
The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

1

1

OpenMP* in Action

Tim Mattson
Intel Corporation

Acknowledgements:
Rudi Eigenmann of Purdue, Sanjiv Shah of Intel and others too numerous to name have contributed
content for this tutorial.

Barbara Chapman
University of Houston

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

2

Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

2

3

OpenMP* Overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

A set of compiler directives and library
routines for parallel application programmers
Greatly simplifies writing multi-threaded (MT)

programs in Fortran, C and C++
Standardizes last 20 years of SMP practice

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

4

What are Threads?

• Thread: an independent flow of control
– Runtime entity created to execute sequence of

instructions
• Threads require:

– A program counter
– A register state
– An area in memory, including a call stack
– A thread id

• A process is executed by one or more threads
that share:
– Address space
– Attributes such as UserID, open files, working directory,

etc.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

3

5

A Shared Memory Architecture

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

6

How Can We Exploit Threads?

• A thread programming model must
provide (at least) the means to:
– Create and destroy threads
– Distribute the computation among threads
– Coordinate actions of threads on shared

data
– (usually) specify which data is shared and

which is private to a thread

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

4

7

How Does OpenMP Enable Us to Exploit
Threads?

• OpenMP provides thread programming model at a
“high level”.
– The user does not need to specify all the details

• Especially with respect to the assignment of work to threads
• Creation of threads

• User makes strategic decisions
• Compiler figures out details
• Alternatives:

– MPI
– POSIX thread library is lower level
– Automatic parallelization is even higher level (user does

nothing)
• But usually successful on simple codes only

8

Where Does OpenMP Run?

AvailableMachines with Chip
MultiThreading

Available
via Software
DSM

Distributed Memory
Systems

AvailableDistributed Shared
Memory Systems
(ccNUMA)

AvailableShared Memory
Systems

OpenMP
support

Hardware
Platforms

CPU

cache

Shared bus

Shared Memory

CPU

cache

CPU

cache

CPU

cache

Shared memory architecture

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

5

9

OpenMP Overview:
How do threads interact?

• OpenMP is a shared memory model.
• Threads communicate by sharing variables.

• Unintended sharing of data causes race
conditions:

• race condition: when the program’s outcome changes
as the threads are scheduled differently.

• To control race conditions:
• Use synchronization to protect data conflicts.

• Synchronization is expensive so:
• Change how data is accessed to minimize the need for

synchronization.

10

Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

6

11

OpenMP Parallel Computing Solution Stack

Runtime library

OS/system support for shared memory.

Directives,
Compiler OpenMP library Environment

variables

Application

End User
Sy

st
em

 la
y e

r
Pr

og
. L

ay
e r

(O

pe
n M

P
A

PI
)

U
s e

r l
a y

er

12

OpenMP:
Some syntax details to get us started

• Most of the constructs in OpenMP are compiler
directives.
– For C and C++, the directives are pragmas with the

form:
#pragma omp construct [clause [clause]…]

– For Fortran, the directives are comments and take
one of the forms:

• Fixed form
*$OMP construct [clause [clause]…]
C$OMP construct [clause [clause]…]

• Free form (but works for fixed form too)
!$OMP construct [clause [clause]…]

• Include file and the OpenMP lib module
#include <omp.h>
use omp_lib

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

7

13

#pragma omp parallel
{

int id = omp_get_thread_num();
more: res[id] = do_big_job(id);

if(!conv(res[id]) goto more;
}

printf(“ All done \n”);

• Most OpenMP* constructs apply to structured blocks.

• Structured block: a block with one point of entry at the
top and one point of exit at the bottom.

• The only “branches” allowed are STOP statements in
Fortran and exit() in C/C++.

if(go_now()) goto more;
#pragma omp parallel
{

int id = omp_get_thread_num();
more: res[id] = do_big_job(id);

if(conv(res[id]) goto done;
go to more;

}
done: if(!really_done()) goto more;

A structured block Not A structured block

OpenMP:
Structured blocks (C/C++)

14

OpenMP:
Structured blocks (Fortran)

C$OMP PARALLEL
10 wrk(id) = garbage(id)

res(id) = wrk(id)**2
if(.not.conv(res(id)) goto 10

C$OMP END PARALLEL
print *,id

– Most OpenMP constructs apply to structured
blocks.

• Structured block: a block of code with one point of
entry at the top and one point of exit at the bottom.

• The only “branches” allowed are STOP statements in
Fortran and exit() in C/C++.

C$OMP PARALLEL
10 wrk(id) = garbage(id)
30 res(id)=wrk(id)**2

if(conv(res(id))goto 20
go to 10

C$OMP END PARALLEL
if(not_DONE) goto 30

20 print *, id

A structured block Not A structured block

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

8

15

OpenMP:
Structured Block Boundaries

• In C/C++: a block is a single statement or a group of
statements between brackets {}

• In Fortran: a block is a single statement or a group of
statements between directive/end-directive pairs.

C$OMP PARALLEL
10 wrk(id) = garbage(id)

res(id) = wrk(id)**2
if(.not.conv(res(id)) goto 10

C$OMP END PARALLEL

C$OMP PARALLEL DO
do I=1,N

res(I)=bigComp(I)
end do

C$OMP END PARALLEL DO

#pragma omp parallel
{

id = omp_thread_num();
res(id) = lots_of_work(id);

}

#pragma omp for
for(I=0;I<N;I++){

res[I] = big_calc(I);
A[I] = B[I] + res[I];

}

16

OpenMP Definitions:
“Constructs” vs. “Regions” in OpenMP

A Parallel
construct

call whoami

C$OMP PARALLEL

call whoami

C$OMP END PARALLEL

subroutine whoami

external omp_get_thread_num

integer iam, omp_get_thread_num

iam = omp_get_thread_num()

C$OMP CRITICAL

print*,’Hello from ‘, iam

C$OMP END CRITICAL

return

end

+

Orphan constructs
can execute outside a
parallel region

The Parallel
region is the
text of the
construct plus
any code called
inside the
construct

bar.fpoo.f

OpenMP constructs occupy a single compilation unit
while a region can span multiple source files.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

9

17

Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details

18

The OpenMP* API

Parallel Regions
• You create threads in OpenMP* with the “omp parallel”

pragma.
• For example, To create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

Each thread calls Each thread calls pooh(ID,A) for for ID = = 0 to to 3

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

10

19

The OpenMP* API

Parallel Regions
• You create threads in OpenMP* with the “omp parallel”

pragma.
• For example, To create a 4 thread Parallel region:

double A[1000];

#pragma omp parallel num_threads(4)
{

int ID = omp_get_thread_num();
pooh(ID,A);

}

Each thread calls Each thread calls pooh(ID,A) for for ID = = 0 to to 3

Each thread
executes a
copy of the
code within

the
structured

block

clause to request a certain
number of threads

Runtime function
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

20

The OpenMP* API

Parallel Regions

• Each thread executes
the same code
redundantly.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int ID = omp_get_thread_num();
pooh(ID, A);

}
printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single
copy of A
is shared
between all
threads.

Threads wait here for all threads to
finish before proceeding (i.e. a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

11

21

Exercise:
A multi-threaded “Hello world” program

• Write a multithreaded program where each
thread prints “hello world”.

void main()
{

int ID = 0;

printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}

22

Exercise:
A multi-threaded “Hello world” program

• Write a multithreaded program where each thread prints
“hello world”.

#include “omp.h”
void main()
{

#pragma omp parallel
{

int ID = omp_get_thread_num();
printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);

}
}

Sample Output:
hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include file

Parallel region with default
number of threads

Runtime library function to
return a thread ID.End of the Parallel region

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

12

23

Parallel Regions and the “if” clause
Active vs inactive parallel regions.

• An optional if clause causes the parallel region to be active
only if the logical expression within the clause evaluates to
true.

• An if clause that evaluates to false causes the parallel region
to be inactive (i.e. executed by a team of size one).

double A[N];

#pragma omp parallel if(N>1000)
{

int ID = omp_get_thread_num();
pooh(ID,A);

}
* The name “OpenMP” is the property of the OpenMP Architecture Review Board

24

Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

13

25

OpenMP: Work-Sharing Constructs
• The “for” Work-Sharing construct splits up

loop iterations among the threads in a team
#pragma omp parallel
#pragma omp for

for (I=0;I<N;I++){
NEAT_STUFF(I);

}

By default, there is a barrier at the end of the “omp for”. Use the
“nowait” clause to turn off the barrier.

#pragma omp for nowait

“nowait” is useful between two consecutive, independent omp for
loops.

26

Work Sharing Constructs
A motivating example
for(i=0;I<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for(i=istart;I<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel
#pragma omp for schedule(static)

for(i=0;I<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
work-sharing for-
construct

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

14

27

OpenMP For/Do construct:
The schedule clause

• The schedule clause affects how loop iterations are
mapped onto threads
– schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

– schedule(dynamic[,chunk])
– Each thread grabs “chunk” iterations off a queue until all

iterations have been handled.

– schedule(guided[,chunk])
– Threads dynamically grab blocks of iterations. The size of the

block starts large and shrinks down to size “chunk” as the
calculation proceeds.

– schedule(runtime)
– Schedule and chunk size taken from the OMP_SCHEDULE

environment variable.

28

Special case of
dynamic to reduce
scheduling overhead

GUIDED

Unpredictable, highly
variable work per
iteration

DYNAMIC

Pre-determined and
predictable by the
programmer

STATIC

When To UseSchedule
Clause

The OpenMP APIThe OpenMP API

The schedule clauseThe schedule clause

Least work at
runtime :
scheduling
done at
compile-time

Most work at
runtime :
complex
scheduling
logic used at
run-time

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

15

29

OpenMP: Work-Sharing Constructs
• The Sections work-sharing construct gives a

different structured block to each thread.
#pragma omp parallel
#pragma omp sections
{
#pragma omp section

X_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

By default, there is a barrier at the end of the “omp
sections”. Use the “nowait” clause to turn off the barrier.

30

OpenMP: Work-Sharing Constructs

• The master construct denotes a structured
block that is only executed by the master
thread. The other threads just skip it (no
synchronization is implied).

#pragma omp parallel private (tmp)
{

do_many_things();
#pragma omp master

{ exchange_boundaries(); }
#pragma barrier

do_many_other_things();
}

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

16

31

OpenMP: Work-Sharing Constructs

• The single construct denotes a block of code
that is executed by only one thread.

• A barrier is implied at the end of the single
block.

#pragma omp parallel private (tmp)
{

do_many_things();
#pragma omp single

{ exchange_boundaries(); }
do_many_other_things();

}

32

The OpenMP* API

Combined parallel/work-share

• OpenMP* shortcut: Put the “parallel” and the
work-share on the same line
double res[MAX]; int i;

#pragma omp parallel
{

#pragma omp for
for (i=0;i< MAX; i++) {

res[i] = huge();
}

}

These are equivalent

double res[MAX]; int i;
#pragma omp parallel for

for (i=0;i< MAX; i++) {
res[i] = huge();

}

There’s also a “parallel sections” construct.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

17

33

Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details

34

Data Environment:
Default storage attributes

• Shared Memory programming model:
• Most variables are shared by default

• Global variables are SHARED among
threads

• Fortran: COMMON blocks, SAVE variables, MODULE
variables

• C: File scope variables, static

• But not everything is shared...
• Stack variables in sub-programs called from parallel

regions are PRIVATE
• Automatic variables within a statement block are

PRIVATE.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

18

35

program sort
common /input/ A(10)
integer index(10)

!$OMP PARALLEL
call work(index)

!$OMP END PARALLEL
print*, index(1)

subroutine work (index)
common /input/ A(10)
integer index(*)
real temp(10)
integer count
save count

…………

Data Sharing Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are
shared by all threads.

temp is local to each
thread

* Third party trademarks and names are the property of their respective owner.

36

Data Environment:
Changing storage attributes

• One can selectively change storage attributes constructs
using the following clauses*

• SHARED
• PRIVATE
• FIRSTPRIVATE
• THREADPRIVATE

• The value of a private inside a parallel loop can be
transmitted to a global value outside the loop with:

• LASTPRIVATE

• The default status can be modified with:
• DEFAULT (PRIVATE | SHARED | NONE)

All the clauses on this page
apply to the OpenMP Construct
NOT the entire region.

All data clauses apply to parallel regions and worksharing constructs except
“shared” which only applies to parallel regions.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

19

37

Private Clause

program wrong

IS = 0

C$OMP PARALLEL DO PRIVATE(IS)

DO J=1,1000

IS = IS + J

END DO

print *, IS

• private(var) creates a local copy of var for each
thread.

• The value is uninitialized
• Private copy is not storage-associated with the original
• The original is undefined at the end

IS was not
initialized

Regardless of
initialization, IS is
undefined at this
point

38

Firstprivate Clause

• Firstprivate is a special case of private.
• Initializes each private copy with the corresponding value

from the master thread.

Regardless of initialization, IS is
undefined at this point

program almost_right

IS = 0

C$OMP PARALLEL DO FIRSTPRIVATE(IS)

DO J=1,1000

IS = IS + J

1000 CONTINUE

print *, IS

Each thread gets its own IS
with an initial value of 0

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

20

39

Lastprivate Clause

• Lastprivate passes the value of a private
from the last iteration to a global variable.

IS is defined as its value at the “last
sequential” iteration (I.e. for J=1000)

program closer

IS = 0

C$OMP PARALLEL DO FIRSTPRIVATE(IS)

C$OMP+ LASTPRIVATE(IS)

DO J=1,1000

IS = IS + J

1000 CONTINUE

print *, IS

Each thread gets its own IS
with an initial value of 0

40

OpenMP:
A data environment test

• Consider this example of PRIVATE and FIRSTPRIVATE

• Are A,B,C local to each thread or shared inside the parallel region?
• What are their initial values inside and after the parallel region?

variables A,B, and C = 1
C$OMP PARALLEL PRIVATE(B)
C$OMP& FIRSTPRIVATE(C)

Inside this parallel region ...
“A” is shared by all threads; equals 1
“B” and “C” are local to each thread.

– B’s initial value is undefined
– C’s initial value equals 1

Outside this parallel region ...
The values of “B” and “C” are undefined.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

21

41

OpenMP: Reduction

• Combines an accumulation operation across
threads:

reduction (op : list)
• Inside a parallel or a work-sharing construct:

• A local copy of each list variable is made and initialized
depending on the “op” (e.g. 0 for “+”).

• Compiler finds standard reduction expressions containing “op”
and uses them to update the local copy.

• Local copies are reduced into a single value and combined
with the original global value.

• The variables in “list” must be shared in the
enclosing parallel region.

42

OpenMP: Reduction example
• Remember the code we used to demo private,

firstprivate and lastprivate.
program closer

IS = 0

DO J=1,1000

IS = IS + J

1000 CONTINUE

print *, IS

Here is the correct way to parallelize this code.
program closer

IS = 0

#pragma omp parallel for reduction(+:IS)

DO J=1,1000

IS = IS + J

1000 CONTINUE

print *, IS

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

22

43

OpenMP:
Reduction operands/initial-values

• A range of associative operands can be used with reduction:
• Initial values are the ones that make sense mathematically.

Most neg.
number

MAX*

Largest pos.
number

MIN*

.false..neqv.
.true..eqv.

.true..AND.
.false..OR.

0-
1*
0+

Initial valueOperand

oieor
~0&

0ior

0^

0|

1&&
0||

All bits oniand

Initial valueOperand

* Min and Max are not available in C/C++

44

Default Clause
• Note that the default storage attribute is

DEFAULT(SHARED) (so no need to use it)
• To change default: DEFAULT(PRIVATE)

– each variable in static extent of the parallel region
is made private as if specified in a private clause

– mostly saves typing
• DEFAULT(NONE): no default for variables in

static extent. Must list storage attribute for
each variable in static extent

Only the Fortran API supports default(private).

C/C++ only has default(shared) or default(none).

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

23

45

Default Clause Example

itotal = 1000
C$OMP PARALLEL DEFAULT(PRIVATE) SHARED(itotal)

np = omp_get_num_threads()
each = itotal/np
………

C$OMP END PARALLEL

itotal = 1000
C$OMP PARALLEL PRIVATE(np, each)

np = omp_get_num_threads()
each = itotal/np
………

C$OMP END PARALLEL

Are these
two codes
equivalent?

yes

46

Threadprivate

• Makes global data private to a thread
– Fortran: COMMON blocks
– C: File scope and static variables

• Different from making them PRIVATE
– with PRIVATE global variables are masked.
– THREADPRIVATE preserves global scope within

each thread
• Threadprivate variables can be initialized

using COPYIN or by using DATA statements.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

24

47

A threadprivate example

subroutine poo
parameter (N=1000)
common/buf/A(N),B(N)

!$OMP THREADPRIVATE(/buf/)
do i=1, N
B(i)= const* A(i)

end do
return
end

subroutine bar
parameter (N=1000)
common/buf/A(N),B(N)

!$OMP THREADPRIVATE(/buf/)
do i=1, N

A(i) = sqrt(B(i))
end do
return
end

Consider two different routines called within a
parallel region.

Because of the threadprivate construct, each
thread executing these routines has its own copy
of the common block /buf/.

48

Copyin

parameter (N=1000)
common/buf/A(N)

!$OMP THREADPRIVATE(/buf/)

C Initialize the A array
call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

… Now each thread sees threadprivate array A initialied
… to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end

You initialize threadprivate data using a copyin
clause.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

25

49

Copyprivate

#include <omp.h>
void input_parameters (int, int); // fetch values of input parameters
void do_work(int, int);

void main()
{

int Nsize, choice;

#pragma omp parallel private (Nsize, choice)
{

#pragma omp single copyprivate (Nsize, choice)
input_parameters (Nsize, choice);

do_work(Nsize, choice);
}

}

Used with a single region to broadcast values of privates from one
member of a team to the rest of the team.

50

Agenda
• Parallel Computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case Studies and Examples
• Background information and extra details

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

26

51

OpenMP: Synchronization

• High level synchronization:
• critical
• atomic
• barrier
• ordered

• Low level synchronization
• flush
• locks (both simple and nested)

52

OpenMP: Synchronization

• Only one thread at a time can enter a
critical region.

C$OMP PARALLEL DO PRIVATE(B)
C$OMP& SHARED(RES)

DO 100 I=1,NITERS
B = DOIT(I)

C$OMP CRITICAL
CALL CONSUME (B, RES)

C$OMP END CRITICAL
100 CONTINUE

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

27

53

The OpenMP* API

Synchronization – critical (in C/C++)

• Only one thread at a time can enter a critical
region.

float res;

#pragma omp parallel

{ float B; int i;

#pragma omp for
for(i=0;i<niters;i++){

B = big_job(i);

#pragma omp critical
consume (B, RES);

}
}

Threads wait
their turn –
only one at a
time calls
consume()

* The mark “OpenMP” is the property of the OpenMP Architecture Review Board.

54

OpenMP: Synchronization

• Atomic provides mutual exclusion execution but
only applies to the update of a memory location
(the update of X in the following example)

C$OMP PARALLEL PRIVATE(B)
B = DOIT(I)
tmp = big_ugly();

C$OMP ATOMIC
X = X + temp

C$OMP END PARALLEL

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

28

55

OpenMP: Synchronization
• Barrier: Each thread waits until all threads arrive.

#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

for(i=0;i<N;i++){C[i]=big_calc3(I,A);}
#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
A[id] = big_calc3(id);

} implicit barrier at the end
of a parallel region

implicit barrier at the
end of a for work-
sharing construct

no implicit barrier
due to nowait

56

OpenMP: Synchronization

• The ordered region executes in the
sequential order.

#pragma omp parallel private (tmp)
#pragma omp for ordered

for (I=0;I<N;I++){
tmp = NEAT_STUFF(I);

#pragma ordered
res += consum(tmp);

}

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

29

57

OpenMP:
Implicit synchronization

• Barriers are implied on the following
OpenMP constructs:

end parallel
end do (except when nowait is used)
end sections (except when nowait is used)
end single (except when nowait is used)

58

OpenMP: Synchronization
• The flush construct denotes a sequence point where a

thread tries to create a consistent view of memory for a
subset of variables called the flush set.

• Arguments to flush define the flush set:
#pragma omp flush(A, B, C)

• The flush set is all thread visible variables if no argument
list is provided

#pragma omp flush

• For the variables in the flush set:
• All memory operations (both reads and writes) defined prior to the

sequence point must complete.
• All memory operations (both reads and writes) defined after the

sequence point must follow the flush.
• Variables in registers or write buffers must be updated in memory.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

30

59

Shared Memory Architecture

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

a

60

OpenMP:
A flush example

• This example shows how flush is used to implement
pair-wise synchronization.

integer ISYNC(NUM_THREADS)
C$OMP PARALLEL DEFAULT (PRIVATE) SHARED (ISYNC)

IAM = OMP_GET_THREAD_NUM()
ISYNC(IAM) = 0

C$OMP BARRIER
CALL WORK()
ISYNC(IAM) = 1 ! I’m all done; signal this to other threads

C$OMP FLUSH(ISYNC)
DO WHILE (ISYNC(NEIGH) .EQ. 0)

C$OMP FLUSH(ISYNC)
END DO

C$OMP END PARALLEL

Make sure other threads can
see my write.

Make sure the read picks up a
good copy from memory.

Note: OpenMP’s flush is analogous to a fence in
other shared memory API’s.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

31

61

What is the Big Deal with Flush?
• Compilers reorder instructions to better exploit the

functional units and keep the machine busy
• Flush interacts with instruction reordering:

– A compiler CANNOT do the following:
• Reorder read/writes of variables in a flush set relative to a flush.
• Reorder flush constructs when flush sets overlap.

– A compiler CAN do the following:
• Reorder instructions NOT involving variables in the flush set

relative to the flush.
• Reorder flush constructs that don’t have overlapping flush sets.

• So you need to use flush carefully

Also, the flush operation does not actually synchronize
different threads. It just ensures that a thread’s values are
made consistent with main memory.

62

Source code

Program order

memory
a b

Commit order

private view

thread thread

private view
threadprivatethreadprivatea ab b

Wa Wb Ra Rb . . .

OpenMP Memory Model: Basic Terms

compiler

Executable code

Code order

Wb Rb Wa Ra . . .

RW’s in any
semantically

equivalent order

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

32

63

OpenMP: Lock routines
• Simple Lock routines:

– A simple lock is available if it is unset.
– omp_init_lock(), omp_set_lock(),

omp_unset_lock(), omp_test_lock(),
omp_destroy_lock()

• Nested Locks
– A nested lock is available if it is unset or if it is set but owned

by the thread executing the nested lock function
– omp_init_nest_lock(), omp_set_nest_lock(),

omp_unset_nest_lock(), omp_test_nest_lock(),
omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the
lock, so you don’t need to use a flush on the lock variable.

In OpenMP 2.5, a
lock implies a flush
of all thread visible
variables

64

OpenMP: Simple Locks
• Protect resources with locks.

omp_lock_t lck;
omp_init_lock(&lck);

#pragma omp parallel private (tmp, id)
{

id = omp_get_thread_num();
tmp = do_lots_of_work(id);
omp_set_lock(&lck);

printf(“%d %d”, id, tmp);
omp_unset_lock(&lck);

}
omp_destroy_lock(&lck);

Wait here for
your turn.

Release the lock
so the next thread
gets a turn.

Free-up storage when done.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

33

65

OpenMP: Nested Locks
#include <omp.h>
typedef struct{int a,b; omp_nest_lock_t lck;} pair;

void incr_a(pair *p, int a) { p->a +=a;}

void incr_b (pair *p, int b)
{ omp_set_nest_lock(&p->lck); p->b =+b; omp_unset_nest_lock(&p->lck);}

void incr_pair(pair *p, int a, int b)
{omp_set_nest_lock(&p->lck); incr_a(p,a); incr_b(p,b); omp_unset_nest_lock(&p->lck);}

void f(pair *p)
{ extern int work1(), work2(), work3();
#pragma omp parallel sections

{
#pragma omp section

incr_pair(p,work1(), work2());
#pragma omp section

incr_b(p,work3());

}
}

f() calls incr_b() and
incr_pair() … but incr_pair()
calls incr_b() too, so you
need nestable locks

66

Synchronization challenges

• OpenMP only includes high level
synchronization directives that “have a
sequential reading”. Is that enough?
– Do we need conditions variables?
– Monotonic flags?
– Other pairwise synchronization?

• The flush is subtle … even experts get
confused on when it is required.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

34

67

Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details

68

OpenMP: Library routines:
• Runtime environment routines:

• Modify/Check the number of threads
– omp_set_num_threads(),

omp_get_num_threads(),
omp_get_thread_num(),
omp_get_max_threads()

• Are we in a parallel region?
– omp_in_parallel()

• How many processors in the system?
– omp_num_procs()

…plus several less commonly used routines.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

35

69

OpenMP: Library Routines
• To used a fixed, known number of threads used in a program,

(1) set the number threads, then (2) save the number you got.

#include <omp.h>
void main()
{ int num_threads;

omp_set_num_threads(omp_num_procs());
#pragma omp parallel

{ int id=omp_get_thread_num();
#pragma omp single

num_threads = omp_get_num_threads();
do_lots_of_stuff(id);

}
}

Request as many threads
as you have processors.

Protect this
op since
Memory
stores are
not atomic

70

OpenMP: Environment Variables:

• Control how “omp for schedule(RUNTIME)”
loop iterations are scheduled.

– OMP_SCHEDULE “schedule[, chunk_size]”

• Set the default number of threads to use.
– OMP_NUM_THREADS int_literal

… Plus several less commonly used environment variables.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

36

71

Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background Information and extra details

72

Let’s pause for a quick recap by example:
Numerical Integration

∫ 4.0
(1+x2) dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the
integral as a sum of
rectangles:

Where each rectangle has
width Δx and height F(xi) at
the middle of interval i.

F(
x)

 =
 4

. 0
/(1

+x
2)

4.0

2.0

1.0
X0.0

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

37

73

PI Program: an example
static long num_steps = 100000;
double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i<= num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}}

74

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, id, nthreads; double x, pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel private (i, id, x)
{

id = omp_get_thread_num();
#pragma omp single

nthreads = omp_get_num_threads();
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthreads){

x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);

}
}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;
}

OpenMP recap:
Parallel Region

You can’t assume that
you’ll get the number of
threads you requested.

Prevent write conflicts
with the single.

Performance
will suffer due
to false
sharing of the
sum array.

Promote scalar to an array
dimensioned by number of
threads to avoid race
condition.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

38

75

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, id, nthreads; double x, pi, sum;

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel private (i, id, x, sum)
{

id = omp_get_thread_num();
#pragma omp single

nthreads = omp_get_num_threads();
for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
#pragma omp critical

pi += sum * step;
}
}

OpenMP recap:
Synchronization (critical region)

Note: this method of
combining partial sums
doesn’t scale very well.

No array, so
no false
sharing.

76

OpenMP recap :
Parallel for with a reduction

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(x) reduction(+:sum)
for (i=0;i<= num_steps; i++){

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

Note: we created a parallel
program without changing
any code and by adding 4

simple lines!

i private by
default

For good OpenMP
implementations,
reduction is more

scalable than critical.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

39

77

OpenMP recap :
Use Environment variables to set number of threads
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel for private(x) reduction(+:sum)

for (i=0;i<= num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}
In practice, you set

number of threads by
setting the environment

variable,
OMP_NUM_THREADS

78

MPI: Pi program
#include <mpi.h>
static long num_steps = 100000;
void main (int argc, char *argv[])
{

int i, my_id, numprocs; double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
for (i=my_id; i<num_steps ; i+numprocs)
{

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
sum *= step ;
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD) ;
}

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

40

Pi Program: Win32 API, PI

#include <windows.h>
#define NUM_THREADS 2
HANDLE thread_handles[NUM_THREADS];
CRITICAL_SECTION hUpdateMutex;
static long num_steps = 100000;
double step;
double global_sum = 0.0;

void Pi (void *arg)
{

int i, start;
double x, sum = 0.0;

start = *(int *) arg;
step = 1.0/(double) num_steps;

for (i=start;i<= num_steps; i=i+NUM_THREADS){
x = (i-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
EnterCriticalSection(&hUpdateMutex);
global_sum += sum;
LeaveCriticalSection(&hUpdateMutex);

}

void main ()
{

double pi; int i;
DWORD threadID;
int threadArg[NUM_THREADS];

for(i=0; i<NUM_THREADS; i++) threadArg[i] = i+1;

InitializeCriticalSection(&hUpdateMutex);

for (i=0; i<NUM_THREADS; i++){
thread_handles[i] = CreateThread(0, 0,

(LPTHREAD_START_ROUTINE) Pi,
&threadArg[i], 0, &threadID);

}

WaitForMultipleObjects(NUM_THREADS,
thread_handles, TRUE,INFINITE);

pi = global_sum * step;

printf(" pi is %f \n",pi);
}

Doubles code size!

80

Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

41

81

How is OpenMP Compiled ?
Most Fortran/C compilers today implement OpenMP
• The user provides the required switch or switches
• Sometimes this also needs a specific optimization level, so manual

should be consulted
• May also need to set threads’ stacksize explicitly
Examples
• Commercial: -openmp (Intel, Sun, NEC), -mp (SGI, PathScale, PGI),

--openmp (Lahey, Fujitsu), -qsmp=omp (IBM) /openmp flag
(Microsoft Visual Studio 2005), etc.

• Freeware: Omni, OdinMP, OMPi, Open64.UH, …

Check information at http://www.compunity.org

82

Under the Hood: How Does
OpenMP Really Work?

Programmer
• States what is to be carried out in parallel by multiple threads
• Gives strategy for assigning work to threads
• Arranges for threads to synchronize
• Specify data sharing attributes: shared, private, firstprivate, threadprivate,…

Compiler (with the help of a runtime library)
• Transforms OpenMP programs into multi-threaded code
• Manages threads: creates, suspends, wakes up, terminates threads
• Figures out the details of the work to be performed by each thread
• Implements thread synchronization
• Arranges storage for different data and performs
• their initializations: shared, private…

The details of how OpenMP is implemented varies from one compiler to
another. We can only give an idea of how it is done here!!

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

42

83

Overview of OpenMP Translation
Process

• Compiler processes directives and uses them to
create explicitly multithreaded code

• Generated code makes calls to a runtime library
– The runtime library also implements the OpenMP

user-level run-time routines
• Details are different for each compiler, but

strategies are similar
• Runtime library and details of memory

management also proprietary
• Fortunately the basic translation is not all that

difficult

84

• Front End:
– Read in source program, ensure that it is error-

free, build the intermediate representation (IR)
• Middle End:

– Analyze and optimize program. “Lower” IR to
machine-like form

• Back End:
– Complete optimization. Determine layout of

program data in memory. Generate object code
for the target architecture

Source
code

Front End Back End

Structure of a Compiler
Target
code

MiddleEnd

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

43

85

OpenMP Compiler Front End

In addition to reading in the base language
(Fortran, C or C++)

• Parse OpenMP directives
• Check them for correctness

– Is directive in the right place? Is the
information correct? Is the form of the for loop
permitted? ….

• Create an intermediate representation with
OpenMP annotations for further handling

Nasty problem: incorrect OpenMP sentinel means directive
may not be recognized. And there might be no error
message!!

FE

ME

BE

Source code

object code

86

OpenMP Compiler Middle End
• Preprocess OpenMP constructs

– Translate SECTIONs to DO/FOR
constructs

– Make implicit BARRIERs explicit
– Apply even more correctness checks

• Apply some optimizations to code to
ensure it performs well
– Merge adjacent parallel regions
– Merge adjacent barriers

OpenMP directives reduce scope in which some
optimizations can be applied. Compiler writer must work
hard to avoid a negative impact on performance.

FE

ME

BE

Source code

object code

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

44

87

OpenMP Compiler: Rest of Processing
• Translate OpenMP constructs

– Simple direct one-to-one substitution
• Replace certain OpenMP constructs by calls to runtime routines.
• e.g.: barrier, atomic, flush, etc

– Complex code transformation: to get multi-threaded code with
calls to runtime library

• For slave threads: create a separate task that contains the code in a
parallel region

• For master thread: fork slave threads so they execute their tasks, as
well as carrying out the task along with slave threads.

• Add necessary synchronization via runtime library
• Translate parallel and worksharing constructs and clauses e.g.:

parallel, for, etc
• Also implement variable data attributes, set up storage and

arrange for initialization
– Thread’s stack might be used to hold all private data
– Instantiate new variables to realize private, reduction, etc
– Add assignment statements to realize firstprivate, lastprivate, etc

FE

ME

BE

Source code

object code

88

Outlining
Create a procedure containing the region

enclosed by a parallel construct
• Shared data passed as arguments

– Referenced via their address in routine
• Private data stored on thread’s stack

– Threadprivate may be on stack or heap
• Visible during debugging
• An alternative is called microtasking

Outlining introduces a few overheads, but makes the
translation comparatively straightforward. It makes the
scope of OpenMP data attributes explicit.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

45

89

An Outlining Example: Hello world
• Original Code

#include <omp.h>
void main()
{
#pragma omp parallel
{
int
ID=omp_get_thread_num
();

printf(“Hello
world(%d)”,ID);

}
}

• Translated multi-threaded code
with runtime library calls

//here is the outlined code

void __ompregion_main1(…)
{

int ID =ompc_get_thread_num();

printf(“Hello world(%d)”,ID);
} /* end of ompregion_main1*/

void main()
{

…
__ompc_fork(&__ompregion_main1

,…);

…
}

90

OpenMP Transformations – Do/For
• Transform

original loop so
each thread
performs only its
own portion

• Most of
scheduling
calculations
usually hidden in
runtime

• Some extra work
to handle
firstprivate,
lastprivate

• Original Code
#pragma omp for
for(i = 0; i < n; i++)
{ …}

• Transformed Code

tid = ompc_get_thread_num();
ompc_static_init (tid,
lower,uppder, incr,.);
for(i = lower;i < upper;i +=
incr) { … }

// Implicit BARRIER
ompc_barrier();

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

46

91

OpenMP Transformations – Reduction

• Reduction variables can
be translated into a two-
step operation

• First, each thread
performs its own
reduction using a private
variable

• Then the global sum is
formed

• A critical construct might
be used to ensure
atomicity of the final
reduction

• Original Code
#pragma omp parallel for \

reduction (+:sum) private (x)
for(i=1;i<=num_steps;i++)

{ …

sum=sum+x ;}

• Transformed Code
float local_sum;
…
ompc_static_init (tid, lower,uppder,
incr,.);
for(i = lower;i < upper;i += incr)
{ … local_sum = local_sum +x;}
ompc_barrier();
ompc_critical();

sum = (sum + local_sum);
ompc_end_critical();

92

OpenMP Transformation –Single/Master

• Master thread has
a threadid of 0,
very easy to test
for.

• The runtime
function for the
single construct
might use a lock to
test and set an
internal flag in
order to ensure
only one thread get
the work done

• Original Code
#pragma omp parallel
{#pragma omp master
a=a+1;

#pragma omp single
b=b+1;}

• Transformed Code
Is_master= ompc_master(tid);
if((Is_master == 1))
{ a = a + 1; }
Is_single = ompc_single(tid);
if((Is_single == 1))
{ b = b + 1; }
ompc_barrier();

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

47

93

OpenMP Transformations – Threadprivate

• Original Code
static int px;

int foo() {
#pragma omp threadprivate(px)
bar(&px);
}

• Transformed Code
static int px;
static int ** thdprv_px;

int _ompregion_foo1() {
int* local_px;
…

tid = ompc_get_thread_num();
local_px=get_thdprv(tid,thdprv_px,
&px);

bar(local_px);
}

• Every threadprivate
variable reference
becomes an indirect
reference through an
auxiliary structure to
the private copy

• Every thread needs to
find its index into the
auxiliary structure –
This can be
expensive
– Some OS’es (and

codegen schemes)
dedicate register
to identify thread

– Otherwise
OpenMP runtime
has to do this

94

OpenMP Transformations – WORKSHARE

• Original Code
REAL AA(N,N), BB(N,N)
!$OMP PARALLEL
!$OMP WORKSHARE

AA = BB
!$OMP END WORKSHARE
!$OMP END PARALLEL

• Transformed Code
REAL AA(N,N), BB(N,N)
!$OMP PARALLEL
!$OMP DO

DO J=1,N,1
DO I=1,N,1
AA(I,J) = BB(I,J)

END DO
END DO

!$OMP END PARALLEL

• WORKSHARE can
be translated to
OMP DO during
preprocessing
phase

• If there are several
different array
statements involved,
it requires a lot of
work by the
compiler to do a
good job

• So there may be a
performance
penalty

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

48

95

Runtime Memory Allocation

• Outlining creates a new scope:
private data become local
variables for the outlined routine.

• Local variables can be saved on
stack

– Includes compiler-generated
temporaries

– Private variables, including
firstprivate and lastprivate

– Could be a lot of data
– Local variables in a procedure

called within a parallel region are
private by default

• Location of threadprivate
data depends on
implementation

– On heap
– On local stack

Thread 1 stack

Main process stack

Heap

Global
Data …

Code
main()

__ompregion_main1()
…

Threadprivate

stack Thread 2 stack

…

….

Threadprivate

Local data

pointers to shared variables

Arg. Passed by value

registers

Program counter

One possible organization of memory

…

96

Role of Runtime Library
• Thread management and work dispatch

– Routines to create threads, suspend them and wake
them up/ spin them, destroy threads

– Routines to schedule work to threads
• Manage queue of work
• Provide schedulers for static, dynamic and guided

• Maintain internal control variables
– threadid, numthreads, dyn-var, nest-var, sched_var,

etc
• Implement library routines omp_..() and some

simple constructs (e.g. barrier, atomic)
Some routines in runtime library – e.g. to return the threadid - are
heavily accessed, so they must be carefully implemented and
tuned. The runtime library should avoid any unnecessary internal
synchronization.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

49

97

Synchronization
• Barrier is main synchronization construct since many

other constructs may introduce it implicitly. It in turn is
often implemented using locks.

void __ompc_barrier (omp_team_t *team)
{

…
pthread_mutex_lock(&(team->barrier_lock));
team->barrier_count++;
barrier_flag = team->barrier_flag;

/* The last one reset flags*/
if (team->barrier_count == team->team_size)
{

team->barrier_count = 0;
team->barrier_flag = barrier_flag ^ 1; /* Xor: toggle*/
pthread_mutex_unlock(&(team->barrier_lock));
return;

}
pthread_mutex_unlock(&(team->barrier_lock));

/* Wait for the last to reset the barrier*/
OMPC_WAIT_WHILE(team->barrier_flag == barrier_flag);

}

One simple way to implement barrier
• Each thread team maintains a barrier counter
and a barrier flag.

• Each thread increments the barrier counter
when it enters the barrier and waits for a
barrier flag to be set by the last one.

• When the last thread enters the barrier and
increment the counter, the counter will be
equal to the team size and the barrier flag is
reset.

• All other waiting threads can then proceed.

98

Constructs That Use a Barrier

• Careful implementation can achieve modest overhead for most
synchronization constructs.

• Parallel reduction is costly because it often uses critical region to
summarize variables at the end.

Synchronization Overheads (in cycles) on SGI Origin 2000*

* Courtesy of J. M. Bull, "Measuring Synchronisation and Scheduling Overheads in OpenMP", EWOMP '99, Lund, Sep., 1999.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

50

99

Static Scheduling: Under The Hood
/ *Static even: static without specifying

chunk size; scheduler divides loop
iterations evenly onto each thread. */

// the outlined task for each thread
_gtid_s1 = __ompc_get_thread_num();
temp_limit = n – 1
__ompc_static_init(_gtid_s1 , static,

&_do_lower, &_do_upper,
&_do_stride,..);

if(_do_upper > temp_limit)
{ _do_upper = temp_limit; }

for(_i = _do_lower; _i <= _do_upper; _i ++)
{

do_sth();
}

// The OpenMP code
// possible unknown loop upper bound: n
// unknown number of threads to be used
#pragma omp for schedule(static)

for (i=0;i<n;i++)
{
do_sth();
}

• Most (if not all) OpenMP compilers choose static as default scheduling
method
• Number of threads and loop bounds possibly unknown, so final details
usually deferred to runtime
• Two simple runtime library calls are enough to handle static case:

Constant overhead

100

Dynamic Scheduling : Under The Hood

_gtid_s1 = __ompc_get_thread_num();
temp_limit = n -1;

_do_upper = temp_limit;
_do_lower = 0;
__ompc_scheduler_init(__ompv_gtid_s1, dynamic ,do_lower, _do_upper, stride,

chunksize..);
_i = _do_lower;
mpni_status = __ompc_schedule_next(_gtid_s1, &_do_lower, &_do_upper, &_do_stride);
while(mpni_status)
{

if(_do_upper > temp_limit)
{ _do_upper = temp_limit; }
for(_i = _do_lower; _i <= _do_upper; _i = _i + _do_stride)
{ do_sth(); }
mpni_status = __ompc_schedule_next(_gtid_s1, &_do_lower, &_do_upper, &_do_stride);

}
• Scheduling is performed during runtime.
• A while loop to grab available loop iterations from a work queue

•Similar way to implement STATIC with a chunk size and GUIDED scheduling

Average overhead= c1*(iteration space/chunksize)+c2

// Schedule(dynamic, chunksize)

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

51

101

Using OpenMP Scheduling Constructs

Scheduling Overheads (in cycles) on Sun HPC 3500*
• Conclusion:

– Use default static scheduling when work load is balanced and
thread processing capability is constant.

– Use dynamic/guided otherwise

* Courtesy of J. M. Bull, "Measuring Synchronisation and Scheduling Overheads in OpenMP", EWOMP '99, Lund,
Sep., 1999.

102

Implementation-Defined Issues

• Each implementation must decide what is
in compiler and what is in runtime

• OpenMP also leaves some issues to the
implementation
– Default number of threads
– Default schedule and default for schedule (runtime)
– Number of threads to execute nested parallel regions
– Behavior in case of thread exhaustion
– And many others..

Despite many similarities, each implementation is a little
different from all others.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

52

103

Agenda
• Parallel Computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details

104

Turning Novice Parallel programmers into
Experts

• How do you pass-on expert knowledge to novices
quickly and effectively?
1. Understand expert knowledge, i.e. “how do expert

parallel programmers think?”
2. Express that expertise in a consistent framework.
3. Validate (peer review) the framework so it

represents a true consensus view.
4. Publish the framework.

• The Object Oriented Software Community has found
that a language of design patterns is a useful way to
construct such a framework.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

53

105

Design Patterns:
A silly example

• Solution: Construct a money pipeline
– Create SW with enough functionality to do something useful most

of the time. This will draw buyers into your money pipeline.
– Promise new features to thwart competitors.
– Use bug-fixes and a slow trickle of new features to extract money

as you move buyers along the pipeline.

• Forces: The solution must resolve the forces:
– It must give the buyer something they believe they need.
– It can’t be too good, or people won’t need to buy upgrades.
– Every good idea is worth stealing -- anticipate competition.

• Context: You want to get rich and all you have to
work with is a C.S. degree and programming
skills. How can you use software to get rich?

• Name: Money Pipeline

106

A Shameless plug

Now available at a bookstore near you!

A pattern language for
parallel algorithm
design with examples
in MPI, OpenMP and
Java.

This is our hypothesis
for how programmers
think about parallel
programming.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

54

107

Pattern Language’s structure:
Four design spaces in parallel software development

Original Problem Tasks, shared and local data

Finding
Concurrency

Supporting stuct.
& impl. mech.

Corresponding source code

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate(tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate(tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate(tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int Num = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N, Data);
for (int I= ID; I<N;I=I+Num){

tmp = func(I, Data);
Res.accumulate(tmp);

}
}

Algorith
m

Structu
re

Units of execution + new shared data
for extracted dependencies

108

Common patterns in OpenMP

Name: The Task Parallelism Pattern
• Context:

– How do you exploit concurrency expressed in terms of a set of
distinct tasks?

• Forces
– Size of task – small size to balance load vs. large size to reduce

scheduling overhead.
– Managing dependencies without destroying efficiency.

• Solution
– Schedule tasks for execution with balanced load – use master

worker, loop parallelism, or SPMD patterns.
– Manage dependencies by:

• removing them (replicating data),
• transforming induction variables,
• exposing reductions,
• explicitly protecting (shared data pattern).

Algorithm Structure Design space

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

55

109

Common patterns in OpenMP

Name: The SPMD Pattern
• Context:

– How do you structure a parallel program to make interactions
between threads manageable yet easy to integrate with the core
computation?

• Forces
– Fewer programs are easier to manage, but complex algorithms

often need very different instruction streams on each thread.
– Balance the conflicting needs of scalability, maintainability, and

portability.
• Solution

– Use a single program for all the threads.
– Keep it simple … use the threads ID to select different pathways

through the program.
– Keep interactions between threads explicit and at a minimum.

Supporting Structures Design space

110

Common patterns in OpenMP

Name: The Loop Parallelism Pattern
• Context:

– How do you transform a serial program dominated by compute
intensive loops into a parallel program without radically changing
the semantics?

• Forces
– An existing program implies expected output … and this must be

preserved even as the programs execution changes due to
parallelism.

– High performance requires restructuring data to optimize for
cache … but this must be done carefully to avoid changing
semantics.

– Assuring correctness suggests that the parallelization process
should be incremental with each transformation subject to testing.

• Solution
– Identify key compute intensive loops.
– Use directives/pragmas to parallelize these loops (i.e. at no point

do you use the ID to manage loop parallelization by hand).
– Optimize incrementally testing at each step of the way – merging

loops, modifying schedules, etc.

Supporting Structures Design space

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

56

111

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int i, id, nthreads; double x, pi, sum;

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel private (i, id, x, sum)
{

id = omp_get_thread_num();
#pragma omp single

nthreads = omp_get_num_threads();
for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);

}
#pragma omp critical

pi += sum * step;
}
}

Design pattern example:
The SPMD pattern

Every thread
executes the same

code … use the
thread ID to

distribute work.

Data replication
used to manage
dependencies

112

Design pattern example:
The Loop Parallelism pattern

#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel for private(x) reduction(+:sum)

for (i=0;i<= num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}
pi = step * sum;

}

Parallelism inserted
as semantically

neutral directives to
parallelize key loops

Reduction used to
manage

dependencies

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

57

113

Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details

114

Case Studies - General Comments:
Performance Measurement

• What is the baseline performance?
• What is the desired improvement?
• Where are the computation-intensive

regions of the program?
• Is timing done on a dedicated machine? If

a large machine, where is data? What
about file access? Does set of processors
available impact this?

On large machines, it is best to use custom features to pin
threads to specific resources. A poor data layout may kill
performance on a platform with many CPUs.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

58

115

Case Studies - General Comments:
Performance Issues

• Overheads of OpenMP constructs, thread management
– E.g. dynamic loop schedules have much higher overheads than

static schedules
– Synchronization is expensive, so use NOWAIT if possible and

privatize data where possible
• Overheads of runtime library routines

– Some are called frequently
• Structure and characteristics of program

– Sequential part of program
– Load balance
– Cache utilization and false sharing (it can kill any speedup)
– Large parallel regions help reduce overheads, enable better

cache usage and standard optimizations
System or helper threads may also be active – managing or assigning work.
Give them a resource of their own by using one less CPU than the available
number. Otherwise, they may degrade performance. Pin threads to CPUs.

116

Case Studies - General Comments:
Optimal Number of Threads

• May need to experiment to determine the
optimal number of threads for a given problem
– In SMT, reducing the number of threads

may alleviate resource (register, datapath,
cache, or memory) conflicts

• Using one thread per physical processor is
preferred for memory-intensive applications

–Adding one or more threads to share the
computation is an alternative to solve the load
imbalance problem

• Technique described by Dr. Danesh Tafti and
Weicheng Huang, see www.ncsa.uiuc.edu/News/
Access/Stories/LoadBalancing/

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

59

117

Case Studies - General Comments:
Cache Optimizations

• Loop interchange and array transposition
– TOMCATV code example

• Outer loop unrolling of a loop nest to block data for
the cache

• Array padding
– Changing the memory address affects cache mapping
– Increases cache hit rates

REAL rx(jdim, idim)

C$OMP PARLLEL DO

DO i=2, n-1

do j=2, n

rx(i,j) = rx(i,j-1)+…

ENDDO

ENDDO

REAL rx(idim, jdim)

C$OMP PARLLEL DO

DO i=2, n-1

do j=2, n

rx(j,i) = rx(j-1,i)+…

ENDDO

ENDDO

Common /map/ A(1024), B(1024)
Common /map/ A(1024), PAD(8), B(1024)

*third party names are the property of their respective owners.

118

Case Studies - General Comments:
Cache Optimizations

• Loop interchange may increase cache locality through
stride-1 references

• In version on right, the cache miss ration is greatly
reduced
– We executed these codes on Cobalt @ NCSA (one node of SGI

Altix System with 32-way 1.5 GHz Itanium 2 processors) using
the Intel compiler 8.0 with –O0

– The level 2 cache miss rate is changed from 0.744 to 0.032
– The bandwidth used for level 2 cache is decreased from

11993.404 MB/s to 4635.817 MB/s
– Wall clock time is reduced from 77.383s to 8.265s

!$OMP PARALLEL DO
DO i=1,N
DO j=1,N
a(i,j) = b(i,j) + c(i,j)

END DO
END DO

!$OMP PARALLEL DO
DO j=1,N
DO i=1,N
a(i,j) = b(i,j) + c(i,j)

END DO
END DO

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

60

119

Case Studies - General Comments:
Cache Optimizations

• A variety of methods to improve cache
performance
– loop fission
– loop fusion
– loop unrolling (outer and inner loops)
– loop tiling
– array padding

120

Case Studies - General Comments:
Sources of Errors

• Incorrect use of synchronization constructs
– Less likely if user sticks to directives
– Erroneous use of locks can lead to deadlock
– Erroneous use of NOWAIT can lead to race

conds.
• Race conditions (true sharing)

– Can be very hard to find
• Wrong declared data attributes (shared vs.

private)
• Wrong “spelling” of sentinel

It can be very hard to track race conditions. Tools may help check for these,
but they may fail if your OpenMP code does not rely on directives to
distribute work. Moreover, they can be quite slow.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

61

121

Case Studies and Examples
• More difficult problems to parallelize

– Seismic Data Processing: Dynamic
Workload

– Jacobi: Stepwise improvement
– Fine Grained locks
– Equake: Time vs. Space
– Coalescing loops
– Wavefront Parallelism
– Work Queues

122

Seismic Data Processing Example

• The KINGDOM Suite+ from Seismic Micro-
Technology, Inc. Software to find oil and gas.

• Integrated package for Geological/Geophysical
interpretation and risk reduction.
– Interpretation

• 2d/3dPAK
• EarthPAK
• VuPAK

– Risk Reduction
• AVOPAK
• Rock Solid Attributes
• SynPAK
• TracePAK
• ModPAK

*third party names are the property of their respective owners.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

62

123

Seismic Data Processing
for (int iLineIndex=nStartLine; iLineIndex <= nEndLine; iLineIndex++)
{

Loadline(iLineIndex,...);
for(j=0;j<iNumTraces;j++)

for(k=0;k<iNumSamples;k++)
processing();

SaveLine(iLineIndex);
}

Load
Data

Process
Data

Save
Data

Timeline

124

First OpenMP Version of Seismic
Data Processing

for (int iLineIndex=nStartLine; iLineIndex <= nEndLine; iLineIndex++)
{

Loadline(iLineIndex,...);
#pragma omp parallel for

for(j=0;j<iNumTraces;j++)
for(k=0;k<iNumSamples;k++)

processing();
SaveLine(iLineIndex);

}

Load
Data

Process
Data

Save
Data

Timeline

Better performance, but
not too encouraging

Overhead for
entering and leaving
the parallel region

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

63

125

Optimized OpenMP Version of
Seismic Data Processing

Loadline(nStartLine,...); // preload the first line of data
#pragma omp parallel
{

for (int iLineIndex=nStartLine; iLineIndex <= nEndLine; iLineIndex++)
{

#pragma omp single nowait
{// loading the next line data, NO WAIT!

Loadline(iLineIndex+1,...);
}

#pragma omp for schedule(dynamic)
for(j=0;j<iNumTraces;j++)

for(k=0;k<iNumSamples;k++)
processing();

#pragma omp single nowait
{

SaveLine(iLineIndex);
}

}
}

Load
Data

Process

Data
Save
Data

Load
Data

Process

Data
Save
Data

Load
Data

Load
Data

Process

Data

Timeline

126

Performance of Optimized Seismic
Data Processing Application

Seismic Data Processing Speedup

0

0.5
1

1.5
2

2.5
3

3.5

Original
Sequential

Optimized
Sequential

static
schedule

dynamic
(10)

dynamic (1) Guided (10) Guided (1)

4 threads (2 CPUs w ith HT)

2 3.4GHz Intel® XeonTM

processors with Hyper-
threading and Intel®
Extended Memory 64
Technologies

3G RAM

Seismic Data Processing Execution time

0
200
400
600
800

1000
1200

Original
Sequential

Optimized
Sequential

Static
schedule

dynamic
(10)

dynamic (1) Guided (10) Guided (1)

Se
co

nd
s

4 threads (2 CPUs w ith HT)

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

64

127

Case Studies and Examples
• More difficult problems to parallelize

– Seismic Data Processing: Dynamic
Workload

– Jacobi: Stepwise improvement
– Fine Grained locks
– Equake: Time vs. Space
– Coalescing loops
– Wavefront Parallelism
– Work Queues

128

Case Studies: a Jacobi Example

• Solving the Helmholtz equation with a finite difference
method on a regular 2D-mesh

• Using an iterative Jacobi method with over-relaxation
– Well suited for the study of various approaches of loop-level

parallelization
• Taken from

– Openmp.org
• The original OpenMP program contains 2 parallel regions inside the

iteration loop
– Dieter an Mey, Thomas Haarmann, Wolfgang Koschel.

“Pushing Loop-Level Parallelization to the Limit ”, EWOMP
‘02.

• This paper shows how to tune the performance for this program
step by step

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

65

129

error = 10.0 * tol
k = 1
do while (k.le.maxit .and. error.gt. tol) ! begin iteration loop
error = 0.0
!$omp parallel do
do j=1,m
do i=1,n

uold(i,j) = u(i,j)
enddo
enddo

!$omp end parallel do

!$omp parallel do private(resid) reduction(+:error)

do j = 2,m-1 do i = 2,n-1

resid = (ax*(uold(i-1,j) + uold(i+1,j))

& + ay*(uold(i,j-1) + uold(i,j+1)) + b * uold(i,j) - f(i,j))/b

u(i,j) = uold(i,j) - omega * resid

error = error + resid*resid

end do

enddo

!$omp end parallel do

k = k + 1

error = sqrt(error)/dble(n*m)

enddo ! end iteration loop

Two parallel regions
inside the iteration
loop

A Jacobi Example:
Version 1

130

error = 10.0 * tol
k = 1
do while (k.le.maxit .and. error.gt. tol) ! begin iteration loop
error = 0.0

!$omp parallel private(resid)
!$omp do
do j=1,m
do i=1,n
uold(i,j) = u(i,j)
enddo
enddo

!$omp end do
!$omp do reduction(+:error)
do j = 2,m-1
do i = 2,n-1
resid = (ax*(uold(i-1,j) + uold(i+1,j))

& + ay*(uold(i,j-1) + uold(i,j+1))
& + b * uold(i,j) - f(i,j))/b

u(i,j) = uold(i,j) - omega * resid
error = error + resid*resid
end do
enddo

!$omp end do nowait
!$omp end parallel
k = k + 1
error = sqrt(error)/dble(n*m)

enddo ! end iteration loop

A Jacobi Example:
Version 2

Merging two parallel
regions inside the
iteration loop.

An nowait is added.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

66

131

error = 10.0d0 * tol
!$omp parallel private(resid, k_priv)
k_priv = 1
do while (k_priv.le.maxit .and. error.gt.tol) ! begin iteration loop
!$omp do
do j=1,m
do i=1,n
uold(i,j) = u(i,j)

enddo
enddo

!$omp end do
!$omp single
error = 0.0d0

!$omp end single
!$omp do reduction(+:error)
do j = 2,m-1

……
error = error + resid*resid

enddo
!$omp end do
k_priv = k_priv + 1

!$omp single
error = sqrt(error)/dble(n*m)

!$omp end single
enddo ! end iteration loop
!$omp single
k = k_priv
!$omp end single nowait

!$omp end parallel

A Jacobi Example:
Version 3

One parallel region
containing the whole
iteration loop.

132

By replacing the shared
variable error by a private
copy error_priv in the
termination condition of the
iteration loop, one of the four
barriers can be eliminated.
An “end single” with an implicit
barrier was here in Version 3.

!$omp parallel private(resid, k_priv,error_priv)
k_priv = 1 error_priv = 10.0d0 * tol
do while (k_priv.le.maxit .and. error_priv.gt.tol) ! begin iter. loop
!$omp do
do j=1,m
do i=1,n
uold(i,j) = u(i,j)

enddo
enddo

!$omp end do
!$omp single

error = 0.0d0
!$omp end single
!$omp do reduction(+:error)

do j = 2,m-1
do i = 2,n-1

……
error = error + resid*resid

end do
enddo

!$omp end do
k_priv = k_priv + 1
error_priv = sqrt(error)/dble(n*m)

enddo ! end iteration loop
!$omp barrier
!$omp single
k = k_priv
error = error_priv

!$omp end single
!$omp end parallel

A Jacobi Example:
Version 4

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

67

133

Performance Tuning of the Jacobi
example

• V1: the original OpenMP program with two
parallel regions inside the iteration loop

• V2: merges two parallel regions into one region
• V3: moves the parallel region out to include the

iteration loop inside
• V4: replaces a shared variable by a private

variable to perform the reduction so that one out
of four barriers can be eliminated

• V5: the worksharing constructs are eliminated in
order to reduce the outlining overhead by the
compiler

134

do j=1,m, m-1
do i=1,n
uold(i,j) = u(i,j)

enddo
enddo
do j=2,m-1
do i=1,n,n-1
uold(i,j) = u(i,j)

enddo
enddo
! all parallel loops run from 2 to m-1
nthreads = omp_get_max_threads()
ilo = 2; ihi = m-1
nrem = mod (ihi - ilo + 1, nthreads)
nchunk = (ihi - ilo + 1 - nrem) / nthreads
!$omp parallel private(me,is,ie,resid,
k_priv,error_priv)
me = omp_get_thread_num()
if (me < nrem) then

is = ilo + me * (nchunk + 1); ie = is + nchunk
else

is = ilo + me * nchunk + nrem; ie = is + nchunk - 1
end if
error_priv = 10.0 * tol; k_priv = 1

do while (k_priv.le.maxit .and.
error_priv.gt.tolh) ! begin iter. loop

do j=is,ie
do i=2,n-1

uold(i,j) = u(i,j)
enddo

enddo
!$omp barrier
!$omp single

error = 0
!$omp end single

error_priv = 0
do j = is,ie
do i = 2,n-1
……
error_priv = error_priv + resid*resid

end do
enddo

!$omp atomic
error = error + error_priv
v = k_priv + 1
k_pri

!$omp barrier
error_priv = sqrt (error) / dble(n*m)

enddo ! end iteration loop
!$omp single

k = k_priv
!$omp end single
!$omp end parallel
error = sqrt (error) / dble(n*m)

The reduction is replaced by
an atomic directive.

An Jacobi Example:
Version 5

The worksharing constructs
replaced to avoid the
outlining overhead by the
compiler.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

68

135
Comparison of 5 different versions of the Jacobi solver on
a Sun Fire 6800, grid size 200x200 , 1000 iterations

An Jacobi Example:
Version Comparison

136

Case Studies and Examples
• More difficult problems to parallelize

– Seismic Data Processing: Dynamic
Workload

– Jacobi: Stepwise improvement
– Fine Grained locks
– Equake: Time vs. Space
– Coalescing loops
– Wavefront Parallelism
– Work Queues

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

69

137

SpecOMP: Gafort

• Global optimization using a genetic
algorithm.
– Written in Fortran
– 1500 lines of code

• Most “interesting” loop: shuffle the
population.
– Original loop is not parallel; performs pair-

wise swap of an array element with another,
randomly selected element. There are 40,000
elements.

*Other names and brands may be claimed as the property of others.

138

DO j=1,npopsiz-1

CALL ran3(1,rand,my_cpu_id,0)
iother=j+1+DINT(DBLE(npopsiz-j)*rand)
itemp(1:nchrome)=iparent(1:nchrome,iother)
iparent(1:nchrome,iother)=iparent(1:nchrome,j)
iparent(1:nchrome,j)=itemp(1:nchrome)
temp=fitness(iother)
fitness(iother)=fitness(j)
fitness(j)=temp

END DO

Shuffle populations

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

70

139

SpecOMP: Gafort

• Parallelization idea:
– Perform the swaps in parallel.
– Must protect swap to prevent races.
– High level synchronization (critical) would

prevent all opportunity for speedup.
• Solution:

– use one lock per array element 40,000
locks.

140

!$OMP PARALLEL PRIVATE(rand, iother, itemp, temp, my_cpu_id)
my_cpu_id = 1

!$ my_cpu_id = omp_get_thread_num() + 1
!$OMP DO

DO j=1,npopsiz-1
CALL ran3(1,rand,my_cpu_id,0)
iother=j+1+DINT(DBLE(npopsiz-j)*rand)

!$ IF (j < iother) THEN
!$ CALL omp_set_lock(lck(j))
!$ CALL omp_set_lock(lck(iother))
!$ ELSE
!$ CALL omp_set_lock(lck(iother))
!$ CALL omp_set_lock(lck(j))
!$ END IF

itemp(1:nchrome)=iparent(1:nchrome,iother)
iparent(1:nchrome,iother)=iparent(1:nchrome,j)
iparent(1:nchrome,j)=itemp(1:nchrome)
temp=fitness(iother)
fitness(iother)=fitness(j)
fitness(j)=temp

!$ IF (j < iother) THEN
!$ CALL omp_unset_lock(lck(iother))
!$ CALL omp_unset_lock(lck(j))
!$ ELSE
!$ CALL omp_unset_lock(lck(j))
!$ CALL omp_unset_lock(lck(iother))
!$ END IF

END DO
!$OMP END DO
!$OMP END PARALLEL

Exclusive
access to array
elements.
Ordered locking
prevents
deadlock.

Gafort
parallel
shuffle

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

71

141

Gafort Results

• 99.9% of the code was inside parallel section.
• Speedup was OK (6.5 on 8 processors) but not

great.
• This application led us to make a change to

OpenMP:
– OpenMP 1.0 required that locks be initialized

in a serial region.
– With 40,000 of them, this just wasn’t practical.
– So in OpenMP 1.1 we changed locks so they

could be initialized in parallel.

142

Case Studies and Examples
• More difficult problems to parallelize

– Seismic Data Processing: Dynamic
Workload

– Jacobi: Stepwise improvement
– Fine Grained locks
– Equake: Time vs. Space
– Coalescing loops
– Wavefront Parallelism
– Work Queues

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

72

143

SPEComp: Equake

• Earthquake modeling
– simulates the propagation of elastic waves in

large, highly heterogeneous valleys
– Input: grid topology with nodes, coordinates,

seismic event characteristics, etc
– Output: reports the motion of the earthquake

for a certain number of simulation timesteps
• Most time consuming loop: smvp(..)

– sparse matrix calculation: accumulate the
results of matrix-vector product

*Other names and brands may be claimed as the property of others.

144

Smvp()

• Frequent and
scattered
accesses to
shared arrays w1
and w2

• Naive OpenMP:
uses critical to
synchronize
each access
– serializes

most of the
execution

– Not scalable

for (i = 0; i < nodes; i++) {
Anext = Aindex[i]; Alast = Aindex[i + 1];
sum0 = A[Anext][0][0]*v[i][0] .. + A[Anext][0][2]*v[i][2];
…
Anext++;
while (Anext < Alast) {

col = Acol[Anext];

sum0 += A[Anext][0][0]*v[col][0] ..+ A[Anext][0][2]*v[col][2];
….
if (w2[col] == 0) {

w2[col] = 1;
w1[col].first = 0.0;
… }

w1[col].first += A[Anext][0][0]*v[i][0] .. + A[Anext][2][0]*v[i][2];
……
Anext++;

}

if (w2[i] == 0) {
w2[i] = 1;
w1[i].first = 0.0;
…

}
w1[i].first += sum0;
……

}

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

73

145

Solution
#pragma omp parallel private(my_cpu_id,i,..col,sum0,sum1,sum2)
{ #ifdef _OPENMP

my_cpu_id = omp_get_thread_num();
numthreads=omp-get_num_threads();

#else
my_cpu_id=0; numthreads=1;

#endif
#pragma omp for
for (i = 0; i < nodes; i++) {
…..
sum0 = A[Anext][0][0]*v[i][0] ... +A[Anext][0][2]*v[i][2];
….
while (Anext < Alast) {
sum0 += A[Anext][0][0]*v[col][0] ...+ A[Anext][0][2]*v[col][2];
....

if (w2[my_cpu_id][col] == 0) {
w2[my_cpu_id][col] = 1;
w1[my_cpu_id][col].first = 0.0;

...... }
w1[my_cpu_id][col].first += A[Anext][0][0]*v[i][0] ...+ A[Anext][2][0]*v[i][2]
.... }
if (w2[my_cpu_id][i] == 0) {

w2[my_cpu_id][i] = 1;
w1[my_cpu_id][i].first = 0.0; }

w1[my_cpu_id][i].first += sum0;
... } }

#pragma omp parallel for private(j) // manual reduction
for (i = 0; i < nodes; i++) {
for (j = 0; j < numthreads; j++) {
if (w2[j][i]) { w[i][0] += w1[j][i].first;

.... } } }

SPMD-style
• Replicate w1,w2 for
each thread.

•exclusive access to
arrays
• no synchronization

• Downside:
• large memory
consumption
• extra time to
duplicate data and
reduce copies back
to one

• Performance result:
• good scaling up to
64 CPUs for medium
dataset

146

Lessons Learned from Equake

Sh
ar

ed
 D

at
a

threads
0 1 2 3

Sh
ar

ed
 D

at
a

Serialized access to shared
data

Sh
ar

ed
 D

at
a

D
up

lic
at

ed
 D

at
a

D
up

lic
at

ed
D

at
a

D
up

lic
at

ed
D

at
a

0 1 2 3

Parallelized access
to private copies

Sh
ar

ed
 D

at
a

Data replication

Data reduction

threads

Data replication is worthwhile when
the cost of critical is too high
and enough memory and bandwidth
is available.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

74

147

Case Studies and Examples
• More difficult problems to parallelize

– Seismic Data Processing: Dynamic
Workload

– Jacobi: Stepwise improvement
– Fine Grained locks
– Equake: Time vs. Space
– Coalescing loops
– Wavefront Parallelism
– Work Queues

148

Getting more concurrency to work with:
Art (SpecOMP 2001)

• Art: Adaptive Resonance Theory) is an
Image processing application based on
neural networks and used to recognize
objects in a thermal image.

• Source has over 1300 lines of C code.

*Other names and brands may be claimed as the property of others.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

75

149

for (i=0; i<inum;i++) {
for (j=0; j<jnum; j++) {

k=0;
for (m=j;m<(gLheight+j);m++)

for (n=i;n<(gLwidth+i);n++)
f1_layer[o][k++].I[0] = cimage[m][n];

gPassFlag =0;
gPassFlag = match(o,i,j, &mat_con[ij], busp);

if (gPassFlag==1) {
if (set_high[o][0]==TRUE) {

highx[o][0] = i;
highy[o][0] = j;
set_high[o][0] = FALSE;

}
if (set_high[o][1]==TRUE) {

highx[o][1] = i;
highy[o][1] = j;
set_high[o][1] = FALSE;

}
}

}
}

Key Loop in Art

Problem:

which loop to parallelize?

Inum and jnum aren’t
that big – insufficient
parallelism to support
scalability and
compensate for parallel
overhead.

150

Coalesce Multiple Parallel
Loops

• Original Code

DO I = 1, N
DO J = 1, M
DO K = 1, L
A(K,J,I) = Func(I,J,K)

ENDDO
ENDDO

ENDDO

• >1 loop is parallel
• None of N, M, L very large
• What is best parallelization strategy?

• Loop Coalescing
ITRIP = N ; JTRIP = M
!$OMP PARALLEL DO
DO IJ = 0, ITRIP*JTRIP-1
I = 1 + IJ/JTRIP
J = 1 + MOD(IJ,JTRIP)
DO K = 1, L
A(K,J,I) = Func(I,J,K)

ENDDO
ENDDO

…

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

76

151

#pragma omp for private (k,m,n, gPassFlag) schedule(dynamic)
for (ij = 0; ij < ijmx; ij++) {

j = ((ij/inum) * gStride) + gStartY;
i = ((ij%inum) * gStride) +gStartX;
k=0;
for (m=j;m<(gLheight+j);m++)

for (n=i;n<(gLwidth+i);n++)
f1_layer[o][k++].I[0] = cimage[m][n];

gPassFlag =0;
gPassFlag = match(o,i,j, &mat_con[ij], busp);

if (gPassFlag==1) {
if (set_high[o][0]==TRUE) {

highx[o][0] = i;
highy[o][0] = j;
set_high[o][0] = FALSE;

}
if (set_high[o][1]==TRUE) {

highx[o][1] = i;
highy[o][1] = j;
set_high[o][1] = FALSE;

}
}

}

Key loop in Art

Indexing to
support Loop
Coalescing

Note:

Dynamic
Schedule
needed

because of
embedded

conditionals

152

Case Studies and Examples
• More difficult problems to parallelize

– Seismic Data Processing: Dynamic
Workload

– Jacobi: Stepwise improvement
– Fine Grained locks
– Equake: Time vs. Space
– Coalescing loops
– Wavefront Parallelism
– Work Queues

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

77

153

SOR algorithms
• Original Code

DO I = 2, N
DO J = 2, M
DO K = 2, L
A(K,J,I) =
Func(A(K-1,J,

I),
A(K, J-

1,I),
A(K, J,

I-1))
ENDDO

ENDDO
ENDDO

• No loop is parallel
• A wavefront dependence pattern
• What is best parallelization

strategy?

• What is a wavefront?
– Each point on the wavefront can

be computed in parallel
– Each wavefront must be

completed before next one
– A two-dimensional example

154

Wave-fronting SOR
• Manual Wavefront – combine loops and restructure to

compute over wavefronts
!$OMP PARALLEL PRIVATE(J)
DO IJSUM= 4, N+M

!$OMP DO SCHEDULE(STATIC,1)
DO I = max(2,IJSUM-M), min(N,IJSUM-2)
J = IJSUM - I
DO K = 2, L
A(K,J,I) = Func(A(K-1,J,I), A(K,J-1,I), A(K,J,I-1))

ENDDO
ENDDO

ENDDO
!$OMP END PARALLEL

• Notice only I and J loops wave-fronted
– Relatively easy to wavefront all three loops, but stride-1 inner loop helps cache

access

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

78

155

Case Studies and Examples
• More difficult problems to parallelize

– Seismic Data Processing: Dynamic
Workload

– Jacobi: Stepwise improvement
– Fine Grained locks
– Equake: Time vs. Space
– Coalescing loops
– Wavefront Parallelism
– Work Queues

156

OpenMP Enhancements :
Work queues

nodeptr list, p;

For (p=list; p!=NULL; p=p->next)

process(p->data);

nodeptr list, p;

#pragma omp parallel taskq
For (p=list; p!=NULL; p=p->next)
#pragma omp task

process(p->data);

OpenMP doesn’t handle pointer following loops very well

Intel has proposed (and implemented) a taskq construct
to deal with this case:

Reference: Shah, Haab, Petersen and Throop, EWOMP’1999 paper.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

79

157

Task queue example - FLAME: Shared Memory
Parallelism in Dense Linear Algebra

• Traditional approach to parallel linear
algebra:
– Only parallelism from multithreaded BLAS

• Observation:
– Better speedup if parallelism is exposed at a

higher level
• FLAME approach:

– OpenMP task queues

Tze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van ZTze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van Zee. ee. ““Parallelizing FLAME Code with Parallelizing FLAME Code with OpenMPOpenMP Task Task

Queues.Queues.”” TOMS TOMS , submitted., submitted.

*Other names and brands may be claimed as the property of others.

158

Symmetric rank-k update

+=

C A AT

A1

A0

AT
0 AT

1C10
C11

Add A1AT
0

Add A0AT
0

Note: the iteration sweeps through C and A, creating a new block of rows to be
updated with new parts of A. These updates are completely independent.

Tze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van ZTze Meng Low, Kent Milfeld, Robert van de Geijn, and Field Van Zee. ee. ““Parallelizing FLAME Code with Parallelizing FLAME Code with OpenMPOpenMP Task Task

Queues.Queues.”” TOMS TOMS , submitted., submitted.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

80

159

160

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

x 10
4

matrix dimension n

M
FL

O
P

S
/s

ec
.

syrk_ln (var2)

Reference
FLAME
OpenFLAME_nth1
OpenFLAME_nth2
OpenFLAME_nth3
OpenFLAME_nth4

Note: the above graphs is for the most naïve way of marching through the matrices.
By picking blocks dynamically, much faster ramp-up can be achieved.

Top line represents peak of
Machine (Itanium2 1.5GHz, 4CPU)

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

81

161

Agenda
• Parallel computing, threads, and OpenMP
• The core elements of OpenMP

– Thread creation
– Workshare constructs
– Managing the data environment
– Synchronization
– The runtime library and environment variables
– Recapitulation

• The OpenMP compiler
• OpenMP usage: common design patterns
• Case studies and examples
• Background information and extra details

162

Reference Material on OpenMP
• OpenMP architecture review board URL,

the primary source of information about
OpenMP:

www.openmp.org
• OpenMP User’s Group (cOMPunity) URL:

www.compunity.org
• Books:

Parallel programming in OpenMP, Chandra, Rohit, San. :
Francisco, Calif Morgan Kaufmann ; London : Harcourt, 2000,
ISBN: 1558606718

Using OpenMP; Chapman, Jost, Van der Pas, Mueller; MIT
Press (to appear, 2006)

Patterns for Parallel Programming, Mattson, Sanders,
Massingill, Addison Wesley, 2004

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

82

163

OpenMP Papers
• Sosa CP, Scalmani C, Gomperts R, Frisch MJ. Ab initio quantum chemistry on a

ccNUMA architecture using OpenMP. III. Parallel Computing, vol.26, no.7-8, July
2000, pp.843-56. Publisher: Elsevier, Netherlands.

• Couturier R, Chipot C. Parallel molecular dynamics using OPENMP on a shared
memory machine. Computer Physics Communications, vol.124, no.1, Jan. 2000,
pp.49-59. Publisher: Elsevier, Netherlands.

• Bentz J., Kendall R., “Parallelization of General Matrix Multiply Routines Using
OpenMP”, Shared Memory Parallel Programming with OpenMP, Lecture notes in
Computer Science, Vol. 3349, P. 1, 2005

• Bova SW, Breshearsz CP, Cuicchi CE, Demirbilek Z, Gabb HA. Dual-level parallel
analysis of harbor wave response using MPI and OpenMP. International Journal of
High Performance Computing Applications, vol.14, no.1, Spring 2000, pp.49-64.
Publisher: Sage Science Press, USA.

• Chapman B, Mehrotra P. OpenMP and HPF: integrating two paradigms. [Conference
Paper] Euro-Par'98 Parallel Processing. 4th International Euro-Par Conference.
Proceedings. Springer-Verlag. 1998, pp.650-8. Berlin, Germany

• Ayguade E, Martorell X, Labarta J, Gonzalez M, Navarro N. Exploiting multiple levels
of parallelism in OpenMP: a case study. Proceedings of the 1999 International
Conference on Parallel Processing. IEEE Comput. Soc. 1999, pp.172-80. Los
Alamitos, CA, USA.

• Bova SW, Breshears CP, Cuicchi C, Demirbilek Z, Gabb H. Nesting OpenMP in an
MPI application. Proceedings of the ISCA 12th International Conference. Parallel and
Distributed Systems. ISCA. 1999, pp.566-71. Cary, NC, USA.

164

OpenMP Papers (continued)
• Jost G., Labarta J., Gimenez J., What Multilevel Parallel Programs do when you are not

watching: a Performance analysis case study comparing MPI/OpenMP, MLP, and
Nested OpenMP, Shared Memory Parallel Programming with OpenMP, Lecture notes in
Computer Science, Vol. 3349, P. 29, 2005

• Gonzalez M, Serra A, Martorell X, Oliver J, Ayguade E, Labarta J, Navarro N. Applying
interposition techniques for performance analysis of OPENMP parallel applications.
Proceedings 14th International Parallel and Distributed Processing Symposium. IPDPS
2000. IEEE Comput. Soc. 2000, pp.235-40.

• B. Chapman, O. Hernandez, L. Huang, T.-H. Weng, Z. Liu, L. Adhianto, Y. Wen,
“Dragon: An Open64-Based Interactive Program Analysis Tool for Large
Applications,” Proc. 4th International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT 03). 792-796. 2003.

• Chapman B, Mehrotra P, Zima H. Enhancing OpenMP with features for locality control.
Proceedings of Eighth ECMWF Workshop on the Use of Parallel Processors in
Meteorology. Towards Teracomputing. World Scientific Publishing. 1999, pp.301-13.
Singapore.

• Steve W. Bova, Clay P. Breshears, Henry Gabb, Rudolf Eigenmann, Greg Gaertner,
Bob Kuhn, Bill Magro, Stefano Salvini. Parallel Programming with Message Passing
and Directives; SIAM News, Volume 32, No 9, Nov. 1999.

• Cappello F, Richard O, Etiemble D. Performance of the NAS benchmarks on a cluster
of SMP PCs using a parallelization of the MPI programs with OpenMP. Lecture Notes
in Computer Science Vol.1662. Springer-Verlag. 1999, pp.339-50.

• Liu Z., Huang L., Chapman B., Weng T., Efficient Implementationi of OpenMP for
Clusters with Implicit Data Distribution, Shared Memory Parallel Programming with
OpenMP, Lecture notes in Computer Science, Vol. 3349, P. 121, 2005

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

83

165

OpenMP Papers (continued)
• B. Chapman, F. Bregier, A. Patil, A. Prabhakar, “Achieving performance under

OpenMP on ccNUMA and software distributed shared memory systems,”
Concurrency and Computation: Practice and Experience. 14(8-9): 713-739, 2002.

• J. M. Bull and M. E. Kambites. JOMP: an OpenMP-like interface for Java.
Proceedings of the ACM 2000 conference on Java Grande, 2000, Pages 44 - 53.

• Mattson, T.G. An Introduction to OpenMP 2.0, Proceedings 3rd International
Symposium on High Performance Computing, Lecture Notes in Computer Science,
Number 1940, Springer, 2000 pp. 384-390, Tokyo Japan.

• Magro W, Petesen P, Shah S. Hyper-Threading Technology: Impact on Computer-
Intensive Workloads. Intel Technology Journal, Volume 06, Issue 01, 2002. ISSN
1535-766X

• Mattson, T.G., How Good is OpenMP? Scientific Programming, Vol. 11, Number 2,
p.81-93, 2003.

• Duran A., Silvera R., Corbalan J., Labarta J., “Runtime Adjustment of Parallel
Nested Loops”, Shared Memory Parallel Programming with OpenMP, Lecture
notes in Computer Science, Vol. 3349, P. 137, 2005

• Shah S, Haab G, Petersen P, Throop J. Flexible control structures for parallelism
in OpenMP; Concurrency: Practice and Experience, 2000; 12:1219-1239. Publisher
John Wiley & Sons, Ltd.

166

OpenMP Papers (continued)
• Voss M., Chiu E., Man P., Chow Y. Wong C., Yuen K., “An evaluation of Auto-

Scoping in OpenMP”, Shared Memory Parallel Programming with OpenMP,
Lecture notes in Computer Science, Vol. 3349, P. 98, 2005

• T.-H. Weng, B. M. Chapman, “Implementing OpenMP using Dataflow execution
Model for Data Locality and Efficient Parallel Execution,” In Proceedings of the 7th
workshop on High-Level Parallel Programming Models and Supportive
Environments, (HIPS-7), IEEE, April 2002,

• T-H. Weng and B. Chapman, “Toward Optimization of OpenMP Codes for
Synchronization and Data Reuse,” Int. Journal of High Performance Computing
and Networking (IJHPCN), Vol. 1, 2004.

• Z. Liu, B. Chapman, T.-H. Weng, O. Hernandez. “Improving the Performance of
OpenMP by Array Privatization, ” Workshop on OpenMP Applications and Tools,
WOMPAT’2002. LNCS 2716, Spring Verlag, pp. 244-259, 2002.

• Hu YC, Honghui Lu, Cox AL, Zwaenepoel W. OpenMP for networks of SMPs.
Proceedings 13th International Parallel Processing Symposium and 10th
Symposium on Parallel and Distributed Processing. IPPS/SPDP 1999. IEEE
Comput. Soc. 1999, pp.302-10. Los Alamitos, CA, USA.

• Scherer A, Honghui Lu, Gross T, Zwaenepoel W. Transparent adaptive parallelism
on NOWS using OpenMP. ACM. Sigplan Notices (Acm Special Interest Group on
Programming Languages), vol.34, no.8, Aug. 1999, pp.96-106. USA.

• L. Huang, B. Chapman and Z. Liu, “Towards a More Efficient Implementation of
OpenMP for Clusters via Translation to Global Arrays,” Parallel Computing. To
appear, 2005.

• M. Bull, B. Chapman (Guest Editors), Special Issues on OpenMP. Scientific
Programming 9, 2 and 3, 2001.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

84

167

Backup material
• History
• Foundations of OpenMP
• Memory Models and the Infamous

Flush
• Performance optimization in OpenMP
• The future of OpenMP

168

OpenMP pre-history

• OpenMP based upon SMP directive
standardization efforts PCF and aborted ANSI
X3H5 – late 80’s

• Nobody fully implemented either
• Only a couple of partial solutions
• Vendors considered proprietary API’s to be a

competitive feature:
– Every vendor had proprietary directives sets
– Even KAP, a “portable” multi-platform

parallelization tool used different directives on
each platform

PCF – Parallel computing forum KAP – parallelization tool from KAI.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

85

169

History of OpenMP
SGI

Cray

Merged,
needed
commonality
across
products

KAI ISV - needed
larger market

was tired of
recoding for
SMPs. Urged
vendors to
standardize.

ASCI

Wrote a
rough draft
straw man
SMP API

DEC

IBM

Intel

HP

Other vendors
invited to join

1997

170

OpenMP Release History

OpenMP
Fortran 1.1

OpenMP
C/C++ 1.0

OpenMP
Fortran 2.0

OpenMP
C/C++ 2.0

1998

20001999

2002

OpenMP
Fortran 1.0

1997

OpenMP
2.5

2005

A single
specification
for Fortran, C
and C++

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

86

171

Backup material
• History
• Foundations of OpenMP
• Memory Models and the Infamous

Flush
• Performance optimization in OpenMP
• The future of OpenMP

172

The Foundations of OpenMP:

OpenMP: a parallel programming API

Parallelism Working with
concurrency

Layers of abstractions
or “models” used to
understand and use

OpenMP

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

87

173

Concurrency:

• Concurrency:
• When multiple tasks are active simultaneously.

• “Parallel computing” occurs when you use
concurrency to:
– Solve bigger problems
– Solve a fixed size problem in less time

• For parallel computing, this means you need to:
• Identify exploitable concurrency.
• Restructure code to expose the concurrency.
• Use a parallel programming API to express the concurrency

within your source code.

174

The Foundations of OpenMP:

OpenMP: a parallel programming API

Parallelism Working with
concurrency

Layers of abstractions
or “models” used to
understand and use

OpenMP

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

88

Reasoning about programming
• Programming is a process of successive

refinement of a solution relative to a hierarchy of
models.

• The models represent the problem at a different
level of abstraction.
– The top levels express the problem in the

original problem domain.
– The lower levels represent the problem in the

computer’s domain.
• The models are informal, but detailed enough to

support simulation.

Source: J.-M. Hoc, T.R.G. Green, R. Samurcay and D.J. Gilmore (eds.),
Psychology of Programming, Academic Press Ltd., 1990

176

Layers of abstraction in programming

Problem

Algorithm

Source Code

Computation

Hardware

Programming

Computational

Specification

Cost

Domain Model: Bridges between domains

OpenMP
only

defines
these two!

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

89

177

OpenMP Programming Model:
Fork-Join Parallelism:

Master thread spawns a team of threads as needed.

Parallelism is added incrementally until desired
performance is achieved: i.e. the sequential program
evolves into a parallel program.

Parallel Regions

Master
Thread A Nested

Parallel
region

178

OpenMP Computational model
• OpenMP was created with a particular abstract

machine or computational model in mind:
• Multiple processing elements.
• A shared address space with “equal-time” access for

each processor.
• Multiple light weight processes (threads) managed

outside of OpenMP (the OS or some other “third
party”).

Shared Address Space

Proc3Proc2Proc1 ProcN

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

90

179

What about the other models?
• Cost Models:

– OpenMP doesn’t say anything about the cost model –
programmers are left to their own devices.

• Specification Models:
– Some parallel algorithms are natural in OpenMP:

• loop-splitting.
• SPMD (single program multiple data).

– Other specification models are hard for OpenMP
• Recursive problems and list processing is

challenging for OpenMP’s models.

180

Backup material
• History
• Foundations of OpenMP
• Memory Models and the Infamous

Flush
• Performance optimization in OpenMP
• The future of OpenMP

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

91

181

OpenMP and Shared memory

• What does OpenMP assume concerning the shared
memory?

• Implies that all threads access memory at the same cost, but
the details were never spelled out (prior to OMP 2.5).

• Shared memory is understood in terms of:
– Coherence: Behavior of the memory system when a

single address is accessed by multiple threads.
– Consistency: Orderings of accesses to different

addresses by multiple threads.
• OpenMP was never explicit about its memory model.

This was fixed in OpenMP 2.5.
• If you want to understand how threads interact in OpenMP,

you need to understand the memory model.

“The OpenMP Memory Model”, Jay Hoeflinger and Bronis de Supinski, IWOMP’2005

182

Source code

Program order

memory
a b

Commit order

private view

thread thread

private view
threadprivatethreadprivatea ab b

Wa Wb Ra Rb . . .

OpenMP Memory Model: Basic Terms

compiler

Executable code

Code order

Wb Rb Wa Ra . . .

RW’s in any
semantically

equivalent order

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

92

183

Coherence rules in OpenMP 2.5
#pragma omp parallel private(x) shared(p0, p1)
Thread 0

X = …;

P0 = &x;

Thread 1

X = …;

P1 = &x;
/* references in the following line are not allowed */
… *p1 … … *p0 …

You can not reference another’s threads private
variables … even if you have a shared pointer
between the two threads.

184

Coherence rules in OpenMP 2.5
#pragma omp parallel private(x) shared(p0, p1)
Thread 0

X = …;

P0 = &x;

Thread 1

X = …;

P1 = &x;
/* references in the following line are not allowed */
… *p1 … … *p0 …

#pragma omp parallel shared(x)
Thread 0

… X …

…*p0 …

Thread 1

… X …

… *p0 …

Thread 0

X = …;

… *p1 …

Thread 1

X = …;

… *p1 …

/* the following are not allowed */
…*p1 … … *p1 … … *p0 … … *p0 …

Nested parallel regions must keep track of the privates
pointers reference.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

93

185

Consistency: Memory Access Re-ordering

• Re-ordering:
– Compiler re-orders program order to the code

order
– Machine re-orders code order to the memory

commit order
• At a given point in time, the temporary view of

memory may vary from shared memory.
• Consistency models based on orderings or Reads

(R), Writes (W) and Synchronizations (S):
– R→R, W→W, R→W, R→S, S→S, W→S

186

Consistency

• Sequential Consistency:
– In a multi-processor, ops (R, W, S) are

sequentially consistent if:
• They remain in program order for each processor.
• They seen to be in the same overall order by each

of the other processors.
– Program order = code order = commit order

• Relaxed consistency:
– Remove some or the ordering constrains for

memory ops (R, W, S).

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

94

187

OpenMP 2.5 and Relaxed Consistency

• OpenMP 2.5 defines consistency as a
variant of weak consistency:
– S ops must be in sequential order across

threads.
– Can not reorder S ops with R or W ops on the

same thread
• Weak consistency guarantees

S→W, S→R , R→S, W→S, S→S

• The Synchronization operation relevant to
this discussion is flush.

188

Flush
• Defines a sequence point at which a thread is

guaranteed to see a consistent view of memory
with respect to the “flush set”:
– The flush set is “all thread visible variables” for a flush

without an argument list.
– The flush set is the list of variables when the list is

used.
• All R,W ops that overlap the flush set and occur prior to the

flush complete before the flush executes
• All R,W ops that overlap the flush set and occur after the

flush don’t execute until after the flush.
• Flushes with overlapping flush sets can not be reordered.

Memory ops: R = Read, W = write, S = synchronization

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

95

189

What is the Big Deal with Flush?
• Compilers routinely reorder instructions that

implement a program
– Helps exploit the functional units, keep machine busy

• Compiler generally cannot move instructions
past a barrier
– Also not past a flush on all variables

• But it can move them past a flush on a set of
variables so long as those variables are not
accessed

• So need to use flush carefully
Also, the flush operation does not actually synchronize different
threads. It just ensures that a thread’s values are made
consistent with main memory.

190

Why is it so important to understand the
memory model?

• Question: According to OpenMP 2.0, is the
following a correct program:

Thread 1
omp_set_lock(lockvar);
#pragma omp flush(count)
Count++;
#pragma omp flush (count)
Omp_unset_lock(lockvar)

Thread 2

omp_set_lock(lockvar);
#pragma omp flush(count)
Count++;
#pragma omp flush (count)
Omp_unset_lock(lockvar)

Not correct prior to OpenMP 2.5:

The Compiler can reorder
flush of the lock variable and

the flush of count

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

96

191

Solution:
• In OpenMP 2.0, you must make the flush set include

variables sensitive to the desired ordering constraints.

Thread 1
omp_set_lock(lockvar);
#pragma omp flush(count,lockvar)
Count++;
#pragma omp flush(count,lockvar)
Omp_unset_lock(lockvar)

Thread 2

omp_set_lock(lockvar);
#pragma omp flush(count,lockvar)
Count++;
#pragma omp flush(count,lockvar)
Omp_unset_lock(lockvar)

192

Even the Experts are confused
• The following code fragment is from the SpecOMP

benchmark ammp. Is it correct?

#ifdef _OPENMP
omp_set_lock (&(a1->lock));

#endif
a1fx = a1->fx;
a1fy = a1->fy;
a1fz = a1->fz;
a1->fx = 0;
a1->fy = 0;
a1->fz = 0;
xt = a1->dx*lambda + a1->x – a1->px;
yt = a1->dy*lambda + a1->y – a1->py;
zt = a1->dz*lambda + a1->z – a1->pz;

#ifdef _OPENMP
omp_unset_lock(&(a1->lock));

#endif

In OpenMP 2.0,
the locks don’t
imply a flush so
this code is
broken.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

97

193

OpenMP 2.5: lets help out the “experts”
• The following code fragment is from the SpecOMP

benchmark ammp. It is correct with OpenMP 2.5.
#ifdef _OPENMP

omp_set_lock (&(a1->lock));
#endif

a1fx = a1->fx;
a1fy = a1->fy;
a1fz = a1->fz;
a1->fx = 0;
a1->fy = 0;
a1->fz = 0;
xt = a1->dx*lambda + a1->x – a1->px;
yt = a1->dy*lambda + a1->y – a1->py;
zt = a1->dz*lambda + a1->z – a1->pz;

#ifdef _OPENMP
omp_unset_lock(&(a1->lock));

#endif

To prevent problems like this,
OpenMP 2.5 defines the locks to
include a full flush.

That makes this program correct.

194

• For a properly synchronized program (without
data races), the memory accesses of one thread
appear to be sequentially consistent to each
other thread.

• The only way for one thread to see that a
variable was written by another thread is to read
it. If done without an intervening synch, this is a
race.

• After the synch (flush), the thread is allowed to
read, and by then the flush guarantees the value
is in memory, so thread can’t determine if the
order was jumbled by the other thread prior to
the synch (flush).

OpenMP 2.5 Memory Model: summary part 1

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

98

195

OpenMP 2.5 Memory Model: summary part 2

• Memory ops must be divided into “data” ops and
“synch” ops

• Data ops (reads & writes) are not ordered w.r.t.
each other

• Data ops are ordered w.r.t. synch ops and synch
ops are ordered w.r.t. each other

• Cross-thread access to private memory is
forbidden.

• Relaxed consistency
– Temporary view and memory may differ

• Flush operation
– Moves data between threads
– Write makes temporary view “dirty”
– Flush makes temporary view “empty”

196

Backup material
• History
• Foundations of OpenMP
• Memory Models and the Infamous

Flush
• Performance optimization in OpenMP
• The future of OpenMP

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

99

197

Performance & Scalability Hindrances
• Too fine grained

– Symptom: high overhead
– Caused by: Small parallel/critical

• Overly synchronized
– Symptom: high overhead
– Caused by: large synchronized sections
– Dependencies real?

• Load Imbalance
– Symptom: large wait times
– Caused by: uneven work distribution

198

Hindrances (continued)
• True sharing

– Symptom: cache ping ponging, serial region
“cost” changes with number of threads.

– Is parallelism worth it?
• False sharing

– Symptom: cache ping ponging
• Hardware/OS cannot support

– No visible timer-based symptoms
– Hardware counters
– Thread migration/affinity
– Enough bandwidth?

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

100

199

Performance Tuning
• To tune performance, break all the good software

engineering rules (I.e. stop being so portable).
• Step 1

– Know your application
– For best performance, also know your compiler,

performance tool, and hardware
• The safest pragma to use is:

– parallel do/for
• Everything else is risky!

– Necessary evils
• So how do you pick which constructs to use?

200

Understand the Overheads!
Note: all numbers are approximate!

Linear500-1000Parallel

Log, linear200-500Barrier

Constant100-200Static do/for, no barrier

Constant1-10Hit L1 cache

5000-10000

1000-2000

100-300

100-300

50-100

10-50

10-20

Minimum overhead
(cycles)

Depends on contentionOrdered

Depends on contentionDynamic do/for, no barrier

Depends on contentionLock acquisition

ConstantMiss all caches

ConstantInteger divide

Constant, log, linearThread ID

ConstantFunction call

ScalabilityOperation

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

101

201

Parallelism worth it?
• When would parallelizing this loop help?
DO I = 1, N

A(I) = 0
ENDDO

• Unless you are very careful, not usually
• Some issues to consider

– Number of threads/processors being used
– Bandwidth of the memory system
– Value of N

• Very large N, so A is not cache contained
– Placement of Object A

• If distributed onto different processor caches, or about to be
distributed

• On NUMA systems, when using first touch policy for placing
objects, to achieve a certain placement for object A

202

Too fine grained?

• When would parallelizing this loop help?
DO I = 1, N

SUM = SUM + A(I) * B(I)
ENDDO

• Know your compiler!
• Some issues to consider

– # of threads/processors being used
– How are reductions implemented?

• Atomic, critical, expanded scalar, logarithmic
– All the issues from the previous slide about

existing distribution of A and B

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

102

203

Tuning: Load Balancing

• Notorious problem for triangular loops
• OpenMP aware performance analysis tool

can usually pinpoint, but watch out for
“summary effects”

• Within a parallel do/for, use the schedule
clause
– Remember, dynamic much more expensive

than static
– Chunked static can be very effective for load

imbalance
• When dealing with consecutive do’s/for’s,

nowait can help, but be careful about
races

204

Load Imbalance: Thread Profiler*

* Thread Profiler is a performance analysis tool from Intel Corporation.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

103

205

Tuning: Critical Sections

• It often helps to chop up large critical
sections into finer, named ones

• Original Code
#pragma omp critical (foo)
{

update(a);
update(b);

}

• Transformed Code
#pragma omp critical (foo_a)

update(a);
#pragma omp critical (foo_b)

update(b);

• Still need to avoid wait at first critical!

206

Tuning: Locks Instead of Critical
• Original Code

#pragma omp critical
for(i=0; i<n; i++)

{
a[i] = …
b[i] = …
c[i] = …

}

• Idea: cycle through
different parts of the
array using locks!

• Transformed Code
jstart = omp_get_thread_num();
for(k = 0; k < nlocks; k++)
{
j = (jstart + k) % nlocks;
omp_set_lock(lck[j]);
for(i=lb[j]; i<ub[j]; i++)

{
a[i] = …
b[i] = …
c[i] = …

}
omp_unset_lock(lck[j]);

}

• Adapt to your situation

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

104

207

Tuning: Eliminate Implicit Barriers

• Work-sharing constructs have implicit
barrier at end

• When consecutive work-sharing
constructs modify (& use) different objects,
the barrier in the middle can be eliminated

• When same object modified (or used),
barrier can be safely removed if iteration
spaces align

208

Cache Ping Ponging: Varying
Times for Sequential Regions

• Picture shows three runs
of same program (4, 2, 1
threaded)

• Each set of three bars is
a serial region

• Why does runtime
change for serial regions?
– No reason pinpointed

• Time to think!
– Thread migration
– Data migration
– Overhead?

R
un

 T
im

e

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

105

209

Limits: system or tool?
• Picture shows three runs

of same program (4, 2, 1
threaded)

• Each set of three bars is a
parallel region

• Some regions don’t scale
well
– The collected data does not

pinpoint why

• Thread migration or data
migration or some system
limit?

• Understand
Hardware/OS/Tool limits!
– Your performance tool
– Your system

R
un

 T
im

e

210

Performance Optimization Summary

• Getting maximal performance is difficult
• Far too many things can go wrong

• Must understand entire tool chain
– application
– hardware
– O/S
– compiler
– performance analysis tool

• With this understanding, it is possible to get
good performance

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

106

211

Backup material
• History
• Foundations of OpenMP
• Memory Models and the Infamous

Flush
• Performance optimization in OpenMP
• The future of OpenMP

212

OpenMP’s future

• OpenMP is great for array parallelism on
shared memory machines.

• But it needs to do so much more:
• Recursive algorithms.
• More flexible iterative control structures.
• More control over its interaction with the runtime

environment
• NUMA
• Constructs that work with semi-automatic

parallelizing compilers
… and much more

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

107

213

While workshare Construct
• Share the iterations from a while loop

among a team of threads.
• Proposal from Paul Petersen of Intel Corp.

int i;
#pragma omp parallel while
while(i<Last){

… Independent loop iterations
}

214

Automatic Data Scoping
• Create a standard way to ask the compiler to

figure out data scooping.
• When in doubt, the compiler serializes the

construct

int j; double x, result[COUNT];
#pragma omp parallel for automatic
for (j=0; j<COUNT; j++){

x = bigCalc(j);

res[j] = hugeCalc(x);
}

Ask the compiler
to figure out that

“x” should be
private.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

108

215

OpenMP Enhancements :
How should we move OpenMP beyond SMP?
• OpenMP is inherently an SMP model, but all

shared memory vendors build NUMA and DVSM
machines.

• What should we do?
• Add HPF-like data distribution.
• Work with thread affinity, clever page migration

and a smart OS.
• Give up?

We have lots of ideas, but we are not making
progress towards a consensus view.

This is VERY hard.

216

OpenMP Enhancements :
OpenMP must be more modular

• Define how OpenMP Interfaces to
“other stuff”:

• How can an OpenMP program work with components
implemented with OpenMP?

• How can OpenMP work with other thread
environments?

• Support library writers:
• OpenMP needs an analog to MPI’s contexts.

We don’t have any solid proposals on the table
to deal with these problems.

The OpenMP API for Multithreaded Programming

SC’05 OpenMP Tutorial

109

217

Other features under consideration
• Error reporting in OpenMP

– OpenMP assumes all constructs work. But real
programs need to be able to deal with constructs that
break.

• Parallelizing loop nests
– People now combine nested loops into a super-loop

by hand. Why not let a compiler do this?
• Extensions to Data environment clauses

– Automatic data scoping
– Default(mixed) to make scalars private and arrays

shared.
• Iteration driven scheduling

– Pass a vector of block sizes to support non-
homogeneous partitioning

… and many more

