
OpenMP Fortran Application Program
Interface

Oct 1997 1.0

Contents

Pagev

Introduction [1] 1
Scope . 1

Execution Model . 2

Compliance . 2

Organization . 3

Directives [2] 5
OpenMP directive format . 5

Directive sentinels . 6

Fixed source form directive sentinels 6

Free source form directive sentinel 6

Conditional compilation . 7

Fixed source form conditional compilation sentinels 8

Free source form conditional compilation sentinel 8

Parallel region construct . 9

Work-sharing constructs . 10

DOdirective . 11

SECTIONSdirective . 13

SINGLE directive . 14

Combined parallel work-sharing constructs 15

PARALLEL DOdirective . 15

PARALLEL SECTIONSdirective . 16

Synchronization constructs . 16

MASTERdirective . 17

CRITICAL directive . 17

BARRIERdirective . 18

ATOMICdirective . 18

FLUSHdirective . 20

ORDEREDdirective . 21

Data environment constructs . 21

Oct 1997 1.0 i

Contents OpenMP Fortran Application Program Interface

Page

THREADPRIVATEdirective . 22

Data scope attribute clauses . 22

PRIVATE clause . 23

SHAREDclause . 24

DEFAULTclause . 24

FIRSTPRIVATE . 25

LASTPRIVATE clause . 25

REDUCTIONclause . 25

COPYINclause . 27

Data environment rules . 28

Directive binding . 29

Directive nesting . 30

Run-time Library Routines [3] 31
Execution Environment Routines . 31

OMP_SET_NUM_THREADSSubroutine 31

OMP_GET_NUM_THREADSFunction 32

OMP_GET_MAX_THREADSFunction 32

OMP_GET_THREAD_NUMFunction . 33

OMP_GET_NUM_PROCSFunction . 33

OMP_IN_PARALLELFunction . 33

OMP_SET_DYNAMICSubroutine . 34

OMP_GET_DYNAMICFunction . 35

OMP_SET_NESTEDSubroutine . 35

OMP_GET_NESTEDFunction . 35

Lock Routines . 36

OMP_INIT_LOCK Subroutine . 36

OMP_DESTROY_LOCKSubroutine . 37

OMP_SET_LOCKSubroutine . 37

OMP_UNSET_LOCKSubroutine . 37

OMP_TEST_LOCKFunction . 37

Environment Variables [4] 39
OMP_SCHEDULEEnvironment Variable 39

OMP_NUM_THREADSEnvironment Variable 39

ii Oct 1997 1.0

OpenMP Fortran Application Program Interface Contents

Page

OMP_DYNAMICEnvironment Variable 40

OMP_NESTEDEnvironment Variable 40

Appendix A Examples 41
Executing a Simple Loop in Parallel 41

Specifying Conditional Compilation 41

Using Parallel Regions . 42

Using the NOWAITClause . 42

Using the CRITICAL Directive . 42

Using the LASTPRIVATE Clause . 43

Using the REDUCTIONClause . 43

Specifying Parallel Sections . 44

Using SINGLE Directives . 44

Specifying Sequential Ordering . 45

Specifying a Fixed Number of Threads 45

Using the ATOMICDirective . 46

Using the FLUSHDirective . 46

Determining the Number of Threads Used 46

Using Locks . 47

Nested DODirectives . 48

Examples Showing Incorrect Nesting of Work-sharing Directives 49

Binding of BARRIERDirectives . 51

Scoping Variables with the PRIVATE Clause 52

Appendix B Stubs for Run-time Library Routines 53

Tables
Table 1. Initialization Values . 26

Oct 1997 1.0 iii

Copyright © 1997-98 OpenMP Architecture Review Board. Permission to copy
without fee all or part of this material is granted, provided the OpenMP Architecture
Review Board copyright notice and the title of this document appear. Notice is given
that copying is by permission of OpenMP Architecture Review Board.

Introduction [1]

This document specifies a collection of compiler directives, library routines, and
environment variables that can be used to specify shared memory parallelism in
Fortran programs. The functionality described in this document is collectively known
as the OpenMP Fortran Application Program Interface (API). The goal of this
specification is to provide a model for parallel programming that is portable across
shared memory architectures from different vendors. The OpenMP Fortran API will
be supported by compilers from numerous vendors. More information about OpenMP
can be found at the following web site:

http://www.openmp.org

The directives, library routines, and environment variables defined in this document
will allow users to create and manage parallel programs while ensuring portability.
The directives extend the Fortran sequential programming model with
single-program multiple data (SPMD) constructs, work-sharing constructs,
synchronization constructs, and provide support for the sharing and privatization of
data. The library routines and environment variables provide the functionality to
control the run-time execution environment. The directive sentinels are structured so
that the directives are treated as Fortran comments. Compilers that support the
OpenMP Fortran API will include a command line option that activates and allows
interpretation of all OpenMP compiler directives.

1.1 Scope

This specification describes only user-directed parallelization, wherein the user
explicitly specifies the actions to be taken by the compiler and run-time system in
order to execute the program in parallel. OpenMP Fortran implementations are not
required to check for dependencies, conflicts, deadlocks, race conditions or other
problems that result in incorrect program execution. The user is responsible for
ensuring that the application using the OpenMP Fortran API constructs execute
correctly.

Compiler-generated automatic parallelization and directives to the compiler to assist
such parallelization are not included in this specification.

Oct 1997 1.0 1

Introduction [1] OpenMP Fortran Application Program Interface

1.2 Execution Model

The OpenMP Fortran API uses the fork-join model of parallel execution. A program
that is written with the OpenMP Fortran API begins execution as a single process,
called the master thread of execution. The master thread executes sequentially until
the first parallel construct is encountered. In the OpenMP Fortran API, the PARALLEL
and END PARALLELdirective pair constitutes the parallel construct. When a parallel
construct is encountered, the master thread creates a team of threads, and the master
thread becomes the master of the team. The statements in the program that are
enclosed by the parallel construct, including routines called from within the enclosed
statements, are executed in parallel by each thread in the team. The statements
enclosed lexically within a construct define the static extent of the construct. The
dynamic extent further includes the routines called from within the construct.

Upon completion of the parallel construct, the threads in the team synchronize and
only the master thread continues execution. Any number of parallel constructs can be
specified in a single program. As a result, a program may fork and join many times
during execution.

The OpenMP Fortran API allows programmers to use directives in routines called
from within parallel constructs. Directives that do not appear in the lexical extent of
the parallel construct but lie in the dynamic extent are called orphaned directives.
Orphaned directives allow users to execute major portions of their program in parallel
with only minimal changes to the sequential program. With this functionality, users
can code parallel constructs at the top levels of the program call tree and use
directives to control execution in any of the called routines.

1.3 Compliance

An implementation of the OpenMP Fortran API is OpenMP compliant if it recognizes
and preserves the semantics of all the elements of this specification as laid out in
chapters 2, 3, and 4. Appendixes A and B are for information purposes only and are
not part of the specification.

The OpenMP Fortran API is an extension to the base language that is supported by
an implementation. If the base language does not support a language construct or
extension that appears in this document, the OpenMP implementation is not required
to support it.

All standard Fortran intrinsics and library routines and Fortran 90 ALLOCATEand
DEALLOCATEstatements must be thread-safe. Unsynchronized use of such intrinsics
and routines by different threads in a parallel region must produce correct results
(though not necessarily the same as serial execution results, as in the case of random
number generation intrinsics, for example).

2 Oct 1997 1.0

OpenMP Fortran Application Program Interface Introduction [1]

Unsynchronized use of Fortran output statements to the same unit may result in
output in which data written by different threads is interleaved. Similarly,
unsynchronized input statements from the same unit may read data in an interleaved
fashion. Unsynchronized use of Fortran I/O, such that each thread accesses a
different unit, produces the same results as serial execution of the I/O statements.

1.4 Organization

The rest of this document is organized into the following chapters:

• Chapter 2, page 5, describes the compiler directives.

• Chapter 3, page 31, describes the run-time library routines.

• Chapter 4, page 39, describes the environment variables.

• Appendix A, page 41, contains examples.

• Appendix B, page 53, describes stub library routines.

Oct 1997 1.0 3

Directives [2]

Directives are special Fortran comments that are identified with a unique sentinel.
The directive sentinels are structured so that the directives are treated as Fortran
comments. Compilers that support the OpenMP Fortran API will include a command
line option that activates and allows interpretation of all OpenMP compiler directives.
In the remainder of this document, the phrase OpenMP compilation is used to mean
that OpenMP directives are interpreted during compilation.

This chapter addresses the following topics:

• Section 2.1, page 5, describes the directive format.

• Section 2.1.1, page 6, describes directive sentinels for both fixed source form and
free source form.

• Section 2.1.2, page 7, describes conditional compilation.

• Section 2.2, page 9, describes the parallel region construct.

• Section 2.3, page 10, describes work-sharing constructs.

• Section 2.4, page 15, describes the combined parallel work-sharing constructs.

• Section 2.5, page 16, describes synchronization constructs.

• Section 2.6, page 21, describes the data environment, which includes directives
and clauses that affect the data environment.

• Section 2.7, page 29, describes directive binding.

• Section 2.8, page 30, describes directive nesting.

2.1 OpenMP directive format

The format of an OpenMP directive is as follows:

sentinel directive_name [clause[[,] clause]...]

All OpenMP compiler directives must begin with a directive sentinel. Directives are
case insensitive. Clauses can appear in any order after the directive name. Clauses
on directives can be repeated as needed, subject to the restrictions listed in the
description of each clause. Directives cannot be embedded within continued

Oct 1997 1.0 5

Directives [2] OpenMP Fortran Application Program Interface

statements, and statements cannot be embedded within directives. Comments cannot
appear on the same line as a directive.

The following sections contain more information on directive sentinels and describe
conditional compilation.

2.1.1 Directive sentinels

The directive sentinels accepted by an OpenMP-compliant compiler differ depending
on the Fortran source form being used. The !$OMP sentinel is accepted when
compiling either fixed source form files or free source form files. The C$OMPand
*$OMPsentinels are accepted only when compiling fixed source form files.

The following sections contain more information on using the different sentinels.

2.1.1.1 Fixed source form directive sentinels

The OpenMP Fortran API accepts the following sentinels in fixed source form files:

!$OMP | C$OMP | *$OMP

Sentinels must start in column one and appear as a single word with no intervening
white space. Fortran fixed form line length, case sensitivity, white space,
continuation, and column rules apply to the directive line. Initial directive lines must
have a space or zero in column six, and continuation directive lines must have a
character other than a space or a zero in column six.

Example: The following formats for specifying directives are equivalent (the first line
represents the position of the first 9 columns):

C23456789
!$OMP PARALLEL DO SHARED(A,B,C)

C$OMP PARALLEL DO
C$OMP+SHARED(A,B,C)

C$OMP PARALLELDOSHARED(A,B,C)

2.1.1.2 Free source form directive sentinel

The OpenMP Fortran API accepts the following sentinel in free source form files:

6 Oct 1997 1.0

OpenMP Fortran Application Program Interface Directives [2]

!$OMP

The sentinel can appear in any column as long as it is preceded only by white space.
It must appear as a single word with no intervening white space. Fortran free form
line length, case sensitivity, white space, and continuation rules apply to the directive
line. Initial directive lines must have a space after the sentinel. Continued directive
lines must have an ampersand as the last nonblank character on the line.
Continuation directive lines can have an ampersand after the directive sentinel with
optional white space before and after the ampersand.

Example: The following formats for specifying directives are equivalent (the first line
represents the position of the first 9 columns):

!23456789
!$OMP PARALLEL DO &

!$OMP SHARED(A,B,C)

!$OMP PARALLEL &
!$OMP&DO SHARED(A,B,C)

!$OMP PARALLEL DO SHARED(A,B,C)

In order to simplify the presentation, the remainder of this document uses the !$OMP
sentinel.

2.1.2 Conditional compilation

The OpenMP Fortran API permits Fortran statements to be compiled conditionally.
The directive sentinels for conditional compilation statements that are accepted by an
OpenMP-compliant compiler differ depending on the Fortran source form being used.
The !$ sentinel is accepted when compiling either fixed source form files or free
source form files. The C$ and *$ sentinels are accepted only when compiling fixed
source form.

The sentinel must be followed by a legal Fortran statement on the same line. During
OpenMP compilation, the sentinel is replaced by two spaces, and the rest of the line
is treated as a normal Fortran statement.

In addition to the Fortran conditional compilation sentinels, a C preprocessor macro,
_OPENMP, can be used for conditional compilation. OpenMP-compliant compilers will
define this macro during OpenMP compilation.

The following sections contain more information on using the different sentinels for
conditional compilation.

Oct 1997 1.0 7

Directives [2] OpenMP Fortran Application Program Interface

2.1.2.1 Fixed source form conditional compilation sentinels

The OpenMP Fortran API accepts the following conditional compilation sentinels in
fixed source form files:

!$ | C$ | *$

The sentinels must start in column one and appear as a single word with no
intervening white space. Fortran fixed form line length, case sensitivity, white space,
continuation, and column rules apply to the line. Initial lines must have a space or
zero in column six, and continuation lines must have a character other than a space
or zero in column six.

Example: The following forms for specifying conditional compilation are equivalent:

C23456789
!$ 10 IAM = OMP_GET_THREAD_NUM() +
!$ & INDEX

#IFDEF _OPENMP
10 IAM = OMP_GET_THREAD_NUM() +

& INDEX
#ENDIF

2.1.2.2 Free source form conditional compilation sentinel

The OpenMP Fortran API accepts the following conditional compilation sentinel in
free source form files:

!$

This sentinel can appear in any column as long as it is preceded only by white space.
It must appear as a single word with no intervening white space. Fortran free source
form line length, case sensitivity, white space, and continuation rules apply to the
line. Initial lines must have a space after the sentinel. Continued lines must have an
ampersand as the last nonblank character on the line. Continuation lines can have
an ampersand after the sentinel, with optional white space before and after the
ampersand.

8 Oct 1997 1.0

OpenMP Fortran Application Program Interface Directives [2]

2.2 Parallel region construct

The PARALLELand END PARALLELdirectives define a parallel region. A parallel
region is a block of code that is to be executed by multiple threads in parallel. This is
the fundamental parallel construct in OpenMP that starts parallel execution. These
directives have the following format:

!$OMP PARALLEL [clause[[,] clause]...]

block

!$OMP END PARALLEL

The clause can be one of the following:

• PRIVATE(list)

• SHARED(list)

• DEFAULT(PRIVATE | SHARED | NONE)

• FIRSTPRIVATE(list)

• REDUCTION ({operator| intrinsic}: list)

• IF(scalar_logical_expression)

• COPYIN(list)

For information on the PRIVATE, SHARED, DEFAULT, FIRSTPRIVATE, REDUCTION,
and COPYINclauses, see Section 2.6.2, page 22.

When a thread encounters a parallel region, it creates a team of threads, and it
becomes the master of the team. The master thread is a member of the team and it
has a thread number of 0 within the team. The number of threads in the team is
controlled by environment variables and/or library calls. For more information on
environment variables, see Chapter 4. For more information on library routines, see
Chapter 3, page 31.

The number of physical processors actually hosting the threads at any given time is
implementation dependent. Once created, the number of threads in the team remains
constant for the duration of that parallel region, but it can be changed either
explicitly by the user or automatically by the run-time system from one parallel
region to another. The OMP_SET_DYNAMIClibrary routine and the OMP_DYNAMIC
environment variable can be used to enable and disable the automatic adjustment of
the number of threads. For more information on the OMP_SET_DYNAMIClibrary
routine, see Section 3.1.7, page 34. For more information on the OMP_DYNAMIC
environment variable, see Section 4.3, page 40.

Oct 1997 1.0 9

Directives [2] OpenMP Fortran Application Program Interface

The block denotes a structured block of Fortran statements. It is illegal to branch
into or out of the block. The code contained within the dynamic extent of the parallel
region is executed on each thread, and the code path can be different for different
threads.

The END PARALLELdirective denotes the end of the parallel region. There is an
implied barrier at this point. Only the master thread of the team continues execution
at the end of a parallel region.

If a thread in a team executing a parallel region encounters another parallel region, it
creates a new team, and it becomes the master of that new team. By default, nested
parallel regions are serialized; that is, they are executed by a team composed of one
thread. This default behavior can be changed by using either the OMP_SET_NESTED
run-time library routine or the OMP_NESTEDenvironment variable. For more
information on the OMP_SET_NESTEDlibrary routine, see Section 3.1.9, page 35. For
more information on the OMP_NESTEDenvironment variable, see Section 4.4, page 40.

If an IF clause is present, the enclosed code region is executed in parallel only if the
scalar_logical_expression evaluates to .TRUE. . Otherwise, the parallel region is
serialized. The expression must be a scalar Fortran logical expression. In the absence
of an IF clause, the region is executed as if an IF(.TRUE.) clause were specified.

The following restrictions apply to parallel regions:

• The PARALLEL/END PARALLELdirective pair must appear in the same routine in
the executable section of the code.

• The code contained by these two directives must be a structured block. It is illegal
to branch into or out of a parallel region.

• Only a single IF clause can appear on the directive.

2.3 Work-sharing constructs

A work-sharing construct divides the execution of the enclosed code region among the
members of the team that encounter it. A work-sharing construct must be enclosed
dynamically within a parallel region in order for the directive to execute in parallel.
The work-sharing directives do not launch new threads, and there is no implied
barrier on entry to a work-sharing construct.

The following restrictions apply to the work-sharing directives:

• Work-sharing constructs and BARRIERdirectives must be encountered by all
threads in a team or by none at all.

10 Oct 1997 1.0

OpenMP Fortran Application Program Interface Directives [2]

• Work-sharing constructs and BARRIERdirectives must be encountered in the same
order by all threads in a team.

The following sections describe the work-sharing directives:

• Section 2.3.1, page 11, describes the DOand END DOdirectives.

• Section 2.3.2, page 13, describes the SECTIONS, SECTION, and END SECTIONS
directives.

• Section 2.3.3, page 14, describes the SINGLE and END SINGLEdirectives.

2.3.1 DOdirective

The DOdirective specifies that the iterations of the immediately following DOloop
must be executed in parallel. The loop that follows a DOdirective cannot be a
DO WHILEor a DOloop without loop control. The iterations of the DOloop are
distributed across threads that already exist.

The format of this directive is as follows:

!$OMP DO [clause[[,] clause]...]

do_loop

[!$OMP END DO[NOWAIT]]

The clause can be one of the following:

• PRIVATE(list)

• FIRSTPRIVATE(list)

• LASTPRIVATE(list)

• REDUCTION({operator| intrinsic}: list)

• SCHEDULE(type[, chunk])

• ORDERED

The SCHEDULEand ORDEREDclauses are described in this section. The PRIVATE,
FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONclauses are described in Section
2.6.2, page 22.

If ordered sections are contained in the dynamic extent of the DOdirective, the
ORDEREDclause must be present. For more information on ordered sections, see the
ORDEREDdirective in Section 2.5.6, page 21.

Oct 1997 1.0 11

Directives [2] OpenMP Fortran Application Program Interface

The SCHEDULEclause specifies how iterations of the DOloop are divided among the
threads of the team. Within the SCHEDULE(type[, chunk]) clause syntax, type can be
one of the following:

type Effect

STATIC When SCHEDULE(STATIC, chunk) is specified, iterations are divided
into pieces of a size specified by chunk. The pieces are statically
assigned to threads in the team in a round-robin fashion in the order
of the thread number. chunk must be a scalar integer expression.

When no chunk is specified, the iterations are divided among threads
in contiguous pieces, and one piece is assigned to each thread.

DYNAMIC When SCHEDULE(DYNAMIC,chunk) is specified, the iterations are
broken into pieces of a size specified by chunk. As each thread
finishes a piece of the iteration space, it dynamically obtains the next
set of iterations.

When no chunk is specified, it defaults to 1.

GUIDED When SCHEDULE(GUIDED,chunk) is specified, the chunk size is
reduced in an exponentially decreasing manner with each dispatched
piece of the iteration space. chunk specifies the minimum number of
iterations to dispatch each time, except when there are less than
chunk number of iterations, at which point the rest are dispatched.

When no chunk is specified, it defaults to 1.

RUNTIME When SCHEDULE(RUNTIME)is specified, the decision regarding
scheduling is deferred until run time. The schedule type and chunk
size can be chosen at run time by setting the OMP_SCHEDULE
environment variable. If this environment variable is not set, the
resulting schedule is implementation-dependent. For more
information on the OMP_SCHEDULEenvironment variable, see Section
4.1, page 39.

When SCHEDULE(RUNTIME)is specified, it is illegal to specify a chunk.

In the absence of the SCHEDULEclause, the default schedule is implementation
dependent. An OpenMP-compliant program should not rely on a particular schedule
for correct execution. Users should not rely on a particular implementation of a
schedule type for correct execution, because it is possible to have variations in the
implementations of the same schedule type across different compilers.

If an END DOdirective is not specified, an END DOdirective is assumed at the end of
the DOloop. If NOWAITis specified on the END DOdirective, threads do not
synchronize at the end of the parallel loop. Threads that finish early proceed straight

12 Oct 1997 1.0

OpenMP Fortran Application Program Interface Directives [2]

to the instructions following the loop without waiting for the other members of the
team to finish the DOdirective.

Parallel DOloop control variables are block-level entities within the DOloop. If the
loop control variable also appears in the LASTPRIVATE list of the parallel DO, it is
copied out to a variable of the same name in the enclosing PARALLELregion. The
variable in the enclosing PARALLELregion must be SHAREDif it is specified on the
LASTPRIVATE list of a DOdirective.

The following restrictions apply to the DOdirectives:

• It is illegal to branch out of a DOloop associated with a DOdirective.

• The values of the loop control parameters of the DOloop associated with a DO
directive must be the same for all the threads in the team.

• The DOloop iteration variable must be of type integer.

• If used, the END DOdirective must appear immediately after the end of the loop.

• Only a single SCHEDULEclause can appear on a DOdirective.

• Only a single ORDEREDclause can appear on a DOdirective.

2.3.2 SECTIONSdirective

The SECTIONSdirective is a non-iterative work-sharing construct that specifies that
the enclosed sections of code are to be divided among threads in the team. Each
section is executed once by a thread in the team.

The format of this directive is as follows:

!$OMP SECTIONS [clause[[,] clause]...]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END SECTIONS[NOWAIT]

Oct 1997 1.0 13

Directives [2] OpenMP Fortran Application Program Interface

The clause can be one of the following:

• PRIVATE(list)

• FIRSTPRIVATE(list)

• LASTPRIVATE(list)

• REDUCTION({ operator| intrinsic}: list)

The PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONclauses are described
in Section 2.6.2, page 22.

Each section is preceded by a SECTIONdirective, though the SECTIONdirective is
optional for the first section. The SECTIONdirectives must appear within the lexical
extent of the SECTIONS/END SECTIONSdirective pair. The last section ends at the
END SECTIONSdirective. Threads that complete execution of their sections wait at a
barrier at the END SECTIONSdirective unless a NOWAITis specified.

The following restrictions apply to the SECTIONSdirective:

• The code enclosed in a SECTIONS/END SECTIONSdirective pair must be a
structured block. In addition, each constituent section must also be a structured
block. It is illegal to branch into or out of the constituent section blocks.

• It is illegal for a SECTIONdirective to be outside the lexical extent of the
SECTIONS/END SECTIONSdirective pair.

2.3.3 SINGLE directive

The SINGLE directive specifies that the enclosed code is to be executed by only one
threadin the team. Threads in the team that are not executing the SINGLE directive
wait at the END SINGLEdirective unless NOWAITis specified.

The format of this directive is as follows:

!$OMP SINGLE [clause[[,] clause]...]

block

!$OMP END SINGLE [NOWAIT]

The clause can be one of the following:

• PRIVATE(list)

• FIRSTPRIVATE(list)

14 Oct 1997 1.0

OpenMP Fortran Application Program Interface Directives [2]

The PRIVATE and FIRSTPRIVATE clauses are described in Section 2.6.2, page 22.

The following restriction applies to a SINGLE directive:

• The code enclosed in a SINGLE/END SINGLEdirective pair must be a structured
block. It is illegal to branch into or out of the block.

2.4 Combined parallel work-sharing constructs

The combined parallel work-sharing constructs are shortcuts for specifying a parallel
region that contains only one work-sharing construct. The semantics of these
directives are identical to that of explicitly specifying a PARALLELdirective followed
by a single work-sharing construct.

The following sections describe the combined parallel work-sharing directives:

• Section 2.4.1, page 15, describes the PARALLEL DOand END PARALLEL DO
directives.

• Section 2.4.2, page 16, describes the PARALLEL SECTIONSand
END PARALLEL SECTIONSdirectives.

2.4.1 PARALLEL DOdirective

The PARALLEL DOdirective provides a shortcut form for specifying a parallel region
that contains a single DOdirective.

The format of this directive is as follows:

!$OMP PARALLEL DO[clause[[,] clause]...]

do_loop

[!$OMP END PARALLEL DO]

The clause can be one of the clauses accepted by the PARALLELand DOdirectives. For
information on the PARALLELdirective and the IF clause, see Section 2.2, page 9. For
information on the DOdirective and the SCHEDULEDand ORDEREDclauses, see Section
2.3.1, page 11. For information on the remaining clauses, see Section 2.6.2, page 22.

Oct 1997 1.0 15

Directives [2] OpenMP Fortran Application Program Interface

If the END PARALLEL DOdirective is not specified, the PARALLEL DOis assumed to
end with the DOloop that immediately follows the PARALLEL DOdirective. If used, the
END PARALLEL DOdirective must appear immediately after the end of the DOloop.

The semantics are identical to explicitly specifying a PARALLELdirective immediately
followed by a DOdirective.

2.4.2 PARALLEL SECTIONSdirective

The PARALLEL SECTIONSdirective provides a shortcut form for specifying a parallel
region that contains a single SECTIONSdirective. The semantics are identical to
explicitly specifying a PARALLELdirective immediately followed by a SECTIONS
directive.

The format of this directive is as follows:

!$OMP PARALLEL SECTIONS[clause[[,] clause]...]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END PARALLEL SECTIONS

The clause can be one of the clauses accepted by the PARALLELand SECTIONS
directives. For more information on the PARALLELdirective, see Section 2.2, page 9.
For more information on the SECTIONSdirective, see Section 2.3.2, page 13. The
PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONclauses are described in
Section 2.6.2, page 22.

The last section ends at the END PARALLEL SECTIONSdirective.

2.5 Synchronization constructs

The following sections describe the synchronization constructs:

16 Oct 1997 1.0

OpenMP Fortran Application Program Interface Directives [2]

• Section 2.5.1, page 17, describes the MASTERand END MASTERdirectives.

• Section 2.5.2, page 17, describes the CRITICAL and END CRITICAL directives.

• Section 2.5.3, page 18, describes the BARRIERdirective.

• Section 2.5.4, page 18, describes the ATOMICdirective.

• Section 2.5.5, page 20, describes the FLUSHdirective.

• Section 2.5.6, page 21, describes the ORDEREDand END ORDEREDdirectives.

2.5.1 MASTERdirective

The code enclosed within MASTERand END MASTERdirectives is executed by the
master thread of the team.

These directives have the following format:

!$OMP MASTER

block

!$OMP END MASTER

The other threads in the team skip the enclosed section of code and continue
execution. There is no implied barrier either on entry to or exit from the master
section.

This directive has the following restriction:

• The section of code enclosed by MASTERand END MASTERdirectives must be a
structured block. It is illegal to branch into or out of the block.

2.5.2 CRITICAL directive

The CRITICAL and END CRITICAL directives restrict access to the enclosed code to
only one thread at a time.

These directives have the following format:

Oct 1997 1.0 17

Directives [2] OpenMP Fortran Application Program Interface

!$OMP CRITICAL [(name)]

block

!$OMP END CRITICAL [(name)]

The optional name argument identifies the critical section.

A thread waits at the beginning of a critical section until no other thread in the team
is executing a critical section with the same name. All unnamed CRITICAL directives
map to the same name. Critical section names are global entities of the program. If a
name conflicts with any other entity, the behavior of the program is undefined.

The following restrictions apply to the CRITICAL directive:

• The section of code enclosed by the CRITICAL and END CRITICAL directive pair
must be a structured block. It is illegal to branch into or out of the block.

• If a name is specified on a CRITICAL directive, the same name must also be
specified on the END CRITICAL directive. If no name appears on the CRITICAL
directive, no name can appear on the END CRITICAL directive.

2.5.3 BARRIERdirective

The BARRIERdirective synchronizes all the threads in a team. When encountered,
each thread waits until all of the others threads in that team have reached this point.

This directive has the following format:

!$OMP BARRIER

2.5.4 ATOMICdirective

The ATOMICdirective ensures that a specific memory location is to be updated
atomically, rather than exposing it to the possibility of multiple, simultaneous writing
threads.

This directive has the following format:

!$OMP ATOMIC

18 Oct 1997 1.0

OpenMP Fortran Application Program Interface Directives [2]

This directive applies only to the immediately following statement, which must have
one of the following forms:

x = x operator expr

x = expr operator x

x = intrinsic (x, expr)

x = intrinsic (expr, x)

In the preceding statements:

• x is a scalar variable of intrinsic type.

• expr is a scalar expression that does not reference x.

• intrinsic is one of MAX, MIN, IAND, IOR, or IEOR.

• operator is one of +, * , - , / , .AND. , .OR. , .EQV. , or .NEQV. .

This directive permits optimization beyond that of the necessary critical section
around the assignment. An implementation can replace all ATOMICdirectives by
enclosing the statement in a critical section. All of these critical sections must use the
same unique name.

Only the load and store of x are atomic; the evaluation of expr is not atomic. To avoid
race conditions, all updates of the location in parallel must be protected with the
ATOMICdirective, except those that are known to be free of race conditions. The
function intrinsic, the operator operator, and the assignment must be the intrinsic
function, operator, and assignment.

The following restriction applies to the ATOMICdirective:

• All references to the storage location x are required to have the same type and
type parameters.

Example:

!$OMP ATOMIC
Y(INDEX(I)) = Y(INDEX(I)) + B

Oct 1997 1.0 19

Directives [2] OpenMP Fortran Application Program Interface

2.5.5 FLUSHdirective

The FLUSHdirective identifies synchronization points at which the implementation is
required to provide a consistent view of memory. Thread-visible variables are written
back to memory at the point at which this directive appears.

Thread-visible variables include the following data items:

• Globally visible variables (common blocks and modules).

• Local variables that do not have the SAVEattribute but have had their address
taken and saved or have had their address passed to another subprogram.

• Local variables that do not have the SAVEattribute that are declared shared in a
parallel region within the subprogram.

• Dummy arguments.

• All pointer dereferences.

Implementations must ensure that modifications to thread-visible variables are
visible to all threads after this point. Subsequent reads of thread-visible variables
fetch the latest copy of the data. For example, compilers must restore values from
registers to memory, and hardware may need to flush write buffers.

This directive has the following format:

!$OMP FLUSH [(list)]

This directive must appear at the precise point in the code at which the
synchronization is required. The optional list argument consists of a
comma-separated list of variables that need to be flushed in order to avoid flushing
all variables. The list should contain only named variables. The FLUSHdirective is
implied for the following directives:

• BARRIER

• CRITICAL and END CRITICAL

• END DO

• END PARALLEL

• END SECTIONS

• END SINGLE

• ORDEREDand END ORDERED

The directive is not implied if a NOWAITclause is present.

20 Oct 1997 1.0

OpenMP Fortran Application Program Interface Directives [2]

2.5.6 ORDEREDdirective

The code enclosed within ORDEREDand END ORDEREDdirectives is executed in the
order in which iterations would be executed in a sequential execution of the loop.

These directives have the following format:

!$OMP ORDERED

block

!$OMP END ORDERED

An ORDEREDdirective can appear only in the dynamic extent of a DOor PARALLEL DO
directive. The DOdirective to which the ordered section binds must have the ORDERED
clause specified (see Section 2.3.1, page 11). One thread is allowed in an ordered
section at a time. Threads are allowed to enter in the order of the loop iterations. No
thread can enter an ordered section until it is guaranteed that all previous iterations
have completed or will never execute an ordered section. This sequentializes and
orders code within ordered sections while allowing code outside the section to run in
parallel. ORDEREDsections that bind to different DOdirectives are independent of
each other.

The following restrictions apply to the ORDEREDdirective:

• The code enclosed by the ORDEREDand END ORDEREDdirectives must be a
structured block. It is illegal to branch into or out of the block.

• An ORDEREDdirective cannot bind to a DOdirective that does not have the
ORDEREDclause specified.

• An iteration of a loop with a DOdirective must not execute the same ORDERED
directive more than once, and it must not execute more than one ORDERED
directive.

2.6 Data environment constructs

This section presents constructs for controlling the data environment during the
execution of parallel constructs. Section 2.6.1, page 22, describes the THREADPRIVATE
directive, which makes common blocks local to a thread. Section 2.6.2, page 22,
describes directive clauses that affect the data environment.

Oct 1997 1.0 21

Directives [2] OpenMP Fortran Application Program Interface

2.6.1 THREADPRIVATEdirective

The THREADPRIVATEdirective makes named common blocks private to a thread but
global within the thread.

This directive must appear in the declaration section of the routine after the
declaration of the listed common blocks. Each thread gets its own copy of the common
block, so data written to the common block by one thread is not directly visible to
other threads. During serial portions and MASTERsections of the program, accesses
are to the master thread’s copy of the common block.

On entry to the first parallel region, data in the THREADPRIVATEcommon blocks
should be assumed to be undefined unless a COPYINclause is specified on the
PARALLELdirective. When a common block that is initialized using DATAstatements
appears in a THREADPRIVATEdirective, each thread’s copy is initialized once prior to
its first use. For subsequent parallel regions, the data in the THREADPRIVATEcommon
blocks is guaranteed to persist only if the dynamic threads mechanism has been
disabled and if the number of threads is the same for all parallel regions. For more
information on dynamic threads, see the OMP_SET_DYNAMIClibrary routine, Section
3.1.7, page 34, and the OMP_DYNAMICenvironment variable, Section 4.3, page 40.

The format of this directive is as follows:

!$OMP THREADPRIVATE(/cb/ [,/ cb/]...)

cb is the name of the common block to be made private to a thread.

The following restrictions apply to the THREADPRIVATEdirective:

• The THREADPRIVATEdirective must appear after every declaration of a thread
private common block.

• Only named common blocks can be made thread private.

• It is illegal for a THREADPRIVATEcommon block or its constituent variables to
appear in any clause other than a COPYINclause. As a result, they are not
permitted in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, SHARED, or REDUCTION
clause. They are not affected by the DEFAULTclause.

2.6.2 Data scope attribute clauses

Several directives accept clauses that allow a user to control the scope attributes of
variables for the duration of the construct. Not all of the following clauses are
allowed on all directives, but the clauses that are valid on a particular directive are
included with the description of the directive. If no data scope clauses are specified

22 Oct 1997 1.0

OpenMP Fortran Application Program Interface Directives [2]

for a directive, the default scope for variables affected by the directive is SHARED. (See
Section 2.6.3, page 28, for exceptions.)

Each clause accepts an argument list, which is a comma-separated list of named
variables or named common blocks that are accessible in the scoping unit. Subobjects
cannot be specified as items in any of the lists. When named common blocks appear
in a list, their names must appear between slashes.

The following sections describe the data scope attribute clauses:

• Section 2.6.2.1, page 23, describes the PRIVATE clause.

• Section 2.6.2.2, page 24, describes the SHAREDclause.

• Section 2.6.2.3, page 24, describes the DEFAULTclause.

• Section 2.6.2.4, page 25, describes the FIRSTPRIVATE clause.

• Section 2.6.2.5, page 25, describes the LASTPRIVATE clause.

• Section 2.6.2.6, page 25, describes the REDUCTIONclause.

• Section 2.6.2.7, page 27, describes the COPYINclause.

2.6.2.1 PRIVATE clause

The PRIVATE clause declares the variables in list to be private to each thread in a
team.

This clause has the following format:

PRIVATE(list)

The behavior of a variable declared in a PRIVATE clause is as follows:

• A new object of the same type is declared once for each thread in the team. The
new object is no longer storage associated with the original object.

• All references to the original object in the lexical extent of the directive construct
are replaced with references to the private object.

• Variables defined as PRIVATE are undefined for each thread on entering the
construct, and the corresponding shared variable is undefined on exit from a
parallel construct.

• Contents, allocation state, and association status of variables defined as PRIVATE
are undefined when they are referenced outside the lexical extent (but inside the
dynamic extent) of the construct, unless they are passed as actual arguments to
called routines.

Oct 1997 1.0 23

Directives [2] OpenMP Fortran Application Program Interface

2.6.2.2 SHAREDclause

The SHAREDclause makes variables that appear in the list shared among all the
threads in a team. All threads within a team access the same storage area for
SHAREDdata.

This clause has the following format:

SHARED(list)

2.6.2.3 DEFAULTclause

The DEFAULTclause allows the user to specify a PRIVATE, SHARED, or NONEscope
attribute for all variables in the lexical extent of any parallel region. Variables in
THREADPRIVATEcommon blocks are not affected by this clause.

This clause has the following format:

DEFAULT(PRIVATE | SHARED| NONE)

The PRIVATE, SHARED, and NONEspecifications have the following effects:

• Specifying DEFAULT(PRIVATE) makes all named objects in the lexical extent of
the parallel region, including common block variables but excluding
THREADPRIVATEvariables, private to a thread as if each variable were listed
explicitly in a PRIVATE clause.

• Specifying DEFAULT(SHARED)makes all named objects in the lexical extent of the
parallel region shared among the threads in a team, as if each variable were listed
explicitly in a SHAREDclause. In the absence of an explicit DEFAULTclause, the
default behavior is the same as if DEFAULT(SHARED)were specified.

• Specifying DEFAULT(NONE)declares that there is no implicit default as to whether
variables are PRIVATE or SHARED. In this case, the PRIVATE, SHARED,
FIRSTPRIVATE, LASTPRIVATE, or REDUCTIONattribute of each variable used in
the lexical extent of the parallel region must be specified.

Only one DEFAULTclause can be specified on a PARALLELdirective.

Variables can be exempted from a defined default using the PRIVATE, SHARED,
FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONclauses. As a result, the following
example is legal:

!$OMP PARALLEL DO DEFAULT(PRIVATE), FIRSTPRIVATE(I),SHARED(X),
!$OMP& SHARED(R) LASTPRIVATE(I)

24 Oct 1997 1.0

OpenMP Fortran Application Program Interface Directives [2]

2.6.2.4 FIRSTPRIVATE

The FIRSTPRIVATE clause provides a superset of the functionality provided by the
PRIVATE clause.

This clause has the following format:

FIRSTPRIVATE(list)

Variables that appear in the list are subject to PRIVATE clause semantics described in
Section 2.6.2.1, page 23. In addition, private copies of the variables are initialized
from the original object existing before the construct.

2.6.2.5 LASTPRIVATE clause

The LASTPRIVATE clause provides a superset of the functionality provided by the
PRIVATE clause.

This clause has the following format:

LASTPRIVATE(list)

Variables that appear in the list are subject to the PRIVATE clause semantics
described in Section 2.6.2.1, page 23. When the LASTPRIVATE clause appears on a DO
directive, the thread that executes the sequentially last iteration updates the version
of the object it had before the construct. When the LASTPRIVATE clause appears in a
SECTIONSdirective, the thread that executes the lexically last SECTIONupdates the
version of the object it had before the construct. Subobjects that are not assigned a
value by the last iteration of the DOor the lexically last SECTIONof the SECTIONS
directive are undefined after the construct.

2.6.2.6 REDUCTIONclause

This clause performs a reduction on the variables that appear in list, with the
operator operator or the intrinsic intrinsic, where operator is one of the following: +,
* , - , .AND. , .OR. , .EQV. , or .NEQV. , and intrinsic is one of the following: MAX, MIN,
IAND, IOR, or IEOR.

This clause has the following format:

REDUCTION({operator| intrinsic}: list)

Variables in list must be named scalar variables of intrinsic type.

Oct 1997 1.0 25

Directives [2] OpenMP Fortran Application Program Interface

Variables that appear in a REDUCTIONclause must be SHAREDin the enclosing
context. A private copy of each variable in list is created for each thread as if the
PRIVATE clause had been used. The private copy is initialized according to the
operator. See Table 1, page 28, for more information.

At the end of the REDUCTION, the shared variable is updated to reflect the result of
combining the original value of the (shared) reduction variable with the final value of
each of the private copies using the operator specified. The reduction operators are all
associative (except for subtraction), and the compiler can freely reassociate the
computation of the final value (the partial results of a subtraction reduction are
added to form the final value).

The value of the shared variable becomes undefined when the first thread reaches the
containing clause, and it remains so until the reduction computation is complete.
Normally, the computation is complete at the end of the REDUCTIONconstruct;
however, if the REDUCTIONclause is used on a construct to which NOWAITis also
applied, the shared variable remains undefined until a barrier synchronization has
been performed to ensure that all the threads have completed the REDUCTIONclause.

The REDUCTIONclause is intended to be used on a region or work-sharing construct
in which the reduction variable is used only in reduction statements with one of the
following forms:

x = x operator expr

x = expr operator x (except for subtraction)

x = intrinsic (x, expr)

x = intrinsic (expr, x)

Some reductions can be expressed in other forms. For instance, a MAXreduction
might be expressed as follows:

IF (x .LT. expr) x = expr

Alternatively, the reduction might be hidden inside a subroutine call. The user should
be careful that the operator specified in the REDUCTIONclause matches the reduction
operation.

The following table lists the operators and intrinsics that are valid and their
canonical initialization values. The actual initialization value will be consistent with
the data type of the reduction variable.

Table 1. Initialization Values

Operator/Intrinsic Initialization

26 Oct 1997 1.0

OpenMP Fortran Application Program Interface Directives [2]

+ 0

* 1

- 0

.AND. .TRUE.

.OR. .FALSE.

.EQV. .TRUE.

.NEQV. .FALSE.

MAX Smallest representable number

MIN Largest representable number

IAND All bits on

IOR 0

IEOR 0

Any number of reduction clauses can be specified on the directive, but a variable can
appear only once in a REDUCTIONclause for that directive.

Example:

!$OMP DO REDUCTION(+: A, Y) REDUCTION(.OR.: AM)

2.6.2.7 COPYINclause

The COPYINclause applies only to common blocks that are declared as
THREADPRIVATE. A COPYINclause on a parallel region specifies that the data in the
master thread of the team be copied to the thread private copies of the common block
at the beginning of the parallel region.

This clause has the following format:

COPYIN(list)

It is not necessary to specify a whole common block to be copied in. Named variables
appearing in the THREADPRIVATEcommon block can be specified in the list.

Example: In the following example, the common blocks BLK1 and FIELDS are
specified as thread private, but only one of the variables in common block FIELDS is
specified to be copied in.

COMMON /BLK1/ SCRATCH
COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD

!$OMP THREADPRIVATE(/BLK1/, /FIELDS/)
!$OMP PARALLEL DEFAULT(PRIVATE) COPYIN(/BLK1/,ZFIELD)

Oct 1997 1.0 27

Directives [2] OpenMP Fortran Application Program Interface

2.6.3 Data environment rules

A program that conforms to the OpenMP Fortran API must adhere to the following
rules and restrictions with respect to data scope:

1. Sequential DOloop control variables in the lexical extent of a PARALLELregion
that would otherwise be SHAREDbased on default rules are automatically made
private on the PARALLELdirective. Sequential DOloop control variables with no
enclosing PARALLELregion are not classified automatically. It is up to the user to
guarantee that these indexes are private if the containing procedures are called
from a PARALLELregion.

All implied DOloop control variables and FORALLindexes are automatically made
private at the enclosing implied DOor FORALLconstruct.

2. Variables that are privatized in a parallel region cannot be privatized again on
an enclosed work-sharing directive. As a result, variables that appear in the
PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONclauses on a
work-sharing directive must have shared scope in the enclosing parallel region.

3. A variable that appears in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTIONclause must be definable.

4. Assumed-size and assumed-shape arrays cannot be specified as PRIVATE,
FIRSTPRIVATE, or LASTPRIVATE. Array dummy arguments that are explicitly
shaped (including variably dimensioned) can be declared in any scoping clause.

5. Fortran pointers and allocatable arrays can be declared as PRIVATE or SHARED
but not as FIRSTPRIVATE or LASTPRIVATE.

Within a parallel region, the initial status of a private pointer is undefined.
Private pointers that become allocated during the execution of a parallel region
should be explicitly deallocated by the program prior to the end of the parallel
region to avoid memory leaks.

The association status of a SHAREDpointer becomes undefined upon entry to and
on exit from the parallel construct if it is associated with a target or a subobject
of a target that is PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or REDUCTIONinside
the parallel construct. An allocatable array declared PRIVATE must have an
allocation status of “not currently allocated” on entry to and on exit from the
construct.

6. PRIVATE or SHAREDattributes can be declared for a Cray pointer but not for the
pointee. The scope attribute for the pointee is determined at the point of pointer
definition. It is illegal to declare a scope attribute for a pointee. Cray pointers
may not be specified in FIRSTPRIVATE or LASTPRIVATE clauses.

7. Scope clauses apply only to variables in the static extent of the directive on
which the clause appears, with the exception of variables passed as actual

28 Oct 1997 1.0

OpenMP Fortran Application Program Interface Directives [2]

arguments. Local variables in called routines that do not have the SAVE
attribute are PRIVATE. Common blocks and modules in called routines in the
dynamic extent of a parallel region always have an implicit SHAREDattribute,
unless they are THREADPRIVATEcommon blocks.

8. When a named common block is declared as PRIVATE, FIRSTPRIVATE, or
LASTPRIVATE, none of its constituent elements may be declared in another scope
attribute. It should be noted that when individual members of a common block
are privatized, the storage of the specified variables is no longer associated with
the storage of the common block itself.

9. Variables that are not allowed in the PRIVATE and SHAREDclauses are not
affected by DEFAULT(PRIVATE) or DEFAULT(SHARED)clauses, respectively.

10. Clauses can be repeated as needed, but each variable can appear explicitly in
only one clause per directive, with the following exceptions:

• A variable can be specified as both FIRSTPRIVATE and LASTPRIVATE.

• Variables affected by the DEFAULTclause can be listed explicitly in a clause to
override the default specification.

2.7 Directive binding

An implementation that conforms to the OpenMP Fortran API must adhere to the
following rules with respect to the dynamic binding of directives:

• The DO, SECTIONS, SINGLE, MASTER, and BARRIERdirectives bind to the
dynamically enclosing PARALLELdirective, if one exists.

• The ORDEREDdirective binds to the dynamically enclosing DOdirective.

• The ATOMICdirective enforces exclusive access with respect to ATOMICdirectives
in all threads, not just the current team.

• The CRITICAL directive enforces exclusive access with respect to CRITICAL
directives in all threads, not just the current team.

• A directive can never bind to any directive outside the closest enclosing PARALLEL.

Oct 1997 1.0 29

Directives [2] OpenMP Fortran Application Program Interface

2.8 Directive nesting

An implementation that conforms to the OpenMP Fortran API must adhere to the
following rules with respect to the dynamic nesting of directives:

• A PARALLELdirective dynamically inside another PARALLELdirective logically
establishes a new team, which is composed of only the current thread, unless
nested parallelism is enabled.

• DO, SECTIONS, and SINGLE directives that bind to the same PARALLELdirective
are not allowed to be nested one inside the other.

• DO, SECTIONS, and SINGLE directives are not permitted in the dynamic extent of
CRITICAL and MASTERdirectives.

• BARRIERdirectives are not permitted in the dynamic extent of DO, SECTIONS,
SINGLE, MASTER, and CRITICAL directives.

• MASTERdirectives are not permitted in the dynamic extent of DO, SECTIONS, and
SINGLE directives.

• ORDEREDsections are not allowed in the dynamic extent of CRITICAL sections.

• Any directive set that is legal when executed dynamically inside a PARALLEL
region is also legal when executed outside a parallel region. When executed
dynamically outside a user-specified parallel region, the directive is executed with
respect to a team composed of only the master thread.

30 Oct 1997 1.0

Run-time Library Routines [3]

This section describes the OpenMP Fortran API run-time library routines that can be
used to control and query the parallel execution environment. A set of general
purpose lock routines are also provided.

OpenMP Fortran API run-time library routines are external procedures. In the
following descriptions, scalar_integer_expression is a default scalar integer expression,
and scalar_logical_expression is a default scalar logical expression. The return values
of these routines are also of default kind.

3.1 Execution Environment Routines

The following sections describe the execution environment routines:

• Section 3.1.1, page 31, describes the OMP_SET_NUM_THREADSsubroutine.

• Section 3.1.2, page 32, describes the OMP_GET_NUM_THREADSfunction.

• Section 3.1.3, page 32, describes the OMP_GET_MAX_THREADSfunction.

• Section 3.1.4, page 33, describes the OMP_GET_THREAD_NUMfunction.

• Section 3.1.5, page 33, describes the OMP_GET_NUM_PROCSfunction.

• Section 3.1.6, page 33, describes the OMP_IN_PARALLELfunction.

• Section 3.1.7, page 34, describes the OMP_SET_DYNAMICsubroutine.

• Section 3.1.8, page 35, describes the OMP_GET_DYNAMICfunction.

• Section 3.1.9, page 35, describes the OMP_SET_NESTEDsubroutine.

• Section 3.1.10, page 35, describes the OMP_GET_NESTEDfunction.

3.1.1 OMP_SET_NUM_THREADSSubroutine

The OMP_SET_NUM_THREADSsubroutine sets the number of threads to use for the
next parallel region.

The format of this subroutine is as follows:

SUBROUTINE OMP_SET_NUM_THREADS(scalar_integer_expression)

Oct 1997 1.0 31

Run-time Library Routines [3] OpenMP Fortran Application Program Interface

The scalar_integer_expression is evaluated, and its value is used as the number of
threads to use. This function has effect only when called from serial portions of the
program. If this function is called from a portion of the program where the
OMP_IN_PARALLELfunction returns .TRUE. , the behavior of the function is
undefined. When dynamic adjustment of the number of threads is enabled, calls to
OMP_SET_NUM_THREADSsets the maximum number of threads to use for the next
parallel region. For additional information on this subject, see the
OMP_SET_DYNAMIC()subroutine described in Section 3.1.7, page 34, and the
OMP_GET_DYNAMIC()function described in Section 3.1.8, page 35.

This call has precedence over the OMP_NUM_THREADSenvironment variable.

3.1.2 OMP_GET_NUM_THREADSFunction

The OMP_GET_NUM_THREADSfunction returns the number of threads currently in the
team executing the parallel region from which it is called.

This function has the following format:

INTEGER FUNCTION OMP_GET_NUM_THREADS()

The OMP_SET_NUM_THREADS()call and the OMP_NUM_THREADSenvironment variable
control the number of threads in a team. For more information on the
OMP_SET_NUM_THREADS()call, see Section 3.1.1, page 31.

If the number of threads has not been explicitly set by the user, the default is
implementation dependent. This function binds to the closest enclosing PARALLEL
directive. For more information on the PARALLELdirective, see Section 2.2, page 9.

If this call is made from the serial portion of a program, or from a nested parallel
region that is serialized, this function returns 1.

3.1.3 OMP_GET_MAX_THREADSFunction

The OMP_GET_MAX_THREADSfunction returns the maximum value that can be
returned by calls to the OMP_GET_NUM_THREADS()function. For more information on
OMP_GET_NUM_THREADS(), see Section 3.1.2, page 32.

This function has the following format:

INTEGER FUNCTION OMP_GET_MAX_THREADS()

32 Oct 1997 1.0

OpenMP Fortran Application Program Interface Run-time Library Routines [3]

If OMP_SET_NUM_THREADS()is used to change the number of threads, subsequent
calls to OMP_GET_MAX_THREADS()will return the new value. This function can be
used to allocate maximum sized per-thread data structures when the
OMP_SET_DYNAMIC()subroutine is set to .TRUE. . For more information on
OMP_SET_DYNAMIC(), see Section 3.1.7, page 34.

This function has global scope and returns the maximum value whether executing
from a serial region or a parallel region.

3.1.4 OMP_GET_THREAD_NUMFunction

The OMP_GET_THREAD_NUMfunction returns the thread number, within the team,
that lies between 0 and OMP_GET_NUM_THREADS()-1, inclusive. The master thread of
the team is thread 0.

The format of this function is as follows:

INTEGER FUNCTION OMP_GET_THREAD_NUM()

This function binds to the closest enclosing PARALLELdirective. For more information
on the PARALLELdirective, see Section 2.2, page 9.

When called from a serial region, OMP_GET_THREAD_NUMreturns 0. When called from
within a nested parallel region that is serialized, this function returns 0.

3.1.5 OMP_GET_NUM_PROCSFunction

The OMP_GET_NUM_PROCSfunction returns the number of processors that are
available to the program.

The format of this function is as follows:

INTEGER FUNCTION OMP_GET_NUM_PROCS()

3.1.6 OMP_IN_PARALLELFunction

The OMP_IN_PARALLELfunction returns .TRUE. if it is called from the dynamic
extent of a region executing in parallel, and .FALSE. otherwise. A parallel region
that is serialized is not considered to be a region executing in parallel.

Oct 1997 1.0 33

Run-time Library Routines [3] OpenMP Fortran Application Program Interface

The format of this function is as follows:

LOGICAL FUNCTION OMP_IN_PARALLEL()

This function has global scope. As a result, it will always return .TRUE. within the
dynamic extent of a region executing in parallel, regardless of nested regions that are
serialized.

3.1.7 OMP_SET_DYNAMICSubroutine

The OMP_SET_DYNAMICsubroutine enables or disables dynamic adjustment of the
number of threads available for execution of parallel regions.

The format of this subroutine is as follows:

SUBROUTINE OMP_SET_DYNAMIC(scalar_logical_expression)

If scalar_logical_expression evaluates to .TRUE. , the number of threads that are used
for executing subsequent parallel regions can be adjusted automatically by the
run-time environment to obtain the best use of system resources. As a consequence,
the number of threads specified by the user is the maximum thread count. The
number of threads always remains fixed over the duration of each parallel region and
is reported by the OMP_GET_NUM_THREADS()function. For more information on the
OMP_GET_NUM_THREADS()function, see Section 3.1.2, page 32.

If scalar_logical_expression evaluates to .FALSE. , dynamic adjustment is disabled.

A call to OMP_SET_DYNAMIChas precedence over the OMP_DYNAMICenvironment
variable. For more information on the OMP_DYNAMICenvironment variable, see
Section 4.3, page 40.

The default for dynamic thread adjustment is implementation dependent. As a result,
user codes that depend on a specific number of threads for correct execution should
explicitly disable dynamic threads. Implementations are not required to provide the
ability to dynamically adjust the number of threads, but they are required to provide
the interface in order to support portability across platforms.

34 Oct 1997 1.0

OpenMP Fortran Application Program Interface Run-time Library Routines [3]

3.1.8 OMP_GET_DYNAMICFunction

The OMP_GET_DYNAMICfunction returns .TRUE. if dynamic thread adjustment is
enabled and returns .FALSE. otherwise. For more information on dynamic thread
adjustment, see Section 3.1.7, page 34.

The format of this function is as follows:

LOGICAL FUNCTION OMP_GET_DYNAMIC()

If the implementation does not implement dynamic adjustment of the number of
threads, this function always returns .FALSE. .

3.1.9 OMP_SET_NESTEDSubroutine

The OMP_SET_NESTEDsubroutine enables or disables nested parallelism.

The format of this subroutine is as follows:

SUBROUTINE OMP_SET_NESTED(scalar_logical_expression)

If scalar_logical_expression evaluates to .FALSE. , which is the default, nested
parallelism is disabled, and nested parallel regions are serialized and executed by the
current thread. If set to .TRUE. , nested parallelism is enabled, and parallel regions
that are nested can deploy additional threads to form the team.

This call has precedence over the OMP_NESTEDenvironment variable. For more
information on the OMP_NESTEDenvironment variable, see Section 4.4, page 40.

When nested parallelism is enabled, the number of threads used to execute nested
parallel regions is implementation dependent. As a result, OpenMP-compliant
implementations are allowed to serialize nested parallel regions even when nested
parallelism is enabled.

3.1.10 OMP_GET_NESTEDFunction

The OMP_GET_NESTEDfunction returns .TRUE. if nested parallelism is enabled and
.FALSE. if nested parallelism is disabled. For more information on nested
parallelism, see Section 3.1.9, page 35.

The format of this function is as follows:

Oct 1997 1.0 35

Run-time Library Routines [3] OpenMP Fortran Application Program Interface

LOGICAL FUNCTION OMP_GET_NESTED()

If an implementation does not implement nested parallelism, this function always
returns .FALSE. .

3.2 Lock Routines

The OpenMP run-time library includes a set of general-purpose locking routines. The
lock variable, var, must be accessed only through the routines described in this
section. For all these routines, var should be of type integer and of a KIND large
enough to hold an address. For example, on 64-bit addressable systems, the var may
be declared as INTEGER(KIND=8) .

The lock control routines are as follows:

• Section 3.2.1, page 36, describes the OMP_INIT_LOCKsubroutine.

• Section 3.2.2, page 37, describes the OMP_DESTROY_LOCKsubroutine.

• Section 3.2.3, page 37, describes the OMP_SET_LOCKsubroutine.

• Section 3.2.4, page 37, describes the OMP_UNSET_LOCKsubroutine.

• Section 3.2.5, page 37, describes the OMP_TEST_LOCKfunction.

3.2.1 OMP_INIT_LOCKSubroutine

The OMP_INIT_LOCKsubroutine initializes a lock associated with lock variable var
for use in subsequent calls.

The format of this subroutine is as follows:

SUBROUTINE OMP_INIT_LOCK(var)

The initial state is unlocked. It is illegal to call this routine with a lock variable that
is already associated with a lock.

36 Oct 1997 1.0

OpenMP Fortran Application Program Interface Run-time Library Routines [3]

3.2.2 OMP_DESTROY_LOCKSubroutine

The OMP_DESTROY_LOCKsubroutine disassociates the given lock variable var from
any locks.

The format of this subroutine is as follows:

SUBROUTINE OMP_DESTROY_LOCK(var)

It is illegal to call this routine with a lock variable that has not been initialized.

3.2.3 OMP_SET_LOCKSubroutine

The OMP_SET_LOCKsubroutine forces the executing thread to wait until the specified
lock is available.

The format of this subroutine is as follows:

SUBROUTINE OMP_SET_LOCK(var)

The thread is granted ownership of the lock when it is available. It is illegal to call
this routine with a lock variable that has not been initialized.

3.2.4 OMP_UNSET_LOCKSubroutine

The OMP_UNSET_LOCKsubroutine releases the executing thread from ownership of
the lock.

The format of this subroutine as follows:

SUBROUTINE OMP_UNSET_LOCK(var)

The behavior is undefined if the thread does not own that lock. It is illegal to call this
routine with a lock variable that has not been initialized.

3.2.5 OMP_TEST_LOCKFunction

The OMP_TEST_LOCKfunction tries to set the lock associated with the lock variable
var.

Oct 1997 1.0 37

Run-time Library Routines [3] OpenMP Fortran Application Program Interface

The format of this function is as follows:

LOGICAL FUNCTION OMP_TEST_LOCK(var)

This function returns .TRUE. if the lock was set successfully, otherwise it returns
.FALSE. . It is illegal to call this routine with a lock variable that has not been
initialized.

38 Oct 1997 1.0

Environment Variables [4]

This chapter describes the OpenMP Fortran API environment variables (or
equivalent platform-specific mechanisms) that control the execution of parallel code.
The names of environment variables must be uppercase. The values assigned to them
are case insensitive.

4.1 OMP_SCHEDULEEnvironment Variable

This variable applies only to DOand PARALLEL DOdirectives that have the schedule
type RUNTIME. For more information on the DOdirective, see Section 2.3.1, page 11.
For more information on the PARALLEL DOdirective, see Section 2.4.1, page 15.

The schedule type and chunk size for all such loops can be set at run time by setting
this environment variable to any of the recognized schedule types and to an optional
chunk size. For DOand PARALLEL DOdirectives that have a schedule type other than
RUNTIME, this environment variable is ignored. The default value for this
environment variable is implementation dependent. If the optional chunk size is not
set, a chunk size of 1 is assumed, except in the case of a STATIC schedule. For a
STATIC schedule, the default chunk size is set to the loop iteration space divided by
the number of threads applied to the loop.

Examples:

setenv OMP_SCHEDULE "GUIDED,4"
setenv OMP_SCHEDULE "dynamic"

4.2 OMP_NUM_THREADSEnvironment Variable

The OMP_NUM_THREADSenvironment variable sets the number of threads to use
during execution, unless that number is explicitly changed by calling the
OMP_SET_NUM_THREADS()subroutine. For more information on the
OMP_SET_NUM_THREADS()subroutine, see Section 3.1.1, page 31.

When dynamic adjustment of the number of threads is enabled, the value of this
environment variable is the maximum number of threads to use. The default value is
implementation dependent.

Example:

Oct 1997 1.0 39

Environment Variables [4] OpenMP Fortran Application Program Interface

setenv OMP_NUM_THREADS 16

4.3 OMP_DYNAMICEnvironment Variable

The OMP_DYNAMICenvironment variable enables or disables dynamic adjustment of
the number of threads available for execution of parallel regions. For more
information on parallel regions, see Section 2.2, page 9.

If set to TRUE, the number of threads that are used for executing parallel regions can
be adjusted by the run-time environment to best utilize system resources.

If set to FALSE, dynamic adjustment is disabled. The default condition is
implementation dependent. For more information, see the OMP_SET_DYNAMIC
subroutine described in Section 3.1.7, page 34.

Example:

setenv OMP_DYNAMIC TRUE

4.4 OMP_NESTEDEnvironment Variable

The OMP_NESTEDenvironment variable enables or disables nested parallelism. If set
to TRUE, nested parallelism is enabled; if it is set to FALSE, it is disabled. The default
value is FALSE. See also Section 3.1.9, page 35.

Example:

setenv OMP_NESTED TRUE

40 Oct 1997 1.0

Examples [A]

The following are examples of the constructs defined in this document.

A.1 Executing a Simple Loop in Parallel

The following example shows how to parallelize a simple loop. The loop iteration
variable is private by default, so it is not necessary to declare it explicitly.

!$OMP PARALLEL DO
DO I=2,N

B(I) = (A(I) + A(I-1)) / 2.0
ENDDO

!$OMP END PARALLEL DO

The END PARALLEL DOdirective is optional.

A.2 Specifying Conditional Compilation

The following example illustrates the use of the conditional compilation
sentinelprefix. Assuming Fortran fixed source form, the following statement is
illegalinvalid when using OpenMP constructs:

C234567890
!$ X(I) = X(I) + XLOCAL

With OpenMP compilation, the conditional compilation sentinel !$ is treated as two
spaces. As a result, the statement infringes on the statement label field. To be
legalvalid, the statement should begin after column 6, like any other fixed source
form statement:

C234567890
!$ X(I) = X(I) + XLOCAL

In other words, conditionally compiled statements need to meet all applicable
language rules when the sentinelprefix is replaced with two spaces.

Oct 1997 1.0 41

Examples [A] OpenMP Fortran Application Program Interface

A.3 Using Parallel Regions

The PARALLELdirective can be used in coarse-grain parallel programs. In the
following example, each thread in the parallel region decides what part of the global
array X to work on based on the thread number:

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,NPOINTS)
IAM = OMP_GET_THREAD_NUM()
NP = OMP_GET_NUM_THREADS()
IPOINTS = NPOINTS/NP
CALL SUBDOMAIN(X,IAM,IPOINTS)

!$OMP END PARALLEL

A.4 Using the NOWAITClause

If there are multiple independent loops within a parallel region, you can use the
NOWAITclause to avoid the implied BARRIERat the end of the DOdirective, as follows:

!$OMP PARALLEL
!$OMP DO

DO I=2,N
B(I) = (A(I) + A(I-1)) / 2.0

ENDDO
!$OMP END DO NOWAIT
!$OMP DO

DO I=1,M
Y(I) = SQRT(Z(I))

ENDDO
!$OMP END DO NOWAIT
!$OMP END PARALLEL

A.5 Using the CRITICAL Directive

The following example includes several CRITICAL directives. The example illustrates
a queuing model in which a task is dequeued and worked on. To guard against
multiple threads dequeuing the same task, the dequeuing operation must be in a
critical section. Because there are two independent queues in this example, each
queue is protected by CRITICAL directives with different names, XAXIS and YAXIS,
respectively.

42 Oct 1997 1.0

OpenMP Fortran Application Program Interface Examples [A]

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,Y)
!$OMP CRITICAL(XAXIS)

CALL DEQUEUE(IX_NEXT, X)
!$OMP END CRITICAL(XAXIS)

CALL WORK(IX_NEXT, X)
!$OMP CRITICAL(YAXIS)

CALL DEQUEUE(IY_NEXT,Y)
!$OMP END CRITICAL(YAXIS)

CALL WORK(IY_NEXT, Y)
!$OMP END PARALLEL

A.6 Using the LASTPRIVATE Clause

Correct execution sometimes depends on the value that the last iteration of a loop
assigns to a variable. Such programs must list all such variables as arguments to a
LASTPRIVATE clause so that the values of the variables are the same as when the
loop is executed sequentially.

!$OMP PARALLEL
!$OMP DO LASTPRIVATE(I)

DO I=1,N
A(I) = B(I) + C(I)

ENDDO
!$OMP END PARALLEL

CALL REVERSE(I)

In the preceding example, the value of I at the end of the parallel region will equal
N+1, as in the sequential case.

A.7 Using the REDUCTIONClause

The following example shows how to use the REDUCTIONclause:

!$OMP PARALLEL DO DEFAULT(PRIVATE) REDUCTION(+: A,B)
DO I=1,N

CALL WORK(ALOCAL,BLOCAL)
A = A + ALOCAL
B = B + BLOCAL

ENDDO

Oct 1997 1.0 43

Examples [A] OpenMP Fortran Application Program Interface

!$OMP END PARALLEL DO

A.8 Specifying Parallel Sections

In the following example, subroutines XAXIS, YAXIS, and ZAXIS can be executed
concurrently. The first SECTIONdirective is optional. Note that all SECTION
directives need to appear in the lexical extent of the
PARALLEL SECTIONS/END PARALLEL SECTIONSconstruct.

!$OMP PARALLEL SECTIONS
!$OMP SECTION

CALL XAXIS
!$OMP SECTION

CALL YAXIS
!$OMP SECTION

CALL ZAXIS
!$OMP END PARALLEL SECTIONS

A.9 Using SINGLE Directives

TheIn the following example, the first thread that encounters the SINGLE directive
executes subroutines OUTPUTand INPUT. The user must not make any assumptions
as to which thread will execute the SINGLE section. All other threads will skip the
SINGLE section and stop at the barrier at the END SINGLEconstruct. If other threads
can proceed without waiting for the thread executing the SINGLE section, a NOWAIT
clause can be specified on the END SINGLEdirective.

!$OMP PARALLEL DEFAULT(SHARED)
CALL WORK(X)

!$OMP BARRIER
!$OMP SINGLE

CALL OUTPUT(X)
CALL INPUT(Y)

!$OMP END SINGLE
CALL WORK(Y)

!$OMP END PARALLEL

44 Oct 1997 1.0

OpenMP Fortran Application Program Interface Examples [A]

A.10 Specifying Sequential Ordering

Ordered sections are useful for sequentially ordering the output from work that is
done in parallel. Assuming that a reentrant I/O library exists, the following program
prints out the indexes in sequential order:

!$OMP DO ORDERED SCHEDULE(DYNAMIC)
DO I=LB,UB,ST

CALL WORK(I)
END DO

SUBROUTINE WORK(K)
!$OMP ORDERED

WRITE(*,*) K
!$OMP END ORDERED

END

A.11 Specifying a Fixed Number of Threads

Some programs rely on a fixed, prespecified number of threads to execute correctly.
Because the default setting for the dynamic adjustment of the number of threads is
implementation-dependent, such programs can choose to turn off the dynamic threads
capability and set the number of threads explicitly to ensure portability. The
following example shows how to do this:

CALL OMP_SET_DYNAMIC(.FALSE.)
CALL OMP_SET_NUM_THREADS(16)

!$OMP PARALLEL DEFAULT(PRIVATE)SHARED(X,NPOINTS)
IAM = OMP_GET_THREAD_NUM()
IPOINTS = NPOINTS/16
CALL DO_BY_16(X,IAM,IPOINTS)

!$OMP END PARALLEL

In this example, the program executes correctly only if it is executed by 16 threads.
Note that the number of threads executing a parallel region remains constant during
a parallel region, regardless of the dynamic threads setting. The dynamic threads
mechanism determines the number of threads to use at the start of the parallel
region and keeps it constant for the duration of the region.

Oct 1997 1.0 45

Examples [A] OpenMP Fortran Application Program Interface

A.12 Using the ATOMICDirective

The following program avoids race conditions by protecting all simultaneous updates
of the location, by multiple threads, with the ATOMICdirective:

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X,Y,INDEX,N)
DO I=1,N

CALL WORK(XLOCAL, YLOCAL)
!$OMP ATOMIC

X(INDEX(I)) = X(INDEX(I)) + XLOCAL
Y(I) = Y(I) + YLOCAL

ENDDO

Note that the ATOMICdirective applies only to the Fortran statement immediately
following it. As a result, Y is not updated atomically in this example.

A.13 Using the FLUSHDirective

The following example uses the FLUSHdirective for point-to-point synchronization
between pairs of threads:

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(ISYNC)
IAM = OMP_GET_THREAD_NUM()
ISYNC(IAM) = 0

!$OMP BARRIER
CALL WORK()

C I AM DONE WITH MY WORK, SYNCHRONIZE WITH MY NEIGHBOR
ISYNC(IAM) = 1

!$OMP FLUSH(ISYNC)
C WAIT TILL NEIGHBOR IS DONE

DO WHILE (ISYNC(NEIGH) .EQ. 0)
!$OMP FLUSH(ISYNC)

END DO
!$OMP END PARALLEL

A.14 Determining the Number of Threads Used

Consider the following incorrect example:

46 Oct 1997 1.0

OpenMP Fortran Application Program Interface Examples [A]

NP = OMP_GET_NUM_THREADS()
!$OMP PARALLEL DO SCHEDULE(STATIC)

DO I = 0, NP-1
CALL WORK(I)

ENDDO
!$OMP END PARALLEL DO

The OMP_GET_NUM_THREADS()call returns 1 in the serial section of the code, so NP
will always be equal to 1 in the preceding example. To determine the number of
threads that will be deployed for the parallel region, the call should be inside the
parallel region.

The following example shows how to rewrite this program without including a query
for the number of threads:

!$OMP PARALLEL PRIVATE(I)
I = OMP_GET_THREAD_NUM()
CALL WORK(I)

!$OMP END PARALLEL

A.15 Using Locks

In the following example, note that the argument to the lock routines should be of
size POINTER:

PROGRAM LOCK_USAGE
EXTERNAL OMP_TEST_LOCK
LOGICAL OMP_TEST_LOCK

INTEGER LCK ! THIS VARIABLE SHOULD BE POINTER SIZED

CALL OMP_INIT_LOCK(LCK)
!$OMP PARALLEL SHARED(LCK) PRIVATE(ID)

ID = OMP_GET_THREAD_NUM()
CALL OMP_SET_LOCK(LCK)
PRINT *, ’MY THREAD ID IS ’, ID
CALL OMP_UNSET_LOCK(LCK)

DO WHILE (.NOT. OMP_TEST_LOCK(LCK))
CALL SKIP(ID) ! WE DO NOT YET HAVE THE LOCK

! SO WE MUST DO SOMETHING ELSE
END DO

Oct 1997 1.0 47

Examples [A] OpenMP Fortran Application Program Interface

CALL WORK(ID) ! WE NOW HAVE THE LOCK
! AND CAN DO THE WORK

CALL OMP_UNSET_LOCK(LCK)
!$OMP END PARALLEL

CALL OMP_DESTROY_LOCK(LCK)

END

A.16 Nested DODirectives

The following program is legalcorrect because the inner and outer DOdirectives bind
to different PARALLELregions:

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N
!$OMP PARALLEL SHARED(I,N)
!$OMP DO

DO J = 1, N
CALL WORK(I,J)

END DO
!$OMP END PARALLEL

END DO
!$OMP END PARALLEL

A following variation of the preceding example is also legalcorrect:

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N
CALL SOME_WORK(I,N)

END DO
!$OMP END PARALLEL

SUBROUTINE SOME_WORK(I,N)
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO J = 1, N
CALL WORK(I,J)

48 Oct 1997 1.0

OpenMP Fortran Application Program Interface Examples [A]

END DO
!$OMP END PARALLEL

RETURN
END

A.17 Examples Showing Incorrect Nesting of Work-sharing Directives

The examples in this section illustrate the directive nesting rules. For more
information on directive nesting, see Section 2.8, page 30.

The following example is illegalincorrect because the inner and outer DOdirectives
are nested and bind to the same PARALLELdirective:

PROGRAM WRONG1
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N
!$OMP DO

DO J = 1, N
CALL WORK(I,J)

END DO
END DO

!$OMP END PARALLEL
END

The following dynamically nested version of the preceding example is also
illegalincorrect:

PROGRAM WRONG2
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N
CALL SOME_WORK(I,N)

END DO
!$OMP END PARALLEL

END

SUBROUTINE SOME_WORK(I,N)
!$OMP DO

DO J = 1, N
CALL WORK(I,J)

END DO
RETURN

Oct 1997 1.0 49

Examples [A] OpenMP Fortran Application Program Interface

END

The following example is illegalincorrect because the DOand SINGLE directives are
nested, and they bind to the same PARALLELregion:

PROGRAM WRONG3
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N
!$OMP SINGLE

CALL WORK(I)
!$OMP END SINGLE

END DO
!$OMP END PARALLEL

END

The following example is illegalincorrect because a BARRIERdirective inside a
SINGLE or a DOcan result in deadlock:

PROGRAM WRONG3
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N
CALL WORK(I)

!$OMP BARRIER
CALL MORE_WORK(I)

END DO
!$OMP END PARALLEL

END

The following example is illegalincorrect because the BARRIERresults in deadlock due
to the fact that only one thread at a time can enter the critical section:

PROGRAM WRONG4
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP CRITICAL

CALL WORK(N,1)
!$OMP BARRIER

CALL MORE_WORK(N,2)
!$OMP END CRITICAL
!$OMP END PARALLEL

END

The following example is illegalincorrect because the BARRIERresults in deadlock due
to the fact that only one thread executes the SINGLE section:

50 Oct 1997 1.0

OpenMP Fortran Application Program Interface Examples [A]

PROGRAM WRONG5
!$OMP PARALLEL DEFAULT(SHARED)

CALL SETUP(N)
!$OMP SINGLE

CALL WORK(N,1)
!$OMP BARRIER

CALL MORE_WORK(N,2)
!$OMP END SINGLE

CALL FINISH(N)
!$OMP END PARALLEL

END

A.18 Binding of BARRIERDirectives

The directive binding rules call for a BARRIERdirective to bind to the closest
enclosing PARALLELdirective. For more information on directive binding, see Section
2.7, page 29.

In the following example, the call from MAIN to SUB2 is legalvalid because the
BARRIER(in SUB3) binds to the PARALLELregion in SUB2. The call from MAIN to SUB1
is legalvalid because the BARRIERbinds to the PARALLELregion in subroutine SUB2.

PROGRAM MAIN
CALL SUB1(2)
CALL SUB2(2)
END

SUBROUTINE SUB1(N)
!$OMP PARALLEL PRIVATE(I) SHARED(N)
!$OMP DO

DO I = 1, N
CALL SUB2(I)
END DO

!$OMP END PARALLEL
END

SUBROUTINE SUB2(K)
!$OMP PARALLEL SHARED(K)

CALL SUB3(K)
!$OMP END PARALLEL

END

Oct 1997 1.0 51

Examples [A] OpenMP Fortran Application Program Interface

SUBROUTINE SUB3(N)
CALL WORK(N)

!$OMP BARRIER
CALL WORK(N)
END

A.19 Scoping Variables with the PRIVATE Clause

The values of I and J in the following example are undefined on exit from the
parallel region:

INTEGER I,J
I = 1
J = 2

!$OMP PARALLEL PRIVATE(I) FIRSTPRIVATE(J)
I = 3
J = J+ 2

!$OMP END PARALLEL
PRINT *, I, J

For more information on the PRIVATE clause, see Section 2.6.2.1, page 23.

52 Oct 1997 1.0

Stubs for Run-time Library Routines [B]

This section provides stubs for the runtime library routines defined in the OpenMP
Fortran API. The stubs are provided to enable portability to platforms that do not
support the OpenMP Fortran API. On these platforms, OpenMP programs must be
linked with a library containing these stub routines. The stub routines assume that
the directives in the OpenMP program are ignored. As such, they emulate serial
semantics.

Note: The lock variable that appears in the lock routines must be accessed
exclusively through these routines. It should not be initialized or otherwise
modified in the user program. Users should not make assumptions about
mechanisms used by OpenMP Fortran implementations to implement locks
based on the scheme used by the stub routines.

SUBROUTINE OMP_SET_NUM_THREADS(NP)
INTEGER NP
RETURN
END

INTEGER FUNCTION OMP_GET_NUM_THREADS()
OMP_GET_NUM_THREADS = 1
RETURN
END

INTEGER FUNCTION OMP_GET_MAX_THREADS()
OMP_GET_MAX_THREADS = 1
RETURN
END

INTEGER FUNCTION OMP_GET_THREAD_NUM()
OMP_GET_THREAD_NUM = 0
RETURN
END

INTEGER FUNCTION OMP_GET_NUM_PROCS()
OMP_GET_NUM_PROCS = 1
RETURN
END

SUBROUTINE OMP_SET_DYNAMIC(FLAG)
LOGICAL FLAG
RETURN
END

Oct 1997 1.0 53

Stubs for Run-time Library Routines [B] OpenMP Fortran Application Program Interface

LOGICAL FUNCTION OMP_GET_DYNAMIC()
OMP_GET_DYNAMIC = .FALSE.
RETURN
END

LOGICAL FUNCTION OMP_IN_PARALLEL()
OMP_IN_PARALLEL = .FALSE.
RETURN
END

SUBROUTINE OMP_SET_NESTED(FLAG)
LOGICAL FLAG
RETURN
END

LOGICAL FUNCTION OMP_GET_NESTED()
OMP_GET_NESTED = .FALSE.
RETURN
END

SUBROUTINE OMP_INIT_LOCK(LOCK)
POINTER (LOCK,IL)
INTEGER IL
LOCK = -1
RETURN
END

SUBROUTINE OMP_DESTROY_LOCK(LOCK)
POINTER (LOCK,IL)
INTEGER IL
LOCK = 0
RETURN
END

SUBROUTINE OMP_SET_LOCK(LOCK)
POINTER (LOCK,IL)
INTEGER IL

IF(LOCK .EQ. 0) THEN
PRINT*, ’ERROR: LOCK NOT INITIALIZED’
STOP

ELSEIF(LOCK .EQ. 1) THEN
PRINT*, ’ERROR: DEADLOCK IN USING LOCK VARIABLE’
STOP

ELSE

54 Oct 1997 1.0

OpenMP Fortran Application Program Interface Stubs for Run-time Library Routines [B]

LOCK = 1
ENDIF
RETURN
END

SUBROUTINE OMP_UNSET_LOCK(LOCK)
POINTER (LOCK,IL)
INTEGER IL
IF(LOCK .EQ. 0) THEN

PRINT*, ’ERROR: LOCK NOT INITIALIZED’
STOP

ELSEIF(LOCK .EQ. 1) THEN
LOCK = -1

ELSE
PRINT*, ’ERROR: LOCK NOT SET’
STOP

ENDIF
RETURN
END

LOGICAL FUNCTION OMP_TEST_LOCK(LOCK)
POINTER (LOCK,IL)
INTEGER IL
IF (LOCK .EQ. -1) THEN

LOCK = 1
OMP_TEST_LOCK = .TRUE.

ELSEIF(LOCK .EQ. 1) THEN
OMP_TEST_LOCK = .FALSE.

ELSE
PRINT*, ’ERROR: LOCK NOT INITIALIZED’
STOP

ENDIF
RETURN
END

Oct 1997 1.0 55

