {c=0.0221 e=0.4705) {c=0.38B03 e=0.5031)

0.0129 mpi_irecw_[10]

0.0117 mpi_isend_[10] . .

0.0090 mpi_waitall_[0] /1 nght mouse Cllck'

0.0084 mpi_isend_[7] °

0.0072 mpi_irecv_[13] . \ NOde menu

0.0070 mpi_isend_[4] S

0.0065 mpi_irecv_[4] Ort Optlons . .

0.0048 mpi_irecv_[7] © h d / h d

0.0031 mpi_waitall_[2] % Tlme’ i ///} mpiwaitall (7] e’g‘9 1ac/unnide

0.0029 mpi_reduce_{sync) mpi aitall }[3] C i ren

0.0025 mpi_waitall_[5] 1 (¢=0.0299 h ld

0.0001 mpi_reduce_ Tlme’

0.0000 mpi_waitall_[8] 0

0.0000 mpi_irecv_[18] Imbalance A)

0.0000 mpi_isend_[16] . n'||:|:|Er l:'-I:stzuéls][f-'l]

0.0000 mpi_finalize_ b 1 T

0.0000 mpi_comm_rank_ Im a ance tlme j

0.0000 mpi_init_

0.0000 mpi_comm_siz
< [.)
ﬂ Time | Imb Imb Time FunCtlon =]

| . [v]
I List off co| QL 2
0.56 1.12 1.68 2.24

LOAD BALANCE VIEW (FROM CALL TREE)

g
Min, Avg, and Max Values

W weepdo+tr-u+mpigEp ap2 | w swim+tr16p.ap2 I
- _
S .=

@ e b E A

w Overview I = Call Graph ™ Load Balance |

Load Balance. MP! Boasd

FE Calls
PE #33[|
FE #37
PE #43
FE #41
FE #51
FE #57
FE #39
FE #53
FE #51
FE #45
FE #57
FE #21
PE #47
FE #59
FE #35
PE #31
FE #34
FE #35
FE #33

PE #39
PE #33
FE #42
FE #49
PE #37
FPE #8689
FPE #38
FE #73

-1, +1
Std Dev marks

FE #75
PE #53
PE #77
PE #71
PE #62

TIME LINE VIEW

Full trace (sequence of events) enabled by setting
PAT_RT_SUMMARY=0 -

= swim+iompi+ 1566t ap2 W T+hw 1 +swi+o+mpi+48p ap2 |

@eRYVEOEMUEENA&

- Overview |VFuncti0n |VEnvir0nment W Traffic Fieport |VText Report | w Mosaic |VActi\.-'ity |
0,000 0,462 0,924 1,386 1,848 2,310 . 4,520

Helpful to see & - '

PE #2

communication

bottlenecks.

Use it only for 5
small experiments ! k=

Wurite Read I Barrier Beast Il Send MReceive Housekeeping Reduce AllToAll Comm File Other M EBarrier IParallel Region Housekeeping

(&) zoom out | €3 Best Fit |

seale = 137.7% (&), 2Zoom In

A I | I A

0.00 1.15 2.30 3.45 4 51

TIME LINE VIEW (FINE GRAIN ZOOM)

File

Help

- swim+Hompi+ 1 SEEtd ap2 % T+ | +swp-io+mpi+4Sp.apa |

@Ry E ME E IR G

= Overview |vFunctiDn W Traffic Report |VTe><t Fiepart | Mosaic |V.i\.ctivit5-' | W Counters Flot | w HW Counters Overview | = |0 Fates |

3.506 3.ga7 3,007 3.500 3.600 3.508 3.5a9
[| 1

—
FE #42 A i
FE #43
PE #44
PE #45

7,889

M-ite Read Il Barrier Bcazt MM send I Receive Housekeeping Reduce Al1TaAll Camm File

scale = 152198.2%

1

Other IMEarricr I@Parallel Region

@ Zoom In

2,890

Housekeeping

a Zoom Dot

3] Best Fit |

A

461

Misc. PAT Topics: More MPI-rank specific info, e.g., for Apprentice2 Timeline

e |[f you are doing fracing but don't get as much detailed information
per MPI-rank as expected, consider export PAT_RT_SUMMARY=0

e However, this will collect SIGNIFICANTLY more data during the run.
e E.g., from the "same" 8-MPI-rank ~2min perftools-lite-gpu run of minigmc:
e % du -sh minigmc+*
e 18G minigmc+104730-6078151t.run_18 # export PAT_RT_SUMMARY=0
e YES, that’s 18 GB counter data from 1 compute-node in 2 minutes code wallclock time.
e 15M minigmc+62750-6079239t.run_17 # default PAT_RT_SUMMMARY=1
« Again, please, don't try that at SHOME © - use gpfs/lustres instead.

25

Get and Build minigmc for offloading

e Download and install minigmc-OMP_offload.zip from /* git clone did not work for me */
https://github.com/QMCPACK/minigmc/wiki/OpenMP-offload#build-recipes

e Set up module environment on crusher, such as

*% . set mod env.cce.uninst
% module -t list 2>&1 | pr -T --columns=2
craype-x86-trento PrgEnv-cray/8.3.3
libfabric/1.15.0.0 cce/14.0.2
craype-network-ofi DefApps/default
xpmem/2.4.4-2.3 2.12 gffOeld9.shas craype-accel-amd-gfx90a
cray-pmi/6.1.2 cray-mpich/8.1.18
craype/2.7.15 rocm/5.1.0
cray-dsmml/0.2.2 cmake/3.23.2
cray-libsci/21.08.1.2 perftools-base/22.06.0

e Then add either module perftools-lite-gpu xor perftools
(depending on what you want to do) but not both modules at once

E—

26

https://github.com/QMCPACK/miniqmc/wiki/OpenMP-offload#build-recipes

Build and Run minigmc with perftools-lite-gpu

e Acc. to https://github.com/QMCPACK/minigmc/wiki/OpenMP-offload#build-recipes

building with Cray Clang has been done, but only up to v9.0 (now we have 14.0)
and with craype-accel-nvidiab0, not with craype-accel-amd-gfx90a .

e How hard can that porting be? If OpenMP offloading works - not very.
o After extraction of minigmc-OMP_offload, cd minigmc-OMP_offload

1. Change CMakeL.ists.txt to allow for adding some flags:

5 diff CMakelists.txt.orig CMakelists.txt.loopmark.add cxx flags
603a604,613

> 1f (DEFINED LOOPMARK)

if ("S{LOOPMARK}" STREQUAL "ON")
set (CMAKE CXX FLAGS "${CMAKE_CXX_FLAGS} —fsave-loopmark")
endif ()
endif ()

1f (DEFINED ADD_CXX_FLAGS)
set (CMAKE CXX FLAGS "${CMAKE CXX FLAGS} ${ADD CXX FLAGS}")
endif ()

VVVYVYVYVYV

E—

27

https://github.com/QMCPACK/miniqmc/wiki/OpenMP-offload#build-recipes

Build and Run minigmc with perftools-lite-gpu (cont.)

e 2. then add some stuff to build.sh to enable offloading add loopmarks
and in general to allow for adding some CXX flags if desired:

% diff build.sh.orig build.sh.3.cce.perftools-lite-gpu

6Cc6,22

< cd build; cmake ..; make; cd

echo Using module env
module -t list 2>&1 | pr -T --columns=2

cd build; cmake ..; make; cd
cd build
t0=$SSECONDS

cmake -DCMAKE SYSTEM NAME=CrayLinuxEnvironment -DCMAKE CXX COMPILER=CC -DQMC MPI=ON
ENABLE OFFLOAD=ON -DOFFLOAD TARGET=amdgcn-amd-amdhsa —-DOFFLOAD ARCH=gfx90a -DLOOPMARK=ON

t1=SSECONDS
echo "cmake took $((tl - t0O)) wallclock seconds.™

V vOV VYV VYVYVYV

t0=SSECONDS
make VERBOSE=1 -3 1
t1=$SECONDS

>
>
>
> echo "make took $((tl - t0)) wallclock seconds.
> cd

3

m

. then build the binary which contains PAT instrumentation due to module perftools-lite-gpu :s
odule load perftools-lite-gpu; build.sh > build.sh.3.out.cce.perftools-lite-gpu 2>¢1

: | 28

sbatch.minigmec.crusher.bash

#!/usr/bin/bash

#SBATCH —--account=...
#SBATCH --partition=batch
#SBATCH --nodes=1

#SBATCH —--time=00:05:00
#SBATCH --output=sbatch.minigmc.crusher.out
#SBATCH —--exclusive
#SBATCH --job-name=minigmc
#SBATCH --cpu-freg=High
#SBATCH --export=ALL
#SBATCH --verbose

cd $SLURM SUBMIT DIR

ulimit -c unlimited

ulimit -s unlimited

echo "info: $0 running in $(pwd) on the following $SLURM JOB NUM NODES nodes:"
echo $SLURM JOB NODELIST

echo "with the following modules loaded:"

module list

export CRAY ACC DEBUG=1

export MPICH GPU SUPPORT ENABLED=1
export OMP DISPLAY AFFINITY=TRUE
export OMP NUM THREADS=1

export OMP PLACES=threads

export OMP PROC BIND=spread

export PAT RT SUMMARY=0

: | 29

sbatch.minigmec.crusher.bash (cont.)

GBIND="--gpus-per-task=1 --gpu-bind=closest"

CBIND="--cpus—-per-task=8 --mem-bind=local --cpu-
%%8%8%88% cpu:4,400,40000,4000000,400000000,40000000000,4000000000000,400000

TASKS="--nodes=1 —--ntasks-per—-node=8 --ntasks=8"

x=./bin/hello jobstep

c="OMP NUM THREADS=SOMP NUM THREADS srun STASKS SCBIND S$SGBIND S$x | sort"
echo $Sc

eval Sc
eChO "###"

x=./bin/minigmc

a="-g \"2 2 2\" -r 0.999 -n 32"

C="OMP_NUM_THREADS=$OMP_NUM_THREADS srun STASKS SCBIND SGBIND S$Sx Sa"
echo Sc

t0=SSECONDS

eval Sc

t1=SSECONDS

echo "Running '$x S$a' took $((tl - t0)) wallclock seconds."

: | 30

Build and Run minigmc with perftools-lite-gpu (cont2.)

e-ca-build # now in minigmc-OMP_offload/build
e sbatch sbatch.minigmc.crusher.bash ;... in file sbatch.minigmc.crusher.out

e The uninstrumented run (built and run without module perftools-lite-gpu)
had from minigmc-internal timers (showing only selected lines here)

e Timer Inclusive_time Exclusive_time Calls Time_per_call
e Total 88.2685 0.0005 1 88.268485593
e Running "./bin/minigmc -g "2 2 2" -r 0.999 -n 32' took 93 wallclock seconds.

e The otherwise same run instrumented with perftools-lite-gpu had corresponding timings:

e Timer Inclusive_time Exclusive_time Calls Time_per_call
e Total 124.0438 0.0007 1 124.043783622

e Running "./bin/minigmc -g "2 2 2" -r 0.999 -n 32' took 128 wallclock seconds.

 This profiling overhead from tracing is larger than what one normally sees from sampling.

E—

31

Build and Run minigmc with perftools-lite-gpu (cont3.)

G i

#
CrayPat-lite Performance Statistics
#

igddadssssssddssdaddadsadisisdsddiaadaadadsad iR naadadtdi

CrayPat/X: Version 22.06.0 Revision 4b5ab6256 05/21/22 02:03:49

Experiment: lite lite-gpu
Number of PEs (MPI ranks): 8
Numbers of PEs per Node: 8
Numbers of Threads per PE: 1
Number of Cores per Socket: 64

Accelerator Model: AMD MI200 Memory: 32.00 GB Frequency: 1.09 GHz

// What? That should be 64GB/GCD,

1.7GHz

// I will need to follow-up HPE-internally on those GB and GHz values

Execution start time: Thu Aug 25 03:46:29 2022

System name and speed: crusherl81 2.820 GHz (nominal)

AMD Trento CPU Family: 25 Model: 48 Stepping:
Core Performance Boost: All 8 PEs have CPB capability

Avg Process Time: 124.55 secs

High Memory: 12,556.8 MiBytes 1,569.6 MiBytes per PE
I/0 Read Rate: 23.485416 MiBytes/sec

I/0 Write Rate: 2,670.770056 MiBytes/sec

E—

1

32

Build and Run minigmc with perftools-lite-gpu (cont4.)

Table 1: Profile by Function Group and Function

PE=HIDE

:einspline spo omp<>::evaluate vgh.ACC COPY@1li.310
:einspline spo omp<>::evaluate v.ACC COPY@1li.l62
:einspline spo omp<>::evaluate v.ACC COPY@1i.179
:gmc_allocator traits<>::updateFrom.ACC COPY@1i.158

:DelayedUpdate<>: :updateInvMat

DistanceTableAA<>: :move

:DistanceTableAA<>: :evaluate

TwoBodyJastrow<>::ratio

Time$ | Time | Imb. | Imb. | Calls | Group
| | Time | Time$% | | Function=[MAX10]

100.0% | 123.212179 | -— | -- | 11,768,092.5 | Total
| ___
| 58.2% | 71.652569 | -— | -- | 7,484,042.0 | OACC
|| =
|l 26.0% | 31.989059 | 0.600431 | 2.1% | 709,641.0 | gmcplusplus:
[17.4% | 21.397965 | 1.802478 | 8.9% | 2,782,845.0 | gmcplusplus:
[l 10.5% | 12.959512 | 1.661557 | 13.0% | 2,385,288.0 | gmcplusplus:
| | 3.6% | 4.484895 | 0.476412 | 11.0% | 608,256.0 | gmcplusplus:
| o e s e s e e e e e e e
| 36.3% | 44.718211 | -— | -- | 3,783,338.9 | USER
| =
|| 19.4% | 23.9160608 | 0.190435 | 0.9% | 9,230.0 | gmcplusplus:
| | 7.3% | 8.951502 | 0.032032 | 0.4% | 495,852.0 | gmcplusplus::
| | 2.2% | 2.749999 | 0.265698 | 10.1% | 32.0 | main.LOOP@11i.404
|| 1.5% | 1.789667 | 0.007626 | 0.5% | 98,304.0 | gmcplusplus:
| | 1.0% | 1.282584 | 0.036625 | 3.2% | 397,548.0 | gmcplusplus::
| | mmmmmmmmmmmmmmmmmm e e m e
| 4.5% | 5.536736 | -] -— 2.0 | MPI SYNC
e
| | 4.5% | 5.536608 | 5.536604 | 100.0% | 1.0 | MPI Finalize (sync)
| mmmm e s e e e e e e e e
| 1.0% | 1.239408 | -— | -— | 498,928.0 | HIP

33

Build and Run minigmc with perftools-lite-gpu (cont5.)

| .
Observation:

MPI utilization

No suggestions were made because all ranks are on one node.

Notes for table 2:
This table shows functions that have significant exclusive host or accelerator time,

averaged across ranks,

For further explanation,

and also

use:

data copied in and out,

pat report -v -0 acc fu

and event counts.

Events

8,481,928

709,641

0
2,782,845

2,385,288

0
0
608,256

Function=[max10]

PE=HIDE

Total

agmcplusplus: :DelayedUpdate<>: :updatelnvMat

gmcplusplus: :DistanceTableAA<>: :move

MPI Finalize (sync)

main.LOOP@1i.404
gmcplusplus::DistanceTableAA<>::evaluate

Table 2: Time and Bytes Transferred for Accelerator Regions
Time$ | Time | Acc | Acc | Acc Copy | Acc Copy |
| | Time% | Time | In | Oout |
| | | | (MiBytes) | (MiBytes) |
100.0% | 123.212179 | 100.0% | 79.11 | 1,500 | 33,126 |
| ___
| 26.0% | 31.989059 | - - | - | -
gmcplusplus::einspline spo omp<>::evaluate vgh.ACC COPY@1i.310
| 19.4% | 23.916608 | -— | -— | - | -
| 17.4% | 21.397965 | -= | - | - | -
gmcplusplus::einspline spo omp<>::evaluate v.ACC COPY@1li.1l62
| 10.5% | 12.959512 | 12.4% | 9.82 | -— 9,318
gmcplusplus::einspline spo omp<>::evaluate v.ACC COPY@1li.179
| 7.3% | 8.951502 | -= | - | - | -
| 4.5% | 5.536608 | - | -— | - | -
| 3.6% | 4.484895 | 5.2% | 4.13 | -= 23,760
gmcplusplus::gmc_allocator traits<>::updateFrom.ACC COPY@1i.158
| 2.2% | 2.749999 | - - -= -=
| 1.5% | 1.789667 | - -— | -— | -
1.0% | 1.282584 | - | -— | -= | -

gmcplusplus: : TwoBodyJastrow<>::ratio I 34

Build and Run minigmc with perftools-lite-gpu (conté.)

|
Notes for table 4:
This table show the average time and number of bytes read from each input file,
file.

taking the average over the number of ranks that read from the

It also shows the number of read operations,

For further explanation,

Table 4:

Avg Read
Time per
Reader
Rank

File Input Stats by Filename

Avg Read
MiBytes
|per Reader|

Rank

use:

Read Rate
MiBytes/sec

Number
of
Reader
Ranks

Avg
Reads
| per Reader |
Rank

pat report -v -O read stats

and average rates.

Bytes/
Call

File Name=!x/"/(proclsys)/
PE=HIDE
/* my bad edit to save a line */

0.000005
0.000004
0.000004
0.000003
0.000003
0.000003
0.000003
0.000003
0.000003
0.000003
0.000003
0.000003
0.000003
0.000003

.000675
.003991
.000004
.003991
.003991
.003991
.003991
.000216
.003991
.003991
.003991
.008366
.008366
.008366
.008366

.927996
.646079
.042516
.175144
.973282
.424555
.380831
.161227
.627639
.804943
.243969
.641839
.050934
.501607
.794012

/opt/rocm-5.1.0/bin/.hipVersion
/tmp/comgr-17¢3f1l/input/CompileSource
/dev/urandom
/tmp/comgr-2ef6a9/input/CompileSource
/tmp/comgr-7le3ad/input/CompileSource
/tmp/comgr-419585/input/CompileSource
/tmp/comgr-7376cl/input/CompileSource
/etc/os-release
/tmp/comgr-6d216e/input/CompileSource
/tmp/comgr-fcdac7/input/CompileSource
/tmp/comgr-a786fd/input/CompileSource
/tmp/comgr-6d216e/output/CompileSource
/tmp/comgr-419585/output/CompileSource
/tmp/comgr-17c3fl/output/CompileSource
/tmp/comgr-2ef6a9/output/CompileSource

.bc
.bc
.bc
.bc

35

Even without profiling, initial sanity checks ...

e Keeping in mind that all runtime checks cost some time and data overhead ...

e Do your MPI-ranks and OpenMP-threads have the desired core-affinity?
« export OMP DISPLAY AFFINITY=TRUE

e Do transfer data between CPU and GPU? How much? How often? What? If with PrgEnv-cray then
¢ Runtime environment variable CRAY ACC DEBUG:
« Write accelerator-related activity to stdout for debugging purposes.

« Valid output values in increasing verbosity in {0,3} where O means "none" (default) and 1-3 range from terse to
verbose. 2 is reasonable for debugging. But - use for debugging only, because, e.g.,

*% wc -1 sbatch.minigmc.crusher.out.CRAY ACC DEBUG ?

. 95 sbatch.minigmc.crusher.out.CRAY ACC DEBUG O
. 64722 sbatch.minigmc.crusher.out.CRAY ACC DEBUG 1
. 194006 sbatch.minigmc.crusher.out.CRAY ACC DEBUG 2
e 1871974 sbatch.minigmc.crusher.out.CRAY ACC DEBUG 3
e Even at CRAY_ACC_DEBUG=1 you already get, e.g.,

o ACC: Transfer 1 items (to acc 98304000 bytes, to host O bytes) from einspline_spo_omp.cpp:127
o ACC: Transfer 4 items (to acc 4 bytes, to host O bytes) from einspline_spo_omp.cpp:129

ﬂeinspline_spo_omp.cpp:129
| 36

How about a build and run of minigmc with perftools (CrayPAT) classic?

cd minigmc-OMP offload

mv build build.perftools-lite-gpu.your favorite tag

mkdir build

module swap perftools-lite-gpu perftools

cp build.sh.3.cce.perftools-lite-gpu build.sh.5.cce.perftools
build.sh.b5.cce.perftools > build.sh.b.cce.perftools.out 2>¢1

339 seconds later (due to make -3 1) ... the build is done
cd bin ; patbuild minigmc
cd .. # now in minigmc-OMP offload/build

sbatch sbatch.minigmc.crusher.bash

since minigmc+pat+23080-6078120s/build-options.apa wanted to
trace just ‘-g mpi’ I changed that to ‘-g hip,io,mpi, omp’
pat build -0 minigmc+pat+23080-6078120s/build-options.apa

since minigmc+apa shows up in build/ (not in build/bin/)

change sbatch.minigmc.crusher.bash accordingly and submit

and this is where I run out of time, since my job 1is
waiting in the queue

E—

37

What if pat_report ...

e Says “No APA data file was generated because no samples occurred in USER functions.” ...

« This usually means either that the program spent so little time in user-defined functions that
no samples were taken there, or that CrayPat failed to identify the user-defined functions (and
instead showed them under the group ETC).

e .. Or shows a lot of time spent under ETC in Automatic Profiling Analysis CAPA).

o While APA instruments some libs, such as MPI, it does not instrument some others, such as
libsci. A lot of time spent in ETC suggests that PAT was not able to identify where those calls
under ETC originated. For sampling, the classification of functions as USER versus ETC is
based on whether the user running pat_report had write access to the directory that contained
the source file of the call.

e To remedy this:

e Move aside or delete the *.ap2 files created by pat_report from the *.xf files
that were generated by running the PAT-instrumented binary

o export PAT_REPORT_PRUNE_NON_USER=0 # search for PAT_RT_in "man intro_craypat"
e repeat pat_report invocation

o .. because that pruning is done when the *.ap2 files are generated from the *.xf files;
if pat_report finds *.ap2 files, it will not attempt to regenerate those from * xf files

E— | 38

If you want to limit or completely furn off PAT’s pruning

e Search "man pat_report™ for _PRUNE
e PAT_REPORT_PRUNE_USER

« based on ownership of compilation dir of function def
to tfurn off: export PAT_REPORT_PRUNE_NON_USER=0

« PAT_REPORT_PRUNE_NAME

e based on function name
to turn off: export PAT_REPORT_PRUNE_NAME=""

e PAT_REPORT_PRUNE_NAME_FILE

e based on name of file that contains function
to tfurn off: export PAT_REPORT_PRUNE_NAME_FILE=""

e« PAT_REPORT_PRUNE_SRC

« based on path of file that contains function
to turn off: export PAT_REPORT_PRUNE_SRC=""

E—

39

Misc. PAT Topics: More MPI stats

» To get more MPI stats out of CrayPAT, if you did
 pat_build -w -g mpi a.out ; srun [srun-opts] a.out+pat
o fry
e pat_report -i a.out+pat -O opt{,opt,..} experiment_data_dir > pat_report.out.mpi
e with {opt}in
mpi_callers
Show MPI sent- and collective-message statistics
mpi_sm_callers
Show MPI sent-message statistics
mpi_coll_callers
Show MPI collective-message statistics
mpi_dest_bytes
Show MPI bin statistics as total bytes
mpi_dest_counts
Show MPI bin statistics as counts of messages

E—

40

Misc. PAT Topics: More OpenMP stats

e To get more OpenMP info from CrayPAT, try (after pat_build -w —-g omp ...
e patf_report -i a.out+pat -O opt{,opt,..} experiment_data_dir > pat_report.out.mpi
e with {opt}in
o profile_pe.th
Show the imbalance over the set of all threads in the program.
 profile_pe_th
Show the imbalance over PEs of maximum thread times.
o profile_th_pe
For each thread, show the imbalance over PEs.

e thread_times
For each thread number, show the average of all PE times
and the PEs with the minimum, maximum, and median times.

E—

41

Misc. PAT Topics: Avoid “contamination” of profiles by initialization phase

Minor code changes are necessary for that. Whenever you make PAT calls:

. #if defined (CRAYPAT)

. #include pat api.h // C/C++

. include pat apif.h ' F90

. include pat apif77.h | F77

. #endif

e Method 1:

. // At the beginning of main

. #1if defined (CRAYPAT)

. int PAT record(PAT STATE OFF) // returns PAT API OK(l) or PAT API FAIL(O)
. #endif

. // initialization - not to be PAT-recorded

. #1if defined (CRAYPAT)

. int PAT record(PAT STATE ON)

. #endif

. // code of interest

e Method 2:

. Start your job with export PAT RT RECORD=PAT STATE OFF
. // 1in the source code, just above the region of interest
. #i1if defined (CRAYPAT)

. int PAT record(PAT STATE ON)

. #endif

E—

Misc. PAT Topics: What if you want pat_report only from selected MPI-ranks?

*pat report -sfilter input=‘condition’

« The ‘condition’ could be an expression involving 'pe’
such as 'pe<l1l024' or 'pe$%2==0"

Misc. PAT Topics: If you want to build with hipcc instead of using {cc,CC,fin}?

e Load all necessary software environment modules including perftools-base and perftools.

» Add the following flags generated by pat_opts to the appropriate places in your build procedure before
building your uninstrumented binary a.out followed by " pat_build a.out™ to get the PAT-instrumented
binary a.out+pat:

e 7% pat_opts include hipcc

-1/opt/cray/pe/perftools/22.06.0/include

% pat_opts pre_compile hipcc
-DCRAYPAT -g —gpubnames

% pat_opts post_compile hipcc
-fno-omit-frame-pointer -mno-omit-leaf-frame-pointer -fno-optimize-sibling-calls

% pat_opts pre_link hipcc
-B/opt/cray/pe/perftools/22.06.0/libexecb64 -L/opt/cray/pe/perftools/22.06.0/lib64 \
-L/opt/rocm-5.1.0/lib -Iroctracerb64

% pat_opts post_link hipcc
empty here, but not guaranteed always to be empty

e And finally: make clean ; make ; pat_build [your PAT options] a.out ; srun [your srun opts] a.out+pat

E— |

VA

Acknowledgements

e Useful input from Steve Abbott, Tanner Firl, Kostas Makrides, Luke Roskop
and Trey White (all HPE) is gratefully acknowledged, as is

e the opportunity provided to speak here, by Dossay Oryspayev (BNL)
e and your patience having made it to this point.©

45

The End

e Questions, Comments, Concerns, Corrections?
o PAT is vast — nobody knows everything about it and forgetting details, even important ones, is normal.
Don’t be shy to ask! We may not know either, but we will find out.©
And if you found or suspect a bug in any PAT utility, please, report if.
Discuss now
Email me
Contact any CORAL-2 CoE member
Take advantage of Crusher Office Hours: https://www.olcf.ornl.gov/crusher-office-hours
Email help@olcf.ornl.gov

THANK YOU

Marcus Wagner
marcus.wagher@hpe.com

E—

46

https://www.olcf.ornl.gov/crusher-office-hours
mailto:help@olcf.ornl.gov

