
OMPT and OMPD: OpenMP Tools Application Programming

Interfaces for Performance Analysis and Debugging

Alexandre Eichenberger∗, John Mellor-Crummey†, Martin Schulz‡,

Nawal Copty§, John DelSignore¶, Robert Dietrich‖, Xu Liu∗∗, Eugene Loh††, Daniel Lorenz‡‡,
and other members of the OpenMP Tools Working Group

April 24, 2013

1 Introduction

To enable portable tools for performance analysis and debugging of OpenMP programs, we define an appli-
cation programming interface (API) for tools that we propose for adoption as part of the OpenMP standard
and supported by all OpenMP compliant implementation.

There are two parts to the proposed interface: OMPT—a first-party API for performance tools, and
OMPD—a shared-library plugin for debuggers that enables a debugger to inspect and control execution of
an OpenMP program.

1.1 OMPT

The design of OMPT is based on experience with two prior efforts to define a standard OpenMP tools
API: the POMP API [5] and the Sun/Oracle Collector API [3, 4]. POMP is geared toward trace-based
measurements, which has the shortcoming that its overhead can be significant because operations to be
traced, e.g., an iteration of an OpenMP work-sharing loop, can take less time than recording an event in
a trace. As an alternative to POMP’s trace-based approach, the Sun/Oracle Collector API was designed
primarily to support measurement and attribution of performance information using asynchronous sampling
of call stacks. This sampling-based design enables construction of tools that attribute costs to full calling
contexts without the drawbacks of tracing; namely, tools can record compact profiles with low runtime
overhead. However, not all events can be traced prohibiting the implementation of subset of tools, such as
trace analyzers or verification tools. OMPT builds on ideas of both POMP and the Sun/Oracle collector
API to support asynchronous sampling and optional trace event generation and extends them with support
for blame shifting [7, 8] which shifts attribution of costs from symptoms to causes. The OMPT interface can
be implemented either in entirely in the compiler or entirely the OpenMP runtime system, as well as using
a hybrid compiler/runtime option.

Most routines described in the OMPT API are intended only for use by tools rather than for direct use
by applications. As a result, all OMPT API functions have a C binding only. A Fortran binding is provided
only for a few application-facing inquiry and control functions, described in Section 6.
∗IBM T.J. Watson Research Center
†Rice University
‡LLNL
§Oracle
¶Rogue Wave
‖TU Dresden, ZIH
∗∗Rice University
††Oracle
‡‡Juelich Supercomputer Center

1

1.1.1 OMPT Design Objectives

OMPT tries to satisfy several design objectives for a performance tool interface for OpenMP. These objectives
are listed in decreasing order of importance.

• The API should enable tools to gather sufficient information about an an OpenMP program executing
under control of an OpenMP runtime system to associate costs with the program and the runtime
system.

– The API should provide an interface sufficient to construct low-overhead performance tools based
on asynchronous sampling.

– The API should enable a profiler that uses call stack unwinding to identify which frames in its
call stack correspond to routines in the OpenMP runtime system.

– An OpenMP runtime system should associate the activity of a thread at any point in time with
a state, e.g., idle, which will enable a performance tool to interpret program execution behavior.

– Certain API routines must be defined as thread-safe so that they can be invoked in a signal
handler by a profiler as part of processing asynchronous events, e.g., handling sample events.

• Incorporating support for the API in an OpenMP runtime system should add negligible overhead to
an OpenMP runtime system if the interface is not in use by a tool.

• The API should define support for trace based performance tools.

• Adding the API to an OpenMP implementation must not impose an unreasonable development burden
on implementer.

• The API should not impose an unreasonable development burden on tool implementers.

1.1.2 OMPT Interface

To support the OMPT interface for tools, an OpenMP runtime system has two responsibilities: maintain
information about the state of each OpenMP thread and provide a set of API calls that tools can use to
interrogate the OpenMP runtime. Maintaining information about the state of each thread in the runtime
system is not free and thus an OpenMP runtime system need not maintain state information unless a tool
has registered itself, an environment variable directed the tool to track runtime state, or a debugger has
demanded that runtime state information be maintained. Without any explicit request for tool support to
be enabled, an OpenMP runtime need not maintain any information to support tools and may provide trivial
(and thus, perhaps useless) answers to any API queries.

1.2 OMPD

A common idiom has emerged to support the manipulation of a programming abstraction by debuggers: the
programming abstraction provides a plugin library that the debugger loads into its own address space. The
debugger then uses an API provided by the plugin library to inspect and manipulate state associated with
the programming abstraction in a target. The target may be a live process or a core file. Such plugin libraries
have been defined to support debugging of threads [6] and MPI [2]. A 2003 paper describes a previous effort
to define a debugging support library for OpenMP [1].

1.2.1 OMPD Design Objectives

The design for OMPD tries to satisfy several design objectives for a performance tool interface for OpenMP.
These objectives are listed in decreasing order of importance.

• The API should enable a debugger to inspect the state of a live process or a core file.

– The API should provide the debugger with third-party versions of the OpenMP runtime inquiry
functions.

2

– The API should provide the debugger with third-party versions of the OMPT inquiry functions.

• The API should facilitate interactive control of a live process in the following ways:

– Help a debugger place breakpoints to intercept the beginning and end of parallel regions and task
regions.

– Help a debugger identify the first program instruction that the OpenMP runtime will execute in
a parallel region or a task region so that it can set breakpoints inside the regions.

• Adding the API to an OpenMP implementation must not impose an unreasonable development burden
on implementer.

• The API should not impose an unreasonable development burden on tool implementers.

1.3 Document Roadmap

The document first outlines aspects of the OMPT tools API. Section 2 describes state information maintained
by the OpenMP runtime system for use by tools. Section 3 describes callback events for tools supported by
the OpenMP runtime system. Section 4 describes tool data structures. Section 5 describes runtime system
inquiry operations for tools. Section 6 describes runtime system inquiry and control operations available to
applications. Section 7 describes interfaces for tool initialization. Section 8 describes the OMPD interface,
which provides a superset of the first-party OMPT support, in the form of a debugger plugin that supports
third-party inspection and control of a target process. Section 9 describes global variables provided by the
OpenMP runtime to support OMPD.

2 Runtime State

To enable a tool to understand what an OpenMP thread is doing, when tools support has been turned on,
an OpenMP runtime will maintain state information for each OpenMP (master, worker, or idle) thread that
can be queried by a tool. The state maintained for each thread by the OpenMP runtime is an approximation
of the thread’s instantaneous state. When a thread not associated with the OpenMP runtime queries its
state, the runtime returns ompt_state_undefined.

To enable low overhead implementations, an OpenMP runtime has some flexibility as to if and when it
must report thread state transitions. For example, consider when a thread acquires a lock. One compliant
runtime may transition the thread state to ompt_state_wait_lock early before attempting to acquire a
lock. Another compliant runtime may transition a thread state to ompt_state_wait_lock late only if the
thread begins to spin or block to wait for an unavailable lock. A third compliant runtime may transition the
state to ompt_state_wait_lock even later - only after a thread waits for a significant amount of time.

Each thread maintains not only a state but also an ompt_wait_id_t identifier. When a thread is waiting
for a lock, critical region, ordered, or atomic, and the thread is in the corresponding wait state, then the
thread’s wait_id field must point to the lock, critical region identifier, or atomic variable upon which the
thread is waiting. A thread’s wait_id is meaningless if the thread is not in a wait state.

State values 0 to 127 are reserved for current OMPT states and future extensions.

I
¯
dle State

ompt_state_idle

A thread is idle while waiting to work on an OpenMP parallel region.

W
¯

ork States

ompt_state_work_serial

A thread executing “useful” work outside all parallel regions. Any thread in existence prior to OpenMP
initialization is initially reported in this state.

3

ompt_state_work_parallel

A thread executing “useful” work inside a parallel region.

ompt_state_work_reduction

A thread working to combine reduction results. A compliant runtime might never have a thread enter
this state; a thread performing a reduction is allowed to be in state ompt_state_work_parallel or
ompt_state_overhead.

W
¯

ait States (Non Mutex)

ompt_state_wait_barrier

A thread waiting at an (implicit/explicit) barrier construct. A compliant implementation may have a
thread enter this state early, when the thread encounters a barrier, or late, when the thread begins to
wait at the barrier.

ompt_state_wait_taskwait

A thread waiting at a taskwait construct. A compliant implementation may have a thread enter this
state early, when the thread encounters a taskwait construct, or late, when the thread begins to wait
for an uncompleted task.

ompt_state_wait_taskgroup

A thread waiting at a taskgroup construct. A compliant implementation may have a thread enter this
state early, when the thread encounters the end of a taskgroup construct, or late, when the thread
begins to wait for an uncompleted task.

W
¯

ait States (Mutex)

ompt_state_wait_lock (ompt_state_wait_nest_lock)

A thread waiting for a (nest) lock. A compliant implementation may have a thread enter this state
early, when a thread encounters a (nest) lock set routine, or late, when the thread begins to wait for
a (nest) lock.

Before a thread enters this state, the OpenMP runtime system will update the thread’s ompt_wait_id_t
field to contain the address of the (nest) lock being acquired.

ompt_state_wait_critical

A thread waiting to enter a critical construct. A compliant implementation may have a thread enter
this state early, when a thread encounters a critical construct, or late, when the thread begins to wait
to enter the critical construct. A compliant implementation may report a thread waiting to enter a
critical region as waiting for a lock associated with the region.

Before a thread enters this state, the OpenMP runtime system will update the thread’s ompt_wait_id_t
field to contain an address (e.g., a lock) associated with the critical region.

ompt_state_wait_atomic

A thread waiting to enter an atomic construct. A compliant implementation may have a thread enter
this state early, when encountering an atomic construct, or late, when the thread begins to wait to
enter the atomic construct. A compliant implementation may report waiting at an atomic region as
waiting for a corresponding lock. A compliant implementation may opt to not report this state, for
example, when using atomic hardware instructions.

Before a thread enters this state, the OpenMP runtime system will update the thread’s ompt_wait_id_t
field to contain the address of the atomic variable

4

ompt_state_wait_ordered

A thread waiting to enter an ordered construct. A compliant implementation may have a thread enter
this state early, when encountering an ordered construct, or late, when the thread begins to wait at
the ordered construct.

Before a thread enters this state, the OpenMP runtime system will update the thread’s ompt_wait_id_t
field to contain the address of a variable associated with the ordered construct. The variable may be
the parallel loop index variable or may be a distinct runtime internal variable.

O
¯

verhead State

ompt_state_overhead

A thread may report the overhead state while preparing for a parallel region, preparing for a new explicit
task, preparing for a worksharing region, preparing for computing loop iterations, or performing some
other work inside a parallel region. It is compliant to report some or all OpenMP runtime overhead as
work.

M
¯

iscellaneous States

ompt_state_undefined

This state is reserved for threads that are not user threads, initial threads, threads currently in an
OpenMP team, or threads waiting to become part of an OpenMP team.

ompt_state_first

This state is a placeholder exclusively reserved for use by the OMPT runtime call
ompt_enumerate_state (see Section 5.1), which can be used to query all available runtime states.
A thread will never be in this state as an OpenMP program executes.

ompt_state_last

This state is a placeholder exclusively reserved for use by the OMPT runtime call
ompt_enumerate_state (see Section 5.1), which can be used to query all available runtime states.
A thread will never be in this state as an OpenMP program executes.

3 Events

This section describes callback events that an OpenMP runtime may provide for use by a tool. Each callback
has a particular type signatures defined for it.

There are two classes of events: mandatory events and optional events. Mandatory events must be imple-
mented in any compliant runtimes implementations. Optional events are grouped in sets of related events.
While each event can be individually included or omitted, we encourage tools to consider implementing all
or none of the events in a given set.

A callback need not be registered for an event. An OpenMP runtime system will not make any callback
unless a tool has registered to receive it.

3.1 Mandatory Events

The following events are mandatory and must be supported by a compliant OpenMP runtime system.

5

T
¯

hreads

ompt_event_thread_create

The OpenMP runtime invokes this callback after a new thread is created and fully initialized but before
the thread is used by any OpenMP tasks. The callback executes in the execution environment of the
thread. This callback has type signature ompt_thread_callback_t.

ompt_event_thread_exit

If the thread’s ompt_thread_t value field is non-zero, the OpenMP runtime invokes this callback after
it completes of all its tasks and before the thread is destroyed. The callback executes in the execution
environment of the thread. This callback has type signature ompt_thread_callback_t.

P
¯

arallel Regions

ompt_event_parallel_create

The OpenMP runtime invokes this callback after the parallel region is fully initialized and before team
threads execute the parallel region work. The callback executes in the context of the parent thread.
This callback has type signature ompt_new_parallel_callback_t,

ompt_event_parallel_exit

The OpenMP runtime invokes this callback after the parallel region executes its closing synchronization
barrier and before resuming execution of the parent task. The callback executes in the context of the
parent thread. This callback has type signature ompt_new_parallel_callback_t.

T
¯

asks

ompt_event_task_create

The OpenMP runtime invokes this callback after the parent task creates a new explicit task and before
the new task or executes. The callback executes in the execution environment of the parent task. This
callback has type signature ompt_new_task_callback_t.

ompt_event_task_exit

If the task’s ompt_data_t value field is non-zero, the OpenMP runtime invokes this callback after the
explicit task completes and before the thread resumes execution of another task. The callback executes
in the execution environment of an unspecified ancestor task; its task_data parameter points to the
ompt_data_t structure of the exited task. This callback has type signature ompt_task_callback_t.

A
¯

pplication Tool Control

ompt_event_control

If the user program calls ompt_control, the OpenMP runtime invokes this callback. The callback
executes in the environment of the user control call; the parameters for the callback are the ones
passed by the user to ompt_control. This callback has type signature ompt_control_callback_t.

T
¯

ermination

ompt_event_runtime_shutdown

The OpenMP runtime system invokes this callback before it shut down the runtime system. This
callback allows the tool to clean up its state and report its data as needed. It is possible for a runtime
to restart at some later time, in which case it may call the initializer callback again. This callback has
type signature ompt_callback_t.

6

3.2 Optional Events

This section describes two sets of events. One set of events is used by sampling-based performance tools
that employ a strategy known as blame shifting to attribute waiting to activity in contexts that cause other
threads to wait rather than the contexts in which the waiting is observed.

Supporting any of the events in this section is optional for a compliant OpenMP runtime system.

3.2.1 Events for Blame Shifting

This section describes synchronous events used by sampling-based performance tools that employ ’blame
shifting’ to transfer blame for waiting from contexts where waiting is observed to code responsible for the
waiting.1 Using these callbacks, a tool employing blame shifting can attribute time a thread spends waiting
for a lock to the context of the lock holder. Similarly, time threads spend waiting at a barrier can be
attributed back to to code being executed by working threads while other threads wait.

I
¯
dle State Entry/Exit

ompt_event_idle_begin

The OpenMP runtime invokes this callback when starting to idle outside a parallel region.
The callback executes in the environment of the thread. If this callback is registered, the
callback for ompt_event_idle_end must also be registered. This callback has type signature
ompt_thread_callback_t.

ompt_event_idle_end

The OpenMP runtime invokes this callback when a thread finishes idling outside a parallel re-
gion. The callback executes in the environment of the thread. If this callback is registered, the
callback for ompt_event_idle_begin must also be registered. This callback has type signature
ompt_thread_callback_t.

B
¯

arrier Idling

ompt_event_wait_barrier_begin

The OpenMP runtime invokes this callback when a thread starts to wait at a barrier. One barrier
may generate multiple pairs of barrier begin and end callbacks, e.g., if waiting at the barrier occurs in
multiple stages. The callback executes in the environment of the task. If this callback is registered, the
callback for ompt_event_wait_barrier_end must also be registered. This callback has type signature
ompt_parallel_callback_t.

ompt_event_wait_barrier_end

The OpenMP runtime invokes this callback when a thread finishes waiting at a barrier. One barrier
may generate multiple pairs of barrier begin and end callbacks, e.g., if waiting at the barrier occurs in
multiple stages. The callback executes in the environment of the task. If this callback is registered,
the callback for ompt_event_wait_barrier_begin must also be registered. This callback has type
signature ompt_parallel_callback_t.

T
¯

askwait Idling

ompt_event_wait_taskwait_begin

The OpenMP runtime invokes this callback when a thread starts to wait at a taskwait. One taskwait
may generate multiple pairs of taskwait begin and end callbacks. This callback executes in the envi-
ronment of the task. If this callback is defined, the callback for ompt_event_wait_taskwait_end must
also be defined. This callback has type signature ompt_parallel_callback_t.

1Blame shifting has previously been demonstrated to be effective for attributing costs associated with threads idling while
waiting to steal work in a work-stealing runtime [7], and spin waiting to acquire a lock [8]

7

ompt_event_wait_taskwait_end

The OpenMP runtime invokes this callback when a task finishes waiting at a taskwait. One taskwait
may generate multiple pairs of taskwait begin and end callbacks. This callback executes in the envi-
ronment of the task. If this callback is defined, the callback for ompt_event_wait_taskwait_begin
must also be defined. This callback has type signature ompt_parallel_callback_t.

T
¯

askgroup Idling

ompt_event_wait_taskgroup_begin The OpenMP runtime invokes this callback when a task starts to
wait at a taskgroup. One taskgroup may generate multiple pairs of taskgroup begin and end call-
backs. This callback executes in the environment of the task. If this callback is defined, the call-
back for ompt_event_wait_taskgroup_end must also be defined. This callback has type signature
ompt_parallel_callback_t.

ompt_event_wait_taskgroup_end

The OpenMP runtime invokes this callback when a task finishes waiting as a taskgroup ends.
One taskgroup may generate multiple pairs of taskgroup begin and end callbacks. This call-
back executes in the environment of the task. If this callback is registered, the callback for
ompt_event_wait_taskgroup_begin must also be registered. This callback has type signature
ompt_parallel_callback_t.

L
¯

ock Release

ompt_event_release_lock

The OpenMP runtime system invokes this callback after a task releases a lock. This callback executes
in the environment of the task; its wait_id parameter identifies the released lock. This callback has
type signature ompt_wait_callback_t.

ompt_event_release_nest_lock_last

The OpenMP runtime invokes this callback for certain releases of a nest lock. If a task acquires a
nest lock n times, this callback occurs only after the nth release. The inner n-1 releases are han-
dled by ompt_event_release_nest_lock_prev events. This callback executes in the environment of
the task; its wait_id parameter identifies the nest lock released. This callback has type signature
ompt_wait_callback_t.

C
¯

ritical Release

ompt_event_release_critical

The OpenMP runtime system invokes this callback after a task exits a critical region. This callback
executes in the environment of the task; its wait_id parameter identifies the critical region being
exited. This callback has type signature ompt_wait_callback_t.

O
¯

rdered Release

ompt_event_release_ordered

The OpenMP runtime system invokes this callback after a task completes an ordered region. This
callback executes in the environment of the task; its wait_id parameter identifies a variable associated
with the ordered construct. This callback has type signature ompt_wait_callback_t.

8

A
¯

tomic Release

ompt_event_release_atomic

The OpenMP runtime system invokes this callback after a task completes an atomic region. This
callback executes in the environment of the task; its wait_id parameter identifies the atomic data
being computed upon.

If an atomic block is implemented using a hardware instruction, then an OpenMP runtime may choose
to never report this event. However, if an atomic region is implemented using any mechanism that
might involve spinning in software, then an OpenMP runtime developer should consider reporting this
event if the time or effort a thread invests in waiting or retries exceeds a constant threshold defined
by the developer. Examples of spinning in software include spin waiting on a critical section used to
implement atomics, or retrying atomic operations implemented using hardware primitives that may fail.
Examples of hardware primitives that could fail with explicit retries in software include transactional
instructions, load-linked/store-conditional, and compare-and-swap.

This callback has type signature ompt_wait_callback_t.

3.2.2 Events for Trace-based Measurement Tools

The following are synchronous events to support trace-based measurement of tasks.

T
¯

ask Creation and Destruction

ompt_event_implicit_task_create

The OpenMP runtime system invokes this callback, after an implicit task is fully initialized and before
the task executes its work. This callback executes in the context of the implicit task. This callback
has type signature ompt_parallel_callback_t.

ompt_event_implicit_task_exit

If the implicit task’s ompt_data_t value field is non-zero, the OpenMP runtime system invokes this
callback, which has type signature ompt_parallel_callback_t, after the implicit task executes its
closing synchronization barrier, and before returning to idle or the task is destroyed. The callback
executes in the context of the implicit task.

ompt_event_task_switch

The OpenMP runtime system invokes this callback after it suspends one task and before it resumes
another task. This callback has type signature ompt_task_switch_callback_t. This callback executes
in the environment of the resumed task. If the suspended task actually completed and its data structure
was deallocated, the suspended_task_data parameter is NULL.

L
¯

ock Creation and Destruction

ompt_event_init_lock (ompt_event_init_nest_lock)

The OpenMP runtime system invokes this callback just after this task initializes the (nest) lock. This
callback executes in the environment of the task; its wait_id parameter identifies the lock. This
callback has type signature ompt_wait_callback_t.

ompt_event_destroy_lock (ompt_event_destroy_nest_lock)

The OpenMP runtime system invokes this callback just before this task destroys the (nest) lock. This
callback executes in the environment of the task; its wait_id parameter identifies the lock. This
callback has type signature ompt_wait_callback_t.

9

L
¯

oops

ompt_event_loop_begin

The OpenMP runtime system invokes this callback after the parallel loop is initialized for this thread
and before this thread executes a first loop iteration. This callback executes in the context of the task.
This callback has type signature ompt_parallel_callback_t.

ompt_event_loop_end

The OpenMP runtime system invokes this callback after the last loop iteration for this thread ex-
ecutes and before this thread executes the loop barrier (wait) or the statement following the loop
(nowait). This callback executes in the context of the task. This callback has type signature
ompt_parallel_callback_t.

S
¯
ections

ompt_event_section_begin

The OpenMP runtime system invokes this callback after a parallel section is initialized for this thread
and before this thread executes a first section. This callback executes in the context of the task. This
callback has type signature ompt_parallel_callback_t.

ompt_event_section_end

The OpenMP runtime system invokes this callback after the last section for this thread is executed
and before this thread executes the section barrier (wait) or the statement following the section con-
struct (nowait). This callback executes in the context of the task. This callback has type signature
ompt_parallel_callback_t.

S
¯
ingle Blocks

ompt_event_single_in_block_begin

The OpenMP runtime system invokes this callback after the single construct is initialized for this
thread and before this thread executes the code block of the single region. This callback executes in
the context of the task. This callback has type signature ompt_parallel_callback_t.

ompt_event_single_in_block_end

The OpenMP runtime system invokes this callback after this thread executes the code code block of
the single region and before this thread executes the single barrier (wait) or the statement following
the single construct (nowait). This callback executes in the context of the task. This callback has type
signature ompt_parallel_callback_t.

ompt_event_single_others_begin

The OpenMP runtime system invokes this callback after the single construct is initialized for this
thread and before this thread would have executed the code block of the single region if this thread
had been selected. This callback executes in the context of the task. This callback has type signature
ompt_parallel_callback_t.

ompt_event_single_others_end

The OpenMP runtime system invokes this callback after this thread would have executed the code
block of the single region if this thread had been selected and before this thread executes the single
barrier (wait) or the statement following the single construct (nowait). This callback executes in the
context of the task. This callback has type signature ompt_parallel_callback_t.

10

M
¯

aster Blocks

ompt_event_master_begin

The OpenMP runtime system invokes this callback after the master section is initialized for this thread
and before this thread executes the master code. This callback executes in the context of the master
task. This callback has type signature ompt_parallel_callback_t.

ompt_event_master_end

The OpenMP runtime system invokes this callback after the master code is executed and before this
thread executes the statement following the master construct. This callback executes in the context of
the task. This callback has type signature ompt_parallel_callback_t.

B
¯

arriers

ompt_event_barrier_begin

The OpenMP runtime system invokes this callback before this thread starts executing the barrier
construct. This callback executes in the context of the task. This callback has type signature
ompt_parallel_callback_t.

ompt_event_barrier_end

The OpenMP runtime system invokes this callback after this thread completes executing the bar-
rier construct. This callback executes in the context of the task. This callback has type signature
ompt_parallel_callback_t.

T
¯

askwait

ompt_event_taskwait_begin

The OpenMP runtime system invokes this callback before this thread starts executing the taskwait
construct. This callback executes in the context of the task. This callback has type signature
ompt_parallel_callback_t.

ompt_event_taskwait_end

The OpenMP runtime system invokes this callback after this thread completes executing the taskwait
construct. This callback executes in the context of the task. This callback has type signature
ompt_parallel_callback_t.

T
¯

askgroup

ompt_event_taskgroup_begin

The OpenMP runtime system invokes this callback before this thread starts executing the taskgroup
construct. This callback executes in the context of the task. This callback has type signature
ompt_parallel_callback_t.

ompt_event_taskgroup_end

The OpenMP runtime system invokes this callback after this thread completes executing the taskgroup
construct. This callback executes in the context of the task. This callback has type signature
ompt_parallel_callback_t.

11

L
¯

ocks

ompt_event_wait_lock

The OpenMP runtime system invokes this callback if this task enters the ompt_state_wait_lock
(ompt_state_wait_nest_lock) state. This callback executes in the environment of the task; its
wait_id parameter identifies the (nest) lock. This callback has type signature ompt_wait_callback_t.

ompt_event_acquired_lock

The OpenMP runtime system invokes this callback just after this task acquires the lock. This callback
executes in the environment of the task; its wait_id parameter identifies the lock. This callback has
type signature ompt_wait_callback_t.

N
¯

est Locks

ompt_event_wait_nest_lock

The OpenMP runtime system invokes this callback if this task enters the ompt_state_wait_lock
(ompt_state_wait_nest_lock) state. This callback executes in the environment of the task; its
wait_id parameter identifies the (nest) lock. This callback has type signature ompt_wait_callback_t.

ompt_event_acquired_nest_lock_first

The OpenMP runtime system invokes this callback just after this task acquires a nest lock for the first
time. This callback executes in the environment of the task; its wait_id parameter identifies the nest
lock. This callback has type signature ompt_wait_callback_t.

ompt_event_release_nest_lock_prev

The OpenMP runtime system invokes this callback after a nest lock has been released but is still owned
by this task. If a nest lock was acquired n times by the same task, this callback occurs for the inner
n-1 releases. The nth release is handled by the ompt_event_release_nest_lock_last event. This
callback executes in the environment of the task; its wait_id parameter identifies the released nest
lock. This callback has type signature ompt_wait_callback_t.

ompt_event_acquired_nest_lock_next

The OpenMP runtime system invokes this callback just after this task acquires the nest lock that
was already owed by this task. This callback executes in the environment of the task; its wait_id
parameter identifies the nest lock. This callback has type signature ompt_wait_callback_t.

C
¯

ritical Sections

ompt_event_wait_critical

The OpenMP runtime system invokes this callback if this task enters the ompt_state_wait_critical
state. This callback executes in the environment of the task; its wait_id parameter identifies the
critical region being entered. This callback has type signature ompt_wait_callback_t.

ompt_event_acquired_critical

The OpenMP runtime system invokes this callback just after this task enters the critical region. This
callback executes in the environment of the task; its wait_id parameter identifies the critical region
being entered. This callback has type signature ompt_wait_callback_t.

12

O
¯

rdered Sections

ompt_event_wait_ordered

The OpenMP runtime system invokes this callback if this task enters the ompt_state_wait_ordered
state. This callback executes in the environment of the task; its wait_id parameter identifies a variable
associated with the ordered construct. This callback has type signature ompt_wait_callback_t.

ompt_event_acquired_ordered

The OpenMP runtime system invokes this callback just after this task enters the ordered region. This
callback executes in the environment of the task; its wait_id parameter identifies a variable associated
with the ordered construct. This callback has type signature ompt_wait_callback_t.

A
¯

tomic Blocks

ompt_event_wait_atomic

The OpenMP runtime system invokes this callback if this task enters the ompt_state_wait_atomic
state. This callback executes in the environment of the task; its wait_id parameter identifies the
atomic data being computed upon. This callback has type signature ompt_wait_callback_t.

ompt_event_acquired_atomic

The OpenMP runtime system invokes this callback just after this task enters the atomic region. This
callback executes in the environment of the task; its wait_id parameter identifies the atomic data
being computed upon. This callback has type signature ompt_wait_callback_t.

M
¯

iscellaneous

ompt_event_flush

The OpenMP runtime system invokes this callback just after performing a flush operation. This call-
back executes in the environment of the task. This callback has type signature ompt_thread_callback_t.

4 Tool Data Structures

4.1 Thread and Task Data

Each OpenMP thread and task instance provides an ompt_data_t data structure, which is a union of an
integer and a pointer.

typedef union ompt_data_u {
uint64_t value; /* data under tool control */
void *ptr; /* pointer under tool control */

} ompt_data_t;

The lifetime of the structure begins when a thread/task instance is created and ends when the instance is
destroyed. While the value of a structure is preserved over the lifetime of the thread or task with which it
is associated, tools should not assume that the address of an ompt_data_t structure remains constant over
its lifetime.

When a thread/task instance is created, the callback associated with event creation must initialize the
ompt_data_t structure. If there is no callback associated with this event, the OpenMP runtime initializes the
structure value field to 0. The address of the ompt_data_t structure is passed to callbacks associated with
the creation/destruction of threads/tasks. The address of the structure can also be retrieved on demand,
e.g., by invoking an inquiry function in a signal handler.

If the ompt_data_t value field is 0 for a thread or task at the point that an exit callback would be
made, the exit callback is not invoked. The tool is responsible for coordinating any concurrent accesses to
ompt_data_t structures.

13

4.2 Parallel Region Identifier

Each OpenMP parallel region instance has an associated ompt_parallel_id_t that uniquely identifies the
region instance.

typedef uint64_t ompt_parallel_id_t;

The ompt_parallel_id_t for a parallel region instance is unique across all instances of all parallel re-
gions. The value of this structure is defined when a parallel region instance is created and passed to
callbacks associated with creation/destruction of the parallel region instance. A parallel region’s ID can be
retrieved on demand, e.g., by invoking an inquiry function in a signal handler. Tools should not assume that
ompt_parallel_id_t values for adjacent region instances are consecutive.

4.3 Wait Identifier

Each thread instance provides a ompt_wait_id_t data structure, which identifies what caused a thread to
wait.

typedef uint64_t ompt_wait_id_t;

For example, when a thread is waiting for a lock, this structure identifies the address of the lock. This
structure is undefined when a thread is not in a wait state. The value of the ompt_wait_id_t structure is
passed to callbacks associated with wait events, and also can be retrieved on demand, e.g., by invoking an
inquiry function in a signal handler.

4.4 Pointers to Support Classification of Stack Frames

Each implicit or explicit task instance provides an ompt_frame_t data structure which contains pointers to
OpenMP runtime procedure frames that appear above and below procedure frames associated with user task
code.

typedef struct ompt_frame_s {
void *exit_runtime_frame; /* next frame is user code */
void *reenter_runtime_frame; /* previous frame is user code */

} ompt_frame_t;

The structure’s lifetime begins when a task instance is created and ends when the task instance is destroyed.
While the value of the structure is preserved over the lifetime of the task, tools should not assume that the
address of a structure remains constant over its lifetime. Frame data is passed to some callbacks; it can also
be retrieved for a task (e.g. by a signal handler). Frame data contains two components:

exit_runtime_frame This value is set once, the first time that a task exits the runtime to begin executing
user code. This field points to the stack frame of the runtime procedure that called the user code. This
value is NULL until just before the task exits the runtime.

reenter_runtime_frame This value is set each time that current task re-enters the runtime to create new
(implicit or explicit) tasks. This field points to the stack frame of the runtime procedure called by a
task to re-enter the runtime. This value is NULL until just after the task re-enters the runtime.

Advice to tool implementers: A monitoring tool using asynchronous sampling can observe values of
exit_runtime_frame and reenter_runtime_frame before they are set to non-NULL values while in the
runtime. Tools must be prepared to handle samples that occur in this brief window.

5 Inquiry Functions for Tools

Inquiry functions retrieve data from the execution environment for the tools. All inquiry functions are async
signal safe.

14

exit / reentry reentry = null reentry = defined
exit = null case 1) initial task in user code

case 2) explicit task that is cre-
ated but not yet scheduled

initial task in runtime because of
a parallel region or a task creation

exit = defined non-initial task in user code non-initial task in runtime be-
cause of a parallel region or a task
creation

Table 1: Meaning of various values for exit runtime frame and reenter runtime frame.

5.1 Enumerate States Supported by an OpenMP Runtime

An OpenMP runtime system is allowed to support other states in addition to those described herein. For
instance, a particular runtime system may want to provide finer-grain information about the nature of
runtime overhead, e.g., to differentiate between the overhead associated with setting up a parallel region and
the overhead associated with setting up a task. Further, a tool may not report all states defined herein, e.g.,
if state tracking for a particular state would be too expensive. To enable a tool to identify all states that an
OpenMP runtime system implements, OMPT provides the following interface for enumerating all possibly
reported runtime states.

_OMP_EXTERN int ompt_enumerate_state(
int current_state,
int *next_state,
const char **next_state_name

);

When this interface is invoked for the first time, the value ompt_state_first should be supplied for
current_state. The argument next_state is a pointer to an integer that will be set to the code for the next
state in the enumeration. The argument next_state_name is a pointer to a location that will be filled in with
a pointer to the name associated with next_state. Subsequent invocations of ompt_enumerate_state should
pass the code returned in next_state by the prior call. The enumeration is complete when ompt_state_last
is returned in next_state. The canonical way to enumerate the states supported by an OpenMP runtime
system is shown below:

int state;
const char *state_name;
for (int ok = ompt_enumerate_state(ompt_state_first, &state, &state_name);

ok && state != ompt_state_last;
ompt_enumerate_state(state, &state, &state_name)) {

// tool notes that the runtime supports ompt_state_t "state"
// associated with "state_name"

}

5.2 Thread Data Inquiry

Function ompt_get_thread_data is an inquiry function to access data stored by the OpenMP runtime
system for the current thread for use by a tool.

_OMP_EXTERN ompt_data_t *ompt_get_thread_data(void);

This inquiry function returns NULL prior to OpenMP initialization or when no tool is attached to the
runtime. This function is async signal safe.

15

ancestor level value meaning
0 current parallel region
1 parallel region directly enclosing region at ancestor level 0
2 parallel region directly enclosing region at ancestor level 1
...

Table 2: Meaning of different values for the ancestor level argument to ompt get parallel function.

5.3 Thread State Inquiry

Function ompt_get_state is the inquiry function to determine the state of the current thread.

_OMP_EXTERN ompt_state_t ompt_get_state(
ompt_wait_id_t *wait_id

);

The location specified by wait_id is updated point to the wait identifier associated with the current state,
if any, or NULL otherwise. This function returns ompt_state_undefined prior to OpenMP initialization or
when no tool is attached to the runtime. This function is async signal safe.

5.4 Parallel Region Inquiry

The OMPT interface defines two inquiry functions to access data stored by the OpenMP runtime for parallel
regions. The first, ompt_get_parallel_id, returns the unique parallel id associated with this instance of
the parallel region:

_OMP_EXTERN ompt_parallel_id_t ompt_get_parallel_id(
int ancestor_level

);

Outside a parallel region, ompt_get_parallel_id should return 0. If a thread is in the idle state, then
ompt_get_parallel_id should return 0. In all other cases, the thread should return the state of the
enclosing parallel region, even if the thread is waiting at a barrier.

The second, ompt_get_parallel_function, returns a pointer to the compiler generated function used
by the OpenMP runtime to encapsulate the code of the parallel region, if any, and NULL otherwise.

_OMP_EXTERN void *ompt_get_parallel_function(
int ancestor_level

);

Both of the functions take an ancestor level as an argument. By specifying different values for ancestor level,
one can access information about each parallel region, even if parallel regions are nested. The meaning of
different values for the ancestor_level argument to ompt_get_parallel_function is given in Table 2.

These functions return the value 0 when requesting higher levels of ancestry than available, prior to
OpenMP initialization, or when no tool is attached to the OpenMP runtime. These functions are async
signal safe.

5.5 Task Region Inquiry

The OMPT interface defines three inquiry functions to access data stored by the OpenMP runtime for
task regions. Function ompt_get_task_data returns the tool data associated with a given task. Function
ompt_get_task_frame returns the tool frame associated with a given task.

_OMP_EXTERN ompt_data_t *ompt_get_task_data(
int ancestor_level

);

16

ancestor level value meaning
0 current task
1 direct parent of task at ancestor level 0
2 direct parent of task at ancestor level 1
...

Table 3: Meaning of different values for the ancestor level argument to ompt get task function.

_OMP_EXTERN ompt_frame_t *ompt_get_task_frame(
int ancestor_level

);

The value returned by the ompt_get_task_function indicates the compiler-generated function used by the
OpenMP runtime to encapsulate the code of the task construct, if any, and NULL otherwise.

_OMP_EXTERN void *ompt_get_task_function(
int ancestor_level

);

The meaning of different values for the ancestor_level argument to ompt_get_task_function is given
in Table ??.

These functions return the value 0 when requesting higher levels of ancestry than available, prior to
OpenMP initialization, or when no tool is attached to the OpenMP runtime. These functions are async
signal safe.

5.6 Tool Support Version Inquiry

The function ompt_get_ompt_version returns the version of the OMPT interface supported by the runtime.

_OMP_EXTERN int ompt_get_ompt_version(void);

The version of OMPT described by this document is known as version 1.

6 Inquiry and Control Functions for Applications

The functions described in this section are the only ones with a Fortran interface in addition to a C/C++
interface.

6.1 Runtime Version Inquiry

The function ompt_get_runtime_version, with the type signature shown below

_OMP_EXTERN int ompt_get_runtime_version(char *buffer, int length);

fills buffer with a version-specific string of at most length characters. The suggested format is

<vendor>-<major version number>.<minor version number>[-<optional feature]*

Namely, a vendor name, major and minor version numbers, and, optionally, a list of zero or more features,
separated by dashes. As an example, IBM’s OpenMP runtime might return the following version string “
IBM-1.1-core=1-blame=1-trace=0”, indicating that IBM’s OpenMP runtime supports the OMPT tools API
core augmented with support for blame shifting, but not support for detailed tracing.

17

6.2 Tool Control

The function ompt_control can be called by an application to pass control information to a tool. The
signature for this function is shown below:

_OMP_EXTERN void ompt_control(uint64_t command, uint64_t modifier);

A classic use case for the ompt_control routine might be for an application to start and stop data collection
by a tool.

7 Initializing OMPT Support for Tools

An OpenMP runtime need not maintain information to support tools and may provide trivial (and thus,
perhaps useless) answers in response to invocations of any API inquiry functions. Section 7.1 describes
normal initialization for a tool. Section 7.2 describes environment variable control over tool initialization.
Section 8.11 describes a tool initialization API for a debugger.

7.1 Initialization of a Tool

A tool must register itself with an OpenMP runtime system and then specify callbacks for events of interest.
Section 7.1.1 describes the initializer for a tool. Section 7.1.2 describes registration of callbacks for OMPT
events.

7.1.1 Initializer for a Full-featured Tool

A tool must register itself with an OpenMP runtime by overriding the following weak symbol:

_OMP_EXTERN int ompt_initialize(void);

The role of ompt_initialize is to register callbacks for specific events, e.g., creating a parallel region. A tool
must register a callback for every event of interest using ompt_set_callback, as described in Section 7.1.2.
The OpenMP runtime system defines a weak symbol version of ompt_initialize that returns 0; a tool-
provided version must return 1.

Since only one tool-provided definition of ompt_initialize will be seen by an OpenMP runtime, only one
tool can be registered. Ordinarily, ompt_initialize will be invoked by an OpenMP runtime immediately
after the runtime initializes itself.

An OpenMP runtime system may allow registration of a tool after initialization of the OpenMP runtime
at a clean point. An OpenMP runtime is said to be at a clean point when no pthread is inside a parallel
region. An OpenMP runtime system will not necessarily attempt to register a tool at a clean point unless a
debugger has previously called ompd_enable(true) as described in Section 8.11.

After a process fork, if OpenMP is re-initialized in the child process, the OpenMP runtime system in the
child process will call ompt_initialize under the same conditions as it would for any process.

7.1.2 Callback Registration for a Full-featured Tool

Full-featured tools register callbacks to receive notification of various events that occur as an OpenMP
program executes. A tool uses ompt_set_callback to register callback functions.

_OMP_EXTERN int ompt_set_callback(
ompt_event_t event,
ompt_callback_t callback

);

The function ompt_set_callback may only be called within the implementation of ompt_initialize pro-
vided by a tool, as described in Section 7.1.1 The possible return codes for ompt_set_callback and their
meaning is shown in Table 3. Registration of supported callbacks may fail if this function is called outside

18

return code meaning
0 event may occur; no callback is possible
1 event will never occur in runtime
2 event may occur; callback invoked when convenient
3 event may occur; callback always invoked when event occurs

Table 4: Meaning of return codes for ompt set callback.

OMPT_INITIALIZE value action
undefined ompt_initialize is called after the OpenMP runtime initializes itself. If

the return value from ompt_initialize is non-zero, the OpenMP runtime
must maintain runtime state information for each OpenMP thread and
appropriately respond to any invocations of the inquiry API.

disable OMPT is disabled regardless of whether tools are present or not. The
OpenMP runtime is not required to maintain any information about thread
state and the runtime may supply trivial answers to any invocations of the
inquiry API.

false OMPT is disabled unless explicitly turned on by call to ompd_enable.
true ompt_initialize is called after the OpenMP runtime initializes itself. Re-

gardless of the return value from ompt_initialize, the OpenMP runtime
must maintain runtime state information for each OpenMP thread and
appropriately respond to any invocations of the inquiry API.

Table 5: OpenMP runtime responses to settings of the OMPT INITIALIZE environment variable.

ompt_initialize. The ompt_callback_t type for a callback does not reflect the actual signature of the
callback; OMPT uses this generic type to avoid the need to declare a separate registration function for each
actual callback type.

The function ompt_get_callback, as shown below, may be called at any time to inspect whether a
callback has been registered or not. If a callback has been registered, ompt_set_callback will return 1 and
set callback to the address of the callback function; otherwise, ompt_set_callback will return 0.

_OMP_EXTERN int ompt_get_callback(
ompt_event_t event,
ompt_callback_t *callback

);

7.2 An Environment Variable for Tool Initialization

The environment variable OMPT_INITIALIZE is used to control tool initialization. Table 4 describes actions
an OpenMP runtime system takes in response to various values of OMPT_INITIALIZE. Regardless of whether a
tool is present or not, setting OMPT_INITIALIZE=disable directs an OpenMP runtime to disable all support
for tools. Any full-featured tool present will not be initialized and the OpenMP runtime is neither required
to maintain any runtime thread state information nor respond to invocations of the OMPT inquiry API with
anything but trivial answers.

An OpenMP runtime will attempt to initialize a tool if OMPT_INITIALIZE is undefined or set to
true. In this case, the OpenMP runtime will maintain thread state information. If the OpenMP run-
time calls ompt_initialize, but no tool-provided version of ompt_initialize is present, a weak ver-
sion of ompt_initialize provided by the OpenMP runtime will return 0. If a tool-provided version of
ompt_initialize is present, it must return 1. Only if ompt_initialize returns 1 is the OpenMP runtime
obligated to invoke any event callbacks registered by ompt_initialize when appropriate.

If OMPT_INITIALIZE is set to disable or false, the OpenMP runtime will not call ompt_initialize
and attempt to initialize a tool.

19

If OMPT_INITIALIZE is set to false, all OMPT tool support for state tracking or callbacks will be disabled
unless a call to ompd_enable, described in Section 8.11, directs it to do otherwise. Behavior for any other
values of OMPT_INITIALIZE is unspecified.

8 OMPD: A Debugger Support Library

An OpenMP runtime system will provide a shared library that a debugger can load to help interpret the
state of the runtime in a live process or a core file.

If tool support has been enabled, the OpenMP runtime system will maintain information about
the state of each OpenMP thread. This includes ompt_state_t, ompt_wait_id_t, ompt_frame_t, and
ompt_parallel_id_t data structures.

8.1 Initialization

The OMPD debugger support library needs the debugger to provide a set of callback functions that enable
OMPD to manage memory in the debugger address space, look up sizes for primitive types in the target,
to look up symbols in the target, query information about structures in the target, as well as read/write
memory in the target. The OMPD library invokes the function ompd_initialize, passing a pointer to a
ompd_callbacks_t structure that the debugger will initialize for OMPD. The signature for the function is
shown below.

EXTERN ompt_rc_t ompd_initialize(
ompd_callbacks_t *data

);

The OMPD library may call ompd_initialize in a library initialization constructor. The type
ompd_target_t is defined in Appendix B.7.

8.2 Handle Management

Each OMPD call that is dependent on some context must provide this context via a handle. There are
handles for threads, parallel regions, and tasks. Handles are guaranteed to be constant for the duration of
the construct they represent. This section describes function interfaces for extracting handle information
from the OpenMP runtime system.

8.2.1 Thread Handles

Retrieve handles for all OpenMP threads. The ompd_get_threads operation enables the debugger to
obtain handles for all OpenMP threads. A successful invocation of ompd_get_threads returns a pointer to
a vector of handles in thread_handle_array and returns the number of handles in num_handles. This call
yields meaningful results only if all OpenMP threads are stopped; otherwise, the OpenMP runtime may be
creating and/or destroying threads during or after the call, rendering useless the vector of handles returned.

EXTERN ompd_rc_t ompd_get_threads(
ompd_context_t *context, /* debugger handle for the target */
ompd_thread_handle_t **thread_handle_array,
int *num_handles

);

Retrieve handles for OpenMP threads in a parallel region. The ompd_get_thread_in_parallel
operation enables the debugger to obtain handles for all OpenMP threads associated with a parallel re-
gion. A successful invocation of ompd_get_thread_in_parallel returns a pointer to a vector of handles in
thread_handle_array and returns the number of handles in num_handles. This call yields meaningful re-
sults only if all OpenMP threads in the parallel region are stopped; otherwise, the OpenMP runtime may be
creating and/or destroying threads during or after the call, rendering useless the vector of handles returned.

20

EXTERN ompd_rc_t ompd_get_thread_in_parallel(
ompd_context_t *context, /* debugger handle for the target */
ompd_parallel_handle_t parallel_handle,
ompd_thread_handle_t **thread_handle_array,
int *num_handles

);

8.2.2 Parallel Region Handles

Retrieve the handle for the innermost parallel region for an OpenMP thread. The operation
ompd_get_top_parallel_region enables the debugger to obtain the handle for the innermost parallel region
associated with an OpenMP thread. This call is meaningful only if the thread whose handle is provided is
stopped.

EXTERN ompd_rc_t ompd_get_innermost_parallel_region(
ompd_context_t *context, /* debugger handle for the target */
ompd_thread_handle_t thread_handle,
ompd_parallel_handle_t *parallel_handle
);

Retrieve the handle for an enclosing parallel region. The ompd_get_ancestor_parallel_handle
operation enables the debugger to obtain the handle for the parallel region enclosing the parallel region
specified by parallel_handle. This call is meaningful only if at least one thread in the parallel region is
stopped.

EXTERN ompd_rc_t ompd_get_enclosing_parallel_handle(
ompd_context_t *context, /* debugger handle for the target */
ompd_parallel_handle_t parallel_handle,
ompd_parallel_handle_t *enclosing_parallel_handle

);

8.2.3 Task Handles

Retrieve the handle for the innermost task for an OpenMP thread. The debugger uses the
operation ompd_get_top_task_region to obtain the handle for the innermost task region associated with
an OpenMP thread. This call is meaningful only if the thread whose handle is provided is stopped.

EXTERN ompd_rc_t ompd_get_top_task_region(
ompd_context_t *context, /* debugger handle for the target */
ompd_thread_handle_t thread_handle,
ompd_task_handle_t *task_handle

);

Retrieve the handle for an enclosing task. The debugger uses ompd_get_ancestor_task_handle
to obtain the handle for the task region enclosing the task region specified by task_handle. This call is
meaningful only if the thread executing the task specified by task_handle is stopped.

EXTERN ompd_rc_t ompd_get_ancestor_task_handle(
ompd_context_t *context, /* debugger handle for the target */
ompd_task_handle_t task_handle,
ompd_task_handle_t *parent_task_handle

);

21

Retrieve implicit task handle for a parallel region. The ompd_get_implicit_task_in_parallel
operation enables the debugger to obtain handles for implicit tasks associated with a parallel region. This
call is meaningful only if all threads associated with the parallel region are stopped.

EXTERN ompd_rc_t ompd_get_implicit_task_in_parallel(
ompd_context_t *context, /* debugger handle for the target */
ompd_parallel_handle_t parallel_handle,
ompd_task_handle_t **task_handle_array,
int *num_handles

);

8.3 Process and Thread Settings

The functions ompd_get_num_procs and ompd_get_thread_limit are third-party versions of the OpenMP
runtime functions omp_get_num_procs and omp_get_thread_limit.

EXTERN ompd_rc_t ompd_get_num_procs(
ompd_tword_t *val

);

EXTERN ompd_rc_t ompd_get_thread_limit(
ompd_tword_t *val

);

8.4 Parallel Region Inquiries

8.4.1 Settings

Determine the number of threads associated with a parallel region.

EXTERN ompd_rc_t ompd_get_num_threads(
ompd_context_t *context, /* debugger handle for the target */
ompd_parallel_handle_t parallel_handle,
ompd_tword_t *val

);

Determine the nesting depth of a particular parallel region instance.

EXTERN ompd_rc_t ompd_get_level(
ompd_context_t *context, /* debugger handle for the target */
ompd_parallel_handle_t parallel_handle,
ompd_tword_t *val

);

Determine the number of enclosing active parallel regions. ompd_get_active_level returns the
number of nested, active parallel regions enclosing the parallel region specified by its handle.

EXTERN ompd_rc_t ompd_get_active_level(
ompd_context_t *context, /* debugger handle for the target */
ompd_parallel_handle_t parallel_handle,
ompd_tword_t *val

);

22

8.4.2 OMPT Parallel Region Inquiry Analogues

The functions ompt_get_parallel_id and ompt_get_parallel_function are third-party variants of their
OMPT counterparts. The only difference between the OMPD and OMPT versions is that the OMPD must
supply a parallel region handle to provide a context for these inquiries.

EXTERN ompd_rc_t ompd_get_parallel_id(
ompd_context_t *context, /* debugger handle for the target */
ompd_parallel_handle_t parallel_handle,
ompd_parallel_id_t *id

);

EXTERN ompd_rc_t ompd_get_parallel_function(
ompd_context_t *context, /* debugger handle for the target */
ompd_parallel_handle_t parallel_handle,
ompd_taddr_t *parallel_addr /* first instruction in the parallel region */

);

8.5 Thread Inquiries

8.5.1 Operating System Thread Inquiry

OMPD provides the function ompd_get_thread_handle to inquire whether an operating system thread is
an OpenMP thread or not. If the function returns ompd_rc_ok, then the operating system thread is an
OpenMP thread and thread_handle will be initialized with the value of a handle for this thread that is
meaningful to the OpenMP runtime system.

EXTERN ompd_rc_t ompd_get_thread_handle(
ompd_context_t *context, /* debugger handle for the target */
ompd_osthread_t *os_thread,
ompd_thread_handle_t *thread_handle

);

EXTERN ompd_rc_t ompd_get_osthread(
ompd_context_t *context, /* debugger handle for the target */
ompd_thread_handle_t thread_handle,
ompd_osthread_t *os_thread

);

Note: This function does not take a pthread_t as an argument because OMPD should not assume that
operating system threads are pthreads.

8.5.2 OMPT Thread State Inquiry Analogue

The function ompd_get_state is a third-party version of ompt_get_state. The only difference between
the OMPD and OMPT counterparts is that the OMPD version must supply a thread handle to provide a
context for this inquiry.

EXTERN ompd_rc_t ompd_get_state(
ompd_context_t *context,
ompd_thread_handle_t thread_handle,
ompt_state_t *state,
ompt_wait_id_t *wait_id

);

23

8.6 Task Inquiries

8.6.1 Task Settings

Retrieve information from OpenMP tasks. These inquiry functions have no counterparts in the OMPT
interface as a first-party tool can call OpenMP runtime inquiry functions directly. The only difference
between the OMPD inquiry operations and their counterparts in the OpenMP runtime is that the OMPD
version must supply a task handle to provide a context for each inquiry.

EXTERN ompd_rc_t ompd_get_max_threads(
ompd_context_t *context, /* debugger handle for the target */
ompd_task_handle_t task_handle,
int *val

);

EXTERN ompd_rc_t ompd_get_thread_num(
ompd_context_t *context, /* debugger handle for the target */
ompd_task_handle_t task_handle,
int *val
);

EXTERN ompd_rc_t ompd_in_parallel(
ompd_context_t *context, /* debugger handle for the target */
ompd_task_handle_t task_handle,
int *val

);

EXTERN ompd_rc_t ompd_in_final(
ompd_context_t *context, /* debugger handle for the target */
ompd_task_handle_t task_handle,
int *val
);

EXTERN ompd_rc_t ompd_get_dynamic(
ompd_context_t *context, /* debugger handle for the target */
ompd_task_handle_t task_handle,
int *val

);

EXTERN ompd_rc_t ompd_get_nested(
ompd_context_t *context, /* debugger handle for the target */
ompd_task_handle_t task_handle,
int *val
);

EXTERN ompd_rc_t ompd_get_max_active_levels(
ompd_context_t *context, /* debugger handle for the target */
ompd_task_handle_t task_handle,
int *val

);

EXTERN ompd_rc_t ompd_get_schedule(
ompd_context_t *context, /* debugger handle for the target */
ompd_task_handle_t task_handle,
omp_sched_t *kind,

24

int *modifier
);

EXTERN ompd_rc_t ompd_get_proc_bind(
ompd_context_t *context, /* debugger handle for the target */
ompd_task_handle_t task_handle,
omp_proc_bind_t *bind

);

8.6.2 OMPT Task Inquiry Analogues

The functions defined here are third-party versions of ompt_get_task_frame and ompt_get_task_function.
The only difference between the OMPD and OMPT counterparts is that the OMPD version must supply a
task handle to provide a context for these inquiries.

EXTERN ompd_rc_t ompd_get_task_frame(
ompd_context_t *context, /* debugger handle for the target */
ompd_task_handle_t task_handle,
void *sp_exit,
void *sp_reentry

);

EXTERN ompd_rc_t ompd_get_task_function(
ompd_context_t *context,
ompd_task_handle_t task_handle,
ompd_taddr_t *task_addr /* address of the first instruction in the task region */

);

8.7 OMPD Version and Compatibility Information

The OMPD function ompd_get_version_string returns a descriptive string describing an implementation
of the OMPD library. The function ompd_get_version_compatibility returns an integer code used to
indicate the revision of the OMPD specification supported by an implementation of OMPD.

EXTERN ompd_rc_t ompd_get_version_string(
const char **string

);

EXTERN ompd_rc_t ompd_get_version_compatibility(
int *val

);

8.8 OMPD Error String

The OMPD function ompd_get_error_string returns a descriptive string to the debugger for a specified
error code.

EXTERN ompd_rc_t ompd_get_error_string(
int errcode,
const char **string

);

25

8.9 Breakpoint Locations for Managing Parallel Regions and Tasks

Neither a debugger nor an OpenMP runtime system know what application code a program will launch as
parallel regions or tasks until the program invokes the runtime system and provides a code address as an
argument. To help a debugger control the execution of an OpenMP program launching parallel regions or
tasks, OMPD provides a routine that the debugger can invoke to determine where to place breakpoints.

The ompd_get_breakpoints routine will fill in an ompd_breakpoints_t structure with pointers to code
locations where the debugger can place breakpoints to intercept execution just before the OpenMP runtime
launches a task or parallel region, and just after execution of a parallel region or task completes.

typedef struct ompd_breakpoints_s {
ompd_taddr_t parallel_pre_execute;
ompd_taddr_t parallel_post_execute;
ompd_taddr_t task_pre_execute;
ompd_taddr_t task_post_execute;

} ompd_breakpoints_t;

EXTERN ompd_rc_t ompd_get_breakpoints(
ompd_context_t *context, /* debugger handle for the target */
ompd_breakpoints_t *bkpt_locations

);

When the debugger gains control as the parallel_pre_execute code location breakpoint triggers, the
debugger can determine what user code the parallel region will execute by mapping the operating system
thread that triggered the breakpoint to an OpenMP thread handle using ompd_get_thread_handle, map-
ping the thread handle to a parallel region handle using ompd_get_top_parallel_region, and then using
ompd_get_parallel_function to determine the entry point for the user code that the parallel region will
execute.

Similarly, when the debugger gains control as a breakpoint at the task_pre_execute code location
triggers, the debugger can determine what user task code will execute by mapping a native thread to an
OpenMP thread handle using ompd_get_thread_handle, mapping the thread handle to a parallel region
handle using ompd_get_top_task_region, and then using ompt_get_task_function to determine the entry
point for the user tasking code.

Each of these breakpoints is triggered only once per parallel region, not once per thread in a parallel
region. The task_pre_execute and task_post_execute breakpoints may be triggered in different threads
if a task executes on a different thread then where it was launched.

8.10 Display Control Variables

Using the ompd_display_control_vars function, the debugger can extract a string that contains a sequence
of name/value pairs of control variables whose settings are (a) user controllable, and (b) important to
the operation or performance of an OpenMP runtime system. The control variables exposed through this
interface will include all of the OMP environment variables, settings that may come from vendor or platform-
specific environment variables (e.g., the IBM XL compiler has an environment variable that controls spinning
vs. blocking behavior), and other settings that affect the operation or functioning of an OpenMP runtime
system (e.g., numactl settings that cause threads to be bound to cores).

EXTERN ompd_rc_t ompd_display_control_vars(
const char **control_var_values

);

The format of the string returned by ompd_display_control_vars is a sequence of newline separated
name/value pairs of the following form:

name=valuestring_that_can_contain_any_char_but_newline
anothername=another value string

26

8.11 OMPT Tool Initialization Control

A debugger can control the level at which OpenMP runtime support for tools is activated by invoking

EXTERN int ompd_enable(
ompd_enable_setting_t setting

);

To disable all OMPT support for tools, a debugger calls ompd_enable(false). To enable support for tools, a
debugger calls ompd_enable(true). With this setting specified, an OpenMP runtime will maintain runtime
state (as described in 2) and support all OMPT tool-facing inquiry functions (as described in Section 5).

When ompd_enable is called, its effect is not necessarily instantaneous. A call to enable or disable tool
support will take effect at a clean point.

Upon a call to ompd_enable(true), if has not already been enabled, an OpenMP runtime may in-
voke a tool’s ompt_initialize callback at the next clean point. Upon a call to ompd_enable with
false as an argument, if a tool has already been initialized and the tool has registered a callback for
ompt_event_runtime_shutdown, the shutdown callback may occur no earlier than the next clean point.

If a tool is already enabled before a call to ompd_enable(true), a call to ompt_enable_complete occurs
before the call to ompd_enable returns. If no tool is present or it has already been disabled, the call to
ompt_enable_complete occurs before the call to ompd_enable returns. A debugger can set a breakpoint in
ompt_enable_complete to observe when a tool has been enabled or disabled.

9 OpenMP Runtime Library Global Variables

Section 8 describes the OMPD dynamic library that will help a debugger interact with the state of an
OpenMP target process. One difficulty that a debugger faces is determining what plug-in library should be
used to interact with a target process. To address this problem, the OpenMP runtime system provides the
base name of the family of matching plugins in a public variable. This variable will be available in both live
OpenMP processes or a core files.

_OMP_EXTERN const char *ompt_debugger_plugin;

A debugger will search for a suitable matching library (with the base name given in the variable) in directories
in LD_LIBRARY_PATH.

27

References

[1] J. Cownie, J. DelSignore, B. R. de Supinski, and K. Warren. DMPL: an OpenMP DLL debugging
interface. In Proceedings of the OpenMP applications and tools 2003 international conference on OpenMP
shared memory parallel programming, WOMPAT’03, pages 137–146, Berlin, Heidelberg, 2003. Springer-
Verlag.

[2] J. Cownie and W. Gropp. A standard interface for debugger access to message queue information in MPI.
In Proceedings of PVMMPI’99, pages 51–58, 1999. http://www.mcs.anl.gov/research/projects/mpi/
mpi-debug/eurompi-paper.ps.gz.

[3] M. Itzkowitz, O. Mazurov, N. Copty, and Y. Lin. An OpenMP runtime API for profiling. Sun Microsys-
tems, Inc.. OpenMP ARB White Paper. Available online at http://www.compunity.org/futures/
omp-api.html.

[4] G. Jost, O. Mazurov, and D. An Mey. Adding new dimensions to performance analysis through user-
defined objects. In Proceedings of the 2005 and 2006 International Conference on OpenMP shared memory
parallel programming, IWOMP’05/IWOMP’06, pages 255–266, Berlin, Heidelberg, 2008. Springer-Verlag.

[5] B. Mohr, A. D. Malony, S. Shende, and F. Wolf. Design and prototype of a performance tool interface
for OpenMP. The Journal of Supercomputing, 23:105–128, 2002.

[6] Sun Microsystems. Man pages section 3: Threads and realtime library functions: libthread db(3THR),
1998. http://docs.oracle.com/cd/E19455-01/806-0630/6j9vkb8dk/index.html.

[7] N. R. Tallent and J. M. Mellor-Crummey. Effective performance measurement and analysis of multi-
threaded applications. In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’09, pages 229–240, New York, NY, USA, 2009. ACM.

[8] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield. Analyzing lock contention in multithreaded
applications. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’10, pages 269–280, New York, NY, USA, 2010. ACM.

28

A OMPT Interface Type Definitions

A.1 Runtime States

When OMPT is enabled, an OpenMP runtime system will maintain information about the state of each
OpenMP thread. Below we define an enumeration type that specifies the set of runtime states. The purpose
of these states is described in Section 2.

typedef enum {
/* work states (0..15) */
ompt_state_work_serial = 0x00, /* working outside parallel */
ompt_state_work_parallel = 0x01, /* working within parallel */
ompt_state_work_reduction = 0x02, /* performing a reduction */

/* idle (16..31) */
ompt_state_idle = 0x10, /* waiting for work */

/* overhead states (32..63) */
ompt_state_overhead = 0x20, /* overhead excluding wait

* states */

/* wait states non-mutex (64..79) */
ompt_state_wait_barrier = 0x40, /* waiting at a barrier */
ompt_state_wait_taskwait = 0x41, /* waiting at a taskwait */
ompt_state_wait_taskgroup = 0x42, /* waiting at a taskgroup */

/* wait states mutex (80..95) */
ompt_state_wait_lock = 0x50, /* waiting for lock */
ompt_state_wait_nest_lock = 0x51, /* waiting for nest lock */
ompt_state_wait_critical = 0x52, /* waiting for critical */
ompt_state_wait_atomic = 0x53, /* waiting for atomic */
ompt_state_wait_ordered = 0x54, /* waiting for ordered */

/* misc (96..127) */
ompt_state_undefined = 0x60, /* undefined thread state */
ompt_state_first = 0x61, /* initial enumeration state */
ompt_state_last = 0x62, /* final enumeration state */

} ompt_state_t;

29

A.2 Runtime Event Callbacks

When OMPT support for a tool is enabled, OMPT enables a tool to indicate interest in receiving notification
about certain OpenMP runtime events by registering callbacks. When those events occur during execution,
OMPT will invoke the registered callback in the appropriate thread context Below we define an enumeration
type that specifies the set of event callbacks that may be supported by an OpenMP runtime system. The
purpose of these callbacks is described in Section 3.

typedef enum {
/*--- Mandatory Events ---*/
ompt_event_parallel_create = 1, /* parallel create */
ompt_event_parallel_exit = 2, /* parallel exit */

ompt_event_task_create = 3, /* task create */
ompt_event_task_exit = 4, /* task destroy */

ompt_event_thread_create = 5, /* thread create */
ompt_event_thread_exit = 6, /* thread exit */

ompt_event_control = 7, /* support control calls */

ompt_event_runtime_shutdown = 8, /* runtime shutdown */

/*--- Optional Events (blame shifting) ---*/
ompt_event_idle_begin = 9, /* begin idle state */
ompt_event_idle_end = 10, /* end idle state */

ompt_event_wait_barrier_begin = 11, /* begin wait at barrier */
ompt_event_wait_barrier_end = 12, /* end wait at barrier */
ompt_event_wait_taskwait_begin = 13, /* begin wait at taskwait */
ompt_event_wait_taskwait_end = 14, /* end wait at taskwait */
ompt_event_wait_taskgroup_begin = 15, /* begin wait at taskgroup*/
ompt_event_wait_taskgroup_end = 16, /* end wait at taskgroup */

ompt_event_release_lock = 17, /* lock release */
ompt_event_release_nest_lock_last = 18, /* last nest lock release */
ompt_event_release_critical = 19, /* critical release */
ompt_event_release_atomic = 20, /* atomic release */
ompt_event_release_ordered = 21, /* ordered release */

/*--- Optional Events (synchronous events) --- */
ompt_event_implicit_task_create = 22, /* implicit task create */
ompt_event_implicit_task_exit = 23, /* implicit task destroy */

ompt_event_task_switch = 24, /* task switch */

ompt_event_loop_begin = 25, /* task at loop begin */
ompt_event_loop_end = 26, /* task at loop end */
ompt_event_section_begin = 27, /* task at section begin */
ompt_event_section_end = 28, /* task at section end */
ompt_event_single_in_block_begin = 29, /* task at single begin */
ompt_event_single_in_block_end = 30, /* task at single end */
ompt_event_single_others_begin = 31, /* task at single begin */
ompt_event_single_others_end = 32, /* task at single end */

30

ompt_event_master_begin = 33, /* task at master begin */
ompt_event_master_end = 34, /* task at master end */
ompt_event_barrier_begin = 35, /* task at barrier begin */
ompt_event_barrier_end = 36, /* task at barrier end */
ompt_event_taskwait_begin = 37, /* task at taskwait begin */
ompt_event_taskwait_end = 38, /* task at task wait end */
ompt_event_taskgroup_begin = 39, /* task at taskgroup begin*/
ompt_event_taskgroup_end = 40, /* task at taskgroup end */

ompt_event_release_nest_lock_prev = 41, /* prev nest lock release */

ompt_event_wait_lock = 42, /* lock wait */
ompt_event_wait_nest_lock = 43, /* nest lock wait */
ompt_event_wait_critical = 44, /* critical wait */
ompt_event_wait_atomic = 45, /* atomic wait */
ompt_event_wait_ordered = 46, /* ordered wait */

ompt_event_acquired_lock = 47, /* lock acquired */
ompt_event_acquired_nest_lock_first = 48, /* 1st nest lock acquired */
ompt_event_acquired_nest_lock_next = 49, /* next nest lock acquired*/
ompt_event_acquired_critical = 50, /* critical acquired */
ompt_event_acquired_atomic = 51, /* atomic acquired */
ompt_event_acquired_ordered = 52, /* ordered acquired */

ompt_event_init_lock = 53, /* lock init */
ompt_event_init_nest_lock = 54, /* nest lock init */
ompt_event_destroy_lock = 55, /* lock destruction */
ompt_event_destroy_nest_lock = 56, /* nest lock destruction */

ompt_event_flush = 57, /* after executing flush */

} ompt_event_t;

31

A.3 Type Signatures for Tool Callbacks

The tool callback type signature associated with each event is specified in the description of the ompt_event_t
enum. Below are definitions for all of the tool callback function signatures.

typedef void (*ompt_thread_callback_t) (
ompt_data_t *thread_data /* tool data for thread */
);

typedef void (*ompt_parallel_callback_t) (
ompt_data_t *task_data, /* tool data for a task */
ompt_parallel_id_t parallel_id /* id of parallel region */
);

typedef void (*ompt_new_parallel_callback_t) (
ompt_data_t *parent_task_data, /* tool data for parent task */
ompt_frame_t *parent_task_frame, /* frame data of parent task */
ompt_parallel_id_t parallel_id /* id of parallel region */
);

typedef void (*ompt_task_callback_t) (
ompt_data_t *task_data /* tool data for task */
);

typedef void (*ompt_task_switch_callback_t) (
ompt_data_t *suspended_task_data, /* tool data for suspended task */
ompt_data_t *resumed_task_data /* tool data for resumed task */
);

typedef void (*ompt_new_task_callback_t) (
ompt_data_t *parent_task_data, /* tool data for parent task */
ompt_frame_t *parent_task_frame, /* frame data for parent task */
ompt_data_t *new_task_data /* tool data for created task */
);

typedef void (*ompt_wait_callback_t) (
ompt_wait_id_t wait_id /* wait id */
);

typedef void (*ompt_control_callback_t) (
uint64_t command, /* command of control call */
uint64_t modifier /* modifier of control call */
);

Placeholder callback signature. The type ompt_callback_t is a placeholder signature used only by
the tool callback registration interface. Only one callback registration function is defined and it expects that
the callback supplied will be cast into type ompt_callback_t, regardless of its actual type signature. This
approach avoids the need for a separate registration routine for each unique tool callback signature.

typedef void (*ompt_callback_t)(void);

32

B OMPD Interface Type Definitions

B.1 Basic Types

typedef uint64_t ompd_taddr_t;
typedef int64_t ompd_tword_t;

B.2 OS Thread Handle

An OpenMP runtime may be implemented on different threading substrates. OMPD uses the
ompd_osthread_t type to describe an operating system thread upon which an OpenMP thread is over-
laid.

typedef enum {
ompd_osthread_pthread,
ompd_osthread_lwp

} ompd_osthread_kind_t;

typedef struct {
ompd_osthread_kind_t kind;
union {
int64_t pthread;
int64_t lwp;

} data;
} ompd_osthread_t;

B.3 Context Handles

Each OMPD interface operation that applies to a particular thread, parallel region, or task must explicitly
specify the context for the operation using a handle. OMPD employs context handles for threads, parallel
regions, and tasks. A handle for an entity is constant while the entity itself is live.

typedef uint64_t ompd_thread_handle_t;
typedef uint64_t ompd_parallel_handle_t;
typedef uint64_t ompd_task_handle_t;
typedef uint64_t ompd_type_handle_t;

B.4 Return Codes

Each OMPD interface operation has a return code. The purpose of the each return code is explained by the
comments in the definition below.

typedef enum {
ompd_rc_ok = 0, /* operation was successful */
ompd_rc_unavailable = 1, /* info is not available (in this context) */
ompd_rc_stale_handle = 2, /* handle is no longer valid */
ompt_rc_bad_input = 3, /* bad input parameters (other than handle) */
ompt_rc_error = 4, /* error */
ompt_rc_unsupported = 5 /* operation is not supported */
ompd_rc_needs_state_tracking = 6 /* needs runtime state tracking enabled */

} ompd_rc_t;

B.5 Primitive Types

This enumeration of primitive types is used by OMPD to interrogate the debugger about the size of primitive
types in the target.

33

typedef struct {
int sizeof_char;
int sizeof_short;
int sizeof_int;
int sizeof_long;
int sizeof_long_long;
int sizeof_pointer;

} ompd_target_type_sizes_t;

B.6 Type Signatures for Debugger Callbacks

For OMPD to provide information about the internal state of the OpenMP runtime system in a target
process, it must have a means to extract information from the target process. The target process may be
a live process or core file. To enable OMPD to extract state information from a target process, a debugger
supplies OMPD with callback functions to inquire about the size of primitive types in the target, look up
symbols, look up the offset of a field in a type, as well as read and write memory in the target. OMPD then
uses these callbacks to implement its interface operations. Signatures for the debugger callbacks used by
OMPD are given below.

Memory management. The callback signatures below are used to allocate and free memory in the
debugger’s address space.

typedef ompd_rc_t (*ompd_dmemory_alloc_fn_t) (
ompd_context_t *context, /* debugger handle for the target */
size_t bytes, /* the primitive type of interest */
void **ptr /* a successful call returns a pointer to the memory here */

);

typedef ompd_rc_t (*ompd_dmemory_free_fn_t) (
ompd_context_t *context, /* debugger handle for the target */
void *ptr /* a successful call deallocates the memory here */

);

Primitive type size. The callback signature below is used to look up the sizes of primitive types in the
target.

typedef ompd_rc_t (*ompd_tmemory_access_fn_t) (
ompd_context_t *context, /* debugger handle for the target */
ompd_target_type_sizes_t *sizes, /* a successful call returns the type sizes here */

);

Symbol lookup. The callback signature below is used to look up the address of a global symbol in the
target.

typedef ompd_rc_t (*ompd_tsymbol_addr_fn_t) (
ompd_context_t *context, /* debugger handle for the target */
const char *symbol_name, /* global symbol name */
ompd_taddr_t *symbol_addr /* a successful call returns the symbol address here */

);

Type lookup. The callback signature below is used to look up a type in the target.

typedef ompd_rc_t (*ompd_ttype_fn_t) (
ompd_context_t *context, /* debugger handle for the target */
const char *type_name, /* name of the type/structure */

34

ompd_ttype_handle_t *ttype_handle /* a successful call returns the type handle here */
);

Type size lookup. The callback signature below is used to look up the size of a type in the target.

typedef ompd_rc_t (*ompd_ttype_sizeof_fn_t) (
ompd_context_t *context, /* debugger handle for the target */
ompd_ttype_handle_t *ttype_handle, /* handle of the type/structure */
ompd_tword_t *type_size /* a successful call returns the type size here */

);

Type field offset lookup. The callback signature below is used to look up the offset of a field in a type
in the target.

typedef ompd_rc_t (*ompd_ttype_offset_fn_t) (
ompd_context_t *context, /* debugger handle for the target */
ompd_ttype_handle_t *ttype_handle, /* handle of the type/structure */
const char *field_name, /* field of interest in the type/structure */
ompd_tword_t *field_offset /* a successful call returns the field offset here */

);

Memory access. The callback signature below is used to read or write memory in the target.

typedef ompd_rc_t (*ompd_tmemory_access_fn_t) (
ompd_context_t *context, /* debugger handle for the target */
ompd_taddr_t *addr, /* address in the process or core file */
void *buffer, /* input buffer for write; output buffer for read */
ompd_tword_t bufsize /* number of bytes to be transferred */

);

Data format conversion. The callback signature below is used to convert data from the target byte
ordering to the host byte ordering

typedef ompd_rc_t (*ompd_target_host_fn_t) (
ompd_context_t *context,
const void *input,
void *output,
int nbytes);

Get error string. The callback signature below is used by OMPD to retrieve an error string from the
debugger given an error code.

typedef ompd_rc_t (*ompd_error_string_fn_t) (
ompd_context_t *context,
int error_code,
const char **string

Print string. The callback signature below is used by OMPD to have the debugger print a string. OMPD
should not print directly.

typedef ompd_rc_t (*ompd_print_string_fn_t) (
ompd_context_t *context,
const char *string

35

B.7 Debugger Callback Interface

OMPD must interact with both the debugger and an OpenMP target process or address space. OMPD
must interact with the debugger to allocate or free memory in address space that OMPD shares with the
debugger. OMPD needs the debugger to access the target on its behalf to inquire about the sizes of primitive
types in the target, look up the address of symbols in the target, look up the offset of fields in structures in
the target, as well as read and write memory in the target.

OMPD interacts with the debugger and the target through a callback interface. The callback interface is
defined by the ompd_callbacks_t structure. The debugger supplies ompd_callbacks_t to OMPD by filling
it out in the ompd_initialize callback.

typedef struct {
/*---*/
/* debugger interface
/*---*/

/* interface for ompd to allocate/free memory in the debugger’s address space */
ompd_dmemory_alloc_fn_t d_alloc_memory; /* allocate memory in the debugger */
ompd_dmemory_free_fn_t d_free_memory; /* free memory in the debugger */

/* errors */
ompd_error_string_fn_t get_error_string; /* retrieve an error string for an error code */

/* printing */
ompd_print_string_fn_t print_string; /* have the debugger print a string for OMPD */

/*---*/
/* target interface
/*---*/

/* obtain information about the size of primitive types in the target */
ompd_tsizeof_prim_fn_t t_sizeof_prim_type; /* return the size of a primitive type */

/* obtain information about symbols and structure offsets in the target */
ompd_tsymbol_addr_fn_t t_symbol_addr_lookup; /* look up the address of a symbol */

ompd_ttype_fn_t t_type_lookup; /* look up a type in the target */
ompd_ttype_sizeof_fn_t t_type_sizeof; /* look up the size of of a type */
ompd_ttype_offset_fn_t t_type_field_offset; /* look up a field offset in a type */

/* access data in the target */
ompd_tmemory_access_fn_t t_read_memory; /* read from target address into buffer */
ompd_tmemory_access_fn_t t_write_memory; /* write from buffer to target address */

/* convert byte ordering */
ompd_target_host_fn_t target_to_host;

} ompd_callbacks_t;

36

Outstanding Issues

General Issues

• Is it preferable to replace all enum definitions with integer types and use #define to define values?

OMPT Issues

• The OpenMP runtime currently defines a global variable ompt_debugger_plugin to identify a com-
patible OMPD implementation. We should probably follow the lead of MPIR for how we specify
this.

• We need to distinguish which functions require OMPT state tracking to be enabled. Functions that
require OMPT state tracking are not guaranteed to be available unless state tracking is explicitly
enabled using OMPT_INITIALIZE=true or using ompd_enable(true).

• A description of the Fortran binding for the two application-facing inquiry functions is needed.

OMPD Issues

• Are there any other OS thread types that should be covered by ompd_thread_kind_t?

• Do we need to distinguish between process and thread context in OMPD?

• Is there a need for a mechanism that will allow OMPD to inquire about values of thread-local variables
in used in the runtime implementation of OpenMP threads? If so, we need to design this mechanism.

• Do we want name demangling support from OMPD? Is that something too compiler revision specific
to support in OMPD?

37

