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OpenMP* Overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL  REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok) 

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP  SINGLE PRIVATE(X)

C$OMP SECTIONS 

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP  BARRIER

OpenMP:  An API for Writing Multithreaded 
Applications

A set of compiler directives and library 
routines  for parallel application programmers
Greatly simplifies writing multi-threaded (MT) 

programs in Fortran, C and C++
Standardizes last 20 years of SMP practice

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.
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What are Threads?

• Thread: an independent flow of control
– Runtime entity created to execute sequence of 

instructions
• Threads require:

– A program counter 
– A register state 
– An area in memory, including a call stack
– A thread id  

• A process is executed by one or more threads 
that share:
– Address space
– Attributes such as UserID, open files, working directory, 

etc. 
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A Shared Memory Architecture

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN
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How Can We Exploit Threads?

• A thread programming model must 
provide (at least) the means to:
– Create and destroy threads
– Distribute the computation among threads
– Coordinate actions of threads on shared 

data
– (usually) specify which data is shared and 

which is private to a thread
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How Does OpenMP Enable Us to Exploit 
Threads?

• OpenMP provides thread programming model at a 
“high level”.
– The user does not need to specify all the details

• Especially with respect to the assignment of work to threads
• Creation of threads

• User makes strategic decisions
• Compiler figures out details
• Alternatives:

– MPI
– POSIX thread library is lower level
– Automatic parallelization is even higher level (user does 

nothing)
• But usually successful on simple codes only

8

Where Does OpenMP Run?

AvailableMachines with Chip 
MultiThreading

Available 
via Software 
DSM

Distributed Memory 
Systems

AvailableDistributed Shared 
Memory Systems 
(ccNUMA)

AvailableShared Memory 
Systems

OpenMP 
support

Hardware 
Platforms

CPU

cache

Shared bus

Shared Memory

CPU

cache

CPU

cache

CPU

cache

Shared memory architecture
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OpenMP Overview:
How do threads interact?

• OpenMP is a shared memory model.
• Threads communicate by sharing variables.

• Unintended sharing of data causes race 
conditions:

• race condition: when the program’s outcome changes 
as the threads are scheduled differently.

• To control race conditions:
• Use synchronization to protect data conflicts.

• Synchronization is expensive so:
• Change how data is accessed to minimize the need for 

synchronization. 
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• Parallel computing, threads, and OpenMP
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– Workshare constructs
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OpenMP Parallel Computing Solution Stack

Runtime library

OS/system support for shared memory.

Directives,
Compiler OpenMP library Environment 

variables

Application

End User
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OpenMP:
Some syntax details to get us started

• Most of the constructs in OpenMP are compiler 
directives.
– For C and C++, the directives are pragmas with the 

form:
#pragma omp construct [clause [clause]…]

– For Fortran, the directives are comments and take 
one of the forms:

• Fixed form
*$OMP construct [clause [clause]…]
C$OMP construct [clause [clause]…]

• Free form (but works for fixed form too)
!$OMP construct [clause [clause]…]

• Include file and the OpenMP lib module
#include <omp.h>
use omp_lib
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#pragma omp parallel
{

int id = omp_get_thread_num();
more:  res[id] = do_big_job(id);    

if(!conv(res[id]) goto more;
}

printf(“ All done \n”);

• Most OpenMP* constructs apply to structured blocks.

• Structured block: a block with one point of entry at the 
top and one point of exit at the bottom. 

• The only “branches” allowed are STOP statements in 
Fortran and exit() in C/C++.

if(go_now()) goto more;
#pragma omp parallel
{

int id = omp_get_thread_num();
more:  res[id] = do_big_job(id);    

if(conv(res[id]) goto done;
go to more;

}
done:      if(!really_done()) goto more;

A structured block Not A structured block

OpenMP:
Structured blocks (C/C++)

14

OpenMP:
Structured blocks (Fortran)

C$OMP PARALLEL
10    wrk(id) = garbage(id)

res(id) = wrk(id)**2
if(.not.conv(res(id)) goto 10

C$OMP END PARALLEL
print *,id

– Most OpenMP constructs apply to structured 
blocks.

• Structured block: a block of code with one point of 
entry at the top and one point of exit at the bottom.  

• The only “branches” allowed are STOP statements in 
Fortran and exit() in C/C++.

C$OMP  PARALLEL
10    wrk(id) = garbage(id)
30    res(id)=wrk(id)**2

if(conv(res(id))goto 20
go to 10

C$OMP END PARALLEL
if(not_DONE) goto 30

20    print *, id

A structured block Not A structured block
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OpenMP:
Structured Block Boundaries

• In C/C++: a block is a single statement or a group of 
statements between brackets {}

• In Fortran: a block is a single statement or a group of 
statements between directive/end-directive pairs.

C$OMP PARALLEL
10    wrk(id) = garbage(id)

res(id) = wrk(id)**2
if(.not.conv(res(id)) goto 10

C$OMP END PARALLEL

C$OMP PARALLEL DO
do I=1,N

res(I)=bigComp(I)
end do 

C$OMP END PARALLEL DO

#pragma omp parallel
{

id = omp_thread_num();
res(id) = lots_of_work(id);

}

#pragma omp for  
for(I=0;I<N;I++){

res[I] = big_calc(I);
A[I] = B[I] + res[I];

}

16

OpenMP Definitions:
“Constructs” vs. “Regions” in OpenMP

A  Parallel 
construct

call whoami

C$OMP PARALLEL

call whoami

C$OMP END PARALLEL

subroutine whoami

external omp_get_thread_num

integer iam, omp_get_thread_num

iam = omp_get_thread_num()

C$OMP CRITICAL

print*,’Hello from ‘, iam

C$OMP END CRITICAL

return

end

+

Orphan constructs 
can execute outside a 
parallel region

The Parallel 
region is the 
text of the 
construct plus 
any code called 
inside the 
construct

bar.fpoo.f

OpenMP constructs occupy a single compilation unit 
while a region can span multiple source files.
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The OpenMP* API

Parallel Regions
• You create threads in OpenMP* with the “omp parallel”

pragma.
• For example, To create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

Each thread calls Each thread calls pooh(ID,A) for for ID = = 0 to to 3

Each thread 
executes  a 
copy of the 
code within 

the 
structured 

block

Runtime function to 
request a certain 
number of threads

Runtime function 
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board
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The OpenMP* API

Parallel Regions
• You create threads in OpenMP* with the “omp parallel”

pragma.
• For example, To create a 4 thread Parallel region:

double A[1000];

#pragma omp parallel num_threads(4)
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

Each thread calls Each thread calls pooh(ID,A) for for ID = = 0 to to 3

Each thread 
executes  a 
copy of the 
code within 

the 
structured 

block

clause to request a certain 
number of threads

Runtime function 
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board
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The OpenMP* API

Parallel Regions

• Each thread executes 
the same code 
redundantly.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID, A);

}
printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single 
copy of A 
is shared 
between all 
threads.

Threads wait  here  for all threads to 
finish before proceeding (i.e. a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board
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Exercise:
A multi-threaded “Hello world” program

• Write a multithreaded program where each 
thread prints “hello world”.

void main()
{

int ID = 0;

printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}

22

Exercise:
A multi-threaded “Hello world” program

• Write a multithreaded program where each thread prints 
“hello world”.

#include “omp.h”
void main()
{

#pragma omp parallel
{

int ID = omp_get_thread_num();
printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}
}

Sample Output:
hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include file

Parallel region with default 
number of threads

Runtime library function to 
return a thread ID.End of the Parallel region
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Parallel Regions and the “if” clause
Active vs inactive parallel regions.

• An optional if clause causes the parallel region to be active 
only if the logical expression within the clause evaluates to 
true. 

• An if clause that evaluates to false causes the parallel region 
to be inactive (i.e. executed by a team of size one).

double A[N];

#pragma omp parallel if(N>1000)
{

int ID = omp_get_thread_num();
pooh(ID,A);

}
* The name “OpenMP” is the property of the OpenMP Architecture Review Board
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OpenMP: Work-Sharing Constructs
• The “for” Work-Sharing construct splits up 

loop iterations  among the threads in a team
#pragma omp parallel
#pragma omp for 

for (I=0;I<N;I++){
NEAT_STUFF(I);

}

By default, there is a barrier at the end of the “omp for”.  Use the 
“nowait” clause to turn off the barrier.

#pragma omp for nowait

“nowait” is useful between two consecutive, independent omp for 
loops. 

26

Work Sharing Constructs
A motivating example
for(i=0;I<N;i++)   { a[i] = a[i] + b[i];}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for(i=istart;I<iend;i++)   { a[i] = a[i] + b[i];}

}

#pragma omp parallel 
#pragma omp for schedule(static) 

for(i=0;I<N;i++)   { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel 
region

OpenMP parallel 
region and a 
work-sharing for-
construct
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OpenMP For/Do construct:
The schedule clause

• The schedule clause affects how loop iterations are 
mapped onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all 

iterations have been handled.

– schedule(guided[,chunk])
– Threads dynamically grab blocks of iterations. The size of the 

block starts large and shrinks down to size “chunk” as the 
calculation proceeds.

– schedule(runtime)
– Schedule  and chunk size taken from the OMP_SCHEDULE 

environment variable.

28

Special case of 
dynamic to reduce 
scheduling overhead

GUIDED

Unpredictable, highly 
variable work per 
iteration

DYNAMIC

Pre-determined and 
predictable by the 
programmer

STATIC

When To UseSchedule 
Clause

The OpenMP APIThe OpenMP API

The schedule clauseThe schedule clause

Least work at 
runtime : 
scheduling 
done at 
compile-time

Most work at 
runtime : 
complex 
scheduling 
logic used at 
run-time
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OpenMP: Work-Sharing Constructs
• The Sections work-sharing construct gives a 

different structured block to each thread.  
#pragma omp parallel
#pragma omp sections
{
#pragma omp section

X_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

By default, there is a barrier at the end of the “omp
sections”.  Use the “nowait” clause to turn off the barrier.

30

OpenMP: Work-Sharing Constructs

• The master construct denotes a structured 
block  that is only executed by the master 
thread. The other threads just skip it (no 
synchronization is implied).

#pragma omp parallel private (tmp)
{

do_many_things();
#pragma omp master

{     exchange_boundaries();   }
#pragma barrier

do_many_other_things();
}
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OpenMP: Work-Sharing Constructs

• The single construct denotes a block of code 
that is executed by only one thread.

• A barrier is implied at the end of the single 
block.

#pragma omp parallel private (tmp)
{

do_many_things();
#pragma omp single

{     exchange_boundaries();   }
do_many_other_things();

}

32

The OpenMP* API

Combined parallel/work-share

• OpenMP* shortcut: Put the “parallel” and the 
work-share on the same line
double  res[MAX];  int i;

#pragma omp parallel 
{

#pragma omp for
for (i=0;i< MAX; i++) {

res[i] = huge();
} 

}

These are equivalent 

double  res[MAX];  int i;
#pragma omp parallel for

for (i=0;i< MAX; i++) {
res[i] = huge();

} 

There’s also a “parallel sections” construct.
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34

Data Environment:
Default storage attributes

• Shared Memory programming model: 
• Most variables are shared by default

• Global variables are SHARED among 
threads

• Fortran: COMMON blocks, SAVE variables, MODULE 
variables

• C: File scope variables, static

• But not everything is shared...
• Stack variables in sub-programs called from parallel 

regions are PRIVATE
• Automatic variables within a statement block are 

PRIVATE.



The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

18

35

program sort
common /input/ A(10)
integer index(10)

!$OMP PARALLEL  
call work(index)

!$OMP END PARALLEL
print*, index(1)

subroutine work (index)
common /input/ A(10)
integer index(*)
real temp(10)
integer count
save count

…………

Data Sharing Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are 
shared by all threads.

temp is local to each 
thread

* Third party trademarks and names are the property of their respective owner.
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Data Environment:
Changing storage attributes

• One can selectively change storage attributes constructs 
using the following clauses*

• SHARED
• PRIVATE
• FIRSTPRIVATE
• THREADPRIVATE

• The value of a private inside a parallel loop can be 
transmitted to a  global value outside the loop with:

• LASTPRIVATE

• The default status can be modified with:
• DEFAULT (PRIVATE | SHARED | NONE)

All the  clauses on this page 
apply to the OpenMP Construct
NOT the entire region.

All data clauses apply to parallel regions and worksharing constructs except 
“shared” which only applies to parallel regions.
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Private Clause

program wrong

IS = 0

C$OMP PARALLEL DO PRIVATE(IS)

DO J=1,1000 

IS = IS + J

END DO 

print *, IS

• private(var)  creates a local copy of var for each 
thread.

• The value is uninitialized
• Private copy is not storage-associated with the original
• The original is undefined at the end

IS  was not 
initialized

Regardless of 
initialization, IS is 
undefined at this 
point

38

Firstprivate Clause

• Firstprivate is a special case of private.
• Initializes each private copy with the corresponding value 

from the master thread.

Regardless of initialization, IS is 
undefined at this point

program almost_right

IS = 0

C$OMP PARALLEL DO FIRSTPRIVATE(IS)

DO J=1,1000 

IS = IS + J

1000  CONTINUE 

print *, IS

Each thread gets its own IS 
with an initial value of 0
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Lastprivate Clause

• Lastprivate passes the value of a  private 
from the last iteration  to a global variable.

IS is defined as its value at the “last 
sequential” iteration (I.e. for J=1000)

program closer

IS = 0

C$OMP PARALLEL DO FIRSTPRIVATE(IS) 

C$OMP+ LASTPRIVATE(IS)

DO J=1,1000 

IS = IS + J

1000  CONTINUE 

print *, IS

Each thread gets its own IS 
with an initial value of 0

40

OpenMP: 
A data environment test

• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C local to each thread or shared inside the parallel region?
• What are their initial values inside and after the parallel region?

variables A,B, and C = 1
C$OMP PARALLEL PRIVATE(B) 
C$OMP& FIRSTPRIVATE(C)

Inside this parallel region ...
“A” is shared by all threads; equals 1
“B” and “C” are local to each thread.

– B’s initial value is undefined
– C’s initial value equals  1

Outside this parallel region ...
The values of “B” and “C” are undefined.
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OpenMP: Reduction

• Combines an accumulation operation across 
threads:

reduction (op : list)
• Inside a parallel or a work-sharing construct:

• A local copy of each list variable is made and initialized 
depending on the “op” (e.g. 0 for “+”).

• Compiler finds standard reduction expressions containing “op”
and uses them to update the local copy. 

• Local copies are reduced into a single value and combined 
with the original global value.

• The variables in “list” must be shared in the 
enclosing parallel region.  

42

OpenMP: Reduction example
• Remember the code we used to demo private, 

firstprivate and lastprivate.
program closer

IS = 0

DO J=1,1000 

IS = IS + J

1000  CONTINUE 

print *, IS

Here is the correct way to parallelize this code.
program closer

IS = 0

#pragma omp parallel for reduction(+:IS)

DO J=1,1000 

IS = IS + J

1000  CONTINUE 

print *, IS
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OpenMP:
Reduction operands/initial-values

• A range of associative operands can be used with reduction:
• Initial values are the ones that make sense mathematically.

Most neg. 
number

MAX*

Largest pos. 
number

MIN*

.false..neqv.
.true..eqv.

.true..AND. 
.false..OR.

0-
1*
0+

Initial valueOperand

oieor
~0& 

0ior

0^

0|

1&&
0||

All bits oniand

Initial valueOperand

* Min and Max are not available in C/C++
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Default Clause
• Note that the default storage attribute is 

DEFAULT(SHARED) (so no need to use it)
• To change default: DEFAULT(PRIVATE)

– each variable in static extent of the parallel region 
is made private as if specified in a private clause

– mostly saves typing  
• DEFAULT(NONE): no default for variables in 

static extent. Must list storage attribute for 
each variable in static extent

Only the Fortran API supports default(private).  

C/C++ only has default(shared) or default(none).
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Default Clause Example

itotal = 1000
C$OMP PARALLEL DEFAULT(PRIVATE) SHARED(itotal)

np = omp_get_num_threads() 
each = itotal/np
………

C$OMP END PARALLEL

itotal = 1000
C$OMP PARALLEL PRIVATE(np, each)

np = omp_get_num_threads() 
each = itotal/np
………

C$OMP END PARALLEL

Are these 
two codes 
equivalent?

yes

46

Threadprivate

• Makes global data private to a thread
– Fortran: COMMON blocks
– C: File scope and static variables

• Different from making them PRIVATE
– with PRIVATE global variables are masked. 
– THREADPRIVATE preserves global scope within 

each thread
• Threadprivate variables can be initialized 

using COPYIN or by using DATA statements.
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A threadprivate example

subroutine poo
parameter (N=1000)
common/buf/A(N),B(N)

!$OMP THREADPRIVATE(/buf/)
do i=1, N         
B(i)= const* A(i) 

end do      
return      
end

subroutine bar
parameter (N=1000)
common/buf/A(N),B(N)

!$OMP THREADPRIVATE(/buf/)
do i=1, N         

A(i) = sqrt(B(i))     
end do      
return      
end

Consider two different routines called within a 
parallel region.

Because of the threadprivate construct, each 
thread executing these routines has its own copy 
of the common block /buf/.

48

Copyin

parameter (N=1000)
common/buf/A(N)

!$OMP THREADPRIVATE(/buf/)

C Initialize the A array
call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

… Now each thread sees threadprivate array A initialied
… to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end

You initialize threadprivate data using a copyin
clause. 
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Copyprivate

#include <omp.h>
void input_parameters (int, int); // fetch values of input parameters 
void do_work(int, int); 

void main()
{

int Nsize, choice;

#pragma omp parallel private (Nsize, choice)
{

#pragma omp single copyprivate (Nsize, choice)
input_parameters (Nsize, choice);

do_work(Nsize, choice);
}

}

Used with a single region to broadcast values of privates from one 
member of a team to the rest of the team.  

50
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OpenMP: Synchronization

• High level synchronization:
• critical
• atomic
• barrier
• ordered

• Low level synchronization
• flush
• locks (both simple and nested)

52

OpenMP: Synchronization

• Only one thread at a time can enter a 
critical region.

C$OMP PARALLEL DO PRIVATE(B) 
C$OMP& SHARED(RES)

DO 100 I=1,NITERS
B =  DOIT(I)

C$OMP CRITICAL
CALL CONSUME (B, RES)

C$OMP END CRITICAL
100 CONTINUE
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The OpenMP* API 

Synchronization – critical (in C/C++)

• Only one thread at a time can enter a critical 
region.

float res;

#pragma omp parallel

{     float B;   int i;

#pragma omp for
for(i=0;i<niters;i++){

B =  big_job(i);

#pragma omp critical 
consume (B, RES);

}
}

Threads wait 
their turn –
only one at a 
time calls 
consume()

* The mark “OpenMP” is the property of the OpenMP Architecture Review Board.
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OpenMP: Synchronization

• Atomic provides mutual exclusion execution but 
only applies to the update of a memory location 
(the update of X in the following example)

C$OMP PARALLEL PRIVATE(B) 
B =  DOIT(I)
tmp = big_ugly();

C$OMP ATOMIC
X = X + temp

C$OMP END PARALLEL
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OpenMP: Synchronization
• Barrier: Each thread waits until all threads arrive.

#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier 
#pragma omp for 

for(i=0;i<N;i++){C[i]=big_calc3(I,A);}
#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C,  i); }
A[id] = big_calc3(id);

} implicit barrier at the end 
of a parallel region

implicit barrier at the 
end of a for work-
sharing construct

no implicit barrier 
due to nowait
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OpenMP: Synchronization

• The ordered region executes in the 
sequential order.

#pragma omp parallel private (tmp)
#pragma omp for ordered 

for (I=0;I<N;I++){
tmp = NEAT_STUFF(I);

#pragma ordered
res += consum(tmp);

}



The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

29

57

OpenMP:
Implicit synchronization

• Barriers are implied on the following 
OpenMP constructs:

end parallel
end do  (except when nowait is used)
end sections (except when nowait is used) 
end single (except when nowait is used)

58

OpenMP: Synchronization
• The flush construct denotes a sequence point where a 

thread tries to create a consistent view of memory for a 
subset of variables called the flush set.

• Arguments to flush define the flush set:
#pragma omp flush(A, B, C)

• The flush set is all thread visible variables if no argument 
list is provided

#pragma omp flush

• For the variables in the flush set:
• All memory operations (both reads and writes) defined prior to the 

sequence point must complete. 
• All memory operations (both reads and writes) defined after  the

sequence point must follow the flush.
• Variables in registers or write buffers must be updated in memory.
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Shared Memory Architecture

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

a
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OpenMP:
A flush example

• This example shows how  flush is used to implement 
pair-wise synchronization.

integer ISYNC(NUM_THREADS)
C$OMP PARALLEL DEFAULT (PRIVATE) SHARED (ISYNC)

IAM = OMP_GET_THREAD_NUM()
ISYNC(IAM) = 0

C$OMP BARRIER
CALL WORK()
ISYNC(IAM) = 1    ! I’m all done; signal this to other threads

C$OMP FLUSH(ISYNC)
DO WHILE (ISYNC(NEIGH) .EQ. 0)

C$OMP FLUSH(ISYNC)
END DO

C$OMP END PARALLEL

Make sure other threads can 
see my write.

Make sure the read picks up a 
good copy from memory.

Note: OpenMP’s flush is analogous to a fence in 
other shared memory API’s.
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What is the Big Deal with Flush?
• Compilers reorder instructions to better exploit the 

functional units and keep the machine busy
• Flush interacts with instruction reordering:

– A compiler CANNOT do the following:
• Reorder read/writes of variables in a flush set relative to a flush.
• Reorder flush constructs when flush sets overlap.

– A compiler CAN do the following:
• Reorder instructions NOT involving variables in the flush set 

relative to the flush.
• Reorder flush constructs that don’t have overlapping flush sets. 

• So you need to use flush carefully

Also, the flush operation does not actually synchronize 
different threads. It just ensures that a thread’s values are 
made consistent with main memory.

62

Source code

Program order

memory
a b

Commit order

private view

thread thread

private view
threadprivatethreadprivatea ab b

Wa Wb Ra Rb . . . 

OpenMP Memory Model: Basic Terms

compiler

Executable code

Code order

Wb Rb Wa Ra . . . 

RW’s in any 
semantically 

equivalent order
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OpenMP: Lock routines
• Simple Lock routines:

– A simple lock is available if it is unset.
– omp_init_lock(), omp_set_lock(), 

omp_unset_lock(), omp_test_lock(), 
omp_destroy_lock()

• Nested Locks
– A nested lock is available if it is unset or if it is set but owned 

by the thread executing the nested lock function
– omp_init_nest_lock(), omp_set_nest_lock(), 

omp_unset_nest_lock(), omp_test_nest_lock(), 
omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the 
lock, so you don’t need to use a flush on the lock variable.

In OpenMP 2.5, a 
lock implies a flush 
of all thread visible 
variables

64

OpenMP: Simple Locks
• Protect resources with locks.

omp_lock_t lck;
omp_init_lock(&lck);

#pragma omp parallel private (tmp, id)
{

id = omp_get_thread_num();
tmp = do_lots_of_work(id);
omp_set_lock(&lck);

printf(“%d %d”, id, tmp);
omp_unset_lock(&lck);

}  
omp_destroy_lock(&lck);  

Wait here for 
your turn.

Release the lock 
so the next thread 
gets a turn.

Free-up storage when done.
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OpenMP: Nested Locks
#include <omp.h>
typedef struct{int a,b; omp_nest_lock_t lck;} pair;

void incr_a(pair *p, int a) { p->a +=a;}

void incr_b (pair *p, int b)
{ omp_set_nest_lock(&p->lck); p->b =+b; omp_unset_nest_lock(&p->lck);}

void incr_pair(pair *p, int a, int b)
{omp_set_nest_lock(&p->lck); incr_a(p,a); incr_b(p,b); omp_unset_nest_lock(&p->lck);}

void f(pair *p)
{ extern int work1(), work2(), work3();
#pragma omp parallel sections

{
#pragma omp section

incr_pair(p,work1(), work2());
#pragma omp section

incr_b(p,work3());

}
}

f() calls incr_b() and 
incr_pair() … but incr_pair() 
calls incr_b() too, so you 
need nestable locks

66

Synchronization challenges

• OpenMP only includes high level 
synchronization directives that “have a 
sequential reading”.  Is that enough? 
– Do we need conditions variables?
– Monotonic flags?  
– Other pairwise synchronization?

• The flush is subtle … even experts get 
confused on when it is required.
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Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details
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OpenMP: Library routines:
• Runtime environment routines:

• Modify/Check the number of threads
– omp_set_num_threads(), 

omp_get_num_threads(), 
omp_get_thread_num(), 
omp_get_max_threads()

• Are we in a parallel region?
– omp_in_parallel()

• How many processors in the system?
– omp_num_procs()

…plus several less commonly used routines.
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OpenMP: Library Routines
• To used a fixed, known number of threads used in a program, 

(1) set the number  threads, then (2) save the number you got.

#include <omp.h>
void main()
{   int num_threads;

omp_set_num_threads( omp_num_procs() );
#pragma omp parallel

{     int id=omp_get_thread_num();
#pragma omp single   

num_threads = omp_get_num_threads();   
do_lots_of_stuff(id); 

}
}

Request as many threads 
as you have processors.

Protect this 
op since 
Memory 
stores are 
not atomic
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OpenMP: Environment Variables:

• Control how “omp for schedule(RUNTIME)”
loop iterations are scheduled.

– OMP_SCHEDULE “schedule[, chunk_size]”

• Set the default number of threads to use.
– OMP_NUM_THREADS int_literal

… Plus several less commonly used environment variables.
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Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background Information and extra details
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Let’s pause for a quick recap by example: 
Numerical Integration

∫ 4.0
(1+x2) dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the 
integral as a sum of 
rectangles:

Where each rectangle has 
width Δx and height F(xi) at 
the middle of interval i.

F(
x)

 =
 4

. 0
/( 1

+x
2 )

4.0

2.0

1.0
X0.0
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PI Program: an example
static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i<= num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}}
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#include <omp.h>
static long num_steps = 100000;         double step;
#define NUM_THREADS 2
void main ()
{ int i, id, nthreads;  double x, pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel private (i, id, x)
{

id = omp_get_thread_num();
#pragma omp single

nthreads = omp_get_num_threads();
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthreads){

x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);

}
}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;
}

OpenMP recap:
Parallel Region

You can’t assume that 
you’ll get the number of 
threads you requested.

Prevent write conflicts 
with the single.

Performance 
will suffer due 
to false 
sharing of the 
sum array.

Promote scalar to an array 
dimensioned by number of 
threads to avoid race 
condition.
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#include <omp.h>
static long num_steps = 100000;         double step;
#define NUM_THREADS 2
void main ()
{ int i, id, nthreads;  double x, pi, sum;

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel private (i, id, x, sum)
{

id = omp_get_thread_num();
#pragma omp single

nthreads = omp_get_num_threads();
for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
#pragma omp critical

pi += sum * step;
}
}

OpenMP recap:  
Synchronization (critical region)

Note: this method of 
combining partial sums 
doesn’t scale very well.

No array, so 
no false 
sharing. 
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OpenMP recap :  
Parallel for with a reduction

#include <omp.h>
static long num_steps = 100000;         double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(x) reduction(+:sum)
for (i=0;i<= num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

Note: we created a parallel 
program without changing 
any code and by adding 4 

simple lines!

i private by 
default

For good OpenMP
implementations, 
reduction is more 

scalable than critical.
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OpenMP recap :  
Use Environment variables to set number of threads
#include <omp.h>
static long num_steps = 100000;         double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel for private(x) reduction(+:sum)

for (i=0;i<= num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}
In practice, you set 

number of threads by 
setting the environment 

variable, 
OMP_NUM_THREADS
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MPI: Pi program
#include <mpi.h>
static long num_steps = 100000;
void main (int argc, char *argv[])
{

int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
for (i=my_id; i<num_steps ; i+numprocs)
{

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
sum *= step ; 
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 

MPI_COMM_WORLD) ;
}
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Pi Program: Win32 API, PI

#include <windows.h>
#define NUM_THREADS 2
HANDLE thread_handles[NUM_THREADS];
CRITICAL_SECTION hUpdateMutex;
static long num_steps = 100000;
double step;
double global_sum = 0.0;

void Pi (void *arg)
{

int i, start;
double x, sum = 0.0;

start = *(int *) arg;
step = 1.0/(double) num_steps;

for (i=start;i<= num_steps; i=i+NUM_THREADS){
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
EnterCriticalSection(&hUpdateMutex);
global_sum += sum;
LeaveCriticalSection(&hUpdateMutex);

}

void main ()
{

double pi; int i;
DWORD threadID;
int threadArg[NUM_THREADS];

for(i=0; i<NUM_THREADS; i++)   threadArg[i] = i+1;

InitializeCriticalSection(&hUpdateMutex);

for (i=0; i<NUM_THREADS; i++){
thread_handles[i] = CreateThread(0, 0,

(LPTHREAD_START_ROUTINE) Pi,
&threadArg[i], 0, &threadID);

}

WaitForMultipleObjects(NUM_THREADS, 
thread_handles, TRUE,INFINITE);

pi = global_sum * step;

printf(" pi is %f \n",pi);
}

Doubles code size!
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Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details
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How is OpenMP Compiled ? 
Most Fortran/C compilers today implement OpenMP
• The user provides the required switch or switches
• Sometimes this also needs a specific optimization level, so manual 

should be consulted
• May also need to set threads’ stacksize explicitly
Examples
• Commercial: -openmp (Intel, Sun, NEC), -mp (SGI, PathScale, PGI), 

--openmp (Lahey, Fujitsu), -qsmp=omp (IBM) /openmp flag 
(Microsoft Visual Studio 2005), etc.

• Freeware: Omni, OdinMP, OMPi, Open64.UH, …

Check information at http://www.compunity.org
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Under the Hood: How Does  
OpenMP Really Work? 

Programmer
• States what is to be carried out in parallel by multiple threads
• Gives strategy for assigning work to threads
• Arranges for threads to synchronize
• Specify data sharing attributes: shared, private, firstprivate, threadprivate,…

Compiler (with the help of a runtime library)
• Transforms OpenMP programs into multi-threaded code
• Manages threads: creates, suspends, wakes up, terminates threads
• Figures out the details of the work to be performed by each thread
• Implements thread synchronization
• Arranges storage for different data and performs 
• their initializations: shared, private…

The details of how OpenMP is implemented varies from one compiler to 
another. We can only give an idea of how it is done here!!
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Overview of OpenMP Translation 
Process

• Compiler processes directives and uses them to 
create explicitly multithreaded code

• Generated code makes calls to a runtime library
– The runtime library also implements the OpenMP 

user-level run-time routines
• Details are different for each compiler, but 

strategies are similar
• Runtime library and details of memory 

management also proprietary
• Fortunately the basic translation is not all that 

difficult
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• Front End: 
– Read in source program, ensure that it is error-

free, build the intermediate representation (IR)
• Middle End: 

– Analyze and optimize program. “Lower” IR to 
machine-like form

• Back End: 
– Complete optimization. Determine layout of 

program data in memory. Generate object code 
for the target architecture

Source
code

Front End Back End

Structure of a Compiler
Target
code

MiddleEnd
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OpenMP Compiler Front End

In addition to reading in the base language 
(Fortran, C or C++)

• Parse OpenMP directives
• Check them for correctness

– Is directive in the right place? Is the 
information correct? Is the form of the for loop 
permitted? ….

• Create an intermediate representation with 
OpenMP annotations for further handling

Nasty problem: incorrect OpenMP sentinel means directive 
may not be recognized. And there might be no error 
message!!

FE

ME

BE

Source code

object code
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OpenMP Compiler Middle End
• Preprocess OpenMP constructs

– Translate SECTIONs to DO/FOR 
constructs

– Make implicit BARRIERs explicit
– Apply even more correctness checks

• Apply some optimizations to code to 
ensure it performs well
– Merge adjacent parallel regions
– Merge adjacent barriers

OpenMP directives reduce scope in which some 
optimizations can be applied. Compiler writer must work 
hard to avoid a negative impact on performance.

FE

ME

BE

Source code

object code
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OpenMP Compiler: Rest of Processing
• Translate OpenMP constructs

– Simple direct one-to-one substitution
• Replace certain OpenMP constructs by calls to runtime routines.
• e.g.: barrier, atomic, flush, etc

– Complex code transformation: to get multi-threaded code with 
calls to runtime library

• For slave threads: create a separate task  that contains the code in a 
parallel region

• For master thread: fork slave threads so they execute their tasks, as 
well as carrying out the task along with slave threads.

• Add necessary synchronization via runtime library
• Translate parallel and worksharing constructs and clauses e.g.: 

parallel, for, etc
• Also implement variable data attributes, set up storage and 

arrange for initialization
– Thread’s stack might be used to hold all private data
– Instantiate new variables to realize private, reduction, etc
– Add assignment statements to realize firstprivate, lastprivate, etc

FE

ME

BE

Source code

object code
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Outlining
Create a procedure containing the region 

enclosed by a parallel construct
• Shared data passed as arguments

– Referenced via their address in routine
• Private data stored on thread’s stack

– Threadprivate may be on stack or heap
• Visible during debugging
• An alternative is called microtasking

Outlining introduces a few overheads, but makes the 
translation comparatively straightforward. It makes the 
scope of OpenMP data attributes explicit. 
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An Outlining Example: Hello world
• Original Code

#include <omp.h>
void main()
{
#pragma omp parallel
{
int
ID=omp_get_thread_num
();

printf(“Hello
world(%d)”,ID);

}
}

• Translated multi-threaded code 
with runtime library calls

//here is the outlined code

void __ompregion_main1(…)
{ 

int ID =ompc_get_thread_num();

printf(“Hello world(%d)”,ID);
} /* end of ompregion_main1*/

void main()
{

…
__ompc_fork(&__ompregion_main1

,…);

…
}
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OpenMP Transformations – Do/For
• Transform 

original loop so 
each thread 
performs only its 
own portion

• Most of 
scheduling 
calculations 
usually hidden in 
runtime

• Some extra work 
to handle 
firstprivate, 
lastprivate

• Original Code
#pragma omp for
for( i = 0; i < n; i++ ) 
{  …}

• Transformed Code

tid = ompc_get_thread_num();
ompc_static_init (tid, 
lower,uppder, incr,.); 
for( i = lower;i < upper;i += 
incr ) { … }

// Implicit BARRIER
ompc_barrier();
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OpenMP Transformations – Reduction

• Reduction variables can 
be translated into a two-
step operation

• First, each thread 
performs its own 
reduction using a private 
variable

• Then the global sum is 
formed

• A critical construct might 
be used to ensure 
atomicity of the final 
reduction

• Original Code
#pragma omp parallel for \

reduction (+:sum) private (x)
for(i=1;i<=num_steps;i++)

{  …

sum=sum+x ;}

• Transformed Code
float local_sum;
…
ompc_static_init (tid, lower,uppder, 
incr,.); 
for( i = lower;i < upper;i += incr ) 
{ … local_sum = local_sum +x;}
ompc_barrier();
ompc_critical();

sum = (sum + local_sum); 
ompc_end_critical();
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OpenMP Transformation –Single/Master

• Master thread has 
a threadid of 0, 
very easy to test 
for.

• The runtime 
function for the 
single construct 
might use a lock to 
test and set an 
internal flag in 
order to ensure 
only one thread get 
the work done

• Original Code
#pragma omp parallel 
{#pragma omp master
a=a+1;

#pragma omp single
b=b+1;}

• Transformed Code
Is_master= ompc_master(tid);
if((Is_master == 1))
{   a = a + 1;  }
Is_single = ompc_single(tid);
if((Is_single == 1))
{   b = b + 1;  }  
ompc_barrier();
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OpenMP Transformations – Threadprivate

• Original Code
static int px;

int foo() {
#pragma omp threadprivate(px)
bar( &px );
}

• Transformed Code
static int px;
static int ** thdprv_px;

int _ompregion_foo1() {
int* local_px;
…

tid = ompc_get_thread_num();
local_px=get_thdprv(tid,thdprv_px, 
&px);

bar( local_px );
}

• Every threadprivate
variable reference 
becomes an indirect 
reference through an 
auxiliary structure to 
the private copy

• Every thread needs to 
find its index into the 
auxiliary structure –
This can be 
expensive 
– Some OS’es (and 

codegen schemes) 
dedicate register 
to identify thread

– Otherwise 
OpenMP runtime 
has to do this
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OpenMP Transformations – WORKSHARE

• Original Code
REAL AA(N,N), BB(N,N)
!$OMP PARALLEL
!$OMP WORKSHARE

AA = BB
!$OMP END WORKSHARE
!$OMP END PARALLEL

• Transformed Code
REAL AA(N,N), BB(N,N)
!$OMP PARALLEL
!$OMP DO

DO J=1,N,1
DO I=1,N,1
AA(I,J) = BB(I,J)

END DO
END DO

!$OMP END PARALLEL

• WORKSHARE  can 
be translated to 
OMP DO during 
preprocessing 
phase

• If there are several 
different array 
statements involved, 
it requires a lot of 
work by the 
compiler to do a 
good job

• So there may be a 
performance 
penalty
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Runtime Memory Allocation

• Outlining creates a new scope: 
private data become local 
variables for the outlined routine.

• Local variables can be saved on 
stack

– Includes compiler-generated 
temporaries

– Private variables, including
firstprivate and lastprivate

– Could be a lot of data
– Local variables in a procedure 

called within a parallel region are 
private by default

• Location of threadprivate
data depends on 
implementation

– On heap
– On local stack

Thread 1 stack

Main process stack

Heap

Global
Data …

Code
main()

__ompregion_main1()
…

Threadprivate

stack Thread 2 stack

…

….

Threadprivate

Local data

pointers to shared variables

Arg. Passed by value

registers

Program counter

One possible organization of memory

…

96

Role of Runtime Library
• Thread management and work dispatch

– Routines to create threads, suspend them and wake 
them up/ spin them, destroy threads

– Routines to schedule work to threads
• Manage queue of work
• Provide schedulers for static, dynamic and guided

• Maintain internal control variables
– threadid, numthreads, dyn-var, nest-var, sched_var, 

etc
• Implement library routines omp_..() and some 

simple constructs (e.g. barrier, atomic)
Some routines in runtime library – e.g. to return the threadid - are 
heavily accessed, so they must be carefully implemented and 
tuned. The runtime library should avoid any unnecessary internal
synchronization.
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Synchronization
• Barrier is main synchronization construct since many 

other constructs may introduce it implicitly. It in turn is 
often implemented using locks.

void __ompc_barrier (omp_team_t *team)
{

…
pthread_mutex_lock(&(team->barrier_lock));
team->barrier_count++;
barrier_flag = team->barrier_flag;

/* The last one reset flags*/
if (team->barrier_count == team->team_size)
{

team->barrier_count = 0;
team->barrier_flag = barrier_flag ^ 1; /* Xor: toggle*/
pthread_mutex_unlock(&(team->barrier_lock));
return;

}
pthread_mutex_unlock(&(team->barrier_lock));

/* Wait for the last to reset the barrier*/
OMPC_WAIT_WHILE(team->barrier_flag == barrier_flag);

}

One simple way to implement barrier
• Each thread team maintains a barrier counter 
and a barrier flag. 

• Each thread increments the barrier counter 
when it enters the barrier and waits for a 
barrier flag to be set by the last one. 

• When the last thread enters the barrier and 
increment the counter, the counter will be 
equal to the team size and the barrier flag is 
reset. 

• All other waiting threads can then proceed.

98

Constructs That Use a Barrier

• Careful implementation can achieve modest overhead for most 
synchronization constructs.

• Parallel reduction is costly because it often uses critical region to 
summarize variables at the end.

Synchronization Overheads (in cycles) on SGI Origin 2000*

* Courtesy of J. M. Bull, "Measuring Synchronisation and Scheduling Overheads in OpenMP", EWOMP '99, Lund, Sep., 1999.
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Static Scheduling: Under The Hood
/ *Static even: static without specifying 

chunk size; scheduler divides loop 
iterations evenly onto each thread. */

// the outlined task for each thread
_gtid_s1 = __ompc_get_thread_num();
temp_limit = n – 1
__ompc_static_init(_gtid_s1 , static, 

&_do_lower, &_do_upper, 
&_do_stride,..);

if(_do_upper > temp_limit)
{     _do_upper = temp_limit;  }

for(_i = _do_lower; _i <= _do_upper; _i ++)
{    

do_sth();
}

// The OpenMP code
// possible unknown loop upper bound: n
// unknown number of threads to be used
#pragma omp for schedule(static)

for (i=0;i<n;i++)
{
do_sth();
}

• Most (if not all) OpenMP compilers choose static as default scheduling 
method
• Number of threads and loop bounds possibly unknown, so final details 
usually deferred to runtime
• Two simple runtime library calls are enough to handle static case: 

Constant overhead
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Dynamic Scheduling : Under The Hood

_gtid_s1 = __ompc_get_thread_num();
temp_limit = n -1;

_do_upper = temp_limit;
_do_lower = 0;
__ompc_scheduler_init(__ompv_gtid_s1, dynamic ,do_lower, _do_upper, stride, 

chunksize..);
_i = _do_lower;
mpni_status = __ompc_schedule_next(_gtid_s1, &_do_lower, &_do_upper, &_do_stride);
while(mpni_status)
{

if(_do_upper > temp_limit)
{      _do_upper = temp_limit;    }
for(_i = _do_lower; _i <= _do_upper; _i = _i + _do_stride)
{ do_sth();    }
mpni_status = __ompc_schedule_next(_gtid_s1, &_do_lower, &_do_upper, &_do_stride);

}
• Scheduling is performed during runtime.
• A while loop to grab available loop iterations from a work queue 

•Similar way to implement STATIC with a chunk size and GUIDED scheduling

Average overhead= c1*(iteration space/chunksize)+c2

// Schedule(dynamic, chunksize)
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Using OpenMP Scheduling Constructs

Scheduling Overheads (in cycles) on Sun HPC 3500*
• Conclusion: 

– Use default static scheduling when work load is balanced and 
thread processing capability is constant. 

– Use dynamic/guided otherwise

* Courtesy of J. M. Bull, "Measuring Synchronisation and Scheduling Overheads in OpenMP", EWOMP '99, Lund, 
Sep., 1999.
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Implementation-Defined Issues

• Each implementation must decide what is 
in compiler and what is in runtime

• OpenMP also leaves some issues to the 
implementation
– Default number of threads
– Default schedule and default for schedule (runtime)
– Number of threads to execute nested parallel regions
– Behavior in case of thread exhaustion
– And many others..

Despite many similarities, each implementation is a little 
different from all others. 
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Agenda
• Parallel Computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details
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Turning Novice Parallel programmers  into 
Experts

• How do you pass-on expert knowledge to novices 
quickly and effectively?
1. Understand expert knowledge, i.e. “how do expert 

parallel programmers think?”
2. Express that expertise in a consistent framework.
3. Validate (peer review) the framework so it 

represents a true consensus view.
4. Publish the framework. 

• The Object Oriented Software Community has found 
that a language of design patterns is a useful way to 
construct such a framework.
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Design Patterns:
A silly example

• Solution: Construct a money pipeline
– Create SW with enough functionality to do something useful most 

of the time. This will draw buyers into your money pipeline. 
– Promise new features to thwart competitors.
– Use bug-fixes and a slow trickle of new features to extract money 

as you move buyers along the pipeline.

• Forces: The solution must resolve the forces:
– It must give the buyer something they believe they need.
– It can’t be too good, or people won’t need to buy upgrades.
– Every good idea is worth stealing -- anticipate competition.

• Context: You want to get rich and all you have to 
work with is a C.S. degree and programming 
skills. How can you use software to get rich?

• Name: Money Pipeline
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A Shameless plug

Now available at a bookstore near you!

A pattern language for 
parallel algorithm 
design with examples 
in MPI, OpenMP and 
Java.

This is our hypothesis 
for how programmers 
think about parallel 
programming.
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Pattern Language’s structure:
Four design spaces in parallel software development

Original Problem Tasks, shared and local data

Finding 
Concurrency

Supporting stuct. 
& impl. mech.

Corresponding source code

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs(); 
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate( tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs(); 
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate( tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs(); 
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate( tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int Num = get_num_procs(); 
int id = get_proc_id();
if (id==0) setup_problem(N, Data);
for (int I= ID; I<N;I=I+Num){

tmp = func(I, Data);
Res.accumulate( tmp);

}
}

Algorith
m 

Structu
re

Units of execution + new shared data 
for extracted dependencies
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Common patterns in OpenMP

Name: The Task Parallelism Pattern
• Context:

– How do you exploit concurrency expressed in terms of a set of 
distinct tasks?

• Forces
– Size of task – small size to balance load vs. large size to reduce 

scheduling overhead.
– Managing dependencies without destroying efficiency.

• Solution
– Schedule tasks for execution with balanced load – use master 

worker, loop parallelism, or SPMD patterns. 
– Manage dependencies by:

• removing them (replicating data), 
• transforming induction variables, 
• exposing reductions,
• explicitly protecting (shared data pattern).

Algorithm Structure Design space
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Common patterns in OpenMP

Name: The SPMD Pattern
• Context:

– How do you structure a parallel program to make interactions 
between threads manageable yet easy to integrate with the core 
computation?

• Forces
– Fewer programs are easier to manage, but complex algorithms 

often need very different instruction streams on each thread.   
– Balance the conflicting needs of scalability, maintainability, and 

portability.
• Solution

– Use a single program for all the threads.
– Keep it simple … use the threads ID to select different pathways 

through the program.
– Keep interactions between threads explicit and at a minimum. 

Supporting Structures Design space
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Common patterns in OpenMP

Name: The Loop Parallelism Pattern
• Context:

– How do you transform a serial program dominated by compute 
intensive loops into a parallel program without radically changing 
the semantics?

• Forces
– An existing program implies expected output … and this must be 

preserved even as the programs execution changes due to 
parallelism.    

– High performance requires restructuring data to optimize for 
cache … but this must be done carefully to avoid changing 
semantics.

– Assuring correctness suggests that the parallelization process 
should be incremental with each transformation subject to testing.

• Solution
– Identify key compute intensive loops.
– Use directives/pragmas to parallelize these loops (i.e. at no point 

do you use the ID to manage loop parallelization by hand).
– Optimize incrementally testing at each step of the way – merging 

loops, modifying schedules, etc. 

Supporting Structures Design space
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#include <omp.h>
static long num_steps = 100000;         double step;
#define NUM_THREADS 2
void main ()
{ int i, id, nthreads;  double x, pi, sum;

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel private (i, id, x, sum)
{

id = omp_get_thread_num();
#pragma omp single

nthreads = omp_get_num_threads();
for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
#pragma omp critical

pi += sum * step;
}
}

Design pattern example:  
The SPMD pattern

Every thread 
executes the same 

code … use the 
thread ID to 

distribute work.

Data replication
used to manage 
dependencies
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Design pattern example:  
The Loop Parallelism pattern

#include <omp.h>
static long num_steps = 100000;         double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel for private(x) reduction(+:sum)

for (i=0;i<= num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

Parallelism inserted 
as semantically 

neutral directives to 
parallelize key loops

Reduction used to 
manage 

dependencies
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Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details
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Case Studies - General Comments:
Performance Measurement 

• What is the baseline performance?
• What is the desired improvement?
• Where are the computation-intensive 

regions of the program?
• Is timing done on a dedicated machine? If 

a large machine, where is data? What 
about file access? Does set of processors 
available impact this?

On large machines, it is best to use custom features to pin 
threads to specific resources. A poor data layout may kill 
performance on a platform with many CPUs.
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Case Studies - General Comments:
Performance Issues

• Overheads of OpenMP constructs, thread management
– E.g. dynamic loop schedules have much higher overheads than 

static schedules
– Synchronization is expensive, so use NOWAIT if possible and 

privatize data where possible
• Overheads of runtime library routines

– Some are called frequently
• Structure and characteristics of program

– Sequential part of program
– Load balance
– Cache utilization and false sharing (it can kill any speedup)
– Large parallel regions help reduce overheads, enable better 

cache usage and standard optimizations
System or helper threads may also be active – managing or assigning work. 
Give them a resource of their own by using one less CPU than the available 
number. Otherwise, they may degrade performance. Pin threads to CPUs.
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Case Studies - General Comments:
Optimal Number of Threads

• May need to experiment to determine the 
optimal number of threads for a given problem
– In SMT, reducing the number of threads 

may alleviate resource (register, datapath, 
cache, or memory) conflicts

• Using one thread per physical processor is 
preferred for memory-intensive applications

–Adding one or more threads to share the 
computation is an alternative to solve the load 
imbalance problem

• Technique described by Dr. Danesh Tafti and 
Weicheng Huang, see www.ncsa.uiuc.edu/News/
Access/Stories/LoadBalancing/
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Case Studies - General Comments:
Cache Optimizations

• Loop interchange and array transposition
– TOMCATV code example

• Outer loop unrolling of a loop nest to block data for 
the cache 

• Array padding
– Changing the memory address affects cache mapping
– Increases cache hit rates

REAL rx(jdim, idim)

C$OMP PARLLEL DO

DO i=2, n-1

do j=2, n

rx(i,j) = rx(i,j-1)+…

ENDDO

ENDDO

REAL rx(idim, jdim)

C$OMP PARLLEL DO

DO i=2, n-1

do j=2, n

rx(j,i) = rx(j-1,i)+…

ENDDO

ENDDO

Common /map/ A(1024), B(1024)
Common /map/ A(1024), PAD(8), B(1024)

*third party names are the property of their respective owners.
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Case Studies - General Comments:
Cache Optimizations

• Loop interchange may increase cache locality through 
stride-1 references

• In version on right, the cache miss ration is greatly 
reduced
– We executed these codes on Cobalt @ NCSA ( one node of SGI 

Altix System with 32-way 1.5 GHz Itanium 2 processors) using 
the Intel compiler 8.0 with –O0

– The level 2 cache miss rate is changed from 0.744 to 0.032
– The bandwidth used for level 2 cache is decreased from 

11993.404 MB/s to  4635.817 MB/s
– Wall clock time is reduced from 77.383s to 8.265s

!$OMP PARALLEL DO
DO i=1,N
DO j=1,N
a(i,j) = b(i,j) + c(i,j)

END DO
END DO

!$OMP PARALLEL DO
DO j=1,N
DO i=1,N
a(i,j) = b(i,j) + c(i,j)

END DO
END DO
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Case Studies - General Comments:
Cache Optimizations

• A variety of methods to improve cache 
performance
– loop fission
– loop fusion
– loop unrolling (outer and inner loops)
– loop tiling
– array padding
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Case Studies - General Comments:
Sources of Errors 

• Incorrect use of synchronization constructs
– Less likely if user sticks to directives
– Erroneous use of locks can lead to deadlock
– Erroneous use of NOWAIT can lead to race 

conds.
• Race conditions (true sharing)

– Can be very hard to find
• Wrong declared data attributes (shared vs. 

private)
• Wrong “spelling” of sentinel

It can be very hard to track race conditions. Tools may help check for these, 
but they may fail if your OpenMP code does not rely on directives to 
distribute work. Moreover, they can be quite slow.



The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

61

121

Case Studies and Examples
• More difficult problems to parallelize

– Seismic Data Processing: Dynamic 
Workload

– Jacobi: Stepwise improvement 
– Fine Grained locks
– Equake: Time vs. Space
– Coalescing loops
– Wavefront Parallelism
– Work Queues
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Seismic Data Processing Example

• The KINGDOM Suite+ from Seismic Micro-
Technology, Inc.  Software to find oil and gas.

• Integrated package for Geological/Geophysical
interpretation and risk reduction.
– Interpretation

• 2d/3dPAK
• EarthPAK
• VuPAK

– Risk Reduction
• AVOPAK
• Rock Solid Attributes
• SynPAK
• TracePAK
• ModPAK

*third party names are the property of their respective owners.
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Seismic Data Processing
for (int iLineIndex=nStartLine; iLineIndex <= nEndLine; iLineIndex++)
{

Loadline(iLineIndex,...);
for(j=0;j<iNumTraces;j++)

for(k=0;k<iNumSamples;k++)
processing();

SaveLine(iLineIndex);
}

Load 
Data

Process
Data

Save 
Data

Timeline
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First OpenMP Version of Seismic 
Data Processing

for (int iLineIndex=nStartLine; iLineIndex <= nEndLine; iLineIndex++)
{

Loadline(iLineIndex,...);
#pragma omp parallel for

for(j=0;j<iNumTraces;j++)
for(k=0;k<iNumSamples;k++)

processing();
SaveLine(iLineIndex);

}

Load 
Data

Process
Data

Save 
Data

Timeline

Better performance, but 
not too encouraging

Overhead for 
entering and leaving 
the parallel region
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Optimized OpenMP Version of 
Seismic Data Processing

Loadline(nStartLine,...);  // preload the first line of data
#pragma omp parallel
{

for (int iLineIndex=nStartLine; iLineIndex <= nEndLine; iLineIndex++)
{

#pragma omp single nowait
{// loading the next line data, NO WAIT!

Loadline(iLineIndex+1,...);  
}

#pragma omp for schedule(dynamic)
for(j=0;j<iNumTraces;j++)

for(k=0;k<iNumSamples;k++)
processing();

#pragma omp single nowait
{

SaveLine(iLineIndex);
}

}
}

Load 
Data

Process

Data
Save 
Data

Load 
Data

Process

Data
Save 
Data

Load 
Data

Load 
Data

Process

Data

Timeline
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Performance of Optimized Seismic 
Data Processing Application

Seismic Data Processing Speedup
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Case Studies and Examples
• More difficult problems to parallelize

– Seismic Data Processing: Dynamic 
Workload

– Jacobi: Stepwise improvement 
– Fine Grained locks
– Equake: Time vs. Space
– Coalescing loops
– Wavefront Parallelism
– Work Queues
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Case Studies: a Jacobi Example

• Solving the Helmholtz equation with a finite difference 
method on a regular 2D-mesh 

• Using an iterative Jacobi method with over-relaxation 
– Well suited for the study of various approaches of loop-level 

parallelization
• Taken from

– Openmp.org
• The original OpenMP program contains 2 parallel regions inside the 

iteration loop
– Dieter an Mey, Thomas Haarmann, Wolfgang Koschel. 

“Pushing Loop-Level Parallelization to the Limit ”, EWOMP 
‘02.

• This paper shows how to tune the performance for this program 
step by step
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error = 10.0 * tol
k = 1 
do while (k.le.maxit .and. error.gt. tol) ! begin iteration loop 
error = 0.0 
!$omp parallel do 
do j=1,m 
do i=1,n 

uold(i,j) = u(i,j) 
enddo
enddo

!$omp end parallel do 

!$omp parallel do private(resid) reduction(+:error) 

do j = 2,m-1 do i = 2,n-1 

resid = (ax*(uold(i-1,j) + uold(i+1,j)) 

&     + ay*(uold(i,j-1) + uold(i,j+1))    + b * uold(i,j) - f(i,j))/b

u(i,j) = uold(i,j) - omega * resid

error = error + resid*resid

end do 

enddo

!$omp end parallel do 

k = k + 1 

error = sqrt(error)/dble(n*m) 

enddo ! end iteration loop

Two parallel regions 
inside the iteration 
loop

A Jacobi Example: 
Version 1
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error = 10.0 * tol
k = 1 
do while (k.le.maxit .and. error.gt. tol) ! begin iteration loop
error = 0.0 

!$omp parallel private(resid) 
!$omp do 
do j=1,m 
do i=1,n 
uold(i,j) = u(i,j) 
enddo
enddo

!$omp end do 
!$omp do reduction(+:error) 
do j = 2,m-1 
do i = 2,n-1 
resid = (ax*(uold(i-1,j) + uold(i+1,j)) 

& + ay*(uold(i,j-1) + uold(i,j+1)) 
& + b * uold(i,j) - f(i,j))/b

u(i,j) = uold(i,j) - omega * resid
error = error + resid*resid
end do 
enddo

!$omp end do nowait
!$omp end parallel 
k = k + 1 
error = sqrt(error)/dble(n*m) 

enddo ! end iteration loop 

A Jacobi Example: 
Version 2

Merging two parallel 
regions inside the 
iteration loop.

An nowait is added.
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error = 10.0d0 * tol
!$omp parallel private(resid, k_priv) 
k_priv = 1 
do while (k_priv.le.maxit .and. error.gt.tol) ! begin iteration loop
!$omp do 
do j=1,m 
do i=1,n 
uold(i,j) = u(i,j) 

enddo
enddo

!$omp end do 
!$omp single 
error = 0.0d0 

!$omp end single 
!$omp do reduction(+:error) 
do j = 2,m-1 

……
error = error + resid*resid

enddo
!$omp end do 
k_priv = k_priv + 1 

!$omp single 
error = sqrt(error)/dble(n*m) 

!$omp end single 
enddo ! end iteration loop 
!$omp single 
k = k_priv
!$omp end single nowait

!$omp end parallel

A Jacobi Example: 
Version 3

One parallel region 
containing the whole 
iteration loop.
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By replacing the shared 
variable error by a private 
copy error_priv in the 
termination condition of the 
iteration loop, one of the four 
barriers can be eliminated.
An “end single” with an implicit 
barrier was here in Version 3.

!$omp parallel private(resid, k_priv,error_priv) 
k_priv = 1 error_priv = 10.0d0 * tol
do while (k_priv.le.maxit .and. error_priv.gt.tol) ! begin iter. loop 
!$omp do 
do j=1,m 
do i=1,n 
uold(i,j) = u(i,j) 

enddo
enddo

!$omp end do 
!$omp single 

error = 0.0d0 
!$omp end single 
!$omp do reduction(+:error)

do j = 2,m-1 
do i = 2,n-1 

……
error = error + resid*resid

end do 
enddo

!$omp end do 
k_priv = k_priv + 1 
error_priv = sqrt(error)/dble(n*m) 

enddo ! end iteration loop 
!$omp barrier 
!$omp single 
k = k_priv
error = error_priv

!$omp end single
!$omp end parallel 

A Jacobi Example: 
Version 4
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Performance Tuning of the Jacobi 
example

• V1: the original OpenMP program with two 
parallel regions inside the iteration loop

• V2: merges two parallel regions into one region
• V3: moves the parallel region out to include the 

iteration loop inside
• V4: replaces a shared variable by a private 

variable to perform the reduction so that one out 
of four barriers can be eliminated  

• V5: the worksharing constructs are eliminated in 
order to reduce the outlining overhead by the 
compiler
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do j=1,m, m-1 
do i=1,n 
uold(i,j) = u(i,j) 

enddo
enddo
do j=2,m-1 
do i=1,n,n-1 
uold(i,j) = u(i,j) 

enddo
enddo
! all parallel loops run from 2 to m-1 
nthreads = omp_get_max_threads() 
ilo = 2;  ihi = m-1 
nrem = mod ( ihi - ilo + 1, nthreads ) 
nchunk = ( ihi - ilo + 1 - nrem ) / nthreads
!$omp parallel private(me,is,ie,resid, 
k_priv,error_priv) 
me = omp_get_thread_num() 
if ( me < nrem ) then 

is = ilo + me * ( nchunk + 1 );  ie = is + nchunk
else 

is = ilo + me * nchunk + nrem;  ie = is + nchunk - 1 
end if 
error_priv = 10.0 * tol;   k_priv = 1 

do while (k_priv.le.maxit .and. 
error_priv.gt.tolh) ! begin iter. loop 

do j=is,ie
do i=2,n-1 

uold(i,j) = u(i,j) 
enddo

enddo
!$omp barrier 
!$omp single 

error = 0 
!$omp end single 

error_priv = 0 
do j = is,ie
do i = 2,n-1 
……
error_priv = error_priv + resid*resid

end do 
enddo

!$omp atomic 
error = error + error_priv
v = k_priv + 1 
k_pri

!$omp barrier 
error_priv = sqrt ( error ) / dble(n*m) 

enddo ! end iteration loop 
!$omp single

k = k_priv
!$omp end single
!$omp end parallel
error = sqrt ( error ) / dble(n*m) 

The reduction is replaced by
an atomic directive.

An Jacobi Example: 
Version 5

The worksharing constructs 
replaced to avoid the 
outlining overhead by the 
compiler.
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Comparison of 5 different versions of the Jacobi solver on 
a Sun Fire 6800, grid size 200x200 , 1000 iterations

An Jacobi Example: 
Version Comparison
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Case Studies and Examples
• More difficult problems to parallelize

– Seismic Data Processing: Dynamic 
Workload

– Jacobi: Stepwise improvement 
– Fine Grained locks
– Equake: Time vs. Space
– Coalescing loops
– Wavefront Parallelism
– Work Queues
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SpecOMP: Gafort

• Global optimization using a genetic 
algorithm.
– Written in Fortran
– 1500 lines of code

• Most “interesting” loop: shuffle the 
population.
– Original loop is not parallel; performs pair-

wise swap of an array element with another, 
randomly selected element. There are 40,000 
elements.

*Other names and brands may be claimed as the property of others. 
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DO j=1,npopsiz-1

CALL ran3(1,rand,my_cpu_id,0)
iother=j+1+DINT(DBLE(npopsiz-j)*rand)
itemp(1:nchrome)=iparent(1:nchrome,iother)
iparent(1:nchrome,iother)=iparent(1:nchrome,j)
iparent(1:nchrome,j)=itemp(1:nchrome)
temp=fitness(iother)
fitness(iother)=fitness(j)
fitness(j)=temp

END DO

Shuffle populations
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SpecOMP: Gafort

• Parallelization idea: 
– Perform the swaps in parallel.
– Must protect swap to prevent races.
– High level synchronization (critical) would 

prevent all opportunity for speedup.
• Solution:

– use one lock per array element   40,000 
locks.
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!$OMP PARALLEL PRIVATE(rand, iother, itemp, temp, my_cpu_id) 
my_cpu_id = 1

!$   my_cpu_id = omp_get_thread_num() + 1
!$OMP DO

DO j=1,npopsiz-1
CALL ran3(1,rand,my_cpu_id,0)
iother=j+1+DINT(DBLE(npopsiz-j)*rand)

!$      IF (j < iother) THEN
!$         CALL omp_set_lock(lck(j))
!$         CALL omp_set_lock(lck(iother))
!$      ELSE
!$         CALL omp_set_lock(lck(iother))
!$         CALL omp_set_lock(lck(j))
!$      END IF

itemp(1:nchrome)=iparent(1:nchrome,iother)
iparent(1:nchrome,iother)=iparent(1:nchrome,j)
iparent(1:nchrome,j)=itemp(1:nchrome)
temp=fitness(iother)
fitness(iother)=fitness(j)
fitness(j)=temp

!$     IF (j < iother) THEN
!$         CALL omp_unset_lock(lck(iother))
!$         CALL omp_unset_lock(lck(j))
!$     ELSE
!$         CALL omp_unset_lock(lck(j))
!$         CALL omp_unset_lock(lck(iother))
!$     END IF

END DO
!$OMP END DO
!$OMP END PARALLEL

Exclusive 
access to array 
elements. 
Ordered locking 
prevents 
deadlock.

Gafort
parallel 
shuffle



The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

71

141

Gafort Results

• 99.9% of the code was inside parallel section.
• Speedup was OK (6.5 on 8 processors) but not 

great.
• This application led us to make a change to 

OpenMP:
– OpenMP 1.0 required that locks be initialized 

in a serial region.
– With 40,000 of them, this just wasn’t practical.
– So in OpenMP 1.1 we changed locks so they 

could be initialized in parallel. 
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Case Studies and Examples
• More difficult problems to parallelize

– Seismic Data Processing: Dynamic 
Workload

– Jacobi: Stepwise improvement 
– Fine Grained locks
– Equake: Time vs. Space
– Coalescing loops
– Wavefront Parallelism
– Work Queues
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SPEComp: Equake

• Earthquake modeling
– simulates the propagation of elastic waves in 

large, highly heterogeneous valleys
– Input: grid topology with nodes, coordinates, 

seismic event characteristics, etc
– Output: reports the motion of the earthquake 

for a certain number of simulation timesteps
• Most time consuming loop: smvp(..)

– sparse matrix calculation: accumulate the 
results of matrix-vector product

*Other names and brands may be claimed as the property of others. 
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Smvp()

• Frequent and 
scattered 
accesses to 
shared arrays w1 
and w2

• Naive OpenMP: 
uses critical to 
synchronize 
each access
– serializes 

most of the 
execution

– Not scalable

for (i = 0; i < nodes; i++) {
Anext = Aindex[i];     Alast = Aindex[i + 1];
sum0 = A[Anext][0][0]*v[i][0] .. + A[Anext][0][2]*v[i][2];
…
Anext++;
while (Anext < Alast) {

col = Acol[Anext];

sum0 += A[Anext][0][0]*v[col][0] ..+ A[Anext][0][2]*v[col][2];
….
if (w2[col] == 0) {

w2[col] = 1;
w1[col].first = 0.0;
… }      

w1[col].first += A[Anext][0][0]*v[i][0] .. + A[Anext][2][0]*v[i][2];
……
Anext++;

}

if (w2[i] == 0) {
w2[i] = 1;
w1[i].first = 0.0;
…

}
w1[i].first += sum0;
……

}
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Solution
#pragma omp parallel private(my_cpu_id,i,..col,sum0,sum1,sum2)
{  #ifdef _OPENMP

my_cpu_id = omp_get_thread_num(); 
numthreads=omp-get_num_threads();

#else
my_cpu_id=0; numthreads=1;

#endif
#pragma omp for
for (i = 0; i < nodes; i++) {
…..
sum0 = A[Anext][0][0]*v[i][0] ... +A[Anext][0][2]*v[i][2];
….
while (Anext < Alast) {
sum0 += A[Anext][0][0]*v[col][0] ...+ A[Anext][0][2]*v[col][2];
....

if (w2[my_cpu_id][col] == 0) {
w2[my_cpu_id][col] = 1;
w1[my_cpu_id][col].first = 0.0;

......      }
w1[my_cpu_id][col].first += A[Anext][0][0]*v[i][0] ...+ A[Anext][2][0]*v[i][2]
....  }
if (w2[my_cpu_id][i] == 0) {

w2[my_cpu_id][i] = 1;
w1[my_cpu_id][i].first = 0.0;         ....    }

w1[my_cpu_id][i].first += sum0;
...  }   }

#pragma omp parallel for private(j) // manual reduction
for (i = 0; i < nodes; i++) {
for (j = 0; j < numthreads; j++) {
if (w2[j][i]) { w[i][0] += w1[j][i].first;

.... }   }  }

SPMD-style
• Replicate w1,w2 for 
each thread.

•exclusive access to 
arrays
• no synchronization

• Downside:
• large memory 
consumption
• extra time to 
duplicate data and 
reduce copies back 
to one

• Performance result:
• good scaling up to 
64 CPUs for medium 
dataset
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Lessons Learned from Equake
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Data reduction

threads

Data replication is worthwhile when 
the cost of critical is too high 
and enough memory and bandwidth 
is available.
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Case Studies and Examples
• More difficult problems to parallelize

– Seismic Data Processing: Dynamic 
Workload

– Jacobi: Stepwise improvement 
– Fine Grained locks
– Equake: Time vs. Space
– Coalescing loops
– Wavefront Parallelism
– Work Queues

148

Getting more concurrency to work with: 
Art (SpecOMP 2001)

• Art: Adaptive Resonance Theory) is an 
Image processing application based on 
neural networks and used to recognize 
objects in a thermal image.

• Source has over 1300 lines of C code.

*Other names and brands may be claimed as the property of others. 
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for (i=0; i<inum;i++) {
for (j=0; j<jnum; j++) {

k=0;
for (m=j;m<(gLheight+j);m++)

for (n=i;n<(gLwidth+i);n++)
f1_layer[o][k++].I[0] = cimage[m][n];

gPassFlag =0;
gPassFlag = match(o,i,j, &mat_con[ij], busp);

if (gPassFlag==1) {
if (set_high[o][0]==TRUE) {

highx[o][0] = i;
highy[o][0] = j;
set_high[o][0] = FALSE;

}
if (set_high[o][1]==TRUE)  {

highx[o][1] = i;
highy[o][1] = j;
set_high[o][1] = FALSE;

}
}  

}
}

Key Loop in Art

Problem: 

which loop to parallelize?  

Inum and jnum aren’t 
that big – insufficient 
parallelism to support 
scalability and 
compensate for parallel 
overhead.
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Coalesce Multiple Parallel 
Loops

• Original Code

DO I = 1, N
DO J = 1, M
DO K = 1, L
A(K,J,I) = Func(I,J,K)

ENDDO
ENDDO

ENDDO

• >1 loop is parallel
• None of N, M, L very large
• What is best parallelization strategy?

• Loop Coalescing
ITRIP = N ; JTRIP = M
!$OMP PARALLEL DO
DO IJ = 0, ITRIP*JTRIP-1
I = 1 +     IJ/JTRIP
J = 1 + MOD(IJ,JTRIP)
DO K = 1, L
A(K,J,I) = Func(I,J,K)

ENDDO
ENDDO

…



The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

76

151

#pragma omp for private (k,m,n, gPassFlag) schedule(dynamic) 
for (ij = 0; ij < ijmx; ij++)  {  

j = ((ij/inum) * gStride) + gStartY;
i = ((ij%inum) * gStride) +gStartX;
k=0;
for (m=j;m<(gLheight+j);m++)

for (n=i;n<(gLwidth+i);n++)
f1_layer[o][k++].I[0] = cimage[m][n];

gPassFlag =0;
gPassFlag = match(o,i,j, &mat_con[ij], busp);

if (gPassFlag==1) {
if (set_high[o][0]==TRUE) {

highx[o][0] = i;
highy[o][0] = j;
set_high[o][0] = FALSE;

}
if (set_high[o][1]==TRUE)  {

highx[o][1] = i;
highy[o][1] = j;
set_high[o][1] = FALSE;

}
}  

}

Key loop in Art

Indexing to 
support Loop 
Coalescing

Note:

Dynamic 
Schedule 
needed 

because of 
embedded 

conditionals

152

Case Studies and Examples
• More difficult problems to parallelize

– Seismic Data Processing: Dynamic 
Workload

– Jacobi: Stepwise improvement 
– Fine Grained locks
– Equake: Time vs. Space
– Coalescing loops
– Wavefront Parallelism
– Work Queues
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SOR algorithms
• Original Code

DO I = 2, N
DO J = 2, M
DO K = 2, L
A(K,J,I) =
Func( A(K-1,J,  

I),
A(K,  J-

1,I),
A(K,  J,  

I-1))
ENDDO

ENDDO
ENDDO

• No loop is parallel
• A wavefront dependence pattern
• What is best parallelization 

strategy?

• What is a wavefront?
– Each point on the wavefront can 

be computed in parallel
– Each wavefront must be 

completed before next one
– A two-dimensional example
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Wave-fronting SOR
• Manual Wavefront – combine loops and restructure to 

compute over wavefronts
!$OMP PARALLEL PRIVATE(J)
DO IJSUM= 4, N+M

!$OMP DO SCHEDULE(STATIC,1)
DO I = max(2,IJSUM-M), min(N,IJSUM-2)
J = IJSUM - I
DO K = 2, L
A(K,J,I) = Func( A(K-1,J,I), A(K,J-1,I), A(K,J,I-1) )

ENDDO
ENDDO

ENDDO
!$OMP END PARALLEL

• Notice only I and J loops wave-fronted
– Relatively easy to wavefront all three loops, but stride-1 inner loop helps cache 

access
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Case Studies and Examples
• More difficult problems to parallelize

– Seismic Data Processing: Dynamic 
Workload

– Jacobi: Stepwise improvement 
– Fine Grained locks
– Equake: Time vs. Space
– Coalescing loops
– Wavefront Parallelism
– Work Queues
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OpenMP Enhancements :
Work queues

nodeptr list, p;

For (p=list; p!=NULL; p=p->next)

process(p->data);

nodeptr list, p;

#pragma omp parallel taskq
For (p=list; p!=NULL; p=p->next)
#pragma omp task

process(p->data);

OpenMP doesn’t handle pointer following loops very well

Intel has proposed (and implemented) a taskq construct 
to deal with this case:

Reference: Shah, Haab, Petersen and Throop, EWOMP’1999 paper.
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Task queue example - FLAME: Shared Memory 
Parallelism in Dense Linear Algebra

• Traditional approach to parallel linear 
algebra:
– Only parallelism from multithreaded BLAS

• Observation:
– Better speedup if parallelism is exposed at a 

higher level
• FLAME approach:

– OpenMP task queues

Tze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van ZTze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van Zee. ee. ““Parallelizing FLAME Code with Parallelizing FLAME Code with OpenMPOpenMP Task Task 

Queues.Queues.”” TOMS TOMS , submitted., submitted.

*Other names and brands may be claimed as the property of others. 
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Symmetric rank-k update

+=

C A AT

A1

A0

AT
0 AT

1C10
C11

Add A1AT
0

Add A0AT
0

Note: the iteration sweeps through C and A, creating a new block of rows to be
updated with new parts of A.  These updates are completely independent.

Tze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van ZTze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van Zee. ee. ““Parallelizing FLAME Code with Parallelizing FLAME Code with OpenMPOpenMP Task Task 

Queues.Queues.”” TOMS TOMS , submitted., submitted.
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Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details
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Reference Material on OpenMP
• OpenMP architecture review  board URL, 

the primary source of information about 
OpenMP:

www.openmp.org
• OpenMP User’s Group (cOMPunity) URL:

www.compunity.org
• Books:

Parallel programming in OpenMP, Chandra, Rohit, San. : 
Francisco, Calif Morgan Kaufmann ; London : Harcourt, 2000, 
ISBN: 1558606718

Using OpenMP; Chapman, Jost, Van der Pas, Mueller; MIT 
Press (to appear, 2006)

Patterns for Parallel Programming, Mattson, Sanders, 
Massingill, Addison Wesley, 2004



The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

82

163

OpenMP Papers
• Sosa CP, Scalmani C, Gomperts R, Frisch MJ. Ab initio quantum chemistry on a 

ccNUMA architecture using OpenMP. III.  Parallel Computing, vol.26, no.7-8, July 
2000, pp.843-56. Publisher: Elsevier, Netherlands.

• Couturier R, Chipot C. Parallel molecular dynamics using OPENMP on a shared 
memory machine.  Computer Physics Communications, vol.124, no.1, Jan. 2000, 
pp.49-59. Publisher: Elsevier, Netherlands.

• Bentz J., Kendall R., “Parallelization of General Matrix Multiply Routines Using 
OpenMP”, Shared Memory Parallel Programming with OpenMP, Lecture notes in 
Computer Science, Vol. 3349, P. 1, 2005

• Bova SW, Breshearsz CP, Cuicchi CE, Demirbilek Z, Gabb HA. Dual-level parallel 
analysis of harbor wave response using MPI and OpenMP.  International Journal of 
High Performance Computing Applications, vol.14, no.1, Spring 2000, pp.49-64. 
Publisher: Sage Science Press, USA.

• Chapman B, Mehrotra P. OpenMP and HPF: integrating two paradigms. [Conference 
Paper] Euro-Par'98 Parallel Processing. 4th International Euro-Par Conference. 
Proceedings. Springer-Verlag. 1998, pp.650-8. Berlin, Germany

• Ayguade E, Martorell X, Labarta J, Gonzalez M, Navarro N. Exploiting multiple levels 
of parallelism in OpenMP: a case study.  Proceedings of the 1999 International 
Conference on Parallel Processing. IEEE Comput. Soc. 1999, pp.172-80.  Los 
Alamitos, CA, USA.

• Bova SW, Breshears CP, Cuicchi C, Demirbilek Z, Gabb H. Nesting OpenMP in an 
MPI application.  Proceedings of the ISCA 12th International Conference. Parallel and 
Distributed Systems. ISCA. 1999, pp.566-71. Cary, NC, USA.
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OpenMP Papers (continued)
• Jost G., Labarta J., Gimenez J., What Multilevel Parallel Programs do when you are not 

watching: a Performance analysis case study comparing MPI/OpenMP, MLP, and 
Nested OpenMP, Shared Memory Parallel Programming with OpenMP, Lecture notes in 
Computer Science, Vol. 3349, P. 29, 2005

• Gonzalez M, Serra A, Martorell X, Oliver J, Ayguade E, Labarta J, Navarro N. Applying 
interposition techniques for performance analysis of OPENMP parallel applications.  
Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS 
2000. IEEE Comput. Soc. 2000, pp.235-40.  

• B. Chapman, O. Hernandez, L. Huang, T.-H. Weng, Z. Liu, L. Adhianto, Y. Wen, 
“Dragon: An Open64-Based Interactive Program Analysis Tool for Large 
Applications,” Proc. 4th International Conference on Parallel and Distributed 
Computing, Applications and Technologies (PDCAT 03). 792-796. 2003. 

• Chapman B, Mehrotra P, Zima H. Enhancing OpenMP with features for locality control.
Proceedings of Eighth ECMWF Workshop on the Use of Parallel Processors in 
Meteorology. Towards Teracomputing. World Scientific Publishing. 1999, pp.301-13. 
Singapore.

• Steve W. Bova, Clay P. Breshears, Henry Gabb, Rudolf Eigenmann, Greg Gaertner, 
Bob Kuhn, Bill Magro, Stefano Salvini. Parallel Programming with Message Passing 
and Directives; SIAM News, Volume 32, No 9, Nov. 1999.

• Cappello F, Richard O, Etiemble D. Performance of the NAS benchmarks on a cluster 
of SMP PCs using a parallelization of the MPI programs with OpenMP. Lecture Notes 
in Computer Science Vol.1662. Springer-Verlag. 1999, pp.339-50.  

• Liu Z., Huang L., Chapman B., Weng T., Efficient Implementationi of OpenMP for 
Clusters with Implicit Data Distribution, Shared Memory Parallel Programming with 
OpenMP, Lecture notes in Computer Science, Vol. 3349, P. 121, 2005
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OpenMP Papers (continued)
• B. Chapman, F. Bregier, A. Patil, A. Prabhakar, “Achieving performance under 

OpenMP on ccNUMA and software distributed shared memory systems,”
Concurrency and Computation: Practice and Experience. 14(8-9): 713-739, 2002.

• J. M. Bull and M. E.  Kambites. JOMP: an OpenMP-like interface for Java.  
Proceedings of the ACM 2000 conference on Java Grande, 2000, Pages 44 - 53.

• Mattson, T.G.  An Introduction to OpenMP 2.0, Proceedings 3rd International 
Symposium on High Performance Computing, Lecture Notes in Computer Science, 
Number 1940, Springer, 2000 pp. 384-390, Tokyo Japan.

• Magro W, Petesen P, Shah S.  Hyper-Threading Technology: Impact on Computer-
Intensive Workloads.  Intel Technology Journal, Volume 06, Issue 01, 2002.  ISSN 
1535-766X

• Mattson, T.G., How Good is OpenMP? Scientific Programming, Vol. 11, Number 2, 
p.81-93, 2003.

• Duran A., Silvera R., Corbalan J., Labarta J., “Runtime Adjustment of Parallel 
Nested Loops”,  Shared Memory Parallel Programming with OpenMP, Lecture 
notes in Computer Science, Vol. 3349, P. 137, 2005

• Shah S, Haab G, Petersen P, Throop J.  Flexible control structures for parallelism 
in OpenMP; Concurrency: Practice and Experience, 2000; 12:1219-1239.  Publisher 
John Wiley & Sons, Ltd.
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OpenMP Papers (continued)
• Voss M., Chiu E., Man P., Chow Y. Wong C., Yuen K., “An evaluation of Auto-

Scoping in OpenMP”, Shared Memory Parallel Programming with OpenMP, 
Lecture notes in Computer Science, Vol. 3349, P. 98, 2005

• T.-H. Weng, B. M. Chapman, “Implementing OpenMP using Dataflow execution 
Model for Data Locality and Efficient Parallel Execution,” In Proceedings of the 7th 
workshop on High-Level Parallel Programming Models and Supportive 
Environments, (HIPS-7), IEEE, April 2002, 

• T-H. Weng and B. Chapman, “Toward Optimization of OpenMP Codes for 
Synchronization and Data Reuse,” Int. Journal of High Performance Computing 
and Networking (IJHPCN), Vol. 1, 2004. 

• Z. Liu, B. Chapman, T.-H. Weng, O. Hernandez. “Improving the Performance of 
OpenMP by Array Privatization, ” Workshop on OpenMP Applications and Tools, 
WOMPAT’2002. LNCS 2716, Spring Verlag, pp. 244-259, 2002. 

• Hu YC, Honghui Lu, Cox AL, Zwaenepoel W. OpenMP for networks of SMPs. 
Proceedings 13th International Parallel Processing Symposium and 10th 
Symposium on Parallel and Distributed Processing. IPPS/SPDP 1999. IEEE 
Comput. Soc. 1999, pp.302-10. Los Alamitos, CA, USA.

• Scherer A, Honghui Lu, Gross T, Zwaenepoel W. Transparent adaptive parallelism 
on NOWS using OpenMP.  ACM. Sigplan Notices (Acm Special Interest Group on 
Programming Languages), vol.34, no.8, Aug. 1999, pp.96-106. USA.

• L. Huang, B. Chapman and Z. Liu, “Towards a More Efficient Implementation of 
OpenMP for Clusters via Translation to Global Arrays,” Parallel Computing. To 
appear, 2005.

• M. Bull, B. Chapman (Guest Editors), Special Issues on OpenMP. Scientific 
Programming 9, 2 and 3, 2001. 
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Backup material
• History
• Foundations of OpenMP
• Memory Models and the Infamous 

Flush
• Performance optimization in OpenMP
• The future of OpenMP
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OpenMP pre-history

• OpenMP based upon SMP directive 
standardization efforts PCF and aborted ANSI 
X3H5 – late 80’s

• Nobody fully implemented either
• Only a couple of partial solutions
• Vendors considered proprietary API’s to be a 

competitive feature: 
– Every vendor had proprietary directives sets
– Even KAP, a “portable” multi-platform 

parallelization tool used different directives on 
each platform

PCF – Parallel computing forum        KAP – parallelization tool from KAI.
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History of OpenMP
SGI

Cray

Merged, 
needed 
commonality 
across 
products

KAI ISV - needed 
larger market

was tired of 
recoding for 
SMPs.  Urged 
vendors to 
standardize.

ASCI

Wrote a 
rough draft 
straw man 
SMP API

DEC

IBM

Intel

HP

Other vendors 
invited to join

1997

170

OpenMP Release History

OpenMP
Fortran 1.1

OpenMP
C/C++ 1.0

OpenMP
Fortran 2.0

OpenMP
C/C++ 2.0

1998

20001999

2002

OpenMP
Fortran 1.0

1997

OpenMP
2.5

2005

A single 
specification 
for Fortran, C 
and C++
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Backup material
• History
• Foundations of OpenMP
• Memory Models and the Infamous 

Flush
• Performance optimization in OpenMP
• The future of OpenMP
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The Foundations of OpenMP: 

OpenMP: a parallel programming API

Parallelism Working with 
concurrency

Layers of abstractions 
or “models” used to 
understand and use 

OpenMP
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Concurrency: 

• Concurrency:
• When multiple tasks are active simultaneously.

• “Parallel computing” occurs when you use 
concurrency to:
– Solve bigger problems
– Solve a fixed size problem in less time

• For parallel computing, this means you need to:
• Identify exploitable concurrency.
• Restructure code to expose the concurrency.
• Use a parallel programming API to express the concurrency 

within your source code. 

174

The Foundations of OpenMP: 

OpenMP: a parallel programming API

Parallelism Working with 
concurrency

Layers of abstractions 
or “models” used to 
understand and use 

OpenMP
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Reasoning about programming
• Programming is a process of successive 

refinement of a solution relative to a hierarchy  of 
models. 

• The models represent the problem at a different 
level of abstraction.
– The top levels express the problem in the 

original problem domain.
– The lower levels represent the problem in the 

computer’s domain.
• The models are informal, but detailed enough to 

support simulation.

Source: J.-M. Hoc, T.R.G. Green, R. Samurcay and D.J. Gilmore (eds.), 
Psychology of Programming, Academic Press Ltd., 1990
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Layers of abstraction in programming

Problem

Algorithm

Source Code

Computation

Hardware

Programming

Computational

Specification

Cost

Domain Model: Bridges between domains

OpenMP 
only 

defines 
these two!
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OpenMP Programming Model: 
Fork-Join Parallelism: 

Master thread spawns a team of threads as needed.

Parallelism is added incrementally until desired 
performance is achieved: i.e. the sequential program 
evolves into a parallel program.

Parallel Regions

Master 
Thread A Nested 

Parallel 
region

178

OpenMP Computational model
• OpenMP was created with a particular abstract 

machine or computational model in mind:
• Multiple processing elements.
• A shared address space with “equal-time” access for 

each processor.
• Multiple light weight processes (threads) managed 

outside of OpenMP (the OS or some other “third 
party”).

Shared Address Space

Proc3Proc2Proc1 ProcN
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What about the other models?
• Cost Models:

– OpenMP doesn’t say anything about the cost model –
programmers are left to their own devices.

• Specification Models:
– Some parallel algorithms are natural in OpenMP:

• loop-splitting.
• SPMD (single program multiple data).

– Other specification models are hard for OpenMP
• Recursive problems and list processing is 

challenging for OpenMP’s models.

180

Backup material
• History
• Foundations of OpenMP
• Memory Models and the Infamous 

Flush
• Performance optimization in OpenMP
• The future of OpenMP
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OpenMP and Shared memory

• What does OpenMP assume concerning the shared 
memory?

• Implies that all threads access memory at the same cost, but 
the details were never spelled out (prior to OMP 2.5).

• Shared memory is understood in terms of: 
– Coherence: Behavior of the memory system when a 

single address is accessed by multiple threads.
– Consistency: Orderings of accesses to different 

addresses by multiple threads.
• OpenMP was never explicit about its memory model.  

This was fixed in OpenMP 2.5.
• If you want to understand how threads interact in OpenMP, 

you need to understand the memory model.

“The OpenMP Memory Model”, Jay Hoeflinger and Bronis de Supinski, IWOMP’2005
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Source code

Program order

memory
a b

Commit order

private view

thread thread

private view
threadprivatethreadprivatea ab b

Wa Wb Ra Rb . . . 

OpenMP Memory Model: Basic Terms

compiler

Executable code

Code order

Wb Rb Wa Ra . . . 

RW’s in any 
semantically 

equivalent order
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Coherence rules in OpenMP 2.5
#pragma omp parallel private(x) shared(p0, p1)
Thread 0

X = …;

P0 = &x;

Thread 1

X = …;

P1 = &x;
/*    references in the following line are not allowed    */
… *p1 … … *p0 …

You can not reference another’s threads private 
variables … even if you have a shared pointer 
between the two threads.
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Coherence rules in OpenMP 2.5
#pragma omp parallel private(x) shared(p0, p1)
Thread 0

X = …;

P0 = &x;

Thread 1

X = …;

P1 = &x;
/*    references in the following line are not allowed    */
… *p1 … … *p0 …

#pragma omp parallel shared(x)
Thread 0

… X …

…*p0 …

Thread 1

… X …

… *p0 …

Thread 0

X = …;

… *p1 …

Thread 1

X = …;

… *p1 …

/*    the following are not allowed    */
…*p1 … … *p1 … … *p0 … … *p0 …

Nested parallel regions must keep track of the privates 
pointers reference.



The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

93

185

Consistency: Memory Access Re-ordering

• Re-ordering:
– Compiler re-orders program order to the code 

order
– Machine re-orders code order to the memory 

commit order
• At a given point in time, the temporary view of 

memory may vary from shared memory.
• Consistency models based on orderings or Reads 

(R), Writes (W) and Synchronizations (S):
– R→R,  W→W,  R→W,   R→S,  S→S,  W→S

186

Consistency

• Sequential Consistency:
– In a multi-processor, ops (R, W, S) are 

sequentially consistent if:
• They remain in program order for each processor.
• They seen to be in the same overall order by each 

of the other processors.
– Program order = code order = commit order

• Relaxed consistency:
– Remove some or the ordering constrains for 

memory ops (R, W, S).
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OpenMP 2.5 and Relaxed Consistency

• OpenMP 2.5 defines consistency as a 
variant of weak consistency:
– S ops must be in sequential order across 

threads.
– Can not reorder S ops with R or W ops on the 

same thread
• Weak consistency guarantees 

S→W,   S→R , R→S, W→S, S→S

• The Synchronization operation relevant to 
this discussion is flush.

188

Flush
• Defines a sequence point at which a thread is 

guaranteed to see a consistent view of memory 
with respect to the “flush set”:
– The flush set is “all thread visible variables” for a flush 

without an argument list.
– The flush set is the list of variables when the list is 

used.
• All R,W ops that overlap the flush set and occur prior to the 

flush complete before the flush executes
• All R,W ops that overlap the flush set and occur after the 

flush don’t execute until after the flush.
• Flushes with overlapping flush sets can not be reordered.

Memory ops: R = Read,  W = write, S = synchronization



The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

95

189

What is the Big Deal with Flush?
• Compilers routinely reorder instructions that 

implement a program
– Helps exploit the functional units, keep machine busy

• Compiler generally cannot move instructions 
past a barrier
– Also not past a flush on all variables

• But it can move them past a flush on a set of 
variables so long as those variables are not 
accessed

• So need to use flush carefully
Also, the flush operation does not actually synchronize different 
threads. It just ensures that a thread’s values are made 
consistent with main memory. 

190

Why is it so important to understand the 
memory model?

• Question: According to OpenMP 2.0, is the 
following a correct program:

Thread 1
omp_set_lock(lockvar);
#pragma omp flush(count)
Count++;
#pragma omp flush (count)
Omp_unset_lock(lockvar)

Thread 2

omp_set_lock(lockvar);
#pragma omp flush(count)
Count++;
#pragma omp flush (count)
Omp_unset_lock(lockvar)

Not correct prior to OpenMP 2.5: 

The Compiler can reorder 
flush of the lock variable and 

the flush of count
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Solution:
• In OpenMP 2.0, you must make the flush set include 

variables sensitive to the desired ordering constraints.

Thread 1
omp_set_lock(lockvar);
#pragma omp flush(count,lockvar)
Count++;
#pragma omp flush(count,lockvar)
Omp_unset_lock(lockvar)

Thread 2

omp_set_lock(lockvar);
#pragma omp flush(count,lockvar)
Count++;
#pragma omp flush(count,lockvar)
Omp_unset_lock(lockvar)
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Even the Experts are confused
• The following code fragment is from the SpecOMP

benchmark ammp.   Is it correct?

#ifdef _OPENMP
omp_set_lock (&(a1->lock));

#endif
a1fx = a1->fx;
a1fy = a1->fy;
a1fz = a1->fz;
a1->fx = 0;
a1->fy = 0;
a1->fz = 0;
xt = a1->dx*lambda + a1->x – a1->px;
yt = a1->dy*lambda + a1->y – a1->py;
zt = a1->dz*lambda + a1->z – a1->pz;

#ifdef _OPENMP
omp_unset_lock(&(a1->lock));

#endif

In OpenMP 2.0, 
the locks don’t 
imply a flush so 
this code is 
broken.
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OpenMP 2.5: lets help out the “experts”
• The following code fragment is from the SpecOMP

benchmark ammp.   It is correct with OpenMP 2.5.
#ifdef _OPENMP

omp_set_lock (&(a1->lock));
#endif

a1fx = a1->fx;
a1fy = a1->fy;
a1fz = a1->fz;
a1->fx = 0;
a1->fy = 0;
a1->fz = 0;
xt = a1->dx*lambda + a1->x – a1->px;
yt = a1->dy*lambda + a1->y – a1->py;
zt = a1->dz*lambda + a1->z – a1->pz;

#ifdef _OPENMP
omp_unset_lock(&(a1->lock));

#endif

To prevent problems like this, 
OpenMP 2.5  defines the locks to 
include a full flush.

That makes this program correct.

194

• For a properly synchronized program (without 
data races), the memory accesses of one thread 
appear to be sequentially consistent to each 
other thread.

• The only way for one thread to see that a 
variable was written by another thread is to read 
it.  If done without an intervening synch, this is a 
race.

• After the synch (flush), the thread is allowed to 
read, and by then the flush guarantees the value 
is in memory, so thread can’t determine if the 
order was jumbled by the other thread prior to 
the synch (flush).

OpenMP 2.5 Memory Model: summary part 1
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OpenMP 2.5 Memory Model: summary part 2

• Memory ops must be divided into “data” ops and 
“synch” ops

• Data ops (reads & writes) are not ordered w.r.t. 
each other

• Data ops are ordered w.r.t. synch ops and synch 
ops are ordered w.r.t. each other

• Cross-thread access to private memory is 
forbidden.

• Relaxed consistency
– Temporary view and memory may differ

• Flush operation
– Moves data between threads
– Write makes temporary view “dirty”
– Flush makes temporary view “empty”

196

Backup material
• History
• Foundations of OpenMP
• Memory Models and the Infamous 

Flush
• Performance optimization in OpenMP
• The future of OpenMP
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Performance & Scalability Hindrances
• Too fine grained

– Symptom: high overhead
– Caused by: Small parallel/critical

• Overly synchronized
– Symptom: high overhead
– Caused by: large synchronized sections
– Dependencies real?

• Load Imbalance
– Symptom: large wait times
– Caused by: uneven work distribution

198

Hindrances (continued)
• True sharing

– Symptom: cache ping ponging, serial region 
“cost” changes with number of threads.

– Is parallelism worth it?
• False sharing

– Symptom: cache ping ponging
• Hardware/OS cannot support

– No visible timer-based symptoms
– Hardware counters
– Thread migration/affinity
– Enough bandwidth?
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Performance Tuning
• To tune performance, break all the good software 

engineering rules (I.e. stop being so portable).
• Step 1

– Know your application
– For best performance, also know your compiler, 

performance tool, and hardware
• The safest pragma to use is:

– parallel do/for
• Everything else is risky!

– Necessary evils
• So how do you pick which constructs to use?

200

Understand the Overheads!
Note: all numbers are approximate!

Linear500-1000Parallel

Log, linear200-500Barrier

Constant100-200Static do/for, no barrier

Constant1-10Hit L1 cache

5000-10000

1000-2000

100-300

100-300

50-100

10-50

10-20

Minimum overhead
(cycles)

Depends on contentionOrdered

Depends on contentionDynamic do/for, no barrier

Depends on contentionLock acquisition

ConstantMiss all caches

ConstantInteger divide

Constant, log, linearThread ID

ConstantFunction call

ScalabilityOperation
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Parallelism worth it?
• When would parallelizing this loop help?
DO I = 1, N

A(I) = 0
ENDDO

• Unless you are very careful, not usually
• Some issues to consider

– Number of threads/processors being used
– Bandwidth of the memory system
– Value of N

• Very large N, so A is not cache contained
– Placement of Object A 

• If distributed onto different processor caches, or about to be 
distributed

• On NUMA systems, when using first touch policy for placing 
objects, to achieve a certain placement for object A

202

Too fine grained?

• When would parallelizing this loop help?
DO I = 1, N

SUM = SUM + A(I) * B(I)
ENDDO

• Know your compiler!
• Some issues to consider

– # of threads/processors being used
– How are reductions implemented?

• Atomic, critical, expanded scalar, logarithmic
– All the issues from the previous slide about 

existing distribution of A and B
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Tuning: Load Balancing

• Notorious problem for triangular loops
• OpenMP aware performance analysis tool 

can usually pinpoint, but watch out for 
“summary effects”

• Within a parallel do/for, use the schedule 
clause
– Remember, dynamic much more expensive 

than static
– Chunked static can be very effective for load 

imbalance
• When dealing with consecutive do’s/for’s, 

nowait can help, but be careful about 
races
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Load Imbalance: Thread Profiler*

* Thread Profiler is a performance analysis tool from Intel Corporation.
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Tuning: Critical Sections

• It often helps to chop up large critical 
sections into finer, named ones

• Original Code
#pragma omp critical (foo)
{

update( a );
update( b );

}

• Transformed Code
#pragma omp critical (foo_a)

update( a );
#pragma omp critical (foo_b)

update( b );

• Still need to avoid wait at first critical!

206

Tuning: Locks Instead of Critical
• Original Code

#pragma omp critical
for( i=0; i<n; i++ ) 

{
a[i] = …
b[i] = …
c[i] = …

}  

• Idea: cycle through 
different parts of the 
array using locks!

• Transformed Code
jstart = omp_get_thread_num();
for( k = 0; k < nlocks; k++ ) 
{
j = ( jstart + k ) % nlocks;
omp_set_lock( lck[j] );
for( i=lb[j]; i<ub[j]; i++ ) 

{
a[i] = …
b[i] = …
c[i] = …

}  
omp_unset_lock( lck[j] );

}

• Adapt to your situation
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Tuning: Eliminate Implicit Barriers

• Work-sharing constructs have implicit 
barrier at end

• When consecutive work-sharing 
constructs modify (& use) different objects, 
the barrier in the middle can be eliminated

• When same object modified (or used), 
barrier can be safely removed if iteration 
spaces align
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Cache Ping Ponging: Varying 
Times for Sequential Regions

• Picture shows three runs 
of same program (4, 2, 1 
threaded)

• Each set of three bars is 
a serial region

• Why does runtime 
change for serial regions?
– No reason pinpointed

• Time to think!
– Thread migration
– Data migration
– Overhead?

R
un

 T
im

e
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Limits: system or tool?
• Picture shows three runs 

of same program (4, 2, 1 
threaded)

• Each set of three bars is a 
parallel region

• Some regions don’t scale 
well
– The collected data does not 

pinpoint why

• Thread migration or data 
migration or some system 
limit?

• Understand 
Hardware/OS/Tool limits!
– Your performance tool
– Your system

R
un

 T
im

e
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Performance Optimization Summary

• Getting maximal performance is difficult
• Far too many things can go wrong

• Must understand entire tool chain
– application
– hardware
– O/S
– compiler
– performance analysis tool 

• With this understanding, it is possible to get 
good performance
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Backup material
• History
• Foundations of OpenMP
• Memory Models and the Infamous 

Flush
• Performance optimization in OpenMP
• The future of OpenMP
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OpenMP’s future

• OpenMP is great for array parallelism on 
shared memory machines.

• But it needs to do so much more:
• Recursive algorithms.
• More flexible iterative control structures.
• More control over its interaction with the runtime 

environment
• NUMA
• Constructs that work with semi-automatic 

parallelizing compilers
… and much more
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While workshare Construct
• Share the iterations from a while loop 

among a team of threads.
• Proposal from Paul Petersen of Intel Corp. 

int i;
#pragma omp parallel while
while(i<Last){

… Independent loop iterations
}

214

Automatic Data Scoping
• Create a standard way to ask the compiler to 

figure out data scooping.
• When in doubt, the compiler serializes the 

construct

int j;  double x, result[COUNT];
#pragma omp parallel for automatic
for (j=0; j<COUNT; j++){

x = bigCalc(j);

res[j] = hugeCalc(x);    
}

Ask the compiler 
to figure out that 

“x” should be 
private.
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OpenMP Enhancements :
How should we move OpenMP beyond SMP?
• OpenMP is inherently an SMP model, but all 

shared memory vendors build NUMA and DVSM 
machines.

• What should we do?
• Add HPF-like data distribution.
• Work with thread affinity, clever page migration 

and a smart OS.
• Give up?

We have lots of ideas, but we are not making 
progress towards a consensus view. 

This is VERY hard.
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OpenMP Enhancements :
OpenMP must be more modular

• Define how OpenMP Interfaces to 
“other stuff”:

• How can an OpenMP program work with components 
implemented with OpenMP?

• How can OpenMP work with other thread 
environments?

• Support library writers:
• OpenMP needs an analog to MPI’s contexts.

We don’t have any solid proposals on the table 
to deal with these problems.
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Other features under consideration
• Error reporting in OpenMP

– OpenMP assumes all constructs work. But real 
programs need to be able to deal with constructs that 
break.

• Parallelizing loop nests
– People now combine nested loops into a super-loop 

by hand.  Why not let a compiler do this?
• Extensions to Data environment clauses

– Automatic data scoping
– Default(mixed) to make scalars private and arrays 

shared.
• Iteration driven scheduling

– Pass a vector of block sizes to support non-
homogeneous partitioning

… and many more


