
OpenMP Fortran Application Program
Interface

Version 2.0, November 2000

1

2

3

Line Numbers Added: Sat Oct 28 09:45:59 CDT 2000

Contents

Page

Introduction [1] 1
Scope . 1

Glossary . 1

Execution Model . 3

Compliance . 4

Organization . 5

Directives [2] 7
OpenMP Directive Format . 7

Directive Sentinels . 8

Fixed Source Form Directive Sentinels 8

Free Source Form Directive Sentinel 8

Comments Inside Directives . 10

Comments in Directives with Fixed Source Form 10

Comments in Directives with Free Source Form 10

Conditional Compilation . 10

Fixed Source Form Conditional Compilation Sentinels 11

Free Source Form Conditional Compilation Sentinel 11

Parallel Region Construct . 12

Work-sharing Constructs . 15

DODirective . 15

SECTIONSDirective . 18

SINGLE Directive . 20

WORKSHAREDirective . 20

Combined Parallel Work-sharing Constructs 22

PARALLEL DODirective . 23

PARALLEL SECTIONSDirective . 24

PARALLEL WORKSHAREDirective 24

Synchronization Constructs and the MASTERDirective 25

MASTERDirective . 25

Version 2.0, November 2000 i

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Contents OpenMP Fortran Application Program Interface

Page

CRITICAL Directive . 26

BARRIERDirective . 26

ATOMICDirective . 27

FLUSHDirective . 29

ORDEREDDirective . 30

Data Environment Constructs . 31

THREADPRIVATEDirective . 32

Data Scope Attribute Clauses . 34

PRIVATE Clause . 35

SHAREDClause . 36

DEFAULTClause . 36

FIRSTPRIVATE Clause . 37

LASTPRIVATE Clause . 38

REDUCTIONClause . 38

COPYINClause . 41

COPYPRIVATEClause . 41

Data Environment Rules . 42

Directive Binding . 45

Directive Nesting . 45

Run-time Library Routines [3] 47
Execution Environment Routines . 47

OMP_SET_NUM_THREADSSubroutine 48

OMP_GET_NUM_THREADSFunction 48

OMP_GET_MAX_THREADSFunction 49

OMP_GET_THREAD_NUMFunction . 49

OMP_GET_NUM_PROCSFunction . 50

OMP_IN_PARALLELFunction . 50

OMP_SET_DYNAMICSubroutine . 51

OMP_GET_DYNAMICFunction . 51

OMP_SET_NESTEDSubroutine . 52

OMP_GET_NESTEDFunction . 52

Lock Routines . 52

OMP_INIT_LOCK and OMP_INIT_NEST_LOCKSubroutines 54

OMP_DESTROY_LOCKand OMP_DESTROY_NEST_LOCKSubroutines 54

ii Version 2.0, November
2000

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

OpenMP Fortran Application Program Interface Contents

Page

OMP_SET_LOCKand OMP_SET_NEST_LOCKSubroutines 54

OMP_UNSET_LOCKand OMP_UNSET_NEST_LOCKSubroutines 55

OMP_TEST_LOCKand OMP_TEST_NEST_LOCKFunctions 55

Timing Routines . 56

OMP_GET_WTIMEFunction . 56

OMP_GET_WTICKFunction . 57

Environment Variables [4] 59
OMP_SCHEDULEEnvironment Variable 59

OMP_NUM_THREADSEnvironment Variable 60

OMP_DYNAMICEnvironment Variable 60

OMP_NESTEDEnvironment Variable 61

Appendix A Examples 63
Executing a Simple Loop in Parallel 63

Specifying Conditional Compilation 63

Using Parallel Regions . 64

Using the NOWAITClause . 64

Using the CRITICAL Directive . 64

Using the LASTPRIVATE Clause . 65

Using the REDUCTIONClause . 65

Specifying Parallel Sections . 67

Using SINGLE Directives . 67

Specifying Sequential Ordering . 68

Specifying a Fixed Number of Threads 68

Using the ATOMICDirective . 69

Using the FLUSHDirective . 69

Determining the Number of Threads Used 70

Using Locks . 70

Using Nestable Locks . 71

Nested DODirectives . 73

Examples Showing Incorrect Nesting of Work-sharing Directives 74

Binding of BARRIERDirectives . 77

Scoping Variables with the PRIVATE Clause 78

Version 2.0, November 2000 iii

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

Contents OpenMP Fortran Application Program Interface

Page

Examples of Noncompliant Storage Association 78

Examples of Syntax of Parallel DOLoops 81

Examples of the ATOMICDirective . 82

Examples of the ORDEREDDirective 83

Examples of THREADPRIVATEData . 84

Examples of the Data Attribute Clauses: SHAREDand PRIVATE 88

Examples of the Data Attribute Clause: COPYPRIVATE 89

Examples of the WORKSHAREDirective 91

Appendix B Stubs for Run-time Library Routines 95

Appendix C Using the SCHEDULEClause 101

Appendix D Interface Declaration Module 105
Example of an Interface Declaration INCLUDE File 105

Example of a Fortran 90 Interface Declaration MODULE 107

Example of a Generic Interface for a Library Routine 111

Appendix E Implementation-Dependent Behaviors in OpenMP Fortran 113

Appendix F New Features in OpenMP Fortran version 2.0 115

Tables
Table 1. SCHEDULEClause Values 17

Table 2. Reduction Variable Initialization Values 40

iv Version 2.0, November
2000

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

Copyright © 1997-2000 OpenMP Architecture Review Board. Permission to copy
without fee all or part of this material is granted, provided the OpenMP Architecture
Review Board copyright notice and the title of this document appear. Notice is given
that copying is by permission of OpenMP Architecture Review Board.

123
124
125
126

Introduction [1]

This document specifies a collection of compiler directives, library routines, and
environment variables that can be used to specify shared memory parallelism in
Fortran programs. The functionality described in this document is collectively known
as the OpenMP Fortran Application Program Interface (API). The goal of this
specification is to provide a model for parallel programming that is portable across
shared memory architectures from different vendors. The OpenMP Fortran API is
supported by compilers from numerous vendors. More information about OpenMP
can be found at the following web site:

http://www.openmp.org

The directives, library routines, and environment variables defined in this document
will allow users to create and manage parallel programs while ensuring portability.
The directives extend the Fortran sequential programming model with
single-program multiple data (SPMD) constructs, work-sharing constructs and
synchronization constructs, and provide support for the sharing and privatization of
data. The library routines and environment variables provide the functionality to
control the run-time execution environment. The directive sentinels are structured so
that the directives are treated as Fortran comments. Compilers that support the
OpenMP Fortran API include a command line option that activates and allows
interpretation of all OpenMP compiler directives.

1.1 Scope

This specification describes only user-directed parallelization, wherein the user
explicitly specifies the actions to be taken by the compiler and run-time system in
order to execute the program in parallel. OpenMP Fortran implementations are not
required to check for dependencies, conflicts, deadlocks, race conditions, or other
problems that result in incorrect program execution. The user is responsible for
ensuring that the application using the OpenMP Fortran API constructs executes
correctly.

Compiler-generated automatic parallelization is not addressed in this specification.

1.2 Glossary

The following terms are used in this document:

Version 2.0, November 2000 1

127

128
129
130
131
132
133
134
135

136

137
138
139
140
141
142
143
144
145
146

147

148
149
150
151
152
153
154

155

156

157

Introduction [1] OpenMP Fortran Application Program Interface

defined - For the contents of a data object, the property of having or being given a
valid value. For the allocation status or association status of a data object, the
property of having or being given a valid status.

do-construct - The Fortran Standard term for the construct that specifies the repeated
execution of a sequence of executable statements. The Fortran Standard calls such a
repeated sequence a loop. The loop that follows a DOor PARALLEL DOdirective
cannot be a WHILE loop or a DOloop without loop control.

implementation-dependent - A behavior or value that is implementation-dependent is
permitted to vary among different OpenMP-compliant implementations (possibly in
response to limitations of hardware or operating system). Implementation-dependent
items are listed in Appendix E, page 113, and OpenMP-compliant implementations
are required to document how these items are handled.

lexical extent - Statements lexically contained within a structured block.

master thread - The thread that creates a team when a parallel region is entered.

nested - a parallel region is said to be nested if it appears within the dynamic extent
of a PARALLELconstruct that (1) does not have an IF clause or (2) has an IF clause
and the logical expression within the clause evaluates to .TRUE..

noncompliant - Code structures or arrangements described as noncompliant are not
required to be supported by OpenMP-compliant implementations. Upon encountering
such structures, an OpenMP-compliant implementation may produce a compiler error.
Even if an implementation produces an executable for a program containing such
structures, its execution may terminate prematurely or have unpredictable behavior.

parallel region - Statements that bind to an OpenMP PARALLELconstruct and are
available for execution by multiple threads.

private - Accessible to only one thread in the team for a parallel region. Note that
there are several ways to specify that a variable is private: use as a local variable in
a subprogram called from a parallel region, in a THREADPRIVATEdirective, in a
PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or REDUCTIONclause, or use of the variable
as a loop control variable.

serialize – When a parallel region is serialized, it is executed by a single thread. A
parallel region is said to be serialized if and only if at least one of the following are
true:

1. The logical expression in an IF clause attached to the parallel directive evaluates
to .FALSE. .

2. It is a nested parallel region and nested parallelism is disabled.

3. It is a nested parallel region and the implementation chooses to serialize nested
parallel regions.

2 Version 2.0, November
2000

158
159
160

161
162
163
164

165
166
167
168
169

170

171

172
173
174

175
176
177
178
179

180
181

182
183
184
185
186

187
188
189

190
191

192

193
194

OpenMP Fortran Application Program Interface Introduction [1]

serial region - Statements that do not bind to an OpenMP PARALLELconstruct. In
other words, these statements are executed by the master thread outside of a parallel
region.

shared - Accessible to all threads in the team for a parallel region.

structured block - A structured block is a collection of one or more executable
statements with a single point of entry at the top and a single point of exit at the
bottom. Execution must always proceed with entry at the top of the block and exit at
the bottom with only one exception: it is allowed to have a STOPstatement inside a
structured block. This statement has the well defined behavior of terminating the
entire program.

undefined - For the contents of a data object, the property of not having a determinate
value. The result of a reference to a data object with undefined contents is
unspecified. For the allocation status or association status of a data object, the
property of not having a valid status. The behavior of an operation which relies upon
an undefined allocation status or association status is unspecified.

unspecified - A behavior or result that is unspecified is not constrained by
requirements in the OpenMP Fortran API. Possibly resulting from the misuse of a
language construct or other error, such a behavior or result may not be knowable prior
to the execution of a program, and may lead to premature termination of the program.

variable – A data object whose value can be defined and redefined during the
execution of a program. It may be a named data object, an array element, an array
section, a structure component, or a substring.

white space - A sequence of space or tab characters.

1.3 Execution Model

The OpenMP Fortran API uses the fork-join model of parallel execution. A program
that is written with the OpenMP Fortran API begins execution as a single process,
called the master thread of execution. The master thread executes sequentially until
the first parallel construct is encountered. In the OpenMP Fortran API, the
PARALLEL/END PARALLELdirective pair constitutes the parallel construct. When a
parallel construct is encountered, the master thread creates a team of threads, and
the master thread becomes the master of the team. The statements in the program
that are enclosed by the parallel construct, including routines called from within the
enclosed statements, are executed in parallel by each thread in the team. The
statements enclosed lexically within a construct define the lexical extent of the
construct. The dynamic extent further includes the routines called from within the
construct.

Version 2.0, November 2000 3

195
196
197

198

199
200
201
202
203
204

205
206
207
208
209

210
211
212
213

214
215
216

217

218

219
220
221
222
223
224
225
226
227
228
229
230

Introduction [1] OpenMP Fortran Application Program Interface

Upon completion of the parallel construct, the threads in the team synchronize and
only the master thread continues execution. Any number of parallel constructs can be
specified in a single program. As a result, a program may fork and join many times
during execution.

The OpenMP Fortran API allows programmers to use directives in routines called
from within parallel constructs. Directives that do not appear in the lexical extent of
the parallel construct but lie in the dynamic extent are called orphaned directives.
Orphaned directives allow users to execute major portions of their program in parallel
with only minimal changes to the sequential program. With this functionality, users
can code parallel constructs at the top levels of the program call tree and use
directives to control execution in any of the called routines.

1.4 Compliance

An implementation of the OpenMP Fortran API is OpenMP-compliant if it recognizes
and preserves the semantics of all the elements of this specification as laid out in
chapters 1, 2, 3, and 4. The appendixes are for information purposes only and are not
part of the specification.

The OpenMP Fortran API is an extension to the base language that is supported by
an implementation. If the base language does not support a language construct or
extension that appears in this document, the OpenMP implementation is not required
to support it.

All standard Fortran intrinsics and library routines and Fortran 90 ALLOCATEand
DEALLOCATEstatements must be thread-safe in a compliant implementation.
Unsynchronized use of such intrinsics and routines by different threads in a parallel
region must produce correct results (though not necessarily the same as serial
execution results, as in the case of random number generation intrinsics, for example).

Unsynchronized use of Fortran output statements to the same unit may result in
output in which data written by different threads is interleaved. Similarly,
unsynchronized input statements from the same unit may read data in an interleaved
fashion. Unsynchronized use of Fortran I/O, such that each thread accesses a
different unit, produces the same results as serial execution of the I/O statements.

In both Fortran 90 and Fortran 95, a variable that has explicit initialization
implicitly has the SAVEattribute. This is not the case in FORTRAN 77. However, an
implementation of OpenMP Fortran must give such a variable the SAVEattribute,
regardless of the version of Fortran upon which it is based.

The OpenMP Fortran API specifies that certain behavior is
“implementation-dependent”. A conforming OpenMP implementation is required to

4 Version 2.0, November
2000

231
232
233
234

235
236
237
238
239
240
241

242

243
244
245
246

247
248
249
250

251
252
253
254
255

256
257
258
259
260

261
262
263
264

265
266

OpenMP Fortran Application Program Interface Introduction [1]

define and document its behavior in these cases. See Appendix E, page 113, for a list
of implementation-dependent behaviors.

1.5 Organization

The rest of this document is organized into the following chapters:

• Chapter 2, page 7, describes the compiler directives.

• Chapter 3, page 47, describes the run-time library routines.

• Chapter 4, page 59, describes the environment variables.

• Appendix A, page 63, contains examples.

• Appendix B, page 95, describes stub run-time library routines.

• Appendix C, page 101, has information about using the SCHEDULEclause.

• Appendix D, page 105, has examples of interfaces for the run-time library routines.

• Appendix E, page 113, describes implementation-dependent behaviors.

• Appendix F, page 115, describes the new features in the OpenMP Fortran v2.0 API.

Version 2.0, November 2000 5

267
268

269

270

271

272

273

274

275

276

277

278

279

Directives [2]

Directives are special Fortran comments that are identified with a unique sentinel.
The directive sentinels are structured so that the directives are treated as Fortran
comments. Compilers that support the OpenMP Fortran API include a command line
option that activates and allows interpretation of all OpenMP compiler directives. In
the remainder of this document, the phrase OpenMP compilation is used to mean
that OpenMP directives are interpreted during compilation.

This chapter addresses the following topics:

• Section 2.1, page 7, describes the directive format.

• Section 2.2, page 12, describes the parallel region construct.

• Section 2.3, page 15, describes the work-sharing constructs.

• Section 2.4, page 22, describes the combined parallel work-sharing constructs.

• Section 2.5, page 25, describes the synchronization constructs and the MASTER
directive.

• Section 2.6, page 31, describes the data environment, which includes directives
and clauses that affect the data environment.

• Section 2.7, page 45, describes directive binding.

• Section 2.8, page 45, describes directive nesting.

2.1 OpenMP Directive Format

The format of an OpenMP directive is as follows:

sentinel directive_name [clause[[,] clause]...]

All OpenMP compiler directives must begin with a directive sentinel. Directives are
case-insensitive. Clauses can appear in any order after the directive name. Clauses
on directives can be repeated as needed, subject to the restrictions listed in the
description of each clause. Directives cannot be embedded within continued
statements, and statements cannot be embedded within directives. Comments
preceded by an exclamation point may appear on the same line as a directive.

The following sections describe the OpenMP directive format:

Version 2.0, November 2000 7

280

281
282
283
284
285
286

287

288

289

290

291

292
293

294
295

296

297

298

299

300

301
302
303
304
305
306

307

Directives [2] OpenMP Fortran Application Program Interface

• Section 2.1.1, page 8, describes directive sentinels.

• Section 2.1.2, page 10, describes comments inside directives.

• Section 2.1.3, page 10, describes conditional compilation.

2.1.1 Directive Sentinels

The directive sentinels accepted by an OpenMP-compliant compiler differ depending
on the Fortran source form being used. The !$OMP sentinel is accepted when
compiling either fixed source form files or free source form files. The C$OMPand
*$OMPsentinels are accepted only when compiling fixed source form files.

The following sections contain more information on using the different sentinels.

2.1.1.1 Fixed Source Form Directive Sentinels

The OpenMP Fortran API accepts the following sentinels in fixed source form files:

!$OMP | C$OMP | *$OMP

Sentinels must start in column one and appear as a single word with no intervening
white space (spaces and/or tab characters). Fortran fixed form line length, case
sensitivity, white space, continuation, and column rules apply to the directive line.
Initial directive lines must have a space or zero in column six, and continuation
directive lines must have a character other than a space or a zero in column six.

Example: The following formats for specifying directives are equivalent (the first line
represents the position of the first 9 columns):

C23456789
!$OMP PARALLEL DO SHARED(A,B,C)

C$OMP PARALLEL DO
C$OMP+SHARED(A,B,C)

C$OMP PARALLELDOSHARED(A,B,C)

2.1.1.2 Free Source Form Directive Sentinel

The OpenMP Fortran API accepts the following sentinel in free source form files:

8 Version 2.0, November
2000

308

309

310

311

312
313
314
315

316

317

318

319

320
321
322
323
324

325
326

327
328

329
330

331

332

333

OpenMP Fortran Application Program Interface Directives [2]

!$OMP

The sentinel can appear in any column as long as it is preceded only by white space
(spaces and tab characters). It must appear as a single word with no intervening
white space. Fortran free form line length, case sensitivity, white space, and
continuation rules apply to the directive line. Initial directive lines must have a space
after the sentinel. Continued directive lines must have an ampersand as the last
nonblank character on the line, prior to any comment placed inside the directive.
Continuation directive lines can have an ampersand after the directive sentinel with
optional white space before and after the ampersand.

One or more blanks or tabs must be used to separate adjacent keywords in directives
in free source form, except in the following cases, where white space is optional
between the given pair of keywords:

END CRITICAL

END DO

END MASTER

END ORDERED

END PARALLEL

END SECTIONS

END SINGLE

END WORKSHARE

PARALLEL DO

PARALLEL SECTIONS

PARALLEL WORKSHARE

Example: The following formats for specifying directives are equivalent (the first line
represents the position of the first 9 columns):

!23456789
!$OMP PARALLEL DO &

!$OMP SHARED(A,B,C)

!$OMP PARALLEL &
!$OMP&DO SHARED(A,B,C)

!$OMP PARALLELDO SHARED(A,B,C)

In order to simplify the presentation, the remainder of this document uses the !$OMP
sentinel.

Version 2.0, November 2000 9

334

335
336
337
338
339
340
341
342

343
344
345

346

347

348

349

350

351

352

353

354

355

356

357
358

359
360
361

362
363

364

365
366

Directives [2] OpenMP Fortran Application Program Interface

2.1.2 Comments Inside Directives

The OpenMP Fortran API accepts comments placed inside directives. The rules
governing such comments depend on the Fortran source form being used.

2.1.2.1 Comments in Directives with Fixed Source Form

Comments may appear on the same line as a directive. The exclamation point
initiates a comment when it appears after column 6. The comment extends to the end
of the source line and is ignored. If the first nonblank character after the directive
sentinel of an initial or continuation directive line is an exclamation point, the line is
ignored.

2.1.2.2 Comments in Directives with Free Source Form

Comments may appear on the same line as a directive. The exclamation point
initiates a comment. The comment extends to the end of the source line and is
ignored. If the first nonblank character after the directive sentinel is an exclamation
point, the line is ignored.

2.1.3 Conditional Compilation

The OpenMP Fortran API permits Fortran lines to be compiled conditionally. The
directive sentinels for conditional compilation that are accepted by an
OpenMP-compliant compiler depend on the Fortran source form being used. The !$
sentinel is accepted when compiling either fixed source form files or free source form
files. The C$ and *$ sentinels are accepted only when compiling fixed source form.

During OpenMP compilation, the sentinel is replaced by two spaces, and the rest of
the line is treated as a normal Fortran line.

If an OpenMP-compliant compiler supports a macro preprocessor (for example, cpp),
the Fortran processor must define the symbol _OPENMPto be used for conditional
compilation. This symbol is defined during OpenMP compilation to have the decimal
value YYYYMMwhere YYYYand MMare the year and month designations of the version
of the OpenMP Fortran API that the implementation supports.

The following sections contain more information on using the different sentinels for
conditional compilation. (See Section A.2, page 63, for an example.)

10 Version 2.0, November
2000

367

368
369

370

371
372
373
374
375

376

377
378
379
380

381

382
383
384
385
386

387
388

389
390
391
392
393

394
395

OpenMP Fortran Application Program Interface Directives [2]

2.1.3.1 Fixed Source Form Conditional Compilation Sentinels

The OpenMP Fortran API accepts the following conditional compilation sentinels in
fixed source form files:

!$ | C$ | *$ | c$

The sentinel must start in column 1 and appear as a single word with no intervening
white space. Fortran fixed form line length, case sensitivity, white space,
continuation, and column rules apply to the line. After the sentinel is replaced with
two spaces, initial lines must have a space or zero in column 6 and only white space
and numbers in columns 1 through 5. After the sentinel is replaced with two spaces,
continuation lines must have a character other than a space or zero in column 6 and
only white space in columns 1 through 5. If these criteria are not met, the line is
treated as a comment and ignored.

Example: The following forms for specifying conditional compilation in fixed source
form are equivalent:

C23456789
!$ 10 IAM = OMP_GET_THREAD_NUM() +
!$ & INDEX

#ifdef _OPENMP
10 IAM = OMP_GET_THREAD_NUM() +

& INDEX
#endif

2.1.3.2 Free Source Form Conditional Compilation Sentinel

The OpenMP Fortran API accepts the following conditional compilation sentinel in
free source form files:

!$

This sentinel can appear in any column as long as it is preceded only by white space.
It must appear as a single word with no intervening white space. Fortran free source
form line length, case sensitivity, white space, and continuation rules apply to the
line. Initial lines must have a space after the sentinel. Continued lines must have an
ampersand as the last nonblank character on the line, prior to any comment appearing
on the conditionally compiled line. Continuation lines can have an ampersand after
the sentinel, with optional white space before and after the ampersand.

Version 2.0, November 2000 11

396

397
398

399

400
401
402
403
404
405
406
407

408
409

410
411
412

413
414
415
416

417

418
419

420

421
422
423
424
425
426
427

Directives [2] OpenMP Fortran Application Program Interface

Example: The following forms for specifying conditional compilation in free source
form are equivalent:

C23456789
!$ IAM = OMP_GET_THREAD_NUM() + &
!$& INDEX

#ifdef _OPENMP
IAM = OMP_GET_THREAD_NUM() + &

INDEX
#endif

2.2 Parallel Region Construct

The PARALLELand END PARALLELdirectives define a parallel region. A parallel
region is a block of code that is to be executed by multiple threads in parallel. This is
the fundamental parallel construct in OpenMP that starts parallel execution. These
directives have the following format:

!$OMP PARALLEL [clause[[,] clause]...]

block

!$OMP END PARALLEL

clause can be one of the following:

• PRIVATE(list)

• SHARED(list)

• DEFAULT(PRIVATE | SHARED | NONE)

• FIRSTPRIVATE(list)

• REDUCTION({operator| intrinsic_procedure_name}: list)

• COPYIN(list)

• IF(scalar_logical_expression)

• NUM_THREADS(scalar_integer_expression)

The IF and NUM_THREADSclauses are described in this section. The PRIVATE,
SHARED, DEFAULT, FIRSTPRIVATE, REDUCTION, and COPYINclauses are described in

12 Version 2.0, November
2000

428
429

430
431
432

433
434
435
436

437

438
439
440
441

442

443

444

445

446

447

448

449

450

451

452

453

454
455

OpenMP Fortran Application Program Interface Directives [2]

Section 2.6.2, page 34. For an example of how to implement coarse-grain parallelism
using these directives, see Section A.3, page 64.

When a thread encounters a parallel region, it creates a team of threads, and it
becomes the master of the team. The master thread is a member of the team. The
number of threads in the team is controlled by environment variables, the
NUM_THREADSclause, and/or library calls. For more information on environment
variables, see Chapter 4, page 59. For more information on library routines, see
Chapter 3, page 47.

If a parallel region is encountered while dynamic adjustment of the number of
threads is disabled, and the number of threads specified for the parallel region
exceeds the number that the run-time system can supply, the behavior of the program
is implementation-dependent. An implementation may, for example, interrupt the
execution of the program, or it may serialize the parallel region.

The number of physical processors actually hosting the threads at any given time is
implementation-dependent. Once created, the number of threads in the team remains
constant for the duration of that parallel region. It can be changed either explicitly by
the user or automatically by the run-time system from one parallel region to another.
The OMP_SET_DYNAMIClibrary routine and the OMP_DYNAMICenvironment variable
can be used to enable and disable the automatic adjustment of the number of threads.
For more information on the OMP_SET_DYNAMIClibrary routine, see Section 3.1.7,
page 51. For more information on the OMP_DYNAMICenvironment variable, see
Section 4.3, page 60.

Within the dynamic extent of a parallel region, thread numbers uniquely identify
each thread. Thread numbers are consecutive whole numbers ranging from zero for
the master thread up to one less than the number of threads within the team. The
value of the thread number is returned by a call to the OMP_GET_THREAD_NUMlibrary
routine (for more information see Section 3.1.4, page 49). If dynamic threads are
disabled when the parallel region is encountered, and remain disabled until a
subsequent, non-nested parallel region is encountered, then the thread numbers for
the two regions are consistent in that the thread identified with a given thread
number in the earlier parallel region will be identified with the same thread number
in the later region.

block denotes a structured block of Fortran statements. It is noncompliant to branch
into or out of the block. The code contained within the dynamic extent of the parallel
region is executed by each thread. The code path can be different for different threads.

The END PARALLELdirective denotes the end of the parallel region. There is an
implied barrier at this point. Only the master thread of the team continues execution
past the end of a parallel region.

If a thread in a team executing a parallel region encounters another parallel region, it
creates a new team, and it becomes the master of that new team. This second parallel
region is called a nested parallel region. By default, nested parallel regions are

Version 2.0, November 2000 13

456
457

458
459
460
461
462
463

464
465
466
467
468

469
470
471
472
473
474
475
476
477

478
479
480
481
482
483
484
485
486
487

488
489
490

491
492
493

494
495
496

Directives [2] OpenMP Fortran Application Program Interface

serialized; that is, they are executed by a team composed of one thread. This default
behavior can be changed by using either the OMP_SET_NESTEDlibrary routine or the
OMP_NESTEDenvironment variable. For more information on the OMP_SET_NESTED
library routine, see Section 3.1.9, page 52. For more information on the OMP_NESTED
environment variable, see Section 4.4, page 61.

If an IF clause is present, the enclosed code region is executed in parallel only if the
scalar_logical_expression evaluates to .TRUE. . Otherwise, the parallel region is
serialized. The expression must be a scalar Fortran logical expression. In the absence
of an IF clause, the region is executed as if an IF(.TRUE.) clause were specified.

The NUM_THREADSclause is used to request that a specific number of threads is used
in a parallel region. It supersedes the number of threads indicated by the
OMP_SET_NUM_THREADSlibrary routine or the OMP_NUM_THREADSenvironment
variable for the parallel region it is applied to. Subsequent parallel regions, however,
are not affected unless they have their own NUM_THREADSclauses.
scalar_integer_expression must evaluate to a positive scalar integer value.

If execution of the program terminates while inside a parallel region, execution of all
threads terminates. All work before the previous barrier encountered by the threads
is guaranteed to be completed; none of the work after the next barrier that the
threads would have encountered will have been started. The amount of work done by
each thread in between the barriers and the order in which the threads terminate are
unspecified.

The following restrictions apply to parallel regions:

• The PARALLEL/END PARALLELdirective pair must appear in the same routine in
the executable section of the code.

• The code enclosed in a PARALLEL/END PARALLELpair must be a structured block.
It is noncompliant to branch into or out of a parallel region.

• Only a single IF clause can appear on the directive. The IF expression is
evaluated outside the context of the parallel region. Results are unspecified if the
IF expression contains a function reference that has side effects.

• Only a single NUM_THREADSclause can appear on the directive. The NUM_THREADS
expression is evaluated outside the context of the parallel region. Results are
unspecified if the NUM_THREADSexpression contains a function reference that has
side effects.

• If the dynamic threads mechanism is enabled, then the number of threads
requested by the NUM_THREADSclause is the maximum number to use in the
parallel region.

• The order of evaluation of IF clauses and NUM_THREADSclauses is unspecified.

14 Version 2.0, November
2000

497
498
499
500
501

502
503
504
505

506
507
508
509
510
511

512
513
514
515
516
517

518

519
520

521
522

523
524
525

526
527
528
529

530
531
532

533

OpenMP Fortran Application Program Interface Directives [2]

• Unsynchronized use of Fortran I/O statements by multiple threads on the same
unit has unspecified behavior.

2.3 Work-sharing Constructs

A work-sharing construct divides the execution of the enclosed code region among the
members of the team that encounter it. A work-sharing construct must be enclosed
dynamically within a parallel region in order for the directive to execute in parallel.
When a work-sharing construct is not enclosed dynamically within a parallel region,
it is treated as though the thread that encounters it were a team of size one. The
work-sharing directives do not launch new threads, and there is no implied barrier on
entry to a work-sharing construct.

The following restrictions apply to the work-sharing directives:

• Work-sharing constructs and BARRIERdirectives must be encountered by all
threads in a team or by none at all.

• Work-sharing constructs and BARRIERdirectives must be encountered in the same
order by all threads in a team.

The following sections describe the work-sharing directives:

• Section 2.3.1, page 15, describes the DOand END DOdirectives.

• Section 2.3.2, page 18, describes the SECTIONS, SECTION, and END SECTIONS
directives.

• Section 2.3.3, page 20, describes the SINGLE and END SINGLEdirectives.

• Section 2.3.4, page 20, describes the WORKSHAREand END WORKSHAREdirectives.

If NOWAITis specified on the END DO, END SECTIONS, END SINGLE, or
END WORKSHAREdirective, an implementation may omit any code to synchronize the
threads at the end of the worksharing construct. In this case, threads that finish
early may proceed straight to the instructions following the work-sharing construct
without waiting for the other members of the team to finish the work-sharing
construct. (See Section A.4, page 64, for an example with the DOdirective.)

2.3.1 DODirective

The DOdirective specifies that the iterations of the immediately following DOloop
must be executed in parallel. The loop that follows a DOdirective cannot be a

Version 2.0, November 2000 15

534
535

536

537
538
539
540
541
542
543

544

545
546

547
548

549

550

551
552

553

554

555
556
557
558
559
560

561

562
563

Directives [2] OpenMP Fortran Application Program Interface

DO WHILEor a DOloop without loop control. The iterations of the DOloop are
distributed across threads that already exist.

The format of this directive is as follows:

!$OMP DO [clause[[,] clause]...]

do_loop

[!$OMP END DO[NOWAIT]]

The do_loop may be a do_construct, an outer_shared_do_construct, or an
inner_shared_do_construct. A DOconstruct that contains several DOstatements that
share the same DOtermination statement syntactically consists of a sequence of
outer_shared_do_constructs, followed by a single inner_shared_do_construct. If an END
DOdirective follows such a DOconstruct, a DOdirective can only be specified for the
first (i.e., the outermost) outer_shared_do_construct. (See examples in Section A.22,
page 81.)

clause can be one of the following:

• PRIVATE(list)

• FIRSTPRIVATE(list)

• LASTPRIVATE(list)

• REDUCTION({operator| intrinsic_procedure_name}: list)

• SCHEDULE(type[, chunk])

• ORDERED

The SCHEDULEand ORDEREDclauses are described in this section. The PRIVATE,
FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONclauses are described in Section
2.6.2, page 34.

If ordered sections are contained in the dynamic extent of the DOdirective, the
ORDEREDclause must be present. For more information on ordered sections, see the
ORDEREDdirective in Section 2.5.6, page 30.

The SCHEDULEclause specifies how iterations of the DOloop are divided among the
threads of the team. chunk must be a scalar integer expression whose value is
positive. The chunk expression is evaluated outside the context of the DOconstruct.
Results are unspecified if the chunk expression contains a function reference that has
side effects. Within the SCHEDULE(type[, chunk]) clause syntax, type can be one of
the following:

16 Version 2.0, November
2000

564
565

566

567

568

569

570
571
572
573
574
575
576

577

578

579

580

581

582

583

584
585
586

587
588
589

590
591
592
593
594
595

OpenMP Fortran Application Program Interface Directives [2]

Table 1. SCHEDULEClause Values

type Effect

STATIC When SCHEDULE(STATIC, chunk) is specified, iterations are divided
into pieces of a size specified by chunk. The pieces are statically
assigned to threads in the team in a round-robin fashion in the order
of the thread number.

When chunk is not specified, the iteration space is divided into
contiguous chunks that are approximately equal in size with one
chunk assigned to each thread.

DYNAMIC When SCHEDULE(DYNAMIC,chunk) is specified, the iterations are
broken into pieces of a size specified by chunk. As each thread
finishes a piece of the iteration space, it dynamically obtains the next
set of iterations.

When no chunk is specified, it defaults to 1.

GUIDED When SCHEDULE(GUIDED,chunk) is specified, the iteration space is
divided into pieces such that the size of each successive piece is
exponentially decreasing. chunk specifies the size of the smallest
piece, except possibly the last. The size of the initial piece is
implementation-dependent. As each thread finishes a piece of the
iteration space, it dynamically obtains the next available piece.

When no chunk is specified, it defaults to 1.

RUNTIME When SCHEDULE(RUNTIME)is specified, the decision regarding
scheduling is deferred until run time. The schedule type and chunk
size can be chosen at run time by setting the OMP_SCHEDULE
environment variable. If this environment variable is not set, the
resulting schedule is implementation-dependent. For more
information on the OMP_SCHEDULEenvironment variable, see Section
4.1, page 59.

When SCHEDULE(RUNTIME)is specified, it is noncompliant to specify
chunk.

In the absence of the SCHEDULEclause, the default schedule is
implementation-dependent. An OpenMP-compliant program should not rely on a
particular schedule for correct execution. Users should not rely on a particular
implementation of a schedule type for correct execution, because it is possible to have
variations in the implementations of the same schedule type across different
compilers.

Threads that complete execution of their assigned loop iterations wait at a barrier at
the END DOdirective if the NOWAITclause is not specified. The functionality of

Version 2.0, November 2000 17

596

597

598
599
600
601

602
603
604

605
606
607
608

609

610
611
612
613
614
615

616

617
618
619
620
621
622
623

624
625

626
627
628
629
630
631

632
633

Directives [2] OpenMP Fortran Application Program Interface

NOWAITis specified in Section 2.3, page 15. If an END DOdirective is not specified, an
END DOdirective is assumed at the end of the DOloop. If NOWAITis specified on the
END DOdirective, the implied FLUSHat the END DOdirective is not performed. (See
Section A.4, page 64, for an example of using the NOWAITclause. See Section 2.5.5,
page 29, for a description of implied FLUSH.)

Parallel DOloop control variables are block-level entities within the DOloop. If the
loop control variable also appears in the LASTPRIVATE list of the parallel DO, it is
copied out to a variable of the same name in the enclosing PARALLELregion. The
variable in the enclosing PARALLELregion must be SHAREDif it is specified on the
LASTPRIVATE list of a DOdirective.

The following restrictions apply to the DOdirectives:

• It is noncompliant to branch out of a DOloop associated with a DOdirective.

• The values of the loop control parameters of the DOloop associated with a DO
directive must be the same for all the threads in the team.

• The DOloop iteration variable must be of type integer.

• If used, the END DOdirective must appear immediately after the end of the loop.

• Only a single SCHEDULEclause can appear on a DOdirective.

• Only a single ORDEREDclause can appear on a DOdirective.

• chunk must be a positive scalar integer expression.

• The value of the chunk parameter must be the same for all of the threads in the
team.

2.3.2 SECTIONSDirective

The SECTIONSdirective is a non-iterative work-sharing construct that specifies that
the enclosed sections of code are to be divided among threads in the team. Each
section is executed once by a thread in the team.

The format of this directive is as follows:

18 Version 2.0, November
2000

634
635
636
637
638

639
640
641
642
643

644

645

646
647

648

649

650

651

652

653
654

655

656
657
658

659

OpenMP Fortran Application Program Interface Directives [2]

!$OMP SECTIONS [clause[[,] clause]...]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END SECTIONS[NOWAIT]

block denotes a structured block of Fortran statements.

clause can be one of the following:

• PRIVATE(list)

• FIRSTPRIVATE(list)

• LASTPRIVATE(list)

• REDUCTION({ operator| intrinsic_procedure_name}: list)

The PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONclauses are described
in Section 2.6.2, page 34.

Each section is preceded by a SECTIONdirective, though the SECTIONdirective is
optional for the first section. The SECTIONdirectives must appear within the lexical
extent of the SECTIONS/END SECTIONSdirective pair. The last section ends at the
END SECTIONSdirective. Threads that complete execution of their sections wait at a
barrier at the END SECTIONSdirective if the NOWAITclause is not specified. The
functionality of NOWAITis described in Section 2.3, page 15.

The following restrictions apply to the SECTIONSdirective:

• The code enclosed in a SECTIONS/END SECTIONSdirective pair must be a
structured block. In addition, each constituent section must also be a structured
block. It is noncompliant to branch into or out of the constituent section blocks.

• It is noncompliant for a SECTIONdirective to be outside the lexical extent of the
SECTIONS/END SECTIONSdirective pair. (See Section A.8, page 67 for an example
that uses these directives.)

Version 2.0, November 2000 19

660

661

662

663

664

665

666

667

668

669

670

671

672

673
674

675
676
677
678
679
680

681

682
683
684

685
686
687

Directives [2] OpenMP Fortran Application Program Interface

2.3.3 SINGLE Directive

The SINGLE directive specifies that the enclosed code is to be executed by only one
thread in the team. Threads in the team that are not executing the SINGLE directive
wait at a barrier at the END SINGLEdirective if the NOWAITclause is not specified.
The functionality of NOWAITis described in Section 2.3, page 15.

The format of this directive is as follows:

!$OMP SINGLE [clause[[,] clause]...]

block

!$OMP END SINGLE [end_single_modifier]

where end_single_modifier is either COPYPRIVATE(list)[[,]COPYPRIVATE(list)...]
or NOWAIT.

block denotes a structured block of Fortran statements.

clause can be one of the following:

• PRIVATE(list)

• FIRSTPRIVATE(list)

The PRIVATE, FIRSTPRIVATE, and COPYPRIVATEclauses are described in Section
2.6.2, page 34.

The following restriction applies to the SINGLE directive:

• The code enclosed in a SINGLE/END SINGLEdirective pair must be a structured
block. It is noncompliant to branch into or out of the block.

See Section A.9, page 67, for an example of the SINGLE directive.

The following restriction applies to the END SINGLEdirective:

• Specification of both a COPYPRIVATEclause and a NOWAITclause on the same
END SINGLEdirective is noncompliant.

2.3.4 WORKSHAREDirective

The WORKSHAREdirective divides the work of executing the enclosed code into separate
units of work, and causes the threads of the team to share the work of executing the
enclosed code such that each unit is executed only once. The units of work may be
assigned to threads in any manner as long as each unit is executed exactly once.

20 Version 2.0, November
2000

688

689
690
691
692

693

694

695

696

697
698

699

700

701

702

703
704

705

706
707

708

709

710
711

712

713
714
715
716

OpenMP Fortran Application Program Interface Directives [2]

!$OMP WORKSHARE

block

!$OMP END WORKSHARE[NOWAIT]

A BARRIERis implied following the enclosed code if the NOWAITclause is not specified
on the END WORKSHAREdirective. The functionality of NOWAITis described in Section
2.3, page 15. An implementation of the WORKSHAREdirective must insert any
synchronization that is required to maintain standard Fortran semantics. For
example, the effects of one statement within block must appear to occur before the
execution of succeeding statements, and the evaluation of the right hand side of an
assignment must appear to have been completed prior to the effects of assigning to
the left hand side.

The statements in block are divided into units of work as follows:

• For array expressions within each statement, including transformational array
intrinsic functions that compute scalar values from arrays:

– Evaluation of each element of the array expression is a unit of work.

– Evaluation of transformational array intrinsic functions may be freely
subdivided into any number of units of work.

• If a WORKSHAREdirective is applied to an array assignment statement, the
assignment of each element is a unit of work.

• If a WORKSHAREdirective is applied to a scalar assignment statement, the
assignment operation is a single unit of work.

• If a WORKSHAREdirective is applied to a reference to an elemental function,
application of the function to the corresponding elements of any array argument is
treated as a unit of work. Hence, if any actual argument in a reference to an
elemental function is an array, the reference is treated in the same way as if the
function had been applied separately to corresponding elements of each array
actual argument.

• If a WORKSHAREdirective is applied to a WHEREstatement or construct, the
evaluation of the mask expression and the masked assignments are workshared.

• If a WORKSHAREdirective is applied to a FORALLstatement or construct, the
evaluation of the mask expression, expressions occurring in the specification of the
iteration space, and the masked assignments are workshared.

• For ATOMICdirectives and their corresponding assignments, the update of each
scalar variable is a single unit of work.

• For CRITICAL constructs, each construct is a single unit of work.

Version 2.0, November 2000 21

717

718

719

720
721
722
723
724
725
726
727

728

729
730

731

732
733

734
735

736
737

738
739
740
741
742
743

744
745

746
747
748

749
750

751

Directives [2] OpenMP Fortran Application Program Interface

• For PARALLELconstructs, each construct is a single unit of work with respect to
the WORKSHAREconstruct. The statements contained in PARALLELconstructs are
executed by new teams of threads formed for each PARALLELdirective.

• If none of the rules above apply to a portion of a statement in block, then that
portion is a single unit of work.

The transformational array intrinsic functions are MATMUL, DOT_PRODUCT, SUM,
PRODUCT, MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD, PACK, UNPACK, RESHAPE,
TRANSPOSE, EOSHIFT, CSHIFT, MINLOC, and MAXLOC.

If an array expression in the block references the value, association status, or
allocation status of PRIVATE variables, the value of the expression is undefined,
unless the same value would be computed by every thread.

If an array assignment, a scalar assignment, a masked array assignment, or a FORALL
assignment assigns to a private variable in the block, the result is unspecified.

The WORKSHAREdirective causes the sharing of work to occur only in the lexically
enclosed block.

The following restrictions apply to the WORKSHAREdirective:

• block may contain statements which bind to lexically enclosed PARALLEL
constructs. Statements in these PARALLELconstructs are not restricted.

• block may contain ATOMICdirectives and CRITICAL constructs.

• block must only contain array assignment statements, scalar assignment
statements, FORALLstatements, FORALLconstructs, WHEREstatements, or WHERE
constructs.

• block must not contain any user defined function calls unless the function is
ELEMENTAL.

• The code enclosed in a WORKSHARE/END WORKSHAREdirective pair must be a
structured block. It is noncompliant to branch into or out of the block.

2.4 Combined Parallel Work-sharing Constructs

The combined parallel work-sharing constructs are shortcuts for specifying a parallel
region that contains only one work-sharing construct. The semantics of these
directives are identical to that of explicitly specifying a PARALLELdirective followed
by a single work-sharing construct.

The following sections describe the combined parallel work-sharing directives:

22 Version 2.0, November
2000

752
753
754

755
756

757
758
759

760
761
762

763
764

765
766

767

768
769

770

771
772
773

774
775

776
777

778

779
780
781
782

783

OpenMP Fortran Application Program Interface Directives [2]

• Section 2.4.1, page 23, describes the PARALLEL DOand END PARALLEL DO
directives.

• Section 2.4.2, page 24, describes the PARALLEL SECTIONSand
END PARALLEL SECTIONSdirectives.

• Section 2.4.3, page 24, describes the PARALLEL WORKSHAREand
END PARALLEL WORKSHAREdirectives.

2.4.1 PARALLEL DODirective

The PARALLEL DOdirective provides a shortcut form for specifying a parallel region
that contains a single DOdirective. (See Section A.1, page 63, for an example.)

The format of this directive is as follows:

!$OMP PARALLEL DO[clause[[,] clause]...]

do_loop

[!$OMP END PARALLEL DO]

The do_loop may be a do_construct, an outer_shared_do_construct, or an
inner_shared_do_construct. A DOconstruct that contains several DOstatements that
share the same DOtermination statement syntactically consists of a sequence of
outer_shared_do_constructs, followed by a single inner_shared_do_construct. If an END
PARALLEL DOdirective follows such a DOconstruct, a PARALLEL DOdirective can
only be specified for the first (i.e., the outermost) outer_shared_do_construct. (See
Section A.22, page 81, for examples.)

clause can be one of the clauses accepted by either the PARALLELor the DOdirective.
For more information about the PARALLELdirective and the IF and NUM_THREADS
clauses, see Section 2.2, page 12. For more information about the DOdirective and the
SCHEDULEand ORDEREDclauses, see Section 2.3.1, page 15. For more information on
the remaining clauses, see Section 2.6.2, page 34.

If the END PARALLEL DOdirective is not specified, the PARALLEL DOends with the
DOloop that immediately follows the PARALLEL DOdirective. If used, the
END PARALLEL DOdirective must appear immediately after the end of the DOloop.

The semantics are identical to explicitly specifying a PARALLELdirective immediately
followed by a DOdirective.

Version 2.0, November 2000 23

784
785

786
787

788
789

790

791
792

793

794

795

796

797
798
799
800
801
802
803

804
805
806
807
808

809
810
811

812
813

Directives [2] OpenMP Fortran Application Program Interface

2.4.2 PARALLEL SECTIONSDirective

The PARALLEL SECTIONSdirective provides a shortcut form for specifying a parallel
region that contains a single SECTIONSdirective. The semantics are identical to
explicitly specifying a PARALLELdirective immediately followed by a SECTIONS
directive.

The format of this directive is as follows:

!$OMP PARALLEL SECTIONS[clause[[,] clause]...]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END PARALLEL SECTIONS

block denotes a structured block of Fortran statements.

clause can be one of the clauses accepted by either the PARALLELor the SECTIONS
directive. For more information about the PARALLELdirective and the IF and
NUM_THREADSclauses, see Section 2.2, page 12. For more information about the
SECTIONSdirective, see Section 2.3.2, page 18. For more information on the
remaining clauses, see Section 2.6.2, page 34.

The last section ends at the END PARALLEL SECTIONSdirective.

2.4.3 PARALLEL WORKSHAREDirective

The PARALLEL WORKSHAREdirective provides a shortcut form for specifying a
parallel region that contains a single WORKSHAREdirective. The semantics are
identical to explicitly specifying a PARALLELdirective immediately followed by a
WORKSHAREdirective.

The format of this directive is as follows:

24 Version 2.0, November
2000

814

815
816
817
818

819

820

821

822

823

824

825

826

827

828
829
830
831
832

833

834

835
836
837
838

839

OpenMP Fortran Application Program Interface Directives [2]

!$OMP PARALLEL WORKSHARE[clause[[,] clause]...]

block

!$OMP END PARALLEL WORKSHARE

block denotes a structured block of Fortran statements.

clause can be one of the clauses accepted by either the PARALLELor the WORKSHARE
directive. For more information about the PARALLELdirective and the IF and
NUM_THREADSclauses, see Section 2.2, page 12. For more information about the
remaining clauses, see Section 2.3.4, page 20.

2.5 Synchronization Constructs and the MASTERDirective

The following sections describe the synchronization constructs and the MASTER
directive:

• Section 2.5.1, page 25, describes the MASTERand END MASTERdirectives.

• Section 2.5.2, page 26, describes the CRITICAL and END CRITICAL directives.

• Section 2.5.3, page 26, describes the BARRIERdirective.

• Section 2.5.4, page 27, describes the ATOMICdirective.

• Section 2.5.5, page 29, describes the FLUSHdirective.

• Section 2.5.6, page 30, describes the ORDEREDand END ORDEREDdirectives.

2.5.1 MASTERDirective

The code enclosed within MASTERand END MASTERdirectives is executed by the
master thread of the team.

The format of this directive is as follows:

!$OMP MASTER

block

!$OMP END MASTER

Version 2.0, November 2000 25

840

841

842

843

844
845
846
847

848

849
850

851

852

853

854

855

856

857

858
859

860

861

862

863

Directives [2] OpenMP Fortran Application Program Interface

The other threads in the team skip the enclosed section of code and continue
execution. There is no implied barrier either on entry to or exit from the master
section.

The following restriction applies to the MASTERdirective:

• The code enclosed in a MASTER/ END MASTERdirective pair must be a structured
block. It is noncompliant to branch into or out of the block.

2.5.2 CRITICAL Directive

The CRITICAL and END CRITICAL directives restrict access to the enclosed code to
only one thread at a time.

The format of this directive is as follows:

!$OMP CRITICAL [(name)]

block

!$OMP END CRITICAL [(name)]

The optional name argument identifies the critical section.

A thread waits at the beginning of a critical section until no other thread is executing
a critical section with the same name. All unnamed CRITICAL directives map to the
same name. Critical section names are global entities of the program. If a name
conflicts with any other entity, the behavior of the program is unspecified.

The following restrictions apply to the CRITICAL directive:

• The code enclosed in a CRITICAL /END CRITICAL directive pair must be a
structured block. It is noncompliant to branch into or out of the block.

• If a name is specified on a CRITICAL directive, the same name must also be
specified on the END CRITICAL directive. If no name appears on the CRITICAL
directive, no name can appear on the END CRITICAL directive.

See Section A.5, page 64, for an example that uses named CRITICAL sections.

2.5.3 BARRIERDirective

The BARRIERdirective synchronizes all the threads in a team. When encountered,
each thread waits until all of the other threads in that team have reached this point.

26 Version 2.0, November
2000

864
865
866

867

868
869

870

871
872

873

874

875

876

877

878
879
880
881

882

883
884

885
886
887

888

889

890
891

OpenMP Fortran Application Program Interface Directives [2]

The format of this directive is as follows:

!$OMP BARRIER

The following restrictions apply to the BARRIERdirective:

• Work-sharing constructs and BARRIERdirectives must be encountered by all
threads in a team or by none at all.

• Work-sharing constructs and BARRIERdirectives must be encountered in the same
order by all threads in a team.

2.5.4 ATOMICDirective

The ATOMICdirective ensures that a specific memory location is updated atomically,
rather than exposing it to the possibility of multiple, simultaneous writing threads.

The format of this directive is as follows:

!$OMP ATOMIC

This directive applies only to the immediately following statement, which must have
one of the following forms:

x = x operator expr

x = expr operator x

x = intrinsic_procedure_name (x, expr_list)

x = intrinsic_procedure_name (expr_list, x)

In the preceding statements:

• x is a scalar variable of intrinsic type.

• expr is a scalar expression that does not reference x.

• expr_list is a comma-separated, non-empty list of scalar expressions that do not
reference x. When intrinsic_procedure_name refers to IAND, IOR, or IEOR, exactly
one expression must appear in expr_list.

• intrinsic_procedure_name is one of MAX, MIN, IAND, IOR, or IEOR.

Version 2.0, November 2000 27

892

893

894

895
896

897
898

899

900
901

902

903

904
905

906

907

908

909

910

911

912

913
914
915

916

Directives [2] OpenMP Fortran Application Program Interface

• operator is one of +, * , - , / , .AND. , .OR. , .EQV. , or .NEQV. .

• The operators in expr must have precedence equal to or greater than the
precedence of operator, x operator expr must be mathematically equivalent to x
operator (expr), and expr operator x must be mathematically equivalent to

(expr) operator x.

• The function intrinsic_procedure_name, the operator operator, and the assignment
must be the intrinsic procedure name, the intrinsic operator, and intrinsic
assignment.

This directive permits optimization beyond that of the necessary critical section
around the update of x. An implementation can rewrite the ATOMICdirective and the
corresponding assignment in the following way using a uniquely named critical
section for each object:

!$OMP ATOMIC
x = x operator expr

can be rewritten as

xtmp = expr
!$OMP CRITICAL (name)

x = x operator xtmp
!$OMP END CRITICAL (name)

where name is a unique name corresponding to the type or address of x.

Only the load and store of x are atomic; the evaluation of expr is not atomic. To avoid
race conditions, all updates of the location in parallel must be protected with the
ATOMICdirective, except those that are known to be free of race conditions.

The following restriction applies to the ATOMICdirective:

• All atomic references to the storage location of variable x throughout the program
are required to have the same type and type parameters.

Example:

!$OMP ATOMIC
Y(INDEX(I)) = Y(INDEX(I)) + B

See Section A.12, page 69, and Section A.23, page 82, for more examples using the
ATOMICdirective.

28 Version 2.0, November
2000

917

918
919
920
921

922
923
924

925
926
927
928

929
930

931

932
933
934
935

936

937
938
939

940

941
942

943

944
945

946
947

OpenMP Fortran Application Program Interface Directives [2]

2.5.5 FLUSHDirective

The FLUSHdirective, whether explicit or implied, identifies a sequence point at which
the implementation is required to ensure that each thread in the team has a
consistent view of certain variables in memory.

A consistent view requires that all memory operations (both reads and writes) that
occur before the FLUSHdirective in the program be performed before the sequence
point in the executing thread; similarly, all memory operations that occur after the
FLUSHmust be performed after the sequence point in the executing thread.

Implementations must ensure that modifications made to thread-visible variables
within the executing thread are made visible to all other threads at the sequence
point. For example, compilers must restore values from registers to memory, and
hardware may need to flush write buffers. Furthermore, implementations must
assume that thread-visible variables may have been updated by other threads at the
sequence point and must be retrieved from memory before their first use past the
sequence point.

Thread-visible variables are the following data items:

• Globally visible variables (in common blocks and in modules).

• Variables visible through host association.

• Local variables that have the SAVEattribute.

• Variables that appear in an EQUIVALENCEstatement with a thread-visible
variable.

• Local variables that have had their address taken and saved or have had their
address passed to another subprogram.

• Local variables that do not have the SAVEattribute that are declared shared in
the enclosing parallel region.

• Dummy arguments.

• All pointer dereferences.

The FLUSHdirective only provides consistency between operations within the
executing thread and global memory. To achieve a globally consistent view across all
threads, each thread must execute a FLUSHoperation.

The format of this directive is as follows:

!$OMP FLUSH [(list)]

This directive must appear at the precise point in the code at which the
synchronization is required. The optional list argument consists of a

Version 2.0, November 2000 29

948

949
950
951

952
953
954
955

956
957
958
959
960
961
962

963

964

965

966

967
968

969
970

971
972

973

974

975
976
977

978

979

980
981

Directives [2] OpenMP Fortran Application Program Interface

comma-separated list of variables that need to be flushed in order to avoid flushing
all variables. The list should contain only named variables (see Section A.13, page
69). The FLUSHdirective is implied for the following directives:

• BARRIER

• CRITICAL and END CRITICAL

• END DO

• END SECTIONS

• END SINGLE

• END WORKSHARE

• ORDEREDand END ORDERED

• PARALLELand END PARALLEL

• PARALLEL DOand END PARALLEL DO

• PARALLEL SECTIONSand END PARALLEL SECTIONS

• PARALLEL WORKSHAREand END PARALLEL WORKSHARE

The FLUSHdirective is not implied if a NOWAITclause is present.

It should be noted that the FLUSHdirective is not implied by the following constructs:

• DO

• MASTERand END MASTER

• SECTIONS

• SINGLE

• WORKSHARE

2.5.6 ORDEREDDirective

The code enclosed within ORDEREDand END ORDEREDdirectives is executed in the
order in which iterations would be executed in a sequential execution of the loop.

The format of this directive is as follows:

30 Version 2.0, November
2000

982
983
984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004
1005

1006

OpenMP Fortran Application Program Interface Directives [2]

!$OMP ORDERED

block

!$OMP END ORDERED

An ORDEREDdirective can appear only in the dynamic extent of a DOor PARALLEL DO
directive. The DOdirective to which the ordered section binds must have the ORDERED
clause specified (see Section 2.3.1, page 15). One thread is allowed in an ordered
section at a time. Threads are allowed to enter in the order of the loop iterations. No
thread can enter an ordered section until it is guaranteed that all previous iterations
have completed or will never execute an ordered section. This sequentializes and
orders code within ordered sections while allowing code outside the section to run in
parallel. ORDEREDsections that bind to different DOdirectives are independent of
each other.

The following restrictions apply to the ORDEREDdirective:

• The code enclosed in an ORDERED/END ORDEREDdirective pair must be a
structured block. It is noncompliant to branch into or out of the block.

• An ORDEREDdirective cannot bind to a DOdirective that does not have the
ORDEREDclause specified.

• An iteration of a loop to which a DOdirective is applied must not execute the same
ORDEREDdirective more than once, and it must not execute more than one
ORDEREDdirective.

See Section A.10, page 68, and Section A.24, page 83, for examples using the
ORDEREDdirective.

2.6 Data Environment Constructs

This section presents constructs for controlling the data environment during the
execution of parallel constructs:

• Section 2.6.1, page 32, describes the THREADPRIVATEdirective, which makes
common blocks or variables local to a thread.

• Section 2.6.2, page 34, describes directive clauses that affect the data environment.

• Section 2.6.3, page 42, describes the data environment rules.

Version 2.0, November 2000 31

1007

1008

1009

1010
1011
1012
1013
1014
1015
1016
1017
1018

1019

1020
1021

1022
1023

1024
1025
1026

1027
1028

1029

1030
1031

1032
1033

1034

1035

Directives [2] OpenMP Fortran Application Program Interface

2.6.1 THREADPRIVATEDirective

The THREADPRIVATEdirective makes named common blocks and named variables
private to a thread but global within the thread.

This directive must appear in the declaration section of a scoping unit in which the
common block or variable is declared. Although variables in common blocks can be
accessed by use association or host association, common block names cannot. This
means that a common block name specified in a THREADPRIVATEdirective must be
declared to be a common block in the same scoping unit in which the THREADPRIVATE
directive appears. Each thread gets its own copy of the common block or variable, so
data written to the common block or variable by one thread is not directly visible to
other threads. During serial portions and MASTERsections of the program, accesses
are to the master thread’s copy of the common block or variable. (See Section A.25,
page 84, for examples.)

On entry to the first parallel region, an instance of a variable or common block that
appears in a THREADPRIVATEdirective is created for each thread. A variable is said
to be affected by a COPYINclause if the variable appears in the COPYINclause or it is
in a common block that appears in the COPYINclause. If a THREADPRIVATEvariable
or a variable in a THREADPRIVATEcommon block is not affected by any COPYINclause
that appears on the first parallel region in a program, the variable or any subobject of
the variable is initially defined or undefined according to the following rules:

• If it has the ALLOCATABLEattribute, each copy created will have an initial
allocation status of not currently allocated.

• If it has the POINTERattribute:

– if it has an initial association status of disassociated, either through explicit
initialization or default initialization, each copy created will have an
association status of disassociated;

– otherwise, each copy created will have an association status of undefined.

• If it does not have either the POINTERor the ALLOCATABLEattribute:

– if it is initially defined, either through explicit initialization or default
initialization, each copy created is so defined;

– otherwise, each copy created is undefined.

On entry to a subsequent region, if the dynamic threads mechanism has been
disabled, the definition, association, or allocation status of a thread’s copy of a
THREADPRIVATEvariable or a variable in a THREADPRIVATEcommon block, that is
not affected by any COPYINclause that appears on the region, will be retained, and if
it was defined, its value will be retained as well. In this case, if a THREADPRIVATE
variable is referenced in both regions, then threads with the same thread number in
their respective regions will reference the same copy of that variable. If the dynamic

32 Version 2.0, November
2000

1036

1037
1038

1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

1049
1050
1051
1052
1053
1054
1055

1056
1057

1058

1059
1060
1061

1062

1063

1064
1065

1066

1067
1068
1069
1070
1071
1072
1073

OpenMP Fortran Application Program Interface Directives [2]

threads mechanism is enabled, the definition and association status of a thread’s copy
of the variable is undefined, and the allocation status of an allocatable array will be
implementation-dependent. A variable with the allocatable attribute must not appear
in a COPYINclause, although a structure that has an ultimate component with the
allocatable attribute may appear in a COPYINclause. For more information on
dynamic threads, see the OMP_SET_DYNAMIClibrary routine, Section 3.1.7, page 51,
and the OMP_DYNAMICenvironment variable, Section 4.3, page 60.

On entry to any parallel region, each thread’s copy of a variable that is affected by a
COPYINclause for the parallel region will acquire the allocation, association, or
definition status of the master thread’s copy, according to the following rules:

• If it has the POINTERattribute:

– if the master thread’s copy is associated with a target that each copy can
become associated with, each copy will become associated with the same target;

– if the master thread’s copy is disassociated, each copy will become disassociated;

– otherwise, each copy will have an undefined association status.

• If it does not have the POINTERattribute, each copy becomes defined with the
value of the master thread’s copy as if by intrinsic assignment.

If a common block or a variable that is declared in the scope of a module appears in a
THREADPRIVATEdirective, it implicitly has the SAVEattribute.

The format of this directive is as follows:

!$OMP THREADPRIVATE(list)

where list is a comma-separated list of named variables and named common blocks.
Common block names must appear between slashes.

The following restrictions apply to the THREADPRIVATEdirective:

• The THREADPRIVATEdirective must appear after every declaration of a thread
private common block.

• A blank common block cannot appear in a THREADPRIVATEdirective.

• It is noncompliant for a THREADPRIVATEvariable or common block or its
constituent variables to appear in any clause other than a COPYINclause or a
COPYPRIVATEclause. As a result, they are not permitted in a PRIVATE,
FIRSTPRIVATE, LASTPRIVATE, SHARED, or REDUCTIONclause. They are not
affected by the DEFAULTclause.

Version 2.0, November 2000 33

1074
1075
1076
1077
1078
1079
1080

1081
1082
1083

1084

1085
1086

1087

1088

1089
1090

1091
1092

1093

1094

1095
1096

1097

1098
1099

1100

1101
1102
1103
1104
1105

Directives [2] OpenMP Fortran Application Program Interface

• A variable can only appear in a THREADPRIVATEdirective in the scope in which it
is declared. It must not be an element of a common block or be declared in an
EQUIVALENCEstatement.

• A variable that appears in a THREADPRIVATEdirective and is not declared in the
scope of a module must have the SAVEattribute.

2.6.2 Data Scope Attribute Clauses

Several directives accept clauses that allow a user to control the scope attributes of
variables for the duration of the construct. Not all of the following clauses are
allowed on all directives, but the clauses that are valid on a particular directive are
included with the description of the directive. If no data scope clauses are specified
for a directive, the default scope for variables affected by the directive is SHARED. (See
Section 2.6.3, page 42, for exceptions.)

Scope attribute clauses that appear on a PARALLELdirective indicate how the
specified variables are to be treated with respect to the parallel region associated with
the PARALLELdirective. They do not indicate the scope attributes of these variables
for any enclosing parallel regions, if they exist.

In determining the appropriate scope attribute for a variable used in the lexical extent
of a parallel region, all references and definitions of the variable must be considered,
including references and definitions which occur in any nested parallel regions.

Each clause accepts an argument list, which is a comma-separated list of named
variables or named common blocks that are accessible in the scoping unit. Subobjects
cannot be specified as items in any of the lists. When named common blocks appear
in a list, their names must appear between slashes.

When a named common block appears in a list, it has the same meaning as if every
explicit member of the common block appeared in the list. A member of a common
block is an explicit member if it is named in a COMMONstatement which declares the
common block, and it was declared in the same scoping unit in which the clause
appears.

Although variables in common blocks can be accessed by use association or host
association, common block names cannot. This means that a common block name
specified in a data scope attribute clause must be declared to be a common block in
the same scoping unit in which the data scope attribute clause appears.

The following sections describe the data scope attribute clauses:

• Section 2.6.2.1, page 35, describes the PRIVATE clause.

• Section 2.6.2.2, page 36, describes the SHAREDclause.

34 Version 2.0, November
2000

1106
1107
1108

1109
1110

1111

1112
1113
1114
1115
1116
1117

1118
1119
1120
1121

1122
1123
1124

1125
1126
1127
1128

1129
1130
1131
1132
1133

1134
1135
1136
1137

1138

1139

1140

OpenMP Fortran Application Program Interface Directives [2]

• Section 2.6.2.3, page 36, describes the DEFAULTclause.

• Section 2.6.2.4, page 37, describes the FIRSTPRIVATE clause.

• Section 2.6.2.5, page 38, describes the LASTPRIVATE clause.

• Section 2.6.2.6, page 38, describes the REDUCTIONclause.

• Section 2.6.2.7, page 41, describes the COPYINclause.

• Section 2.6.2.8, page 41, describes the COPYPRIVATEclause.

2.6.2.1 PRIVATE Clause

The PRIVATE clause declares the variables in list to be private to each thread in a
team.

This clause has the following format:

PRIVATE(list)

The behavior of a variable declared in a PRIVATE clause is as follows:

1. A new object of the same type is declared once for each thread in the team. One
thread in the team is permitted, but not required, to re-use the existing storage
as the storage for the new object. For all other threads, new storage is created
for the new object.

2. All references to the original object in the lexical extent of the directive construct
are replaced with references to the private object.

3. Variables declared as PRIVATE are undefined for each thread on entering the
construct, and the corresponding shared variable is undefined on exit from a
parallel construct.

4. A variable declared as PRIVATE may be storage-associated with other variables
when the PRIVATE clause is encountered. Storage association may exist because
of constructs such as EQUIVALENCE, COMMON, etc. If A is a variable appearing in
a PRIVATE clause and B is a variable which was storage-associated with A, then:

a. The contents, allocation, and association status of B are undefined on entry
to the parallel construct.

b. Any definition of A, or of its allocation or association status, causes the
contents, allocation, and association status of B to become undefined.

c. Any definition of B, or of its allocation or association status, causes the
contents, allocation, and association status of A to become undefined.

Version 2.0, November 2000 35

1141

1142

1143

1144

1145

1146

1147

1148
1149

1150

1151

1152

1153
1154
1155
1156

1157
1158

1159
1160
1161

1162
1163
1164
1165

1166
1167

1168
1169

1170
1171

Directives [2] OpenMP Fortran Application Program Interface

See Section A.20, page 78, and Section A.21, page 78, for examples.

5. Contents, allocation state, and association status of variables defined as
PRIVATE are undefined when they are referenced outside the lexical extent (but
inside the dynamic extent) of the construct, unless they are passed as actual
arguments to called routines. Scope clauses apply only to variables in the lexical
extent of the directive on which the clause appears, with the exception of
variables passed as actual arguments.

6. If a variable is declared as PRIVATE, and the variable is referenced in the
definition of a statement function, and the statement function is used within the
lexical extent of the directive construct, then the statement function may
reference either the SHAREDversion of the variable or the PRIVATE version.
Which version is referenced is implementation-dependent.

2.6.2.2 SHAREDClause

The SHAREDclause makes variables that appear in the list shared among all the
threads in a team. All threads within a team access the same storage area for
SHAREDdata.

This clause has the following format:

SHARED(list)

That each thread in the team access the same storage area for a shared variable does
not guarantee that the threads are immediately aware of changes made to the
variable by another thread. An implementation may store the new values of shared
variables in registers or caches, and those new values may not be stored into the
shared storage area until a FLUSHis performed.

2.6.2.3 DEFAULTClause

The DEFAULTclause allows the user to specify a PRIVATE, SHARED, or NONEscope
attribute for all variables in the lexical extent of any parallel region. Variables in
THREADPRIVATEcommon blocks are not affected by this clause.

This clause has the following format:

DEFAULT(PRIVATE | SHARED| NONE)

The PRIVATE, SHARED, and NONEspecifications have the following effects:

36 Version 2.0, November
2000

1172

1173
1174
1175
1176
1177
1178

1179
1180
1181
1182
1183

1184

1185
1186
1187

1188

1189

1190
1191
1192
1193
1194

1195

1196
1197
1198

1199

1200

1201

OpenMP Fortran Application Program Interface Directives [2]

• Specifying DEFAULT(PRIVATE) makes all named objects in the lexical extent of
the parallel region, including common block variables but excluding
THREADPRIVATEvariables, private to a thread as if each variable were listed
explicitly in a PRIVATE clause.

• Specifying DEFAULT(SHARED)makes all named objects in the lexical extent of the
parallel region shared among the threads in a team, as if each variable were listed
explicitly in a SHAREDclause. In the absence of an explicit DEFAULTclause, the
default behavior is the same as if DEFAULT(SHARED)were specified.

• Specifying DEFAULT(NONE)requires that each variable used in the lexical extent
of the parallel region be explicitly listed in a data scope attribute clause on the
parallel region, unless it is one of the following:

– THREADPRIVATE.

– A Cray pointee (Note: the associated Cray pointer must have its data scope
attribute implicitly or explictly specified).

– A loop iteration variable used only as a loop iteration variable for sequential
loops in the lexical extent of the region or parallel DOloops that bind to the
region.

– IMPLIED-DO or FORALLindices.

– Only used in work-sharing constructs that bind to the region, and is specified
in a data scope attribute clause for each such construct.

Only one DEFAULTclause can be specified on a PARALLELdirective.

Variables can be exempted from a defined default using the PRIVATE, SHARED,
FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONclauses. As a result, the following
example is legal:

!$OMP PARALLEL DO DEFAULT(PRIVATE), FIRSTPRIVATE(I),SHARED(X),
!$OMP& SHARED(R) LASTPRIVATE(I)

2.6.2.4 FIRSTPRIVATE Clause

The FIRSTPRIVATE clause provides a superset of the functionality provided by the
PRIVATE clause.

This clause has the following format:

FIRSTPRIVATE(list)

Version 2.0, November 2000 37

1202
1203
1204
1205

1206
1207
1208
1209

1210
1211
1212

1213

1214
1215

1216
1217
1218

1219

1220
1221

1222

1223
1224
1225

1226
1227

1228

1229
1230

1231

1232

Directives [2] OpenMP Fortran Application Program Interface

Variables that appear in the list are subject to PRIVATE clause semantics described in
Section 2.6.2.1, page 35. In addition, private copies of the variables are initialized
from the original object existing before the construct.

2.6.2.5 LASTPRIVATE Clause

The LASTPRIVATE clause provides a superset of the functionality provided by the
PRIVATE clause.

This clause has the following format:

LASTPRIVATE(list)

Variables that appear in the list are subject to the PRIVATE clause semantics
described in Section 2.6.2.1, page 35. When the LASTPRIVATE clause appears on a DO
directive, the thread that executes the sequentially last iteration updates the version
of the object it had before the construct (see Section A.6, page 65, for an example).
When the LASTPRIVATE clause appears in a SECTIONSdirective, the thread that
executes the lexically last SECTIONupdates the version of the object it had before the
construct. Subobjects that are not assigned a value by the last iteration of the DOor
the lexically last SECTIONof the SECTIONSdirective are undefined after the construct.

If the LASTPRIVATE clause is used on a construct to which NOWAITis also applied,
the shared variable remains undefined until a barrier synchronization has been
performed to ensure that the thread that executed the sequentially last iteration has
stored that variable.

2.6.2.6 REDUCTIONClause

This clause performs a reduction on the variables that appear in list, with the
operator operator or the intrinsic intrinsic_procedure_name, where operator is one of
the following: +, * , - , .AND. , .OR. , .EQV. , or .NEQV. , and intrinsic_procedure_name
refers to one of the following: MAX, MIN, IAND, IOR, or IEOR.

This clause has the following format:

REDUCTION({operator| intrinsic_procedure_name}: list)

Variables in list must be named variables of intrinsic type. Deferred shape and
assumed size arrays are not allowed on the reduction clause. Since the intermediate
values of the REDUCTIONvariables may be combined in random order, there is no
guarantee that bit-identical results will be obtained for either integer or floating point
reductions from one parallel run to another.

38 Version 2.0, November
2000

1233
1234
1235

1236

1237
1238

1239

1240

1241
1242
1243
1244
1245
1246
1247
1248

1249
1250
1251
1252

1253

1254
1255
1256
1257

1258

1259

1260
1261
1262
1263
1264

OpenMP Fortran Application Program Interface Directives [2]

Variables that appear in a REDUCTIONclause must be SHAREDin the enclosing
context. A private copy of each variable in list is created for each thread as if the
PRIVATE clause had been used. The private copy is initialized according to the
operator. See Table 2, page 40, for more information.

At the end of the REDUCTION, the shared variable is updated to reflect the result of
combining the original value of the (shared) reduction variable with the final value of
each of the private copies using the operator specified. The reduction operators are all
associative (except for subtraction), and the compiler can freely reassociate the
computation of the final value (the partial results of a subtraction reduction are
added to form the final value).

The value of the shared variable becomes undefined when the first thread reaches the
containing clause, and it remains so until the reduction computation is complete.
Normally, the computation is complete at the end of the REDUCTIONconstruct;
however, if the REDUCTIONclause is used on a construct to which NOWAITis also
applied, the shared variable remains undefined until a barrier synchronization has
been performed to ensure that all the threads have completed the REDUCTIONclause.

The REDUCTIONclause is intended to be used on a region or work-sharing construct
in which the reduction variable or a subobject of the reduction variable is used only in
reduction statements with one of the following forms:

x = x operator expr

x = expr operator x (except for subtraction)

x = intrinsic_procedure_name (x, expr_list)

x = intrinsic_procedure_name (expr_list, x)

In the preceding statements:

• x is a scalar variable of intrinsic type.

• expr is a scalar expression that does not reference x.

• expr_list is a comma-separated, non-empty list of scalar expressions that do not
reference x. When intrinsic_procedure_name refers to IAND, IOR, or IEOR, exactly
one expression must appear in expr_list.

• intrinsic_procedure_name is one of MAX, MIN, IAND, IOR, or IEOR.

• operator is one of +, * , - , .AND. , .OR. , .EQV. , or .NEQV. .

• The operators in expr must have precedence equal to or greater than the
precedence of operator, x operator expr must be mathematically equivalent to x

Version 2.0, November 2000 39

1265
1266
1267
1268

1269
1270
1271
1272
1273
1274

1275
1276
1277
1278
1279
1280

1281
1282
1283

1284

1285

1286

1287

1288

1289

1290

1291
1292
1293

1294

1295

1296
1297

Directives [2] OpenMP Fortran Application Program Interface

operator (expr), and expr operator x must be mathematically equivalent to
(expr) operator x.

• The function intrinsic_procedure_name, the operator operator, and the assignment
must be the intrinsic procedure name, the intrinsic operator, and intrinsic
assignment.

Some reductions can be expressed in other forms. For instance, a MAXreduction
might be expressed as follows:

IF (x .LT. expr) x = expr

Alternatively, the reduction might be hidden inside a subroutine call. The user should
be careful that the operator specified in the REDUCTIONclause matches the reduction
operation.

The following table lists the operators and intrinsics that are valid and their
canonical initialization values. The actual initialization value will be consistent with
the data type of the reduction variable.

Table 2. Reduction Variable Initialization Values

Operator/Intrinsic Initialization

+ 0

* 1

- 0

.AND. .TRUE.

.OR. .FALSE.

.EQV. .TRUE.

.NEQV. .FALSE.

MAX Smallest representable number

MIN Largest representable number

IAND All bits on

IOR 0

IEOR 0

See Section A.7, page 65, for an example that uses the + operator.

Any number of reduction clauses can be specified on the directive, but a variable can
appear only once in the REDUCTIONclause(s) for that directive.

Example:

!$OMP DO REDUCTION(+: A, Y) REDUCTION(.OR.: AM)

40 Version 2.0, November
2000

1298
1299

1300
1301
1302

1303
1304

1305

1306
1307
1308

1309
1310
1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327
1328

1329

1330

OpenMP Fortran Application Program Interface Directives [2]

2.6.2.7 COPYINClause

The COPYINclause applies only to variables, common blocks, and variables in
common blocks that are declared as THREADPRIVATE. A COPYINclause on a parallel
region specifies that the data in the master thread of the team be copied to the thread
private copies of the common blocks or variables at the beginning of the parallel
region as described in Section 2.6.1, page 32.

This clause has the following format:

COPYIN(list)

If a common block appears in a THREADPRIVATEdirective, it is not necessary to
specify the whole common block. Named variables appearing in the THREADPRIVATE
common block can be specified in the list.

Although variables in common blocks can be accessed by use association or host
association, common block names cannot. This means that a common block name
specified in a COPYINclause must be declared to be a common block in the same
scoping unit in which the COPYINclause appears. See Section A.25, page 84, for more
information.

In the following example, the common blocks BLK1 and FIELDS are specified as
thread private, but only one of the variables in common block FIELDS is specified to
be copied in.

COMMON /BLK1/ SCRATCH
COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD

!$OMP THREADPRIVATE(/BLK1/, /FIELDS/)
!$OMP PARALLEL DEFAULT(PRIVATE) COPYIN(/BLK1/,ZFIELD)

An OpenMP-compliant implementation is required to ensure that the value of each
thread private copy is the same as the value of the master thread copy when the
master thread reached the directive containing the COPYINclause.

2.6.2.8 COPYPRIVATEClause

The COPYPRIVATEclause uses a private variable to broadcast a value, or a pointer to
a shared object, from one member of a team to the other members. It is an
alternative to using a shared variable for the value, or pointer association, and is
useful when providing such a shared variable would be difficult (for example, in a
recursion requiring a different variable at each level). The COPYPRIVATEclause can
only appear on the END SINGLEdirective.

This clause has the following format:

Version 2.0, November 2000 41

1331

1332
1333
1334
1335
1336

1337

1338

1339
1340
1341

1342
1343
1344
1345
1346

1347
1348
1349

1350
1351
1352
1353

1354
1355
1356

1357

1358
1359
1360
1361
1362
1363

1364

Directives [2] OpenMP Fortran Application Program Interface

COPYPRIVATE(list)

Variables in the list must not appear in a PRIVATE or FIRSTPRIVATE clause for the
SINGLE construct. If the directive is encountered in the dynamic extent of a parallel
region, variables in the list must be private in the enclosing context. If a common
block is specified, then it must be THREADPRIVATE, and the effect is the same as if
the variable names in its common block object list were specified.

The effect of the COPYPRIVATEclause on the variables in its list occurs after the
execution of the code enclosed within the SINGLE construct, and before any threads in
the team have left the barrier at the end of the construct. If the variable is not a
pointer, then in all other threads in the team, that variable becomes defined (as if by
assignment) with the value of the corresponding variable in the thread that executed
the enclosed code. If the variable is a pointer, then in all other threads in the team,
that variable becomes pointer associated (as if by pointer assignment) with the
corresponding variable in the thread that executed the enclosed code. (See Section
A.27, page 89, for examples of the COPYPRIVATEclause.)

2.6.3 Data Environment Rules

A program that conforms to the OpenMP Fortran API must adhere to the following
rules and restrictions with respect to data scope:

1. Sequential DOloop control variables in the lexical extent of a PARALLELregion
that would otherwise be SHAREDbased on default rules are automatically made
private on the PARALLELdirective. Sequential DOloop control variables with no
enclosing PARALLELregion are not made private automatically. It is up to the
user to guarantee that these indexes are private if the containing procedures are
called from a PARALLELregion.

All implied DOloop control variables and FORALLindexes are automatically made
private at the enclosing implied DOor FORALLconstruct.

2. Variables that are privatized in a parallel region may be privatized again on an
enclosed work-sharing directive. As a result, variables that appear in a PRIVATE
clause on a work-sharing directive may either have a shared or a private scope in
the enclosing parallel region. Variables that appear on the FIRSTPRIVATE,
LASTPRIVATE, and REDUCTIONclauses on a work-sharing directive must have
shared scope in the enclosing parallel region.

3. Variables that appear in a reduction list in a parallel region cannot be privatized
on an enclosed work-sharing directive.

4. A variable that appears in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTIONclause must be definable.

42 Version 2.0, November
2000

1365

1366
1367
1368
1369
1370

1371
1372
1373
1374
1375
1376
1377
1378
1379

1380

1381
1382

1383
1384
1385
1386
1387
1388

1389
1390

1391
1392
1393
1394
1395
1396

1397
1398

1399
1400

OpenMP Fortran Application Program Interface Directives [2]

5. Assumed-size arrays cannot be declared PRIVATE, FIRSTPRIVATE,
LASTPRIVATE, or COPYPRIVATE. Array dummy arguments that are explicitly
shaped (including variable dimensioned) and assumed-shape arrays can be
declared in any scoping clause.

6. Fortran pointers and allocatable arrays can be declared PRIVATE or SHAREDbut
not FIRSTPRIVATE or LASTPRIVATE.

Within a parallel region, the initial status of a private pointer is undefined.
Private pointers that become allocated during the execution of a parallel region
should be explicitly deallocated by the program prior to the end of the parallel
region to avoid memory leaks.

The association status of a SHAREDpointer becomes undefined upon entry to and
on exit from the parallel construct if it is associated with a target or a subobject
of a target that is in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or REDUCTION
clause inside the parallel construct. An allocatable array declared PRIVATE must
have an allocation status of “not currently allocated” on entry to and on exit from
the construct.

7. PRIVATE or SHAREDattributes can be declared for a Cray pointer but not for the
pointee. The scope attribute for the pointee is determined at the point of pointer
definition. It is noncompliant to declare a scope attribute for a pointee. Cray
pointers may not be specified in FIRSTPRIVATE or LASTPRIVATE clauses.

8. Scope clauses apply only to variables in the lexical extent of the directive on
which the clause appears, with the exception of variables passed as actual
arguments. Local variables in called routines that do not have the SAVEattribute
are PRIVATE. Common blocks and module variables in called routines in the
dynamic extent of a parallel region always have an implicit SHAREDattribute,
unless they are THREADPRIVATE. Local variables in called routines that have the
SAVEattribute are SHARED. (See Section A.26, page 88, for examples.)

9. When a named common block is specified in a PRIVATE, FIRSTPRIVATE, or
LASTPRIVATE clause of a directive, none of its constituent elements may be
declared in another data scope attribute clause in that directive. It should be
noted that when individual members of a common block are privatized, the
storage of the specified variables is no longer associated with the storage of the
common block itself. (See Section A.25, page 84, for examples.)

10. Variables that are not allowed in the PRIVATE and SHAREDclauses are not
affected by DEFAULT(PRIVATE) or DEFAULT(SHARED)clauses, respectively.

11. Clauses can be repeated as needed, but each variable and each named common
block can appear explicitly in only one clause per directive, with the following
exceptions:

• A variable can be declared both FIRSTPRIVATE and LASTPRIVATE.

Version 2.0, November 2000 43

1401
1402
1403
1404

1405
1406

1407
1408
1409
1410

1411
1412
1413
1414
1415
1416

1417
1418
1419
1420

1421
1422
1423
1424
1425
1426
1427

1428
1429
1430
1431
1432
1433

1434
1435

1436
1437
1438

1439

Directives [2] OpenMP Fortran Application Program Interface

• Variables affected by the DEFAULTclause can be listed explicitly in a clause to
override the default specification.

12. Variables that are declared LASTPRIVATE or REDUCTIONfor a work-sharing
directive for which NOWAITappears must not be used prior to a barrier.

13. Variables that appear in namelist statements, in variable format expressions,
and in expressions for statement function definitions must not be specified in
PRIVATE, FIRSTPRIVATE, or LASTPRIVATE clauses.

14. The shared variables that are specified in REDUCTIONor LASTPRIVATE clauses
become defined at the end of the construct. Any concurrent uses or definitions of
those variables must be synchronized with the definition that occurs at the end
of the construct to avoid race conditions.

15. If the following three conditions hold regarding an actual argument in a reference
to a non-intrinsic procedure, then any references to (or definitions of) the shared
storage that is associated with the dummy argument by any other thread must
be synchronized with the procedure reference to avoid possible race conditions:

a. The actual argument is one of the following:

• A SHAREDvariable

• A subobject of a SHAREDvariable

• An object associated with a SHAREDvariable

• An object associated with a subobject of a SHAREDvariable

b. The actual argument is also one of the following:

• An array section with a vector subscript

• An array section

• An assumed-shape array

• A pointer array

c. The associated dummy argument for this actual argument is an
explicit-shape array or an assumed-size array.

The situations described above may result in the value of the shared variable
being copied into temporary storage before the procedure reference, and back out
of the temporary storage into the actual argument storage after the procedure
reference. This effectively results in references to and definitions of the storage
during the procedure reference.

16. An OpenMP-compliant implementation must adhere to the following rule:

44 Version 2.0, November
2000

1440
1441

1442
1443

1444
1445
1446

1447
1448
1449
1450

1451
1452
1453
1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465
1466

1467
1468
1469
1470
1471

1472

OpenMP Fortran Application Program Interface Directives [2]

• If a variable is specified as FIRSTPRIVATE and LASTPRIVATE, the
implementation must ensure that the update required for LASTPRIVATE
occurs after all initializations for FIRSTPRIVATE.

17. An implementation may generate references to any object that appears or an
object in a common block that appears in a REDUCTION, FIRSTPRIVATE,
LASTPRIVATE, COPYPRIVATE, or COPYINclause, on entry to (for FIRSTPRIVATE
and COPYIN) or exit from (for REDUCTION, LASTPRIVATE, and COPYPRIVATE) a
construct. Except for an object with the pointer attribute in a COPYPRIVATE
clause, if a reference to the object as the expression in an intrinsic assignment
statement would give an exceptional value, or have undefined behavior, at that
point in the program, then the generated reference may have the same behavior.

2.7 Directive Binding

An OpenMP-compliant implementation must adhere to the following rules with
respect to the dynamic binding of directives:

• A parallel region is available for binding purposes, whether it is serialized or
executed in parallel.

• The DO, SECTIONS, SINGLE, MASTER, BARRIER, and WORKSHAREdirectives bind to
the dynamically enclosing PARALLELdirective, if one exists. (See Section A.19,
page 77, for an example.) The dynamically enclosing PARALLELdirective is the
closest enclosing PARALLELdirective regardless of the value of the expression in
the IF clause, should the clause be present.

• The ORDEREDdirective binds to the dynamically enclosing DOdirective.

• The ATOMICdirective enforces exclusive access with respect to ATOMICdirectives
in all threads, not just the current team.

• The CRITICAL directive enforces exclusive access with respect to CRITICAL
directives in all threads, not just the current team.

• A directive can never bind to any directive outside the closest enclosing PARALLEL.

2.8 Directive Nesting

An OpenMP-compliant implementation must adhere to the following rules with
respect to the dynamic nesting of directives:

Version 2.0, November 2000 45

1473
1474
1475

1476
1477
1478
1479
1480
1481
1482
1483

1484

1485
1486

1487
1488

1489
1490
1491
1492
1493

1494

1495
1496

1497
1498

1499

1500

1501
1502

Directives [2] OpenMP Fortran Application Program Interface

• A PARALLELdirective dynamically inside another PARALLELdirective logically
establishes a new team, which is composed of only the current thread, unless
nested parallelism is enabled.

• DO, SECTIONS, SINGLE, and WORKSHAREdirectives that bind to the same
PARALLELdirective are not allowed to be nested one inside the other.

• DO, SECTIONS, SINGLE, and WORKSHAREdirectives are not permitted in the
dynamic extent of CRITICAL , ORDERED, and MASTERdirectives.

• BARRIERdirectives are not permitted in the dynamic extent of DO, SECTIONS,
SINGLE, WORKSHARE, MASTER, CRITICAL , and ORDEREDdirectives.

• MASTERdirectives are not permitted in the dynamic extent of DO, SECTIONS,
SINGLE, WORKSHARE, MASTER, CRITICAL , and ORDEREDdirectives.

• ORDEREDdirectives must appear in the dynamic extent of a DOor PARALLEL DO
directive which has an ORDEREDclause.

• ORDEREDdirectives are not allowed in the dynamic extent of SECTIONS, SINGLE,
WORKSHARE, CRITICAL , and MASTERdirectives.

• CRITICAL directives with the same name are not allowed to be nested one inside
the other.

• Any directive set that is legal when executed dynamically inside a PARALLEL
region is also legal when executed outside a parallel region. When executed
dynamically outside a user-specified parallel region, the directive is executed with
respect to a team composed of only the master thread.

See Section A.17, page 73, for legal examples of directive nesting, and Section A.18,
page 74, for invalid examples.

46 Version 2.0, November
2000

1503
1504
1505

1506
1507

1508
1509

1510
1511

1512
1513

1514
1515

1516
1517

1518
1519

1520
1521
1522
1523

1524
1525

Run-time Library Routines [3]

This section describes the OpenMP Fortran API run-time library routines that can be
used to control and query the parallel execution environment. A set of general
purpose lock routines and two portable timer routines are also provided.

OpenMP Fortran API run-time library routines are external procedures. In the
following descriptions, scalar_integer_expression is a default scalar integer expression,
and scalar_logical_expression is a default scalar logical expression. The return values
of these routines are also of default kind, unless otherwise specified.

Interface declarations for the OpenMP Fortran runtime library routines described in
this chapter shall be provided by an OpenMP-compliant implementation in the form
of a Fortran INCLUDE file named omp_lib.h or a Fortran 90 MODULEnamed
omp_lib . This file must define the following:

• The interfaces of all of the routines in this chapter.

• The INTEGER PARAMETER omp_lock_kind that defines the KIND type
parameters used for simple lock variables in the OMP_*_LOCKroutines.

• the INTEGER PARAMETER omp_nest_lock_kind that defines the KIND type
parameters used for the nestable lock variables in the OMP_*_NEST_LOCKroutines.

• the INTEGER PARAMETER openmp_version with a value of the C preprocessor
macro _OPENMP(see Section 2.1.3, page 10) that has the form YYYYMMwhere YYYY
and MMare the year and month designations of the version of the OpenMP Fortran
API that the implementation supports.

See Appendix D, page 105, for examples of these files.

3.1 Execution Environment Routines

The following sections describe the execution environment routines:

• Section 3.1.1, page 48, describes the OMP_SET_NUM_THREADSsubroutine.

• Section 3.1.2, page 48, describes the OMP_GET_NUM_THREADSfunction.

• Section 3.1.3, page 49, describes the OMP_GET_MAX_THREADSfunction.

• Section 3.1.4, page 49, describes the OMP_GET_THREAD_NUMfunction.

• Section 3.1.5, page 50, describes the OMP_GET_NUM_PROCSfunction.

• Section 3.1.6, page 50, describes the OMP_IN_PARALLELfunction.

Version 2.0, November 2000 47

1526

1527
1528
1529

1530
1531
1532
1533

1534
1535
1536
1537

1538

1539
1540

1541
1542

1543
1544
1545
1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

Run-time Library Routines [3] OpenMP Fortran Application Program Interface

• Section 3.1.7, page 51, describes the OMP_SET_DYNAMICsubroutine.

• Section 3.1.8, page 51, describes the OMP_GET_DYNAMICfunction.

• Section 3.1.9, page 52, describes the OMP_SET_NESTEDsubroutine.

• Section 3.1.10, page 52, describes the OMP_GET_NESTEDfunction.

3.1.1 OMP_SET_NUM_THREADSSubroutine

The OMP_SET_NUM_THREADSsubroutine sets the number of threads to use for
subsequent parallel regions.

The format of this subroutine is as follows:

SUBROUTINE OMP_SET_NUM_THREADS(scalar_integer_expression)

The value of the scalar_integer_expression must be positive. The effect of this function
depends on whether dynamic adjustment of the number of threads is enabled. If
dynamic adjustment is disabled, the value of the scalar_integer_expression is used as
the number of threads for all subsequent parallel regions prior to the next call to this
function; otherwise, the value is used as the maximum number of threads that will be
used. This function has effect only when called from serial portions of the program. If
it is called from a portion of the program where the OMP_IN_PARALLELfunction
returns .TRUE. , the behavior of this function is unspecified. For additional
information on this subject, see the OMP_SET_DYNAMICsubroutine described in
Section 3.1.7, page 51, and the OMP_GET_DYNAMICfunction described in Section 3.1.8,
page 51, and the example in Section A.11, page 68.

Resource constraints on an OpenMP parallel program may change the number of
threads that a user is allowed to create at different phases of a program’s execution.
When dynamic adjustment of the number of threads is enabled, requests for more
threads than an implementation can support are satisfied by a smaller number of
threads. If dynamic adjustment of the number of threads is disabled, the behavior of
this function is implementation-dependent.

This call has precedence over the OMP_NUM_THREADSenvironment variable (see
Section 4.2, page 60).

3.1.2 OMP_GET_NUM_THREADSFunction

The OMP_GET_NUM_THREADSfunction returns the number of threads currently in the
team executing the parallel region from which it is called.

48 Version 2.0, November
2000

1556

1557

1558

1559

1560

1561
1562

1563

1564

1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575

1576
1577
1578
1579
1580
1581

1582
1583

1584

1585
1586

OpenMP Fortran Application Program Interface Run-time Library Routines [3]

The format of this function is as follows:

INTEGER FUNCTION OMP_GET_NUM_THREADS()

The OMP_SET_NUM_THREADScall and the OMP_NUM_THREADSenvironment variable
control the number of threads in a team. For more information on the
OMP_SET_NUM_THREADSlibrary routine, see Section 3.1.1, page 48. For more
information on the OMP_NUM_THREADSenvironment variable, see Section 4.2, page 60.

If the number of threads has not been explicitly set by the user, the default is
implementation-dependent. This function binds to the closest enclosing PARALLEL
directive. For more information on the PARALLELdirective, see Section 2.2, page 12.

If this call is made from the serial portion of a program, or from a nested parallel
region that is serialized, this function returns 1. (See Section A.14, page 70, for an
example.)

3.1.3 OMP_GET_MAX_THREADSFunction

The OMP_GET_MAX_THREADSfunction returns the maximum value that can be
returned by calls to the OMP_GET_NUM_THREADSfunction. For more information on
OMP_GET_NUM_THREADS, see Section 3.1.2, page 48.

The format of this function is as follows:

INTEGER FUNCTION OMP_GET_MAX_THREADS()

If OMP_SET_NUM_THREADSis used to change the number of threads, subsequent calls
to OMP_GET_MAX_THREADSwill return the new value. This function can be used to
allocate maximum sized per-thread data structures when the OMP_SET_DYNAMIC
subroutine is set to .TRUE. . For more information on the OMP_SET_DYNAMIClibrary
routine, see Section 3.1.7, page 51.

This function has global scope and returns the maximum value whether executing
from a serial region or a parallel region.

3.1.4 OMP_GET_THREAD_NUMFunction

The OMP_GET_THREAD_NUMfunction returns the number of the current thread within
the team. The thread number lies between 0 and OMP_GET_NUM_THREADS()–1,

Version 2.0, November 2000 49

1587

1588

1589
1590
1591
1592

1593
1594
1595

1596
1597
1598

1599

1600
1601
1602

1603

1604

1605
1606
1607
1608
1609

1610
1611

1612

1613
1614

Run-time Library Routines [3] OpenMP Fortran Application Program Interface

inclusive. (See the second example in Section A.14, page 70.) The master thread of
the team is thread 0.

The format of this function is as follows:

INTEGER FUNCTION OMP_GET_THREAD_NUM()

This function binds to the closest enclosing PARALLELdirective. For more information
on the PARALLELdirective, see Section 2.2, page 12.

When called from a serial region, OMP_GET_THREAD_NUMreturns 0. When called from
within a nested parallel region that is serialized, this function returns 0.

3.1.5 OMP_GET_NUM_PROCSFunction

The OMP_GET_NUM_PROCSfunction returns the number of processors that are
available to the program.

The format of this function is as follows:

INTEGER FUNCTION OMP_GET_NUM_PROCS()

3.1.6 OMP_IN_PARALLELFunction

OMP_IN_PARALLELreturns the logical ORof the IF clause from all dynamically
enclosing parallel regions.

• If a parallel region does not have an IF clause, this is equivalent to IF(.TRUE.)
and OMP_IN_PARALLELreturns .TRUE. .

• If there are no dynamically enclosing parallel regions, then OMP_IN_PARALLEL
returns .FALSE. .

The format of this function is as follows:

LOGICAL FUNCTION OMP_IN_PARALLEL()

This function has global scope. As a result, it will always return .TRUE. within the
dynamic extent of a region executing in parallel, regardless of nested regions that are
serialized.

50 Version 2.0, November
2000

1615
1616

1617

1618

1619
1620

1621
1622

1623

1624
1625

1626

1627

1628

1629
1630

1631
1632

1633
1634

1635

1636

1637
1638
1639

OpenMP Fortran Application Program Interface Run-time Library Routines [3]

3.1.7 OMP_SET_DYNAMICSubroutine

The OMP_SET_DYNAMICsubroutine enables or disables dynamic adjustment of the
number of threads available for execution of parallel regions.

The format of this subroutine is as follows:

SUBROUTINE OMP_SET_DYNAMIC(scalar_logical_expression)

If scalar_logical_expression evaluates to .TRUE. , the number of threads that are used
for executing subsequent parallel regions can be adjusted automatically by the
run-time environment to obtain the best use of system resources. As a consequence,
the number of threads specified by the user is the maximum thread count. The
number of threads always remains fixed over the duration of each parallel region and
is reported by the OMP_GET_NUM_THREADSlibrary routine. This function has effect
only when called from serial portions of the program. For more information on the
OMP_GET_NUM_THREADSlibrary routine, see Section 3.1.2, page 48.

If scalar_logical_expression evaluates to .FALSE. , dynamic adjustment is disabled.
(See Section A.11, page 68, for an example.)

A call to OMP_SET_DYNAMIChas precedence over the OMP_DYNAMICenvironment
variable. For more information on the OMP_DYNAMICenvironment variable, see
Section 4.3, page 60.

The default for dynamic thread adjustment is implementation-dependent. As a result,
user codes that depend on a specific number of threads for correct execution should
explicitly disable dynamic threads. Implementations are not required to provide the
ability to dynamically adjust the number of threads, but they are required to provide
the interface in order to support portability across platforms.

3.1.8 OMP_GET_DYNAMICFunction

The OMP_GET_DYNAMICfunction returns .TRUE. if dynamic thread adjustment is
enabled and returns .FALSE. otherwise. For more information on dynamic thread
adjustment, see Section 3.1.7, page 51.

The format of this function is as follows:

LOGICAL FUNCTION OMP_GET_DYNAMIC()

If the implementation does not implement dynamic adjustment of the number of
threads, this function always returns .FALSE. .

Version 2.0, November 2000 51

1640

1641
1642

1643

1644

1645
1646
1647
1648
1649
1650
1651
1652

1653
1654

1655
1656
1657

1658
1659
1660
1661
1662

1663

1664
1665
1666

1667

1668

1669
1670

Run-time Library Routines [3] OpenMP Fortran Application Program Interface

3.1.9 OMP_SET_NESTEDSubroutine

The OMP_SET_NESTEDsubroutine enables or disables nested parallelism.

The format of this subroutine is as follows:

SUBROUTINE OMP_SET_NESTED(scalar_logical_expression)

If scalar_logical_expression evaluates to .FALSE. , nested parallelism is disabled,
which is the default, and nested parallel regions are serialized and executed by the
current thread. If set to .TRUE. , nested parallelism is enabled, and parallel regions
that are nested can deploy additional threads to form the team.

This call has precedence over the OMP_NESTEDenvironment variable. For more
information on the OMP_NESTEDenvironment variable, see Section 4.4, page 61.

When nested parallelism is enabled, the number of threads used to execute nested
parallel regions is implementation-dependent. As a result, OpenMP-compliant
implementations are allowed to serialize nested parallel regions even when nested
parallelism is enabled.

3.1.10 OMP_GET_NESTEDFunction

The OMP_GET_NESTEDfunction returns .TRUE. if nested parallelism is enabled and
.FALSE. if nested parallelism is disabled. For more information on nested
parallelism, see Section 3.1.9, page 52.

The format of this function is as follows:

LOGICAL FUNCTION OMP_GET_NESTED()

If an implementation does not implement nested parallelism, this function always
returns .FALSE. .

3.2 Lock Routines

The OpenMP run-time library includes a set of general-purpose locking routines that
take lock variables as arguments. A lock variable must be accessed only through the
routines described in this section. For all of these routines, a lock variable should be
of type integer and of a KIND large enough to hold an address.

52 Version 2.0, November
2000

1671

1672

1673

1674

1675
1676
1677
1678

1679
1680

1681
1682
1683
1684

1685

1686
1687
1688

1689

1690

1691
1692

1693

1694
1695
1696
1697

OpenMP Fortran Application Program Interface Run-time Library Routines [3]

Two types of locks are supported: simple locks and nestable locks. Nestable locks may
be locked multiple times by the same thread before being unlocked; simple locks may
not be locked if they are already in a locked state. Simple lock variables are
associated with simple locks and may only be passed to simple lock routines.
Nestable lock variables are associated with nestable locks and may only be passed to
nestable lock routines.

In the descriptions that follow, svar is a simple lock variable and nvar is a nestable
lock variable. Using the defined parameters described at the beginning of this
chapter (Chapter 3, page 47), these lock variables may be declared as follows:

INTEGER (KIND=OMP_LOCK_KIND) :: svar

INTEGER (KIND=OMP_NEST_LOCK_KIND) :: nvar

The simple locking routines are as follows:

• The OMP_INIT_LOCKsubroutine initializes a simple lock (see Section 3.2.1, page
54).

• The OMP_DESTROY_LOCKsubroutine removes a simple lock (see Section 3.2.2, page
54).

• The OMP_SET_LOCKsubroutine sets a simple lock when it becomes available (see
Section 3.2.3, page 54).

• The OMP_UNSET_LOCKsubroutine releases a simple lock (see Section 3.2.4, page
55).

• The OMP_TEST_LOCKfunction tests and possibly sets a simple lock (see Section
3.2.5, page 55).

The nestable lock routines are as follows:

• The OMP_INIT_NEST_LOCKsubroutine initializes a nestable lock (see Section
3.2.1, page 54).

• The OMP_DESTROY_NEST_LOCKsubroutine removes a nestable lock (see Section
3.2.2, page 54).

• The OMP_SET_NEST_LOCKsubroutine sets a nestable lock when it becomes
available (see Section 3.2.3, page 54).

• The OMP_UNSET_NEST_LOCKsubroutine releases a nestable lock (see Section 3.2.4,
page 55).

• The OMP_TEST_NEST_LOCKfunction tests and possibly sets a nestable lock (see
Section 3.2.5, page 55).

Version 2.0, November 2000 53

1698
1699
1700
1701
1702
1703

1704
1705
1706

1707

1708

1709

1710
1711

1712
1713

1714
1715

1716
1717

1718
1719

1720

1721
1722

1723
1724

1725
1726

1727
1728

1729
1730

Run-time Library Routines [3] OpenMP Fortran Application Program Interface

See Section A.15, page 70, and Section A.16, page 71, for examples of using the
simple and the nestable lock routines.

3.2.1 OMP_INIT_LOCKand OMP_INIT_NEST_LOCKSubroutines

These subroutines provide the only means of initializing a lock. Each subroutine
initializes a lock associated with the lock variable argument for use in subsequent
calls.

The format of these subroutines is as follows:

SUBROUTINE OMP_INIT_LOCK(svar)

SUBROUTINE OMP_INIT_NEST_LOCK(nvar)

The initial state is unlocked (that is, no thread owns the lock). For a nestable lock,
the initial nesting count is zero. svar must be an uninitialized simple lock variable.
nvar must be an uninitialized nestable lock variable. It is noncompliant to call either
of these routines with a lock variable that is already associated with a lock.

3.2.2 OMP_DESTROY_LOCKand OMP_DESTROY_NEST_LOCKSubroutines

These subroutines insure that the lock variable is uninitialized and cause the lock
variable to become undefined.

The format for these subroutines is as follows:

SUBROUTINE OMP_DESTROY_LOCK(svar)

SUBROUTINE OMP_DESTROY_NEST_LOCK(nvar)

svar must be an initialized simple lock variable that is unlocked. nvar must be an
initialized nestable lock variable that is unlocked.

3.2.3 OMP_SET_LOCKand OMP_SET_NEST_LOCKSubroutines

These subroutines force the thread executing the subroutine to wait until the
specified lock is available and then set the lock. A simple lock is available if it is

54 Version 2.0, November
2000

1731
1732

1733

1734
1735
1736

1737

1738

1739

1740
1741
1742
1743

1744

1745
1746

1747

1748

1749

1750
1751

1752

1753
1754

OpenMP Fortran Application Program Interface Run-time Library Routines [3]

unlocked. A nestable lock is available if it is unlocked or if it is already owned by the
thread executing the subroutine.

The format of these subroutines is as follows:

SUBROUTINE OMP_SET_LOCK(svar)

SUBROUTINE OMP_SET_NEST_LOCK(nvar)

svar must be an initialized simple lock variable. Ownership of the lock is granted to
the thread executing the subroutine.

nvar must be an initialized nestable lock variable. The nesting count is incremented,
and the thread is granted, or retains, ownership of the lock.

3.2.4 OMP_UNSET_LOCKand OMP_UNSET_NEST_LOCKSubroutines

These subroutines provide the means of releasing ownership of a lock.

The format of these subroutines is as follows:

SUBROUTINE OMP_UNSET_LOCK(svar)

SUBROUTINE OMP_UNSET_NEST_LOCK(nvar)

The argument to each of these subroutines must be an initialized lock variable owned
by the thread executing the subroutine. The behavior is unspecified if the thread does
not own the lock.

The OMP_UNSET_LOCKsubroutine releases the thread executing the subroutine from
ownership of the simple lock associated with svar.

The OMP_UNSET_NEST_LOCKsubroutine decrements the nesting count and releases
the thread executing the subroutine from ownership of the nestable lock associated
with nvar if the resulting count is zero.

3.2.5 OMP_TEST_LOCKand OMP_TEST_NEST_LOCKFunctions

These functions attempt to set a lock but do not cause the execution of the thread to
wait.

Version 2.0, November 2000 55

1755
1756

1757

1758

1759

1760
1761

1762
1763

1764

1765

1766

1767

1768

1769
1770
1771

1772
1773

1774
1775
1776

1777

1778
1779

Run-time Library Routines [3] OpenMP Fortran Application Program Interface

The format of these functions is as follows:

LOGICAL FUNCTION OMP_TEST_LOCK(svar)

INTEGER FUNCTION OMP_TEST_NEST_LOCK(nvar)

The argument must be an initialized lock variable. These functions attempt to set a
lock in the same manner as OMP_SET_LOCKand OMP_SET_NEST_LOCK, except that
they do not cause execution of the thread to wait if the lock is already set.

The OMP_TEST_LOCKfunction returns .TRUE. if the simple lock associated with svar
is successfully set; otherwise it returns .FALSE. .

The OMP_TEST_NEST_LOCKfunction returns the new nesting count if the nestable
lock associated with nvar is successfully set; otherwise, it returns zero.
OMP_TEST_NEST_LOCKreturns a default integer.

3.3 Timing Routines

The OpenMP run-time library includes two routines supporting a portable wall-clock
timer. The routines are as follows:

• The OMP_GET_WTIMEfunction, described in Section 3.3.1, page 56.

• The OMP_GET_WTICKfunction, described in Section 3.3.2, page 57.

3.3.1 OMP_GET_WTIMEFunction

The OMP_GET_WTIMEfunction returns a double precision value equal to the elapsed
wallclock time in seconds since some "time in the past". The actual "time in the past"
is arbitrary, but it is guaranteed not to change during the execution of the application
program.

The format of this function is as follows:

DOUBLE PRECISION FUNCTION OMP_GET_WTIME()

It is anticipated that the function will be used to measure elapsed times as shown in
the following example:

56 Version 2.0, November
2000

1780

1781

1782

1783
1784
1785

1786
1787

1788
1789
1790

1791

1792
1793

1794

1795

1796

1797
1798
1799
1800

1801

1802

1803
1804

OpenMP Fortran Application Program Interface Run-time Library Routines [3]

DOUBLE PRECISION START, END
START = OMP_GET_WTIME()
!.... work to be timed
END = OMP_GET_WTIME()
PRINT *,’Stuff took ’, END-START,’ seconds’

The times returned are "per-thread times" by which is meant they are not required to
be globally consistent across all the threads participating in an application.

3.3.2 OMP_GET_WTICKFunction

The OMP_GET_WTICKfunction returns a double precision value equal to the number
of seconds between successive clock ticks.

The format of this function is as follows:

DOUBLE PRECISION FUNCTION OMP_GET_WTICK()

Version 2.0, November 2000 57

1805
1806
1807
1808
1809

1810
1811

1812

1813
1814

1815

1816

Environment Variables [4]

This chapter describes the OpenMP Fortran API environment variables (or
equivalent platform-specific mechanisms) that control the execution of parallel code.
The names of environment variables must be uppercase. Character values assigned
to them are case insensitive and may have leading or trailing white space.

4.1 OMP_SCHEDULEEnvironment Variable

The OMP_SCHEDULEenvironment variable applies only to DOand PARALLEL DO
directives that have the schedule type RUNTIME. For more information on the DO
directive, see Section 2.3.1, page 15. For more information on the PARALLEL DO
directive, see Section 2.4.1, page 23.

The schedule type and chunk size for all such loops can be set at run time by setting
this environment variable to any of the recognized schedule types and to an optional
chunk size. The value takes the form:

type[, chunk]

where type is one of STATIC, DYNAMIC, or GUIDED(see Table 1, page 17) and chunk is
an optional chunk size. If a chunk size is specified, it must be a positive scalar
integer. If chunk is present, there may be white space on either side of the “, ”.

For DOand PARALLEL DOdirectives that have a schedule type other than RUNTIME,
this environment variable is ignored. The default value for this environment variable
is implementation-dependent. If the optional chunk size is not set, a chunk size of 1
is assumed, except in the case of a STATIC schedule. For a STATIC schedule, the
default chunk size is set to the loop iteration count divided by the number of threads
applied to the loop.

Examples:

setenv OMP_SCHEDULE "GUIDED,4"
setenv OMP_SCHEDULE "dynamic"

Version 2.0, November 2000 59

1817

1818
1819
1820
1821

1822

1823
1824
1825
1826

1827
1828
1829

1830

1831
1832
1833

1834
1835
1836
1837
1838
1839

1840

1841
1842

Environment Variables [4] OpenMP Fortran Application Program Interface

4.2 OMP_NUM_THREADSEnvironment Variable

The OMP_NUM_THREADSenvironment variable sets the number of threads to use
during execution, unless that number is explicitly changed by calling the
OMP_SET_NUM_THREADSlibrary routine. For more information on the
OMP_SET_NUM_THREADSlibrary routine, see Section 3.1.1, page 48.

When dynamic adjustment of the number of threads is enabled, the value of this
environment variable is the maximum number of threads to use. The value specified
must be a positive scalar integer. The default value is implementation dependent.
The behavior of the program is implementation-dependent if the requested value of
OMP_NUM_THREADSis more than the number of threads an implementation can
support.

Example:

setenv OMP_NUM_THREADS 16

4.3 OMP_DYNAMICEnvironment Variable

The OMP_DYNAMICenvironment variable enables or disables dynamic adjustment of
the number of threads available for execution of parallel regions. For more
information on parallel regions, see Section 2.2, page 12.

If set to TRUE, the number of threads that are used for executing parallel regions can
be adjusted by the run-time environment to best utilize system resources.

If set to FALSE, dynamic adjustment is disabled. The default value is
implementation-dependent. For more information on the OMP_SET_DYNAMIClibrary
routine, see Section 3.1.7, page 51.

Example:

setenv OMP_DYNAMIC TRUE

60 Version 2.0, November
2000

1843

1844
1845
1846
1847

1848
1849
1850
1851
1852
1853

1854

1855

1856

1857
1858
1859

1860
1861

1862
1863
1864

1865

1866

OpenMP Fortran Application Program Interface Environment Variables [4]

4.4 OMP_NESTEDEnvironment Variable

The OMP_NESTEDenvironment variable enables or disables nested parallelism. If set
to TRUE, nested parallelism is enabled; if it is set to FALSE, it is disabled. The default
value is FALSE. For more information on nested parallelism, see Section 3.1.9, page
52.

Example:

setenv OMP_NESTED TRUE

Version 2.0, November 2000 61

1867

1868
1869
1870
1871

1872

1873

Examples [A]

The following are examples of the constructs defined in this document.

A.1 Executing a Simple Loop in Parallel

The following example shows how to parallelize a simple loop using the PARALELL DO
directive (specified in Section 2.4.1, page 23). The loop iteration variable is private by
default, so it is not necessary to declare it explicitly.

!$OMP PARALLEL DO !I is private by default
DO I=2,N

B(I) = (A(I) + A(I-1)) / 2.0
ENDDO

!$OMP END PARALLEL DO

The END PARALLEL DOdirective is optional.

A.2 Specifying Conditional Compilation

The following example illustrates the use of the conditional compilation sentinel
(specified in Section 2.1.3, page 10). Assuming Fortran fixed source form, the
following statement is illegal when using OpenMP constructs:

C234567890
!$ X(I) = X(I) + XLOCAL

With OpenMP compilation, the conditional compilation sentinel !$ is treated as two
spaces. As a result, the statement infringes on the statement label field. To be legal,
the statement should begin after column 6, like any other fixed source form statement:

C234567890
!$ X(I) = X(I) + XLOCAL

In other words, conditionally compiled statements need to meet all applicable
language rules when the sentinel is replaced with two spaces.

Version 2.0, November 2000 63

1874

1875

1876

1877
1878
1879

1880
1881
1882
1883
1884

1885

1886

1887
1888
1889

1890
1891

1892
1893
1894

1895
1896

1897
1898

Examples [A] OpenMP Fortran Application Program Interface

A.3 Using Parallel Regions

The PARALLELdirective (specified in Section 2.2, page 12) can be used in coarse-grain
parallel programs. In the following example, each thread in the parallel region
decides what part of the global array X to work on based on the thread number:

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,NPOINTS)
IAM = OMP_GET_THREAD_NUM()
NP = OMP_GET_NUM_THREADS()
IPOINTS = NPOINTS/NP
CALL SUBDOMAIN(X,IAM,IPOINTS)

!$OMP END PARALLEL

A.4 Using the NOWAITClause

If there are multiple independent loops within a parallel region, you can use the
NOWAITclause (specified in Section 2.3.1, page 15) to avoid the implied BARRIERat
the end of the DOdirective, as follows:

!$OMP PARALLEL
!$OMP DO

DO I=2,N
B(I) = (A(I) + A(I-1)) / 2.0

ENDDO
!$OMP END DO NOWAIT
!$OMP DO

DO I=1,M
Y(I) = SQRT(Z(I))

ENDDO
!$OMP END DO NOWAIT
!$OMP END PARALLEL

A.5 Using the CRITICAL Directive

The following example (for Section 2.5.2, page 26) includes several CRITICAL
directives. The example illustrates a queuing model in which a task is dequeued and
worked on. To guard against multiple threads dequeuing the same task, the
dequeuing operation must be in a critical section. Because there are two independent

64 Version 2.0, November
2000

1899

1900
1901
1902

1903
1904
1905
1906
1907
1908

1909

1910
1911
1912

1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924

1925

1926
1927
1928
1929

OpenMP Fortran Application Program Interface Examples [A]

queues in this example, each queue is protected by CRITICAL directives with
different names, XAXIS and YAXIS, respectively.

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,Y)
!$OMP CRITICAL(XAXIS)

CALL DEQUEUE(IX_NEXT, X)
!$OMP END CRITICAL(XAXIS)

CALL WORK(IX_NEXT, X)
!$OMP CRITICAL(YAXIS)

CALL DEQUEUE(IY_NEXT,Y)
!$OMP END CRITICAL(YAXIS)

CALL WORK(IY_NEXT, Y)
!$OMP END PARALLEL

A.6 Using the LASTPRIVATE Clause

Correct execution sometimes depends on the value that the last iteration of a loop
assigns to a variable. Such programs must list all such variables in a LASTPRIVATE
clause (specified in Section 2.6.2.5, page 38) so that the values of the variables are the
same as when the loop is executed sequentially.

!$OMP PARALLEL
!$OMP DO LASTPRIVATE(I)

DO I=1,N
A(I) = B(I) + C(I)

ENDDO
!$OMP END PARALLEL

CALL REVERSE(I)

In the preceding example, the value of I at the end of the parallel region will equal
N+1, as in the sequential case.

A.7 Using the REDUCTIONClause

The following example (for Section 2.6.2.6, page 38) shows how to use the REDUCTION
clause:

!$OMP PARALLEL DO DEFAULT(PRIVATE) REDUCTION(+: A,B)
DO I=1,N

Version 2.0, November 2000 65

1930
1931

1932
1933
1934
1935
1936
1937
1938
1939
1940
1941

1942

1943
1944
1945
1946

1947
1948
1949
1950
1951
1952
1953

1954
1955

1956

1957
1958

1959
1960

Examples [A] OpenMP Fortran Application Program Interface

CALL WORK(ALOCAL,BLOCAL)
A = A + ALOCAL
B = B + BLOCAL

ENDDO
!$OMP END PARALLEL DO

The following program is noncompliant because the reduction is on the
intrinsic_procedure_name MAXbut that name has been redefined to be the variable
named MAX.

MAX = HUGE(0)
M = 0

!$OMP PARALLEL DO REDUCTION(MAX: M) ! MAX is no longer the
! intrinsic so this
! is invalid

DO I = 1, 100
CALL SUB(M,I)

END DO
END

SUBROUTINE SUB(M,I)
M = MAX(M,I)

END SUBROUTINE SUB

The following compliant program performs the reduction using the
intrinsic_procedure_name MAXeven though the intrinsic MAXhas been renamed to
REN.

MODULE M
INTRINSIC MAX

END MODULE M
PROGRAM P

USE M, REN => MAX
M = 0

!$OMP PARALLEL DO REDUCTION(REN: M) ! still does MAX
DO I = 1, 100

M = MAX(M,I)
END DO

END PROGRAM P

The following compliant program performs the reduction using
intrinsic_procedure_name MAXeven though the intrinsic MAXhas been renamed to
MIN.

66 Version 2.0, November
2000

1961
1962
1963
1964
1965

1966
1967
1968

1969
1970
1971
1972
1973
1974
1975
1976
1977

1978
1979
1980

1981
1982
1983

1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994

1995
1996
1997

OpenMP Fortran Application Program Interface Examples [A]

MODULE MOD
INTRINSIC MAX, MIN

END MODULE MOD
PROGRAM P

USE MOD, MIN=>MAX, MAX=>MIN
REAL :: R
R = -HUGE(0.0)

!$OMP PARALLEL DO REDUCTION(MIN: R) ! still does MAX
DO I = 1, 1000

R = MIN(R, SIN(REAL(I)))
END DO
PRINT *, R

END PROGRAM P

A.8 Specifying Parallel Sections

In the following example (for Section 2.3.2, page 18), subroutines XAXIS, YAXIS, and
ZAXIS can be executed concurrently. The first SECTIONdirective is optional. Note
that all SECTIONdirectives need to appear in the lexical extent of the
PARALLEL SECTIONS/END PARALLEL SECTIONSconstruct.

!$OMP PARALLEL SECTIONS
!$OMP SECTION

CALL XAXIS()
!$OMP SECTION

CALL YAXIS()
!$OMP SECTION

CALL ZAXIS()
!$OMP END PARALLEL SECTIONS

A.9 Using SINGLE Directives

The first thread that encounters the SINGLE directive (specified in Section 2.3.3, page
20) executes subroutines OUTPUTand INPUT. The user must not make any
assumptions as to which thread will execute the SINGLE section. All other threads
will skip the SINGLE section and stop at the barrier at the END SINGLEconstruct. If
other threads can proceed without waiting for the thread executing the SINGLE
section, a NOWAITclause can be specified on the END SINGLEdirective.

Version 2.0, November 2000 67

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010

2011

2012
2013
2014
2015

2016
2017
2018
2019
2020
2021
2022
2023

2024

2025
2026
2027
2028
2029
2030

Examples [A] OpenMP Fortran Application Program Interface

!$OMP PARALLEL DEFAULT(SHARED)
CALL WORK(X)

!$OMP BARRIER
!$OMP SINGLE

CALL OUTPUT(X)
CALL INPUT(Y)

!$OMP END SINGLE
CALL WORK(Y)

!$OMP END PARALLEL

A.10 Specifying Sequential Ordering

ORDEREDsections (specified in Section 2.5.6, page 30) are useful for sequentially
ordering the output from work that is done in parallel. Assuming that a reentrant I/O
library exists, the following program prints out the indexes in sequential order:

!$OMP DO ORDERED SCHEDULE(DYNAMIC)
DO I=LB,UB,ST

CALL WORK(I)
END DO
...
SUBROUTINE WORK(K)

!$OMP ORDERED
WRITE(*,*) K

!$OMP END ORDERED
END

A.11 Specifying a Fixed Number of Threads

Some programs rely on a fixed, prespecified number of threads to execute correctly.
Because the default setting for the dynamic adjustment of the number of threads is
implementation-dependent, such programs can choose to turn off the dynamic threads
capability and set the number of threads explicitly to ensure portability. The
following example (for Section 3.1.1, page 48) shows how to do this:

CALL OMP_SET_DYNAMIC(.FALSE.)
CALL OMP_SET_NUM_THREADS(16)

!$OMP PARALLEL DEFAULT(PRIVATE)SHARED(X,NPOINTS)
IAM = OMP_GET_THREAD_NUM()

68 Version 2.0, November
2000

2031
2032
2033
2034
2035
2036
2037
2038
2039

2040

2041
2042
2043

2044
2045
2046
2047
2048
2049
2050
2051
2052
2053

2054

2055
2056
2057
2058
2059

2060
2061
2062
2063

OpenMP Fortran Application Program Interface Examples [A]

IPOINTS = NPOINTS/16
CALL DO_BY_16(X,IAM,IPOINTS)

!$OMP END PARALLEL

In this example, the program executes correctly only if it is executed by 16 threads. If
the implementation is not capable of supporting 16 threads, the behavior of this
example is implementation-dependent. Note that the number of threads executing a
parallel region remains constant during a parallel region, regardless of the dynamic
threads setting. The dynamic threads mechanism determines the number of threads
to use at the start of the parallel region and keeps it constant for the duration of the
region.

A.12 Using the ATOMICDirective

The following example (for Section 2.5.4, page 27) avoids race conditions by protecting
all simultaneous updates of the location, by multiple threads, with the ATOMIC
directive:

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X,Y,INDEX,N)
DO I=1,N

CALL WORK(XLOCAL, YLOCAL)
!$OMP ATOMIC

X(INDEX(I)) = X(INDEX(I)) + XLOCAL
Y(I) = Y(I) + YLOCAL

ENDDO

Note that the ATOMICdirective applies only to the Fortran statement immediately
following it. As a result, Y is not updated atomically in this example.

A.13 Using the FLUSHDirective

The following example (for Section 2.5.5, page 29) uses the FLUSHdirective for
point-to-point synchronization between pairs of threads:

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(ISYNC)
IAM = OMP_GET_THREAD_NUM()
ISYNC(IAM) = 0
NEIGH = GET_NEIGHBOR (IAM)

!$OMP BARRIER
CALL WORK()

Version 2.0, November 2000 69

2064
2065
2066

2067
2068
2069
2070
2071
2072
2073

2074

2075
2076
2077

2078
2079
2080
2081
2082
2083
2084

2085
2086

2087

2088
2089

2090
2091
2092
2093
2094
2095

Examples [A] OpenMP Fortran Application Program Interface

C I am done with my work, synchronize with my neighbor
ISYNC(IAM) = 1

!$OMP FLUSH(ISYNC)
C Wait until neighbor is done

DO WHILE (ISYNC(NEIGH) .EQ. 0)
!$OMP FLUSH(ISYNC)

END DO
!$OMP END PARALLEL

A.14 Determining the Number of Threads Used

Consider the following incorrect example:

NP = OMP_GET_NUM_THREADS()
!$OMP PARALLEL DO SCHEDULE(STATIC)

DO I = 0, NP-1
CALL WORK(I)

ENDDO
!$OMP END PARALLEL DO

The OMP_GET_NUM_THREADScall (specified in Section 3.1.2, page 48) returns 1 in the
serial section of the code, so NP will always be equal to 1 in the preceding example. To
determine the number of threads that will be deployed for the parallel region, the call
should be inside the parallel region.

The following example shows how to rewrite this program without including a query
for the number of threads:

!$OMP PARALLEL PRIVATE(I)
I = OMP_GET_THREAD_NUM()
CALL WORK(I)

!$OMP END PARALLEL

A.15 Using Locks

This is an example of the use of the simple lock routines (specified in Section 3.2,
page 52).

70 Version 2.0, November
2000

2096
2097
2098
2099
2100
2101
2102
2103

2104

2105

2106
2107
2108
2109
2110
2111

2112
2113
2114
2115

2116
2117

2118
2119
2120
2121

2122

2123
2124

OpenMP Fortran Application Program Interface Examples [A]

In the following program, note that the argument to the lock routines should be of
type INTEGERand of a KIND large enough to hold an address:

PROGRAM LOCK_USAGE
EXTERNAL OMP_TEST_LOCK
LOGICAL OMP_TEST_LOCK

INTEGER LCK ! This variable should be pointer sized

CALL OMP_INIT_LOCK(LCK)
!$OMP PARALLEL SHARED(LCK) PRIVATE(ID)

ID = OMP_GET_THREAD_NUM()
CALL OMP_SET_LOCK(LCK)
PRINT *, ’MY THREAD ID IS ’, ID
CALL OMP_UNSET_LOCK(LCK)

DO WHILE (.NOT. OMP_TEST_LOCK(LCK))
CALL SKIP(ID) ! We do not yet have the lock

! so we must do something else
END DO

CALL WORK(ID) ! We now have the lock
! and can do the work

CALL OMP_UNSET_LOCK(LCK)
!$OMP END PARALLEL

CALL OMP_DESTROY_LOCK(LCK)

END

A.16 Using Nestable Locks

The following example shows how a nestable lock (specified in Section 3.2, page 52)
can be used to synchronize updates both to a structure and to one of its components.

MODULE DATA
USE OMP_LIB, ONLY OMP_NEXT_LOCK_KIND

TYPE LOCKED_PAIR
INTEGER A
INTEGER B
INTEGER (OMP_NEST_LOCK_KIND) LCK

Version 2.0, November 2000 71

2125
2126

2127
2128
2129

2130

2131
2132
2133
2134
2135
2136

2137
2138
2139
2140

2141
2142
2143
2144

2145

2146

2147

2148
2149

2150
2151

2152
2153
2154
2155

Examples [A] OpenMP Fortran Application Program Interface

END TYPE
END MODULE DATA

SUBROUTINE INCR_A(P, A)
! called only from INCR_PAIR, no need to lock
USE DATA
TYPE(LOCKED_PAIR) :: P
INTEGER A

P%A = P%A + A
END SUBROUTINE INCR_A

SUBROUTINE INCR_B(P, B)
! called from both INCR_PAIR and elsewhere,
! so we need a nestable lock
USE OMP_LIB
USE DATA
TYPE(LOCKED_PAIR) :: P
INTEGER B

CALL OMP_SET_NEST_LOCK(P%LCK)
P%B = P%B + B
CALL OMP_UNSET_NEST_LOCK(P%LCK)

END SUBROUTINE INCR_B

SUBROUTINE INCR_PAIR(P, A, B)
USE OMP_LIB
USE DATA
TYPE(LOCKED_PAIR) :: P
INTEGER A
INTEGER B

CALL OMP_SET_NEST_LOCK(P%LCK)
CALL INCR_A(P, A)
CALL INCR_B(P, B)
CALL OMP_UNSET_NEST_LOCK(P%LCK)

END SUBROUTINE INCR_PAIR

SUBROUTINE F(P)
USE OMP_LIB
USE DATA
TYPE(LOCKED_PAIR) :: P
INTEGER WORK1, WORK2, WORK3
EXTERNAL WORK1, WORK2, WORK3

72 Version 2.0, November
2000

2156
2157

2158
2159
2160
2161
2162

2163
2164

2165
2166
2167
2168
2169
2170
2171

2172
2173
2174
2175

2176
2177
2178
2179
2180
2181

2182
2183
2184
2185
2186

2187
2188
2189
2190
2191
2192

OpenMP Fortran Application Program Interface Examples [A]

!$OMP PARALLEL SECTIONS
!$OMP SECTION

CALL INCR_PAIR(P, WORK1, WORK2)
!$OMP SECTION

CALL INCR_B(P, WORK3)
!$OMP END PARALLEL SECTIONS

END SUBROUTINE F

A.17 Nested DODirectives

The following example of directive nesting (specified in Section 2.8, page 45) is
compliant because the inner and outer DOdirectives bind to different PARALLEL
regions:

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N
!$OMP PARALLEL SHARED(I,N)
!$OMP DO

DO J = 1, N
CALL WORK(I,J)

END DO
!$OMP END PARALLEL

END DO
!$OMP END PARALLEL

The following variation of the preceding example is also compliant:

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N
CALL SOME_WORK(I,N)

END DO
!$OMP END PARALLEL

Version 2.0, November 2000 73

2193
2194
2195
2196
2197
2198
2199

2200

2201
2202
2203

2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214

2215

2216
2217
2218
2219
2220
2221

Examples [A] OpenMP Fortran Application Program Interface

SUBROUTINE SOME_WORK(I,N)
!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO J = 1, N
CALL WORK(I,J)

END DO
!$OMP END PARALLEL

RETURN
END

A.18 Examples Showing Incorrect Nesting of Work-sharing Directives

The examples in this section illustrate the directive nesting rules (specified in Section
2.8, page 45).

The following example is noncompliant because the inner and outer DOdirectives are
nested and bind to the same PARALLELdirective:

Example 1: Noncompliant Example

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N
!$OMP DO

DO J = 1, N
CALL WORK(I,J)

END DO
END DO

!$OMP END PARALLEL
END

74 Version 2.0, November
2000

2222
2223
2224
2225
2226
2227
2228
2229
2230

2231

2232
2233

2234
2235

2236

2237
2238
2239
2240
2241
2242
2243
2244
2245
2246

OpenMP Fortran Application Program Interface Examples [A]

The following dynamically nested version of the preceding example is also
noncompliant:

Example 2: Noncompliant Example

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N
CALL SOME_WORK(I,N)

END DO
!$OMP END PARALLEL

END
SUBROUTINE SOME_WORK(I,N)

!$OMP DO
DO J = 1, N

CALL WORK(I,J)
END DO
RETURN
END

The following example is noncompliant because the DOand SINGLE directives are
nested, and they bind to the same PARALLELregion:

Example 3: Noncomplaint Example

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N
!$OMP SINGLE

CALL WORK(I)
!$OMP END SINGLE

END DO
!$OMP END PARALLEL

END

The following example is noncompliant because a BARRIERdirective inside a SINGLE
or a DOcan result in deadlock:

Version 2.0, November 2000 75

2247
2248

2249

2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263

2264
2265

2266

2267
2268
2269
2270
2271
2272
2273
2274
2275

2276
2277

Examples [A] OpenMP Fortran Application Program Interface

Example 4: Noncompliant Example

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP DO

DO I = 1, N
CALL WORK(I)

!$OMP BARRIER
CALL MORE_WORK(I)

END DO
!$OMP END PARALLEL

END

The following example is noncompliant because the BARRIERresults in deadlock since
only one thread at a time can enter the CRITICAL section:

Example 5: Noncompliant Example

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP CRITICAL

CALL WORK(N,1)
!$OMP BARRIER

CALL MORE_WORK(N,2)
!$OMP END CRITICAL
!$OMP END PARALLEL

END

The following example is noncompliant because the BARRIERresults in deadlock since
only one thread executes the SINGLE section:

Example 6: Noncompliant Example

!$OMP PARALLEL DEFAULT(SHARED)
CALL SETUP(N)

!$OMP SINGLE
CALL WORK(N,1)

!$OMP BARRIER
CALL MORE_WORK(N,2)

!$OMP END SINGLE
CALL FINISH(N)

!$OMP END PARALLEL
END

76 Version 2.0, November
2000

2278

2279
2280
2281
2282
2283
2284
2285
2286
2287

2288
2289

2290

2291
2292
2293
2294
2295
2296
2297
2298

2299
2300

2301

2302
2303
2304
2305
2306
2307
2308
2309
2310
2311

OpenMP Fortran Application Program Interface Examples [A]

A.19 Binding of BARRIERDirectives

The directive binding rules call for a BARRIERdirective to bind to the closest
enclosing PARALLELdirective. For more information, see Section 2.7, page 45.

In the following example, the call from MAIN to SUB2 is OpenMP-compliant because
the BARRIER(in SUB3) binds to the PARALLELregion in SUB2. The call from MAIN to
SUB1 is OpenMP-compliant because the BARRIERbinds to the PARALLELregion in
subroutine SUB2.

The call from MAIN to SUB3 is OpenMP-compliant because the BARRIERdoes not bind
to any parallel region and is ignored. Also note that the BARRIERonly synchronizes
the team of threads in the enclosing parallel region and not all the threads created in
SUB1.

PROGRAM MAIN
CALL SUB1(2)
CALL SUB2(2)
CALL SUB3(2)
END

SUBROUTINE SUB1(N)
!$OMP PARALLEL PRIVATE(I) SHARED(N)
!$OMP DO

DO I = 1, N
CALL SUB2(I)
END DO

!$OMP END PARALLEL
END

SUBROUTINE SUB2(K)
!$OMP PARALLEL SHARED(K)

CALL SUB3(K)
!$OMP END PARALLEL

END

SUBROUTINE SUB3(N)
CALL WORK(N)

!$OMP BARRIER
CALL WORK(N)
END

Version 2.0, November 2000 77

2312

2313
2314

2315
2316
2317
2318

2319
2320
2321
2322

2323
2324
2325
2326
2327

2328
2329
2330
2331
2332
2333
2334
2335

2336
2337
2338
2339
2340

2341
2342
2343
2344
2345

Examples [A] OpenMP Fortran Application Program Interface

A.20 Scoping Variables with the PRIVATE Clause

The values of I and J in the following example are undefined on exit from the
parallel region:

INTEGER I,J
I = 1
J = 2

!$OMP PARALLEL PRIVATE(I) FIRSTPRIVATE(J)
I = 3
J = J+ 2

!$OMP END PARALLEL
PRINT *, I, J

(For more information, see Section 2.6.2.1, page 35.)

A.21 Examples of Noncompliant Storage Association

The following examples illustrate the implications of the PRIVATE clause rules (see
Section 2.6.2.1, page 35, rule 4) with regard to storage association:

Example 1: Noncompliant Example

COMMON /BLOCK/ X
X = 1.0

!$OMP PARALLEL PRIVATE (X)
X = 2.0
CALL SUB()
...

!$OMP END PARALLEL
...
SUBROUTINE SUB()
COMMON /BLOCK/ X
...
PRINT *,X ! X is undefined

...
END SUBROUTINE SUB
END PROGRAM

78 Version 2.0, November
2000

2346

2347
2348

2349
2350
2351
2352
2353
2354
2355
2356

2357

2358

2359
2360

2361

2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373

2374
2375
2376

OpenMP Fortran Application Program Interface Examples [A]

Example 2: Noncompliant Example

COMMON /BLOCK/ X
X = 1.0

!$OMP PARALLEL PRIVATE (X)
X = 2.0
CALL SUB()
...

!$OMP END PARALLEL
...
CONTAINS

SUBROUTINE SUB()
COMMON /BLOCK/ Y
...
PRINT *,X ! X is undefined
PRINT *,Y ! Y is undefined
...
END SUBROUTINE SUB

END PROGRAM

Example 3: Noncompliant Example

EQUIVALENCE (X,Y)
X = 1.0

!$OMP PARALLEL PRIVATE(X)
...
PRINT *,Y ! Y is undefined
Y = 10
PRINT *,X ! X is undefined

!$OMP END PARALLEL

Example 4: Noncompliant Example

INTEGER A(100), B(100)
EQUIVALENCE (A(51), B(1))

!$OMP PARALLEL DO DEFAULT(PRIVATE) PRIVATE(I,J) LASTPRIVATE(A)
DO I=1,100

DO J=1,100
B(J) = J - 1

ENDDO

DO J=1,100
A(J) = J ! B becomes undefined at this point

Version 2.0, November 2000 79

2377

2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394

2395

2396
2397
2398
2399
2400
2401
2402
2403

2404

2405
2406

2407
2408
2409
2410
2411

2412
2413

Examples [A] OpenMP Fortran Application Program Interface

ENDDO
DO J=1,50

B(J) = B(J) + 1 ! B is undefined
! A becomes undefined at this point

ENDDO
ENDDO

!$OMP END PARALLEL DO ! The LASTPRIVATE write for A has
! undefined results

PRINT *, B ! B is undefined since the LASTPRIVATE
! write of A was not defined

END

Example 5: Noncompliant Example

COMMON /FOO/ A
DIMENSION B(10)
EQUIVALENCE (A,B(1))
! the common block has to be at least 10 words
A = 0

!$OMP PARALLEL PRIVATE(/FOO/)
!
! Without the private clause,
! we would be passing a member of a sequence
! that is at least ten elements long. With the private
! clause, A may no longer be sequence-associated.
!
CALL BAR(A)

!$OMP MASTER
PRINT *, A

!$OMP END MASTER
!$OMP END PARALLEL

END

SUBROUTINE BAR(X)
DIMENSION X(10)
!
! This use of X does not conform to the specification.
! It would be legal Fortran 90, but the OpenMP private
! directive allows the compiler to break the sequence
! association that A had with the rest of the common block.
!
FORALL (I = 1:10) X(I) = I
END

80 Version 2.0, November
2000

2414
2415
2416
2417
2418
2419
2420
2421

2422
2423
2424

2425

2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443

2444
2445
2446
2447
2448
2449
2450
2451
2452
2453

OpenMP Fortran Application Program Interface Examples [A]

A.22 Examples of Syntax of Parallel DOLoops

Both block-do and non-block-do are permitted with PARALLEL DOand work-sharing
DOdirectives. However, if a user specifies an ENDDOdirective for a non-block-do
construct with shared termination, then the matching DOdirective must precede the
outermost DO. For more information, see Section 2.3.1, page 15, and Section 2.4.1,
page 23.

The following are some examples:

Example 1:

DO 100 I = 1,10
!$OMP DO

DO 100 J = 1,10
...

100 CONTINUE

Example 2:

!$OMP DO
DO 100 J = 1,10

...
100 A(I) = I + 1
!$OMP ENDDO

Example 3:

!$OMP DO
DO 100 I = 1,10

DO 100 J = 1,10
...

100 CONTINUE
!$OMP ENDDO

Example 4: Noncompliant Example

DO 100 I = 1,10
!$OMP DO

DO 100 J = 1,10
...

100 CONTINUE
!$OMP ENDDO

Version 2.0, November 2000 81

2454

2455
2456
2457
2458
2459

2460

2461

2462
2463
2464
2465
2466

2467

2468
2469
2470
2471
2472

2473

2474
2475
2476
2477
2478
2479

2480

2481
2482
2483
2484
2485
2486

Examples [A] OpenMP Fortran Application Program Interface

A.23 Examples of the ATOMICDirective

All atomic references to the storage location of each variable that appears on the
left-hand side of an ATOMICassignment statement throughout the program are
required to have the same type and type parameters. For more information, see
Section 2.5.4, page 27.

The following are some examples:

Example 1: Noncompliant Example

INTEGER:: I
REAL:: R
EQUIVALENCE(I,R)

!$OMP PARALLEL
...

!$OMP ATOMIC
I = I + 1
...

!$OMP ATOMIC
R = R + 1.0

!$OMP END PARALLEL

Example 2: Noncompliant Example

SUBROUTINE FRED()
COMMON /BLK/ I
INTEGER I

!$OMP PARALLEL
...

!$OMP ATOMIC
I = I + 1
...
CALL SUB()

!$OMP END PARALLEL
END

SUBROUTINE SUB()
COMMON /BLK/ R
REAL R
...

!$OMP ATOMIC
R = R + 1
END

82 Version 2.0, November
2000

2487

2488
2489
2490
2491

2492

2493

2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504

2505

2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516

2517
2518
2519
2520
2521
2522
2523

OpenMP Fortran Application Program Interface Examples [A]

Example 3: Noncompliant Example

Although the following example might work on some implementation, this is
considered a noncompliant example.

INTEGER:: I
REAL:: R
EQUIVALENCE(I,R)

!$OMP PARALLEL
...

!$OMP ATOMIC
I = I + 1

!$OMP END PARALLEL
...

!$OMP PARALLEL
...

!$OMP ATOMIC
R = R + 1.0

!$OMP END PARALLEL

A.24 Examples of the ORDEREDDirective

It is possible to have multiple ORDEREDsections within a DOspecified with the
ORDEREDclause. Example 1 is noncompliant, because the API states the following:

An iteration of a loop with a DOdirective must not execute the same
ORDEREDdirective more than once, and it must not execute more than one
ORDEREDdirective.

For more information, see Section 2.5.6, page 30.

Version 2.0, November 2000 83

2524

2525
2526

2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540

2541

2542
2543

2544
2545
2546

2547

Examples [A] OpenMP Fortran Application Program Interface

Example 1: Noncompliant Example

In this example, all iterations execute 2 ORDEREDsections:

!$OMP DO
DO I = 1, N
...

!$OMP ORDERED
...

!$OMP END ORDERED
...

!$OMP ORDERED
...

!$OMP END ORDERED
...
END DO

Example 2:

This is a compliant example of a DOwith more than one ORDEREDsection:

!$OMP DO ORDERED
DO I = 1,N

...
IF (I <= 10) THEN

...
!$OMP ORDERED

WRITE(4,*) I
!$OMP END ORDERED

ENDIF
...

IF (I > 10) THEN
...

!$OMP ORDERED
WRITE(3,*) I

!$OMP END ORDERED
ENDIF

ENDDO

A.25 Examples of THREADPRIVATEData

The following examples show noncompliant uses and correct uses of the
THREADPRIVATEdirective. For more information, see Section 2.6.1, page 32, item 8 of
Section 2.6.3, page 42, and Section 2.6.2.7, page 41.

84 Version 2.0, November
2000

2548

2549

2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561

2562

2563

2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580

2581

2582
2583
2584

OpenMP Fortran Application Program Interface Examples [A]

Example 1: Noncompliant Example

MODULE FOO
COMMON /T/ A
END MODULE FOO

SUBROUTINE BAR()
USE FOO

!$OMP THREADPRIVATE(/T/)
!noncompliant because /T/ not declared in BAR
!See Section 2.6.1

!$OMP PARALLEL
...

!$OMP END PARALLEL
END SUBROUTINE BAR

Example 2: Noncompliant Example

COMMON /T/ A
!$OMP THREADPRIVATE(/T/)

...
CONTAINS

SUBROUTINE BAR()
!$OMP PARALLEL COPYIN(/T/)

!noncompliant because /T/ not declared in BAR
!See Section 2.6.2.7

...
!$OMP END PARALLEL

END SUBROUTINE BAR
END PROGRAM

Example 3: Correct Rewrite of the Previous Example

COMMON /T/ A
!$OMP THREADPRIVATE(/T/)

...
CONTAINS

SUBROUTINE BAR()
COMMON /T/ A

!$OMP THREADPRIVATE(/T/)
!$OMP PARALLEL COPYIN(/T/)

...
!$OMP END PARALLEL

END SUBROUTINE BAR
END PROGRAM

Example 4: An example of THREADPRIVATEfor local variables

Version 2.0, November 2000 85

2585

2586
2587
2588

2589
2590
2591
2592
2593
2594
2595
2596
2597

2598

2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610

2611

2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623

2624

Examples [A] OpenMP Fortran Application Program Interface

PROGRAM P
INTEGER, ALLOCATABLE, SAVE :: A(:)
INTEGER, POINTER, SAVE :: PTR
INTEGER, SAVE :: I
INTEGER, TARGET :: TARG
LOGICAL :: FIRSTIN = .TRUE.

!$OMP THREADPRIVATE(A, B, I, PTR)

ALLOCATE (A(3))
A = (/1,2,3/)
PTR => TARG
I = 5

!$OMP PARALLEL COPYIN(I, PTR)
!$OMP CRITICAL

IF (FIRSTIN) THEN
TARG = 4 ! Update target of ptr
I = I + 10
IF (ALLOCATED(A)) A = A + 10
FIRSTIN = .FALSE.

END IF
IF (ALLOCATED(A)) THEN

PRINT *, ’a = ’, A
ELSE

PRINT *, ’A is not allocated’
END IF
PRINT *, ’ptr = ’, PTR
PRINT *, ’i = ’, I
PRINT *

!$OMP END CRITICAL
!$OMP END PARALLEL

END PROGRAM P

This program, if executed by two threads, will print the following.

a = 11 12 13
ptr = 4
i = 15

A is not allocated
ptr = 4
i = 5

or

86 Version 2.0, November
2000

2625
2626
2627
2628
2629
2630
2631

2632
2633
2634
2635

2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654

2655

2656
2657
2658

2659
2660
2661

2662

OpenMP Fortran Application Program Interface Examples [A]

A is not allocated
ptr = 4
i = 15

a = 1 2 3
ptr = 4
i = 5

Example 5: An example of THREADPRIVATEfor module variables

MODULE FOO
REAL, POINTER :: WORK(:)
SAVE WORK

!$OMP THREADPRIVATE(WORK)
END MODULE FOO

SUBROUTINE SUB1(N)
USE FOO

!$OMP PARALLEL PRIVATE(THE_SUM)
ALLOCATE(WORK(N))
CALL SUB2(N,THE_SUM)
WRITE(*,*)THE_SUM

!$OMP END PARALLEL
END SUBROUTINE SUB1

SUBROUTINE SUB2(N,THE_SUM)
USE FOO
WORK = 10
THE_SUM=SUM(WORK)

END SUBROUTINE SUB2

PROGRAM BONK
USE FOO
N = 10
CALL SUB1(N)

END PROGRAM BONK

Version 2.0, November 2000 87

2663
2664
2665

2666
2667
2668

2669

2670
2671
2672
2673
2674

2675
2676
2677
2678
2679
2680
2681
2682

2683
2684
2685
2686
2687

2688
2689
2690
2691
2692

Examples [A] OpenMP Fortran Application Program Interface

A.26 Examples of the Data Attribute Clauses: SHAREDand PRIVATE

When a named common block is specified in a PRIVATE, FIRSTPRIVATE, or
LASTPRIVATE clause of a directive, none of its constituent elements may be declared
in another scope attribute clause in that directive. The following examples, both
compliant and noncompliant, illustrate this point. For more information, see item 8 of
Section 2.6.3, page 42.

Example 1:

COMMON /C/ X,Y
!$OMP PARALLEL PRIVATE (/C/)

...
!$OMP END PARALLEL

...
!$OMP PARALLEL SHARED (X,Y)

...
!$OMP END PARALLEL

Example 2:

COMMON /C/ X,Y
!$OMP PARALLEL

...
!$OMP DO PRIVATE(/C/)

...
!$OMP END DO
!
!$OMP DO PRIVATE(X)

...
!$OMP END DO

...
!$OMP END PARALLEL

Example 3: Noncompliant Example

COMMON /C/ X,Y
!$OMP PARALLEL PRIVATE(/C/), SHARED(X)

...
!$OMP END PARALLEL

88 Version 2.0, November
2000

2693

2694
2695
2696
2697
2698

2699

2700
2701
2702
2703
2704
2705
2706
2707

2708

2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720

2721

2722
2723
2724
2725

OpenMP Fortran Application Program Interface Examples [A]

Example 4:

COMMON /C/ X,Y
!$OMP PARALLEL PRIVATE (/C/)

...
!$OMP END PARALLEL

...
!$OMP PARALLEL SHARED (/C/)

...
!$OMP END PARALLEL

Example 5: Noncompliant Example

COMMON /C/ X,Y
!$OMP PARALLEL PRIVATE(/C/), SHARED(/C/)

...
!$OMP END PARALLEL

Example 6:

MODULE M
REAL A

CONTAINS
SUBROUTINE SUB

!$OMP PARALLEL PRIVATE(A)
CALL SUB1()

!$OMP END PARALLEL
END SUBROUTINE SUB
SUBROUTINE SUB1()
A = 5 ! This is A in module M, not the PRIVATE

! A in SUB
END SUBROUTINE SUB1

END MODULE M

A.27 Examples of the Data Attribute Clause: COPYPRIVATE

Example 1. The COPYPRIVATEclause (specified in Section 2.6.2.8, page 41) can be
used to broadcast the value resulting from a read statement directly to all instances
of a private variable.

SUBROUTINE INIT(A,B)

Version 2.0, November 2000 89

2726

2727
2728
2729
2730
2731
2732
2733
2734

2735

2736
2737
2738
2739

2740

2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

2754

2755
2756
2757

2758

Examples [A] OpenMP Fortran Application Program Interface

COMMON /XY/ X,Y
!$OMP THREADPRIVATE (/XY/)
!$OMP SINGLE

READ (11) A,B,X,Y
!$OMP END SINGLE COPYPRIVATE (A,B,/XY/)

END

If subroutine INIT is called from a serial region, its behavior is not affected by the
presence of the directives. If it is called from a parallel region, then the actual
arguments with which A and B are associated must be private. After the read
statement has been executed by one thread, no thread leaves the construct until the
private objects designated by A, B, X, and Y in all threads have become defined with
the values read.

Example 2. In contrast to the previous example, suppose the read must be performed
by a particular thread, say the master thread. In this case, the COPYPRIVATEclause
cannot be used to do the broadcast directly, but it can be used to provide access to a
temporary shared object.

REAL FUNCTION READ_NEXT()
REAL, POINTER :: TMP

!$OMP SINGLE
ALLOCATE (TMP)

!$OMP END SINGLE COPYPRIVATE (TMP)

!$OMP MASTER
READ (11) TMP

!$OMP END MASTER

!$OMP BARRIER
READ_NEXT = TMP

!$OMP BARRIER

!$OMP SINGLE
DEALLOCATE (TMP)

!$OMP END SINGLE NOWAIT
END FUNCTION READ_NEXT

Example 3. Suppose that the number of lock objects required within a parallel region
cannot easily be determined prior to entering it. The COPYPRIVATEclause can be used
to provide access to shared lock objects that are allocated within that parallel region.

FUNCTION NEW_LOCK()
INTEGER(OMP_LOCK_KIND), POINTER :: NEW_LOCK

90 Version 2.0, November
2000

2759
2760
2761
2762
2763
2764

2765
2766
2767
2768
2769
2770

2771
2772
2773
2774

2775
2776
2777
2778
2779

2780
2781
2782

2783
2784
2785

2786
2787
2788
2789

2790
2791
2792

2793
2794

OpenMP Fortran Application Program Interface Examples [A]

!$OMP SINGLE
ALLOCATE(NEW_LOCK)
CALL OMP_INIT_LOCK(NEW_LOCK)

!$OMP END SINGLE COPYPRIVATE(NEW_LOCK)
END FUNCTION NEW_LOCK

Example 4. Note that the effect of the copyprivate clause on a variable with the
allocatable attribute is different than on a variable with the pointer attribute.

SUBROUTINE S(N)
REAL, DIMENSION(:), ALLOCATABLE :: A
REAL, DIMENSION(:), POINTER :: B
ALLOCATE (A(N))

!$OMP SINGLE
ALLOCATE (B(N))
READ (11) A,B

!$OMP END SINGLE COPYPRIVATE(A,B)
! Variable A designates a private object
! which has the same value in each thread
! Variable B designates a shared object
...

!$OMP BARRIER
!$OMP SINGLE

DEALLOCATE (B)
!$OMP END SINGLE NOWAIT

END SUBROUTINE S

A.28 Examples of the WORKSHAREDirective

In the following examples of the WORKSHAREdirective (specified in Section 2.3.4, page
20), assume that all 2 letter variable names (e.g., AA, BB) are conformable arrays and
single letter names (e.g., I , X) are scalars; implicit typing rules hold. Each of the
examples is enclosed in a parallel region. All of the examples are fixed source form so
the directives start in column 1.

Example 1. WORKSHAREspreads work across some number of threads and there is a
barrier after the last statement. Implementations must enforce Fortran execution
rules inside of the WORKSHAREblock.

!$OMP WORKSHARE
AA = BB

Version 2.0, November 2000 91

2795
2796
2797
2798
2799

2800
2801

2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818

2819

2820
2821
2822
2823
2824

2825
2826
2827

2828
2829

Examples [A] OpenMP Fortran Application Program Interface

CC = DD
EE = FF

!$OMP END WORKSHARE

Example 2. The final barrier can be eliminated with NOWAIT:

!$OMP WORKSHARE
AA = BB
CC = DD

!$OMP END WORKSHARE NOWAIT

!$OMP WORKSHARE
EE = FF

!$OMP END WORKSHARE

Threads doing CC = DDimmediately begin work on EE = FF when they are done
with CC = DD.

Example 3. ATOMICcan be used with WORKSHARE:

!$OMP WORKSHARE
AA = BB

!$OMP ATOMIC
I = I + SUM(AA)
CC = DD

!$OMP END WORKSHARE

The computation of SUM(AA) is workshared, but the update to I is ATOMIC.

Example 4. Fortran WHEREand FORALLstatements are compound statements of the
form:

WHERE (EE .ne. 0) FF = 1 / EE
FORALL (I=1:N, XX(I) .ne. 0) YY(I) = 1 / XX(I)

They are made up of a control part and a statement part. When WORKSHAREis applied
to one of these compound statements, both the control and the statement parts are
workshared.

!$OMP WORKSHARE
AA = BB
CC = DD
WHERE (EE .ne. 0) FF = 1 / EE
GG = HH

!$OMP END WORKSHARE

Each task gets worked on in order by the threads:

92 Version 2.0, November
2000

2830
2831
2832

2833

2834
2835
2836
2837

2838
2839
2840

2841
2842

2843

2844
2845
2846
2847
2848
2849

2850

2851
2852

2853
2854

2855
2856
2857

2858
2859
2860
2861
2862
2863

2864

OpenMP Fortran Application Program Interface Examples [A]

AA = BB then
CC = DD then
EE .ne. 0 then
FF = 1 / EE then
GG = HH

Example 5. An assignment to a shared scalar variable is performed by one thread in
a WORKSHAREwhile all other threads in the team wait. SHRis a shared scalar
variable in this example.

!$OMP WORKSHARE
AA = BB
SHR = 1
CC = DD

!$OMP END WORKSHARE

Noncompliant Example 6. An assignment to a private scalar variable is performed by
one thread in a WORKSHAREwhile all other threads wait. The private scalar variable
is undefined after the assignment statement. PRI is a private scalar variable in this
example.

!$OMP WORKSHARE
AA = BB
PRI = 1
CC = DD

!$OMP END WORKSHARE

Example 7. Fortran execution rules must be enforced inside a WORKSHAREconstruct.
Hence, the same result is produced in the following program fragment regardless of
whether the code is executed sequentially or inside an OpenMP program with
multiple threads:

!$OMP WORKSHARE
A(1:50) = B(11:60)
G(11:20) = A(1:10)

!$OMP END WORKSHARE

Version 2.0, November 2000 93

2865
2866
2867
2868
2869

2870
2871
2872

2873
2874
2875
2876
2877

2878
2879
2880
2881

2882
2883
2884
2885
2886

2887
2888
2889
2890

2891
2892
2893
2894

Stubs for Run-time Library Routines [B]

This section provides stubs for the runtime library routines defined in the OpenMP
Fortran API. The stubs are provided to enable portability to platforms that do not
support the OpenMP Fortran API. On such platforms, OpenMP programs must be
linked with a library containing these stub routines. The stub routines assume that
the directives in the OpenMP program are ignored. As such, they emulate serial
semantics.

Note: The lock variable that appears in the lock routines must be accessed
exclusively through these routines. It should not be initialized or otherwise
modified in the user program. It is declared as a POINTERto guarantee that it is
capable of holding an address. Alternatively, for Fortran 90 implementations, it
could be declared as an INTEGER(OMP_LOCK_KIND)or
INTEGER(OMP_NEST_LOCK_KIND), as appropriate. In an actual implementation
the lock variable might be used to hold the address of an allocated object, but
here it is used to hold an integer value. Users should not make assumptions
about mechanisms used by OpenMP Fortran implementations to implement
locks based on the scheme used by the stub routines.

SUBROUTINE OMP_SET_NUM_THREADS(NP)
INTEGER NP
RETURN
END

INTEGER FUNCTION OMP_GET_NUM_THREADS()
OMP_GET_NUM_THREADS = 1
RETURN
END

INTEGER FUNCTION OMP_GET_MAX_THREADS()
OMP_GET_MAX_THREADS = 1
RETURN
END

INTEGER FUNCTION OMP_GET_THREAD_NUM()
OMP_GET_THREAD_NUM = 0
RETURN
END

INTEGER FUNCTION OMP_GET_NUM_PROCS()
OMP_GET_NUM_PROCS = 1
RETURN
END

Version 2.0, November 2000 95

2895

2896
2897
2898
2899
2900
2901

2902
2903
2904
2905
2906
2907
2908
2909
2910
2911

2912
2913
2914
2915

2916
2917
2918
2919

2920
2921
2922
2923

2924
2925
2926
2927

2928
2929
2930
2931

Stubs for Run-time Library Routines [B] OpenMP Fortran Application Program Interface

LOGICAL FUNCTION OMP_IN_PARALLEL()
OMP_IN_PARALLEL = .FALSE.
RETURN
END

SUBROUTINE OMP_SET_DYNAMIC(FLAG)
LOGICAL FLAG
RETURN
END

LOGICAL FUNCTION OMP_GET_DYNAMIC()
OMP_GET_DYNAMIC = .FALSE.
RETURN
END

SUBROUTINE OMP_SET_NESTED(FLAG)
LOGICAL FLAG
RETURN
END

LOGICAL FUNCTION OMP_GET_NESTED()
OMP_GET_NESTED = .FALSE.
RETURN
END

SUBROUTINE OMP_INIT_LOCK(LOCK)
! LOCK is 0 if the simple lock is not initialized
! -1 if the simple lock is initialized but not set
! 1 if the simple lock is set
POINTER (LOCK,IL)
INTEGER IL
LOCK = -1
RETURN
END

SUBROUTINE OMP_INIT_NEST_LOCK(NLOCK)
! NLOCK is 0 if the nestable lock is not initialized
! -1 if the nestable lock is initialized but not set
! 1 if the nestable lock is set
! no use count is maintained
POINTER (NLOCK,NIL)
INTEGER NIL
NLOCK = -1
RETURN
END

96 Version 2.0, November
2000

2932
2933
2934
2935

2936
2937
2938
2939

2940
2941
2942
2943

2944
2945
2946
2947

2948
2949
2950
2951

2952
2953
2954
2955
2956
2957
2958
2959
2960

2961
2962
2963
2964
2965
2966
2967
2968
2969
2970

OpenMP Fortran Application Program Interface Stubs for Run-time Library Routines [B]

SUBROUTINE OMP_DESTROY_LOCK(LOCK)
POINTER (LOCK,IL)
INTEGER IL
LOCK = 0
RETURN
END

SUBROUTINE OMP_DESTROY_NEST_LOCK(NLOCK)
POINTER (NLOCK,NIL)
INTEGER NIL
NLOCK = 0
RETURN
END

SUBROUTINE OMP_SET_LOCK(LOCK)
POINTER (LOCK,IL)
INTEGER IL

IF (LOCK .EQ. 0) THEN
PRINT *, ’ERROR: LOCK NOT INITIALIZED’
STOP

ELSEIF (LOCK .EQ. 1) THEN
PRINT *, ’ERROR: DEADLOCK IN USING LOCK VARIABLE’
STOP

ELSE
LOCK = 1

ENDIF
RETURN
END

SUBROUTINE OMP_SET_NEST_LOCK(NLOCK)
POINTER (NLOCK,NIL)
INTEGER NIL

IF (NLOCK .EQ. 0) THEN
PRINT *, ’ERROR: NESTED LOCK NOT INITIALIZED’
STOP

ELSEIF (NLOCK .EQ. 1) THEN
PRINT *, ’ERROR: DEADLOCK USING NESTED LOCK VARIABLE’
STOP

ELSE
NLOCK = 1

Version 2.0, November 2000 97

2971
2972
2973
2974
2975
2976

2977
2978
2979
2980
2981
2982

2983
2984
2985

2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996

2997
2998
2999

3000
3001
3002
3003
3004
3005
3006
3007

Stubs for Run-time Library Routines [B] OpenMP Fortran Application Program Interface

ENDIF

RETURN
END

SUBROUTINE OMP_UNSET_LOCK(LOCK)
POINTER (LOCK,IL)
INTEGER IL
IF (LOCK .EQ. 0) THEN

PRINT *, ’ERROR: LOCK NOT INITIALIZED’
STOP

ELSEIF (LOCK .EQ. 1) THEN
LOCK = -1

ELSE
PRINT *, ’ERROR: LOCK NOT SET’
STOP

ENDIF
RETURN
END

SUBROUTINE OMP_UNSET_NEST_LOCK(NLOCK)
POINTER (NLOCK,NIL)
INTEGER NIL

IF (NLOCK .EQ. 0) THEN
PRINT *, ’ERROR: NESTED LOCK NOT INITIALIZED’
STOP

ELSEIF (NLOCK .EQ. 1) THEN
NLOCK = -1

ELSE
PRINT *, ’ERROR: NESTED LOCK NOT SET’
STOP

ENDIF

RETURN
END

LOGICAL FUNCTION OMP_TEST_LOCK(LOCK)
POINTER (LOCK,IL)
INTEGER IL
IF (LOCK .EQ. -1) THEN

LOCK = 1
OMP_TEST_LOCK = .TRUE.

98 Version 2.0, November
2000

3008

3009
3010

3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024

3025
3026
3027

3028
3029
3030
3031
3032
3033
3034
3035
3036

3037
3038

3039
3040
3041
3042
3043
3044

OpenMP Fortran Application Program Interface Stubs for Run-time Library Routines [B]

ELSEIF (LOCK .EQ. 1) THEN
OMP_TEST_LOCK = .FALSE.

ELSE
PRINT *, ’ERROR: LOCK NOT INITIALIZED’
STOP

ENDIF
RETURN
END

INTEGER FUNCTION OMP_TEST_NEST_LOCK(NLOCK)
POINTER (NLOCK,NIL)
INTEGER NIL

IF (NLOCK .EQ. -1) THEN
NLOCK = 1
OMP_TEST_NEST_LOCK = 1

ELSEIF (NLOCK .EQ. 1) THEN
OMP_TEST_NEST_LOCK = 0

ELSE
PRINT *, ’ERROR: NESTED LOCK NOT INITIALIZED’
STOP

ENDIF

RETURN
END

DOUBLE PRECISION OMP_WTIME()
! This function does not provide a working
! wall-clock timer. Replace it with a version
! customized for the target machine.
OMP_WTIME = 0
RETURN
END

DOUBLE PRECISION OMP_WTICK()
! This function does not provide a working
! clock tick function. Replace it with
! a version customized for the target machine.
DOUBLE PRECISION ONE_YEAR
PARAMETER (ONE_YEAR=365.D0*86400.D0)
OMP_WTICK=ONE_YEAR
RETURN
END

Version 2.0, November 2000 99

3045
3046
3047
3048
3049
3050
3051
3052

3053
3054
3055

3056
3057
3058
3059
3060
3061
3062
3063
3064

3065
3066

3067
3068
3069
3070
3071
3072
3073

3074
3075
3076
3077
3078
3079
3080
3081
3082

Using the SCHEDULEClause [C]

A parallel region has at least one barrier, at its end, and may have additional barriers
within it. At each barrier, the other members of the team must wait for the last
thread to arrive. To minimize this wait time, shared work should be distributed so
that all threads arrive at the barrier at about the same time. If some of that shared
work is contained in DOconstructs, the SCHEDULEclause can be used for this purpose.

When there are repeated references to the same objects, the choice of schedule for a
DOconstruct may be determined primarily by characteristics of the memory system,
such as the presence and size of caches and whether memory access times are
uniform or nonuniform. Such considerations may make it preferable to have each
thread consistently refer to the same set of elements of an array in a series of loops,
even if some threads are assigned relatively less work in some of the loops. This can
be done by using the STATIC schedule with the same bounds for all the loops. In the
following example, note that 1 is used as the lower bound in the second loop, even
though K would be more natural if the schedule were not important.

!$OMP PARALLEL
!$OMP DO SCHEDULE(STATIC)

DO I=1,N
A(I) = WORK1(I)

ENDDO
!$OMP DO SCHEDULE(STATIC)

DO I=1,N
IF(I .GE. K) A(I) = A(I) + WORK2(I)

ENDDO
!$OMP END PARALLEL

ENDDO

In the remaining examples, it is assumed that memory access is not the dominant
consideration, and, unless otherwise stated, that all threads receive comparable
computational resources. In these cases, the choice of schedule for a DOconstruct
depends on all the shared work that is to be performed between the nearest preceding
barrier and either the implied closing barrier or the nearest subsequent barrier, if
there is a NOWAITclause. For each kind of schedule, a short example shows how that
schedule kind is likely to be the best choice. A brief discussion follows each example.

The STATIC schedule is also appropriate for the simplest case, a parallel region
containing a single DOconstruct, with each iteration requiring the same amount of
work.

!$OMP PARALLEL DO SCHEDULE(STATIC)
DO I=1,N

CALL INVARIANT_AMOUNT_OF_WORK(I)

Version 2.0, November 2000 101

3083

3084
3085
3086
3087
3088

3089
3090
3091
3092
3093
3094
3095
3096
3097

3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108

3109
3110
3111
3112
3113
3114
3115

3116
3117
3118

3119
3120
3121

Using the SCHEDULEClause [C] OpenMP Fortran Application Program Interface

ENDDO

The STATIC schedule is characterized by the properties that each thread gets
approximately the same number of iterations as any other thread, and each thread
can independently determine the iterations assigned to it. Thus no synchronization is
required to distribute the work, and, under the assumption that each iteration
requires the same amount of work, all threads should finish at about the same time.

For a team of P threads, let CEILING(N/P) be the integer Q, which satisfies N = P*Q
- R with 0 <= R < P. One implementation of the STATIC schedule for this example
would assign Q iterations to the first P–1 threads, and Q-R iterations to the last
thread. Another acceptable implementation would assign Q iterations to the first P-R
threads, and Q-1 iterations to the remaining R threads. This illustrates why a
program should not rely on the details of a particular implementation.

The DYNAMICschedule is appropriate for the case of a DOconstruct with the
iterations requiring varying, or even unpredictable, amounts of work.

!$OMP PARALLEL DO SCHEDULE(DYNAMIC)
DO I=1,N

CALL UNPREDICTABLE_AMOUNT_OF_WORK(I)
ENDDO

The DYNAMICschedule is characterized by the property that no thread waits at the
barrier for longer than it takes another thread to execute its final iteration. This
requires that iterations be assigned one at a time to threads as they become
available, with synchronization for each assignment. The synchronization overhead
can be reduced by specifying a minimum chunk size K greater than 1, so that each
thread is assigned K iterations at a time until fewer than K iterations remain. This
guarantees that no thread waits at the barrier longer than it takes another thread to
execute its final chunk of (at most) K iterations.

The DYNAMICschedule can be useful if the threads receive varying computational
resources, which has much the same effect as varying amounts of work for each
iteration. Similarly, the DYNAMICschedule can also be useful if the threads arrive at
the DOconstruct at varying times, though in some of these cases the GUIDEDschedule
may be preferable.

The GUIDEDschedule is appropriate for the case in which the threads may arrive at
varying times at a DOconstruct with each iteration requiring about the same amount
of work. This can happen if, for example, the DOconstruct is preceded by one or more
SECTIONSor DOconstructs with NOWAITclauses.

!$OMP PARALLEL
!$OMP SECTIONS

..........
!$OMP END SECTIONS NOWAIT

102 Version 2.0, November
2000

3122

3123
3124
3125
3126
3127

3128
3129
3130
3131
3132
3133

3134
3135

3136
3137
3138
3139

3140
3141
3142
3143
3144
3145
3146
3147

3148
3149
3150
3151
3152

3153
3154
3155
3156

3157
3158
3159
3160

OpenMP Fortran Application Program Interface Using the SCHEDULEClause [C]

!$OMP DO SCHEDULE(GUIDED)
DO I=1,N

CALL INVARIANT_AMOUNT_OF_WORK(I)
ENDDO

Like DYNAMIC, the GUIDEDschedule guarantees that no thread waits at the barrier
longer than it takes another thread to execute its final iteration, or final K iterations
if a chunk size of K is specified. Among such schedules, the GUIDEDschedule is
characterized by the property that it requires the fewest synchronizations. For chunk
size K, a typical implementation will assign Q = CEILING(N/P) iterations to the first
available thread, set N to the larger of N-Q and P*K, and repeat until all iterations
are assigned.

When the choice of the optimum schedule is not as clear as it is for these examples,
the RUNTIMEschedule is convenient for experimenting with different schedules and
chunk sizes without having to modify and recompile the program. It can also be
useful when the optimum schedule depends (in some predictable way) on the input
data to which the program is applied.

To see an example of the trade-offs between different schedules, consider sharing
1000 iterations among 8 threads. Suppose there is an invariant amount of work in
each iteration, and use that as the unit of time.

If all threads start at the same time, the STATIC schedule will cause the construct to
execute in 125 units, with no synchronization. But suppose that one thread is 100
units late in arriving. Then the remaining seven threads wait for 100 units at the
barrier, and the execution time for the whole construct increases to 225.

Because both the DYNAMICand GUIDEDschedules ensure that no thread waits for
more than one unit at the barrier, the delayed thread causes their execution times for
the construct to increase only to 138 units, possibly increased by delays from
synchronization. If such delays are not negligible, it becomes important that the
number of synchronizations is 1000 for DYNAMICbut only 41 for GUIDED, assuming
the default chunk size of one. With a chunk size of 25, DYNAMICand GUIDEDboth
finish in 150 units, plus any delays from the required synchronizations, which now
number only 40 and 20, respectively.

Version 2.0, November 2000 103

3161
3162
3163
3164

3165
3166
3167
3168
3169
3170
3171

3172
3173
3174
3175
3176

3177
3178
3179

3180
3181
3182
3183

3184
3185
3186
3187
3188
3189
3190
3191

Interface Declaration Module [D]

This appendix gives examples of the Fortran INCLUDE file and Fortran 90 module
that shall be provided by implementations as specified in Chapter 3, page 47.

It has three sections:

• Section D.1, page 105, contains an example of a FORTRAN 77 interface
declaration INCLUDE file.

• Section D.2, page 107, contains an example of a Fortran 90 interface declaration
MODULE.

• Section D.3, page 111, contains an example of a Fortran 90 generic interface for a
library routine.

D.1 Example of an Interface Declaration INCLUDE File

C the "C" of this comment starts in column 1
integer omp_lock_kind
parameter (omp_lock_kind = 8)

integer omp_nest_lock_kind
parameter (omp_nest_lock_kind = 8)

C default integer type assumed below
C default logical type assumed below
C OpenMP Fortran API v1.1

integer openmp_version
parameter (openmp_version = 200011)

external omp_destroy_lock

external omp_destroy_nest_lock

external omp_get_dynamic
logical omp_get_dynamic

external omp_get_max_threads
integer omp_get_max_threads

external omp_get_nested

Version 2.0, November 2000 105

3192

3193
3194

3195

3196
3197

3198
3199

3200
3201

3202

3203
3204
3205

3206
3207

3208
3209
3210
3211
3212

3213

3214

3215
3216

3217
3218

3219

Interface Declaration Module [D] OpenMP Fortran Application Program Interface

logical omp_get_nested

external omp_get_num_procs
integer omp_get_num_procs

external omp_get_num_threads
integer omp_get_num_threads

external omp_get_thread_num
integer omp_get_thread_num

external omp_get_wtick
double precision omp_get_wtick

external omp_get_wtime
double precision omp_get_wtime

external omp_init_lock

external omp_init_nest_lock

external omp_in_parallel
logical omp_in_parallel

external omp_set_dynamic

external omp_set_lock

external omp_set_nest_lock

external omp_set_nested

external omp_set_num_threads

external omp_test_lock
logical omp_test_lock

external omp_test_nest_lock
integer omp_test_nest_lock

external omp_unset_lock

external omp_unset_nest_lock

106 Version 2.0, November
2000

3220

3221
3222

3223
3224

3225
3226

3227
3228

3229
3230

3231

3232

3233
3234

3235

3236

3237

3238

3239

3240
3241

3242
3243

3244

3245

OpenMP Fortran Application Program Interface Interface Declaration Module [D]

D.2 Example of a Fortran 90 Interface Declaration MODULE

! the "!" of this comment starts in column 1

module omp_lib_kinds

integer, parameter :: omp_integer_kind = 4
integer, parameter :: omp_logical_kind = 4
integer, parameter :: omp_lock_kind = 8
integer, parameter :: omp_nest_lock_kind = 8

end module omp_lib_kinds

module omp_lib

use omp_lib_kinds

! OpenMP Fortran API v1.1
integer, parameter :: openmp_version = 199910

interface
subroutine omp_destroy_lock (var)
use omp_lib_kinds
integer (kind=omp_lock_kind), intent(inout) :: var
end subroutine omp_destroy_lock

end interface

interface
subroutine omp_destroy_nest_lock (var)
use omp_lib_kinds
integer (kind=omp_nest_lock_kind), intent(inout) :: var
end subroutine omp_destroy_nest_lock

end interface

interface
function omp_get_dynamic ()
use omp_lib_kinds
logical (kind=omp_logical_kind) :: omp_get_dynamic
end function omp_get_dynamic

end interface

interface
function omp_get_max_threads ()
use omp_lib_kinds

Version 2.0, November 2000 107

3246

3247

3248

3249
3250
3251
3252

3253

3254

3255

3256
3257

3258
3259
3260
3261
3262
3263

3264
3265
3266
3267
3268
3269

3270
3271
3272
3273
3274
3275

3276
3277
3278

Interface Declaration Module [D] OpenMP Fortran Application Program Interface

integer (kind=omp_integer_kind) :: omp_get_max_threads
end function omp_get_max_threads

end interface

interface
function omp_get_nested ()
use omp_lib_kinds
logical (kind=omp_logical_kind) :: omp_get_nested
end function omp_get_nested

end interface

interface
function omp_get_num_procs ()
use omp_lib_kinds
integer (kind=omp_integer_kind) :: omp_get_num_procs
end function omp_get_num_procs

end interface

interface
function omp_get_num_threads ()
use omp_lib_kinds
integer (kind=omp_integer_kind) :: omp_get_num_threads
end function omp_get_num_threads

end interface

interface
function omp_get_thread_num ()
use omp_lib_kinds
integer (kind=omp_integer_kind) :: omp_get_thread_num
end function omp_get_thread_num

end interface

interface
function omp_get_wtick ()
double precision :: omp_get_wtick
end function omp_get_wtick

end interface

interface
function omp_get_wtime ()
double precision :: omp_get_wtime
end function omp_get_wtime

end interface

interface

108 Version 2.0, November
2000

3279
3280
3281

3282
3283
3284
3285
3286
3287

3288
3289
3290
3291
3292
3293

3294
3295
3296
3297
3298
3299

3300
3301
3302
3303
3304
3305

3306
3307
3308
3309
3310

3311
3312
3313
3314
3315

3316

OpenMP Fortran Application Program Interface Interface Declaration Module [D]

subroutine omp_init_lock (var)
use omp_lib_kinds
integer (kind=omp_lock_kind), intent(out) :: var
end subroutine omp_init_lock

end interface

interface
subroutine omp_init_nest_lock (var)
use omp_lib_kinds
integer (kind=omp_nest_lock_kind), intent(out) :: var
end subroutine omp_init_nest_lock

end interface

interface
function omp_in_parallel ()
use omp_lib_kinds
logical (kind=omp_logical_kind) :: omp_in_parallel
end function omp_in_parallel

end interface

interface
subroutine omp_set_dynamic (enable_expr)
use omp_lib_kinds
logical (kind=omp_logical_kind), intent(in) :: enable_expr
end subroutine omp_set_dynamic

end interface

interface
subroutine omp_set_lock (var)
use omp_lib_kinds
integer (kind=omp_lock_kind), intent(inout) :: var

end subroutine omp_set_lock
end interface

interface
subroutine omp_set_nest_lock (var)
use omp_lib_kinds
integer (kind=omp_nest_lock_kind), intent(inout) :: var
end subroutine omp_set_nest_lock

end interface

interface
subroutine omp_set_nested (enable_expr)
use omp_lib_kinds
logical (kind=omp_logical_kind), intent(in) :: &

Version 2.0, November 2000 109

3317
3318
3319
3320
3321

3322
3323
3324
3325
3326
3327

3328
3329
3330
3331
3332
3333

3334
3335
3336
3337
3338
3339

3340
3341
3342
3343
3344
3345

3346
3347
3348
3349
3350
3351

3352
3353
3354
3355

Interface Declaration Module [D] OpenMP Fortran Application Program Interface

& enable_expr
end subroutine omp_set_nested

end interface

interface
subroutine omp_set_num_threads (number_of_threads_expr)
use omp_lib_kinds
integer (kind=omp_integer_kind), intent(in) :: &

& number_of_threads_expr
end subroutine omp_set_num_threads

end interface

interface
function omp_test_lock (var)
use omp_lib_kinds
logical (kind=omp_logical_kind) :: omp_test_lock
integer (kind=omp_lock_kind), intent(inout) :: var
end function omp_test_lock

end interface

interface
function omp_test_nest_lock (var)
use omp_lib_kinds
integer (kind=omp_integer_kind) :: omp_test_nest_lock
integer (kind=omp_nest_lock_kind), intent(inout) :: var
end function omp_test_nest_lock

end interface

interface
subroutine omp_unset_lock (var)
use omp_lib_kinds
integer (kind=omp_lock_kind), intent(inout) :: var
end subroutine omp_unset_lock

end interface

interface
subroutine omp_unset_nest_lock (var)
use omp_lib_kinds
integer (kind=omp_nest_lock_kind), intent(inout) :: var
end subroutine omp_unset_nest_lock

end interface
end module omp_lib

110 Version 2.0, November
2000

3356
3357
3358

3359
3360
3361
3362
3363
3364
3365

3366
3367
3368
3369
3370
3371
3372

3373
3374
3375
3376
3377
3378
3379

3380
3381
3382
3383
3384
3385

3386
3387
3388
3389
3390
3391
3392

OpenMP Fortran Application Program Interface Interface Declaration Module [D]

D.3 Example of a Generic Interface for a Library Routine

Any of the OMP runtime library routines that take an argument may be extended
with a generic interface so arguments of different KIND type can be accomodated.

Assume an implementation supports both default INTEGERas KIND =
OMP_INTEGER_KINDand another INTEGER KIND, KIND = SHORT_INT. Then
OMP_SET_NUM_THREADScould be specified in the omp_lib module as the following:

! the "!" of this comment starts in column 1
interface omp_set_num_threads

subroutine omp_set_num_threads_1 (number_of_threads_expr)
use omp_lib_kinds
integer (kind=omp_integer_kind), intent(in) :: &

& number_of_threads_expr
end subroutine omp_set_num_threads_1

subroutine omp_set_num_threads_2 (number_of_threads_expr)
use omp_lib_kinds
integer (kind=short_int), intent(in) :: &

& number_of_threads_expr
end subroutine omp_set_num_threads_2

end interface omp_set_num_threads

Version 2.0, November 2000 111

3393

3394
3395

3396
3397
3398

3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411

Implementation-Dependent Behaviors in
OpenMP Fortran [E]

This appendix sumarizes the behaviors that are described as “implementation
dependent” in this API. Each behavior is cross-referenced back to its description in
the main specification. An implementation is required to define and document its
behavior in these cases.

• SCHEDULE(GUIDED,chunk) : chunk specifies the size of the smallest piece, except
possibly the last. The size of the initial piece is implementation dependent (Table
1, page 17).

• When SCHEDULE(RUNTIME)is specified, the decision regarding scheduling is
deferred until run time. The schedule type and chunk size can be chosen at run
time by setting the OMP_SCHEDULEenvironment variable. If this environment
variable is not set, the resulting schedule is implementation-dependent (Table 1,
page 17).

• In the absence of the SCHEDULEclause, the default schedule is
implementation-dependent (Section 2.3.1, page 15).

• OMP_GET_NUM_THREADS: If the number of threads has not been explicitly set by
the user, the default is implementation-dependent (Section 3.1.2, page 48).

• OMP_SET_DYNAMIC: The default for dynamic thread adjustment is
implementation-dependent (Section 3.1.7, page 51).

• OMP_SET_NESTED: When nested parallelism is enabled, the number of threads
used to execute nested parallel regions is implementation-dependent (Section
3.1.9, page 52).

• OMP_SCHEDULEenvironment variable: The default value for this environment
variable is implementation-dependent (Section 4.1, page 59).

• OMP_NUM_THREADSenvironment variable: The default value is
implementation-dependent (Section 4.2, page 60).

• OMP_DYNAMICenvironment variable: The default value is
implementation-dependent (Section 4.3, page 60).

• An implementation can replace all ATOMICdirectives by enclosing the statement
in a critical section (Section 2.5.4, page 27).

• If the dynamic threads mechanism is enabled on entering a parallel region, the
allocation status of an allocatable array that is not affected by a COPYINclause
that appears on the region is implementation-dependent (Section 2.6.1, page 32).

Version 2.0, November 2000 113

3412

3413

3414
3415
3416
3417

3418
3419
3420

3421
3422
3423
3424
3425

3426
3427

3428
3429

3430
3431

3432
3433
3434

3435
3436

3437
3438

3439
3440

3441
3442

3443
3444
3445

Implementation-Dependent Behaviors in OpenMP
Fortran [E]

OpenMP Fortran Application Program Interface

• Due to resource constraints, it is not possible for an implementation to document
the maximum number of threads that can be created successfully during a
program’s execution. This number is dependent upon the load on the system, the
amount of memory allocated by the program, and the amount of implementation
dependent stack space allocated to each thread. If the dynamic threads
mechanism is disabled, the behavior of the program is implementation-dependent
when more threads are requested than can be successfully created. If the dynamic
threads mechanism is enabled, requests for more threads than an implementation
can support are satisfied by a smaller number of threads (Section 2.3.1, page 15).

• If an OMP runtime library routine interface is defined to be generic by an
implementation, use of arguments of kind other than those specified by the
OMP_*_KIND constants is implementation-dependent (Section D.3, page 111).

114 Version 2.0, November
2000

3446
3447
3448
3449
3450
3451
3452
3453
3454

3455
3456
3457

New Features in OpenMP Fortran version
2.0 [F]

This appendix summarizes the key changes made to the OpenMP Fortran
specification in moving from version 1.1 to version 2.0. The following items are new
features added to the specification:

• The FORTRAN 77 standard does not require that initialized data have the SAVE
attribute but Fortran 95 does require this. OpenMP Fortran version 2.0 requires
this. See Section 1.4, page 4.

• An OpenMP compliant implementation must document its implementation-defined
behaviors. See Appendix E, page 113.

• Directives may contain end-of-line comments starting with an exclamation point.
See Section 2.1.2, page 10.

• The _OPENMPpreprocessor macro is defined to be an integer of the form YYYYMM
where YYYYand MMare the year and month of the version of the OpenMP Fortran
specification supported by the implementation. See Section 2.1.3, page 10.

• COPYPRIVATEis a new modifier on END SINGLE. See Section 2.6.2.8, page 41.

• THREADPRIVATEmay now be applied to variables as well as COMMONblocks. See
Section 2.6.1, page 32.

• REDUCTIONis now allowed on an array name. See Section 2.6.2.6, page 38.

• COPYINnow works on variables as well as COMMONblocks. See Section 2.6.2.7,
page 41.

• Reprivatization of variables is now allowed. See Section 2.6.3, page 42.

• Nested lock routines consistent with those defined in the C/C++ specification have
been added. See Section 3.2, page 52.

• Wallclock timers have been added. See Section 3.3, page 56.

• An example of INTERFACEdefinitions for all of the OpenMP runtime routines has
been added to the specification. See Appendix D, page 105.

• The NUM_THREADSclause on parallel regions defines the number of threads to be
used to execute that region. See Section 2.2, page 12.

• The WORKSHAREdirective allows parallelization of array expressions in Fortran
statements. See Section 2.3.4, page 20.

The following items list changes that served to clarify features or to correct errors
within the OpenMP Fortran specification:

Version 2.0, November 2000 115

3458

3459

3460
3461
3462

3463
3464
3465

3466
3467

3468
3469

3470
3471
3472

3473

3474
3475

3476

3477
3478

3479

3480
3481

3482

3483
3484

3485
3486

3487
3488

3489
3490

New Features in OpenMP Fortran version 2.0 [F] OpenMP Fortran Application Program Interface

• Under the right circumstances, subsequent parallel regions use the same threads
with the same thread numbers as previous regions. See Section 2.2, page 12.

• It is implementation-defined whether global variable references in statement
functions refer to SHAREDor PRIVATE copies of those variables. See Section 2.6.2,
page 34

• Exceptional values (such as negative infinity) may affect the behavior of a
program. This can occur with REDUCTION, FIRSTPRIVATE, LASTPRIVATE,
COPYPRIVATE, or COPYIN. See Section 2.6.3, page 42.

• Additional examples have been added. See Appendix A, page 63.

116 Version 2.0, November
2000

3491
3492

3493
3494
3495

3496
3497
3498

3499

