
Solving Linear Systems with OpenMP
Target Offloading and oneMKL

ECP SOLLVE – OpenMP Users Monthly Teleconferences, April 28th, 2023

Presenter: Shiquan Su, PhD, Intel Senior Technical Consulting Advisor

Notices & Disclaimers
Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en-us/articles/optimization-
notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist
you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. See backup
for configuration details. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration
disclosure for details. No product or component can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

• Code Snippet

• How OpenMP Dispatch a MKL Call

• Data Movement

• Kernel Debug Info

• Performance

Outline:

• The content is from the following paper published in the latest issue of “The Parallel Universe
Magazine” by Henry A. Gabb and Nawal Copty

• https://www.intel.com/content/www/us/en/developer/articles/technical/solve-linear-systems-
onemkl-openmp-target-offload.html

• Full code example available on GitHub.

https://www.intel.com/content/www/us/en/developer/articles/technical/solve-linear-systems-onemkl-openmp-target-offload.html

!$ include "mkl_omp_offload.f90"

program solve_batched_linear_systems

!$ use onemkl_lapack_omp_offload_ilp64 ! 64-bit

…

real (kind=8), allocatable :: a(:,:), b(:,:), a_orig(:,:), b_orig(:,:)

(skip other data preparation part)

…

!$omp target data map(to:a) map(tofrom: b) map(from:info_rf, info_rs) map(alloc:ipiv(1:stride_ipiv, 1:batch_size))

!$omp dispatch

call dgetrf_batch_strided(n, n, a, lda, stride_a, ipiv, stride_ipiv, batch_size, info_rf)

!$omp dispatch

call dgetrs_batch_strided('N', n, nrhs, a, lda, stride_a, ipiv, stride_ipiv, b, ldb, stride_b, batch_size, info_rs)

!$omp end target data

…

end program solve_batched_linear_systems

Code snippet of solving a linear system aX=b

!$omp dispatch [clause[[,] clause] ...] new-line

call target-call ([arguments]); !! or: expression = target-call (
[arguments]);

where clause is one of the following:
device(scalar-integer-expression)
depend([depend-modifier,] dependence-type : locator-list)
nowait
novariants(scalar-logical-expression)
nocontext(scalar-logical-expression)
is_device_ptr(list)

How to dispatch external function call with OpenMP

How to move data between host and target
target data Construct Syntax

 Create scoped data environment and transfer data from the host to the device and back

 Syntax (C/C++)

#pragma omp target data [clause[[,] clause],…]

structured-block

 Syntax (Fortran)

!$omp target data [clause[[,] clause],…]

structured-block

!$omp end target data

 Clauses

device(scalar-integer-expression)

map([{alloc | to | from | tofrom | release | delete}:] list)

if(scalar-expr)

• The large matrix a (4 Gb) only moves from host to target once.

• Matrix a resides on device memory within the Offload region, all the dispatch
calls on target device “inherits” the data in the OMP target data region.

• 2 MKL dispatch calls compute on it.

Data Movement between Host and Target Device

• real (kind=8) , allocatable :: a(:,:) , !! 64 b per element

• 64 x 8000 x 8000 = 4,096 M, size of a, transfer from host to target
memory during setup omp target data region.

$ ifx -i8 -DMKL_ILP64 -qopenmp -fopenmp-targets=spir64 -fsycl -free lu_solve.F90 -o lu_solve -
L${MKLROOT}/lib/intel64 -lmkl_sycl -lmkl_intel_ilp64 -lmkl_intel_thread -lmkl_core -liomp5 -
lpthread -ldl

$ OMP_TARGET_OFFLOAD=MANDATORY ZE_AFFINITY_MASK=0.0 LIBOMPTARGET_DEBUG=1
./lu_solve 8000 8 1 1 >& lu_solve.out

$ grep Moving lu_solve.out

Other useful info from LIBOMPTARGET_DEBUG=1
• Get GPU work distribute info: number of teams (grid size in CUDA),

team size (block size in CUDA), SIMD width (warp in CUDA), loop
bound, device number, kernel identity

Performance on Intel GPU vs CPU

Matrix Size CPU Time
(in second)

GPU Time
(in second)

1000x1000 0.13 1.70

4000x4000 3.90 2.10

1,6000x1,6000 139.45 15.71

Timing the solution of 3 batched linear
systems of varying matrix sizes on a
Linux* (Ubuntu* 20.04 x64, 5.15.47
kernel) system with two 2.0 GHz
4th Gen Intel® Xeon® Platinum 8480+
processors (CPU), an Intel® Data
Center GPU Max 1550 (GPU), and 528
GB memory.

All times are in seconds. GPU tests used only one tile. Each linear system had one RHS. Each experiment was run five times. The first run was discarded because it includes the
just-in-time compilation overhead for the oneMKL functions. The reported time is the sum of the remaining four runs.

11

Notices & Disclaimers
Intel technologies may require enabled hardware, software or service activation. Learn more at intel.com or from the OEM or retailer.

Your costs and results may vary.

Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-
dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel
microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice. Notice Revision #20110804. https://software.intel.com/en-us/articles/optimization-
notice

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and
functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist
you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. See backup
for configuration details. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration
disclosure for details. No product or component can be absolutely secure.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

