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Outline:

• The content is from the following paper published in the latest issue of “The Parallel Universe 
Magazine” by Henry A. Gabb and Nawal Copty

• https://www.intel.com/content/www/us/en/developer/articles/technical/solve-linear-systems-
onemkl-openmp-target-offload.html

• Full code example available on GitHub.

https://www.intel.com/content/www/us/en/developer/articles/technical/solve-linear-systems-onemkl-openmp-target-offload.html


!$ include "mkl_omp_offload.f90"

program solve_batched_linear_systems

!$  use onemkl_lapack_omp_offload_ilp64   ! 64-bit

…

real (kind=8), allocatable :: a(:,:), b(:,:), a_orig(:,:), b_orig(:,:)

(skip other data preparation part)

…

!$omp target data map(to:a) map(tofrom: b) map(from:info_rf, info_rs) map(alloc:ipiv(1:stride_ipiv, 1:batch_size))

!$omp dispatch

call dgetrf_batch_strided(n, n, a, lda, stride_a, ipiv, stride_ipiv, batch_size, info_rf)

!$omp dispatch

call dgetrs_batch_strided('N', n, nrhs, a, lda, stride_a, ipiv, stride_ipiv, b, ldb, stride_b, batch_size, info_rs)

!$omp end target data

…

end program solve_batched_linear_systems

Code snippet of  solving a linear system aX=b



!$omp dispatch [clause[ [,] clause] ... ] new-line

call target-call ( [arguments] );  !! or: expression = target-call ( 
[arguments] );

where clause is one of the following:
device(scalar-integer-expression)
depend([depend-modifier,] dependence-type : locator-list)
nowait
novariants(scalar-logical-expression)
nocontext(scalar-logical-expression)
is_device_ptr(list)

How to dispatch external function call with OpenMP



How to move data between host and target
target data Construct Syntax

 Create scoped data environment and transfer data from the host to the device and back

 Syntax (C/C++)

#pragma omp target data [clause[[,] clause],…]

structured-block

 Syntax (Fortran)

!$omp target data [clause[[,] clause],…]

structured-block

!$omp end target data

 Clauses

device(scalar-integer-expression)

map([{alloc | to | from | tofrom | release | delete}:] list)

if(scalar-expr)



• The large matrix a (4 Gb) only moves from host to target once.

• Matrix a resides on device memory within the Offload region, all the dispatch 
calls on target device “inherits” the data in the OMP target data region.  

• 2 MKL dispatch calls compute on it.

Data Movement between Host and Target Device



• real (kind=8) , allocatable :: a(:,:) ,  !! 64 b per element

• 64 x 8000 x 8000 = 4,096 M, size of a, transfer from host to target 
memory during setup omp target data region.

$ ifx -i8 -DMKL_ILP64 -qopenmp -fopenmp-targets=spir64 -fsycl -free lu_solve.F90 -o lu_solve -
L${MKLROOT}/lib/intel64 -lmkl_sycl -lmkl_intel_ilp64 -lmkl_intel_thread -lmkl_core -liomp5 -
lpthread -ldl

$ OMP_TARGET_OFFLOAD=MANDATORY ZE_AFFINITY_MASK=0.0 LIBOMPTARGET_DEBUG=1 
./lu_solve 8000 8 1 1 >& lu_solve.out

$ grep Moving lu_solve.out



Other useful info from  LIBOMPTARGET_DEBUG=1
• Get GPU work distribute info: number of teams (grid size in CUDA), 

team size (block size in CUDA), SIMD width (warp in CUDA), loop 
bound, device number, kernel identity 



Performance on Intel GPU vs CPU

Matrix Size CPU Time
(in second)

GPU Time
(in second)

1000x1000 0.13 1.70

4000x4000 3.90 2.10

1,6000x1,6000 139.45 15.71

Timing the solution of 3 batched linear 
systems of varying matrix sizes on a 
Linux* (Ubuntu* 20.04 x64, 5.15.47 
kernel) system with two 2.0 GHz 
4th Gen Intel® Xeon® Platinum 8480+ 
processors (CPU), an Intel® Data 
Center GPU Max 1550 (GPU), and 528 
GB memory. 

All times are in seconds. GPU tests used only one tile. Each linear system had one RHS. Each experiment was run five times. The first run was discarded because it includes the 
just-in-time compilation overhead for the oneMKL functions. The reported time is the sum of the remaining four runs.
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