

OpenMP Technical Report 12:
Version 6.0 Preview 2

EDITORS

Bronis R. de Supinski

Michael Klemm

November 9, 2023

Expires November 6, 2024

We actively solicit comments. Please provide feedback on this document either to the

editors directly or by emailing to info@openmp.org

OpenMP Architecture Review Board – www.openmp.org – info@openmp.org

OpenMP ARB, 9450 SW Gemini Dr., PMB 63140, Beaverton, OR 77008, USA

This Technical Report is the second preview for the OpenMP Application
Programming Specification Version 6.0. This version removes features that have been
deprecated in versions 5.0, 5.1, and 5.2. This preview extends the features of preview
1 with full support for C23, including C attribute syntax, and C++23. It introduces new
C/C++ attributes, extensions to data mapping clauses, and new loop transformations.
Support for free-agent threads, to extend support for OpenMP tasks, and the
coexecute directive, to enhance device support for Fortran, were added. This preview
also contains several clarifications, corrections, and refinements of the OpenMP API.
See Appendix B.2 for the complete list of changes relative to version 5.2.

This technical report describes possible future directions or extensions to the OpenMP

Specification.

The goal of this technical report is to build more widespread existing practice for an

expanded OpenMP. It gives advice on extensions or future directions to those vendors

who wish to provide them possibly for trial implementation, allows OpenMP to gather

early feedback, supports timing and scheduling differences between official OpenMP

releases, and offers a preview to users of the future directions of OpenMP with the

provisions stated previously.

This technical report is non-normative. Some of the components in this technical report

may be considered for standardization in a future version of OpenMP, but they are not

currently part of any OpenMP specification. Some of the components in this technical

report may never be standardized, others may be standardized in a substantially

changed form, or it may be standardized as is in its entirety.

OpenMP
Application Programming

Interface

Version 6.0 Preview 2 November 2023

Copyright ©1997-2023 OpenMP Architecture Review Board.
Permission to copy without fee all or part of this material is granted, provided the OpenMP
Architecture Review Board copyright notice and the title of this document appear. Notice is
given that copying is by permission of the OpenMP Architecture Review Board.

This page intentionally left blank in published version.

This draft version includes the following internal GitHub issues (corresponding Trac ticket numbers
in parentheses when they exist) applied to the 5.2 LaTeX sources: 1121 (189), 1479 (547), 1495
(563), 1584 (652), 1585 (653), 1843-1844 (911-912), 1935, 1946, 2019-2020, 2038, 2158,
2186-2187, 2653, 2691, 2721, 2734, 2736-2737, 2740, 2757, 2784, 2902, 3006-3007, 3027, 3058,
3151, 3161, 3164, 3168, 3171, 3180, 3184-3185, 3189-3190, 3193, 3199, 3201, 3206-3210, 3212,
3216-3217, 3220, 3222, 3229-3232, 3234, 3237-3238, 3240-3241, 3245, 3255, 3258-3259,
3267-3268, 3278-3279, 3281, 3285, 3290, 3293, 3296, 3301, 3303-3304, 3326-3327, 3331,
3335-3337, 3341, 3345, 3347, 3351, 3353, 3367, 3379, 3384, 3396, 3406, 3419, 3425, 3437-3441,
3449, 3452-3453, 3455, 3459-3460, 3467, 3475, 3488, 3490-3491, 3493, 3503, 3506-3509, 3512,
3514, 3516-3517, 3530, 3543, 3547, 3549-3550, 3555, 3558, 3560, 3574-3575, 3577, 3582, 3585,
3590, 3594-3595, 3601, 3609, 3612, 3615, 3640, 3645, 3647, 3654, 3657, 3662-3663, 3668, 3678,
3680, 3705, 3709

This is a draft; contents will change in official release.

Contents

I Definitions 1

1 Overview of the OpenMP API 2
1.1 Scope . 2
1.2 Glossary . 2
1.3 Execution Model . 42
1.4 Memory Model . 46

1.4.1 Structure of the OpenMP Memory Model 46
1.4.2 Device Data Environments . 47
1.4.3 Memory Management . 48
1.4.4 The Flush Operation . 48
1.4.5 Flush Synchronization and Happens-Before Order 50
1.4.6 OpenMP Memory Consistency . 52

1.5 Tool Interfaces . 53
1.5.1 OMPT . 53
1.5.2 OMPD . 53

1.6 OpenMP Compliance . 54
1.7 Normative References . 54
1.8 Organization of this Document . 56

2 Internal Control Variables 58
2.1 ICV Descriptions . 58
2.2 ICV Initialization . 60
2.3 Modifying and Retrieving ICV Values . 64
2.4 How the Per-Data Environment ICVs Work 66
2.5 ICV Override Relationships . 68

i

3 Environment Variables 69
3.1 Parallel Region Environment Variables . 70

3.1.1 OMP_DYNAMIC . 70
3.1.2 OMP_NUM_THREADS . 70
3.1.3 OMP_THREAD_LIMIT . 71
3.1.4 OMP_MAX_ACTIVE_LEVELS . 71
3.1.5 OMP_PLACES . 72
3.1.6 OMP_PROC_BIND . 74

3.2 Program Execution Environment Variables 75
3.2.1 OMP_SCHEDULE . 75
3.2.2 OMP_STACKSIZE . 76
3.2.3 OMP_WAIT_POLICY . 76
3.2.4 OMP_DISPLAY_AFFINITY . 77
3.2.5 OMP_AFFINITY_FORMAT . 78
3.2.6 OMP_CANCELLATION . 80
3.2.7 OMP_AVAILABLE_DEVICES . 80
3.2.8 OMP_DEFAULT_DEVICE . 81
3.2.9 OMP_TARGET_OFFLOAD . 81
3.2.10 OMP_THREADS_RESERVE . 82
3.2.11 OMP_MAX_TASK_PRIORITY . 84

3.3 OMPT Environment Variables . 84
3.3.1 OMP_TOOL . 84
3.3.2 OMP_TOOL_LIBRARIES . 84
3.3.3 OMP_TOOL_VERBOSE_INIT . 85

3.4 OMPD Environment Variables . 86
3.4.1 OMP_DEBUG . 86

3.5 Memory Allocation Environment Variables 87
3.5.1 OMP_ALLOCATOR . 87

3.6 Teams Environment Variables . 88
3.6.1 OMP_NUM_TEAMS . 88
3.6.2 OMP_TEAMS_THREAD_LIMIT . 88

3.7 OMP_DISPLAY_ENV . 88

ii OpenMP API – Version 6.0 Preview 2 November 2023

4 Directive and Construct Syntax 90
4.1 Directive Format . 91

4.1.1 Fixed Source Form Directives . 97
4.1.2 Free Source Form Directives . 98

4.2 Clause Format . 99
4.2.1 OpenMP Argument Lists . 103
4.2.2 Reserved Locators . 105
4.2.3 OpenMP Operations . 106
4.2.4 Array Shaping . 106
4.2.5 Array Sections . 107
4.2.6 iterator Modifier . 110

4.3 Conditional Compilation . 112
4.3.1 Fixed Source Form Conditional Compilation Sentinels 113
4.3.2 Free Source Form Conditional Compilation Sentinel 114

4.4 directive-name-modifier Modifier . 114
4.5 if Clause . 119
4.6 destroy Clause . 120

5 Base Language Formats and Restrictions 122
5.1 OpenMP Types and Identifiers . 122
5.2 OpenMP Stylized Expressions . 124
5.3 Structured Blocks . 124

5.3.1 OpenMP Allocator Structured Blocks . 125
5.3.2 OpenMP Function Dispatch Structured Blocks 126
5.3.3 OpenMP Atomic Structured Blocks . 127

5.4 Loop Concepts . 134
5.4.1 Canonical Loop Nest Form . 134
5.4.2 OpenMP Loop-Iteration Spaces and Vectors 140
5.4.3 collapse Clause . 142
5.4.4 ordered Clause . 143
5.4.5 Consistent Loop Schedules . 144
5.4.6 Canonical Loop Sequence Form . 145
5.4.7 looprange Clause . 146

Contents iii

II Directives and Clauses 147

6 Data Environment 148
6.1 Data-Sharing Attribute Rules . 148

6.1.1 Variables Referenced in a Construct . 148
6.1.2 Variables Referenced in a Region but not in a Construct 152

6.2 threadprivate Directive . 153
6.3 List Item Privatization . 158
6.4 Data-Sharing Attribute Clauses . 161

6.4.1 default Clause . 161
6.4.2 shared Clause . 162
6.4.3 private Clause . 163
6.4.4 firstprivate Clause . 164
6.4.5 lastprivate Clause . 167
6.4.6 linear Clause . 170
6.4.7 is_device_ptr Clause . 173
6.4.8 use_device_ptr Clause . 174
6.4.9 has_device_addr Clause . 175
6.4.10 use_device_addr Clause . 176

6.5 Reduction and Induction Clauses and Directives 177
6.5.1 OpenMP Reduction and Induction Identifiers 177
6.5.2 OpenMP Reduction and Induction Expressions 177
6.5.3 Implicitly Declared OpenMP Reduction Identifiers 182
6.5.4 Implicitly Declared OpenMP Induction Identifiers 183
6.5.5 Properties Common to Reduction and induction Clauses 184
6.5.6 Properties Common to All Reduction Clauses 186
6.5.7 Reduction Scoping Clauses . 188
6.5.8 Reduction Participating Clauses . 189
6.5.9 reduction Clause . 189
6.5.10 task_reduction Clause . 192
6.5.11 in_reduction Clause . 193
6.5.12 induction Clause . 194
6.5.13 declare reduction Directive . 196
6.5.14 combiner Clause . 198

iv OpenMP API – Version 6.0 Preview 2 November 2023

6.5.15 initializer Clause . 198
6.5.16 declare induction Directive . 199
6.5.17 inductor Clause . 201
6.5.18 collector Clause . 201

6.6 scan Directive . 202
6.6.1 inclusive Clause . 204
6.6.2 exclusive Clause . 205

6.7 Data Copying Clauses . 205
6.7.1 copyin Clause . 205
6.7.2 copyprivate Clause . 207

6.8 Data-Mapping Control . 209
6.8.1 Implicit Data-Mapping Attribute Rules . 209
6.8.2 Mapper Identifiers and mapper Modifiers 211
6.8.3 map Clause . 212
6.8.4 enter Clause . 221
6.8.5 link Clause . 222
6.8.6 defaultmap Clause . 222
6.8.7 declare mapper Directive . 224

6.9 Data-Motion Clauses . 227
6.9.1 to Clause . 229
6.9.2 from Clause . 230

6.10 uniform Clause . 231
6.11 aligned Clause . 231
6.12 groupprivate Directive . 232
6.13 local Clause . 235

7 Memory Management 236
7.1 Memory Spaces . 236
7.2 Memory Allocators . 237
7.3 align Clause . 240
7.4 allocator Clause . 241
7.5 allocate Directive . 242
7.6 allocate Clause . 244
7.7 allocators Construct . 246

Contents v

7.8 uses_allocators Clause . 246

8 Variant Directives 249
8.1 OpenMP Contexts . 249
8.2 Context Selectors . 251
8.3 Matching and Scoring Context Selectors . 254
8.4 Metadirectives . 255

8.4.1 when Clause . 256
8.4.2 otherwise Clause . 257
8.4.3 metadirective . 258
8.4.4 begin metadirective . 258

8.5 Declare Variant Directives . 259
8.5.1 match Clause . 260
8.5.2 adjust_args Clause . 261
8.5.3 append_args Clause . 262
8.5.4 declare variant Directive . 264
8.5.5 begin declare variant Directive . 265

8.6 dispatch Construct . 267
8.6.1 interop Clause . 268
8.6.2 novariants Clause . 269
8.6.3 nocontext Clause . 269

8.7 declare simd Directive . 270
8.7.1 branch Clauses . 272

8.8 Declare Target Directives . 273
8.8.1 declare target Directive . 275
8.8.2 begin declare target Directive . 278
8.8.3 indirect Clause . 279

9 Informational and Utility Directives 281
9.1 error Directive . 281
9.2 at Clause . 282
9.3 message Clause . 283
9.4 severity Clause . 283

vi OpenMP API – Version 6.0 Preview 2 November 2023

9.5 requires Directive . 284
9.5.1 requirement Clauses . 285

9.6 Assumption Directives . 291
9.6.1 assumption Clauses . 292
9.6.2 assumes Directive . 297
9.6.3 assume Directive . 298
9.6.4 begin assumes Directive . 298

9.7 nothing Directive . 298

10 Loop-Transforming Constructs 300
10.1 tile Construct . 301

10.1.1 sizes Clause . 302
10.2 unroll Construct . 302

10.2.1 full Clause . 303
10.2.2 partial Clause . 304

10.3 reverse Construct . 304
10.4 interchange Construct . 305

10.4.1 permutation Clause . 306
10.5 fuse Construct . 306
10.6 apply Clause . 307

11 Parallelism Generation and Control 309
11.1 omp_curr_progress_width Identifier 309
11.2 parallel Construct . 309

11.2.1 Determining the Number of Threads for a parallel Region 312
11.2.2 num_threads Clause . 314
11.2.3 Controlling OpenMP Thread Affinity . 315
11.2.4 proc_bind Clause . 317
11.2.5 safesync Clause . 318

11.3 teams Construct . 319
11.3.1 num_teams Clause . 322

11.4 order Clause . 322
11.5 simd Construct . 324

11.5.1 nontemporal Clause . 325

Contents vii

11.5.2 safelen Clause . 326
11.5.3 simdlen Clause . 326

11.6 masked Construct . 327
11.6.1 filter Clause . 328

12 Work-Distribution Constructs 329
12.1 single Construct . 330
12.2 scope Construct . 331
12.3 sections Construct . 332

12.3.1 section Directive . 334
12.4 workshare Construct . 334
12.5 coexecute Construct . 337
12.6 Worksharing-Loop Constructs . 339

12.6.1 for Construct . 341
12.6.2 do Construct . 342
12.6.3 schedule Clause . 343

12.7 distribute Construct . 345
12.7.1 dist_schedule Clause . 347

12.8 loop Construct . 348
12.8.1 bind Clause . 350

13 Tasking Constructs 352
13.1 untied Clause . 352
13.2 mergeable Clause . 353
13.3 final Clause . 353
13.4 threadset Clause . 354
13.5 priority Clause . 355
13.6 task Construct . 355

13.6.1 affinity Clause . 358
13.6.2 detach Clause . 359

13.7 taskloop Construct . 360
13.7.1 grainsize Clause . 363
13.7.2 num_tasks Clause . 364

13.8 taskyield Construct . 364

viii OpenMP API – Version 6.0 Preview 2 November 2023

13.9 Initial Task . 365
13.10 Task Scheduling . 366

14 Device Directives and Clauses 369
14.1 device_type Clause . 369
14.2 device Clause . 370
14.3 thread_limit Clause . 371
14.4 Device Initialization . 372
14.5 target data Construct . 373
14.6 target enter data Construct . 374
14.7 target exit data Construct . 376
14.8 target Construct . 378
14.9 target update Construct . 383

15 Interoperability 386
15.1 interop Construct . 386

15.1.1 OpenMP Foreign Runtime Identifiers . 388
15.1.2 init Clause . 388
15.1.3 use Clause . 389

15.2 Interoperability Requirement Set . 390

16 Synchronization Constructs and Clauses 391
16.1 Synchronization Hints . 391

16.1.1 Synchronization Hint Type . 391
16.1.2 hint Clause . 393

16.2 critical Construct . 394
16.3 Barriers . 396

16.3.1 barrier Construct . 396
16.3.2 Implicit Barriers . 397
16.3.3 Implementation-Specific Barriers . 399

16.4 taskgroup Construct . 399
16.5 taskwait Construct . 401
16.6 nowait Clause . 403
16.7 nogroup Clause . 404

Contents ix

16.8 OpenMP Memory Ordering . 405
16.8.1 memory-order Clauses . 405
16.8.2 atomic Clauses . 409
16.8.3 extended-atomic Clauses . 411
16.8.4 memscope Clause . 414
16.8.5 atomic Construct . 415
16.8.6 flush Construct . 419
16.8.7 Implicit Flushes . 421

16.9 OpenMP Dependences . 425
16.9.1 task-dependence-type Modifier . 425
16.9.2 Depend Objects . 426
16.9.3 update Clause . 426
16.9.4 depobj Construct . 427
16.9.5 depend Clause . 428
16.9.6 doacross Clause . 431

16.10 ordered Construct . 433
16.10.1 Stand-alone ordered Construct . 434
16.10.2 Block-associated ordered Construct . 435
16.10.3 parallelization-level Clauses . 437

17 Cancellation Constructs 439
17.1 cancel-directive-name Clauses . 439
17.2 cancel Construct . 440
17.3 cancellation point Construct . 444

18 Composition of Constructs 445
18.1 Nesting of Regions . 445
18.2 Clauses on Combined and Composite Constructs 446
18.3 Combined and Composite Directive Names 449
18.4 Combined Construct Semantics . 450
18.5 Composite Construct Semantics . 451

x OpenMP API – Version 6.0 Preview 2 November 2023

III Runtime Library Routines 452

19 Runtime Library Routines 453
19.1 Runtime Library Definitions . 454
19.2 Thread Team Routines . 457

19.2.1 omp_set_num_threads . 457
19.2.2 omp_get_num_threads . 457
19.2.3 omp_get_max_threads . 458
19.2.4 omp_get_thread_num . 459
19.2.5 omp_in_parallel . 459
19.2.6 omp_set_dynamic . 460
19.2.7 omp_get_dynamic . 461
19.2.8 omp_get_cancellation . 462
19.2.9 omp_set_schedule . 462
19.2.10 omp_get_schedule . 464
19.2.11 omp_get_thread_limit . 465
19.2.12 omp_get_supported_active_levels 465
19.2.13 omp_set_max_active_levels . 466
19.2.14 omp_get_max_active_levels . 467
19.2.15 omp_get_level . 467
19.2.16 omp_get_ancestor_thread_num 468
19.2.17 omp_get_team_size . 469
19.2.18 omp_get_active_level . 470

19.3 Thread Affinity Routines . 470
19.3.1 omp_get_proc_bind . 470
19.3.2 omp_get_num_places . 472
19.3.3 omp_get_place_num_procs . 472
19.3.4 omp_get_place_proc_ids . 473
19.3.5 omp_get_place_num . 474
19.3.6 omp_get_partition_num_places 474
19.3.7 omp_get_partition_place_nums 475
19.3.8 omp_set_affinity_format . 476
19.3.9 omp_get_affinity_format . 477
19.3.10 omp_display_affinity . 478

Contents xi

19.3.11 omp_capture_affinity . 478
19.4 Teams Region Routines . 480

19.4.1 omp_get_num_teams . 480
19.4.2 omp_get_team_num . 480
19.4.3 omp_set_num_teams . 481
19.4.4 omp_get_max_teams . 482
19.4.5 omp_set_teams_thread_limit . 483
19.4.6 omp_get_teams_thread_limit . 484

19.5 Tasking Routines . 484
19.5.1 omp_get_max_task_priority . 484
19.5.2 omp_in_explicit_task . 485
19.5.3 omp_in_final . 485
19.5.4 omp_is_free_agent . 486
19.5.5 omp_ancestor_is_free_agent . 487

19.6 Resource Relinquishing Routines . 488
19.6.1 omp_pause_resource . 488
19.6.2 omp_pause_resource_all . 490

19.7 Device Information Routines . 491
19.7.1 omp_get_num_procs . 491
19.7.2 omp_get_max_progress_width . 492
19.7.3 omp_set_default_device . 492
19.7.4 omp_get_default_device . 493
19.7.5 omp_get_num_devices . 493
19.7.6 omp_get_device_num . 494
19.7.7 omp_is_initial_device . 495
19.7.8 omp_get_initial_device . 495

19.8 Device Memory Routines . 496
19.8.1 omp_target_alloc . 496
19.8.2 omp_target_free . 498
19.8.3 omp_target_is_present . 499
19.8.4 omp_target_is_accessible . 500
19.8.5 omp_target_memcpy . 501
19.8.6 omp_target_memcpy_rect . 503

xii OpenMP API – Version 6.0 Preview 2 November 2023

19.8.7 omp_target_memcpy_async . 505
19.8.8 omp_target_memcpy_rect_async 507
19.8.9 omp_target_memset . 510
19.8.10 omp_target_memset_async . 512
19.8.11 omp_target_associate_ptr . 514
19.8.12 omp_target_disassociate_ptr 516
19.8.13 omp_get_mapped_ptr . 518

19.9 Lock Routines . 519
19.9.1 omp_init_lock and omp_init_nest_lock 521
19.9.2 omp_init_lock_with_hint and

omp_init_nest_lock_with_hint 522
19.9.3 omp_destroy_lock and omp_destroy_nest_lock 523
19.9.4 omp_set_lock and omp_set_nest_lock 524
19.9.5 omp_unset_lock and omp_unset_nest_lock 526
19.9.6 omp_test_lock and omp_test_nest_lock 527

19.10 Timing Routines . 529
19.10.1 omp_get_wtime . 529
19.10.2 omp_get_wtick . 530

19.11 Event Routine . 530
19.11.1 omp_fulfill_event . 530

19.12 Interoperability Routines . 531
19.12.1 omp_get_num_interop_properties 532
19.12.2 omp_get_interop_int . 533
19.12.3 omp_get_interop_ptr . 534
19.12.4 omp_get_interop_str . 535
19.12.5 omp_get_interop_name . 535
19.12.6 omp_get_interop_type_desc . 536
19.12.7 omp_get_interop_rc_desc . 537

19.13 Memory Management Routines . 538
19.13.1 Memory Management Types . 538
19.13.2 Memory Space Routines . 541
19.13.3 omp_init_allocator . 544
19.13.4 Memory Allocator Routines . 545

Contents xiii

19.13.5 omp_destroy_allocator . 548
19.13.6 omp_set_default_allocator . 549
19.13.7 omp_get_default_allocator . 550
19.13.8 omp_alloc and omp_aligned_alloc 550
19.13.9 omp_free . 552
19.13.10omp_calloc and omp_aligned_calloc 553
19.13.11omp_realloc . 555
19.13.12omp_get_memspace_num_resources 557
19.13.13omp_get_submemspace . 558

19.14 Tool Control Routine . 559
19.15 Environment Display Routine . 562

IV Tool Interfaces 564

20 OMPT Interface 565
20.1 OMPT Interfaces Definitions . 565
20.2 Activating a First-Party Tool . 565

20.2.1 ompt_start_tool . 565
20.2.2 Determining Whether a First-Party Tool Should be Initialized 567
20.2.3 Initializing a First-Party Tool . 568
20.2.4 Monitoring Activity on the Host with OMPT 571
20.2.5 Tracing Activity on Target Devices with OMPT 572

20.3 Finalizing a First-Party Tool . 576
20.4 OMPT Data Types . 576

20.4.1 Tool Initialization and Finalization . 576
20.4.2 Callbacks . 577
20.4.3 Tracing . 578
20.4.4 Miscellaneous Type Definitions . 580

20.5 OMPT Tool Callback Signatures and Trace Records 598
20.5.1 Initialization and Finalization Callback Signature 598
20.5.2 Event Callback Signatures and Trace Records 600

20.6 OMPT Runtime Entry Points for Tools . 637
20.6.1 Entry Points in the OMPT Callback Interface 637

xiv OpenMP API – Version 6.0 Preview 2 November 2023

20.6.2 Entry Points in the OMPT Device Tracing Interface 654
20.6.3 Lookup Entry Points: ompt_function_lookup_t 665

21 OMPD Interface 667
21.1 OMPD Interfaces Definitions . 668
21.2 Activating a Third-Party Tool . 668

21.2.1 Enabling Runtime Support for OMPD . 668
21.2.2 ompd_dll_locations . 668
21.2.3 ompd_dll_locations_valid . 669

21.3 OMPD Data Types . 670
21.3.1 Size Type . 670
21.3.2 Wait ID Type . 670
21.3.3 Basic Value Types . 671
21.3.4 Address Type . 671
21.3.5 Frame Information Type . 671
21.3.6 System Device Identifiers . 672
21.3.7 Native Thread Identifiers . 673
21.3.8 OMPD Handle Types . 673
21.3.9 OMPD Scope Types . 674
21.3.10 Team Generator Types . 675
21.3.11 ICV ID Type . 676
21.3.12 Tool Context Types . 676
21.3.13 Return Code Types . 676
21.3.14 Primitive Type Sizes . 678

21.4 OMPD Third-Party Tool Callback Interface 678
21.4.1 Memory Management of OMPD Library 679
21.4.2 Context Management and Navigation . 681
21.4.3 Accessing Memory in the OpenMP Program or Runtime 683
21.4.4 Data Format Conversion: ompd_callback_device_host_fn_t . . . 687
21.4.5 ompd_callback_print_string_fn_t 688
21.4.6 The Callback Interface . 689

21.5 OMPD Tool Interface Routines . 691
21.5.1 Per OMPD Library Initialization and Finalization 691
21.5.2 Per OpenMP Process Initialization and Finalization 695

Contents xv

21.5.3 Thread and Signal Safety . 698
21.5.4 Address Space Information . 698
21.5.5 Thread Handles . 700
21.5.6 Parallel Region Handles . 705
21.5.7 Task Handles . 709
21.5.8 Querying Thread States . 716
21.5.9 Display Control Variables . 718
21.5.10 Accessing Scope-Specific Information . 720

21.6 Breakpoint Symbol Names for OMPD . 724
21.6.1 Beginning Parallel Regions . 724
21.6.2 Ending Parallel Regions . 725
21.6.3 Beginning Teams Regions . 726
21.6.4 Ending Teams Regions . 726
21.6.5 Beginning Task Regions . 727
21.6.6 Ending Task Regions . 727
21.6.7 Beginning OpenMP Threads . 728
21.6.8 Ending OpenMP Threads . 728
21.6.9 Beginning Target Regions . 729
21.6.10 Ending Target Regions . 729
21.6.11 Initializing OpenMP Devices . 730
21.6.12 Finalizing OpenMP Devices . 730

V Appendices 732

A OpenMP Implementation-Defined Behaviors 733

B Features History 743
B.1 Deprecated Features . 743
B.2 Version 5.2 to 6.0 Differences . 743
B.3 Version 5.1 to 5.2 Differences . 747
B.4 Version 5.0 to 5.1 Differences . 750
B.5 Version 4.5 to 5.0 Differences . 752
B.6 Version 4.0 to 4.5 Differences . 756
B.7 Version 3.1 to 4.0 Differences . 758

xvi OpenMP API – Version 6.0 Preview 2 November 2023

B.8 Version 3.0 to 3.1 Differences . 758
B.9 Version 2.5 to 3.0 Differences . 759

Index 762

Contents xvii

List of Figures

20.1 First-Party Tool Activation Flow Chart . 567

xviii

List of Tables

2.1 ICV Scopes and Descriptions . 58
2.2 ICV Initial Values . 61
2.3 Ways to Modify and to Retrieve ICV Values . 64
2.4 ICV Override Relationships . 68

3.1 Predefined Abstract Names for OMP_PLACES . 72
3.2 Available Field Types for Formatting OpenMP Thread Affinity Information 78
3.3 Reservation Types for OMP_THREADS_RESERVE 82

4.1 Syntactic Properties for Clauses, Arguments and Modifiers 101

6.1 Implicitly Declared C/C++ Reduction Identifiers 182
6.2 Implicitly Declared Fortran Reduction Identifiers 183
6.3 Implicitly Declared C/C++ Induction Identifiers 184
6.4 Implicitly Declared Fortran Induction Identifiers 184
6.5 Map-Type Decay of Map Type Combinations . 225

7.1 Predefined Memory Spaces . 236
7.2 Allocator Traits . 237
7.3 Predefined Allocators . 239

12.1 ompt_callback_work Callback Work Types for Worksharing-Loop 340

13.1 ompt_callback_task_create Callback Flags Evaluation 357

19.1 Required Values of the omp_interop_property_t enum Type 532
19.2 Required Values for the omp_interop_rc_t enum Type 533
19.3 Standard Tool Control Commands . 560

20.1 OMPT Callback Interface Runtime Entry Point Names and Their Type Signatures . 570
20.2 Callbacks for which ompt_set_callback Must Return ompt_set_always 572
20.3 OMPT Tracing Interface Runtime Entry Point Names and Their Type Signatures . . 573
20.4 Association of dev1 and dev2 arguments for target data operations 628

21.1 Mapping of Scope Type and OMPD Handles . 675

xix

Part I1

Definitions2

1

1 Overview of the OpenMP API1

The collection of compiler directives, library routines, and environment variables that this2
document describes collectively define the specification of the OpenMP Application Program3
Interface (OpenMP API) in C, C++ and Fortran programs. This specification provides a model for4
parallel programming that is portable across architectures from different vendors. Compilers from5
numerous vendors support the OpenMP API. More information about the OpenMP API can be6
found at the following web site: https://www.openmp.org.7

The directives, library routines, environment variables, and tool support that this document defines8
allow users to create, to manage, to debug and to analyze parallel programs while permitting9
portability. The directives extend the C, C++ and Fortran base languages with single program10
multiple data (SPMD) constructs, tasking constructs, device constructs, work-distribution11
constructs, and synchronization constructs, and they provide support for sharing, mapping and12
privatizing data. The functionality to control the runtime environment is provided by library13
routines and environment variables. Compilers that support the OpenMP API often include14
command line options to enable or to disable interpretation of some or all OpenMP directives.15

1.1 Scope16

The OpenMP API covers only user-directed parallelization, wherein the programmer explicitly17
specifies the actions to be taken by the compiler and runtime system in order to execute the program18
in parallel. OpenMP-compliant implementations are not required to check for data dependences,19
data conflicts, race conditions, or deadlocks. Compliant implementations also are not required to20
check for any code sequences that cause a program to be classified as non-conforming. Application21
developers are responsible for correctly using the OpenMP API to produce a conforming program.22
The OpenMP API does not cover compiler-generated automatic parallelization.23

1.2 Glossary24

construct se-
lector set

A selector sets that may match the construct trait set. 249, 252–254, 260

device selector
set

A selector sets that may match the device trait set. 252–254

implementation
selector set

A selector sets that may match the implementation trait set. 252–254

2

target_device
selector set

A selector sets that may match the target device trait set. 252–254

user selector set A selector sets that may match traits in the dynamic trait set. 252, 254
accessible device The host device or any non-host device accessible for execution. 62, 80,

290
acquire flush A flush that has the acquire flush property. 32, 36, 49–51, 417, 420,

422–425
acquire flush
property

A flush with the acquire flush property orders memory operations that
follow the flush after memory operations performed by a different thread
that synchronizes with it. 3, 18, 420

active level An active parallel region that encloses a given region at some point in the
execution of an OpenMP program. The number of active levels is the
number of active parallel regions that encloses the given region. 3, 36,
465, 466, 734

active parallel
region

A parallel region comprised of implicit tasks that are being executed by a
team to which multiple threads are assigned. 3, 38, 58, 59, 74, 154, 155,
460, 466, 469, 733

active target re-
gion

A target region that is executed on a device other than the device that
encountered the target construct. 67

address range The addresses of a contiguous set of storage locations. 13, 18, 25, 29, 35,
501

address space A collection of logical, virtual, or physical memory address ranges that
contain code, stack, and/or data. Address ranges within an address space
need not be contiguous. An address space consists of one or more
segments. 3, 18, 28, 33, 40, 289, 501, 567, 568, 676, 681, 682, 684, 702

address space con-
text

A tool context that refers to an address space within an OpenMP process.
676

address space
handle

A handle that refers to an address space within an OpenMP process. 675,
705

affected loop nest The subset of canonical loop nests of an associated loop sequence that are
selected by the looprange clause. 146, 300, 307

aggregate variable A variable, such as an array or structure, composed of other variables. For
Fortran, a variable of character type is considered an aggregate variable.
3, 15, 19, 30, 34, 39, 41, 46, 105, 155, 223, 359, 733

all tasks All tasks participating in the OpenMP program. 8, 189, 233, 238
all threads All OpenMP threads participating in the OpenMP program. A specific

usage of the term may be explicitly limited to all threads on a given device
or OpenMP thread pool. 3, 8, 47, 52, 169, 415

allocator A memory allocator. 3, 237–243, 245–247, 287, 381
allocator trait A trait of an allocator. 237–239
ancestor thread For a given thread, its parent thread or one of the ancestor threads of its

parent thread. 3, 468, 469, 487, 747

CHAPTER 1. OVERVIEW OF THE OPENMP API 3

array element A single member of an array as defined by the base language. 4, 184, 204,
205

array item An array, an array section, or an array element. 448
array section A designated subset of the elements of an array that is specified using a

subscript notation that can select more than one element. 4, 6, 7, 12, 26,
34, 81, 104, 107–109, 174–176, 178, 179, 181, 184, 185, 190, 191, 195,
204, 205, 213, 214, 217, 218, 220, 225, 227, 429, 430

assigned list item A list item to which assignment is performed as the result of a
data-motion clause. 228–230

assigned thread A thread that has been assigned an implicit task of a parallel region. 30,
37, 38, 42, 43, 459

associated device The associated device of a memory allocator is the device that is specified
when the memory allocator is created; If the associated memory space is a
predefined memory space, the associated device is the current device. 4,
46

associated itera-
tion

A logical iteration of the associated loops of a loop-nest-associated
directive. 33, 303, 339

associated itera-
tion space

The logical iteration space of the associated loops of a
loop-nest-associated directive. 340, 347

associated loop A loop from a canonical loop nest or a DO CONCURRENT loop in Fortran
that is controlled by a given loop-nest-associated directive. 4, 10, 22–24,
33, 41, 96, 140–144, 149–151, 163, 168, 171, 190, 203, 299–301,
303–305, 349, 360, 363, 364, 434

associated loop
sequence

The associated canonical loop sequence of a loop-sequence-associated
directive. 3, 146, 300

associated mem-
ory space

The associated memory space of a memory allocator is the memory space
that is specified when the memory allocator is created. 4, 26, 237, 239

assumed-size ar-
ray

For C/C++, an array section for which the number of array elements is
assumed.
For Fortran, an assumed-size array in the base language. 4, 42, 107, 109,
150, 151, 160, 174, 176, 212, 213, 218, 219

assumption direc-
tive

A directive that provides invariants that specify additional information
about the expected properties of the program that can optionally be used
for optimization. An implementation may ignore this information without
altering the behavior of the program. 4, 291, 294

assumption scope The scope for which the invariants specified by an assumption directive
must hold. 291–298

async signal safe The guarantee that interruption by signal delivery will not interfere with a
set of operations. An async signal safe runtime entry point is safe to call
from a signal handler. 4, 600, 624, 642, 643, 645, 646, 649, 651–653

atomic captured
update

An atomic update operation that is specified by an atomic construct on
which the capture clause is present. 131, 412, 416

4 OpenMP API – Version 6.0 Preview 2 November 2023

atomic conditional
update

An atomic update operation that is specified by an atomic construct on
which the compare clause is present. 129, 412, 413, 416–419

atomic operation An operation that is specified by an atomic construct or is implicitly
performed by the OpenMP implementation and that atomically accesses
and/or modifies a specific storage location. 5, 31–33, 47, 49–52, 215, 216,
239, 391, 417–419, 423

atomic read An atomic operation that is specified by an atomic construct on which
the read clause is present. 128, 410, 416

atomic scope The set of threads that may concurrently access or modify a given storage
location with atomic operations, where at least one of the operations
modifies the storage location. 47, 51, 239, 415

atomic update An atomic operation that is specified by an atomic construct on which
the update clause is present. 4, 5, 129, 410, 412, 416, 417, 419

atomic write An atomic operation that is specified by an atomic construct on which
the write clause is present. 129, 411, 416

attach-ineligible A pointer variable for which pointer attachment may not be performed.
214

attached pointer A pointer variable in a device data environment that, as a result of a
mapping operation, becomes the base pointer of a given data entity that
also exists in the device data environment. 30, 216, 220, 227, 228, 381

barrier A point in the execution of a program encountered by a team, beyond
which no thread in the team may execute until all threads in the team have
reached the barrier and all explicit tasks generated for execution by the
team have executed to completion. If cancellation has been requested,
threads may proceed to the end of the canceled region even if some
threads in the team have not reached the barrier. 5, 18, 20, 43–45, 207,
310, 327, 329–335, 339, 346, 366, 367, 396, 398, 399, 403, 417, 421–423,
441, 595

base address If a data entity has a base pointer, the address of the first storage location
of the implicit array of its base pointer; otherwise, if the data entity has a
base variable, the address of the first storage location of its base variable;
otherwise, the address of the first storage location of the data entity. 18,
174, 176, 213

CHAPTER 1. OVERVIEW OF THE OPENMP API 5

base array For C/C++, a containing array of a given lvalue expression or array
section that does not appear in the expression of any of its other
containing arrays.
For Fortran, a containing array of a given variable or array section that
does not appear in the designator of any of its other containing arrays.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers
pi have a pointer type declaration and identifiers xi have an
array type declaration, the base array is:
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.

6, 448
base expression The base array of a given array section or array element, if it exists;

otherwise, the base pointer of the array section or array element.
COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers
pi have a pointer type declaration and identifiers xi have an
array type declaration, the base expression is:
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.
More examples for C/C++:

• The base expression for x[i] and for x[i:n] is x, if x is an
array or pointer.

• The base expression for x[5][i] and for x[5][i:n] is x, if x
is a pointer to an array or x is 2-dimensional array.

• The base expression for y[5][i] and for y[5][i:n] is y[5],
if y is an array of pointers or y is a pointer to a pointer.

Examples for Fortran:
• The base expression for x(i) and for x(i:j) is x.

6, 108, 109, 175, 176, 185, 210, 213, 214
base function A function that is declared and defined in the base language. 14, 32, 41,

252, 253, 259–266
base language A programming language that serves as the foundation of the OpenMP

specification.
Section 1.7 lists the current base languages for the OpenMP
API.

2, 4, 6–8, 16, 19, 28, 30, 31, 33, 35, 36, 42, 45, 46, 51, 54–56, 90, 93, 94,
97, 98, 105, 107, 108, 110, 122–124, 128, 134, 139, 140, 153, 159, 176,
177, 185, 186, 195, 197, 200, 211, 214, 225, 226, 240–242, 246, 247, 261,
264, 266, 291, 336, 388, 416, 436, 733

base language
thread

A thread of execution that defines a single flow of control within the
program and that may execute concurrently with other base language
threads, as specified by the base language. 6, 45

6 OpenMP API – Version 6.0 Preview 2 November 2023

base pointer For C/C++, an lvalue pointer expression that is used by a given lvalue
expression or array section to refer indirectly to its storage, where the
lvalue expression or array section is part of the implicit array for that
lvalue pointer expression.
For Fortran, a data pointer that appears last in the designator for a given
variable or array section, where the variable or array section is part of the
pointer target for that data pointer.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers
pi have a pointer type declaration and identifiers xi have an
array type declaration, the base pointer is:
(*p0).x0[k1].p1->p2.

5–7, 13, 26, 150, 176, 191, 195, 214–216, 218, 219, 379, 447, 448
base program A program written in a base language. 28, 122
base variable For a given data entity that is a variable or array section, a variable

denoted by a base language identifier that is either the data entity or is a
containing array or containing structure of the data entity.

COMMENT:
Examples for C/C++:

• The data entities x, x[i], x[:n], x[i].y[j] and x[i].y[:n],
where x and y have array type declarations, all have the
base variable x.

• The lvalue expressions and array sections p[i], p[:n],
p[i].y[j] and p[i].y[:n], where p has a pointer type and
p[i].y has an array type, has a base pointer p but does
not have a base variable.

Examples for Fortran:
• The data objects x, x(i), x(:n), x(i)%y(j) and x(i)%y(:n),

where x and y have array type declarations, all have the
base variable x.

• The data objects p(i), p(:n), p(i)%y(j) and p(i)%y(:n),
where p has a pointer type and p(i)%y has an array type,
has a base pointer p but does not have a base variable.

• For the associated pointer p, p is both its base variable
and base pointer.

5, 7, 155, 176, 209, 210, 219, 380, 447, 448
binding implicit
task

The implicit task of the current team assigned to the encountering thread.
8, 20, 66, 315

CHAPTER 1. OVERVIEW OF THE OPENMP API 7

binding region The enclosing region that determines the execution context and limits the
scope of the effects of the bound region is called the binding region. The
binding region is not defined for regions for which the binding thread set
is all threads or the encountering thread, nor is it defined for regions for
which the binding task set is all tasks. 8, 29, 44, 144, 337, 348–350, 396,
433, 436, 440, 444, 468, 476, 477

binding task set The set of tasks that are affected by, or provide the context for, the
execution of a region. The binding task set for a given region can be all
tasks, the current team tasks, all tasks in the contention group, all tasks of
the current team that are generated in the region, the binding implicit task,
or the generating task. 8, 64, 267, 373, 374, 376, 378, 383, 387, 399, 404,
466, 486, 487, 511, 513

binding thread set The set of threads that are affected by, or provide the context for, the
execution of a region. The binding thread set for a given region can be all
threads on a specified set of devices, all threads that are executing tasks in
a contention group, all primary threads that are executing the initial tasks
of an enclosing teams region, the current team, or the encountering
thread. 8, 29, 41, 44, 166, 169, 309, 319, 323, 324, 327, 329–332, 334,
337–339, 345, 348–350, 352, 356, 360, 361, 394, 396, 401, 404, 415–417,
420, 427, 434, 435, 440, 441, 444, 468, 469, 476, 477, 746

bounds-
independent loop

For a structured block sequence, an enclosed canonical loop nest where
none of its loops have loop bounds that depend on the execution of a
preceding executable statement in the sequence. 145

C pointer For C/C++, a base language pointer variable.
For Fortran, a variable of type C_PTR. 16, 174

callback A tool callback. 8, 32, 53, 54, 187, 218, 275, 281, 311, 320, 328, 330,
332–334, 336, 338, 340, 346, 357, 361, 362, 372, 373, 375, 377, 380, 384,
395, 397–400, 402, 418, 421, 430, 433, 435, 442, 512, 561, 562, 566, 571,
573, 576, 580, 581, 667, 681

callback dispatch Callback dispatch processes a registered callback when an associated
event occurs in a manner consistent with the return code provided when a
first-party tool registered the callback. 8, 581, 659

callback registra-
tion

Callback registration provides a tool callback to an OpenMP
implementation to enable callback dispatch. 8, 32, 569, 571

cancellable con-
struct

A construct that has the cancellable property. 8, 439, 440, 444

cancellable prop-
erty

The property that a construct is a cancellable construct. 8, 309, 332, 341,
342, 399, 439

cancellation An action that cancels (that is, aborts) a region and causes executing
implicit tasks or explicit tasks to proceed to the end of the canceled
region. 5, 9, 45, 329, 396–398, 422, 425, 439–444

8 OpenMP API – Version 6.0 Preview 2 November 2023

cancellation point A point at which implicit tasks and explicit tasks check if cancellation has
been requested. If cancellation has been observed, they perform the
cancellation. 40, 45, 59, 396, 398, 422, 425, 440–444

candidate A replacement candidate. 255, 259
canonical frame
address

An address associated with a procedure frame on a call stack that was the
value of the stack pointer immediately prior to calling the procedure for
which the frame represents the invocation. 597

canonical loop
nest

A loop nest that complies with the rules and restrictions defined in
Section 5.4.1. 3, 4, 8, 9, 17, 19, 22–24, 95, 134–136, 139, 140, 142, 145,
146, 168, 202, 299, 300, 303, 307, 344

canonical loop
sequence

A sequence of canonical loop nests that complies with the rules and
restrictions defined in Section 5.4.6. 4, 19, 23, 24, 95, 135, 145, 146, 300,
744, 746

child task A task is a child-task of its generating task region. The region of a child
task is not part of its generating task region. 9, 15, 18, 34, 37, 401, 423

chunk A contiguous non-empty subset of the collapsed iterations of a
loop-collapsing construct. 339, 343–346, 348, 360, 451

class type For C++, variables declared with one of the class, struct, or union
keywords. 155, 159, 160, 165, 166, 168, 169, 182, 186, 191, 206–208,
217, 219, 381

clause A mechanism to specify customized directive behavior. xix, 3–5, 9, 10,
12–15, 17, 24, 26, 27, 30–33, 43, 45, 46, 48, 59, 62, 65, 67–69, 90, 91, 93,
94, 99–106, 109–112, 120–122, 140–144, 146, 148–152, 154, 155,
158–166, 168, 169, 171–177, 181, 184–186, 188–233, 235, 236, 241–247,
250, 252, 253, 255–296, 299–309, 312–315, 318, 319, 321–324, 326–335,
339, 343–356, 359–361, 363, 364, 369–371, 373–384, 387–391, 393, 395,
401–423, 425–430, 432–439, 441–443, 446–448, 451, 470, 514, 744–746,
748, 749, 757

clause group A clause set for which restrictions or properties related to their use on all
directives are specified. 272, 285, 292, 405, 409, 411, 437, 439, 746

clause set A set of clauses for which restrictions on their use or other properites of
their use on a given directive are specified. 9, 148, 285, 292, 361

clause-list trait A trait that is defined with properties that match the clauses that may be
specified for a given directive. 249, 250, 252

closely nested con-
struct

A construct nested inside another construct with no other construct nested
between them. 336, 338, 350, 442–444

closely nested re-
gion

A region nested inside another region with no parallel region nested
between them. 29, 194, 329, 351, 442, 444

code block A contiguous region of memory that contains code of an OpenMP
program to be executed on a device. 372

collapsed iteration A logical iteration of the collapsed loops of a loop-collapsing construct. 9,
10, 22, 33, 41, 158, 171, 172, 182, 195, 202–204, 323, 324, 327, 339, 340,
343–346, 348, 349, 360, 423, 436, 451

CHAPTER 1. OVERVIEW OF THE OPENMP API 9

collapsed iteration
space

The logical iteration space of the collapsed loops of a loop-collapsing
construct. 142, 203, 326, 343, 348

collapsed logical
iteration

A collapsed iteration. 142, 158

collapsed loop For a loop-collapsing construct, the outermost associated loop or one that
is controlled by the collapse clause. 9, 10, 23, 142, 158, 171, 324, 325,
339, 344–346, 348, 349, 361

collective step ex-
pression

An expression in terms of a step expression and a collector that eliminates
recursive calculation in an induction operation. 10, 22, 182

collector A binary operator used to eliminate recursion in an induction operation.
10, 22, 202

collector expres-
sion

A OpenMP stylized expression that evaluates to the value of the collective
step expression of a collapsed iteration. 21, 182–184, 200, 202

combined con-
struct

A construct that corresponds to a combined directive. 10, 11, 22, 34, 120,
190, 249, 292, 319, 321, 323, 436, 446–448

combined direc-
tive

A directive that is a shortcut for specifying one directive immediately
nested inside another directive. A combined directive is semantically
identical to explicitly specifying the first directive containing one instance
of the second directive and no other statements. 10, 11, 101, 292, 447, 449

combined target
construct

A combined construct that is composed of a target construct along
with another construct. 209, 210, 448

combiner expres-
sion

An OpenMP stylized expression that specifies how a reduction combines
partial results into a single value. 31, 178, 179, 185, 186, 198, 203

compatible con-
text selector

The context selector that matches the OpenMP context in which a
directive is encountered. 254–256, 259

compatible map
type

A map type that is consistent with data-motion attribute of a given
data-motion clause. 227, 229, 230

compilation unit For C/C++, a translation unit.
For Fortran, a program unit. 15, 48, 95, 156, 157, 221, 234, 242, 243, 245,
284–286, 291, 297, 381

compile-time er-
ror termination

Error termination preformed during compilation. 45, 285, 314

compliant imple-
mentation

An implementation of the OpenMP specification that compiles and
executes any conforming program as defined by the specification. A
compliant implementation may exhibit unspecified behavior when
compiling or executing a non-conforming program. 2, 10, 14, 20, 40, 44,
54, 56, 76, 77, 90, 344, 417, 667

composite con-
struct

A construct that corresponds to a composite directive. 11, 22, 34, 120,
190, 202, 249, 292, 319, 321, 436, 446, 447, 451

10 OpenMP API – Version 6.0 Preview 2 November 2023

composite direc-
tive

A directive that is composed of two (or more) directives but does not have
identical semantics to specifying one of the directives immediately nested
inside the other. A composite directive either adds semantics not included
in the directives from which it is composed or provides an effective
nesting of the one directives inside the other that would otherwise be
non-conforming. 10, 11, 101, 292, 447, 449

conforming device
number

A device number that may be used in a conforming program. 46, 237, 370

conforming pro-
gram

An OpenMP program that follows all rules and restrictions of the
OpenMP specification. 2, 10, 11, 27, 28, 40, 42, 54, 255, 300, 344

constituent con-
struct

For a given combined construct or composite construct, a construct from
which it, or any one of its constituent constructs, is composed. 11, 22, 34,
120, 190, 191, 447

constituent direc-
tive

For a given combined directive or composite directive, a construct from
which it, or any one of its constituent directives, is composed. 11, 101

construct An executable directive and its paired end directive (if any) and the
associated structured block (if any) not including the code in any called
procedures. That is, the lexical extent of an executable directive. 2–5,
8–12, 14–30, 32–46, 54, 59, 60, 63, 65–68, 74, 91, 94, 96, 103–105, 111,
120–122, 130, 131, 141, 143, 144, 148–152, 154, 155, 158, 159, 161–163,
165, 166, 168, 169, 171, 173–177, 186, 188–191, 193–195, 202, 203, 207,
209, 210, 212–219, 223–225, 227, 241, 245–247, 249, 262, 263, 267–271,
286–288, 292, 293, 295, 296, 301, 303, 305, 307–312, 319–324, 327, 330,
331, 333–339, 341–343, 345–356, 359–362, 364, 369–384, 386, 387, 390,
391, 393–397, 399–418, 420–430, 432–437, 439–448, 451, 514, 566, 595,
598, 675, 710, 746, 748, 751, 757

construct trait set The trait set that consists of all enclosing constructs at a given point in an
OpenMP program up to a target construct. 2, 13, 249, 250, 252, 254,
270

CHAPTER 1. OVERVIEW OF THE OPENMP API 11

containing array For C/C++, a non-subscripted array (a containing array) to which a series
of zero or more array subscript operators and/or . (dot) operators are
applied to yield a given lvalue expression or array section for which
storage is contained by the array.
For Fortran, an array (a containing array) without the POINTER attribute
and without a subscript list to which a series of zero or more array
subscript operators and/or component selectors are applied to yield a
given variable or array section for which storage is contained by the array.

COMMENT: An array is a containing array of itself. For the
array section (*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n],
where identifiers pi have a pointer type declaration and
identifiers xi have an array type declaration, the containing
arrays are: (*p0).x0[k1].p1->p2[k2].x1 and
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.

6, 7, 12, 106, 215, 218, 219
containing struc-
ture

For C/C++, a structure to which a series of zero or more . (dot) operators
and/or array subscript operators are applied to yield a given lvalue
expression or array section for which storage is contained by the structure.
For Fortran, a structure to which a series of zero or more component
selectors and/or array subscript selectors are applied to yield a given
variable or array section for which storage is contained by the structure.

COMMENT: A structure is a containing structure of itself.
For C/C++, a structure pointer p to which the -> operator
applies is equivalent to the application of a . (dot) operator to
(*p) for the purposes of determining containing structures.
For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers
pi have a pointer type declaration and identifiers xi have an
array type declaration, the containing structures are:
*(*p0).x0[k1].p1, (*(*p0).x0[k1].p1).p2[k2] and
(*(*p0).x0[k1].p1).p2[k2].x1[k3]

7, 12, 215, 218, 219
contention group All implicit tasks and their descendent tasks that are generated in an

implicit parallel region, R, and in all nested regions for which R is the
innermost enclosing implicit parallel region. 8, 23, 28, 33, 35, 42–45, 59,
60, 71, 82, 233, 238, 289, 309, 313, 318, 371, 394, 415

context selector The specification of an OpenMP context in which a construct is
encountered for use in clauses and modifiers. 10, 17, 35, 251–256,
259–261, 265, 266, 284

context-matching
construct

A construct that has the context-matching property. 252

12 OpenMP API – Version 6.0 Preview 2 November 2023

context-matching
property

The property that a directive adds a trait of the same name to the construct
trait set of the current OpenMP context. 12, 267, 309, 319, 324, 341, 342,
378

corresponding
base pointer ini-
tialization

For a given data entity that has a base pointer, an assignment to the base
pointer such that any lexical reference to the data entity or a subobject of
the data entity in a target region refers to its corresponding data entity
or subobject in the device data environment. 216, 379

corresponding list
item

A list item in a device data environment that corresponds to an original
list item. 13, 24, 176, 212, 215–217, 219–221, 227–229, 274, 291, 378,
383, 745

corresponding
pointer

A corresponding list item for which the an original list item may be used
as a base pointer. 29, 215, 220

corresponding
storage

An address range in a device data environment that corresponds to, but
may be distinct from, an address range in the device data environments of
the encountering device. 13, 25, 30, 33, 174, 213, 214, 216, 217, 219, 228

corresponding
storage block

A storage block that is used as corresponding storage. 47, 48, 215, 216

current device The device on which the current task is executing. 20, 47, 49, 58, 370
current task For a given thread, the task corresponding to the task region that it is

executing. 13, 17, 20, 212, 262, 399, 401, 460, 466, 487
current task re-
gion

The region that corresponds to the current task. 44, 324, 396, 401, 440,
441

current team All threads in the team executing the innermost enclosing parallel
region. 8, 29, 33, 38, 60, 152, 324, 327, 328, 330–332, 334, 339, 354,
396, 399, 401, 434, 435, 440, 444, 469, 595

current team
tasks

All tasks encountered by the corresponding team. The implicit tasks
constituting the parallel region and any descendent tasks encountered
during the execution of these implicit tasks are included in this set of
tasks. 8, 238

data environment The variables associated with the execution of a given region. 13–15, 20,
25–27, 29, 37, 43, 45, 47, 48, 58, 64, 66, 67, 148, 193, 207, 208, 212, 227,
326, 356, 359, 360, 373, 374, 376, 378, 383

data-environment
attribute

A data-sharing attribute or a data-mapping attribute. 13, 148

data-environment
attribute clause

A clause that explicitly determines the data-environment attributes of the
list items in its list argument. 148, 224

data-mapping
attribute

The relationship of an entity in a given device data environment to the
version of that entity in the data environment of the enclosing context. 13,
18, 21, 148, 151, 209, 210, 223

data-mapping
attribute clause

A clause that explicitly determines the data-mapping attributes of the list
items in its list argument. 14, 18, 27, 47, 148, 209, 221, 373, 374, 376,
378

CHAPTER 1. OVERVIEW OF THE OPENMP API 13

data-mapping
construct

A construct that has the data-mapping property. 150

data-mapping
property

The property of a construct on which a data-mapping attribute clause may
be specified. 14, 373, 374, 376, 378

data-motion at-
tribute

The data-movement relationship between a given device data environment
and the version of that entity in the data environment of the enclosing
context. 10, 227

data-motion
clause

A clause that specifies data movement between a device set that is
specified by the construct on which it appears. 4, 10, 211, 225, 227–230,
383

data-sharing at-
tribute

The relationship of an entity in a given data environment to the version of
that entity in the enclosing context. 13, 14, 18, 21, 30, 148, 150–153, 161,
210, 223, 374, 376, 378, 383

data-sharing at-
tribute clause

A clause that explicitly determines the data-sharing attributes of the list
items in its list argument. 18, 148, 150, 151, 158–161, 163, 177, 349, 360,
378, 380

declarative direc-
tive

A directive that may only be placed in a declarative context and results in
one or more declarations only; it is not associated with the immediate
execution of any user code or implementation code. 14, 93, 94, 97, 103,
153, 196, 199, 224, 232, 242, 256, 264, 265, 270, 275, 278, 292

declare target di-
rective

A declarative directive that ensures that procedures and/or variables can
be executed or accessed on a device. 25, 27, 47, 178, 233, 249, 273–276,
278, 279, 285, 290, 291

declare variant
directive

A declarative directive that declare a function variant for a given base
function. 249, 259, 260, 265, 266

declare-target
property

The property that a directive applies to procedures and/or variables to
ensure that they can be executed or accessed on a device. 275, 278

defined For variables, the property of having a valid value.
For C, for the contents of variables, the property of having a valid value.
For C++, for the contents of variables of POD (plain old data) type, the
property of having a valid value. For variables of non-POD class type, the
property of having been constructed but not subsequently destructed.
For Fortran, for the contents of variables, the property of having a valid
value. For the allocation or association status of variables, the property of
having a valid status.

COMMENT: Programs that rely upon variables that are not
defined are non-conforming programs.

14, 40, 72, 73, 226
dependence An ordering relation between two instances of executable code that must

be enforced by a compliant implementation. 16, 17, 37, 425–428, 430,
432, 434, 513

14 OpenMP API – Version 6.0 Preview 2 November 2023

dependent task A task that because of a task dependence cannot be executed until its
predecessor tasks have completed. 30, 37, 367, 401, 402, 423–425,
428–430, 513

deprecated For a construct, clause, or other feature, the property that it is normative in
the current specification but is considered obsolescent and will be
removed in the future. Deprecated features may not be fully specified. In
general, a deprecated feature was fully specified in the version of the
specification immediately prior to the one in which it is first deprecated.
In most cases, a new feature replaces the deprecated feature. Unless
otherwise specified, whether any modifications provided by the
replacement feature apply to the deprecated feature is implementation
defined. 15, 196, 733, 743, 747–749, 751, 755

descendent task A task that is the child task of a task region or of a region that corresponds
to one of its descendent tasks. 12, 13, 15, 361, 367, 423, 441

detachable task An explicit task that only completes after an associated event variable that
represents an allow-completion event is fulfilled and execution of the
associated structured block has completed. 356, 359, 423, 424

device An implementation-defined logical execution engine.
COMMENT: A device could have one or more processors.

3, 4, 9, 13–18, 20, 21, 26–30, 36, 40, 42, 43, 46–48, 58, 59, 67, 80, 81,
175, 209, 212, 217, 221, 227, 235, 238–240, 249, 250, 252, 254, 262, 273,
274, 289, 290, 369, 372, 375, 377–379, 381, 384, 388, 389, 415, 460, 488,
496, 498, 501, 511, 513, 543, 547, 573, 627, 637, 684, 733, 743, 747

device address An address of an object that may be referenced on a target device. 16, 47,
173–175, 289, 290, 733

device construct A construct that has the device property. 2, 15, 16, 36, 217, 285, 288–291,
370

device data envi-
ronment

The initial data environment associated with a device. 5, 13, 14, 16, 24,
25, 30, 47, 48, 67, 148, 173–176, 193, 209, 212–217, 219–221, 227, 228,
274, 290, 373, 374, 376, 378, 381–383, 510–513, 747

device global re-
quirement prop-
erty

The property that a requirement clause indicates requirements for the
behavior of device constructs that a program requires the implementation
to support across all compilation units. 285

device local vari-
able

A variable with static storage duration that is replicated for each device by
the OpenMP implementation. Its name provides access to a different
block of storage for each device.
A variable that is part of an aggregate variable cannot be made a device
local variable independently of the other components, except for static
data members of C++ classes. If a variable is made a device local
variable, its components are also device local variables. 15, 47, 149, 218,
235, 273, 274, 290, 733

CHAPTER 1. OVERVIEW OF THE OPENMP API 15

device number A number that the OpenMP implementation assigns to a device or
otherwise may be used in an OpenMP program to refer to a device. 11,
46, 58, 59, 62, 63, 240, 370, 378, 511, 513, 627

device pointer An implementation defined handle that refers to a device address and is
represented by a C pointer. 47, 173, 174, 262, 289, 390, 733

device procedure A function (for C/C++ and Fortran) or subroutine (for Fortran) that can be
executed on a target device, as part of a target region. 36, 222, 274,
285, 288–291

device property The property of a construct that accepts the device clause. 15, 275, 278,
373, 374, 376, 378, 383, 386

device trait set The trait set that consists of traits that define the characteristics of the
device being targeted by the compiler at that point in the OpenMP
program. 2, 249, 250

device-affecting
construct

A construct that has the device-affecting property. 380

device-affecting
property

The property that a device construct can modify the state of the device
data environment of a specified target device. 16, 373, 374, 376, 378, 383

device-specific
environment vari-
able

An alternative OpenMP environment variable that controls of the behavior
of the program only with respect to a particular device or set of devices.
62, 63

directive A base language mechanism to specify OpenMP program behavior. 2, 4,
9–11, 13, 14, 16–18, 22, 24–26, 28, 31–33, 36, 40, 42, 45–48, 52, 54, 56,
59, 69, 90–103, 105–107, 109, 122, 125–130, 136, 139–144, 146, 148,
149, 151–153, 155–158, 161, 162, 168, 171, 172, 178, 185, 186, 190,
196–200, 202–205, 209, 211, 213, 215, 216, 221–226, 233, 234, 236, 238,
242–245, 247, 249, 250, 252, 253, 255–258, 264–268, 270, 271, 274,
276–286, 288–292, 297–300, 303, 308, 310, 312, 314, 315, 321, 323, 324,
334, 336, 349, 352, 359, 360, 370, 375, 377–381, 383, 387, 389–391, 395,
402, 403, 405, 409, 417, 421–424, 439, 443, 449, 745, 746, 748–751

directive variant A directive specification that can be used in a metadirective. 32, 255–258
divergent threads Two threads that have reached different points in user code or otherwise

have reached a common point via calls from different points in user code.
31, 45

doacross depen-
dence

A dependence between executable code corresponding to stand-alone
ordered regions from two doacross iterations: the sink iteration and the
source iteration, where the source iteration precedes the sink iteration in
the doacross iteration space. The doacross dependence is fulfilled when
the executable code from the source iteration has completed. 16, 34, 425,
432, 434

doacross iteration A logical iteration of a doacross loop nest. 16, 17, 34, 424, 425, 432, 434
doacross iteration
space

The logical iteration space of a doacross loop nest. 16, 432

16 OpenMP API – Version 6.0 Preview 2 November 2023

doacross logical
iteration

A doacross iteration. 432

doacross loop nest A canonical loop nest that has cross-iteration dependences between its
logical iterations as specified by the use of stand-alone ordered
constructs, such that executable code from a logical iteration is dependent
on the executable code of one or more earlier logical iterations.

COMMENT: The argument of the ordered clause on a
worksharing-loop construct identifies the loops associated
with the doacross loop nest.

16, 17, 432, 434, 757
dynamic context
selector

Any context selector that is not a static context selector. 266

dynamic replace-
ment candidate

A replacement candidate that may be selected at run time to replace a
given metadirective. 255, 256, 259

dynamic trait set The trait set that consists of traits that define the dynamic properties of an
OpenMP program at a given point in its execution. 3, 249, 250, 252

enclosing context For C/C++, the innermost scope enclosing a directive.
For Fortran, the innermost scoping unit enclosing a directive. 13, 14, 29,
151, 152, 195, 197, 200, 208, 255, 269, 270, 333, 336, 338, 346, 347

encountering de-
vice

For a given construct, the device on which the encountering task of the
construct executes. 13, 25, 29, 229, 230

encountering task For a given region, the current task of the encountering thread. 17, 37, 45,
227, 263, 281, 310, 319, 320, 340, 354, 359, 361, 373, 387, 397, 398, 402,
403, 440–442, 469

encountering
thread

For a given region, the thread that encounters the corresponding construct.
7, 8, 17, 21, 32, 43, 44, 309, 310, 315, 316, 318, 319, 349, 350, 356, 378,
387, 420, 427, 468, 469, 474, 476, 477, 486, 487, 747

ending address The address of the last storage location of a list item or, for a mapped
variable of its original list item. 18, 25, 213

environment vari-
able

Unless specifically stated otherwise, an OpenMP environment variable.
62

error termination A fatal action preformed in response to an error. 10, 33, 45, 314, 745
event A point of interest in the execution of a thread. 8, 15, 37, 39, 53, 54, 187,

217, 218, 274, 275, 281, 310, 311, 320, 327, 328, 330–334, 336, 338, 340,
346, 356, 359, 361, 372, 373, 375, 377, 379, 380, 384, 395–402, 417, 418,
421, 423, 424, 430, 433–435, 442, 511, 512, 514, 561, 565, 568, 569, 571,
581, 641, 667, 668

exception-
aborting directive

A directive that has the exception-aborting property. 295, 735

exception-
aborting property

For C++, the property of a directive to be implementation defined whether
an exceptions is caught or results in a runtime error termination. 17, 90,
378

CHAPTER 1. OVERVIEW OF THE OPENMP API 17

exclusive scan
computation

A scan computation for which the value read does not include the updates
performed in the same logical iteration. 203

executable direc-
tive

A directive that appears in an executable context and results in
implementation code and/or prescribes the manner in which associated
user code must execute. 11, 24, 36, 42, 90, 93, 94, 125, 136, 246, 255,
267, 281, 282, 301, 302, 304–306, 309, 319, 324, 327, 330–332, 334, 337,
341, 342, 345, 348, 355, 360, 364, 373, 374, 376, 378, 383, 386, 394, 396,
399, 401, 415, 419, 427, 434, 435, 440, 444

explicit barrier A barrier that is specified by a barrier construct. 396
explicit region A region that corresponds to either a construct of the same name or a

library routine call that explicitly appears in the program. 35, 42, 90, 338,
653

explicit task A task that is not an implicit task. 5, 8, 9, 15, 18, 19, 29, 33, 37, 44–46,
59, 190, 191, 310, 315, 352, 356, 360–362, 366, 396, 424, 444

explicit task re-
gion

A region that corresponds to an explicit task. 32, 47, 163, 356

explicitly de-
termined data-
mapping attribute

A data-mapping attribute that is determined due to the presence of a list
item on a data-mapping attribute clause. 209

explicitly de-
termined data-
sharing attribute

A data-sharing attribute that is determined due to the presence of a list
item on a data-sharing attribute clause. 148, 151, 162

extended address
range

The address range that starts from the minimum of the starting address
and the base address and ends with maximum of the ending address and
the base address of an original list item. 25, 213

extension trait A trait that is implementation defined. 249, 250
final task A task that forces all of its child tasks to become final tasks and included

tasks. 18, 59, 352, 354, 357, 359
first-party tool A tool that executes in the address space of the program that it is

monitoring. 8, 27, 28, 53, 562, 565, 567
flush An operation that a thread performs to enforce consistency between its

view and the view of any other threads of memory. 3, 18, 20, 32, 35, 39,
45, 48–52, 329, 391, 415, 420–422

flush property A property that determines the manner in which a flush enforces memory
consistency. Any flush has one or more of the following: the strong flush
property, the release flush property, and the acquire flush property. 50

flush-set The set of variables upon which a strong flush operates. 49
foreign execution
context

A context that is instantiated from a foreign runtime environment in order
to facilitate execution on a given device. 18, 387, 388, 751

foreign runtime
environment

A runtime environment that exists outside the OpenMP runtime with
which the OpenMP implementation may interoperate. 18, 386

foreign task An instance of executable code that is executed in a foreign execution
context. 387, 388

18 OpenMP API – Version 6.0 Preview 2 November 2023

frame A storage area on the stack of a thread that is associated with a procedure
invocation. A frame includes space for one or more saved registers and
often also includes space for saved arguments, local variables, and
padding for alignment. 9, 19, 596, 597, 649

free-agent thread An unassigned thread on which an explicit task is scheduled for execution
or a primary thread for an explicit parallel region that was a free-agent
thread when it encountered the parallel construct. 19, 32, 36, 59, 82,
83, 315, 367, 486, 487, 737, 744, 747

function variant A definition of a function that may be used as an alternative to the base
language definition. 14, 32, 41, 249, 259–265, 267–269

generated loop A loop that is generated by a loop-transforming construct and is one of the
resulting loops that replace the construct. 136, 140, 143, 300, 301, 303,
307, 308

generated loop
nest

A canonical loop nest that is generated by a loop-transforming construct.
300

generated loop
sequence

A canonical loop sequence that is generated by a loop-transforming
construct. 300

generating task For a given region, the task for which execution by a thread generated the
region. 8, 19, 66, 67, 267, 356, 373, 374, 376, 378, 383, 387, 424, 466,
486, 487, 511, 513, 710

generating task
region

For a given region, the region that corresponds to its generating task. 9,
21, 26, 40, 710, 711

global A program aspect such as a scope that covers the whole OpenMP
program. 20, 58, 62, 243

groupprivate vari-
able

A variable that is replicated, one instance per a specified group of tasks,
by the OpenMP implementation. Its name provides access to a different
block of storage for each specified group.
A variable that is part of an aggregate variable cannot be made a
groupprivate variable independently of the other components, except for
static data members of C++ classes. If a variable is made a groupprivate
variable, its components are also groupprivate variables with respect to
the same group. 19, 149, 218, 233, 234, 274, 276, 278, 339, 379

handle An opaque reference that uniquely identifies an abstraction. 3, 16, 26, 29,
37, 41, 219, 237, 388, 389, 646, 700, 702, 703

happens before For an event A to happen before an event B, A must precede B in
happens-before order. 51

happens-before
order

An asymmetric relation that is consistent with simply happens-before
order and, for C/C++, the “happens before” order defined by the base
language. 19, 239, 290

hardware thread An indivisible hardware execution unit on which only one OpenMP thread
can execute at a time. 31, 72, 73, 309

host address An address of an object that may be referenced on the host device. 20, 290

CHAPTER 1. OVERVIEW OF THE OPENMP API 19

host device The device on which the OpenMP program begins execution. 3, 19, 21,
27, 36, 43, 44, 46, 48, 63, 81, 216, 239, 250, 289, 319, 369, 373, 375–377,
380, 381, 384

host pointer A pointer that refers to a host address. 289, 290
ICV Acronym form for internal control variable. 20, 28, 33, 58, 60, 62–69, 71,

74, 76, 78, 80–83, 154, 241, 252, 267, 287, 312, 315, 316, 318, 319, 322,
340, 344, 355, 356, 360, 370, 371, 374, 376, 378, 383, 422, 425, 440, 441,
459, 466, 475, 567, 568

ICV scope A context that contains one copy of a given ICV and defines the extent in
which the ICV controls program behavior; the ICV scope may be the
OpenMP program (i.e., global), the current device, the binding implicit
task, or the data environment of the current task. 20, 58, 62, 64, 66, 67,
374, 376, 378, 383

idle thread An unassigned thread that is not currently executing any task. 366, 595
implementation
code

Implicit code that is introduced by the OpenMP implementation. 14, 18,
32, 34, 596

implementation
defined

Behavior that must be documented by the implementation, and is allowed
to vary among different compliant implementations. An implementation
is allowed to define it as unspecified behavior. 15–18, 36, 40, 45–47, 54,
62, 67, 71–73, 76, 77, 83, 90, 91, 97–99, 142, 153, 155, 173, 175, 232,
236, 237, 239, 240, 250, 253, 254, 256, 259, 260, 264, 270, 273, 281, 283,
284, 303, 304, 313–317, 319, 322, 324, 330, 333, 340, 344, 346, 361, 371,
386, 388, 389, 391, 393, 417, 466, 476, 477, 561, 571, 573, 627, 733–738

implementation
trait set

The trait set that consists of traits that describe the functionality supported
by the OpenMP implementation at that point in the OpenMP program. 2,
249, 250

implicit array For C/C++, the set of array elements of non-array type T that may be
accessed by applying a sequence of [] operators to a given pointer that is
either a pointer to type T or a pointer to a multidimensional array of
elements of type T.
For Fortran, the set of array elements for a given array pointer.

COMMENT: For C/C++, the implicit array for pointer p with
type T (*)[10] consists of all accessible elements p[i][j], for
all i and j=0,1,...,9.

5, 219
implicit barrier A barrier that is specified as part of the semantics of a construct other than

the barrier construct. 337, 397–399, 403, 441
implicit flush A flush that is specified as part of the semantics of a construct other than

the flush construct. 423
implicit parallel
region

An inactive parallel region that is not generated from a parallel
construct. Implicit parallel regions surround the whole OpenMP program,
all target regions, and all teams regions. 12, 21, 22, 33, 42–44, 233,
315, 321, 350, 675

20 OpenMP API – Version 6.0 Preview 2 November 2023

implicit task A task generated by an implicit parallel region or generated when a
parallel construct is encountered during execution. 3, 4, 7–9, 12, 13,
18, 21, 22, 28–30, 35, 37, 38, 42, 43, 47, 58, 60, 66, 67, 152, 165, 189,
190, 205, 207, 208, 310, 311, 315, 316, 318, 329–340, 346, 421, 422, 424,
444, 475

implicit task re-
gion

A region that corresponds to an implicit task. 42, 67

implicitly de-
termined data-
mapping attribute

A data-mapping attribute that applies to an entity for which no
data-mapping attribute is otherwise determined. 209, 216, 223

implicitly de-
termined data-
sharing attribute

A data-sharing attribute that applies to an entity for which no data-sharing
attribute is otherwise determined. 148, 151, 160, 161, 209, 211, 223

inactive parallel
region

A parallel region comprised of one implicit task and, thus, is being
executed by a team comprised of only its primary thread. 21, 469

inactive target
region

A target region that is executed on the same device that encountered
the target construct. 67, 216

included task A task for which execution is sequentially included in the generating task
region. That is, an included task is an undeferred task and executed by the
encountering thread. 18, 21, 26, 32, 46, 352, 356, 374, 376, 378, 383,
387, 401, 403, 511

inclusive scan
computation

A scan computation for which the value read includes the updates
performed in the same logical iteration. 202

indirect device
invocation

An indirect call to the device version of a procedure on a device other than
the host device, through a function pointer (C/C++), a pointer to a
member function (C++) or a procedure pointer (Fortran) that refers to the
host version of the procedure. 279

induction expres-
sion

A collector expression or a inductor expression. 177, 178

induction opera-
tion

A recurrence operation that expresses the value of a variable as a function,
the inductor, applied to its previous value and a step expression. For an
induction operation performed on a loop on the induction variable x and a
loop-invariant step expression s, xi = xi−1 ⊕ s, i > 0, where xi is the
value of x at the start of collapsed iteration i, x0 is the value of x before
any tasks enter the loop, and the binary operator ⊕ is the inductor. For
some inductors, the induction operation can be expressed in a
non-recursive closed form as xi = x0 ⊕ si = x0 ⊕ (s⊗ i) where
si = s⊗ i. The expression si is the collective step expression of iteration
i and the binary operator ⊗ is the collector. 10, 22, 35, 40, 177, 181, 195,
202

induction variable A variable for which an induction operation determines its values. 22,
181, 199, 200

inductor A binary operator used by an induction operation. 22, 181

CHAPTER 1. OVERVIEW OF THE OPENMP API 21

inductor expres-
sion

An OpenMP stylized expression that specifies how an induction operation
determines a new value of an induction variable from its previous value
and a step expression. 21, 181, 183–186, 195, 200, 201

informational di-
rective

A directive that is neither declarative nor executable, but otherwise
conveys user code properties to the compiler. 93, 281, 284, 292, 297, 298

initial task An implicit task associated with an implicit parallel region. 8, 22, 33, 43,
44, 67, 190, 315, 320, 338, 346, 371, 379, 424

initial task region A region that corresponds to an initial task. 42, 43, 58, 59, 422, 424, 460
initial team The team that comprises an initial thread executing an implicit parallel

region. 37, 43, 59, 319, 346, 348
initial thread The thread that executes an implicit parallel region. 22, 29, 30, 39, 42, 43,

74, 76, 154, 319, 320, 337, 345, 346, 350, 422, 424, 585, 734
initializer expres-
sion

An OpenMP stylized expression that determines the initializer for the
private copies of reduction list items. 31, 179–182, 185, 186, 199, 203

input phase The portion of a logical iteration that contains all computations that
update a list item for which a scan computation is performed. 40, 202, 203

internal control
variable

A conceptual variable that specifies runtime behavior of a set of threads or
tasks in an OpenMP program. 20, 58

interoperability
requirement set

A logical set of properties of each task to which directives add or remove
and that other constructs that have interoperability semantics can query.
262, 263, 267, 403, 404

intervening code For two consecutive associated loops in a canonical loop nest, user code
that appears inside the loop body of the outer associated loop but outside
the loop body of the inner associated loop. 30, 136, 142

iteration count The number of times that the loop body of a given loop is executed.
140–142, 360

leaf construct For a given combined construct or composite construct, a constituent
construct that is not itself a combined construct or composite construct.
292, 436, 446–448

league The set of teams formed by a teams construct, each of which is
associated with a different contention group. 37, 43, 59, 190, 319, 320,
347, 348

lexicographic or-
der

The total order of two logical iteration vectors ωa = (i1, . . . , in) and
ωb = (j1, . . . , jn), denoted by ωa ≤lex ωb, where either ωa = ωb or
∃m ∈ {1, . . . , n} such that im < jm and ik = jk for all
k ∈ {1, . . . ,m− 1}. 301

list A comma-separated set. 13, 14, 23, 30, 148, 156, 186, 196, 199, 227, 278
list item A member of a list. 4, 13, 14, 17, 18, 22, 25, 27, 29, 34, 148–150,

155–163, 165, 166, 168, 169, 171–176, 178, 179, 181–195, 202–210,
212–222, 225–228, 232–235, 262, 263, 267, 268, 274–278, 360, 373, 374,
376, 378–383, 420, 421, 426, 427, 441, 442

22 OpenMP API – Version 6.0 Preview 2 November 2023

logical iteration An instance of the executed loop body of a canonical loop nest, denoted
by a number in the logical iteration space of the loops that indicates the
order in which the logical iteration would be executed relative to the other
logical iterations in a sequential execution. 4, 9, 16–18, 21–23, 40, 142,
144, 190, 299, 300, 303, 305, 307, 360–364, 749

logical iteration
space

For a canonical loop nest, the sequence 0,. . . ,N − 1 where N is the
number of distinct logical iterations. 4, 10, 16, 23, 142

logical iteration
vector

An n-tuple (i1, . . . , in) that identifies a logical iteration of a canonical
loop nest, where n is the loop nest depth and ik is the logical iteration
number of the kth loop, from outermost to innermost. 23, 31, 301

logical iteration
vector space

The set of logical iteration vectors that each correspond to a logical
iteration of a canonical loop nest. 144, 301

loop body A structured block that encompasses the executable statements that are
iteratively executed by a loop statement. 22, 23, 136

loop iteration
variable

A variable that determines the iteration space of a loop. 23, 140, 141,
149–151, 168, 171, 300, 361, 432

loop nest depth For a canonical loop nest, the maximal number of loops, including the
outermost loop, that can be associated with a loop-nest-associated
directive. 23, 140

loop sequence
length

For a canonical loop sequence, the number of consecutive canonical loop
nests regardless of their nesting into blocks. 145, 146

loop-collapsing
construct

A loop-nest-associated construct for which some number of outer
associated loops may be collapsed loops. 9, 10, 158, 171, 323

loop-iteration vec-
tor

An n-tuple (i1, . . . , in) that identifies a logical iteration of the associated
loops of a loop-nest-associated directive, where n is the number of
associated loops and ik is the value of the loop iteration variable of the
kth associated loop, from outermost to innermost. 23, 140, 141, 432

loop-iteration vec-
tor space

The set of loop-iteration vectors that each correspond to a logical iteration
of the associated loops of a loop-nest-associated directive. 140, 141

loop-nest-
associated con-
struct

A loop-nest-associated directive and its associated loops. 23, 41, 96, 144,
432

loop-nest-
associated direc-
tive

An executable directive for which the associated user code must be a
canonical loop nest. 4, 23, 24, 33, 94–96, 136, 140, 150, 171, 195, 300,
301, 436

loop-sequence-
associated con-
struct

A loop-sequence-associated directive and its associated loops. 24, 146

loop-sequence-
associated direc-
tive

An executable directive for which the associated user code must be a
canonical loop sequence. 4, 24, 94, 95, 300

CHAPTER 1. OVERVIEW OF THE OPENMP API 23

loop-sequence-
transforming con-
struct

A loop-sequence-associated construct with the loop-transforming
property. 300

loop-transforming
construct

A loop-transforming directive and its associated loops. 19, 135, 136, 140,
145, 299, 300, 308

loop-transforming
directive

A directive with the loop-transforming property. 24, 300

loop-transforming
property

The property that a construct is replaced by the loops that result from
applying the transformation as defined by its directive to its associated
loops. 24, 298, 301, 302, 304–306

loosely structured
block

A block of zero or more executable constructs (including OpenMP
constructs), where the first executable construct (if any) is not a Fortran
BLOCK construct, with a single entry at the top and a single exit at the
bottom. 35, 95

map-entering
clause

A map clause that, if it appears on a map-entering construct, specifies that
the reference count of corresponding list items is increased and, as a
result, may enter the device data environment. 24, 213, 215, 217, 291, 375

map-entering con-
struct

A construct that has the map-entering property. 24, 213, 215, 217, 219

map-entering
property

A property of a construct that a map-entering clause may appear on it. 24,
213, 373, 374, 378

map-exiting
clause

A map clause that, if it appears on a map-exiting construct, specifies that
the reference count of corresponding list items is decreased and, as a
result, may exit the device data environment. 24, 213, 377

map-exiting con-
struct

A construct that has the map-exiting property. 24, 216

map-exiting prop-
erty

A property of a construct that a map-exiting clause may appear on it. 24,
213, 373, 376, 378

map-type decay The process that determines the final map-type of each mapping operation
that results from mapping a variable with a user-defined mapper. 214, 225

map-type modifier A modifier that has the map-type-modifying property. 214
map-type-
modifying prop-
erty

A modifier with the map-type-modifying property modifies the behavior
of the map-type of a mapping operation. 24, 25, 214

mappable storage
block

A contiguous address range in memory that contains a set of mapped list
items. 215, 216, 219, 228

24 OpenMP API – Version 6.0 Preview 2 November 2023

mappable type A type that is valid for a mapped variable. If a type is composed from
other types (such as the type of an array element or a structure element)
and any of the other types are not mappable types then the type is not a
mappable type.
For C, the type must be a complete type.
For C++, the type must be a complete type; in addition, for class types:

• All member functions accessed in any target region must appear
in a declare target directive.

For Fortran, no restrictions on the type except that for derived types:
• All type-bound procedures accessed in any target region must

appear in a declare target directive.
COMMENT: Pointer types are mappable types but the
memory block to which the pointer refers is not mapped.

25, 219, 221, 222, 228
mapped address
range

The address range that starts from the starting address and ends with the
ending address of an original list item. 25, 213

mapped variable An original variable in a data environment with a corresponding variable
in a device data environment. The original and corresponding variables
may share storage. 17, 25, 34, 381, 382

mapper An operation that defines how variables of given type are to be mapped or
updated with respect to a device data environment. 40, 122, 175, 209,
211, 214, 219, 220, 224–230

mapping opera-
tion

An operation that establishes or removes a correspondence between a
variable in one data environment and another variable in a device data
environment. 5, 24, 25, 33, 47, 215–217, 291, 745

mapping-only
construct

A construct that establishes correspondences between the data
environment of the encountering device but otherwise does not affect the
associated structured block (if any). 25, 216

mapping-only
property

The property that a construct is a mapping-only construct. 373, 374, 376

matchable candi-
date

A mapped variable for which corresponding storage was created in a
device data environment. 25, 213

matched candi-
date

A matchable candidate for which its mapped address range or its extended
address range corresponds to the address range of the original list item.
174, 213, 219

memory A storage resource to store and to retrieve variable accessible by threads.
3, 9, 18, 25, 26, 32, 35, 36, 38, 39, 46–49, 52, 59, 105, 106, 169, 235–240,
289, 290, 405–409, 415, 420, 429, 496, 510–513, 556, 686

memory allocator An OpenMP object that fulfills requests to allocate and to deallocate
memory for program variables from the storage resources of its associated
memory space. 3, 4, 48, 59, 219, 237–246, 287, 381, 556, 747

CHAPTER 1. OVERVIEW OF THE OPENMP API 25

memory space A representation of storage resources from which memory can be
allocated or deallocated. More than one memory space may exist. 4, 26,
36, 48, 219, 236, 239, 248, 543, 747

mergeable task A task that may be a merged task if it is an undeferred task or an included
task. 36, 353, 357, 387, 401

merged task A task for which the data environment, inclusive of ICVs, is the same as
that of its generating task region. 26, 357

metadirective A directive that conditionally resolves to another directive. 16, 17, 32, 93,
255–258, 292, 749

modifier A mechanism to specify customized clause behavior. xix, 12, 24, 25, 68,
100–103, 105, 110, 112, 168, 169, 171, 186, 203, 211, 213, 214, 218, 219,
227, 228, 232, 247, 248, 262, 308, 339, 344, 346, 387, 389, 426, 433, 448,
748, 749

mutually exclusive
tasks

Tasks that may be executed in any order, but not at the same time. 367,
429

name-list trait A trait that is defined with properties that match the names that identify a
particular instances of the trait that are effective at a given point in an
OpenMP program. 249–251, 253

named pointer For C/C++, the base pointer of a given lvalue expression or array section,
or the base pointer of one of its named pointers.
For Fortran, the base pointer of a given variable or array section, or the
base pointer of one of its named pointers.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers
pi have a pointer type declaration and identifiers xi have an
array type declaration, the named pointers are: p0,
(*p0).x0[k1].p1, and (*p0).x0[k1].p1->p2.

26, 106
native thread An execution entity upon which an OpenMP thread may be implemented.

26, 28, 31, 39, 42, 44, 60, 76, 77, 310, 311, 320, 323, 585, 595, 596, 600,
601, 637, 673, 676, 684, 698, 701–705

native thread con-
text

A tool context that refers to a native thread. 676, 681, 682, 684, 686, 687,
690

native thread han-
dle

A handle that refers to a native thread. 675, 700–705

native thread
identifier

An identifier for a native thread defined by a native thread
implementation. 79, 673, 681, 682, 690, 697, 698, 701, 702, 704

native trace
record

A trace record for an OpenMP device that is in a device-specific format.
574

nested construct A construct (lexically) enclosed by another construct. 449
nested region A region (dynamically) enclosed by another region. That is, a region

generated from the execution of another region or one of its nested
regions. 12, 27, 29, 42, 329

26 OpenMP API – Version 6.0 Preview 2 November 2023

new list item An instance of a list item created for the data environment of the construct
on which a privatization clause or a data-mapping attribute clause
specified. 30, 40, 158, 159, 163, 165, 166, 168, 171, 173, 174, 195, 203,
214, 215, 217

non-conforming
program

An OpenMP program that is not a conforming program. 10, 14, 40, 426,
498

non-host declare
target directive

A declare target directive that does not specify a device_type clause
with host. 274

non-host device A device that is not the host device. 3, 36, 46, 59, 62, 63, 289, 351, 369,
381

non-null pointer A pointer that is not NULL. 498, 533–535, 566, 568, 573, 598, 599
non-null value A value that is not NULL. 556, 576, 648, 650, 664, 669, 684–687, 717
non-property trait A trait that is specified without additional properties. 249, 250, 253
non-rectangular
loop

For a loop nest, a loop for which a loop bound references the iteration
variable of a surrounding loop in the loop nest. 139, 140, 143, 144, 301,
345, 348, 363, 364

non-sequentially
consistent atomic
construct

An atomic construct for which the seq_cst clause is not specified 52

NULL A null pointer. For C and C++, the value NULL or the value nullptr.
For Fortran, the value C_NULL_PTR. 27, 85, 262, 477–479, 496, 498,
500, 504, 509, 511, 513, 517, 518, 531, 534–536, 551, 553, 555, 556, 561,
566, 568, 573, 602, 604, 605, 608, 611–616, 618–622, 627, 629, 632, 635,
636, 640, 641, 646–650, 666, 669, 670, 684, 686, 687, 689, 718, 741

OMPD An interface that helps a third-party tool inspect the OpenMP state of a
program that has begun execution. 27, 39, 42, 53, 54, 59, 667, 676, 681,
682, 684, 690, 702

OMPD library A dynamically loadable library that implements the OMPD interface.
667, 698

OMPT An interface that helps a first-party tool monitor the execution of an
OpenMP program. 42, 53, 397, 565–568, 571, 598, 599

OMPT active An OMPT interface state in which the OpenMP implementation is
prepared to accept runtime calls from a first-party tool and will dispatch
any registered callbacks and in which a first-party tool can invoke runtime
entry points if not otherwise restricted. 561, 568

OMPT inactive An OMPT interface state in which the OpenMP implementation will not
make any callbacks and in which a first-party tool cannot invoke runtime
entry points. 561, 567, 568, 598

OMPT interface
state

A state that indicates the permitted interactions between a first-party tool
and the OpenMP implementation. 27, 28, 561, 567, 568, 598

OMPT pending An OMPT interface state in which the OpenMP implementation can only
call functions to initialize a first-party tool and in which a first-party tool
cannot invoke runtime entry points. 567, 568

CHAPTER 1. OVERVIEW OF THE OPENMP API 27

OpenMP Addi-
tional Definitions
document

A document that exists outside of the OpenMP specification and defines
additional values that may be used in a conforming program. The
OpenMP Additional Definitions document is available via
https://www.openmp.org/specifications/. 28, 80, 250,
386, 388, 454, 456

OpenMP API rou-
tine

A runtime library routine that is defined by the OpenMP implementation
and that can be called from user code via the OpenMP API. 32, 58, 289,
290, 296

OpenMP architec-
ture

The architecture on which a region executes. 28, 567

OpenMP context The execution context of an OpenMP program, including the active
constructs, the execution devices, OpenMP functionality supported by the
implementation and any available dynamic values as represented by a set
of traits. 10, 12, 13, 35, 249, 251, 252, 254–256, 259–261, 264, 266, 270,
284

OpenMP environ-
ment variable

A variable that is part of the runtime environment in which an OpenMP
program executes and that a user may set to control the behavior of the
program, typically through the initialization of an ICV. 16, 17, 58, 63

OpenMP process A collection of one or more native threads and address spaces. An
OpenMP process may contain native threads and address spaces for
multiple OpenMP architectures. At least one native thread in an OpenMP
process is mapped to an OpenMP thread. An OpenMP process may be
live or a core file. 3, 28, 671, 676, 684

OpenMP program A program that consists of a base program that is annotated with OpenMP
directives or that calls OpenMP API runtime library routines. 3, 9, 11, 16,
17, 19–22, 26–28, 32, 39, 40, 42, 44–48, 52, 53, 58, 60, 69, 122, 152, 155,
161, 171, 188, 221, 225, 226, 236, 237, 249, 250, 256, 290, 299, 321, 339,
346, 355, 381, 382, 391, 394, 418–420, 426, 498, 561, 562, 565, 567, 568,
596, 597, 667, 669, 733

OpenMP stylized
expression

A base language expression that is subject to restrictions that enable its
use within an OpenMP implementation. 10, 22, 177

OpenMP thread A logical execution entity with a stack and associated thread-specific
memory subject to the semantics and constraints of this specification and
may be implemented upon a native thread. 3, 19, 26, 28, 29, 31, 38,
44–46, 315, 700–702, 704, 705, 737

OpenMP thread
pool

The set of all threads that may execute a task of a contention group and,
thus, are ever available to be assigned to a team that executes implicit
tasks of the contention group, 3, 33, 39, 42, 44, 354, 367

original list item The instance of a list item in the data environment of the enclosing
context. 13, 17, 18, 25, 29, 34, 158, 159, 162, 165, 166, 168, 169, 171,
173–176, 179, 185, 186, 188–190, 192, 193, 195, 203, 206, 212, 215–217,
220, 221, 227, 228, 230, 274, 291, 346, 348, 383, 745

original pointer An original list item that corresponds to a corresponding pointer. 216

28 OpenMP API – Version 6.0 Preview 2 November 2023

https://www.openmp.org/specifications/

original storage An address range in a data environment of a encountering device. 29, 33,
47, 216–219

original storage
block

A storage block that is used as original storage. 47, 48, 215

orphaned con-
struct

A construct that gives rise to a region for which the binding thread set is
the current team, but is not nested within another construct that gives rise
to the binding region. 435

parallel handle A handle that refers to a parallel region. 675
parallel region A region that has a set of associated implicit tasks and an associated team

of threads that execute those tasks. 3, 19, 21, 29, 30, 35, 38, 41, 43, 44,
59, 67, 315, 329–332, 334, 339, 349, 350, 356, 360, 396–399, 423, 459

parallelism-
generating con-
struct

A construct that has the parallelism-generating property. 169, 300

parallelism-
generating prop-
erty

The property that a construct enables parallel execution by generating one
or more teams, explicit tasks, or SIMD instructions. 29, 309, 319, 324,
355, 360, 374, 376, 378, 383

parent device For a given target region, the device on which the corresponding
target construct was encountered. 193, 288, 370, 378

parent thread The thread that encountered the parallel construct and generated a
parallel region is the parent thread of each thread that executes a task
region that binds to that parallel region. The primary thread of a
parallel region is the same thread as its parent thread with respect to
any resources associated with an OpenMP thread. The thread that
encounters a target or teams construct is not the parent thread of the
initial thread of the corresponding target or teams region. 3, 29, 43

partitioned con-
struct

A construct that has the partitioned property. 29, 329

partitioned prop-
erty

The property of a construct that is a work-distribution construct for which
any encountered user code in the corresponding region, excluding code
from nested regions that are not closely nested regions, is executed by
only one thread from its binding thread set. 29, 330, 332, 334, 337, 341,
342, 345, 348

partitioned work-
sharing construct

A construct that is both a partitioned construct and a worksharing
construct. 29, 43

partitioned work-
sharing region

A region that corresponds to a partitioned worksharing construct. 445

perfectly nested
loop

A loop that has no intervening code between it and the body of its
surrounding loop. The outermost loop of a loop nest is always perfectly
nested. 136, 143, 203, 301, 305

persistent self
map

A self map for which the corresponding storage remains present in the
device data environment, as if it has an infinite reference count. 47, 290,
733

CHAPTER 1. OVERVIEW OF THE OPENMP API 29

place An unordered set of processors on a device. 30, 38, 43, 59, 60, 72–74,
315–318, 474, 475, 734, 737, 743

place list The ordered list that describes all OpenMP places available to the
execution environment. 30, 72, 319, 734, 743

place number A number that uniquely identifies a place in the place list, with zero
identifying the first place in the place list, and each consecutive whole
number identifying the next place in the place list. 474, 475

place partition An ordered list that corresponds to a contiguous interval in the place list.
It describes the places currently available to the execution environment for
a given parallel region. 38, 60, 315–318

pointer attach-
ment

The process of making a pointer variable an attached pointer. 5, 215, 217

predecessor task A task that must complete before its dependent tasks can be executed. 15,
37, 375, 377, 379, 384, 401, 424, 429, 430

predetermined
data-sharing at-
tribute

A data-sharing attribute that applies regardless of the clauses that are
specified on a given construct. 148–151, 160, 162, 209, 224

preprocessed code For C/C++, a sequence of preprocessing tokens that result from the first
six phases of translation, as defined by the base language. 266, 750

primary thread An assigned thread that has thread number 0. A primary thread may be an
initial thread or the thread that encounters a parallel construct, forms
a team, generates a set of implicit tasks, and then executes one of those
tasks as thread number 0. 8, 19, 21, 29, 30, 38, 43, 44, 154, 206, 309, 310,
316, 317, 328, 330, 424, 459

private variable With respect to a given set of task regions or SIMD lanes that bind to the
same parallel region, a variable for which the name provides access to
a different block of storage for each task region or SIMD lane.
A variable that is part of an aggregate variable cannot be made a private
variable independently of other components. If a variable is privatized, its
components are also private variables. 30, 46, 47, 159, 160, 205, 207,
343, 347, 348

privatization
clause

The clause that may result in private variables that are new list items. 27,
148, 160

procedure A function (for C/C++ and Fortran) or subroutine (for Fortran). 9, 11, 14,
19, 21, 33, 39, 54, 90, 123, 171, 172, 178, 226, 249, 253, 260, 264, 265,
270–274, 276–279, 323, 327, 337–339, 369, 379, 381, 446, 596, 597, 649,
684, 750

processor An implementation-defined hardware unit on which one or more threads
can execute. 15, 30, 59, 73, 77

product order The partial order of two logical iteration vectors ωa = (i1, . . . , in) and
ωb = (j1, . . . , jn), denoted by ωa ≤product ωb, where ik ≤ jk for all
k ∈ {1, . . . , n}. 301

30 OpenMP API – Version 6.0 Preview 2 November 2023

program order An ordering of operations performed by the same thread as determined by
the execution sequence of operations specified by the base language.

COMMENT: For versions of C and C++ that include base
language support for threading, program order corresponds to
the sequenced-before relation between operations performed
by the same thread.

31, 34, 50–52
progress unit An implementation-defined set of consecutive hardware threads on which

native threads may execute a common stream of instructions. If any two
OpenMP threads that execute on those native threads serially execute
diverging user code then they become divergent threads. 45, 309, 318

property A characteristic of an OpenMP feature. 8, 9, 13–17, 22, 24–27, 29, 31, 34,
38, 39, 41, 101, 250–252, 254, 257, 262, 263, 267, 403, 404

pure property The property that a directive has no observable side effects or state,
yielding the same result every time it is encountered. 90, 153, 196, 199,
202, 224, 232, 242, 258, 264, 270, 275, 281, 297, 298, 301, 302, 304–306,
324

read-modify-write An atomic operation that reads and writes to a given storage location.
COMMENT: Any atomic-update is a read-modify-write
operation.

31, 50
reduction clause A reduction scoping clause or a reduction participating clause. 158, 161,

177–179, 184–186, 188–190, 192, 194, 196, 197
reduction expres-
sion

A combiner expression or a initializer expression. 177, 178

reduction partici-
pating clause

A clause that defines the participants in a reduction. 31, 177, 189, 193

reduction scoping
clause

A clause that defines the region in which a reduction is computed. 31,
177, 188–190, 192, 193, 361, 442

CHAPTER 1. OVERVIEW OF THE OPENMP API 31

region All code encountered during a specific instance of the execution of a given
construct, structured block sequence or OpenMP library routine. A region
includes any code in called routines as well as any implementation code.
The generation of a task at the point where a task-generating construct is
encountered is a part of the region of the encountering thread. However,
an explicit task region that corresponds to a task-generating construct is
not part of the region of the encountering thread unless it is an included
task region. The point where a target or teams directive is
encountered is a part of the region of the encountering thread, but the
region that corresponds to the target or teams directive is not.
A region may also be thought of as the dynamic or runtime extent of a
construct or of an OpenMP library routine.
During the execution of an OpenMP program, a construct may give rise to
many regions. 3–5, 8, 9, 13, 15–19, 21, 22, 25, 27–47, 50–52, 58–60, 65,
67, 74, 90, 96, 132, 133, 144, 148, 152–155, 158, 159, 166, 169, 175, 177,
178, 186, 188–190, 192–194, 206–208, 213, 215–218, 220, 227, 228, 238,
239, 242, 245, 247, 267, 269, 273, 287–289, 295, 298, 309–312, 314, 316,
319–321, 323–325, 327, 329–339, 345–347, 349–352, 356, 359–361, 364,
366, 367, 370, 373, 374, 376, 378–384, 387, 391, 393–401, 415–418,
420–425, 427, 433–436, 439–445, 459, 460, 466, 468–470, 476, 477, 486,
487, 511–514, 561, 595, 598, 646, 648, 649, 700, 733, 735, 746

registered call-
back

A callback for which callback registration has been performed. 8, 53, 569,
571

release flush A flush that has the release flush property. 32, 36, 49–51, 417, 420,
422–425

release flush prop-
erty

A flush with the release flush property orders memory operations that
precede the flush before memory operations performed by a different
thread with which it synchronizes. 18, 32, 420

release sequence A set of modifying atomic operations that are associated with a release
flush that may establish a synchronizes-with relation between the release
flush and an acquire flush. 50, 51, 423

replacement can-
didate

A directive variant or function variant that may be selected to replace a
metadirective or base function. 9, 17, 255, 256, 259, 261, 264

reservation type A thread-reservation type. 82
reserved thread A thread that is restricted in the type of thread as which it can be used. A

thread can be a structured thread or free-agent thread. 39, 82
reverse-offload
region

A region that is associated with a target construct that specifies a
device clause with the ancestor device-modifier. 274

routine Unless specifically stated otherwise, an OpenMP API routine. 58, 63–65,
366, 380, 381, 459, 469, 486, 487, 510–513, 747

runtime entry
point

A function interface provided by an OpenMP runtime for use by a tool. A
runtime entry point is typically not associated with a global function
symbol. 4, 27, 28, 32, 571, 573, 574, 580, 596, 637, 641, 646, 647, 649

32 OpenMP API – Version 6.0 Preview 2 November 2023

runtime error
termination

Error termination preformed during execution. 17, 45, 90, 215, 217, 227,
314, 370, 488, 496, 735

scalar variable For C/C++, a scalar-variable, as defined by the base language.
For Fortran, a scalar variable with intrinsic type, as defined by the base
language, excluding character type. 138, 150, 153, 169, 210, 211, 736

scan computation The last generalized prefix sum, as defined in Section 6.6. 18, 21, 22, 33,
40, 190, 191, 202, 203

scan phase The portion of an associated iteration that includes all statements that read
the result of a scan computation. 202–204

schedulable task
set

If the thread is a structured thread, the set of tasks bound to the current
team. If the thread is an unassigned thread, any explicit task in the
contention group associated with the current OpenMP thread pool. 366,
367

schedule kind The manner in which the collapsed iterations of associated loops are to be
distributed among a set of threads that cooperatively execute the
associated loops, as specified by a loop-nest-associated directive or the
run-sched-var ICV. 60, 67, 339, 340, 344

segment A portion of an address space associated with a set of address ranges. 3,
671

selector set Unless specifically stated otherwise, a trait selector set. 2, 3, 253
self map A mapping operation for which the corresponding storage is the same as

its original storage. 30, 215–217, 291, 745
separated con-
struct

A construct for which its associated structured block is split into multiple
structured block sequences by a separating directive. 33, 96, 202, 203

separating direc-
tive

A directive that splits a structured block that is associated with a
construct, the separated construct into multiple structured block
sequences. 33, 96, 203–205

sequential part All code encountered during the execution of an initial task region that is
not part of a parallel region that corresponds to a parallel
construct or a task region corresponding to a task construct. Instead, it
is enclosed by an implicit parallel region.

COMMENT: Executable statements in called procedures may
be in both a sequential part and any number of explicit
parallel regions at different points in the program
execution.

33, 154, 476, 477
sequentially con-
sistent atomic op-
eration

An atomic operation that is specified by An atomic construct for which
the seq_cst clause is specified. 52

shape-operator For C/C++, an array shaping operator that reinterprets a pointer
expression as an array with one or more specified dimensions. 227

CHAPTER 1. OVERVIEW OF THE OPENMP API 33

shared variable With respect to a given set of task regions that bind to the same
parallel region, a variable for which the name provides access to the
same block of storage for each task region.
A variable that is part of an aggregate variable cannot be made a shared
variable independently of the other components, except for static
datamembers of C++ classes. 34, 46, 49–52, 410–412

sibling task Two tasks are each a sibling task of the other if they are child tasks of the
same task regions. 34, 37, 425, 428–430

signal A software interrupt delivered to a thread. 4, 34, 698
signal handler A function called asynchronously when a signal is delivered to a thread.

4, 596, 637, 698
SIMD Single Instruction, Multiple Data, a lock-step parallelization paradigm.

171, 249, 270, 271, 327
SIMD chunk A set of iterations executed concurrently, each by a SIMD lane, by a

single thread by means of SIMD instructions. 34, 271, 324, 326, 757
SIMD construct A simd construct or a combined construct or composite construct for

which the simd construct is a constituent construct. 344
SIMD instruction A single machine instruction that can operate on multiple data elements.

29, 34, 42, 232, 324
SIMD lane A software or hardware mechanism capable of processing one data

element from a SIMD instruction. 30, 34, 44, 46, 158, 159, 163, 171, 172,
188, 189, 195, 324

SIMD loop A loop that includes at least one SIMD chunk. 231, 270, 271
simdizable con-
struct

A construct that has the simdizable property. 324, 436

simdizable prop-
erty

The property that a construct may be encountered during execution of a
simd region. 34, 301, 302, 304–306, 324, 348, 415, 435

simply contiguous
array section

An array section that statically can be determined to have contiguous
storage or that, in Fortran, has the CONTIGUOUS attribute. 153, 736

simply happens
before

For an event A to simply happen before an event B, A must precede B in
simply happens-before order. 51

simply happens-
before order

An ordering relation that is consistent with program order and the
synchronizes-with relation. 19, 34, 51

sink iteration A doacross iteration for which executable code, because of a doacross
dependence, cannot execute until executable code from the source
iteration has completed. 16, 432

source iteration A doacross iteration for which executable code must complete execution
before executable code from another doacross iteration can execute due to
a doacross dependence. 16, 34, 432

stand-alone direc-
tive

A construct in which no user code is associated, but may produce
implementation code. 97

starting address The address of the first storage location of a list item or, for a mapped
variable of its original list item. 18, 25, 213

34 OpenMP API – Version 6.0 Preview 2 November 2023

static context se-
lector

The context selector for which the OpenMP context can be fully
determined at compile time. 17, 255, 257, 259

static storage du-
ration

For C/C++, the lifetime of an object with static storage duration, as
defined by the base language.
For Fortran, the lifetime of a variable with a SAVE attribute, implicit or
explicit, a common block object or a variable declared in a module. 15,
47, 150, 152, 156, 162, 180, 221, 222, 229, 234, 243, 274, 290, 379, 733

step expression A loop-invariant expression used by an induction operation. 10, 22, 181,
182, 185, 199, 200

storage block The physical storage that corresponds to an address range in memory. 13,
29, 35, 47, 48

storage location A storage block in memory. 3, 5, 17, 31, 34, 46–48, 127, 132, 133, 171,
174, 175, 190, 193, 195, 213, 326, 415–421, 428–430

strictly nested
region

A region nested inside another region with no other explicit region nested
between them. 347, 351

strictly structured
block

A single Fortran BLOCK construct, with a single entry at the top and a
single exit at the bottom. 35, 95, 336

string literal For C/C++, a string literal.
For Fortran, a character literal constant. 388

strong flush A flush that has the strong flush property. 18, 49, 50, 52, 417, 420
strong flush prop-
erty

A flush with the strong flush property flushes a set of variables from the
temporary view of the memory of the current thread to the memory. 18,
35, 420

structure A structure is a variable that contains one or more variables.
For C/C++, implemented using struct types.
For C++, implemented using class types.
For Fortran, implemented using derived types. 12, 35, 153, 213, 214, 219,
220, 229, 230, 380, 566, 568, 576, 598, 599, 736

structured block For C/C++, an executable statement, possibly compound, with a single
entry at the top and a single exit at the bottom, or an OpenMP construct.
For Fortran, a strictly structured block or a loosely structured block. 11,
15, 23, 25, 33, 40, 42, 46, 74, 96, 124–132, 136, 140, 168, 174–176,
204–208, 249, 267, 271, 300, 303, 310, 320, 327, 330, 331, 333, 335–338,
340, 346, 356, 366, 395, 401, 415–418, 423, 424, 433

structured block
sequence

For C/C++, a sequence of zero or more executable statements (including
constructs) that together have a single entry at the top and a single exit at
the bottom.
For Fortran, a block of zero or more executable constructs (including
OpenMP constructs) with a single entry at the top and a single exit at the
bottom. 8, 32, 33, 96, 125, 136, 145, 168, 169, 202–205, 332–334

structured paral-
lelism

Parallel execution through the implicit tasks of (possibly nested) parallel
regions by the set of structured threads in a contention group. 82, 83

CHAPTER 1. OVERVIEW OF THE OPENMP API 35

structured thread A thread that is assigned to a team and is not a free-agent thread. 32, 33,
35, 60, 82, 83, 313, 744

subsidiary direc-
tive

A directive that is not an executable directive and that appears only as part
of a construct. 93, 202, 333, 334

subtask A portion of a task region between two consecutive task scheduling points
in which a thread cannot switch from executing one task to executing
another task. 44

supported active
levels

An implementation defined maximum number of active levels of
parallelism. 733

supported device The host device or any non-host device supported by the implementation
for execution of target code for which the device-related requirements of
the requires directive are fulfilled. 62, 80

synchronization
construct

A construct that orders the completion of code executed by different
threads. 391

synchronization
hint

An indicator of the expected dynamic behavior or suggested
implementation of a synchronization mechanism. 391–393

synchronizes with For an event A to synchronize with an event B, a synchronizes-with
relation must exist from A to B. 3, 50, 51, 423–425

synchronizes-with
relation

An asymmetric relation that relates a release flush to an acquire flush, or,
for C/C++, any pair of events A and B such that A “synchronizes with” B
according to the base language, and establishes memory consistency
between their respective executing threads. 32, 34, 36, 50

target device A device with respect to which the current device performs an operation,
as specified by a device construct or an OpenMP device memory routine.
15, 16, 36, 42, 43, 53, 58, 59, 174–176, 193, 215, 217, 218, 227, 229, 230,
250, 290, 370, 372, 373, 375, 376, 379, 384, 565, 659

target device trait
set

The trait set that consists of traits that define the characteristics of a device
that the implementation supports. 3, 249, 250, 252, 254

target memory
space

A memory space that is associated with at least one device that is not the
current device when it is created. 239, 543, 545, 547

target task A mergeable task and untied task that is generated by a device construct or
a call to a device memory routine and that coordinates activity between
the current device and the target device. 43, 67, 193, 218, 374–380, 383,
384, 422, 424, 511–514

target variant A version of a device procedure that can only be executed as part of a
target region. 249

36 OpenMP API – Version 6.0 Preview 2 November 2023

task A specific instance of executable code and its data environment that the
OpenMP implementation can schedule for execution by a team. 3, 8, 9,
13, 15, 18–22, 26, 28–30, 32–34, 36, 37, 39, 40, 42–48, 58–60, 66, 67,
154, 158, 159, 162, 163, 165, 187–190, 192–195, 213, 214, 216, 217, 219,
233, 238, 296, 309–311, 313, 315, 318, 320, 328, 330, 331, 333, 334, 336,
338, 340, 346, 352–357, 359–361, 363, 364, 366, 367, 371, 387, 388, 390,
394–404, 415, 417, 418, 423–425, 428–430, 433, 434, 441, 442, 444, 451,
595, 596, 598, 649, 710

task completion A condition that is satisfied when a thread reaches the end of the
executable code that is associated with the task and any allow-completion
event that is created for the task has been fulfilled. 37, 356

task dependence A dependence between two sibling tasks: the dependent task and a
previously generated predecessor task. The task dependence is fulfilled
when the predecessor task has completed. 15, 37, 367, 425, 426, 428, 429,
513, 514

task handle A handle that refers to a task region. 675, 710
task region A region consisting of all code encountered during the execution of a task.

13, 15, 29, 30, 34, 36, 37, 39, 40, 43, 44, 47, 154, 165, 310, 319, 367, 374,
376, 378, 383, 421, 422, 441, 486, 596, 649

task scheduling
point

A point during the execution of the current task region at which it can be
suspended to be resumed later; or the point of task completion, after
which the executing thread may switch to a different task region. 36, 44,
154, 187, 310, 356, 366, 396, 397, 399, 401, 416, 421, 422, 511, 513

task synchroniza-
tion construct

A taskwait, taskgroup, or a barrier construct. 44, 356

task-generating
construct

A construct that has the task-generating property. 32, 44, 150–152, 429,
430, 445, 746

task-generating
property

The propoperty that a construct generates one or more explicit tasks that
are child tasks of the encountering task. 37, 355, 360, 374, 376, 378, 383

taskgroup set A set of tasks that are logically grouped by a taskgroup region, such
that a task is a member of the taskgroup set if and only if its task region
is nested in the taskgroup region and it binds to the same parallel
region as the taskgroup region. 37, 399, 441

team A set of one or more assigned threads assigned to execute the set of
implicit tasks of a parallel region. 3, 5, 7, 13, 21–23, 28–30, 36–45, 59,
67, 154, 172, 190, 191, 195, 205–207, 309, 310, 315–320, 322, 327,
329–335, 339, 340, 343–348, 350, 371, 394, 396, 397, 416, 424, 436, 443,
459, 648, 700, 735, 738

team number A number that the OpenMP implementation assigns to an initial team. If
the initial team is not part of a league formed by a teams construct then
the team number is zero; otherwise, the team number is a non-negative
integer less than the number of initial teams in the league. 37, 60, 348

CHAPTER 1. OVERVIEW OF THE OPENMP API 37

team-executed
construct

A construct that has the team-executed property. 44

team-executed
property

The property that a construct gives rise to a team-executed region. 38,
330–332, 334, 341, 342, 348, 396

team-executed
region

A region that is executed by all or none of the threads in the current team.
38, 44, 445

team-generating
construct

A construct that has the team-generating property. 445

team-generating
property

The property that a construct generates a parallel region. 38, 309, 319,
378

team-worker
thread

A thread that is assigned to a team but is not the primary thread. It
executes one of the implicit tasks that is generated when the team is
formed for an active parallel region. 41, 43

temporary view The state of memory that is accessible to a particular thread. 420
third-party tool A tool that executes as a separate process from the process that it is

monitoring and potentially controlling. 27, 53, 667, 668, 681, 682, 684
thread Unless specifically stated otherwise, an OpenMP thread. 3–5, 8, 13,

16–19, 22, 25, 28, 29, 31–54, 58–60, 62, 71, 74, 76, 82, 83, 90, 153–155,
165, 166, 172, 187, 188, 190, 191, 195, 205–208, 217, 218, 238, 239, 275,
281, 282, 289, 290, 295, 309–320, 327–340, 343–346, 349, 350, 352, 354,
356, 360, 361, 366, 367, 371, 372, 375, 377, 380, 384, 391, 392, 394–402,
404, 415–418, 420–425, 430, 433–436, 440–444, 459, 469, 474, 511, 512,
561, 565, 585, 595, 597, 598, 646, 648, 649, 653, 700, 710, 734, 735, 738,
751

thread affinity A binding of threads to places within the current place partition. 58, 59,
74, 78, 154, 315, 316, 470, 734, 737, 738

thread number For an assigned thread, a non-negative number assigned by the OpenMP
implementation. For threads within the same team, zero identifies the
primary thread and subsequent consecutive numbers identify any worker
threads of the team. For an unassigned thread, the value
omp_unassigned_thread. 30, 60, 154, 309, 310, 315, 318, 328,
343, 459, 468, 700

thread state The state associated with a thread. Also, an enumeration type that
describes the current OpenMP activity of a thread. Only one of the
enumeration values can apply to a thread at any time. 44, 53, 565, 646

thread-exclusive
construct

A construct that has the thread-exclusive property. 445

thread-exclusive
property

The property that a construct when encountered by multiple threads in the
current team is executed by only one thread at a time. 38, 394, 435

thread-limiting
construct

A construct that has the thread-limiting property. 90

38 OpenMP API – Version 6.0 Preview 2 November 2023

thread-limiting
property

For C++, the property that a construct limits the thread that can catch an
exception thrown in the corresponding region to the thread that threw the
exception. 38, 309, 319, 327, 330–332, 355, 378, 394, 435

thread-pool-
worker thread

A thread in an OpenMP thread pool that is not the initial thread. 585

thread-
reservation type

The type specified for a reserved thread. 32, 82

thread-safe proce-
dure

A procedure that performs the intended function even when executed
concurrently (by multiple native threads). 54

thread-set The set of threads for which a flush may enforce memory consistency. 48,
49, 51, 52, 415, 420, 422

threadprivate
memory

The set of threadprivate variables associated with each thread. 46

threadprivate
variable

A variable that is replicated, one instance per thread, by the OpenMP
implementation. Its name then provides access to a different block of
storage for each thread.
A variable that is part of an aggregate variable cannot be made a
threadprivate variable independently of the other components, except for
static data members of C++ classes. If a variable is made a threadprivate
variable, its components are also threadprivate variables. 39, 153–157,
205, 206, 323, 339, 380

tied task A task that, when its task region is suspended, can be resumed only by the
same thread that was executing it before suspension. That is, the task is
tied to that thread. 44, 352, 367

tool Code that can observe and/or modify the execution of an application. 2,
18, 32, 38, 39, 42, 53, 54, 59, 60, 372, 373, 561, 562, 565–568, 573, 580,
598, 599, 649, 698

tool callback A function that a tool provides to an OpenMP implementation to invoke
when an associated event occurs. 8, 53, 397, 433, 451, 641

tool context An opaque reference provided by a tool to an OMPD library. A tool
context uniquely identifies an abstraction. 3, 26, 39, 676, 681

trace record A data structure in which to store information associated with an
occurrence of an event. 26, 573, 574, 637

trait An aspect of an OpenMP implementation or the execution of an OpenMP
program. 3, 9, 13, 16–18, 20, 26–28, 36, 39, 236–242, 245, 247, 249, 250,
252–254, 266, 284, 737, 743

trait selector A member of a trait selector set. 249, 251–255, 257, 260, 266
trait selector set A set of traits that are specified to match the trait set at a given point in an

OpenMP program. 33, 39, 251
trait set A grouping of related traits. 11, 16, 17, 20, 36, 39, 249, 252, 254
unassigned thread A thread that is not currently assigned to any team. 19, 20, 33, 38, 42, 43,

354, 367, 459, 595

CHAPTER 1. OVERVIEW OF THE OPENMP API 39

undeferred task A task for which execution is not deferred with respect to its generating
task region. That is, its generating task region is suspended until execution
of the structured block associated with the undeferred task is completed.
21, 26, 40, 357, 361, 424

undefined For variables, the property of not being defined, that is, of not having a
valid value. 48, 442, 641

unified address
space

An address space that is used by all devices.
289

unit of work In constructs that use units of work, a single or multiple executable
statements that will be executed by a single thread and are part of the
same structured block. A structured block can consist of one or more units
of work; the number of units of work into which a structured block is split
is allowed to vary among different compliant implementations. 40, 334,
335, 337, 338, 605

unspecified behav-
ior

A behavior or result that is not specified by the OpenMP specification or
not known prior to the compilation or execution of an OpenMP program.
Such unspecified behavior may result from:

• Issues that this specification documents as having unspecified
behavior.

• A non-conforming program.
• A conforming program exhibiting an implementation defined

behavior.
10, 20, 40, 46–48, 55, 90, 175, 185, 238, 245, 289, 355, 379, 381, 398

untied task A task that, when its task region is suspended, can be resumed by any
thread in the team. That is, the task is not tied to any thread. 36, 44, 155,
352, 357, 367

update value The update value of a new list item used for a scan computation is, for a
given logical iteration, the value of the new list item on completion of its
input phase. 40, 203

user-defined can-
cellation point

A cancellation point that is specified by a cancellation point
construct. 444

user-defined in-
duction

An induction operation that is defined by a declare induction
directive. 201, 202

user-defined map-
per

A mapper that is defined by a declare mapper directive. 24, 122,
214, 224, 225, 227

user-defined re-
duction

An reduction operation that is defined by a declare reduction
directive. 196, 198, 443

utility directive A directive that facilitates interactions with the compiler and/or supports
code readability; it may be either informational or executable. 93, 281,
282, 298

40 OpenMP API – Version 6.0 Preview 2 November 2023

variable A named data storage block, for which the value can be defined and
redefined during the execution of a program; for C/C++, this includes
const-qualified types when explicitly permitted.

COMMENT: An array element or structure element is a
variable that is part of an aggregate variable.

3, 6–9, 12–15, 18, 19, 22–26, 30, 34, 35, 39–41, 46–52, 54, 58, 94, 96,
103–105, 111, 121, 122, 126, 134, 137–141, 148–162, 165, 166, 168, 169,
172, 175, 178–182, 186, 191, 195–197, 200, 205–211, 214, 218–226, 233,
234, 236, 240–244, 246, 247, 253, 256, 259, 261, 263, 268–270, 273–278,
290, 300, 312, 319, 324, 328, 329, 335, 336, 338, 339, 343, 346, 348, 349,
354, 359, 361, 369, 373–376, 378–383, 420, 421, 432, 573, 598, 641, 647,
649, 733, 748

variant substitu-
tion

The replacement of a call to a base function by a call to a function variant.
259, 267, 268

wait identifier A unique opaque handle associated with each data object (for example, a
lock) that the OpenMP runtime uses to enforce mutual exclusion and
potentially to cause a thread to wait actively or passively. 597, 598, 646

white space A non-empty sequence of space and/or horizontal tab characters. 69, 76,
78, 91, 92, 97–100, 113, 114

work distribution The manner in which execution of a region that corresponds to a
work-distribution construct is assigned to threads. 142

work-distribution
construct

A construct that has the work-distribution property. 2, 29, 41, 165, 166,
169, 329, 349

work-distribution
property

The property that a construct is cooperatively executed by threads in the
binding thread set of the corresponding region. 41, 330–332, 334, 337,
341, 342, 345, 348

work-distribution
region

A region that corresponds to a work-distribution construct. 166, 169, 329

worker thread Unless specifically stated otherwise, a team-worker thread. 38, 311
worksharing con-
struct

A construct that has the worksharing property. 29, 41, 43, 44, 166, 172,
189–191, 195, 329, 333, 339, 349, 398, 443, 447

worksharing
property

The property of a construct that is a work-distribution construct that is
executed by the team of the innermost enclosing parallel region and
includes, by default, an implicit barrier. 41, 330–332, 334, 341, 342, 348

worksharing re-
gion

A region that corresponds to a worksharing construct. 44, 166, 190, 329,
397, 422

worksharing-loop
construct

A construct that has the worksharing-loop property. 17, 41, 190, 195,
339–344, 434, 436, 441, 443

worksharing-loop
property

The property of a worksharing construct that is a loop-nest-associated
construct that distributes the collapsed iterations of the associated loops
among the threads in the team. 41, 341, 342

worksharing-loop
region

A region that corresponds to a worksharing-loop construct. 339, 340,
434–436

CHAPTER 1. OVERVIEW OF THE OPENMP API 41

zero-offset
assumed-size ar-
ray

An assumed-size array for which the lower bound is zero. 174, 210, 214

1.3 Execution Model1

A compliant implementation must follow the abstract execution model that the supported base2
language and OpenMP specification define, as observable from the results of user code in a3
conforming program. These results do not include output from external monitoring tools or tools4
that use the OpenMP tool interfaces (i.e., OMPT and OMPD), which may reflect deviations from5
the execution model such as the unprescribed use of additional native threads, SIMD instruction,6
alternate loop transformations, or other target devices to facilitate parallel execution of the program.7

The OpenMP API consists of several directives, runtime routines and two tool interfaces. Some8
directives allow customization of base language declarations while other directives specify details9
of program execution. Such executable directives may be lexically associated with base language10
code. Each executable directive and any such associated base language code forms a construct. An11
OpenMP program executes regions, which consist of all code encountered by native threads.12

Some regions are implicit but many are explicit regions, which correspond to a specific instance of13
a construct or runtime routine. Execution is composed of nested regions since a given region may14
encounter additional constructs and runtime routines. References to regions, particularly explicit15
regions or nested regions, that correspond to a specific type of construct or runtime routine usually16
include the name of that construct or runtime routine to identify the type of region that results.17

With the OpenMP API, multiple threads execute tasks defined implicitly or explicitly by OpenMP18
directives and their associated user code, if any. An implementation may use of multiple devices for19
a given execution of an OpenMP program. Using different numbers of threads may result in20
different numeric results because of changes in the association of numeric operations.21

Each device executes a set of one or more contention groups. Each contention group consists of a22
set of tasks that an associated set of threads, an OpenMP thread pool, executes. The lifetime of the23
OpenMP thread pool is the same as that of the contention group. The threads that are associated24
with each contention group are distinct from threads associated with any other contention group.25
Threads cannot migrate to executed tasks of a different contention group.26

Each OpenMP thread pool has an initial thread, which may be the thread that starts execution of a27
region that is not nested within any other region, or which may be the thread that starts execution of28
the structured block associated with a target or teams construct. Each initial thread executes29
sequentially; the code that it encounters is part of an implicit task region, called an initial task30
region, that is generated by the implicit parallel region that surrounds all code executed by the31
initial thread. The other threads in the OpenMP thread pool associated with a contention group are32
unassigned threads. An implicit task is assigned to each of those threads. When a task encounters a33
parallel construct, some of the unassigned threads become assigned threads that are assigned to34
the team of that parallel region.35

42 OpenMP API – Version 6.0 Preview 2 November 2023

The thread that executes the implicit parallel region that surrounds the whole program executes on1
the host device. An implementation may support other devices besides the host device. If2
supported, these devices are available to the host device for offloading code and data. Each device3
has its own contention groups.4

A task that encounters a target construct generates a new target task; its region encloses the5
target region. The target task is complete after the target region completes execution. When6
a target task executes, an initial thread executes the enclosed target region. The initial thread7
executes sequentially, as if the target region is part of an initial task region that an implicit8
parallel region generates. The initial thread may execute on the requested target device, if it is9
available. If the target device does not exist or the implementation does not support it, all target10
regions associated with that device execute on the host device. Otherwise, the implementation11
ensures that the target region executes as if it were executed in the data environment of the target12
device unless an if clause is present and the if clause expression evaluates to false.13

The teams construct creates a league of teams, where each team is an initial team that comprises14
an initial thread that executes the teams region and that executes a distinct contention group from15
those of initial threads. Each initial thread executes sequentially, as if the code encountered is part16
of an initial task region that is generated by an implicit parallel region associated with each team.17
Whether the initial threads concurrently execute the teams region is unspecified, and a program18
that relies on their concurrent execution for the purposes of synchronization may deadlock.19

Any thread that encounters a parallel construct becomes the primary thread of the new team20
that consists of itself and zero or more additional unassigned threads that are then assigned to that21
team as team-worker threads. Those threads remain assigned threads for the lifetime of that team.22
A set of implicit tasks, one per thread, is generated. The code inside the parallel construct23
defines the code for each implicit task. A different thread in the team is assigned to each implicit24
task, which is tied, that is, only that assigned thread ever executes it. The task region of the task25
being executed by the encountering thread is suspended, and each member of the new team26
executes its implicit task. The primary thread is the parent thread of any thread that executes a task27
that is bound to the parallel region. An implicit barrier occurs at the end of the parallel region.28
Only the primary thread resumes execution beyond the end of that region, resuming the suspended29
task region. The other threads again become unassigned threads. A single program can specify any30
number of parallel constructs.31

parallel regions may be arbitrarily nested inside each other. If nested parallelism is disabled, or32
is not supported by the OpenMP implementation, then the new team that is formed by a thread that33
encounters a parallel construct inside a parallel region will consist only of the34
encountering thread. However, if nested parallelism is supported and enabled, then the new team35
can consist of more than one thread. A parallel construct may include a proc_bind clause to36
specify the places to use for the threads in the team within the parallel region.37

When any team encounters a partitioned worksharing construct, the work inside the construct is38
divided into work partitions, each of which is executed by one member of the team, instead of the39
work being executed redundantly by each thread. An implicit barrier occurs at the end of any region40
that corresponds to a worksharing construct for which the nowait clause is not specified.41

CHAPTER 1. OVERVIEW OF THE OPENMP API 43

Redundant execution of code by every thread in the team resumes after the end of the worksharing1
construct. Regions that correspond to team-executed constructs, including all worksharing regions2
and barrier regions, are executed by the current team such that all threads in the team execute the3
team-executed regions in the same order.4

When a loop construct is encountered, the iterations of the loop associated with the construct are5
executed in the context of its encountering threads, as determined according to its binding region. If6
the loop region binds to a teams region, the region is encountered by the set of primary thread7
that execute the teams region. If the loop region binds to a parallel region, the region is8
encountered by the team that execute the parallel region. Otherwise, the region is encountered9
by a single thread. If the loop region binds to a teams region, the encountering threads may10
continue execution after the loop region without waiting for all iterations to complete; the11
iterations are guaranteed to complete before the end of the teams region. Otherwise, all iterations12
must complete before the encountering thread continue execution after the loop region. All13
threads that encounter the loop construct may participate in the execution of the iterations. Only14
one thread may execute any given iteration.15

When any thread encounters a simd construct, the iterations of the loop associated with the16
construct may be executed concurrently using the SIMD lanes that are available to the thread.17

When any thread encounters a task-generating construct, one or more explicit tasks are generated.18
Explicitly generated tasks are scheduled onto threads of the task binding thread set, subject to the19
availability of the threads to execute work. Thus, execution of the new task could be immediate, or20
deferred until later according to task scheduling constraints and thread availability. Completion of21
all explicit tasks bound to a given parallel region is guaranteed before the primary thread leaves the22
implicit barrier at the end of the region. Completion of a subset of all explicit tasks bound to a23
given parallel region may be specified through the use of task synchronization constructs.24
Completion of all explicit tasks bound to an implicit parallel region is guaranteed when the25
associated initial task completes. The initial task on the host device that begins a typical OpenMP26
program is guaranteed to end by the time that the program exits.27

Threads are allowed to suspend the current task region at a task scheduling point in order to execute28
a different task. Thus, each task consists of a set of one or more subtasks that each correspond to29
the portion of the task region between any two consecutive task scheduling points that the task30
encounters. If the task region of a tied task is suspended, the initially assigned thread later resumes31
execution of the next subtask of the suspended task region. If the task region of an untied task is32
suspended, any thread in the binding thread set of the task may resume execution of its next subtask.33

OpenMP threads are logical execution entities that are mapped to native threads for actual34
execution. OpenMP does not dictate the details of the implementation of native threads and, instead,35
specifies requirements on the thread state of OpenMP threads. As long as those requirements are36
met, a compliant implementation may map the same OpenMP thread differently (i.e., to different37
native threads) for different portions of its execution (e.g., for the execution of different subtasks).38
Similarly, while the lifetime of an OpenMP thread and its OpenMP thread pool is identical to that39
of the associated contention group, OpenMP does not specify the lifetime of any native threads to40
which it is mapped. Native threads may be created at any time and may be terminated at any time.41

44 OpenMP API – Version 6.0 Preview 2 November 2023

The cancel construct can alter the previously described flow of execution in a region. The effect1
of the cancel construct depends on the member of the cancel-directive-name that is specified on2
it. If a task encounters a cancel construct with a taskgroup clause, then the explicit task3
activates cancellation and continues execution at the end of its task region, which implies4
completion of that task. Any other task in that taskgroup that has begun executing completes5
execution unless it encounters a cancellation point, including one that corresponds to a6
cancellation point construct, in which case it continues execution at the end of its explicit7
task region, which implies its completion. Other tasks in that taskgroup region that have not8
begun execution are aborted, which implies their completion.9

If a task encounters a cancel construct, any other cancel-directive-name clauses, it activates10
cancellation of the innermost enclosing region of the type specified and the thread continues11
execution at the end of that region. Tasks check if cancellation has been activated for their region at12
cancellation points and, if so, also resume execution at the end of the canceled region.13

If cancellation has been activated, regardless of the cancel-directive-name clauses, threads that are14
waiting inside a barrier other than an implicit barrier at the end of the canceled region exit the15
barrier and resume execution at the end of the canceled region. This action can occur before the16
other threads reach that barrier.17

OpenMP specifies circumstances that cause error termination. If compile-time error termination is18
specified, the effect is as if an error directive for which sev-level is fatal and action-time is19
compilation is encountered. If runtime error termination is specified, the effect is as if an20
error directive for which sev-level is fatal and action-time is execution is encountered.21

A construct that creates a data environment creates it at the time that the construct is encountered.22
The description of a construct defines whether it creates a data environment. Synchronization23
constructs and library routines are available in the OpenMP API to coordinate tasks and their data24
accesses. In addition, library routines and environment variables are available to control or to query25
the runtime environment of OpenMP programs. The scope of OpenMP synchronization26
mechanisms may be limited ot the contention group of the encountering task, Except where27
explicitly specified, any effect of the mechanisms between contention groups is implementation28
defined. Section 1.4 details the OpenMP memory model, including the effect of these features.29

The OpenMP specification makes no guarantee that input or output to the same file is synchronous30
when executed in parallel. In this case, the programmer is responsible for synchronizing input and31
output processing with the assistance of synchronization constructs or library routines. For the case32
where each thread accesses a different file, the programmer does not need to synchronize access.33

All concurrency semantics defined by the base language with respect to base language threads34
apply to OpenMP threads, unless otherwise specified. An OpenMP thread makes progress when it35
performs a flush operation, performs input or output processing, terminates, or makes progress as36
defined by the base language. A set of threads in the same progress unit are not guaranteed to make37
progress if one thread from the set is waiting for another thread in the set to synchronize with it, and38
the threads are divergent threads. Otherwise, OpenMP threads will eventually make progress. The39
generation and execution of explicit tasks by threads in the current team does not prevent any of the40

CHAPTER 1. OVERVIEW OF THE OPENMP API 45

threads from making progress if executing the explicit tasks as included tasks would ensure that1
they make progress.2

Each device is identified by a device number. The device number for the host device is the value of3
the total number of non-host devices, while each non-host device has a unique device number that4
is greater than or equal to zero and less than the device number for the host device. Additionally,5
the constant omp_initial_device can be used as an alias for the host device and the constant6
omp_invalid_device can be used to specify an invalid device number. A conforming device7
number is either a non-negative integer that is less than or equal to omp_get_num_devices()8
or equal to omp_initial_device or omp_invalid_device.9

1.4 Memory Model10

1.4.1 Structure of the OpenMP Memory Model11

The OpenMP API provides a relaxed-consistency, shared-memory model. All OpenMP threads12
have access to a place to store and to retrieve variables, called the memory. A given storage13
location in the memory may be associated with one or more devices, such that only threads on14
associated devices have access to it. In addition, each thread is allowed to have its own temporary15
view of the memory. The temporary view of memory for each thread is not a required part of the16
OpenMP memory model, but can represent any kind of intervening structure, such as machine17
registers, cache, or other local storage, between the thread and the memory. The temporary view of18
memory allows the thread to cache variables and thereby to avoid going to memory for every19
reference to a variable. Each thread also has access to another type of memory that must not be20
accessed by other threads, called threadprivate memory.21

A directive that accepts data-sharing attribute clauses determines two kinds of access to variables22
used in the associated structured block of the directive: shared variables and private variable. Each23
variable referenced in the structured block has an original variable, which is the variable by the24
same name that exists in the OpenMP program immediately outside the construct. Each reference25
to a shared variable in the structured block becomes a reference to the original variable. For each26
private variable referenced in the structured block, a new version of the original variable (of the27
same type and size) is created in memory for each task or SIMD lane that contains code associated28
with the directive. Creation of the new version does not alter the value of the original variable.29
However, attempts to access the original variable from within the region that corresponds to the30
directive result in unspecified behavior; see Section 6.4.3 for additional details. References to a31
private variable in the structured block refer to the private version of the original variable for the32
current task or SIMD lane. The relationship between the value of the original variable and the33
initial or final value of the private version depends on the exact clause that specifies it. Details of34
this issue, as well as other issues with privatization, are provided in Chapter 6.35

The minimum size at which a memory update may also read and write back adjacent variables that36
are part of an aggregate variable is implementation defined but is no larger than the base language37
requires.38

46 OpenMP API – Version 6.0 Preview 2 November 2023

A single access to a variable may be implemented with multiple load or store instructions and, thus,1
is not guaranteed to be an atomic operation with respect to other accesses to the same variable.2
Accesses to variables smaller than the implementation defined minimum size or to C or C++3
bit-fields may be implemented by reading, modifying, and rewriting a larger unit of memory, and4
may thus interfere with updates of variables or fields in the same unit of memory.5

Two memory operations are considered unordered if the order in which they must complete, as seen6
by their affected threads, is not specified by the memory consistency guarantees listed in7
Section 1.4.6. If multiple threads write to the same memory unit (defined consistently with the8
above access considerations) then a data race occurs if the writes are unordered. Similarly, if at9
least one thread reads from a memory unit and at least one thread writes to that same memory unit10
then a data race occurs if the read and write are unordered. If a data race occurs then the result of11
the OpenMP program is unspecified behavior.12

A private variable in a task region that subsequently generates an inner nested parallel region is13
permitted to be made shared for implicit tasks in the inner parallel region. A private variable in14
a task region can also be shared by an explicit task region generated during its execution. However,15
the programmer must use synchronization that ensures that the lifetime of the variable does not end16
before completion of the explicit task region sharing it. Any other access by one task to the private17
variables of another task results in unspecified behavior.18

A storage location in memory that is associated with a given device has a device address that may19
be dereferenced by a thread executing on that device, but it may not be generally accessible from20
other devices. A different device may obtain a device pointer that refers to this device address. The21
manner in which an OpenMP program can obtain the referenced device address from a device22
pointer, outside of mechanisms specified by OpenMP, is implementation defined. Unless otherwise23
specified, the atomic scope of a storage location is all threads on the current device.24

1.4.2 Device Data Environments25

When an OpenMP program begins, an implicit target data region for each device surrounds26
the whole program. Each device has a device data environment that is defined by its implicit27
target data region. Any declare target directives and directives that accept data-mapping28
attribute clauses determine how an original storage block in a data environment is mapped to a29
corresponding storage block in a device data environment. Additionally, if a variable with static30
storage duration has original storage that is accessible on a device, and the variable is not a device31
local variable, it may be treated as if its storage is mapped with a persistent self map in the implicit32
target data region of the device; whether this happens is implementation defined.33

When an original storage block is mapped to a device data environment and a corresponding34
storage block is not present in the device data environment, a new corresponding storage block (of35
the same type and size as the original storage block) is created in the device data environment.36
Conversely, the original storage block becomes the corresponding storage block of the new storage37
block in the device data environment of the device that performs a mapping operation.38

The corresponding storage block in the device data environment may share storage with the original39

CHAPTER 1. OVERVIEW OF THE OPENMP API 47

storage block. Writes to the corresponding storage block may alter the value of the original storage1
block. Section 1.4.6 discusses the impact of this possibility on memory consistency. When a task2
executes in the context of a device data environment, references to the original storage block refer3
to the corresponding storage block in the device data environment. If an original storage block is4
not currently mapped and a corresponding storage block does not exist in the device data5
environment then accesses to the original storage block result in unspecified behavior unless the6
unified_shared_memory clause is specified on a requires directive for the compilation7
unit.8

The relationship between the value of the original storage block and the initial or final value of the9
corresponding storage block depends on the map-type. Details of this issue, as well as other issues10
with mapping a variable, are provided in Section 6.8.3.11

The original storage block in a data environment and a corresponding storage block in a device data12
environment may share storage. Without intervening synchronization data races can occur.13

If a storage block has a corresponding storage block with which it does not share storage, a write to14
a storage location designated by the storage block causes the value at the corresponding storage15
block to become undefined.16

1.4.3 Memory Management17

The host device, and other devices that an implementation may support, have attached storage18
resources where variables are stored. These resources can have different traits. A memory space in19
an OpenMP program represents a set of these storage resources. Memory spaces are defined20
according to a set of traits, and a single resource may be exposed as multiple memory spaces with21
different traits or may be part of multiple memory spaces. In any device, at least one memory space22
is guaranteed to exist.23

An OpenMP program can use a memory allocator to allocate memory in which to store variables.24
This memory will be allocated from the storage resources of the memory space associated with the25
memory allocator. Memory allocators are also used to deallocate previously allocated memory.26
When a memory allocator is not used to allocate memory, OpenMP does not prescribe the storage27
resource for the allocation; the memory for the variables may be allocated in any storage resource.28

1.4.4 The Flush Operation29

The memory model has relaxed-consistency because the temporary view of memory of a thread is30
not required to be consistent with memory at all times. A value written to a variable can remain in31
that temporary view until it is forced to memory at a later time. Likewise, a read from a variable32
may retrieve the value from that temporary view, unless it is forced to read from memory. OpenMP33
flush operations are used to enforce consistency between the temporary view of memory of a thread34
and memory, or between the temporary views of multiple threads.35

A flush has an associated thread-set that constrains the threads for which it enforces memory36

48 OpenMP API – Version 6.0 Preview 2 November 2023

consistency. Consistency is only guaranteed to be enforced between the view of memory of these1
threads. Unless otherwise stated, the thread-set of a flush only includes all threads on the current2
device.3

If a flush is a strong flush, it enforces consistency between the temporary view of a thread and4
memory. A strong flush is applied to a set of variable called the flush-set. A strong flush restricts5
how an implementation may reorder memory operations. Implementations must not reorder the6
code for a memory operation for a given variable, or the code for a flush for the variable, with7
respect to a strong flush that refers to the same variable.8

If a thread has performed a write to its temporary view of a shared variable since its last strong9
flush of that variable then, when it executes another strong flush of the variable, the strong flush10
does not complete until the value of the variable has been written to the variable in memory. If a11
thread performs multiple writes to the same variable between two strong flushes of that variable,12
the strong flush ensures that the value of the last write is written to the variable in memory. A13
strong flush of a variable executed by a thread also causes its temporary view of the variable to be14
discarded, so that if its next memory operation for that variable is a read, then the thread will read15
from memory and capture the value in its temporary view. When a thread executes a strong flush,16
no later memory operation by that thread for a variable in the flush-set of that strong flush is17
allowed to start until the strong flush completes. The completion of a strong flush executed by a18
thread is defined as the point at which all writes to the flush-set performed by the thread before the19
strong flush are visible in memory to all other threads, and at which the temporary view of the20
flush-set of that thread is discarded.21

A strong flush provides a guarantee of consistency between the temporary view of a thread and22
memory. Therefore, a strong flush can be used to guarantee that a value written to a variable by one23
thread may be read by a second thread. To accomplish this, the programmer must ensure that the24
second thread has not written to the variable since its last strong flush of the variable, and that the25
following sequence of events are completed in this specific order:26

1. The value is written to the variable by the first thread;27

2. The variable is flushed, with a strong flush, by the first thread;28

3. The variable is flushed, with a strong flush, by the second thread; and29

4. The value is read from the variable by the second thread.30

If a flush is a release flush or acquire flush, it can enforce consistency between the views of memory31
of two synchronizing threads. A release flush guarantees that any prior operation that writes or32
reads a shared variable will appear to be completed before any operation that writes or reads the33
same shared variable and follows an acquire flush with which the release flush synchronizes (see34
Section 1.4.5 for more details on flush synchronization). A release flush will propagate the values35
of all shared variables in its temporary view to memory prior to the thread performing any36
subsequent atomic operation that may establish a synchronization. An acquire flush will discard37
any value of a shared variable in its temporary view to which the thread has not written since last38
performing a release flush, and it will load any value of a shared variable propagated by a release39

CHAPTER 1. OVERVIEW OF THE OPENMP API 49

flush that synchronizes with it (according to the synchronizes-with relation) into its temporary view1
so that it may be subsequently read. Therefore, release flushes and acquire flushes may also be used2
to guarantee that a value written to a variable by one thread may be read by a second thread. To3
accomplish this, the programmer must ensure that the second thread has not written to the variable4
since its last acquire flush, and that the following sequence of events happen in this specific order:5

1. The value is written to the variable by the first thread;6

2. The first thread performs a release flush;7

3. The second thread performs an acquire flush; and8

4. The value is read from the variable by the second thread.9

10

Note – OpenMP synchronization operations, described in Chapter 16 and in Section 19.9, are11
recommended for enforcing this order. Synchronization through variables is possible but is not12
recommended because the proper timing of flushes is difficult.13

14

The flush properties that define whether a flush is a strong flush, a release flush, or an acquire flush15
are not mutually disjoint. A flush may be a strong flush and a release flush; it may be a strong flush16
and an acquire flush; it may be a release flush and an acquire flush; or it may be all three.17

1.4.5 Flush Synchronization and Happens-Before Order18

OpenMP supports thread synchronization with the use of release flushes and acquire flushes. For19
any such synchronization, a release flush is the source of the synchronization and an acquire flush is20
the sink of the synchronization, such that the release flush synchronizes with the acquire flush.21

A release flush has one or more associated release sequences that define the set of modifications22
that may be used to establish a synchronization. A release sequence starts with an atomic operation23
that follows the release flush and modifies a shared variable and additionally includes any24
read-modify-write atomic operations that read a value taken from some modification in the release25
sequence. The following rules determine the atomic operation that starts an associated release26
sequence.27

• If a release flush is performed on entry to an atomic operation, that atomic operation starts its28
release sequence.29

• If a release flush is performed in an implicit flush region, an atomic operation that is provided30
by the implementation and that modifies an internal synchronization variable starts its release31
sequence.32

• If a release flush is performed by an explicit flush region, any atomic operation that33
modifies a shared variable and follows the flush region in the program order of its thread34
starts an associated release sequence.35

50 OpenMP API – Version 6.0 Preview 2 November 2023

An acquire flush is associated with one or more prior atomic operations that read a shared variable1
and that may be used to establish a synchronization. The following rules determine the associated2
atomic operation that may establish a synchronization.3

• If an acquire flush is performed on exit from an atomic operation, that atomic operation is its4
associated atomic operation.5

• If an acquire flush is performed in an implicit flush region, an atomic operation that is6
provided by the implementation and that reads an internal synchronization variable is its7
associated atomic operation.8

• If an acquire flush is performed by an explicit flush region, any atomic operation that reads9
a shared variable and precedes the flush region in the program order of its thread is an10
associated atomic operation.11

The atomic scope of the internal synchronization variable that is used in implicit flush regions is12
the intersection of the thread-sets of the synchronizing flushes.13

A release flush synchronizes with an acquire flush if the following conditions are satisfied:14

• An atomic operation associated with the acquire flush reads a value written by a modification15
from a release sequence associated with the release flush; and16

• The thread that performs each flush is in both of their respective thread-sets.17

An operation X simply happens before an operation Y, that is, X precedes Y in simply18
happens-before order, if any of the following conditions are satisfied:19

1. X and Y are performed by the same thread, and X precedes Y in the program order of the20
thread;21

2. X synchronizes with Y according to the flush synchronization conditions explained above or22
according to the definition of the “synchronizes with” relation in the base language, if such a23
definition exists; or24

3. Another operation, Z, exists such that X simply happens before Z and Z simply happens25
before Y.26

An operation X happens before an operation Y if any of the following conditions are satisfied:27

1. X “happens before” Y, as defined in the base language if such a definition exists; or28

2. X simply happens before Y.29

A variable with an initial value is treated as if the value is stored to the variable by an operation that30
happens before all operations that access or modify the variable in the program.31

CHAPTER 1. OVERVIEW OF THE OPENMP API 51

1.4.6 OpenMP Memory Consistency1

The following rules guarantee an observable completion order for a given pair of memory2
operations in race-free programs, as seen by all affected threads. If both memory operations are3
strong flushes, the affected threads are all threads in both of their respective thread-sets. If exactly4
one of the memory operations is a strong flush, the affected threads are all threads in its thread-set.5
Otherwise, the affected threads are all threads.6

• If two operations performed by different threads are sequentially consistent atomic operations7
or they are strong flushes that flush the same variable, then they must be completed as if in8
some sequential order, seen by all affected threads.9

• If two operations performed by the same thread are sequentially consistent atomic operations10
or they access, modify, or, with a strong flush, flush the same variable, then they must be11
completed as if in the program order of that thread, as seen by all affected threads.12

• If two operations are performed by different threads and one happens before the other, then13
they must be completed as if in that happens before order, as seen by all affected threads, if:14

– both operations access or modify the same variable;15

– both operations are strong flushes that flush the same variable; or16

– both operations are sequentially consistent atomic operations.17

• Any two atomic operations from different atomic regions must be completed as if in the18
same order as the strong flushes implied in their regions, as seen by all affected threads.19

The flush operation can be specified using the flush directive, and is also implied at various20
locations in an OpenMP program; see Section 16.8.6 for details.21

22

Note – Since flushes by themselves cannot prevent data races, explicit flushes are only useful in23
combination with non-sequentially consistent atomic constructs.24

25

OpenMP programs that:26

• Do not use non-sequentially consistent atomic constructss;27

• Do not rely on the accuracy of a false result from omp_test_lock and28
omp_test_nest_lock; and29

• Correctly avoid data races as required in Section 1.4.1,30

behave as though operations on shared variables were simply interleaved in an order consistent with31
the order in which they are performed by each thread. The relaxed consistency model is invisible32
for such programs, and any explicit flushes in such programs are redundant.33

52 OpenMP API – Version 6.0 Preview 2 November 2023

1.5 Tool Interfaces1

The OpenMP API includes two tool interfaces, OMPT and OMPD, to enable development of2
high-quality, portable, tools that support monitoring, performance, or correctness analysis and3
debugging of OpenMP programs developed using any implementation of the OpenMP API. An4
implementation of the OpenMP API may differ from the abstract execution model described by its5
specification. The ability of tools that use OMPT or OMPD to observe such differences does not6
constrain implementations of the OpenMP API in any way.7

1.5.1 OMPT8

The OMPT interface, which is intended for first-party tools, provides the following:9

• A mechanism to initialize a first-party tool;10

• Routines that enable a tool to determine the capabilities of an OpenMP implementation;11

• Routines that enable a tool to examine OpenMP state information associated with a thread;12

• Mechanisms that enable a tool to map implementation-level calling contexts back to their13
source-level representations;14

• A callback interface that enables a tool to receive notification of OpenMP events;15

• A tracing interface that enables a tool to trace activity on target devices; and16

• A runtime library routine that an application can use to control a tool.17

OpenMP implementations may differ with respect to the thread states that they support, the mutual18
exclusion implementations that they employ, and the events for which tool callbacks are invoked.19
For some events, OpenMP implementations must guarantee that a registered callback will be20
invoked for each occurrence of the event. For other events, OpenMP implementations are permitted21
to invoke a registered callback for some or no occurrences of the event; for such events, however,22
OpenMP implementations are encouraged to invoke tool callbacks on as many occurrences of the23
event as is practical. Section 20.2.4 specifies the subset of OMPT callbacks that an OpenMP24
implementation must support for a minimal implementation of the OMPT interface.25

With the exception of the omp_control_tool runtime library routine for tool control, all other26
routines in the OMPT interface are intended for use only by tools and are not visible to27
applications. For that reason, OMPT includes a Fortran binding only for omp_control_tool;28
all other OMPT functionality is supported with C syntax only.29

1.5.2 OMPD30

The OMPD interface is intended for third-party tools, which run as separate processes. An31
OpenMP implementation must provide an OMPD library that can be dynamically loaded and used32
by a third-party tool. A third-party tool, such as a debugger, uses the OMPD library to access33
OpenMP state of a program that has begun execution. OMPD defines the following:34

CHAPTER 1. OVERVIEW OF THE OPENMP API 53

• An interface that an OMPD library exports, which a tool can use to access OpenMP state of a1
program that has begun execution;2

• A callback interface that a tool provides to the OMPD library so that the library can use it to3
access the OpenMP state of a program that has begun execution; and4

• A small number of symbols that must be defined by an OpenMP implementation to help the5
tool find the correct OMPD library to use for that OpenMP implementation and to facilitate6
notification of events.7

Chapter 21 describes OMPD in detail.8

1.6 OpenMP Compliance9

The OpenMP API defines constructs that operate in the context of the base language that is10
supported by an implementation. If the implementation of the base language does not support a11
language construct that appears in this document, a compliant implementation is not required to12
support it, with the exception that for Fortran, the implementation must allow case insensitivity for13
directive and API routines names, and must allow identifiers of more than six characters. An14
implementation of the OpenMP API is compliant if and only if it compiles and executes all other15
conforming programs, and supports the tool interfaces, according to the syntax and semantics laid16
out in Chapters 1 through 20. Appendices A and B as well as sections designated as Notes (see17
Section 1.8) are for information purposes only and are not part of the specification.18

All library, intrinsic and built-in procedures provided by the base language must be thread-safe19
procedures in a compliant implementation. In addition, the implementation of the base language20
must also be thread-safe. For example, ALLOCATE and DEALLOCATE statements must be21
thread-safe in Fortran. Unsynchronized concurrent use of such procedures by different threads must22
produce correct results (although not necessarily the same as serial execution results, as in the case23
of random number generation procedures).24

Starting with Fortran 90, variables with explicit initialization have the SAVE attribute implicitly.25
This is not the case in Fortran 77. However, a compliant OpenMP Fortran implementation must26
give such a variable the SAVE attribute, regardless of the underlying base language version.27

Appendix A lists certain aspects of the OpenMP API that are implementation defined. A compliant28
implementation must define and document its behavior for each of the items in Appendix A.29

1.7 Normative References30

• ISO/IEC 9899:1990, Information Technology - Programming Languages - C.31
This OpenMP API specification refers to ISO/IEC 9899:1990 as C90.32

• ISO/IEC 9899:1999, Information Technology - Programming Languages - C.33
This OpenMP API specification refers to ISO/IEC 9899:1999 as C99.34

54 OpenMP API – Version 6.0 Preview 2 November 2023

• ISO/IEC 9899:2011, Information Technology - Programming Languages - C.1
This OpenMP API specification refers to ISO/IEC 9899:2011 as C11.2

• ISO/IEC 9899:2018, Information Technology - Programming Languages - C.3
This OpenMP API specification refers to ISO/IEC 9899:2018 as C18.4

• ISO/IEC 9899:2023, Information Technology - Programming Languages - C.5
This OpenMP API specification refers to ISO/IEC 9899:2023 as C23.6

• ISO/IEC 14882:1998, Information Technology - Programming Languages - C++.7
This OpenMP API specification refers to ISO/IEC 14882:1998 as C++98.8

• ISO/IEC 14882:2011, Information Technology - Programming Languages - C++.9
This OpenMP API specification refers to ISO/IEC 14882:2011 as C++11.10

• ISO/IEC 14882:2014, Information Technology - Programming Languages - C++.11
This OpenMP API specification refers to ISO/IEC 14882:2014 as C++14.12

• ISO/IEC 14882:2017, Information Technology - Programming Languages - C++.13
This OpenMP API specification refers to ISO/IEC 14882:2017 as C++17.14

• ISO/IEC 14882:2020, Information Technology - Programming Languages - C++.15
This OpenMP API specification refers to ISO/IEC 14882:2020 as C++20.16

• ISO/IEC 14882:2023, Information Technology - Programming Languages - C++.17
This OpenMP API specification refers to ISO/IEC 14882:2023 as C++23.18

• ISO/IEC 1539:1980, Information Technology - Programming Languages - Fortran.19
This OpenMP API specification refers to ISO/IEC 1539:1980 as Fortran 77.20

• ISO/IEC 1539:1991, Information Technology - Programming Languages - Fortran.21
This OpenMP API specification refers to ISO/IEC 1539:1991 as Fortran 90.22

• ISO/IEC 1539-1:1997, Information Technology - Programming Languages - Fortran.23
This OpenMP API specification refers to ISO/IEC 1539-1:1997 as Fortran 95.24

• ISO/IEC 1539-1:2004, Information Technology - Programming Languages - Fortran.25
This OpenMP API specification refers to ISO/IEC 1539-1:2004 as Fortran 2003.26

• ISO/IEC 1539-1:2010, Information Technology - Programming Languages - Fortran.27
This OpenMP API specification refers to ISO/IEC 1539-1:2010 as Fortran 2008.28

• ISO/IEC 1539-1:2018, Information Technology - Programming Languages - Fortran.29
This OpenMP API specification refers to ISO/IEC 1539-1:2018 as Fortran 2018. While30
future versions of the OpenMP specification are expected to address the following features,31
currently their use may result in unspecified behavior.32

– Assumed-type dummy argument33

• Where this OpenMP API specification refers to C, C++ or Fortran, reference is made to the34
base language supported by the implementation.35

CHAPTER 1. OVERVIEW OF THE OPENMP API 55

1.8 Organization of this Document1

The remainder of this document is structured as normative chapters that define the directives,2
including their syntax and semantics, the runtime routines and the tool interfaces that comprise the3
OpenMP API. The document also includes appendices that facilitate maintaining a compliant4
implementation of the API.5

Some sections of this document only apply to programs written in a certain base language. Text that6
applies only to programs for which the base language is C or C++ is shown as follows:7

C / C++
C/C++ specific text...8

C / C++
Text that applies only to programs for which the base language is C only is shown as follows:9

C
C specific text...10

C
Text that applies only to programs for which the base language is C++ only is shown as follows:11

C++
C++ specific text...12

C++
Text that applies only to programs for which the base language is Fortran is shown as follows:13

Fortran
Fortran specific text...14

Fortran
Where an entire page consists of base language specific text, a marker is shown at the top of the15
page. For Fortran-specific text, the marker is:16

Fortran (cont.)

For C/C++-specific text, the marker is:17

C/C++ (cont.)

Some text is for information only, and is not part of the normative specification. Such text is18
designated as a note or comment, like this:19

56 OpenMP API – Version 6.0 Preview 2 November 2023

1

Note – Non-normative text...2
3

COMMENT: Non-normative text...4

CHAPTER 1. OVERVIEW OF THE OPENMP API 57

2 Internal Control Variables1

An OpenMP implementation must act as if internal control variables (ICVs) control the behavior of2
an OpenMP program. These ICVs store information such as the number of threads to use for future3
parallel regions. One copy exists of each ICV per instance of its ICV scope. Possible ICV4
scopes are: global; device; implicit task; and data environment. If an ICV scope is global then one5
copy of the ICV exists for the whole OpenMP program. If an ICV scope is device then one copy of6
the ICV exists for the current device. If an ICV scope is implicit task then a distinct copy of the7
ICV exists for each implicit task. If an ICV scope is data environment then a distinct copy of the8
ICV exists for the data environment of each task, unless otherwise specified. The ICVs are given9
values at various times (described below) during the execution of the program. They are initialized10
by the implementation itself and may be given values through OpenMP environment variables and11
through calls to OpenMP API routines. The program can retrieve the values of these ICVs only12
through routines.13

For purposes of exposition, this document refers to the ICVs by certain names, but an14
implementation is not required to use these names or to offer any way to access the variables other15
than through the ways shown in Section 2.2.16

2.1 ICV Descriptions17

Table 2.1 shows the ICV scope and description of each ICV.18

TABLE 2.1: ICV Scopes and Descriptions

ICV Scope Description

active-levels-var data environment Number of nested active parallel regions such
that all active parallel regions are enclosed by the
outermost initial task region on the device

affinity-format-var device Controls the thread affinity format when display-
ing thread affinity

available-devices-var global Controls target device availability and the device
number assignment

58

ICV Scope Description
bind-var data environment Controls the binding of threads to places; when

binding is requested, indicates that the execu-
tion environment is advised not to move threads
between places; can also provide default thread
affinity policies

cancel-var global Controls the desired behavior of the cancel
construct and cancellation points

debug-var global Controls whether an OpenMP implementation
will collect information that an OMPD library
can access to satisfy requests from a tool

def-allocator-var implicit task Controls the memory allocator used by memory
allocation routines, directives and clauses that do
not specify one explicitly

default-device-var data environment Controls the default target device
device-num-var device Device number of a given device
display-affinity-var global Controls the display of thread affinity
dyn-var data environment Enables dynamic adjustment of the number of

threads used for encountered parallel regions
explicit-task-var data environment Whether a given task is an explicit task
final-task-var data environment Whether a given task is a final task
free-agent-thread-limit-var data environment Controls the maximum number of free-agent

threads that may execute tasks in the contention
group in parallel

league-size-var data environment Number of initial teams in a league
levels-var data environment Number of nested parallel regions such that all

parallel regions are enclosed by the outermost
initial task region on the device

max-active-levels-var data environment Controls the maximum number of nested active
parallel regions when the innermost active paral-
lel region is generated by a given task

max-task-priority-var global Controls the maximum value that can be speci-
fied in the priority clause

nteams-var device Controls the number of teams requested for en-
countered teams regions

nthreads-var data environment Controls the number of threads requested for
encountered parallel regions

num-devices-var global Number of available non-host devices
num-procs-var device The number of processors available on the device

CHAPTER 2. INTERNAL CONTROL VARIABLES 59

ICV Scope Description
place-assignment-var implicit task Controls the places to which threads are bound
place-partition-var implicit task Controls the place partition available for encoun-

tered parallel regions
run-sched-var data environment Controls the schedule used for worksharing-loop

regions that specify the runtime schedule kind
stacksize-var device Controls the stack size for threads that the

OpenMP implementation creates
structured-thread-limit-var data environment Controls the maximum number of structured

threads that may execute tasks in the contention
group in parallel

target-offload-var global Controls the offloading behavior
team-generator-var data environment Generator type of current team that refers to a

construct name or the OpenMP program
team-num-var data environment Team number of a given thread
team-size-var data environment Size of the current team
teams-thread-limit-var device Controls the maximum number of threads that

may execute tasks in parallel in each contention
group that a teams construct creates

thread-limit-var data environment Controls the maximum number of threads that
may execute tasks in the contention group in par-
allel

thread-num-var data environment Thread number of an implicit task within its cur-
rent team

tool-libraries-var global List of absolute paths to tool libraries
tool-var global Indicates that a tool will be registered
tool-verbose-init-var global Controls whether an OpenMP implementation

will verbosely log the registration of a tool
wait-policy-var device Controls the desired behavior of waiting native

threads

Cross References1
• Team Generator Types, see Section 21.3.102

2.2 ICV Initialization3

Table 2.2 shows the ICVs, associated environment variables, and initial values.4

60 OpenMP API – Version 6.0 Preview 2 November 2023

TABLE 2.2: ICV Initial Values

ICV Environment Variable Initial Value
active-levels-var (none) Zero
affinity-format-var OMP_AFFINITY_FORMAT Implementation defined
available-devices-var OMP_AVAILABLE_DEVICES See below
bind-var OMP_PROC_BIND Implementation defined
cancel-var OMP_CANCELLATION False
debug-var OMP_DEBUG disabled
def-allocator-var OMP_ALLOCATOR Implementation defined
default-device-var OMP_DEFAULT_DEVICE See below
device-num-var (none) Zero
display-affinity-var OMP_DISPLAY_AFFINITY False
dyn-var OMP_DYNAMIC Implementation defined
explicit-task-var (none) False
final-task-var (none) False
free-agent-thread-limit-var OMP_THREAD_LIMIT,

OMP_THREADS_RESERVE
See below

league-size-var (none) One
levels-var (none) Zero
max-active-levels-var OMP_MAX_ACTIVE_LEVELS,

OMP_NUM_THREADS,
OMP_PROC_BIND

Implementation defined

max-task-priority-var OMP_MAX_TASK_PRIORITY Zero
nteams-var OMP_NUM_TEAMS Zero
nthreads-var OMP_NUM_THREADS Implementation defined
num-devices-var (none) Implementation defined
num-procs-var (none) Implementation defined
place-assignment-var (none) Implementation defined
place-partition-var OMP_PLACES Implementation defined
run-sched-var OMP_SCHEDULE Implementation defined
stacksize-var OMP_STACKSIZE Implementation defined
structured-thread-limit-var OMP_THREAD_LIMIT,

OMP_THREADS_RESERVE
See below

target-offload-var OMP_TARGET_OFFLOAD default
team-generator-var (none) Zero
team-num-var (none) Zero

CHAPTER 2. INTERNAL CONTROL VARIABLES 61

ICV Environment Variable Initial Value
team-size-var (none) One
teams-thread-limit-var OMP_TEAMS_THREAD_LIMIT Zero
thread-limit-var OMP_THREAD_LIMIT Implementation defined
thread-num-var (none) Zero
tool-libraries-var OMP_TOOL_LIBRARIES empty string
tool-var OMP_TOOL enabled
tool-verbose-init-var OMP_TOOL_VERBOSE_INIT disabled
wait-policy-var OMP_WAIT_POLICY Implementation defined

If an ICV has an associated environment variable and that ICV neither has global ICV scope nor is1
default-device-var then the ICV has a set of associated device-specific environment variables that2
extend the associated environment variable with the following syntax:3

<ENVIRONMENT VARIABLE>_ALL4

or5

<ENVIRONMENT VARIABLE>_DEV[_<device>]6

where <ENVIRONMENT VARIABLE> is the associated environment variable and <device> is the7
device number as specified in the device clause (see Section 14.2); the semantic and precedence8
is described in Chapter 3.9

Semantics10
• The initial value of available-devices-var is the set of all accessible devices that are also11

supported devices.12

• The initial value of dyn-var is implementation defined if the implementation supports13
dynamic adjustment of the number of threads; otherwise, the initial value is false.14

• The initial value of free-agent-thread-limit-var is one less than the initial value of15
thread-limit-var.16

• The initial value of structured-thread-limit-var is the initial value of thread-limit-var.17

• If target-offload-var is mandatory and the number of available non-host devices is zero18
then default-device-var is initialized to omp_invalid_device. Otherwise, the initial19
value is an implementation defined non-negative integer that is less than or, if20
target-offload-var is not mandatory, equal to omp_get_initial_device().21

• The value of the nthreads-var ICV is a list.22

• The value of the bind-var ICV is a list.23

62 OpenMP API – Version 6.0 Preview 2 November 2023

The host device and non-host device ICVs are initialized before any construct or routine executes.1
After the initial values are assigned, the values of any OpenMP environment variables that were set2
by the user are read and the associated ICVs are modified accordingly. If no device number is3
specified on the device-specific environment variable then the value is applied to all non-host4
devices.5

Cross References6
• OMP_AFFINITY_FORMAT, see Section 3.2.57

• OMP_ALLOCATOR, see Section 3.5.18

• OMP_AVAILABLE_DEVICES, see Section 3.2.79

• OMP_CANCELLATION, see Section 3.2.610

• OMP_DEBUG, see Section 3.4.111

• OMP_DEFAULT_DEVICE, see Section 3.2.812

• OMP_DISPLAY_AFFINITY, see Section 3.2.413

• OMP_DYNAMIC, see Section 3.1.114

• OMP_MAX_ACTIVE_LEVELS, see Section 3.1.415

• OMP_MAX_TASK_PRIORITY, see Section 3.2.1116

• OMP_NUM_TEAMS, see Section 3.6.117

• OMP_NUM_THREADS, see Section 3.1.218

• OMP_PLACES, see Section 3.1.519

• OMP_PROC_BIND, see Section 3.1.620

• OMP_SCHEDULE, see Section 3.2.121

• OMP_STACKSIZE, see Section 3.2.222

• OMP_TARGET_OFFLOAD, see Section 3.2.923

• OMP_TEAMS_THREAD_LIMIT, see Section 3.6.224

• OMP_THREAD_LIMIT, see Section 3.1.325

• OMP_TOOL, see Section 3.3.126

• OMP_TOOL_LIBRARIES, see Section 3.3.227

• OMP_WAIT_POLICY, see Section 3.2.328

CHAPTER 2. INTERNAL CONTROL VARIABLES 63

2.3 Modifying and Retrieving ICV Values1

Table 2.3 shows methods for modifying and retrieving the ICV values. If (none) is listed for an2
ICV, the OpenMP API does not support its modification or retrieval. Calls to routines retrieve or3
modify ICVs with data environment ICV scope in the data environment of their binding task set.4

TABLE 2.3: Ways to Modify and to Retrieve ICV Values

ICV Ways to Modify Value Ways to Retrieve Value
active-levels-var (none) omp_get_active_level

affinity-format-var omp_set_affinity_format omp_get_affinity_format

available-devices-var (none) (none)
bind-var (none) omp_get_proc_bind

cancel-var (none) omp_get_cancellation

debug-var (none) (none)
def-allocator-var omp_set_default_allocator omp_get_default_allocator

default-device-var omp_set_default_device omp_get_default_device

device-num-var (none) omp_get_device_num

display-affinity-var (none) (none)
dyn-var omp_set_dynamic omp_get_dynamic

explicit-task-var (none) omp_in_explicit_task

final-task-var (none) omp_in_final

free-agent-thread-limit-var (none) (none)
league-size-var (none) omp_get_num_teams

levels-var (none) omp_get_level

max-active-levels-var omp_set_max_active_levels omp_get_max_active_levels

max-task-priority-var (none) omp_get_max_task_priority

nteams-var omp_set_num_teams omp_get_max_teams

nthreads-var omp_set_num_threads omp_get_max_threads

num-devices-var (none) omp_get_num_devices

num-procs-var (none) omp_get_num_procs

place-assignment-var (none) (none)
place-partition-var (none) omp_get_partition_num_places,

omp_get_partition_place_nums,
omp_get_place_num_procs,
omp_get_place_proc_ids

run-sched-var omp_set_schedule omp_get_schedule

stacksize-var (none) (none)
structured-thread-limit-var (none) (none)
target-offload-var (none) (none)
team-generator-var (none) (none)

64 OpenMP API – Version 6.0 Preview 2 November 2023

ICV Ways to Modify Value Ways to Retrieve Value
team-num-var (none) omp_get_team_num

team-size-var (none) omp_get_num_threads

teams-thread-limit-var omp_set_teams_thread_limit omp_get_teams_thread_limit

thread-limit-var thread_limit omp_get_thread_limit

thread-num-var (none) omp_get_thread_num

tool-libraries-var (none) (none)
tool-var (none) (none)
tool-verbose-init-var (none) (none)
wait-policy-var (none) (none)

Semantics1
• The value of the bind-var ICV is a list. The omp_get_proc_bind routine retrieves the2

value of the first element of this list.3

• The value of the nthreads-var ICV is a list. The omp_set_num_threads routine sets the4
value of the first element of this list, and the omp_get_max_threads routine retrieves the5
value of the first element of this list.6

• Detailed values in the place-partition-var ICV are retrieved using the listed routines.7

• The thread_limit clause sets the thread-limit-var ICV for the region of the construct on8
which it appears.9

Cross References10
• thread_limit clause, see Section 14.311

• omp_get_active_level, see Section 19.2.1812

• omp_get_affinity_format, see Section 19.3.913

• omp_get_cancellation, see Section 19.2.814

• omp_get_default_allocator, see Section 19.13.715

• omp_get_default_device, see Section 19.7.416

• omp_get_dynamic, see Section 19.2.717

• omp_get_level, see Section 19.2.1518

• omp_get_max_active_levels, see Section 19.2.1419

• omp_get_max_task_priority, see Section 19.5.120

• omp_get_max_teams, see Section 19.4.421

• omp_get_max_threads, see Section 19.2.322

CHAPTER 2. INTERNAL CONTROL VARIABLES 65

• omp_get_num_procs, see Section 19.7.11

• omp_get_num_threads, see Section 19.2.22

• omp_get_partition_num_places, see Section 19.3.63

• omp_get_partition_place_nums, see Section 19.3.74

• omp_get_place_num_procs, see Section 19.3.35

• omp_get_place_proc_ids, see Section 19.3.46

• omp_get_proc_bind, see Section 19.3.17

• omp_get_schedule, see Section 19.2.108

• omp_get_supported_active_levels, see Section 19.2.129

• omp_get_teams_thread_limit, see Section 19.4.610

• omp_get_thread_limit, see Section 19.2.1111

• omp_get_thread_num, see Section 19.2.412

• omp_in_final, see Section 19.5.313

• omp_set_affinity_format, see Section 19.3.814

• omp_set_default_allocator, see Section 19.13.615

• omp_set_default_device, see Section 19.7.316

• omp_set_dynamic, see Section 19.2.617

• omp_set_max_active_levels, see Section 19.2.1318

• omp_set_num_teams, see Section 19.4.319

• omp_set_num_threads, see Section 19.2.120

• omp_set_schedule, see Section 19.2.921

• omp_set_teams_thread_limit, see Section 19.4.522

2.4 How the Per-Data Environment ICVs Work23

When a task construct, a parallel construct or a teams construct is encountered, each24
generated task inherits the values of the ICVs with data environment ICV scope from the ICV25
values of the generating task, unless otherwise specified.26

When a parallel construct is encountered, the value of each ICV with implicit task ICV scope27
is inherited from the binding implicit task of the generating task unless otherwise specified.28

66 OpenMP API – Version 6.0 Preview 2 November 2023

When a task construct is encountered, the generated task inherits the value of nthreads-var from1
the nthreads-var value of the generating task. If a parallel construct is encountered on which a2
num_threads clause is specified with a nthreads list of more than one list item, the value of3
nthreads-var for the generated implicit tasks is the list obtained by deletion of the first item of the4
nthreads list. Otherwise, when a parallel construct is encountered, if the nthreads-var list of5
the generating task contains a single element, the generated implicit tasks inherit that list as the6
value of nthreads-var; if the nthreads-var list of the generating task contains multiple elements, the7
generated implicit tasks inherit the value of nthreads-var as the list obtained by deletion of the first8
element from the nthreads-var value of the generating task. The bind-var ICV is handled in the9
same way as the nthreads-var ICV, except that an override list cannot be specified through the10
proc_bind clause of an encountered parallel construct.11

When a target task executes an active target region, the generated initial task uses the values of the12
data environment scoped ICVs from the device data environment ICV values of the device that will13
execute the region, unless otherwise specified.14

When a target task executes an inactive target region, the generated initial task uses the values of the15
ICVs with data environment ICV scope from the data environment of the task that encountered the16
target construct, unless otherwise specified.17

If a target construct with a thread_limit clause is encountered,the thread-limit-var ICV18
from the data environment of the generated initial task is instead set to an implementation defined19
value between one and the value specified in the clause.20

If a target construct with no thread_limit clause is encountered, the thread-limit-var ICV21
from the data environment of the generated initial task is set to an implementation defined value22
that is greater than zero.23

If a teams construct with a thread_limit clause is encountered, the thread-limit-var ICV24
from the data environment of the initial task for each team is instead set to an implementation25
defined value between one and the value specified in the clause.26

If a teams construct with no thread_limit clause is encountered, the thread-limit-var ICV27
from the data environment of the initial task of each team is set to an implementation defined value28
that is greater than zero and does not exceed teams-thread-limit-var, if teams-thread-limit-var is29
greater than zero.30

If a target construct, teams construct, or parallel construct is encountered, the31
team-generator-var ICV for the data environments of the generated implicit tasks is instead set to32
the value of the appropriate team generator type as specified in Section 21.3.10.33

When encountering a worksharing-loop region for which the runtime schedule kind is specified,34
all implicit task regions that constitute the binding parallel region must have the same value for35
run-sched-var in their data environments. Otherwise, the behavior is unspecified.36

Cross References37
• Team Generator Types, see Section 21.3.1038

CHAPTER 2. INTERNAL CONTROL VARIABLES 67

2.5 ICV Override Relationships1

Table 2.4 shows the override relationships among construct clauses and ICVs. The table only lists2
ICVs that can be overridden by a clause.3

TABLE 2.4: ICV Override Relationships

ICV construct clause, if used
bind-var proc_bind

def-allocator-var allocate, allocator

nteams-var num_teams

nthreads-var num_threads

run-sched-var schedule

teams-thread-limit-var thread_limit

If a schedule clause specifies a modifier then that modifier overrides any modifier that is4
specified in the run-sched-var ICV.5

If bind-var is not set to false then the proc_bind clause overrides the value of the first element of6
the bind-var ICV; otherwise, the proc_bind clause has no effect.7

Cross References8
• allocate clause, see Section 7.69

• allocator clause, see Section 7.410

• num_teams clause, see Section 11.3.111

• num_threads clause, see Section 11.2.212

• proc_bind clause, see Section 11.2.413

• schedule clause, see Section 12.6.314

• thread_limit clause, see Section 14.315

68 OpenMP API – Version 6.0 Preview 2 November 2023

3 Environment Variables1

This chapter describes the OpenMP environment variables that specify the settings of the ICVs that2
affect the execution of OpenMP programs (see Chapter 2). The names of the environment variables3
must be upper case. Unless otherwise specified, the values assigned to the environment variables4
are case insensitive and may have leading and trailing white space. Modifications to the5
environment variables after the program has started, even if modified by the program itself, are6
ignored by the OpenMP implementation. However, the settings of some of the ICVs can be7
modified during the execution of the OpenMP program by the use of the appropriate directive8
clauses or OpenMP API routines.9

The following examples demonstrate how the OpenMP environment variables can be set in10
different environments:11

• csh-like shells:12

setenv OMP_SCHEDULE "dynamic"13

• bash-like shells:14

export OMP_SCHEDULE="dynamic"15

• Windows Command Line:16

set OMP_SCHEDULE=dynamic17

As defined following Table 2.2 in Section 2.2, device-specific environment variables extend many18
of the environment variables defined in this chapter. If the corresponding environment variable for19
a specific device number is set, then the setting for that environment variable is used to set the value20
of the associated ICV of the device with the corresponding device number. If the corresponding21
environment variable that includes the _DEV suffix but no device number is set, then the setting of22
that environment variable is used to set the value of the associated ICV of any non-host device for23
which the device-number-specific corresponding environment variable is not set. The24
corresponding environment variable without a suffix sets the associated ICV of the host device. If25
the corresponding environment variable includes the _ALL suffix, the setting of that environment26
variable is used to set the value of the associated ICV of any host or non-host device for which27
corresponding environment variables that are device-number specific, have the _DEV suffix, or28
have no suffix are not set.29

Restrictions30
Restrictions to device-specific environment variables are as follows:31

69

• Device-specific environment variables must not correspond to environment variables that1
initialize ICVs with global scope.2

• Device-specific environment variables must not specify the initial device.3

3.1 Parallel Region Environment Variables4

This section defines environment variables that affect the operation of parallel regions.5

3.1.1 OMP_DYNAMIC6

The OMP_DYNAMIC environment variable controls dynamic adjustment of the number of threads7
to use for executing parallel regions by setting the initial value of the dyn-var ICV.8

The value of this environment variable must be one of the following:9

true | false10

If the environment variable is set to true, the OpenMP implementation may adjust the number of11
threads to use for executing parallel regions in order to optimize the use of system resources. If12
the environment variable is set to false, the dynamic adjustment of the number of threads is13
disabled. The behavior of the program is implementation defined if the value of OMP_DYNAMIC is14
neither true nor false.15

Example:16

setenv OMP_DYNAMIC true17

Cross References18
• parallel directive, see Section 11.219

• dyn-var ICV, see Table 2.120

• omp_get_dynamic, see Section 19.2.721

• omp_set_dynamic, see Section 19.2.622

3.1.2 OMP_NUM_THREADS23

The OMP_NUM_THREADS environment variable sets the number of threads to use for parallel24
regions by setting the initial value of the nthreads-var ICV. See Chapter 2 for a comprehensive set25
of rules about the interaction between the OMP_NUM_THREADS environment variable, the26
num_threads clause, the omp_set_num_threads library routine and dynamic adjustment of27
threads, and Section 11.2.1 for a complete algorithm that describes how the number of threads for a28
parallel region is determined.29

70 OpenMP API – Version 6.0 Preview 2 November 2023

The value of this environment variable must be a list of positive integer values. The values of the1
list set the number of threads to use for parallel regions at the corresponding nested levels.2

The behavior of the program is implementation defined if any value of the list specified in the3
OMP_NUM_THREADS environment variable leads to a number of threads that is greater than an4
implementation can support, or if any value is not a positive integer.5

The OMP_NUM_THREADS environment variable sets the max-active-levels-var ICV to the number6
of active levels of parallelism that the implementation supports if the OMP_NUM_THREADS7
environment variable is set to a comma-separated list of more than one value. The value of the8
max-active-level-var ICV may be overridden by setting OMP_MAX_ACTIVE_LEVELS. See9
Section 3.1.4 for details.10

Example:11

setenv OMP_NUM_THREADS 4,3,212

Cross References13
• OMP_MAX_ACTIVE_LEVELS, see Section 3.1.414

• num_threads clause, see Section 11.2.215

• parallel directive, see Section 11.216

• nthreads-var ICV, see Table 2.117

• omp_set_num_threads, see Section 19.2.118

3.1.3 OMP_THREAD_LIMIT19

The OMP_THREAD_LIMIT environment variable sets the number of threads to use for a20
contention group by setting the thread-limit-var ICV. The value of this environment variable must21
be a positive integer. The behavior of the program is implementation defined if the requested value22
of OMP_THREAD_LIMIT is greater than the number of threads an implementation can support, or23
if the value is not a positive integer.24

Cross References25
• thread-limit-var ICV, see Table 2.126

3.1.4 OMP_MAX_ACTIVE_LEVELS27

The OMP_MAX_ACTIVE_LEVELS environment variable controls the maximum number of nested28
active parallel regions by setting the initial value of the max-active-levels-var ICV. The value29
of this environment variable must be a non-negative integer. The behavior of the program is30
implementation defined if the requested value of OMP_MAX_ACTIVE_LEVELS is greater than the31
maximum number of nested active parallel levels an implementation can support, or if the value is32
not a non-negative integer.33

CHAPTER 3. ENVIRONMENT VARIABLES 71

Cross References1
• max-active-levels-var ICV, see Table 2.12

3.1.5 OMP_PLACES3

The OMP_PLACES environment variable sets the initial value of the place-partition-var ICV. A list4
of places can be specified in the OMP_PLACES environment variable. The value of OMP_PLACES5
can be one of two types of values: either an abstract name that describes a set of places or an6
explicit list of places described by non-negative numbers.7

The OMP_PLACES environment variable can be defined using an explicit ordered list of8
comma-separated places. A place is defined by an unordered set of comma-separated non-negative9
numbers enclosed by braces, or a non-negative number. The meaning of the numbers and how the10
numbering is done are implementation defined. Generally, the numbers represent the smallest unit11
of execution exposed by the execution environment, typically a hardware thread.12

Intervals may also be used to define places. Intervals can be specified using the <lower-bound> :13
<length> : <stride> notation to represent the following list of numbers: “<lower-bound>,14
<lower-bound> + <stride>, ..., <lower-bound> + (<length> - 1)*<stride>.” When <stride> is15
omitted, a unit stride is assumed. Intervals can specify numbers within a place as well as sequences16
of places.17

An exclusion operator “!” can also be used to exclude the number or place immediately following18
the operator.19

Alternatively, the abstract names listed in Table 3.1 should be understood by the execution and20
runtime environment. The entities defined by the abstract names are implementation defined. An21
implementation may also add abstract names as appropriate for the target platform.22

The abstract name may be appended with one or two positive numbers in parentheses, that is,23
abstract_name(<num-places>) or abstract_name(<num-places> : <stride>), where24
<num-places> denotes the length of the place list and <stride> denotes the increment between25
consecutive places in the place list. When requesting fewer places than available on the system, the26
determination of which resources of type abstract_name are to be included in the place list is27
implementation defined. When requesting more resources than available, the length of the place list28
is implementation defined.29

TABLE 3.1: Predefined Abstract Names for OMP_PLACES

Abstract Name Meaning

threads Each place corresponds to a single hardware thread on the de-
vice.

table continued on next page

72 OpenMP API – Version 6.0 Preview 2 November 2023

table continued from previous page

Abstract Name Meaning

cores Each place corresponds to a single core (having one or more
hardware threads) on the device.

ll_caches Each place corresponds to a set of cores that share the last
level cache on the device.

numa_domains Each place corresponds to a set of cores for which their closest
memory on the device is:

• the same memory; and
• at a similar distance from the cores.

sockets Each place corresponds to a single socket (consisting of one or
more cores) on the device.

The behavior of the program is implementation defined when the execution environment cannot1
map a numerical value (either explicitly defined or implicitly derived from an interval) within the2
OMP_PLACES list to a processor on the target platform, or if it maps to an unavailable processor.3
The behavior is also implementation defined when the OMP_PLACES environment variable is4
defined using an abstract name.5

The following grammar describes the values accepted for the OMP_PLACES environment variable.6

⟨list⟩ |= ⟨p-list⟩ | ⟨aname⟩
⟨p-list⟩ |= ⟨p-interval⟩ | ⟨p-list⟩,⟨p-interval⟩

⟨p-interval⟩ |= ⟨place⟩:⟨len⟩:⟨stride⟩ | ⟨place⟩:⟨len⟩ | ⟨place⟩ | !⟨place⟩
⟨place⟩ |= {⟨res-list⟩} | ⟨res⟩

⟨res-list⟩ |= ⟨res-interval⟩ | ⟨res-list⟩,⟨res-interval⟩
⟨res-interval⟩ |= ⟨res⟩:⟨num-places⟩:⟨stride⟩ | ⟨res⟩:⟨num-places⟩ | ⟨res⟩ | !⟨res⟩

⟨aname⟩ |= ⟨word⟩(⟨num-places⟩:⟨stride⟩) | ⟨word⟩(⟨num-places⟩) | ⟨word⟩
⟨word⟩ |= sockets | cores | ll_caches | numa_domains

| threads | <implementation-defined abstract name>
⟨res⟩ |= non-negative integer

⟨num-places⟩ |= positive integer
⟨stride⟩ |= integer

⟨len⟩ |= positive integer

CHAPTER 3. ENVIRONMENT VARIABLES 73

Examples:1

setenv OMP_PLACES threads2
setenv OMP_PLACES "threads(4)"3
setenv OMP_PLACES "threads(8:2)"4
setenv OMP_PLACES5

"{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}"6
setenv OMP_PLACES "{0:4},{4:4},{8:4},{12:4}"7
setenv OMP_PLACES "{0:4}:4:4"8

where each of the last three definitions corresponds to the same 4 places including the smallest9
units of execution exposed by the execution environment numbered, in turn, 0 to 3, 4 to 7, 8 to 11,10
and 12 to 15.11

Cross References12
• place-partition-var ICV, see Table 2.113

3.1.6 OMP_PROC_BIND14

The OMP_PROC_BIND environment variable sets the initial value of the bind-var ICV. The value15
of this environment variable is either true, false, or a comma separated list of primary,16
close, or spread. The values of the list set the thread affinity policy to be used for parallel17
regions at the corresponding nested level.18

If the environment variable is set to false, the execution environment may move OpenMP threads19
between OpenMP places, thread affinity is disabled, and proc_bind clauses on parallel20
constructs are ignored.21

Otherwise, the execution environment should not move threads between places, thread affinity is22
enabled, and the initial thread is bound to the first place in the place-partition-var ICV prior to the23
first active parallel region. An initial thread that is created by a teams construct is bound to the first24
place in its place-partition-var ICV before it begins execution of the associated structured block.25

If the environment variable is set to true, the thread affinity policy is implementation defined but26
must conform to the previous paragraph. The behavior of the program is implementation defined if27
the value in the OMP_PROC_BIND environment variable is not true, false, or a comma28
separated list of primary, close, or spread. The behavior is also implementation defined if29
an initial thread cannot be bound to the first place in the place-partition-var ICV.30

The OMP_PROC_BIND environment variable sets the max-active-levels-var ICV to the number of31
active levels of parallelism that the implementation supports if the OMP_PROC_BIND environment32
variable is set to a comma-separated list of more than one element. The value of the33
max-active-level-var ICV may be overridden by setting OMP_MAX_ACTIVE_LEVELS. See34
Section 3.1.4 for details.35

74 OpenMP API – Version 6.0 Preview 2 November 2023

Examples:1

setenv OMP_PROC_BIND false2
setenv OMP_PROC_BIND "spread, spread, close"3

Cross References4
• OMP_MAX_ACTIVE_LEVELS, see Section 3.1.45

• proc_bind clause, see Section 11.2.46

• parallel directive, see Section 11.27

• teams directive, see Section 11.38

• Controlling OpenMP Thread Affinity, see Section 11.2.39

• bind-var ICV, see Table 2.110

• max-active-levels-var ICV, see Table 2.111

• place-partition-var ICV, see Table 2.112

• omp_get_proc_bind, see Section 19.3.113

3.2 Program Execution Environment Variables14

This section defines environment variables that affect program execution.15

3.2.1 OMP_SCHEDULE16

The OMP_SCHEDULE environment variable controls the schedule kind and chunk size of all17
worksharing-loop directives that have the schedule kind runtime, by setting the value of the18
run-sched-var ICV. The value of this environment variable takes the form [modifier:]kind[, chunk],19
where:20

• modifier is one of monotonic or nonmonotonic;21

• kind is one of static, dynamic, guided, or auto;22

• chunk is an optional positive integer that specifies the chunk size.23

If the modifier is not present, the modifier is set to monotonic if kind is static; for any other24
kind it is set to nonmonotonic.25

If chunk is present, white space may be on either side of the “,”. See Section 12.6.3 for a detailed26
description of the schedule kinds.27

The behavior of the program is implementation defined if the value of OMP_SCHEDULE does not28
conform to the above format.29

CHAPTER 3. ENVIRONMENT VARIABLES 75

Examples:1

setenv OMP_SCHEDULE "guided,4"2
setenv OMP_SCHEDULE "dynamic"3
setenv OMP_SCHEDULE "nonmonotonic:dynamic,4"4

Cross References5
• schedule clause, see Section 12.6.36

• run-sched-var ICV, see Table 2.17

3.2.2 OMP_STACKSIZE8

The OMP_STACKSIZE environment variable controls the size of the stack for threads, by setting9
the value of the stacksize-var ICV. The environment variable does not control the size of the stack10
for an initial thread. Whether this environment variable also controls the size of the stack of native11
threads is implementation defined. The value of this environment variable takes the form size[unit],12
where:13

• size is a positive integer that specifies the size of the stack for threads.14

• unit is B, K, M, or G and specifies whether the given size is in Bytes, Kilobytes (1024 Bytes),15
Megabytes (1024 Kilobytes), or Gigabytes (1024 Megabytes), respectively. If unit is present,16
white space may occur between size and it, whereas if unit is not present then K is assumed.17

The behavior of the program is implementation defined if OMP_STACKSIZE does not conform to18
the above format, or if the implementation cannot provide a stack with the requested size.19

Examples:20

setenv OMP_STACKSIZE 2000500B21
setenv OMP_STACKSIZE "3000 k "22
setenv OMP_STACKSIZE 10M23
setenv OMP_STACKSIZE " 10 M "24
setenv OMP_STACKSIZE "20 m "25
setenv OMP_STACKSIZE " 1G"26
setenv OMP_STACKSIZE 2000027

Cross References28
• stacksize-var ICV, see Table 2.129

3.2.3 OMP_WAIT_POLICY30

The OMP_WAIT_POLICY environment variable provides a hint to an OpenMP implementation31
about the desired behavior of waiting native threads by setting the wait-policy-var ICV. A32
compliant implementation may or may not abide by the setting of the environment variable. The33
value of this environment variable must be one of the following:34

active | passive35

76 OpenMP API – Version 6.0 Preview 2 November 2023

The active value specifies that waiting native threads should mostly be active, consuming1
processor cycles, while waiting. A compliant implementation may, for example, make waiting2
native threads spin. The passive value specifies that waiting native threads should mostly be3
passive, not consuming processor cycles, while waiting. For example, a compliant implementation4
may make waiting native threads yield the processor to other native threads or go to sleep. The5
details of the active and passive behaviors are implementation defined. The behavior of the6
program is implementation defined if the value of OMP_WAIT_POLICY is neither active nor7
passive.8

Examples:9

setenv OMP_WAIT_POLICY ACTIVE10
setenv OMP_WAIT_POLICY active11
setenv OMP_WAIT_POLICY PASSIVE12
setenv OMP_WAIT_POLICY passive13

Cross References14
• wait-policy-var ICV, see Table 2.115

3.2.4 OMP_DISPLAY_AFFINITY16

The OMP_DISPLAY_AFFINITY environment variable sets the display-affinity-var ICV so that17
the runtime displays formatted affinity information for the initial device. Affinity information is18
printed for all OpenMP threads in each parallel region upon first entering it. Also, if the information19
accessible by the format specifiers listed in Table 3.2 changes for any thread in the parallel region20
changes then thread affinity information for all threads in that region is again displayed. If the21
thread affinity for each respective parallel region at each nesting level has already been displayed22
and the thread affinity has not changed, then the information is not displayed again. Thread affinity23
information for threads in the same parallel region may be displayed in any order. The value of the24
OMP_DISPLAY_AFFINITY environment variable may be set to one of these values:25

true | false26

The true value instructs the runtime to display the OpenMP thread affinity information, and uses27
the format setting defined in the affinity-format-var ICV. The runtime does not display the OpenMP28
thread affinity information when the value of the OMP_DISPLAY_AFFINITY environment29
variable is false or undefined. For all values of the environment variable other than true or30
false, the display action is implementation defined.31

Example:32

setenv OMP_DISPLAY_AFFINITY TRUE33

For this example, an OpenMP implementation displays thread affinity information during program34
execution, in a format given by the affinity-format-var ICV. The following is a sample output:35

nesting_level= 1, thread_num= 0, thread_affinity= 0,136
nesting_level= 1, thread_num= 1, thread_affinity= 2,337

CHAPTER 3. ENVIRONMENT VARIABLES 77

Cross References1
• OMP_AFFINITY_FORMAT, see Section 3.2.52

• Controlling OpenMP Thread Affinity, see Section 11.2.33

• affinity-format-var ICV, see Table 2.14

• display-affinity-var ICV, see Table 2.15

3.2.5 OMP_AFFINITY_FORMAT6

The OMP_AFFINITY_FORMAT environment variable sets the initial value of the7
affinity-format-var ICV which defines the format when displaying thread affinity information. The8
value of this environment variable is case sensitive and leading and trailing white space is9
significant. Its value is a character string that may contain as substrings one or more field specifiers10
(as well as other characters). The format of each field specifier is11

%[[[0].] size] type12

where each specifier must contain the percent symbol (%) and a type, that must be either a single13
character short name or its corresponding long name delimited with curly braces, such as %n or14
%{thread_num}. A literal percent is specified as %%. Field specifiers can be provided in any15
order. The behavior is implementation defined for field specifiers that do not conform to this format.16

The 0 modifier indicates whether or not to add leading zeros to the output, following any indication17
of sign or base. The . modifier indicates the output should be right justified when size is specified.18
By default, output is left justified. The minimum field length is size, which is a decimal digit string19
with a non-zero first digit. If no size is specified, the actual length needed to print the field will be20
used. If the 0 modifier is used with type of A, {thread_affinity}, H, {host}, or a type that21
is not printed as a number, the result is unspecified. Any other characters in the format string that22
are not part of a field specifier will be included literally in the output.23

TABLE 3.2: Available Field Types for Formatting OpenMP Thread Affinity Information

Short
Name

Long Name Meaning

t team_num The value returned by omp_get_team_num().

T num_teams The value returned by omp_get_num_teams().

L nesting_level The value returned by omp_get_level().

n thread_num The value returned by omp_get_thread_num().

table continued on next page

78 OpenMP API – Version 6.0 Preview 2 November 2023

table continued from previous page

Short
Name

Long Name Meaning

N num_threads The value returned by omp_get_num_threads().

a ancestor_tnum The value returned by
omp_get_ancestor_thread_num(level),
where level is omp_get_level() minus 1.

H host The name for the host device on which the OpenMP pro-
gram is running.

P process_id The process identifier used by the implementation.

i native_thread_id The native thread identifier used by the implementation.

A thread_affinity The list of numerical identifiers, in the format of a comma-
separated list of integers or integer ranges, that represent
processors on which a thread may execute, subject to
OpenMP thread affinity control and/or other external affin-
ity mechanisms.

Implementations may define additional field types. If an implementation does not have information1
for a field type or an unknown field type is part of a field specifier, "undefined" is printed for this2
field when displaying the OpenMP thread affinity information.3

Example:4

setenv OMP_AFFINITY_FORMAT5
"Thread Affinity: %0.3L %.8n %.15{thread_affinity} %.12H"6

The above example causes an OpenMP implementation to display OpenMP thread affinity7
information in the following form:8

Thread Affinity: 001 0 0-1,16-17 nid0039
Thread Affinity: 001 1 2-3,18-19 nid00310

Cross References11
• Controlling OpenMP Thread Affinity, see Section 11.2.312

• affinity-format-var ICV, see Table 2.113

• omp_get_ancestor_thread_num, see Section 19.2.1614

• omp_get_level, see Section 19.2.1515

• omp_get_num_teams, see Section 19.4.116

• omp_get_num_threads, see Section 19.2.217

CHAPTER 3. ENVIRONMENT VARIABLES 79

• omp_get_thread_num, see Section 19.2.41

• omp_get_thread_num, see Section 19.2.42

3.2.6 OMP_CANCELLATION3

The OMP_CANCELLATION environment variable sets the initial value of the cancel-var ICV. The4
value of this environment variable must be one of the following:5

true|false6

If the environment variable is set to true, the effects of the cancel construct and of cancellation7
points are enabled (i.e., cancellation is enabled). If the environment variable is set to false,8
cancellation is disabled and the cancel construct and cancellation points are effectively ignored.9
The behavior of the program is implementation defined if OMP_CANCELLATION is set to neither10
true nor false.11

Cross References12
• cancel directive, see Section 17.213

• cancel-var ICV, see Table 2.114

3.2.7 OMP_AVAILABLE_DEVICES15

The OMP_AVAILABLE_DEVICES environment variable sets the available-devices-var ICV and16
determines the available non-host devices and their device numbers by permitting selection of17
devices from the set of supported accessible devices and by ordering them. This ICV is initialized18
before any other ICV that uses a device number, depends on the number of available devices, or19
permits device-specific environment variables. After the available-devices-var ICV is initialized,20
only those devices that the ICV identifies are available and the omp_get_num_devices routine21
returns the number of devices stored in the ICV.22

The value of this environment variable must be a comma-separated list. Each item is either a trait23
specification as specified in the following or *. A * expands to all accessible and supported devices24
while a trait specification expands to a possibly empty set of accessible and supported devices for25
which the specification is fulfilled. After expansion, further selection via an optional array26
subscript syntax and removal of devices that appear in previous items, each item contains an27
unordered set of devices. A consecutive unique device number is then assigned to each device in28
the sets, starting with device number zero, where the device number of the first device in an item is29
the total number of devices in all previous items.30

Traits are specified by the case-insensitive trait name followed by the argument in parentheses. The31
permitted traits are kind(kind-name), isa(isa-name), arch(arch-name), and32
vendor(vendor-name), where the names are as specified in Section 8.1 and the OpenMP33
Additional Definitions document; the kind-name host is not permitted. Multiple traits can be34
combined using the binary operators && and || to require both or either trait, respectively.35

80 OpenMP API – Version 6.0 Preview 2 November 2023

Parentheses can be used for grouping, but are optional except that && and || may not appear in the1
same grouping level. The unary ! operator inverts the meaning of the immediately following trait2
or parenthesized group.3

Each trait specification or * yields a (possibly zero-sized) array of non-host devices with the lowest4
array element, if it exists, having index zero. The C/C++ syntax [index] can be used to select an5
element and the array section syntax for C/C++ as specified in Section 4.2.5 can be used to specify6
a subset of elements. Any array element specified by the subscript that is outside the bounds of the7
array resulting from the trait specification or * is silently excluded.8

Cross References9
• Device Directives and Clauses, see Chapter 1410

• available-devices-var ICV, see Table 2.111

3.2.8 OMP_DEFAULT_DEVICE12

The OMP_DEFAULT_DEVICE environment variable sets the initial value of the default-device-var13
ICV. The value of this environment variable must be a comma-separated list, each item being either14
a non-negative integer value that denotes the device number, a trait specification with an optional15
subscript selector, or one of the following case-insensitive string literals: initial to specify the16
host device, invalid to specify the device number omp_invalid_device, or default to17
set the ICV as if this environment variable was not specified (see Section 1.3).18

The trait specification is as described for OMP_AVAILABLE_DEVICES (see Section 3.2.7), except19
that in addition the trait device_num(device number) may be specified, host is permitted as20
kind-name. The device numbers yielded by the trait specification are sorted in ascending order by21
device number; the array-element syntax as described in OMP_AVAILABLE_DEVICES can be22
used to select an element from the set. If an item is an empty set, non-existing element, or does not23
evaluate to an available device, the next item is evaluated; otherwise, the default-device-var ICV is24
set to the first value of the set. However, initial, invalid, and default always match. If25
none of the list items match, the default-device-var ICV is set to omp_invalid_device.26

Cross References27
• Device Directives and Clauses, see Chapter 1428

• default-device-var ICV, see Table 2.129

3.2.9 OMP_TARGET_OFFLOAD30

The OMP_TARGET_OFFLOAD environment variable sets the initial value of the target-offload-var31
ICV. Its value must be one of the following:32

mandatory | disabled | default33

CHAPTER 3. ENVIRONMENT VARIABLES 81

The mandatory value specifies that the effect of any device construct or device memory routine1
that uses a device that is unavailable or not supported by the implementation, or uses a2
non-conforming device number, is as if the omp_invalid_device device number was used.3
Support for the disabled value is implementation defined. If an implementation supports it, the4
behavior is as if the only device is the host device. The default value specifies the default5
behavior as described in Section 1.3.6

Example:7

% setenv OMP_TARGET_OFFLOAD mandatory8

Cross References9
• Device Directives and Clauses, see Chapter 1410

• Device Memory Routines, see Section 19.811

• target-offload-var ICV, see Table 2.112

3.2.10 OMP_THREADS_RESERVE13

The OMP_THREADS_RESERVE environment variable controls the number of reserved threads in14
each contention group by setting the initial value of the structured-thread-limit-var and the15
free-agent-thread-limit-var ICVs structured parallelism,16

The OMP_THREADS_RESERVE environment variable can be defined using a non-negative integer17
or an unordered list of reservations. Each reservation specifies a thread-reservation type, for which18
the possible values are listed in Table 3.3. The reservation type may be appended with one19
non-negative number in parentheses, that is, reservation_type(<num-threads>), where20
<num-threads> denotes the number of threads to reserve for that reservation type. If only a21
non-negative integer is provided, this number denotes the number of threads to reserve for22
structured parallelism . If only one reservation type is provided, and its <num-threads> is not23
specified, the number of threads to reserve is thread-limit-var if the reservation type is24
structured, or thread-limit-var minus 1 if the reservation type is free_agent.25

TABLE 3.3: Reservation Types for OMP_THREADS_RESERVE

Reservation Type Meaning Default Value

Number of structured Threads reserved for structured threads. 1

Number of free_agent Threads reserved for free-agent threads. 0

The OMP_THREADS_RESERVE environment variable sets the initial value of the26
structured-thread-limit-var and the free-agent-thread-limit-var ICVs according to Algorithm 3.1.27

The following grammar describes the values accepted for the OMP_THREADS_RESERVE28
environment variable.29

82 OpenMP API – Version 6.0 Preview 2 November 2023

Algorithm 3.1 Initial Values of the structured-thread-limit-var and free-agent-thread-limit-var
ICVs
let structured-reserve be the number of threads to reserve for structured threads;
let free-agent-reserve be the number of threads to reserve for free-agent threads;
let threads-reserve be the sum of structured-reserve and free-agent-reserve;
if (structured-reserve < 1) then structured-reserve = 1;
if (free-agent-reserve = thread-limit-var) then free-agent-reserve = free-agent-reserve - 1;
if (threads-reserve ≤ thread-limit-var) then

structured-thread-limit-var = thread-limit-var - free-agent-reserve;
free-agent-thread-limit-var = thread-limit-var - structured-reserve;

else behavior is implementation defined

⟨reserve⟩ |= ⟨res-list⟩ | ⟨res-type⟩ | ⟨res-num⟩
⟨res-list⟩ |= ⟨res⟩ | ⟨res-list⟩,⟨res⟩

⟨res⟩ |= ⟨res-type⟩(⟨res-num⟩)
⟨res-type⟩ |= structured | free_agent
⟨res-num⟩ |= non-negative integer

Examples:1

setenv OMP_THREADS_RESERVE 42
setenv OMP_THREADS_RESERVE "structured(4)"3
setenv OMP_THREADS_RESERVE "structured"4
setenv OMP_THREADS_RESERVE "structured(2),free_agent(2)"5

where the first two definitions correspond to the same reservation for structured parallelism, the6
third definition reserves all available threads for structured parallelism, and the last one reserves7
threads for both structured parallelism and free-agent threads.8

Cross References9
• threadset clause, see Section 13.410

• parallel directive, see Section 11.211

• free-agent-thread-limit-var ICV, see Table 2.112

• structured-thread-limit-var ICV, see Table 2.113

CHAPTER 3. ENVIRONMENT VARIABLES 83

3.2.11 OMP_MAX_TASK_PRIORITY1

The OMP_MAX_TASK_PRIORITY environment variable controls the use of task priorities by2
setting the initial value of the max-task-priority-var ICV. The value of this environment variable3
must be a non-negative integer.4

Example:5

% setenv OMP_MAX_TASK_PRIORITY 206

Cross References7
• max-task-priority-var ICV, see Table 2.18

3.3 OMPT Environment Variables9

This section defines environment variables that affect operation of the OMPT tool interface.10

3.3.1 OMP_TOOL11

The OMP_TOOL environment variable sets the tool-var ICV, which controls whether an OpenMP12
runtime will try to register a first party tool. The value of this environment variable must be one of13
the following:14

enabled | disabled15

If OMP_TOOL is set to any value other than enabled or disabled, the behavior is unspecified.16
If OMP_TOOL is not defined, the default value for tool-var is enabled.17

Example:18

% setenv OMP_TOOL enabled19

Cross References20
• OMPT Interface, see Chapter 2021

• tool-var ICV, see Table 2.122

3.3.2 OMP_TOOL_LIBRARIES23

The OMP_TOOL_LIBRARIES environment variable sets the tool-libraries-var ICV to a list of tool24
libraries that are considered for use on a device on which an OpenMP implementation is being25
initialized. The value of this environment variable must be a list of names of dynamically-loadable26
libraries, separated by an implementation specific, platform typical separator. Whether the value of27
this environment variable is case sensitive is implementation defined.28

If the tool-var ICV is not enabled, the value of tool-libraries-var is ignored. Otherwise, if29
ompt_start_tool is not visible in the address space on a device where OpenMP is being30

84 OpenMP API – Version 6.0 Preview 2 November 2023

initialized or if ompt_start_tool returns NULL, an OpenMP implementation will consider1
libraries in the tool-libraries-var list in a left-to-right order. The OpenMP implementation will2
search the list for a library that meets two criteria: it can be dynamically loaded on the current3
device and it defines the symbol ompt_start_tool. If an OpenMP implementation finds a4
suitable library, no further libraries in the list will be considered.5

Example:6

% setenv OMP_TOOL_LIBRARIES libtoolXY64.so:/usr/local/lib/7
libtoolXY32.so8

Cross References9
• OMPT Interface, see Chapter 2010

• tool-libraries-var ICV, see Table 2.111

• ompt_start_tool, see Section 20.2.112

3.3.3 OMP_TOOL_VERBOSE_INIT13

The OMP_TOOL_VERBOSE_INIT environment variable sets the tool-verbose-init-var ICV, which14
controls whether an OpenMP implementation will verbosely log the registration of a tool. The15
value of this environment variable must be one of the following:16

disabled | stdout | stderr | <filename>17

If OMP_TOOL_VERBOSE_INIT is set to any value other than case insensitive disabled,18
stdout, or stderr, the value is interpreted as a filename and the OpenMP runtime will try to19
log to a file with prefix filename. If the value is interpreted as a filename, whether it is case20
sensitive is implementation defined. If opening the logfile fails, the output will be redirected to21
stderr. If OMP_TOOL_VERBOSE_INIT is not defined, the default value for tool-verbose-init-var22
is disabled. Support for logging to stdout or stderr is implementation defined. Unless23
tool-verbose-init-var is disabled, the OpenMP runtime will log the steps of the tool activation24
process defined in Section 20.2.2 to a file with a name that is constructed using the provided25
filename prefix. The format and detail of the log is implementation defined. At a minimum, the log26
will contain one of the following:27

• That the tool-var ICV is disabled;28

• An indication that a tool was available in the address space at program launch; or29

• The path name of each tool in OMP_TOOL_LIBRARIES that is considered for dynamic30
loading, whether dynamic loading was successful, and whether the ompt_start_tool31
function is found in the loaded library.32

In addition, if an ompt_start_tool function is called the log will indicate whether or not the33
tool will use the OMPT interface.34

CHAPTER 3. ENVIRONMENT VARIABLES 85

Example:1

% setenv OMP_TOOL_VERBOSE_INIT disabled2
% setenv OMP_TOOL_VERBOSE_INIT STDERR3
% setenv OMP_TOOL_VERBOSE_INIT ompt_load.log4

Cross References5
• OMPT Interface, see Chapter 206

• tool-verbose-init-var ICV, see Table 2.17

3.4 OMPD Environment Variables8

This section defines environment variables that affect operation of the OMPD tool interface.9

3.4.1 OMP_DEBUG10

The OMP_DEBUG environment variable sets the debug-var ICV, which controls whether an11
OpenMP runtime collects information that an OMPD library may need to support a tool. The value12
of this environment variable must be one of the following:13

enabled | disabled14

If OMP_DEBUG is set to any value other than enabled or disabled then the behavior is15
implementation defined.16

Example:17

% setenv OMP_DEBUG enabled18

Cross References19
• Enabling Runtime Support for OMPD, see Section 21.2.120

• OMPD Interface, see Chapter 2121

• debug-var ICV, see Table 2.122

86 OpenMP API – Version 6.0 Preview 2 November 2023

3.5 Memory Allocation Environment Variables1

This section defines environment variables that affect memory allocations.2

3.5.1 OMP_ALLOCATOR3

The OMP_ALLOCATOR environment variable sets the initial value of the def-allocator-var ICV4
that specifies the default allocator for allocation calls, directives and clauses that do not specify an5
allocator. The following grammar describes the values accepted for the OMP_ALLOCATOR6
environment variable.7

⟨allocator⟩ |= ⟨predef-allocator⟩ | ⟨predef-mem-space⟩ | ⟨predef-mem-space⟩:⟨traits⟩
⟨traits⟩ |= ⟨trait⟩=⟨value⟩ | ⟨trait⟩=⟨value⟩,⟨traits⟩

⟨predef-allocator⟩ |= one of the predefined allocators from Table 7.3
⟨predef-mem-space⟩ |= one of the predefined memory spaces from Table 7.1

⟨trait⟩ |= one of the allocator trait names from Table 7.2
⟨value⟩ |= one of the allowed values from Table 7.2 | non-negative integer

| ⟨predef-allocator⟩

The value can be an integer only if the trait accepts a numerical value, for the fb_data trait the8
value can only be predef-allocator. If the value of this environment variable is not a predefined9
allocator, then a new allocator with the given predefined memory space and optional traits is10
created and set as the def-allocator-var ICV. If the new allocator cannot be created, the11
def-allocator-var ICV will be set to omp_default_mem_alloc.12

Example:13

setenv OMP_ALLOCATOR omp_high_bw_mem_alloc14
setenv OMP_ALLOCATOR omp_large_cap_mem_space:alignment=16,\15
pinned=true16
setenv OMP_ALLOCATOR omp_high_bw_mem_space:pool_size=1048576,\17
fallback=allocator_fb,fb_data=omp_low_lat_mem_alloc18

Cross References19
• Memory Allocators, see Section 7.220

• def-allocator-var ICV, see Table 2.121

CHAPTER 3. ENVIRONMENT VARIABLES 87

3.6 Teams Environment Variables1

This section defines environment variables that affect the operation of teams regions.2

3.6.1 OMP_NUM_TEAMS3

The OMP_NUM_TEAMS environment variable sets the maximum number of teams created by a4
teams construct by setting the nteams-var ICV. The value of this environment variable must be a5
positive integer. The behavior of the program is implementation defined if the requested value of6
OMP_NUM_TEAMS is greater than the number of teams that an implementation can support, or if7
the value is not a positive integer.8

Cross References9
• teams directive, see Section 11.310

• nteams-var ICV, see Table 2.111

3.6.2 OMP_TEAMS_THREAD_LIMIT12

The OMP_TEAMS_THREAD_LIMIT environment variable sets the maximum number of OpenMP13
threads that can execute tasks in each contention group created by a teams construct by setting the14
teams-thread-limit-var ICV. The value of this environment variable must be a positive integer. The15
behavior of the program is implementation defined if the requested value of16
OMP_TEAMS_THREAD_LIMIT is greater than the number of threads that an implementation can17
support, or if the value is not a positive integer.18

Cross References19
• teams directive, see Section 11.320

• teams-thread-limit-var ICV, see Table 2.121

3.7 OMP_DISPLAY_ENV22

The OMP_DISPLAY_ENV environment variable instructs the runtime to display the information as23
described in the omp_display_env routine section (Section 19.15). The value of the24
OMP_DISPLAY_ENV environment variable may be set to one of these values:25

true | false | verbose26

If the environment variable is set to true, the effect is as if the omp_display_env routine is27
called with the verbose argument set to false at the beginning of the program. If the environment28
variable is set to verbose, the effect is as if the omp_display_env routine is called with the29
verbose argument set to true at the beginning of the program. If the environment variable is30
undefined or set to false, the runtime does not display any information. For all values of the31

88 OpenMP API – Version 6.0 Preview 2 November 2023

environment variable other than true, false, and verbose, the displayed information is1
unspecified.2

Example:3

% setenv OMP_DISPLAY_ENV true4

For the output of the above example, see Section 19.15.5

Cross References6
• Environment Display Routine, see Section 19.157

CHAPTER 3. ENVIRONMENT VARIABLES 89

4 Directive and Construct Syntax1

This chapter describes the syntax of directives and clauses and their association with base language2
code. Directives are specified with various base language mechanisms that allow compilers to3
ignore the directives and conditionally compiled code if support of the OpenMP API is not4
provided or enabled. A compliant implementation must provide an option or interface that ensures5
that underlying support of all directives and conditional compilation mechanisms is enabled. In the6
remainder of this document, the phrase OpenMP compilation is used to mean a compilation with7
these OpenMP features enabled.8

Restrictions9
The following restrictions apply to OpenMP directives:10

• Unless otherwise specified, a program must not depend on any ordering of the evaluations of11
the expressions that appear in the clauses specified on a directive.12

• Unless otherwise specified, a program must not depend on any side effects of the evaluations13
of the expressions that appear in the clauses specified on a directive.14

Restrictions on explicit regions (that arise from executable directives) are as follows:15

C++
• A throw executed inside a region that arises from a thread-limiting construct must cause16

execution to resume within the same region, and the same thread that threw the exception17
must catch it. If the directive also has the exception-aborting property then whether the18
exception is caught or the throw results in runtime error termination is implementation19
defined.20

C++
Fortran

• A directive may not appear in a pure procedure unless it has the pure property.21

• A directive may not appear in a WHERE, FORALL or DO CONCURRENT construct.22

• If more than one image is executing the program, any image control statement, ERROR STOP23
statement, FAIL IMAGE statement, collective subroutine call or access to a coindexed object24
that appears in an explicit region will result in unspecified behavior.25

Fortran

90 OpenMP API – Version 6.0 Preview 2 November 2023

4.1 Directive Format1

This section defines several categories of directives and constructs. Directives are specified with a2
directive-specification. A directive-specification consists of the directive-specifier and any clauses3
that may optionally be associated with the directive:4

directive-specifier [[,] clause[[,] clause] ...]5

The directive-specifier is:6

directive-name7

or for argument-modified directives:8

directive-name[(directive-arguments)]9

C / C++
White space in a directive-name is not optional.10

C / C++
Some directives specify a paired end directive, where the directive-name of the paired end11
directive is:12

• If directive-name starts with begin, the end-directive-name replaces begin with end;13

• otherwise it is end directive-name unless otherwise specified.14

The directive-specification of a paired end directive may include one or more optional end-clause:15

directive-specifier [[,] end-clause[[,] end-clause]...]16

where end-clause has the end-clause property, which explicitly allows it on a paired end directive.17

C / C++
A directive may be specified as a pragma directive:18

#pragma omp directive-specification new-line19

or a pragma operator:20

_Pragma("omp directive-specification")21

The use of omp as the first preprocessing token of a pragma directive is reserved for OpenMP22
directives that are defined in this specification. The use of ompx as the first preprocessing token of23
a pragma directive is reserved for implementation defined extensions to the OpenMP directives.24

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 91

1

Note – In this directive, directive-name is depobj, directive-arguments is o. directive-specifier is2
depobj(o) and directive-specification is depobj(o) depend(inout: d).3

#pragma omp depobj(o) depend(inout: d)4

5

White space can be used before and after the #. Preprocessing tokens in a directive-specification of6
#pragma and _Pragma pragmas are subject to macro expansion.7

C / C++
C / C++

In C23 and later versions or C++11 and later versions, a directive may be specified as a C/C++8
attribute specifier:9

[[omp :: directive-attr]]10

C++
or11

[[using omp : directive-attr]]12

C++
where directive-attr is13

directive(directive-specification)14

or15

sequence([omp::]directive-attr [[, [omp::]directive-attr] ...])16

Multiple attributes on the same statement are allowed. Attribute directives that apply to the same17
statement are unordered unless the sequence attribute is specified, in which case the right-to-left18
ordering applies. The omp:: namespace qualifier within a sequence attribute is optional. The19
application of multiple attributes in a sequence attribute is ordered as if each directive had been20
specified as a pragma directive on subsequent lines.21

22

Note – This example shows the expected transformation:23

[[omp::sequence(directive(parallel), directive(for))]]24
for(...) {}25
// becomes26
#pragma omp parallel27
#pragma omp for28
for(...) {}29

30

92 OpenMP API – Version 6.0 Preview 2 November 2023

The use of omp as the attribute namespace of an attribute specifier, or as the optional namespace1
qualifier within a sequence attribute, is reserved for OpenMP directives that are defined in this2
specification. The use of ompx as the attribute namespace of an attribute specifier, or as the3
optional namespace qualifier within a sequence attribute, is reserved for implementation-defined4
extensions to the OpenMP directives.5

The pragma and attribute forms are interchangeable for any directive. Some directives may be6
composed of consecutive attribute specifiers if specified in their syntax. Any two consecutive7
attribute specifiers may be reordered or expressed as a single attribute specifier, as permitted by the8
base language, without changing the behavior of the directive.9

C / C++
C / C++

Directives are case-sensitive. Each expression used in the OpenMP syntax inside of a clause must10
be a valid assignment-expression of the base language unless otherwise specified.11

C / C++
C++

Directives may not appear in constexpr functions or in constant expressions.12

C++
Fortran

A directive for Fortran is specified with a stylized comment as follows:13

sentinel directive-specification14

All directives must begin with a directive sentinel. The format of a sentinel differs between fixed15
form and free form source files, as described in Section 4.1.1 and Section 4.1.2. In order to simplify16
the presentation, free form is used for the syntax of directives for Fortran throughout this document,17
except as noted.18

Directives are case insensitive. Directives cannot be embedded within continued statements, and19
statements cannot be embedded within directives. Each expression used in the OpenMP syntax20
inside of a clause must be a valid expression of the base language unless otherwise specified.21

Fortran
A directive may be categorized as one of the following:22

• metadirective23

• declarative directive24

• executable directive25

• informational directive26

• utility directive27

• subsidiary directive28

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 93

Base language code can be associated with directives. The association of a directive can be1
categorized as:2

• none3

• block-associated directive4

• loop-nest-associated directive5

• loop-sequence-associated directive6

• declaration-associated directive7

• delimited directive8

• separating directive9

C / C++
A declarative directive that is declaration-associated may alternatively be expressed as an attribute10
specifier:11

[[omp :: decl(directive-specification)]]12

C++
or13

[[using omp : decl(directive-specification)]]14

C++
A declarative directive with an association of none that accepts a variable list or extended list as a15
directive argument or clause argument may alternatively be expressed with an attribute specifier16
that also uses the decl attribute, applies to variable and/or function declarations, and omits the17
variable list or extended list argument. The effect is as if the omitted list argument is the list of18
declared variables and/or functions to which the attribute specifier applies.19

C / C++
A directive and its associated base language code constitute a syntactic formation that follows the20
syntax given below unless otherwise specified. The end-directive in a specified formation refers to21
the paired end directive for the directive. A construct is a formation for an executable directive.22

Directives with an association of none are not associated with any base language code. The23
resulting formation therefore has the following syntax:24

directive25

Formations that result from a block-associated directive have the following syntax:26

C / C++
directive27

structured-block28

C / C++

94 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
directive1

structured-block2
[end-directive]3

If structured-block is a loosely structured block, end-directive is required, unless otherwise4
specified. If structured-block is a strictly structured block, end-directive is optional. An5
end-directive that immediately follows a directive and its associated strictly structured block is6
always paired with that directive.7

Fortran
Loop-nest-associated directives are block-associated directives for which the associated8
structured-block is loop-nest, a canonical loop nest. Loop-sequence-associated directives are9
block-associated directives for which the associated structured-block is canonical-loop-sequence, a10
canonical loop sequence.11

Fortran
The associated structured-block of a block-associated directives can be a DO CONCURRENT loop12
where it is explicitly allowed.13

For a loop-nest-associated directive, the paired end directive is optional.14

Fortran
C / C++

Formations that result from a declaration-associated directive have the following syntax:15

declaration-associated-specification16

where declaration-associated-specification is either:17

directive18
function-definition-or-declaration19

or:20

directive21
declaration-associated-specification22

In all cases the directive is associated with the function-definition-or-declaration.23

C / C++
Fortran

The formation that results from a declaration-associated directive in Fortran has the same syntax as24
the formation for a directive with an association of none.25

If a directive appears in the specification part of a module then the behavior is as if that directive26
appears in the specification part of any compilation unit that references the module with a USE27
statement unless otherwise specified.28

Fortran

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 95

The formation that results from a delimited directive has the following syntax:1

directive2
base-language-code3

end-directive4

Separating directives are used to split statements contained in a structured block that is associated5
with a construct (the separated construct) into multiple structured block sequences. If the separated6
construct is a loop-nest-associated construct then any separating directives divide the loop body of7
the innermost associated loop into structured block sequences. Otherwise, the separating directives8
divide the associated structured block into structured block sequences.9

Separating directives and the containing structured block have the following syntax:10

structured-block-sequence11
directive12
structured-block-sequence13
[directive14
structured-block-sequence ...]15

wrapped in a single compound statement for C/C++ or optionally wrapped in a single BLOCK16
construct for Fortran.17

C / C++
Formations that result from directives that are specified as attribute specifiers that use the18
directive attribute are specified as follows. If the directive has an association of none, the19
resulting formation is an attribute-declaration if the directive is not executable and it consists of the20
attribute specifier and a null statement (i.e., “;”) if the directive is executable. For a21
block-associated directive or loop-nest-associated directive, the resulting formation consists of the22
attribute specifier and a structured block to which the specifier applies. If the directives are23
separating or delimited then the resulting formation is as previously specified except the attribute24
specifier for each directive, including the end directive, applies to a null statement.25

Formations that result from directives that are specified as attribute specifiers and are26
declaration-associated or use the decl attribute are specified as follows. If the directives are27
declaration-associated then the resulting formation consists of the attribute specifiers and the28
function-definition-or-declaration to which the specifiers apply. If the directive uses the decl29
attribute then the resulting formation consists of the attribute specifier and the variable and/or30
function declarations to which the specifier applies.31

C / C++

Restrictions32
Restrictions to directive format are as follows:33

• Orphaned separating directives are prohibited. That is, the separating directives must appear34
within the structured block associated with the same construct with which it is associated and35
must not be encountered elsewhere in the region of that associated construct.36

96 OpenMP API – Version 6.0 Preview 2 November 2023

• A stand-alone directive may be placed only at a point where a base language executable1
statement is allowed.2

Fortran
• Directives may not appear in the WHERE, FORALL, or DO CONCURRENT constructs.3

• A declarative directive must be specified in the specification part after all USE, IMPORT and4
IMPLICIT statements.5

Fortran
C / C++

• A directive that uses the attribute syntax cannot be applied to the same statement or6
associated declaration as a directive that uses the pragma syntax.7

• For any directive that has a paired end directive, both directives must use either the attribute8
syntax or the pragma syntax.9

• Neither a stand-alone directive nor a declarative directive may be used in place of a10
substatement in a selection statement or iteration statement, or in place of the statement that11
follows a label.12

• If a declarative directive applies to a function declaration or definition and it is specified with13
one or more C or C++ attribute specifiers, the specified attributes must be applied to the14
function as permitted by the base language.15

C / C++
C

• Neither a stand-alone directive nor a declarative directive may be used in place of a16
substatement in a selection statement, in place of the loop body in an iteration statement, or17
in place of the statement that follows a label.18

C
Fortran

4.1.1 Fixed Source Form Directives19

The following sentinels are recognized in fixed form source files:20

!$omp | c$omp | *$omp | !$omx | c$omx | *$omx21

The sentinels that end with omp are reserved for OpenMP directives that are defined in this22
specification. The sentinels that end with omx are reserved for implementation defined extensions23
to the OpenMP directives.24

Sentinels must start in column 1 and appear as a single word with no intervening characters.25
Fortran fixed form line length, white space, continuation, and column rules apply to the directive26
line. Initial directive lines must have a space or a zero in column 6, and continuation directive lines27
must have a character other than a space or a zero in column 6.28

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 97

Comments may appear on the same line as a directive. The exclamation point initiates a comment1
when it appears after column 6. The comment extends to the end of the source line and is ignored.2
If the first non-blank character after the directive sentinel of an initial or continuation directive line3
is an exclamation point, the line is ignored.4

5

Note – In the following example, the three formats for specifying the directive are equivalent (the6
first line represents the position of the first 9 columns):7

c234567898
!$omp parallel do shared(a,b,c)9

10
c$omp parallel do11
c$omp+shared(a,b,c)12

13
c$omp paralleldoshared(a,b,c)14

15

Fortran
Fortran

4.1.2 Free Source Form Directives16

The following sentinels are recognized in free form source files:17

!$omp | !$ompx18

The !$omp sentinel is reserved for OpenMP directives that are defined in this specification. The19
!$ompx sentinel is reserved for implementation defined extensions to the OpenMP directives.20

The sentinel can appear in any column as long as it is preceded only by white space. It must appear21
as a single word with no intervening white space. Fortran free form line length and white space22
rules apply to the directive line. Initial directive lines must have a space after the sentinel. The23
initial line of a directive must not be a continuation line for a base language statement. Fortran free24
form continuation rules apply. Thus, continued directive lines must have an ampersand (&) as the25
last non-blank character on the line, prior to any comment placed inside the directive; continuation26
directive lines can have an ampersand after the directive sentinel with optional white space before27
and after the ampersand.28

Comments may appear on the same line as a directive. The exclamation point (!) initiates a29
comment. The comment extends to the end of the source line and is ignored. If the first non-blank30
character after the directive sentinel is an exclamation point, the line is ignored.31

One or more blanks or horizontal tabs are optional to separate adjacent keywords in32
directive-names unless otherwise specified.33

98 OpenMP API – Version 6.0 Preview 2 November 2023

1

Note – In the following example the three formats for specifying the directive are equivalent (the2
first line represents the position of the first 9 columns):3

!234567894
!$omp parallel do &5

!$omp shared(a,b,c)6
7

!$omp parallel &8
!$omp&do shared(a,b,c)9

10
!$omp paralleldo shared(a,b,c)11

12

Fortran

4.2 Clause Format13

This section defines the format and categories of OpenMP clauses. Clauses are specified as part of14
a directive-specification. Clauses are optional and, thus, may be omitted from a15
directive-specification unless otherwise specified. The order in which clauses appear on directives16
is not significant unless otherwise specified. Some clauses form natural groupings that have similar17
semantic effect and so are frequently specified as a clause grouping. A clause-specification18
specifies each clause in a directive-specification where clause-specification is:19

clause-name[(clause-argument-specification [; clause-argument-specification [;...]])]20

C / C++
White space in a clause-name is prohibited. White space within a clause-argument-specification21
and between another clause-argument-specification is optional.22

C / C++
An implementation may allow clauses with clause names that start with the ompx_ prefix for use23
on any OpenMP directive, and the format and semantics of any such clause is implementation24
defined. All other clause names are reserved.25

The first clause-argument-specification is required unless otherwise explicitly specified while26
additional ones are only permitted on clauses that explicitly allow them. When the first one is27
omitted, the syntax is simply:28

clause-name29

Clause arguments may be unmodified or modified. For an unmodified argument,30
clause-argument-specification is:31

clause-argument-list32

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 99

Unless otherwise specified, modified arguments are pre-modified, for which the format is:1

[modifier-specification-list :]clause-argument-list2

A few modified arguments are explicitly specified as post-modified, for which the format is:3

clause-argument-list[: modifier-specification-list]4

For many clauses, clause-argument-list is an OpenMP argument list, which is a comma-separated5
list of a specific kind of list items (see Section 4.2.1), in which case the format of6
clause-argument-list is:7

argument-name8

For all other OpenMP clauses, clause-argument-list is a comma-separated list of arguments so the9
format is:10

argument-name [, argument-name [,...]]11

In most of these cases, the list only has a single item so the format of clause-argument-list is again:12

argument-name13

In all cases, white space in clause-argument-list is optional.14

A modifier-specification-list is a comma-separated list of clause argument modifiers for which the15
format is:16

modifier-specification [, modifier-specification [,...]]17

Clause argument modifiers may be simple or complex. Almost all clause argument modifiers are18
simple, for which the format of modifier-specification is:19

modifier-name20

The format of a complex modifier is:21

modifier-name(modifier-parameter-specification)22

where modifier-parameter-specification is a comma-separated list of arguments as defined above for23
clause-argument-list. The position of each modifier-argument-name in the list is significant.24

Each argument-name and modifier-name is an OpenMP term that may be used in the definitions of25
the clause and any directives on which the clause may appear. Syntactically, each of these terms is26
one of the following:27

• keyword: An OpenMP keyword28

• OpenMP identifier: An OpenMP identifier29

• OpenMP argument list: An OpenMP argument list30

• expression: An expression of some OpenMP type31

• OpenMP stylized expression: An OpenMP stylized expression32

100 OpenMP API – Version 6.0 Preview 2 November 2023

A particular lexical instantiation of an argument specifies a parameter of the clause, while a lexical1
instantiation of a modifier and its parameters affects how or when the argument is applied.2

The order of arguments must match the order in the clause-specification. The order of modifiers in3
a clause-argument-specification is not significant unless otherwise specified.4

General syntactic properties govern the use of clauses, clause and directive arguments, and5
modifiers in a directive. These properties are summarized in Table 4.1, along with the respective6
default properties for clauses, arguments and modifiers.7

TABLE 4.1: Syntactic Properties for Clauses, Arguments and Modifiers

Property Property Description Inverse
Property

Clause
defaults

Argument
defaults

Modifier
defaults

required must be present optional optional required optional

unique may appear at most once repeatable repeatable unique unique

exclusive must appear alone compatible compatible compatible compatible

ultimate must lexically appear last
(or first for a modifier in
a post-modified clause)

free free free free

A clause, argument or modifier with a given property implies that it does not have the8
corresponding inverse property, and vice versa. The ultimate property implies the unique property.9
If all arguments and modifiers of an argument-modified clause or directive are optional and omitted10
then the parentheses of the syntax for the clause or directive is also omitted.11

Some clause properties determine the constituent directives to which they apply when specified on12
combined directives and composite directives. A clause with the all-constituents property applies to13
all constituent directives of any combined directive or composite directive on which it is specified.14
Unless otherwise specified, a clause has the all-constituents property. That is, the all-constituents15
property is a default clause property. A clause with the once-for-all-constituents property applies to16
the directive once, before any of the constituent directives are applied. A clause with the17
innermost-leaf property applies to the innermost constituent directive to which it may be applied. A18
clause with the outermost-leaf property applies to the outermost constituent directive to which it19
may be applied. A clause with the all-privatizing property applies to all constituent directives that20
permit the clause and to which a data-sharing attribute clause that may create a private copy of the21
same list item is applied.22

Arguments and modifiers that are expressions may additionally have any of the following value23
properties: constant, positive, non-negative, and region-invariant.24

25

Note – In this example, clause-specification is depend(inout: d), clause-name is depend26
and clause-argument-specification is inout: d. The depend clause has an argument for which27

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 101

argument-name is locator-list, which syntactically is the OpenMP locator list d in the example.1
Similarly, the depend clause accepts a simple modifier with the name task-dependence-type.2
Syntactically, task-dependence-type is the keyword inout in the example.3

#pragma omp depobj(o) depend(inout: d)4

5

The clauses that a directive accepts may form sets. These sets may imply restrictions on their use6
on that directive or may otherwise capture properties for the clauses on the directive. While specific7
properties may be defined for a clause set on a particular directive, the following clause-set8
properties have general meanings and implications as indicated by the restrictions below: required,9
unique, and exclusive.10

All clauses that are specified as a clause grouping form a clause set for which properties are11
specified with the specification of the grouping. Some directives accept a clause grouping for which12
each member is a directive-name of a directive that has a specific property. These groupings are13
required, unique and exclusive unless otherwise specified.14

The restrictions for a directive apply to the union of the clauses on the directive and its paired end15
directive.16

Restrictions17
Restrictions to clauses and clause sets are as follows:18

• A required clause for a directive must appear on the directive.19

• A unique clause for a directive may appear at most once on the directive.20

• An exclusive clause for a directive must not appear if a clause with a different clause-name21
also appears on the directive.22

• An ultimate clause for a directive must be the lexically last clause to appear on the directive.23

• If a clause set has the required property, at least one clause in the set must be present on the24
directive for which the clause set is specified.25

• If a clause is a member of a set that has the unique property for a directive then the clause has26
the unique property for that directive regardless of whether it has the unique property when it27
is not part of such a set.28

• If one clause of a clause set with the exclusive property appears on a directive, no other29
clauses with a different clause-name in that set may appear on the directive.30

• A required argument must appear in the clause-specification, unless otherwise specified.31

• A unique argument may appear at most once in a clause-argument-specification.32

• An exclusive argument must not appear if an argument with a different argument-name33
appears in the clause-argument-specification.34

• A required modifier must appear in the clause-argument-specification.35

102 OpenMP API – Version 6.0 Preview 2 November 2023

• A unique modifier may appear at most once in a clause-argument-specification.1

• An exclusive modifier must not appear if a modifier with a different modifier-name also2
appears in the clause-argument-specification.3

• If a clause is pre-modified, an ultimate modifier must be the last modifier in a4
clause-argument-specification in which any modifier appears.5

• If a clause is post-modified, an ultimate modifier must be the first modifier in a6
clause-argument-specification in which any modifier appears.7

• A modifier that is an expression must neither lexically match the name of a simple modifier8
defined for the clause that is an OpenMP keyword nor modifier-name parenthesized-tokens,9
where modifier-name is the modifier-name of a complex modifier defined for the clause and10
parenthesized-tokens is a token sequence that starts with (and ends with).11

• A constant argument or parameter must be a compile-time constant.12

• A positive argument or parameter must be greater than zero; a non-negative argument or13
parameter must be greater than or equal to zero.14

• A region-invariant argument or parameter must have the same value throughout any given15
execution of the construct or, for declarative directives, execution of the function or16
subroutine with which the declaration is associated.17

Cross References18
• Directive Format, see Section 4.119

• OpenMP Argument Lists, see Section 4.2.120

• OpenMP Stylized Expressions, see Section 5.221

• OpenMP Types and Identifiers, see Section 5.122

4.2.1 OpenMP Argument Lists23

The OpenMP API defines several kinds of lists, each of which can be used as syntactic instances of24
clause arguments. A list of any OpenMP type consists of a comma-separated collection of one or25
more expressions of that OpenMP type. A variable list consists of a comma-separated collection of26
one or more variable list items. An extended list consists of a comma-separated collection of one or27
more extended list items. A locator list consists of a comma-separated collection of one or more28
locator list items. A parameter list consists of a comma-separated collection of one or more29
parameter list items. A type-name list consists of a comma-separated collection of one or more30
type-name list items. A directive-name list consists of a comma-separated collection of one or more31
directive-name list items, each of which is the directive-name of some OpenMP directive. A32
directive specification list consists of a comma-separated collection of one or more33
directive-specification list items, each of which is an OpenMP directive-specification. A foreign34
runtime preference list consists of a comma-separated collection of one or more foreign-runtime list35

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 103

items, each of which is an OpenMP foreign-runtime identifier. An OpenMP operation list consists1
of a comma-separated collection of one or more OpenMP operation list items, each of which is an2
OpenMP operation defined in Section 4.2.3.3

C / C++
A variable list item is a variable or an array section. An extended list item is a variable list item or a4
function name. A locator list item is any lvalue expression including variables, array sections, and5
reserved locators. A parameter list item is the name of a function parameter. A type-name list item6
is a type name.7

C / C++
Fortran

A variable list item is one of the following:8

• a variable that is not coindexed and that is not a substring;9

• an array section that is not coindexed and that does not contain an element that is a substring;10

• a named constant;11

• an associate name that may appear in a variable definition context; or12

• a common block name (enclosed in slashes).13

An extended list item is a variable list item or a procedure name. A locator list item is a variable list14
item, a function reference with data pointer result, or a reserved locator. A parameter list item is a15
dummy argument of a subroutine or function. A type-name list item is a type specifier that must not16
be CLASS(*) or an abstract type.17

A named constant as a list item can appear only in clauses where it is explicitly allowed.18

When a named common block appears in an OpenMP argument list, it has the same meaning and19
restrictions as if every explicit member of the common block appeared in the list. An explicit20
member of a common block is a variable that is named in a COMMON statement that specifies the21
common block name and is declared in the same scoping unit in which the clause appears. Named22
common blocks do not include the blank common block.23

Although variables in common blocks can be accessed by use association or host association,24
common block names cannot. As a result, a common block name specified in a clause must be25
declared to be a common block in the same scoping unit in which the clause appears. construct.26

Fortran

104 OpenMP API – Version 6.0 Preview 2 November 2023

Restrictions1
The restrictions to OpenMP lists are as follows:2

• Unless otherwise specified, OpenMP list items must be directive-wide unique, i.e., a list item3
can only appear once in one OpenMP list of all arguments, clauses, and modifiers of the4
directive.5

• All list items must be visible, according to the scoping rules of the base language.6

• The directive-specifier and the clauses in a directive-specification item must not be7
comma-separated.8

C
• Unless otherwise specified, a variable that is part of an aggregate variable must not be a9

variable list item or an extended list item.10

C
C++

• Unless otherwise specified, a variable that is part of an aggregate variable must not be a11
variable list item or an extended list item except if the list appears on a clause that is12
associated with a construct within a class non-static member function and the variable is an13
accessible data member of the object for which the non-static member function is invoked.14

C++
Fortran

• Unless otherwise specified, a variable that is part of an aggregate variable must not be a15
variable list item or an extended list item.16

Fortran

4.2.2 Reserved Locators17

On some directives, some clauses accept the use of reserved locators as special identifiers that18
represent system storage not necessarily bound to any base language storage item. Reserved19
locators may only appear in clauses and directives where they are explicitly allowed and may not20
otherwise be referenced in the program. The list of reserved locators is:21

omp_all_memory22

The reserved locator omp_all_memory is a reserved identifier that denotes a list item treated as23
having storage that corresponds to the storage of all other objects in memory.24

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 105

4.2.3 OpenMP Operations1

On some directives, some clauses accept the use of OpenMP operations. An OpenMP operation2
named <generic_name> is a special expression that may be specified in an OpenMP operation list3
and that is used to construct an object of the <generic_name> OpenMP type (see Section 5.1). In4
general, the format of an OpenMP operation is the following:5

<generic_name>(operation-parameter-specification)6

C / C++

4.2.4 Array Shaping7

If an expression has a type of pointer to T, then a shape-operator can be used to specify the extent of8
that pointer. In other words, the shape-operator is used to reinterpret, as an n-dimensional array, the9
region of memory to which that expression points.10

Formally, the syntax of the shape-operator is as follows:11

shaped-expression := ([s1][s2]...[sn])cast-expression12

The result of applying the shape-operator to an expression is an lvalue expression with an13
n-dimensional array type with dimensions s1 × s2 . . .× sn and element type T.14

The precedence of the shape-operator is the same as a type cast.15

Each si is an integral type expression that must evaluate to a positive integer.16

Restrictions17
Restrictions to the shape-operator are as follows:18

• The type T must be a complete type.19

• The shape-operator can appear only in clauses for which it is explicitly allowed.20

• The result of a shape-operator must be a containing array of the list item or a containing array21
of one of its named pointers.22

• The type of the expression upon which a shape-operator is applied must be a pointer type.23

C++
• If the type T is a reference to a type T’, then the type will be considered to be T’ for all24

purposes of the designated array.25

C++
C / C++

106 OpenMP API – Version 6.0 Preview 2 November 2023

4.2.5 Array Sections1

An array section designates a subset of the elements in an array.2

C / C++
To specify an array section in an OpenMP directive, array subscript expressions are extended with3
one of the following syntaxes:4

[lower-bound : length : stride]5

[lower-bound : length :]6

[lower-bound : length]7

[lower-bound : : stride]8

[lower-bound : :]9

[lower-bound :]10

[: length : stride]11

[: length :]12

[: length]13

[: : stride]14

[: :]15

[:]16

The array section must be a subset of the original array.17

Array sections are allowed on multidimensional arrays. Base language array subscript expressions18
can be used to specify length-one dimensions of multidimensional array sections.19

Each of the lower-bound, length, and stride expressions if specified must be an integral type20
expression of the base language. When evaluated they represent a set of integer values as follows:21

{ lower-bound, lower-bound + stride, lower-bound + 2 * stride,... , lower-bound + ((length - 1) *22
stride) }23

The length must evaluate to a non-negative integer.24

The stride must evaluate to a positive integer.25

When the stride is absent it defaults to 1.26

When the length is absent and the size of the dimension is known, it defaults to27
⌈⌈(size − lower-bound)/stride⌉⌉, where size is the size of the array dimension. When the length is28
absent and the size of the dimension is not known, the array section is an assumed-size array.29

When the lower-bound is absent it defaults to 0.30

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 107

C/C++ (cont.)

The precedence of a subscript operator that uses the array section syntax is the same as the1
precedence of a subscript operator that does not use the array section syntax.2

3

Note – The following are examples of array sections:4

a[0:6]5

a[0:6:1]6

a[1:10]7

a[1:]8

a[:10:2]9

b[10][:][:]10

b[10][:][:0]11

c[42][0:6][:]12

c[42][0:6:2][:]13

c[1:10][42][0:6]14

S.c[:100]15

p->y[:10]16

this->a[:N]17

(p+10)[:N]18

Assume a is declared to be a 1-dimensional array with dimension size 11. The first two examples19
are equivalent, and the third and fourth examples are equivalent. The fifth example specifies a stride20
of 2 and therefore is not contiguous.21

Assume b is declared to be a pointer to a 2-dimensional array with dimension sizes 10 and 10. The22
sixth example refers to all elements of the 2-dimensional array given by b[10]. The seventh23
example is a zero-length array section.24

Assume c is declared to be a 3-dimensional array with dimension sizes 50, 50, and 50. The eighth25
example is contiguous, while the ninth and tenth examples are not contiguous.26

The final four examples show array sections that are formed from more general base expressions.27

The following are examples that are non-conforming array sections:28

s[:10].x29

p[:10]->y30

*(xp[:10])31

For all three examples, a base language operator is applied in an undefined manner to an array32

108 OpenMP API – Version 6.0 Preview 2 November 2023

section. The only operator that may be applied to an array section is a subscript operator for which1
the array section appears as the postfix expression.2

3
4

C / C++
Fortran

Fortran has built-in support for array sections although some restrictions apply to their use in5
OpenMP directives, as enumerated in the following section.6

Fortran

Restrictions7
Restrictions to array sections are as follows:8

• An array section can appear only in clauses for which it is explicitly allowed.9

• A stride expression may not be specified unless otherwise stated.10

C / C++
• An assumed-size array can appear only in clauses for which it is explicitly allowed.11

• An element of an array section with a non-zero size must have a complete type.12

• The base expression of an array section must have an array or pointer type.13

• If a consecutive sequence of array subscript expressions appears in an array section, and the14
first subscript expression in the sequence uses the extended array section syntax defined in15
this section, then only the last subscript expression in the sequence may select array elements16
that have a pointer type.17

C / C++
C++

• If the type of the base expression of an array section is a reference to a type T, then the type18
will be considered to be T for all purposes of the array section.19

• An array section cannot be used in an overloaded [] operator.20

C++
Fortran

• If a stride expression is specified, it must be positive.21

• The upper bound for the last dimension of an assumed-size dummy array must be specified.22

• If a list item is an array section with vector subscripts, the first array element must be the23
lowest in the array element order of the array section.24

• If a list item is an array section, the last part-ref of the list item must have a section subscript25
list.26

Fortran

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 109

4.2.6 iterator Modifier1

Modifiers2
Name Modifies Type Properties
iterator locator-list Complex, name: iterator

Arguments:
iterator-specifier OpenMP

expression (repeatable)

unique

3

Clauses4
affinity, depend, from, map, to5

An iterator modifier is a unique, complex modifier that defines a set of iterators, each of which is an6
iterator-identifier and an associated set of values. An iterator-identifier expands to those values in7
the clause argument for which it is specified. Each member of the modifier-parameter-specification8
list of an iterator modifier is an iterator-specifier with this format:9

C / C++
[iterator-type] iterator-identifier = range-specification10

C / C++
Fortran

[iterator-type ::] iterator-identifier = range-specification11

Fortran
where:12

• iterator-identifier is a base language identifier.13

• iterator-type is a type that is permitted in a type-name list.14

• range-specification is of the form begin:end[:step], where begin and end are expressions for15
which their types can be converted to iterator-type and step is an integral expression.16

C / C++
In an iterator-specifier, if the iterator-type is not specified then that iterator is of int type.17

C / C++
Fortran

In an iterator-specifier, if the iterator-type is not specified then that iterator has default integer type.18

Fortran

110 OpenMP API – Version 6.0 Preview 2 November 2023

In a range-specification, if the step is not specified its value is implicitly defined to be 1.1

An iterator only exists in the context of the clause argument that it modifies. An iterator also hides2
all accessible symbols with the same name in the context of that clause argument.3

The use of a variable in an expression that appears in the range-specification causes an implicit4
reference to the variable in all enclosing constructs.5

C / C++
The values of the iterator are the set of values i0, . . . , iN−1 where:6

• i0 = (iterator-type) begin;7

• ij = (iterator-type) (ij−1 + step), where j ≥ 1; and8

• if step > 0,9

– i0 < (iterator-type) end;10

– iN−1 < (iterator-type) end; and11

– (iterator-type) (iN−1 + step) ≥ (iterator-type) end;12

• if step < 0,13

– i0 > (iterator-type) end;14

– iN−1 > (iterator-type) end; and15

– (iterator-type) (iN−1 + step) ≤ (iterator-type) end.16

C / C++
Fortran

The values of the iterator are the set of values i1, . . . , iN where:17

• i1 = begin;18

• ij = ij−1 + step, where j ≥ 2; and19

• if step > 0,20

– i1 ≤ end;21

– iN ≤ end; and22

– iN + step > end;23

• if step < 0,24

– i1 ≥ end;25

– iN ≥ end; and26

– iN + step < end.27

Fortran

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 111

The set of values will be empty if no possible value complies with the conditions above.1

If an iterator-identifier appears in a list-item expression of the modified argument, the effect is as if2
the list item is instantiated within the clause for each member of the iterator value set, substituting3
each occurrence of iterator-identifier in the list-item expression with the iterator value. If the4
iterator value set is empty then the effect is as if the list item was not specified.5

Restrictions6
Restrictions to iterator modifiers are as follows:7

• The iterator-type must not declare a new type.8

• For each value i in an iterator value set, the mathematical result of i + step must be9
representable in iterator-type.10

C / C++
• The iterator-type must be an integral or pointer type.11

• The iterator-type must not be const qualified.12

C / C++
Fortran

• The iterator-type must be an integer type.13

Fortran
• If the step expression of a range-specification equals zero, the behavior is unspecified.14

• Each iterator-identifier can only be defined once in the modifier-parameter-specification.15

• Iterators cannot appear in the range-specification.16

Cross References17
• affinity clause, see Section 13.6.118

• depend clause, see Section 16.9.519

• from clause, see Section 6.9.220

• map clause, see Section 6.8.321

• to clause, see Section 6.9.122

4.3 Conditional Compilation23

In implementations that support a preprocessor, the _OPENMP macro name is defined to have the24
decimal value yyyymm where yyyy and mm are the year and month designations of the version of25
the OpenMP API that the implementation supports.26

112 OpenMP API – Version 6.0 Preview 2 November 2023

If a #define or a #undef preprocessing directive in user code defines or undefines the1
_OPENMP macro name, the behavior is unspecified.2

Fortran
The OpenMP API requires Fortran lines to be compiled conditionally, as described in the following3
sections.4

Fortran
Fortran

4.3.1 Fixed Source Form Conditional Compilation Sentinels5

The following conditional compilation sentinels are recognized in fixed form source files:6

!$ | *$ | c$7

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the8
following criteria:9

• The sentinel must start in column 1 and appear as a single word with no intervening white10
space;11

• After the sentinel is replaced with two spaces, initial lines must have a space or zero in12
column 6 and only white space and numbers in columns 1 through 5; and13

• After the sentinel is replaced with two spaces, continuation lines must have a character other14
than a space or zero in column 6 and only white space in columns 1 through 5.15

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not met, the line16
is left unchanged.17

18

Note – In the following example, the two forms for specifying conditional compilation in fixed19
source form are equivalent (the first line represents the position of the first 9 columns):20

c2345678921
!$ 10 iam = omp_get_thread_num() +22
!$ & index23

24
#ifdef _OPENMP25

10 iam = omp_get_thread_num() +26
& index27

#endif28

29

Fortran

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 113

Fortran

4.3.2 Free Source Form Conditional Compilation Sentinel1

The following conditional compilation sentinel is recognized in free form source files:2

!$3

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the4
following criteria:5

• The sentinel can appear in any column but must be preceded only by white space;6

• The sentinel must appear as a single word with no intervening white space;7

• Initial lines must have a blank character after the sentinel; and8

• Continued lines must have an ampersand as the last non-blank character on the line, prior to9
any comment appearing on the conditionally compiled line.10

Continuation lines can have an ampersand after the sentinel, with optional white space before and11
after the ampersand. If these criteria are met, the sentinel is replaced by two spaces. If these criteria12
are not met, the line is left unchanged.13

14

Note – In the following example, the two forms for specifying conditional compilation in free15
source form are equivalent (the first line represents the position of the first 9 columns):16

c2345678917
!$ iam = omp_get_thread_num() + &18
!$& index19

20
#ifdef _OPENMP21

iam = omp_get_thread_num() + &22
index23

#endif24

25

Fortran

4.4 directive-name-modifier Modifier26

Modifiers27
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique28

114 OpenMP API – Version 6.0 Preview 2 November 2023

Clauses1
acq_rel, acquire, adjust_args, affinity, align, aligned, allocate,2
allocator, append_args, apply, at, atomic_default_mem_order, bind,3
capture, collapse, collector, combiner, compare, copyin, copyprivate,4
default, defaultmap, depend, destroy, detach, device, device_type,5
dist_schedule, doacross, dynamic_allocators, enter, exclusive, fail,6
filter, final, firstprivate, from, full, grainsize, has_device_addr, hint,7
if, in_reduction, inbranch, inclusive, indirect, induction, inductor, init,8
initializer, interop, is_device_ptr, lastprivate, linear, link, local, map,9
match, memscope, mergeable, message, no_openmp, no_openmp_routines,10
no_parallelism, nocontext, nogroup, nontemporal, notinbranch,11
novariants, nowait, num_tasks, num_teams, num_threads, order, ordered,12
otherwise, partial, permutation, priority, proc_bind, read, reduction,13
relaxed, release, reverse_offload, safelen, safesync, schedule, seq_cst,14
severity, simd, simdlen, sizes, task_reduction, thread_limit, threads,15
threadset, to, unified_address, unified_shared_memory, uniform, untied,16
update, update, use, use_device_addr, use_device_ptr, uses_allocators,17
weak, when, write18

Semantics19
The directive-name-modifier is a universal modifier that can be used on any OpenMP clause. The20
directive-name identifies the construct or constituent construct to which the clause applies. If21
directive-name is that of a combined or composite construct, then the leaf constructs to which the22
clause applies are determined as specified in Section 18.2. If no directive-name-modifier is23
specified then the effect is as if a directive-name-modifier was specified with the directive-name of24
the directive on which the clause appears.25

Restrictions26
Restrictions to the directive-name-modifier modifier are as follows:27

• The directive-name-modifier must specify the directive-name of the construct or of a28
constituent construct of the directive-specification on which the clause appears.29

Cross References30
• acq_rel clause, see Section 16.8.1.131

• acquire clause, see Section 16.8.1.232

• adjust_args clause, see Section 8.5.233

• affinity clause, see Section 13.6.134

• align clause, see Section 7.335

• aligned clause, see Section 6.1136

• allocate clause, see Section 7.637

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 115

• allocator clause, see Section 7.41

• append_args clause, see Section 8.5.32

• apply clause, see Section 10.63

• at clause, see Section 9.24

• atomic_default_mem_order clause, see Section 9.5.1.15

• bind clause, see Section 12.8.16

• capture clause, see Section 16.8.3.17

• collapse clause, see Section 5.4.38

• collector clause, see Section 6.5.189

• combiner clause, see Section 6.5.1410

• compare clause, see Section 16.8.3.211

• copyin clause, see Section 6.7.112

• copyprivate clause, see Section 6.7.213

• default clause, see Section 6.4.114

• defaultmap clause, see Section 6.8.615

• depend clause, see Section 16.9.516

• destroy clause, see Section 4.617

• detach clause, see Section 13.6.218

• device clause, see Section 14.219

• device_type clause, see Section 14.120

• dist_schedule clause, see Section 12.7.121

• doacross clause, see Section 16.9.622

• dynamic_allocators clause, see Section 9.5.1.223

• enter clause, see Section 6.8.424

• exclusive clause, see Section 6.6.225

• fail clause, see Section 16.8.3.326

• filter clause, see Section 11.6.127

• final clause, see Section 13.328

• firstprivate clause, see Section 6.4.429

116 OpenMP API – Version 6.0 Preview 2 November 2023

• from clause, see Section 6.9.21

• full clause, see Section 10.2.12

• grainsize clause, see Section 13.7.13

• has_device_addr clause, see Section 6.4.94

• hint clause, see Section 16.1.25

• if clause, see Section 4.56

• in_reduction clause, see Section 6.5.117

• inbranch clause, see Section 8.7.1.18

• inclusive clause, see Section 6.6.19

• indirect clause, see Section 8.8.310

• induction clause, see Section 6.5.1211

• inductor clause, see Section 6.5.1712

• init clause, see Section 15.1.213

• initializer clause, see Section 6.5.1514

• interop clause, see Section 8.6.115

• is_device_ptr clause, see Section 6.4.716

• lastprivate clause, see Section 6.4.517

• linear clause, see Section 6.4.618

• link clause, see Section 6.8.519

• local clause, see Section 6.1320

• map clause, see Section 6.8.321

• match clause, see Section 8.5.122

• memscope clause, see Section 16.8.423

• mergeable clause, see Section 13.224

• message clause, see Section 9.325

• no_openmp clause, see Section 9.6.1.426

• no_openmp_routines clause, see Section 9.6.1.627

• no_parallelism clause, see Section 9.6.1.728

• nocontext clause, see Section 8.6.329

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 117

• nogroup clause, see Section 16.71

• nontemporal clause, see Section 11.5.12

• notinbranch clause, see Section 8.7.1.23

• novariants clause, see Section 8.6.24

• nowait clause, see Section 16.65

• num_tasks clause, see Section 13.7.26

• num_teams clause, see Section 11.3.17

• num_threads clause, see Section 11.2.28

• order clause, see Section 11.49

• ordered clause, see Section 5.4.410

• otherwise clause, see Section 8.4.211

• partial clause, see Section 10.2.212

• permutation clause, see Section 10.4.113

• priority clause, see Section 13.514

• proc_bind clause, see Section 11.2.415

• read clause, see Section 16.8.2.116

• reduction clause, see Section 6.5.917

• relaxed clause, see Section 16.8.1.318

• release clause, see Section 16.8.1.419

• reverse_offload clause, see Section 9.5.1.320

• safelen clause, see Section 11.5.221

• safesync clause, see Section 11.2.522

• schedule clause, see Section 12.6.323

• seq_cst clause, see Section 16.8.1.524

• severity clause, see Section 9.425

• simd clause, see Section 16.10.3.226

• simdlen clause, see Section 11.5.327

• sizes clause, see Section 10.1.128

• task_reduction clause, see Section 6.5.1029

118 OpenMP API – Version 6.0 Preview 2 November 2023

• thread_limit clause, see Section 14.31

• threads clause, see Section 16.10.3.12

• threadset clause, see Section 13.43

• to clause, see Section 6.9.14

• unified_address clause, see Section 9.5.1.45

• unified_shared_memory clause, see Section 9.5.1.56

• uniform clause, see Section 6.107

• untied clause, see Section 13.18

• update clause, see Section 16.8.2.29

• update clause, see Section 16.9.310

• use clause, see Section 15.1.311

• use_device_addr clause, see Section 6.4.1012

• use_device_ptr clause, see Section 6.4.813

• uses_allocators clause, see Section 7.814

• weak clause, see Section 16.8.3.415

• when clause, see Section 8.4.116

• write clause, see Section 16.8.2.317

4.5 if Clause18

Name: if Properties: default19

Arguments20
Name Type Properties
if-expression expression of OpenMP logical type default21

Modifiers22
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique23

Directives24
cancel, parallel, simd, target, target data, target enter data, target25
exit data, target update, task, taskloop, teams26

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 119

Semantics1
The effect of the if clause depends on the construct to which it is applied. If the construct is not a2
combined construct or a composite construct then the effect is described in the section that3
describes that construct.4

Restrictions5
Restrictions to the if clause are as follows:6

• At most one if clause can be specified that applies to the semantics of any construct or7
constituent construct of a directive-specification.8

Cross References9
• cancel directive, see Section 17.210

• parallel directive, see Section 11.211

• simd directive, see Section 11.512

• target directive, see Section 14.813

• target data directive, see Section 14.514

• target enter data directive, see Section 14.615

• target exit data directive, see Section 14.716

• target update directive, see Section 14.917

• task directive, see Section 13.618

• taskloop directive, see Section 13.719

• teams directive, see Section 11.320

4.6 destroy Clause21

Name: destroy Properties: default22

Arguments23
Name Type Properties
destroy-var variable of OpenMP variable type default24

Modifiers25
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique26

Directives27
depobj, interop28

120 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
When the destroy clause appears on a depobj construct, the state of destroy-var is set to2
uninitialized.3

When the destroy clause appears on an interop construct, the interop-type is inferred based4
on the interop-type used to initialize destroy-var, and destroy-var is set to the value of5
omp_interop_none after resources associated with destroy-var are released. The object6
referred to by destroy-var is unusable after destruction and the effect of using values associated7
with it is unspecified until it is initialized again by another interop construct.8

Restrictions9
• destroy-var must be non-const.10

• If the destroy clause appears on a depobj construct, destroy-var must refer to the same11
depend object as the depobj argument of the construct.12

• If the destroy clause appears on an interop construct, destroy-var must refer to a13
variable of OpenMP interop type.14

Cross References15
• depobj directive, see Section 16.9.416

• interop directive, see Section 15.117

CHAPTER 4. DIRECTIVE AND CONSTRUCT SYNTAX 121

5 Base Language Formats and1

Restrictions2

This section defines concepts and restrictions on base language code used in OpenMP. The concepts3
help support base language neutrality for OpenMP directives and their associated semantics.4

Restrictions5
The following restrictions apply generally for the base program of an OpenMP program:6

• OpenMP programs must not declare names that begin with the omp_ or ompx_ prefix, as7
these are reserved for the OpenMP implementation.8

C++
• OpenMP programs must not declare a namespace with the omp or ompx names, as these are9

reserved for the OpenMP implementation.10

C++

5.1 OpenMP Types and Identifiers11

An OpenMP identifier is a special identifier for use within directives and clauses for some specific12
purpose. For example, OpenMP reduction identifiers specify the combiner operation to use in a13
reduction, OpenMP mapper identifiers specify the name of a user-defined mapper, and OpenMP14
foreign runtime identifiers specify the name of a foreign runtime.15

An OpenMP context-specific constant is a special identifier for use within user code that the16
implementation implicitly declares and evaluates to a compile-time constant value when referenced17
in a given context.18

Generic OpenMP types specify the type of expression or variable that is used in OpenMP contexts19
regardless of the base language. These types support the definition of many important OpenMP20
concepts independently of the base language in which they are used.21

The assignable OpenMP type instance is defined to facilitate base language neutrality. An22
assignable OpenMP type instance can be used as an argument of a construct in order for the23
implementation to modify the value of that instance.24

C / C++
An assignable OpenMP type instance is an lvalue expression of that OpenMP type.25

C / C++

122 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
An assignable OpenMP type instance is a variable or a function reference with data pointer result of1
that OpenMP type.2

Fortran
The OpenMP logical type supports logical variables and expressions in any base language.3

C / C++
Any expression of OpenMP logical type is a scalar expression. This document uses true as a4
generic term for a non-zero integer value and false as a generic term for an integer value of zero.5

C / C++
Fortran

Any expression of OpenMP logical type is a scalar logical expression. This document uses true as a6
generic term for a logical value of .TRUE. and false as a generic term for a logical value of7
.FALSE..8

Fortran
The OpenMP integer type supports integer variables and expressions in any base language.9

C / C++
Any OpenMP integer expression is an integer expression.10

C / C++
Fortran

Any OpenMP integer expression is a scalar integer expression.11

Fortran
The OpenMP string type supports character string variables and expressions in any base language.12

C / C++
Any OpenMP string expression is an expression of type qualified or unqualified const char *13
or char * pointing to a null-terminated character string.14

C / C++
Fortran

Any OpenMP string expression is a character string of default kind.15

Fortran
OpenMP function identifiers support procedure names in any base language. Regardless of the base16
language, any OpenMP function identifier is the name of a procedure as a base language identifier.17

Each OpenMP type other than those specifically defined in this section has a generic name,18
<generic_name>, by which it is referred throughout this document and that is used to construct the19
base language construct that corresponds to that OpenMP type.20

CHAPTER 5. BASE LANGUAGE FORMATS AND RESTRICTIONS 123

C / C++
A variable of <generic_name> OpenMP type is a variable of type omp_<generic_name>_t.1

C / C++
Fortran

A variable of <generic_name> OpenMP type is a scalar integer variable of kind2
omp_<generic_name>_kind.3

Fortran
Cross References4

• OpenMP Foreign Runtime Identifiers, see Section 15.1.15

• OpenMP Reduction and Induction Identifiers, see Section 6.5.16

• mapper modifier, see Section 6.8.27

5.2 OpenMP Stylized Expressions8

An OpenMP stylized expression is a base language expression that is subject to restrictions that9
enable its use within an OpenMP implementation. These expressions often make use of special10
variable identifiers that the implementation binds to well-defined internal state.11

Cross References12
• OpenMP Collector Expressions, see Section 6.5.2.413

• OpenMP Combiner Expressions, see Section 6.5.2.114

• OpenMP Inductor Expressions, see Section 6.5.2.315

• OpenMP Initializer Expressions, see Section 6.5.2.216

5.3 Structured Blocks17

This section specifies the concept of a structured block. A structured block:18

• may contain infinite loops where the point of exit is never reached;19

• may halt due to an IEEE exception;20

C / C++
• may contain calls to exit(), _Exit(), quick_exit(), abort() or functions with a21
_Noreturn specifier (in C) or a noreturn attribute (in C/C++);22

• may be an expression statement, iteration statement, selection statement, or try block,23
provided that the corresponding compound statement obtained by enclosing it in { and }24
would be a structured block; and25

C / C++

124 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
• may contain STOP or ERROR STOP statements.1

Fortran
C / C++

A structured block sequence that consists of no statements or more than one statement may appear2
only for executable directives that explicitly allow it. The corresponding compound statement3
obtained by enclosing the sequence in { and } must be a structured block and the structured block4
sequence then should be considered to be a structured block with all of its restrictions.5

C / C++
The remainder of this section covers OpenMP context-specific structured blocks that conform to6
specific syntactic forms and restrictions that are required for certain block-associated directives.7

Restrictions8
Restrictions to structured blocks are as follows:9

• Entry to a structured block must not be the result of a branch.10

• The point of exit cannot be a branch out of the structured block.11

C / C++
• The point of entry to a structured block must not be a call to setjmp.12

• longjmp must not violate the entry/exit criteria of structured blocks.13

C / C++
C++

• throw, co_await, co_yield and co_return must not violate the entry/exit criteria of14
structured blocks.15

C++
Fortran

• If a BLOCK construct appears in a structured block, that BLOCK construct must not contain16
any ASYNCHRONOUS or VOLATILE statements, nor any specification statements that17
include the ASYNCHRONOUS or VOLATILE attributes.18

Fortran

5.3.1 OpenMP Allocator Structured Blocks19

Fortran
An OpenMP allocator structured-block is a context-specific structured block that is associated with20
an allocators directive. It consists of allocate-stmt, where allocate-stmt is a Fortran21
ALLOCATE statement. For an allocators directive, the paired end directive is optional.22

Fortran

CHAPTER 5. BASE LANGUAGE FORMATS AND RESTRICTIONS 125

Cross References1
• allocators directive, see Section 7.72

5.3.2 OpenMP Function Dispatch Structured Blocks3

An OpenMP function dispatch structured block is a context-specific structured block that is4
associated with a dispatch directive. It identifies the location of a function dispatch.5

C / C++
A function dispatch structured block is an expression statement with one of the following forms:6

lvalue-expression = target-call ([expression-list]);7

or8

target-call ([expression-list]);9

C / C++
Fortran

A function dispatch structured block is an expression statement with one of the following forms,10
where expression can be a variable or a function reference with data pointer result:11

expression = target-call ([arguments])12

or13

CALL target-call [([arguments])]14

For a dispatch directive, the paired end directive is optional.15

Fortran

Restrictions16
Restrictions to the function dispatch structured blocks are as follows:17

C++
• The target-call expression can only be a direct call.18

C++
Fortran

• target-call must be a procedure name.19

• target-call must not be a procedure pointer.20

Fortran

Cross References21
• dispatch directive, see Section 8.622

126 OpenMP API – Version 6.0 Preview 2 November 2023

5.3.3 OpenMP Atomic Structured Blocks1

An OpenMP atomic structured block is a context-specific structured block that is associated with an2
atomic directive. The form of an atomic structured block depends on the atomic semantics that3
the directive enforces.4

C / C++
Any instance of any atomic structured block in which any statement is enclosed in braces remains5
an instance of the same kind of atomic structured block.6

C / C++
Fortran

Enclosing any instance of any atomic structured block in the pair of BLOCK and END BLOCK7
remains an instance of the same kind of atomic structured block, in which case the paired end8
directive is optional.9

Fortran
In the following definitions:10

C / C++
• x, r (result), and v (as applicable) are lvalue expressions with scalar type.11

• e (expected) is an expression with scalar type.12

• d (desired) is an expression with scalar type.13

• e and v may refer to, or access, the same storage location.14

• expr is an expression with scalar type.15

• The order operation, ordop, is either < or >.16

• binop is one of +, *, -, /, &, ^, |, <<, or >>.17

• == comparisons are performed by comparing the value representation of operand values for18
equality after the usual arithmetic conversions; if the object representation does not have any19
padding bits, the comparison is performed as if with memcmp.20

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is21
unspecified but will be at least one.22

• For forms that allow multiple occurrences of expr, the number of times that expr is evaluated23
is unspecified but will be at least one.24

• The number of times that r is evaluated is unspecified but will be at least one.25

• Whether d is evaluated if x == e evaluates to false is unspecified.26

C / C++

CHAPTER 5. BASE LANGUAGE FORMATS AND RESTRICTIONS 127

Fortran
• x and v (as applicable) are either scalar variables or function references with scalar data1

pointer result of non-character intrinsic type.2

• e (expected) and d (desired) are scalar expressions.3

• expr is a scalar expression.4

• r (result) is a scalar logical variable.5

• expr-list is a comma-separated, non-empty list of scalar expressions.6

• intrinsic-procedure-name is one of MAX, MIN, IAND, IOR, or IEOR.7

• operator is one of +, *, -, /, .AND., .OR., .EQV., or .NEQV..8

• equalop is ==, .EQ., or .EQV..9

• The order operation, ordop, is one of <, .LT., >, or .GT..10

• == or .EQ. comparisons are performed by comparing the physical representation of operand11
values for equality after the usual conversions as described in the base language, while12
ignoring padding bits, if any.13

• .EQV. comparisons are performed as described in the base language.14

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is15
unspecified but will be at least one.16

• For forms that allow multiple occurrences of expr, the number of times that expr is evaluated17
is unspecified but will be at least one.18

• The number of times that r is evaluated is unspecified but will be at least one.19

• Whether d is evaluated if x equalop e evaluates to false is unspecified.20

Fortran
A read-atomic structured block can be specified for atomic directives that enforce atomic read21
semantics but not capture semantics.22

C / C++
A read-atomic structured block is read-expr-stmt, a read expression statement that has the following23
form:24

v = x;25

C / C++
Fortran

A read-atomic structured block is read-statement, a read statement that has the following form:26

v = x27

Fortran

128 OpenMP API – Version 6.0 Preview 2 November 2023

A write-atomic structured block can be specified for atomic directives that enforce atomic write1
semantics but not capture semantics.2

C / C++
A write-atomic structured block is write-expr-stmt, a write expression statement that has the3
following form:4

x = expr;5

C / C++
Fortran

A write-atomic structured block is write-statement, a write statement that has the following form:6

x = expr7

Fortran
An update-atomic structured block can be specified for atomic directives that enforce atomic8
update semantics but not capture semantics.9

C / C++
An update-atomic structured block is update-expr-stmt, an update expression statement that has one10
of the following forms:11

x++;12
x--;13
++x;14
--x;15
x binop= expr;16
x = x binop expr;17
x = expr binop x;18

C / C++
Fortran

An update-atomic structured block is update-statement, an update statement that has one of the19
following forms:20

x = x operator expr21
x = expr operator x22
x = intrinsic-procedure-name (x, expr-list)23
x = intrinsic-procedure-name (expr-list, x)24

Fortran
A conditional-update-atomic structured block can be specified for atomic directives that enforce25
atomic conditional update semantics but not capture semantics.26

CHAPTER 5. BASE LANGUAGE FORMATS AND RESTRICTIONS 129

C / C++
A conditional-update-atomic structured block is either cond-expr-stmt, a conditional expression1
statement that has one of the following forms:2

x = expr ordop x ? expr : x;3
x = x ordop expr ? expr : x;4
x = x == e ? d : x;5

or cond-update-stmt, a conditional update statement that has one of the following forms:6

if(expr ordop x) x = expr;7
if(x ordop expr) x = expr;8
if(x == e) x = d;9

C / C++
Fortran

A conditional-update-atomic structured block is conditional-update-statement, a conditional update10
statement that has one of the following forms:11

if (x equalop e) x = d12
if (x equalop e) then; x = d; end if13
if (x ordop expr) x = expr14
if (x ordop expr) then; x = expr; end if15
if (expr ordop x) x = expr16
if (expr ordop x) then; x = expr; end if17

For an atomic construct with read-atomic, write-atomic, update-atomic, or18
conditional-update-atomic structured block, the paired end directive is optional.19

Fortran
A capture-atomic structured block can be specified for atomic directives that enforce capture20
semantics. It is further categorized as a write-capture-atomic, update-capture-atomic, or21
conditional-update-capture-atomic structured block, which can be specified for atomic directives22
that enforce write, update or conditional update atomic semantics in addition to capture semantics.23

C / C++
A capture-atomic structured block is capture-stmt, a capture statement that has one of the following24
forms:25

v = expr-stmt26
{ v = x; expr-stmt }27
{ expr-stmt v = x; }28

If expr-stmt is write-expr-stmt or expr-stmt is update-expr-stmt as specified above then it is an29
update-capture-atomic structured block. If expr-stmt is cond-expr-stmt as specified above then it is30
a conditional-update-capture-atomic structured block. In addition, a31
conditional-update-capture-atomic structured block can have one of the following forms:32

130 OpenMP API – Version 6.0 Preview 2 November 2023

{ v = x; cond-update-stmt }1
{ cond-update-stmt v = x; }2
if(x == e) x = d; else v = x;3
{ r = x == e; if(r) x = d; }4
{ r = x == e; if(r) x = d; else v = x; }5

C / C++
Fortran

A capture-atomic structured block has one of the following forms:6

statement7
capture-statement8

or9

capture-statement10
statement11

where capture-statement has the following form:12

v = x13

If statement is write-statement as specified above then it is a write-capture-atomic structured block.14
If statement is update-statement as specified above then it is an update-capture-atomic structured15
block and may be used in atomic constructs that enforce atomic captured update semantics. If16
statement is conditional-update-statement as specified above then it is a17
conditional-update-capture-atomic structured block. In addition, for a18
conditional-update-capture-atomic structured block, statement can have the following form:19

x = expr20

In addition, a conditional-update-capture-atomic structured block can have one of the following21
forms:22

if (x equalop e) then23
x = d24

else25
v = x26

end if27

or28

r = x equalop e29
if (r) x = d30

or31

CHAPTER 5. BASE LANGUAGE FORMATS AND RESTRICTIONS 131

r = x equalop e1
if (r) then2

x = d3
else4

v = x5
endif6

Fortran

Restrictions7
Restrictions to OpenMP atomic structured block are as follows:8

C / C++
• In forms where e is assigned it must be an lvalue.9

• r must be of integral type.10

• During the execution of an atomic region, multiple syntactic occurrences of x must11
designate the same storage location.12

• During the execution of an atomic region, multiple syntactic occurrences of r must13
designate the same storage location.14

• During the execution of an atomic region, multiple syntactic occurrences of expr must15
evaluate to the same value.16

• None of v, x, r, d and expr (as applicable) may access the storage location designated by any17
other symbol in the list.18

• In forms that capture the original value of x in v, v and e may not refer to, or access, the same19
storage location.20

• binop, binop=, ordop, ==, ++, and -- are not overloaded operators.21

• The expression x binop expr must be numerically equivalent to x binop (expr). This22
requirement is satisfied if the operators in expr have precedence greater than binop, or by23
using parentheses around expr or subexpressions of expr.24

• The expression expr binop x must be numerically equivalent to (expr) binop x. This25
requirement is satisfied if the operators in expr have precedence equal to or greater than26
binop, or by using parentheses around expr or subexpressions of expr.27

• The expression x ordop expr must be numerically equivalent to x ordop (expr). This28
requirement is satisfied if the operators in expr have precedence greater than ordop, or by29
using parentheses around expr or subexpressions of expr.30

• The expression expr ordop x must be numerically equivalent to (expr) ordop x. This31
requirement is satisfied if the operators in expr have precedence equal to or greater than32
ordop, or by using parentheses around expr or subexpressions of expr.33

132 OpenMP API – Version 6.0 Preview 2 November 2023

• The expression x == e must be numerically equivalent to x == (e). This requirement is1
satisfied if the operators in e have precedence equal to or greater than ==, or by using2
parentheses around e or subexpressions of e.3

C / C++
Fortran

• x must not have the ALLOCATABLE attribute.4

• During the execution of an atomic region, multiple syntactic occurrences of x must5
designate the same storage location.6

• During the execution of an atomic region, multiple syntactic occurrences of r must7
designate the same storage location.8

• During the execution of an atomic region, multiple syntactic occurrences of expr must9
evaluate to the same value.10

• None of v, x, d, r, expr, and expr-list (as applicable) may access the same storage location as11
any other symbol in the list.12

• In forms that capture the original value of x in v, v may not access the same storage location13
as e.14

• If intrinsic-procedure-name refers to IAND, IOR, or IEOR, exactly one expression must15
appear in expr-list.16

• The expression x operator expr must be, depending on its type, either mathematically or17
logically equivalent to x operator (expr). This requirement is satisfied if the operators in expr18
have precedence greater than operator, or by using parentheses around expr or19
subexpressions of expr.20

• The expression expr operator x must be, depending on its type, either mathematically or21
logically equivalent to (expr) operator x. This requirement is satisfied if the operators in expr22
have precedence equal to or greater than operator, or by using parentheses around expr or23
subexpressions of expr.24

• The expression x equalop e must be, depending on its type, either mathematically or logically25
equivalent to x equalop (e). This requirement is satisfied if the operators in e have precedence26
equal to or greater than equalop, or by using parentheses around e or subexpressions of e.27

• intrinsic-procedure-name must refer to the intrinsic procedure name and not to other program28
entities.29

• operator must refer to the intrinsic operator and not to a user-defined operator.30

• All assignments must be intrinsic assignments.31

Fortran

Cross References32
• atomic directive, see Section 16.8.533

CHAPTER 5. BASE LANGUAGE FORMATS AND RESTRICTIONS 133

5.4 Loop Concepts1

OpenMP semantics frequently involve loops that occur in the base language code. As detailed in2
this section, OpenMP defines several concepts that facilitate the specification of those semantics3
and their associated syntax.4

5.4.1 Canonical Loop Nest Form5

A loop nest has canonical loop nest form if it conforms to loop-nest in the following grammar:6

loop-nest One of the following:7

C / C++
for (init-expr; test-expr; incr-expr)8

loop-body9

or10

{11
loop-nest12

}13

C / C++
or14

C++
for (range-decl: range-expr)15

loop-body16

A range-based for loop is equivalent to a regular for loop using iterators, as17
defined in the base language. A range-based for loop has no iteration variable.18

C++
or19

Fortran
DO [label] var = lb , ub [, incr]20

[intervening-code]21
loop-body22
[intervening-code]23

[label] END DO24

If the loop-nest is a nonblock-do-construct, it is treated as a block-do-construct25
for each DO construct.26

The value of incr is the increment of the loop. If not specified, its value is27
assumed to be 1.28

or29

134 OpenMP API – Version 6.0 Preview 2 November 2023

BLOCK1
loop-nest2

END BLOCK3

Fortran
or4

loop-nest-generating-construct5

or6

generated-canonical-loop7

loop-body One of the following:8

loop-nest9

or10

C / C++
{11

[intervening-code]12
loop-body13
[intervening-code]14

}15

C / C++
or16

Fortran
BLOCK17

[block-specification-part]18
[intervening-code]19
loop-body20
[intervening-code]21

END BLOCK22

Fortran
or if none of the previous productions match23

final-loop-body24

loop-nest-generating-construct25
A loop-transforming construct that generates a canonical loop nest, which may26
be a canonical loop sequence that contains exactly one canonical loop nest.27

CHAPTER 5. BASE LANGUAGE FORMATS AND RESTRICTIONS 135

generated-canonical-loop1
A generated loop from a loop-transforming construct that has canonical loop nest2
form and for which the loop body matches loop-body.3

intervening-code4
5

C / C++
A non-empty sequence of structured blocks or declarations, referred to as6
intervening code. It must not contain iteration statements, continue7
statements or break statements that apply to the enclosing loop.8

C / C++
Fortran

A non-empty structured block sequence, referred to as intervening code. It must9
not contain:10

• loops;11

• CYCLE statements;12

• EXIT statements;13

• array expressions;14

• array references with a vector subscript;15

• assignment statements where the target is an array object;16

• references to elemental procedures with an array actual argument; or17

• references to procedures where the actual argument is an array that is not18
simply contiguous and the corresponding dummy argument has the19
CONTIGUOUS attribute or is an explicit-shape or assumed-size array.20

Fortran
Additionally, intervening code must not contain executable directives or calls to21
the OpenMP runtime API in its corresponding region. If intervening code is22
present, then a loop at the same depth within the loop nest is not a perfectly23
nested loop.24

final-loop-body A structured block that terminates the scope of loops in the loop nest. If the loop25
nest is associated with a loop-nest-associated directive, loops in this structured26
block cannot be associated with that directive.27

136 OpenMP API – Version 6.0 Preview 2 November 2023

C / C++

init-expr One of the following:1
var = lb2
integer-type var = lb3

C
pointer-type var = lb4

C
C++

random-access-iterator-type var = lb5
C++

test-expr One of the following:6
var relational-op ub7
ub relational-op var8

relational-op One of the following:9
<10
<=11
>12
>=13
!=14

incr-expr One of the following:15
++var16
var++17
- - var18
var - -19
var += incr20
var - = incr21
var = var + incr22
var = incr + var23
var = var - incr24

The value of incr, respectively 1 and -1 for the increment and decrement25
operators, is the increment of the loop.26

C / C++

var One of the following:27

C / C++
A variable of a signed or unsigned integer type.28

C / C++

CHAPTER 5. BASE LANGUAGE FORMATS AND RESTRICTIONS 137

C
A variable of a pointer type.1

C
C++

A variable of a random access iterator type.2

C++
Fortran

A scalar variable of integer type.3

Fortran
var is the iteration variable of the loop. It must not be modified during the4
execution of intervening-code or loop-body in the loop.5

lb, ub One of the following:6

Expressions of a type compatible with the type of var that are loop invariant with7
respect to the outermost loop.8

or9

One of the following:10
var-outer11
var-outer + a212
a2 + var-outer13
var-outer - a214

where var-outer is of a type compatible with the type of var.15

or16

If var is of an integer type, one of the following:17
a2 - var-outer18
a1 * var-outer19
a1 * var-outer + a220
a2 + a1 * var-outer21
a1 * var-outer - a222
a2 - a1 * var-outer23
var-outer * a124
var-outer * a1 + a225
a2 + var-outer * a126
var-outer * a1 - a227
a2 - var-outer * a128

138 OpenMP API – Version 6.0 Preview 2 November 2023

where var-outer is of an integer type.1

lb and ub are loop bounds. A loop for which lb or ub refers to var-outer is a2
non-rectangular loop. If var is of an integer type, var-outer must be of an integer3
type with the same signedness and bit precision as the type of var.4

The coefficient in a loop bound is 0 if the bound does not refer to var-outer. If a5
loop bound matches a form in which a1 appears, the coefficient is -a1 if the6
product of var-outer and a1 is subtracted from a2, and otherwise the coefficient7
is a1. For other matched forms where a1 does not appear, the coefficient is −1 if8
var-outer is subtracted from a2, and otherwise the coefficient is 1.9

a1, a2, incr Integer expressions that are loop invariant with respect to the outermost loop of10
the loop nest.11

If the loop is associated with a directive, the expressions are evaluated before the12
construct formed from that directive.13

var-outer The loop iteration variable of a surrounding loop in the loop nest.14

C++

range-decl A declaration of a variable as defined by the base language for range-based for15
loops.16

range-expr An expression that is valid as defined by the base language for range-based for17
loops. It must be invariant with respect to the outermost loop of the loop nest and18
the iterator derived from it must be a random access iterator.19

C++

Restrictions20
Restrictions to canonical loop nests are as follows:21

C / C++
• If test-expr is of the form var relational-op b and relational-op is < or <= then incr-expr must22

cause var to increase on each iteration of the loop. If test-expr is of the form var23
relational-op b and relational-op is > or >= then incr-expr must cause var to decrease on24
each iteration of the loop. Increase and decrease are using the order induced by relational-op.25

• If test-expr is of the form ub relational-op var and relational-op is < or <= then incr-expr26
must cause var to decrease on each iteration of the loop. If test-expr is of the form ub27
relational-op var and relational-op is > or >= then incr-expr must cause var to increase on28
each iteration of the loop. Increase and decrease are using the order induced by relational-op.29

• If relational-op is != then incr-expr must cause var to always increase by 1 or always30
decrease by 1 and the increment must be a constant expression.31

CHAPTER 5. BASE LANGUAGE FORMATS AND RESTRICTIONS 139

• final-loop-body must not contain any break statement that would cause the termination of1
the innermost loop.2

C / C++
Fortran

• final-loop-body must not contain any EXIT statement that would cause the termination of the3
innermost loop.4

Fortran
• A loop-nest must also be a structured block.5

• For a non-rectangular loop, if var-outer is referenced in lb and ub then they must both refer to6
the same iteration variable.7

• For a non-rectangular loop, let alb and aub be the respective coefficients in lb and ub,8
incrinner the increment of the non-rectangular loop and incrouter the increment of the loop9
referenced by var-outer. incrinner(aub − alb) must be a multiple of incrouter.10

• The loop iteration variable may not appear in a threadprivate directive.11

Cross References12
• threadprivate directive, see Section 6.213

• Canonical Loop Sequence Form, see Section 5.4.614

• Loop-Transforming Constructs, see Chapter 1015

5.4.2 OpenMP Loop-Iteration Spaces and Vectors16

A loop-nest-associated directive controls some number of the outermost loops of an associated loop17
nest, called the associated loops, in accordance with its specified clauses. These associated loops18
and their loop iteration variables form an OpenMP loop-iteration vector space. OpenMP19
loop-iteration vectors allow other directives to refer to points in that loop-iteration vector space.20

A loop-transforming construct that appears inside a loop nest is replaced according to its semantics21
before any loop can be associated with a loop-nest-associated directive that is applied to the loop22
nest. The loop nest depth is determined according to the loops in the loop nest, after any such23
replacements have taken place. A loop counts towards the loop nest depth if it is a base language24
loop statement or generated loop and it matches loop-nest while applying the production rules for25
canonical loop nest form to the loop nest.26

The canonical loop nest form allows the iteration count of all associated loops to be computed27
before executing the outermost loop.28

For any associated loop, the iteration count is computed as follows:29

140 OpenMP API – Version 6.0 Preview 2 November 2023

C / C++
• If var has a signed integer type and the var operand of test-expr after usual arithmetic1

conversions has an unsigned integer type then the loop iteration count is computed from lb,2
test-expr and incr using an unsigned integer type corresponding to the type of var.3

• Otherwise, if var has an integer type then the loop iteration count is computed from lb,4
test-expr and incr using the type of var.5

C / C++
C

• If var has a pointer type then the loop iteration count is computed from lb, test-expr and incr6
using the type ptrdiff_t.7

C
C++

• If var has a random access iterator type then the loop iteration count is computed from lb,8
test-expr and incr using the type9
std::iterator_traits<random-access-iterator-type>::difference_type.10

• For range-based for loops, the loop iteration count is computed from range-expr using the11
type std::iterator_traits<random-access-iterator-type>::difference_type12
where random-access-iterator-type is the iterator type derived from range-expr.13

C++
Fortran

• The loop iteration count is computed from lb, ub and incr using the type of var.14

Fortran
The behavior is unspecified if any intermediate result required to compute the iteration count15
cannot be represented in the type determined above.16

No synchronization is implied during the evaluation of the lb, ub, incr or range-expr expressions.17
Whether, in what order, or how many times any side effects within the lb, ub, incr, or range-expr18
expressions occur is unspecified.19

Let the number of loops associated with a construct be n, where all of the associated loops have a20
loop iteration variable. The OpenMP loop-iteration vector space is the n-dimensional space defined21
by the values of vari, 1 ≤ i ≤ n, the iteration variables of the associated loops, with i = 1 referring22
to the outermost loop of the loop nest. An OpenMP loop-iteration vector, which may be used as an23
argument of OpenMP directives and clauses, then has the form:24

var1 [± offset1], var2 [± offset2], . . ., varn [± offsetn]25

where offseti is a compile-time constant non-negative OpenMP integer expression that facilitates26
identification of relative points in the loop-iteration vector space.27

CHAPTER 5. BASE LANGUAGE FORMATS AND RESTRICTIONS 141

Alternatively, OpenMP defines a special keyword omp_cur_iteration that represents the1
current logical iteration. It enables identification of relative points in the logical iteration space2
with:3

omp_cur_iteration [± logical_offset]4

where logical_offset is a compile-time constant non-negative OpenMP integer expression.5

The iterations of some number of outer associated loops can be collapsed into one larger logical6
iteration space that is the collapsed iteration space. The particular integer type used to compute the7
iteration count for the collapsed loop is implementation defined, but its bit precision must be at least8
that of the widest type that the implementation would use for the iteration count of each loop if it9
was the only associated loop. The number of times that any intervening code between any two10
collapsed loops will be executed is unspecified but will be the same for all intervening code at the11
same depth, at least once per iteration of the loop that encloses the intervening code and at most12
once per collapsed logical iteration. If the iteration count of any loop is zero and that loop does not13
enclose the intervening code, the behavior is unspecified.14

5.4.3 collapse Clause15

Name: collapse Properties: once-for-all-constituents, unique16

Arguments17
Name Type Properties
n expression of integer type default18

Modifiers19
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique20

Directives21
distribute, do, for, loop, simd, taskloop22

Semantics23
The collapse clause associates one or more loops of a canonical loop nest with the directive on24
which it appears for the purpose of identifying the portion of the depth of the canonical loop nest to25
which to apply the work distribution semantics of the directive. The argument n specifies the26
number of loops of the associated loop nest to which to apply those semantics. On all directives on27
which the collapse clause may appear, the effect is as if a value of one was specified for n if the28
collapse clause is not specified.29

Restrictions30
• n must not evaluate to a value greater than the depth of the associated loop nest.31

142 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• ordered clause, see Section 5.4.42

• distribute directive, see Section 12.73

• do directive, see Section 12.6.24

• for directive, see Section 12.6.15

• loop directive, see Section 12.86

• simd directive, see Section 11.57

• taskloop directive, see Section 13.78

5.4.4 ordered Clause9

Name: ordered Properties: once-for-all-constituents, unique10

Arguments11
Name Type Properties
n expression of integer type optional, constant, posi-

tive
12

Modifiers13
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique14

Directives15
do, for, simd16

Semantics17
The ordered clause associates one or more loops with the directive on which it appears for the18
purpose of identifying cross-iteration dependences. The argument n specifies the number of loops19
of the associated loop nest to use for that purpose. If n is not specified then the behavior is as if n is20
specified with the same value as is specified for the collapse clause on the construct.21

Restrictions22
• None of the associated loops may be non-rectangular loops.23

• The ordered clause must not appear on a worksharing-loop directive if the associated24
loops include the generated loops of a tile directive.25

• n must not evaluate to a value greater than the depth of the associated loop nest.26

• If n is explicitly specified, the associated loops must be a perfectly nested loop.27

CHAPTER 5. BASE LANGUAGE FORMATS AND RESTRICTIONS 143

• If n is explicitly specified and the collapse clause is also specified for the ordered1
clause on the same construct, n must be greater than or equal to the n specified for the2
collapse clause.3

• If n is explicitly specified, a linear clause must not be specified on the same directive.4

C++
• If n is explicitly specified, none of the associated loops may be a range-based for loop.5

C++

Cross References6
• collapse clause, see Section 5.4.37

• linear clause, see Section 6.4.68

• do directive, see Section 12.6.29

• for directive, see Section 12.6.110

• simd directive, see Section 11.511

• tile directive, see Section 10.112

5.4.5 Consistent Loop Schedules13

For loop-nest-associated constructs that have consistent schedules, the implementation will14
guarantee that memory effects of a logical iteration in the first loop nest happen before the15
execution of the same logical iteration in the second loop nest.16

Two loop-nest-associated constructs have consistent schedules if all of the following conditions17
hold:18

• The constructs have the same directive-name;19

• The regions that correspond to the two constructs have the same binding region;20

• The constructs have the same reproducible schedule;21

• The associated loop nests have identical logical iteration vector spaces; and22

• The associated loop nests are either both rectangular loops or both non-rectangular loops.23

144 OpenMP API – Version 6.0 Preview 2 November 2023

5.4.6 Canonical Loop Sequence Form1

A structured-block has canonical loop sequence form if it conforms to canonical-loop-sequence in2
the following grammar:3

canonical-loop-sequence4
5

C / C++
{6

loop-sequence7
}8

C / C++
Fortran

One of the following:9

loop-sequence10

or11

BLOCK12
loop-sequence13

END BLOCK14

Fortran

loop-sequence A structured block sequence with executable statements that match15
canonical-loop-sequence, loop-sequence-generating-construct, or loop-nest (a16
canonical loop nest as defined in Section 5.4.1). The loops must be17
bounds-independent loops with respect to canonical-loop-sequence.18

loop-transforming-construct19
A loop-transforming construct that generates a canonical loop sequence or20
canonical loop nest.21

The loop sequence length and consecutive order of canonical loop nests matched by loop-nest22
ignore how they are nested in canonical-loop-sequence or loop-sequence.23

Cross References24
• looprange clause, see Section 5.4.725

• Canonical Loop Nest Form, see Section 5.4.126

• Loop-Transforming Constructs, see Chapter 1027

CHAPTER 5. BASE LANGUAGE FORMATS AND RESTRICTIONS 145

5.4.7 looprange Clause1

Name: looprange Properties: unique2

Arguments3
Name Type Properties
first expression of OpenMP integer type constant, positive
count expression of OpenMP integer type constant, positive, ulti-

mate

4

Directives5
fuse6

Semantics7
For a loop-sequence-associated construct, the looprange clause determines the canonical loop8
nests of the associated loop sequence that are affected by the directive. The affected loop nests are9
the count consecutive canonical loop nests that begin with the canonical loop nest specified by the10
first argument.11

For all directives on which the looprange clause may appear, if the clause is not specified then12
the effect is as if the clause was specified with a value equal to the loop sequence lengths of the13
canonical loop sequence.14

Restrictions15
Restrictions to the looprange clause are as follows:16

• first+ count− 1 must not evaluate to a value greater than the loop sequence length of the17
associated canonical loop sequence.18

Cross References19
• fuse directive, see Section 10.520

• Canonical Loop Sequence Form, see Section 5.4.621

146 OpenMP API – Version 6.0 Preview 2 November 2023

Part II1

Directives and Clauses2

147

6 Data Environment1

This chapter presents directives and clauses for controlling data environments. These directives and2
clauses include the data-environment attribute clauses, which explicitly determine the3
data-environment attributes of list items specified in a list argument. The data-environment attribute4
clauses form a general clause set for which certain restrictions apply to their use on directives that5
accept any members of the set. In addition, these clauses are divided into two subsets that also form6
general clause sets: data-sharing attribute clauses and data-mapping attribute clause. Additional7
restrictions apply to the use of these clause sets on directives that accept any members of them.8

Data-sharing attribute clauses control the data-sharing attributes of variables in a construct,9
indicating whether a variable is shared or private in the outermost scope of the construct. Any10
clause that indicates a variable is private in that scope is a privatization clause.11

Data-mapping attribute clauses control the data-mapping attributes of variables in a data12
environment, indicating whether a variable is mapped from the data environment to another device13
data environment.14

6.1 Data-Sharing Attribute Rules15

This section describes how the data-sharing attributes of variables referenced in data environments16
are determined. The following two cases are described separately:17

• Section 6.1.1 describes the data-sharing attribute rules for variables referenced in a construct.18

• Section 6.1.2 describes the data-sharing attribute rules for variables referenced in a region,19
but outside any construct.20

6.1.1 Variables Referenced in a Construct21

A variable that is referenced in a construct can have a predetermined data-sharing attribute, an22
explicitly determined data-sharing attribute, or an implicitly determined data-sharing attribute,23
according to the rules outlined in this section.24

Specifying a variable in a copyprivate clause or a data-sharing attribute clause other than the25
private clause on an enclosed construct causes an implicit reference to the variable in the26
enclosing construct. Specifying a variable in a map clause of an enclosed construct may cause an27
implicit reference to the variable in the enclosing construct. Such implicit references are also28
subject to the data-sharing attribute rules outlined in this section.29

148

Fortran
A type parameter inquiry or complex part designator that is referenced in a construct is treated as if1
its designator is referenced.2

Fortran
Certain variables and objects have predetermined data-sharing attributes for the construct in which3
they are referenced. The first matching rule from the following list of predetermined data-sharing4
attribute rules applies for variables and objects that are referenced in a construct.5

Fortran
• Variables declared within a BLOCK construct inside a construct that do not have the SAVE6

attribute are private.7

Fortran
• variables and common blocks (in Fortran) that appear as arguments in threadprivate8

directives or variables with the _Thread_local (in C) or thread_local (in C/C++)9
storage-class specifier are threadprivate.10

• Variables and common blocks (in Fortran) that appear as arguments in groupprivate11
directives are groupprivate variables.12

• Variables and common blocks (in Fortran) that appear as list items in local clauses on13
declare target directives are device local variables.14

C
• Variables with automatic storage duration that are declared in a scope inside the construct are15

private.16

C
C++

• Variables of non-reference type with automatic storage duration that are declared in a scope17
inside the construct are private.18

C++
C / C++

• Objects with dynamic storage duration are shared.19

C / C++
• The loop iteration variable in the associated loop of a simd construct with just one20

associated loop is linear with a linear-step that is the increment of the associated loop.21

• The loop iteration variable in the associated loops of a simd construct with multiple22
associated loops are lastprivate.23

• The loop iteration variable in any associated loop of a loop construct is lastprivate.24

CHAPTER 6. DATA ENVIRONMENT 149

• The loop iteration variable in any associated loop of a loop-nest-associated directive is1
otherwise private.2

C++
• The implicitly declared variables of a range-based for loop are private.3

C++
Fortran

• Loop iteration variables inside parallel, teams, or task-generating constructs are private4
in the innermost such construct that encloses the loop.5

• Implied-do, FORALL and DO CONCURRENT indices are private.6

Fortran
C / C++

• Variables with static storage duration that are declared in a scope inside the construct are7
shared.8

• If a list item in a has_device_addr clause or in a map clause on the target construct9
has a base pointer, and the base pointer is a scalar variable that does not appear in a map10
clause on the construct, the base pointer is firstprivate.11

• If a list item in a reduction or in_reduction clause on the construct has a base12
pointer then the base pointer is private.13

• Static data members are shared.14

• The __func__ variable and similar function-local predefined variables are shared.15

C / C++
Fortran

• Assumed-size arrays and named constants are shared in constructs that are not data-mapping16
constructs.17

• Named constants are firstprivate in target constructs.18

• An associate name that may appear in a variable definition context is shared if its association19
occurs outside of the construct and otherwise it has the same data-sharing attribute as the20
selector with which it is associated.21

Fortran
Variables with predetermined data-sharing attributes may not be listed in data-sharing attribute22
clauses, except for the cases listed below. For these exceptions only, listing a predetermined23
variable in a data-sharing attribute clause is allowed and overrides the predetermined data-sharing24
attributes of the variable.25

• The loop iteration variable in any associated loop of a loop-nest-associated directive may be26
listed in a private or lastprivate clause.27

150 OpenMP API – Version 6.0 Preview 2 November 2023

• If a simd construct has just one associated loop then its loop iteration variable may be listed1
in a linear clause with a linear-step that is the increment of the associated loop.2

C / C++
• Variables with const-qualified type with no mutable members may be listed in a3
firstprivate clause, even if they are static data members.4

• The __func__ variable and similar function-local predefined variables may be listed in a5
shared or firstprivate clause.6

C / C++
Fortran

• Loop iteration variables of loops that are not associated with any directive may be listed in7
data-sharing attribute clauses on the surrounding teams, parallel or task-generating8
construct, and on enclosed constructs, subject to other restrictions.9

• Assumed-size arrays may be listed in a shared clause.10

• Named constants may be listed in a shared or firstprivate clause.11

Fortran
Additional restrictions on the variables that may appear in individual clauses are described with12
each clause in Section 6.4.13

Variables with explicitly determined data-sharing attributes are those that are referenced in a given14
construct and are listed in a data-sharing attribute clause on the construct.15

Variables with implicitly determined data-sharing attributes are those that are referenced in a given16
construct and do not have predetermined data-sharing attributes or explicitly determined17
data-sharing attributes in that construct.18

Rules for variables with implicitly determined data-sharing attributes are as follows:19

• In a parallel, teams, or task-generating construct, the data-sharing attributes of these20
variables are determined by the default clause, if present (see Section 6.4.1).21

• In a parallel construct, if no default clause is present, these variables are shared.22

• For constructs other than task-generating constructs, if no default clause is present, these23
variables reference the variables with the same names that exist in the enclosing context.24

• In a target construct, variables that are not mapped after applying data-mapping attribute25
rules (see Section 6.8) are firstprivate.26

C++
• In an orphaned task-generating construct, if no default clause is present, formal27

arguments passed by reference are firstprivate.28

C++

CHAPTER 6. DATA ENVIRONMENT 151

Fortran
• In an orphaned task-generating construct, if no default clause is present, dummy1

arguments are firstprivate.2

Fortran
• In a task-generating construct, if no default clause is present, a variable for which the3

data-sharing attribute is not determined by the rules above and that in the enclosing context is4
determined to be shared by all implicit tasks bound to the current team is shared.5

• In a task-generating construct, if no default clause is present, a variable for which the6
data-sharing attribute is not determined by the rules above is firstprivate.7

An OpenMP program is non-conforming if a variable in a task-generating construct is implicitly8
determined to be firstprivate according to the above rules but is not permitted to appear in a9
firstprivate clause according to the restrictions specified in Section 6.4.4.10

6.1.2 Variables Referenced in a Region but not in a11

Construct12

The data-sharing attributes of variables that are referenced in a region, but not in the corresponding13
construct, are determined as follows:14

C / C++
• Variables with static storage duration that are declared in called routines in the region are15

shared.16

• File-scope or namespace-scope variables referenced in called routines in the region are shared17
unless they appear as arguments in a threadprivate or groupprivate directive.18

• Objects with dynamic storage duration are shared.19

• Static data members are shared unless they appear as arguments in a threadprivate or20
groupprivate directive.21

• In C++, formal arguments of called routines in the region that are passed by reference have22
the same data-sharing attributes as the associated actual arguments.23

• Other variables declared in called routines in the region are private.24

C / C++
Fortran

• Local variables declared in called routines in the region and that have the SAVE attribute, or25
that are data initialized, are shared unless they appear as arguments in a threadprivate26
or groupprivate directive.27

152 OpenMP API – Version 6.0 Preview 2 November 2023

• Variables belonging to common blocks, or accessed by host or use association, and1
referenced in called routines in the region are shared unless they appear as arguments in a2
threadprivate or groupprivate directive.3

• Dummy arguments of called routines in the region that have the VALUE attribute are private.4

• A dummy argument of a called routine in the region that does not have the VALUE attribute5
is private if the associated actual argument is not shared.6

• A dummy argument of a called routine in the region that does not have the VALUE attribute7
is shared if the actual argument is shared and it is a scalar variable, structure, an array that is8
not a pointer or assumed-shape array, or a simply contiguous array section. Otherwise, the9
data-sharing attribute of the dummy argument is implementation defined if the associated10
actual argument is shared.11

• Implied-do indices, DO CONCURRENT indices, FORALL indices, and other local variables12
declared in called routines in the region are private.13

Fortran

6.2 threadprivate Directive14

Name: threadprivate Association: none
Category: declarative Properties: pure15

Arguments16
threadprivate(list)17

Name Type Properties
list list of variable list item type default18

Semantics19
The threadprivate directive specifies that variables are replicated, with each thread having its20
own copy. Unless otherwise specified, each copy of a threadprivate variable is initialized once, in21
the manner specified by the program, but at an unspecified point in the program prior to the first22
reference to that copy. The storage of all copies of a threadprivate variable is freed according to23
how static variables are handled in the base language, but at an unspecified point in the program.24

C++
Each copy of a block-scope threadprivate variable that has a dynamic initializer is initialized the25
first time its thread encounters its definition; if its thread does not encounter its definition, its26
initialization is unspecified.27

C++

CHAPTER 6. DATA ENVIRONMENT 153

The content of a threadprivate variable can change across a task scheduling point if the executing1
thread switches to another task that modifies the variable. For more details on task scheduling, see2
Section 1.3 and Chapter 13.3

In parallel regions, references by the primary thread are to the copy of the variable in the thread4
that encountered the parallel region.5

During a sequential part, references are to the copy of the initial thread. The values of data in the6
copy of initial thread are guaranteed to persist between any two consecutive references to the7
threadprivate variable in the program, provided that no teams construct that is not nested inside of8
a target construct is encountered between the references and that the initial thread is not9
executing code inside of a teams region. For initial threads that are executing code inside of a10
teams region, the values of data in the copies of a threadprivate variable of those initial threads11
are guaranteed to persist between any two consecutive references to the variable inside that teams12
region.13

The values of data in the threadprivate variables of threads that are not initial threads are14
guaranteed to persist between two consecutive active parallel regions only if all of the following15
conditions hold:16

• Neither parallel region is nested inside another explicit parallel region;17

• The sizes of the teams used to execute both parallel regions are the same;18

• The thread affinity policies used to execute both parallel regions are the same;19

• The value of the dyn-var ICV in the enclosing task region is false at entry to both20
parallel regions;21

• No teams construct that is not nested inside of a target construct is encountered between22
the parallel regions;23

• No construct with an order clause that specifies concurrent is encountered between the24
parallel regions; and25

• Neither the omp_pause_resource nor omp_pause_resource_all routine is26
called.27

If these conditions all hold, and if a threadprivate variable is referenced in both regions, then threads28
with the same thread number in their respective regions reference the same copy of that variable.29

C / C++
If the above conditions hold, the storage duration, lifetime, and value of the copy of a threadprivate30
variable of a thread that does not appear in any copyin clause on the corresponding construct of31
the second region spans the two consecutive active parallel regions. Otherwise, the storage duration,32
lifetime, and value of the copy of the variable of a thread in the second region is unspecified.33

C / C++

154 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
If the above conditions hold, the definition, association, or allocation status of the copy of a thread1
of a threadprivate variable or a variable in a threadprivate common block that is not affected by any2
copyin clause that appears on the corresponding construct of the second region (a variable is3
affected by a copyin clause if the variable appears in the copyin clause or it is in a common4
block that appears in the copyin clause) spans the two consecutive active parallel regions.5
Otherwise, the definition and association status of the copy of a thread of the variable in the second6
region are undefined, and the allocation status of an allocatable variable are implementation defined.7

If a threadprivate variable or a variable in a threadprivate common block is not affected by any8
copyin clause that appears on the corresponding construct of the first parallel region in9
which it is referenced, the copy of the thread of the variable inherits the declared type parameter10
and the default parameter values from the original variable. The variable or any subobject of the11
variable is initially defined or undefined according to the following rules:12

• If it has the ALLOCATABLE attribute, each copy created has an initial allocation status of13
unallocated;14

• If it has the POINTER attribute, each copy has the same association status as the initial15
association status.16

• If it does not have either the POINTER or the ALLOCATABLE attribute:17

– If it is initially defined, either through explicit initialization or default initialization,18
each copy created is so defined;19

– Otherwise, each copy created is undefined.20

Fortran
C++

The order in which any constructors for different threadprivate variables of class type are called is21
unspecified. The order in which any destructors for different threadprivate variables of class type22
are called is unspecified. A variable that is part of an aggregate variable may appear in a23
threadprivate directive only if it is a static data member of a C++ class.24

C++

Restrictions25
Restrictions to the threadprivate directive are as follows:26

• A thread must not reference the copy of another thread of a threadprivate variable.27

• A threadprivate variable must not appear as the base variable of a list item in any clause28
except for the copyin and copyprivate clauses.29

• An OpenMP program in which an untied task accesses threadprivate storage is30
non-conforming.31

CHAPTER 6. DATA ENVIRONMENT 155

C / C++
• Each list item must be a file-scope, namespace-scope, or static block-scope variable.1

• No list item may have an incomplete type.2

• The address of a threadprivate variable must not be an address constant.3

• If the value of a variable referenced in an explicit initializer of a threadprivate variable is4
modified prior to the first reference to any instance of the threadprivate variable, the behavior5
is unspecified.6

• A threadprivate directive for file-scope variables must appear outside any definition or7
declaration, and must lexically precede all references to any of the variables in its list.8

• A threadprivate directive for namespace-scope variables must appear outside any9
definition or declaration other than the namespace definition itself and must lexically precede10
all references to any of the variables in its list.11

• Each variable in the list of a threadprivate directive at file, namespace, or class scope12
must refer to a variable declaration at file, namespace, or class scope that lexically precedes13
the directive.14

• A threadprivate directive for a static block-scope variable must appear in the scope of15
the variable and not in a nested scope. The directive must lexically precede all references to16
any of the variables in its list.17

• Each variable in the list of a threadprivate directive in block scope must refer to a18
variable declaration in the same scope that lexically precedes the directive. The variable must19
have static storage duration.20

• If a variable is specified in a threadprivate directive in one compilation unit, it must be21
specified in a threadprivate directive in every compilation unit in which it is declared.22

C / C++
C++

• A threadprivate directive for static class member variables must appear in the class23
definition, in the same scope in which the member variables are declared, and must lexically24
precede all references to any of the variables in its list.25

• A threadprivate variable must not have an incomplete type or a reference type.26

• A threadprivate variable with class type must have:27

– An accessible, unambiguous default constructor in the case of default initialization28
without a given initializer;29

– An accessible, unambiguous constructor that accepts the given argument in the case of30
direct initialization; and31

156 OpenMP API – Version 6.0 Preview 2 November 2023

– An accessible, unambiguous copy constructor in the case of copy initialization with an1
explicit initializer.2

C++
Fortran

• Each list item must be a named variable or a named common block; a named common block3
must appear between slashes.4

• The list argument must not include any coarrays or associate names.5

• The threadprivate directive must appear in the declaration section of a scoping unit in6
which the common block or variable is declared.7

• If a threadprivate directive that specifies a common block name appears in one8
compilation unit, then such a directive must also appear in every other compilation unit that9
contains a COMMON statement that specifies the same name. It must appear after the last such10
COMMON statement in the compilation unit.11

• If a threadprivate variable or a threadprivate common block is declared with the BIND12
attribute, the corresponding C entities must also be specified in a threadprivate13
directive in the C program.14

• A variable may only appear as an argument in a threadprivate directive in the scope in15
which it is declared. It must not be an element of a common block or appear in an16
EQUIVALENCE statement.17

• A variable that appears as an argument in a threadprivate directive must be declared in18
the scope of a module or have the SAVE attribute, either explicitly or implicitly.19

• The effect of an access to a threadprivate variable in a DO CONCURRENT construct is20
unspecified.21

Fortran

Cross References22
• copyin clause, see Section 6.7.123

• order clause, see Section 11.424

• dyn-var ICV, see Table 2.125

• Determining the Number of Threads for a parallel Region, see Section 11.2.126

CHAPTER 6. DATA ENVIRONMENT 157

6.3 List Item Privatization1

Some data-sharing attribute clauses, including reduction clauses, specify that list items that appear2
in their list argument may be privatized for the construct on which they appear. Each task that3
references a privatized list item in any statement in the construct receives at least one new list item if4
the construct is a loop-collapsing construct, and otherwise each such task receives one new list item.5
Each SIMD lane used in a simd construct that references a privatized list item in any statement in6
the construct receives at least one new list item. Language-specific attributes for new list items are7
derived from the corresponding original list items. Inside the construct, all references to the8
original list items are replaced by references to the new list items received by the task or SIMD lane.9

If the construct is a loop-collapsing construct then, within the same collapsed logical iteration of10
the collapsed loops, the same new list item replaces all references to the original list item. For any11
two collapsed iterations, if the references to the original list item are replaced by the same new list12
item then the collapsed iterations must execute in some sequential order.13

In the rest of the region, whether references are to a new list item or the original list item is14
unspecified. Therefore, if an attempt is made to reference the original list item, its value after the15
region is also unspecified. If a task or a SIMD lane does not reference a privatized list item,16
whether the task or SIMD lane receives a new list item is unspecified.17

The value and/or allocation status of the original list item will change only:18

• If accessed and modified via a pointer;19

• If possibly accessed in the region but outside of the construct;20

• As a side effect of directives or clauses; or21

Fortran
• If accessed and modified via construct association.22

Fortran
C++

If the construct is contained in a member function, whether accesses anywhere in the region23
through the implicit this pointer refer to the new list item or the original list item is unspecified.24

C++
C / C++

A new list item of the same type, with automatic storage duration, is allocated for the construct.25
The storage and thus lifetime of these new list items last until the block in which they are created26
exits. The size and alignment of the new list item are determined by the type of the variable. This27
allocation occurs once for each task generated by the construct and once for each SIMD lane used28
by the construct.29

The new list item is initialized, or has an undefined initial value, as if it had been locally declared30
without an initializer.31

C / C++

158 OpenMP API – Version 6.0 Preview 2 November 2023

C++
If the type of a list item is a reference to a type T then the type will be considered to be T for all1
purposes of the clause.2

The order in which any default constructors for different private variables of class type are called is3
unspecified. The order in which any destructors for different private variables of class type are4
called is unspecified.5

C++
Fortran

If any statement of the construct references a list item, a new list item of the same type and type6
parameters is allocated. This allocation occurs once for each task generated by the construct and7
once for each SIMD lane used by the construct. If the type of the list item has default initialization,8
the new list item has default initialization. Otherwise, the initial value of the new list item is9
undefined. The initial status of a private pointer is undefined.10

For a list item or the subobject of a list item with the ALLOCATABLE attribute:11

• If the allocation status is unallocated, the new list item or the subobject of the new list item12
will have an initial allocation status of unallocated;13

• If the allocation status is allocated, the new list item or the subobject of the new list item will14
have an initial allocation status of allocated; and15

• If the new list item or the subobject of the new list item is an array, its bounds will be the16
same as those of the original list item or the subobject of the original list item.17

A privatized list item may be storage-associated with other variables when the data-sharing18
attribute clause is encountered. Storage association may exist because of base language constructs19
such as EQUIVALENCE or COMMON. If A is a variable that is privatized by a construct and B is a20
variable that is storage-associated with A then:21

• The contents, allocation, and association status of B are undefined on entry to the region;22

• Any definition of A, or of its allocation or association status, causes the contents, allocation,23
and association status of B to become undefined; and24

• Any definition of B, or of its allocation or association status, causes the contents, allocation,25
and association status of A to become undefined.26

A privatized list item may be a selector of an ASSOCIATE, SELECT RANK or SELECT TYPE27
construct. If the construct association is established prior to a parallel region, the association28
between the associate name and the original list item will be retained in the region.29

Finalization of a list item of a finalizable type or subobjects of a list item of a finalizable type30
occurs at the end of the region. The order in which any final subroutines for different variables of a31
finalizable type are called is unspecified.32

Fortran

CHAPTER 6. DATA ENVIRONMENT 159

If a list item appears in both firstprivate and lastprivate clauses, the update required for1
the lastprivate clause occurs after all initializations for the firstprivate clause.2

Restrictions3
The following restrictions apply to any list item that is privatized unless otherwise stated for a given4
data-sharing attribute clause:5

C++
• A variable of class type (or array thereof) that is privatized requires an accessible,6

unambiguous default constructor for the class type.7

• A variable that is privatized must not have the constexpr specifier unless it is of class type8
with a mutable member. This restriction does not apply to the firstprivate clause.9

C++
C / C++

• A variable that is privatized must not have a const-qualified type unless it is of class type10
with a mutable member. This restriction does not apply to the firstprivate clause.11

• A variable that is privatized must not have an incomplete type or be a reference to an12
incomplete type.13

C / C++
Fortran

• Variable that appear in namelist statements, in variable format expressions, and in14
expressions for statement function definitions, must not be privatized.15

• Pointers with the INTENT(IN) attribute must not be privatized. This restriction does not16
apply to the firstprivate clause.17

• A private variable must not be coindexed or appear as an actual argument to a procedure18
where the corresponding dummy argument is a coarray.19

• Assumed-size arrays must not be privatized.20

• An optional dummy argument that is not present must not appear as a list item in a21
privatization clause or be privatized as a result of an implicitly determined data-sharing22
attribute or predetermined data-sharing attribute.23

Fortran

160 OpenMP API – Version 6.0 Preview 2 November 2023

6.4 Data-Sharing Attribute Clauses1

Several constructs accept clauses that allow a user to control the data-sharing attributes of variables2
referenced in the construct. Not all of the clauses listed in this section are valid on all directives.3
The set of clauses that is valid on a particular directive is described with the directive. The4
reduction clauses are explained in Section 6.5.5

A list item may be specified in both firstprivate and lastprivate clauses.6

C++
If a variable referenced in a data-sharing attribute clause has a type derived from a template and the7
OpenMP program does not otherwise reference that variable, any behavior related to that variable is8
unspecified.9

C++
Fortran

If individual members of a common block appear in a data-sharing attribute clause other than the10
shared clause, the variables no longer have a Fortran storage association with the common block.11

Fortran

6.4.1 default Clause12

Name: default Properties: unique13

Arguments14
Name Type Properties
data-sharing-attribute Keyword: firstprivate, none,

private, shared
default15

Modifiers16
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique17

Directives18
parallel, task, taskloop, teams19

Semantics20
The default clause determines the implicitly determined data-sharing attributes of certain21
variables that are referenced in the construct, in accordance with the rules given in Section 6.1.1.22

If data-sharing-attribute is not none, the data-sharing attributes of all variables referenced in the23
construct that have implicitly determined data-sharing attributes will be data-sharing-attribute. If24
data-sharing-attribute is none, the data-sharing attribute is not implicitly determined.25

CHAPTER 6. DATA ENVIRONMENT 161

Restrictions1
Restrictions to the default clause are as follows:2

• If data-sharing-attribute is none, each variable that is referenced in the construct and does3
not have a predetermined data-sharing attribute must have an explicitly determined4
data-sharing attribute.5

C / C++
• If data-sharing-attribute is firstprivate or private, each variable with static storage6

duration that is declared in a namespace or global scope, is referenced in the construct, and7
does not have a predetermined data-sharing attribute must have an explicitly determined8
data-sharing attribute.9

C / C++

Cross References10
• parallel directive, see Section 11.211

• task directive, see Section 13.612

• taskloop directive, see Section 13.713

• teams directive, see Section 11.314

6.4.2 shared Clause15

Name: shared Properties: data-environment attribute, data-
sharing attribute16

Arguments17
Name Type Properties
list list of variable list item type default18

Modifiers19
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique20

Directives21
parallel, task, taskloop, teams22

Semantics23
The shared clause declares one or more list items to be shared by tasks generated by the construct24
on which it appears. All references to a list item within a task refer to the storage area of the25
original list item at the point the directive was encountered.26

162 OpenMP API – Version 6.0 Preview 2 November 2023

The programmer must ensure, by adding proper synchronization, that storage shared by an explicit1
task region does not reach the end of its lifetime before the explicit task region completes its2
execution.3

Fortran
The association status of a shared pointer becomes undefined upon entry to and exit from the4
construct if it is associated with a target or a subobject of a target that appears as a privatized list5
item in a data-sharing attribute clause on the construct. A reference to the shared storage that is6
associated with the dummy argument by any other task must be synchronized with the reference to7
the procedure to avoid possible data races.8

Fortran

Cross References9
• parallel directive, see Section 11.210

• task directive, see Section 13.611

• taskloop directive, see Section 13.712

• teams directive, see Section 11.313

6.4.3 private Clause14

Name: private Properties: data-environment attribute, data-
sharing attribute, innermost-leaf, privatization15

Arguments16
Name Type Properties
list list of variable list item type default17

Modifiers18
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique19

Directives20
distribute, do, for, loop, parallel, scope, sections, simd, single, target,21
task, taskloop, teams22

Semantics23
The private clause specifies that its list items are to be privatized according to Section 6.3. Each24
task or SIMD lane that references a list item in the construct receives only one new list item, unless25
the construct has one or more associated loops and an order clause that specifies concurrent26
is also present.27

CHAPTER 6. DATA ENVIRONMENT 163

Restrictions1
Restrictions to the private clause are as specified in Section 6.3.2

Cross References3
• distribute directive, see Section 12.74

• do directive, see Section 12.6.25

• for directive, see Section 12.6.16

• loop directive, see Section 12.87

• parallel directive, see Section 11.28

• scope directive, see Section 12.29

• sections directive, see Section 12.310

• simd directive, see Section 11.511

• single directive, see Section 12.112

• target directive, see Section 14.813

• task directive, see Section 13.614

• taskloop directive, see Section 13.715

• teams directive, see Section 11.316

• List Item Privatization, see Section 6.317

6.4.4 firstprivate Clause18

Name: firstprivate Properties: data-environment attribute, data-
sharing attribute, privatization19

Arguments20
Name Type Properties
list list of variable list item type default21

Modifiers22
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique23

Directives24
distribute, do, for, parallel, scope, sections, single, target, task,25
taskloop, teams26

164 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
The firstprivate clause provides a superset of the functionality provided by the private2
clause. A list item that appears in a firstprivate clause is subject to the private clause3
semantics described in Section 6.4.3, except as noted. In addition, the new list item is initialized4
from the original list item. The initialization of the new list item is done once for each task that5
references the list item in any statement in the construct. The initialization is done prior to the6
execution of the construct.7

For a firstprivate clause on a construct that is not a work-distribution construct, the initial8
value of the new list item is the value of the original list item that exists immediately prior to the9
construct in the task region where the construct is encountered unless otherwise specified. For a10
firstprivate clause on a work-distribution construct, the initial value of the new list item for11
each implicit task of the threads that execute the construct is the value of the original list item that12
exists in the implicit task immediately prior to the point in time that the construct is encountered13
unless otherwise specified.14

To avoid data races, concurrent updates of the original list item must be synchronized with the read15
of the original list item that occurs as a result of the firstprivate clause.16

C / C++
For variables of non-array type, the initialization occurs by copy assignment. For an array of17
elements of non-array type, each element is initialized as if by assignment from an element of the18
original array to the corresponding element of the new array.19

C / C++
C++

For each variable of class type:20

• If the firstprivate clause is not on a target construct then a copy constructor is21
invoked to perform the initialization; and22

• If the firstprivate clause is on a target construct then how many copy constructors,23
if any, are invoked is unspecified.24

If copy constructors are called, the order in which copy constructors for different variables of class25
type are called is unspecified.26

C++
Fortran

If the original list item does not have the POINTER attribute, initialization of the new list items27
occurs as if by intrinsic assignment unless the original list item has a compatible type-bound28
defined assignment, in which case initialization of the new list items occurs as if by the defined29
assignment. If the original list item that does not have the POINTER attribute has the allocation30
status of unallocated, the new list items will have the same status.31

CHAPTER 6. DATA ENVIRONMENT 165

If the original list item has the POINTER attribute, the new list items receive the same association1
status as the original list item, as if by pointer assignment.2

The list items that appear in a firstprivate clause may include named constants.3

Fortran

Restrictions4
Restrictions to the firstprivate clause are as follows:5

• A list item that is private within a parallel region must not appear in a firstprivate6
clause on a worksharing construct if any of the worksharing regions that arise from the7
worksharing construct ever bind to any of the parallel regions that arise from the8
parallel construct.9

• A list item that is private within a teams region must not appear in a firstprivate10
clause on a distribute construct if any of the distribute regions that arise from the11
distribute construct ever bind to any of the teams regions that arise from the teams12
construct.13

• A list item that appears in a reduction clause of a parallel construct must not appear14
in a firstprivate clause on a worksharing construct or a task, or taskloop15
construct if any of the worksharing regions or task regions that arise from the worksharing16
construct or task or taskloop construct ever bind to any of the parallel regions that17
arise from the parallel construct.18

• A list item that appears in a reduction clause of a teams construct must not appear in a19
firstprivate clause on a distribute construct if any of the distribute regions20
that arise from the distribute construct ever bind to any of the teams regions that arise21
from the teams construct.22

• A list item that appears in a reduction clause of a worksharing construct must not appear23
in a firstprivate clause in a task construct encountered during execution of any of the24
worksharing regions that arise from the worksharing construct.25

C++
• A variable of class type (or array thereof) that appears in a firstprivate clause requires26

an accessible, unambiguous copy constructor for the class type.27

• If the original list item in a firstprivate clause on a work-distribution construct has a28
reference type then it must bind to the same object for all threads in the binding thread set of29
the work-distribution region.30

C++
Fortran

• If the list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is31
unspecified.32

Fortran

166 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• private clause, see Section 6.4.32

• distribute directive, see Section 12.73

• do directive, see Section 12.6.24

• for directive, see Section 12.6.15

• parallel directive, see Section 11.26

• scope directive, see Section 12.27

• sections directive, see Section 12.38

• single directive, see Section 12.19

• target directive, see Section 14.810

• task directive, see Section 13.611

• taskloop directive, see Section 13.712

• teams directive, see Section 11.313

6.4.5 lastprivate Clause14

Name: lastprivate Properties: data-environment attribute, data-
sharing attribute, privatization15

Arguments16
Name Type Properties
list list of variable list item type default17

Modifiers18
Name Modifies Type Properties
lastprivate-
modifier

list Keyword: conditional default

directive-name-
modifier

all arguments Keyword:
directive-name

unique
19

Directives20
distribute, do, for, loop, sections, simd, taskloop21

CHAPTER 6. DATA ENVIRONMENT 167

Semantics1
The lastprivate clause provides a superset of the functionality provided by the private2
clause. A list item that appears in a lastprivate clause is subject to the private clause3
semantics described in Section 6.4.3. In addition, when a lastprivate clause without the4
conditional modifier appears on a directive and the list item is not a loop iteration variable of5
any associated loop, the value of each new list item from the sequentially last iteration of the6
associated loops, or the lexically last structured block sequence associated with a sections7
construct, is assigned to the original list item. When the conditional modifier appears on the8
clause or the list item is a loop iteration variable of one of the associated loops, if sequential9
execution of the associated structured block would assign a value to the list item then the original10
list item is assigned the value that the list item would have after sequential execution of the11
structured block.12

C++
For class types, the copy assignment operator is invoked. The order in which copy assignment13
operators for different variables of the same class type are invoked is unspecified.14

C++
C / C++

For an array of elements of non-array type, each element is assigned to the corresponding element15
of the original array.16

C / C++
Fortran

If the original list item does not have the POINTER attribute, its update occurs as if by intrinsic17
assignment unless it has a type bound procedure as a defined assignment.18

If the original list item has the POINTER attribute, its update occurs as if by pointer assignment.19

Fortran
When the conditional modifier does not appear on the lastprivate clause, any list item20
that is not a loop iteration variable of the associated loops and that is not assigned a value by the21
sequentially last iteration of the loops, or by the lexically last structured block sequence associated22
with a sections construct, has an unspecified value after the construct. When the23
conditional modifier does not appear on the lastprivate clause, a list item that is the loop24
iteration variable of an associated loop and that would not be assigned a value during sequential25
execution of the canonical loop nest has an unspecified value after the construct. Unassigned26
subcomponents also have unspecified values after the construct.27

If the lastprivate clause is used on a construct to which neither the nowait nor the28
nogroup clauses are applied, the original list item becomes defined at the end of the construct. To29
avoid data races, concurrent reads or updates of the original list item must be synchronized with the30
update of the original list item that occurs as a result of the lastprivate clause.31

Otherwise, if the lastprivate clause is used on a construct to which the nowait or the32
nogroup clauses are applied, accesses to the original list item may create a data race. To avoid33

168 OpenMP API – Version 6.0 Preview 2 November 2023

this data race, if an assignment to the original list item occurs then synchronization must be inserted1
to ensure that the assignment completes and the original list item is flushed to memory.2

If a list item that appears in a lastprivate clause with the conditional modifier is modified3
in the region by an assignment outside the construct or not to the list item then the value assigned to4
the original list item is unspecified.5

Restrictions6
Restrictions to the lastprivate clause are as follows:7

• A list item must not appear in a lastprivate clause on a work-distribution construct if8
the corresponding region binds to the region of a parallelism-generating construct in which9
the list item is private.10

• A list item that appears in a lastprivate clause with the conditional modifier must11
be a scalar variable.12

C++
• A variable of class type (or array thereof) that appears in a lastprivate clause requires13

an accessible, unambiguous default constructor for the class type, unless the list item is also14
specified in a firstprivate clause.15

• A variable of class type (or array thereof) that appears in a lastprivate clause requires16
an accessible, unambiguous copy assignment operator for the class type.17

• If an original list item in a lastprivate clause on a work-distribution construct has a18
reference type then it must bind to the same object for all threads in the binding thread set of19
the work-distribution region.20

C++
Fortran

• A variable that appears in a lastprivate clause must be definable.21

• If the original list item has the ALLOCATABLE attribute, the corresponding list item of22
which the value is assigned to the original list item must have an allocation status of allocated23
upon exit from the sequentially last iteration or lexically last structured block sequence24
associated with a sections construct.25

• If the list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is26
unspecified.27

Fortran

CHAPTER 6. DATA ENVIRONMENT 169

Cross References1
• private clause, see Section 6.4.32

• distribute directive, see Section 12.73

• do directive, see Section 12.6.24

• for directive, see Section 12.6.15

• loop directive, see Section 12.86

• sections directive, see Section 12.37

• simd directive, see Section 11.58

• taskloop directive, see Section 13.79

6.4.6 linear Clause10

Name: linear Properties: data-environment attribute, data-
sharing attribute, privatization, innermost-
leaf, post-modified

11

Arguments12
Name Type Properties
list list of variable list item type default13

Modifiers14
Name Modifies Type Properties
step-simple-
modifier

list OpenMP integer expression exclusive, region-
invariant, unique

step-complex-
modifier

list Complex, name: step Ar-
guments:
linear-step expression of

integer type (region-
invariant)

unique

linear-modifier list Keyword: ref, uval, val unique
directive-name-
modifier

all arguments Keyword:
directive-name

unique

15

Directives16
declare simd, do, for, simd17

170 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
The linear clause provides a superset of the functionality provided by the private clause. A2
list item that appears in a linear clause is subject to the private clause semantics described in3
Section 6.4.3, except as noted. If the step-simple-modifier is specified, the behavior is as if the4
step-complex-modifier is instead specified with step-simple-modifier as its linear-step argument. If5
linear-step is not specified, it is assumed to be 1.6

When a linear clause is specified on a loop-collapsing construct, the value of the new list item7
on each collapsed iteration corresponds to the value of the original list item before entering the8
construct plus the logical number of the iteration times linear-step. The value that corresponds to9
the sequentially last collapsed iteration of the collapsed loops is assigned to the original list item.10

When a linear clause is specified on a declare simd directive, the list items refer to11
parameters of the procedure to which the directive applies. For a given call to the procedure, the12
clause determines whether the SIMD version generated by the directive may be called. If the clause13
does not specify the ref linear-modifier, the SIMD version requires that the value of the14
corresponding argument at the callsite is equal to the value of the argument from the first lane plus15
the logical number of the SIMD lane times the linear-step. If the clause specifies the ref16
linear-modifier, the SIMD version requires that the storage locations of the corresponding17
arguments at the callsite from each SIMD lane correspond to storage locations within a18
hypothetical array of elements of the same type, indexed by the logical number of the SIMD lane19
times the linear-step.20

Restrictions21
Restrictions to the linear clause are as follows:22

• Only a loop iteration variable of an associated loop may appear as a list item in a linear23
clause if a reduction clause with the inscan modifier also appears on the construct.24

• A linear-modifier may be specified as ref or uval only on a declare simd directive.25

• For a linear clause that appears on a loop-nest-associated directive, the difference between26
the value of a list item at the end of a collapsed iteration and its value at the beginning of the27
collapsed iteration must be equal to linear-step.28

• If linear-modifier is uval for a list item in a linear clause that is specified on a declare29
simd directive and the list item is modified during a call to the SIMD version of the30
procedure, the OpenMP program must not depend on the value of the list item upon return31
from the procedure.32

• If linear-modifier is uval for a list item in a linear clause that is specified on a declare33
simd directive, the OpenMP program must not depend on the storage of the argument in the34
procedure being the same as the storage of the corresponding argument at the callsite.35

C
• All list items must be of integral or pointer type.36

CHAPTER 6. DATA ENVIRONMENT 171

• If specified, linear-modifier must be val.1

C
C++

• If linear-modifier is not ref, all list items must be of integral or pointer type, or must be a2
reference to an integral or pointer type.3

• If linear-modifier is ref or uval, all list items must be of a reference type.4

• If a list item in a linear clause on a worksharing construct has a reference type then it must5
bind to the same object for all threads of the team.6

• If a list item in a linear clause that is specified on a declare simd directive is of a7
reference type and linear-modifier is not ref, the difference between the value of the8
argument on exit from the function and its value on entry to the function must be the same for9
all SIMD lanes.10

C++
Fortran

• If linear-modifier is not ref, all list items must be of type integer.11

• If linear-modifier is ref or uval, all list items must be dummy arguments without the12
VALUE attribute.13

• List items must not be variables that have the POINTER attribute.14

• If linear-modifier is not ref and a list item has the ALLOCATABLE attribute, the allocation15
status of the list item in the last collapsed iteration must be allocated upon exit from that16
collapsed iteration.17

• If linear-modifier is ref, list items must be polymorphic variables, assumed-shape arrays, or18
variables with the ALLOCATABLE attribute.19

• If a list item in a linear clause that is specified on a declare simd directive is a20
dummy argument without the VALUE attribute and linear-modifier is not ref, the difference21
between the value of the argument on exit from the procedure and its value on entry to the22
procedure must be the same for all SIMD lanes.23

• A common block name must not appear in a linear clause.24

Fortran

172 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• private clause, see Section 6.4.32

• declare simd directive, see Section 8.73

• do directive, see Section 12.6.24

• for directive, see Section 12.6.15

• simd directive, see Section 11.56

• taskloop directive, see Section 13.77

6.4.7 is_device_ptr Clause8

Name: is_device_ptr Properties: data-environment attribute, data-
sharing attribute, innermost-leaf9

Arguments10
Name Type Properties
list list of variable list item type default11

Modifiers12
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique13

Directives14
dispatch, target15

Semantics16
The is_device_ptr clause indicates that its list items are device pointers. Support for device17
pointers created outside of OpenMP, specifically outside of any OpenMP mechanism that returns a18
device pointer, is implementation defined.19

If the is_device_ptr clause is specified on a target construct, each list item is privatized20
inside the construct and the new list item is initialized to the device address to which the original21
list item refers.22

Restrictions23
Restrictions to the is_device_ptr clause are as follows:24

• Each list item must be a valid device pointer for the device data environment.25

CHAPTER 6. DATA ENVIRONMENT 173

Cross References1
• has_device_addr clause, see Section 6.4.92

• dispatch directive, see Section 8.63

• target directive, see Section 14.84

6.4.8 use_device_ptr Clause5

Name: use_device_ptr Properties: data-environment attribute, data-
sharing attribute6

Arguments7
Name Type Properties
list list of variable list item type default8

Modifiers9
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique10

Directives11
target data12

Semantics13
Each list item in the use_device_ptr clause results in a new list item that is a device pointer14
that refers to a device address, determined as follows. A list item is treated as if a zero-offset15
assumed-size array at the storage location to which the list item points is mapped by a map clause16
on the construct with a map-type of alloc. If a matched candidate is found for the assumed-size17
array (see Section 6.8.3), the new list item refers to the device address that is the base address of the18
array section that corresponds to the assumed-size array in the device data environment. Otherwise,19
the new list item refers to the address stored in the original list item. All references to the list item20
inside the structured block associated with the construct are replaced with the new list item.21

Restrictions22
Restrictions to the use_device_ptr clause are as follows:23

• Each list item must be a C pointer for which the value is the address of an object that has24
corresponding storage or is accessible on the target device.25

Cross References26
• target data directive, see Section 14.527

174 OpenMP API – Version 6.0 Preview 2 November 2023

6.4.9 has_device_addr Clause1

Name: has_device_addr Properties: data-environment attribute, data-
sharing attribute, outermost-leaf2

Arguments3
Name Type Properties
list list of variable list item type default4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
target8

Semantics9
The has_device_addr clause indicates that its list items already have device addresses and10
therefore they may be directly accessed from a target device. If the device address of a list item is11
not for the device on which the region that is associated with the construct on which the clause12
appears executes, accessing the list item inside the region results in unspecified behavior. The list13
items may include array sections.14

Fortran
For a list item in a has_device_addr clause, the CONTIGUOUS attribute, storage location,15
storage size, array bounds, character length, association status and allocation status (as applicable)16
are the same inside the construct on which the clause appears as for the original list item. The result17
of inquiring about other list item properties inside the structured block is implementation defined.18
For a list item that is an array section, the array bounds and result when invoking C_LOC inside the19
structured block is the same as if the base expression had been specified in the clause instead.20

Fortran
Restrictions21
Restrictions to the has_device_addr clause are as follows:22

C / C++
• Each list item must have a valid device address for the device data environment.23

C / C++
Fortran

• A list item must either have a valid device address for the device data environment, be an24
unallocated allocatable variable, or be a disassociated data pointer.25

• The association status of a list item that is a pointer must not be undefined unless it is a26
structure component and it results from a predefined default mapper.27

Fortran

CHAPTER 6. DATA ENVIRONMENT 175

Cross References1
• target directive, see Section 14.82

6.4.10 use_device_addr Clause3

Name: use_device_addr Properties: data-environment attribute, data-
sharing attribute4

Arguments5
Name Type Properties
list list of variable list item type default6

Modifiers7
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique8

Directives9
target data10

Semantics11
Each list item in a use_device_addr clause that is present in the device data environment is12
treated as if it is implicitly mapped by a map clause on the construct with a map-type of alloc. If13
a corresponding list item or part of a corresponding list item has storage in the device data14
environment and the list item has a base variable, all references to the list item inside the structured15
block associated with the construct are replaced with references to the corresponding list item.16
Otherwise, all references are to the original list item. The list items in a use_device_addr17
clause may include array sections and assumed-size arrays.18

C / C++
If a list item is an array section that has a base pointer, all references to the base pointer inside the19
structured block are replaced with a new pointer that contains the base address of the corresponding20
list item. This conversion may be elided if no corresponding list item is present.21

C / C++

Restrictions22
Restrictions to the use_device_addr clause are as follows:23

• Each list item must have a corresponding list item in the device data environment or be24
accessible on the target device.25

• If a list item is an array section, the base expression must be a base language identifier.26

Cross References27
• target data directive, see Section 14.528

176 OpenMP API – Version 6.0 Preview 2 November 2023

6.5 Reduction and Induction Clauses and Directives1

The reduction clauses and induction clause are data-sharing attribute clauses that can be used to2
perform some forms of recurrence calculations in parallel. Reduction clauses include reduction3
scoping clauses and reduction participating clauses. Reduction scoping clauses define the region in4
which a reduction is computed. Reduction participating clauses define the participants in the5
reduction. The induction clause can be used to express induction operations in a loop.6

6.5.1 OpenMP Reduction and Induction Identifiers7

The syntax of OpenMP reduction and induction identifiers is defined as follows:8

C
A reduction identifier is either an identifier or one of the following operators: +, *, &, |, ^, && and9
||.10

An induction identifier is either an identifier or one of the following operators: + and *.11

C
C++

A reduction identifier is either an id-expression or one of the following operators: +, *, &, |, ^, &&12
and ||.13

An induction identifier is either an id-expression or one of the following operators: + and *.14

C++
Fortran

A reduction identifier is either a base language identifier, or a user-defined operator, or one of the15
following operators: +, *, .and., .or., .eqv., .neqv., or one of the following intrinsic16
procedure names: max, min, iand, ior, ieor.17

An induction identifier is either a base language identifier, or a user-defined operator, or one of the18
following operators: + and *.19

Fortran

6.5.2 OpenMP Reduction and Induction Expressions20

A reduction expression is an OpenMP stylized expression that is relevant to reduction clauses. An21
induction expression is an OpenMP stylized expression that is relevant to the induction clause.22

Restrictions23
Restrictions to reduction expressions and induction expressions are as follows:24

• If execution of a reduction expression or induction expression results in the execution of a25
construct or an OpenMP API call, the behavior is unspecified.26

CHAPTER 6. DATA ENVIRONMENT 177

C / C++
• A declare target directive must be specified for any function that can be accessed through any1

reduction expression or induction expression that corresponds to a reduction or induction2
identifier that is used in a target region.3

C / C++
Fortran

• Any generic identifier, defined operation, defined assignment, or specific procedure used in a4
reduction expression or induction expression must be resolvable to a procedure with an5
explicit interface that has only scalar dummy arguments.6

• Any procedure used in a reduction expression or induction expression must not have any7
alternate returns appear in the argument list.8

• Any procedure called in the region of a reduction expression or induction expression must be9
pure and may not reference any host-associated or use-associated variables nor any variables10
in a common block.11

• A declare target directive must be specified for any procedure that can be accessed12
through any reduction expression or induction expression that corresponds to an identifier13
that is used in a target region.14

Fortran

6.5.2.1 OpenMP Combiner Expressions15

A combiner expression specifies how a reduction combines partial results into a single value.16

Fortran
A combiner expression is an assignment statement or a subroutine name followed by an argument17
list.18

Fortran
In the definition of a combiner expression, omp_in and omp_out correspond to two special19
variable identifiers that refer to storage of the type of the reduction list item to which the reduction20
applies. If the list item is an array or array section, the identifiers to which omp_in and omp_out21
correspond each refer to an array element. Each of the two special variable identifiers denotes one22
of the values to be combined before executing the combiner expression. The special omp_out23
identifier refers to the storage that holds the resulting combined value after executing the combiner24
expression. The number of times that the combiner expression is executed and the order of these25
executions for any reduction clause are unspecified.26

Fortran
If the combiner expression is a subroutine name with an argument list, the combiner expression is27
evaluated by calling the subroutine with the specified argument list. If the combiner expression is an28
assignment statement, the combiner expression is evaluated by executing the assignment statement.29

178 OpenMP API – Version 6.0 Preview 2 November 2023

If a generic name is used in a combiner expression and the list item in the corresponding reduction1
clause is an array or array section, it is resolved to the specific procedure that is elemental or only2
has scalar dummy arguments.3

Fortran
Restrictions4
Restrictions to combiner expressions are as follows:5

• The only variables allowed in a combiner expression are omp_in and omp_out.6

Fortran
• Any selectors in the designator of omp_in and omp_out must be component selectors.7

Fortran

6.5.2.2 OpenMP Initializer Expressions8

If the initialization of the private copies of reduction list items is not determined a priori, the syntax9
of an initializer expression is as follows:10

C
omp_priv = initializer11

C
or12

C++
omp_priv initializer13

C++
or14

C / C++
function-name(argument-list)15

C / C++
or16

Fortran
omp_priv = expression17

or18

subroutine-name(argument-list)19

Fortran
In the definition of an initializer expression, the omp_priv special variable identifier refers to the20
storage to be initialized. The special variable identifier omp_orig can be used in an initializer21
expression to refer to the storage of the original list item to be reduced. The number of times that an22
initializer expression is evaluated and the order of these evaluations are unspecified.23

CHAPTER 6. DATA ENVIRONMENT 179

C / C++
If an initializer expression is a function name with an argument list, it is evaluated by calling the1
function with the specified argument list. Otherwise, an initializer expression specifies how2
omp_priv is declared and initialized.3

C / C++
Fortran

If an initializer expression is a subroutine name with an argument list, it is evaluated by calling the4
subroutine with the specified argument list. If an initializer expression is an assignment statement,5
the initializer expression is evaluated by executing the assignment statement.6

Fortran
C

The a priori initialization of private copies that are created for reductions follows the rules for7
initialization of objects with static storage duration.8

C
C++

The a priori initialization of private copies that are created for reductions follows the rules for9
default-initialization.10

C++
Fortran

The rules for a priori initialization of private copies that are created for reductions are as follows:11

• For complex, real, or integer types, the value 0 will be used.12

• For logical types, the value .false. will be used.13

• For derived types for which default initialization is specified, default initialization will be14
used.15

• Otherwise, the behavior is unspecified.16

Fortran
Restrictions17
Restrictions to initializer expressions are as follows:18

• The only variables allowed in an initializer expression are omp_priv and omp_orig.19

• If an initializer expression modifies the variable omp_orig, the behavior is unspecified.20

C
• If an initializer expression is a function name with an argument list, one of the arguments21

must be the address of omp_priv.22

C

180 OpenMP API – Version 6.0 Preview 2 November 2023

C++
• If an initializer expression is a function name with an argument list, one of the arguments1

must be omp_priv or the address of omp_priv.2

C++
Fortran

• If an initializer expression is a subroutine name with an argument list, one of the arguments3
must be omp_priv.4

Fortran

6.5.2.3 OpenMP Inductor Expressions5

An inductor expression specifies how an induction operation determines a new value of the6
induction variable from its previous value and a step expression.7

Fortran
An inductor expression is an assignment statement or a subroutine name followed by an argument8
list.9

Fortran
In the definition of an inductor expression, omp_var is a special variable identifier that refers to10
storage of the type of the induction variable to which the induction operation applies, and11
omp_step is a special variable identifier that refers to the step expression of the induction12
operation. If the list item is an array or array section, the identifier to which omp_var corresponds13
refers to an array element.14

Fortran
If the inductor expression is a subroutine name with an argument list, the inductor expression is15
evaluated by calling the subroutine with the specified argument list. If the inductor expression is an16
assignment statement, the inductor expression is evaluated by executing the assignment statement.17

If a generic name is used in an inductor expression and the list item in the corresponding18
induction clause is an array or array section, it is resolved to the specific procedure that is19
elemental or only has scalar dummy arguments.20

Fortran

Restrictions21
Restrictions to inductor expressions are as follows:22

• The only variables allowed in an inductor expression are omp_var and omp_step.23

Fortran
• Any selectors in the designator of omp_var and omp_step must be component selectors.24

Fortran

CHAPTER 6. DATA ENVIRONMENT 181

6.5.2.4 OpenMP Collector Expressions1

A collector expression evaluates to the value of the collective step expression of a collapsed2
iteration. In the definition of a collector expression, omp_step is a special variable identifier that3
refers to the step expression, and omp_idx is a special variable identifier that refers to the4
collapsed iteration.5

Restrictions6
Restrictions to collector expressions are as follows:7

• The only variables allowed in a collector expression are omp_step and omp_idx.8

6.5.3 Implicitly Declared OpenMP Reduction Identifiers9

C / C++
Table 6.1 lists each reduction identifier that is implicitly declared at every scope and its semantic10
initializer expression. The actual initializer value is that value as expressed in the data type of the11
reduction list item if that list item is an arithmetic type. In C++, list items of class type are assigned12
or constructed with an integral value that matches the initializer value as specified in Section 6.5.6.13

TABLE 6.1: Implicitly Declared C/C++ Reduction Identifiers

Identifier Initializer Combiner

+ omp_priv = 0 omp_out += omp_in

* omp_priv = 1 omp_out *= omp_in

& omp_priv = ~ 0 omp_out &= omp_in

| omp_priv = 0 omp_out |= omp_in

^ omp_priv = 0 omp_out ^= omp_in

&& omp_priv = 1 omp_out = omp_in && omp_out

|| omp_priv = 0 omp_out = omp_in || omp_out

max omp_priv = Minimal
representable number in the
reduction list item type

omp_out = omp_in > omp_out ?
omp_in : omp_out

min omp_priv = Maximal
representable number in the
reduction list item type

omp_out = omp_in < omp_out ?
omp_in : omp_out

C / C++

182 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
Table 6.2 lists each reduction identifier that is implicitly declared for numeric and logical types and1
its semantic initializer value. The actual initializer value is that value as expressed in the data type2
of the reduction list item.3

TABLE 6.2: Implicitly Declared Fortran Reduction Identifiers

Identifier Initializer Combiner

+ omp_priv = 0 omp_out = omp_in + omp_out

* omp_priv = 1 omp_out = omp_in * omp_out

.and. omp_priv = .true. omp_out = omp_in .and. omp_out

.or. omp_priv = .false. omp_out = omp_in .or. omp_out

.eqv. omp_priv = .true. omp_out = omp_in .eqv. omp_out

.neqv. omp_priv = .false. omp_out = omp_in .neqv. omp_out

max omp_priv = Minimal
representable number in the
reduction list item type

omp_out = max(omp_in, omp_out)

min omp_priv = Maximal
representable number in the
reduction list item type

omp_out = min(omp_in, omp_out)

iand omp_priv = All bits on omp_out = iand(omp_in, omp_out)

ior omp_priv = 0 omp_out = ior(omp_in, omp_out)

ieor omp_priv = 0 omp_out = ieor(omp_in, omp_out)

Fortran

6.5.4 Implicitly Declared OpenMP Induction Identifiers4

C / C++
Table 6.3 lists each induction identifier that is implicitly declared at every scope for arithmetic types5
and its corresponding inductor expression and collector expression.6

CHAPTER 6. DATA ENVIRONMENT 183

TABLE 6.3: Implicitly Declared C/C++ Induction Identifiers

Identifier Inductor Expression Collector Expression

+ omp_var = omp_var +
omp_step

omp_step * omp_idx

* omp_var = omp_var *
omp_step

pow(omp_step, omp_idx)

C / C++
Fortran

Table 6.4 lists each induction identifier that is implicitly declared for numeric types and its1
corresponding inductor expression and collector expression.2

TABLE 6.4: Implicitly Declared Fortran Induction Identifiers

Identifier Inductor Expression Collector Expression

+ omp_var = omp_var +
omp_step

omp_step * omp_idx

* omp_var = omp_var *
omp_step

omp_step ** omp_idx

Fortran

6.5.5 Properties Common to Reduction and induction3

Clauses4

The list items that appear in a reduction clause or induction clause may include array sections5
and array elements.6

C++
If the type is a derived class then any reduction or induction identifier that matches its base classes7
is also a match if no specific match for the type has been specified.8

If the reduction or induction identifier is an implicitly declared reduction or induction identifier or9
otherwise not an id-expression then it is implicitly converted to one by prepending the keyword10
operator (for example, + becomes operator+). This conversion is valid for the +, *, /, && and11
|| operators.12

If the reduction or induction identifier is qualified then a qualified name lookup is used to find the13
declaration.14

184 OpenMP API – Version 6.0 Preview 2 November 2023

If the reduction or induction identifier is unqualified then an argument-dependent name lookup1
must be performed using the type of each list item.2

C++
If a list item is an array or array section, it will be treated as if a reduction clause or induction3
clause would be applied to each separate element of the array or array section.4

If a list item is an array section, the elements of any copy of the array section will be stored5
contiguously.6

Fortran
If the original list item has the POINTER attribute, any copies of the list item are associated with7
private targets.8

Fortran

Restrictions9
Restrictions common to reduction clauses and induction clauses are as follows:10

• Any array element must be specified at most once in all list items on a directive.11

• For a reduction or induction identifier declared in a declare reduction or a declare12
induction directive, the directive must appear before its use in a reduction clause or13
induction clause.14

• If a list item is an array section, it must specify contiguous storage, it cannot be a zero-length15
array section and its base expression must be a base language identifier.16

• If a list item is an array section or an array element, accesses to the elements of the array17
outside the specified array section or array element result in unspecified behavior.18

C / C++
• The type of a list item that appears in a reduction clause must be valid for the reduction19

identifier. The type of a list item and of the step expression that appear in an induction20
clause must be valid for the induction identifier.21

• A list item that appears in a reduction clause or induction clause must not be22
const-qualified.23

• The reduction or induction identifier for any list item must be unambiguous and accessible.24

C / C++
Fortran

• The type, type parameters and rank of a list item that appears in a reduction clause must be25
valid for the combiner expression and the initializer expression. The type, type parameters26
and rank of a list item and of the step expression that appear in an induction clause must27
be valid for the inductor expression.28

CHAPTER 6. DATA ENVIRONMENT 185

• A list item that appears in a reduction or induction clause must be definable.1

• A procedure pointer must not appear in a reduction clause or induction clause.2

• A pointer with the INTENT(IN) attribute must not appear in a reduction clause or3
induction clause.4

• An original list item with the POINTER attribute or any pointer component of an original list5
item that is referenced in a combiner expression or inductor expression must be associated at6
entry to the construct that contains the reduction clause or induction clause. Additionally,7
the list item or the pointer component of the list item must not be deallocated, allocated, or8
pointer assigned within the region.9

• An original list item with the ALLOCATABLE attribute or any allocatable component of an10
original list item that corresponds to a special variable identifier in a combiner expression,11
initializer expression, or inductor expression must be in the allocated state at entry to the12
construct that contains the reduction clause or induction clause. Additionally, the list13
item or the allocatable component of the list item must be neither deallocated nor allocated,14
explicitly or implicitly, within the region.15

• If the reduction or induction identifier is defined in a declare reduction or declare16
induction directive, that directive must be in the same subprogram, or accessible by host17
or use association.18

• If the reduction or induction identifier is a user-defined operator, the same explicit interface19
for that operator must be accessible at the location of the declare reduction or20
declare induction directive that defines the reduction or induction identifier.21

• If the reduction or induction identifier is defined in a declare reduction or declare22
induction directive, any procedure referenced in the initializer, combiner,23
inductor, or collector clause must be an intrinsic function, or must have an explicit24
interface where the same explicit interface is accessible as at the declare reduction or25
declare induction directive.26

Fortran

6.5.6 Properties Common to All Reduction Clauses27

The clause-specification of a reduction clause has a clause-argument-specification that specifies an28
OpenMP variable list argument and has a required reduction-identifier modifier that specifies the29
reduction identifier to use for the reduction. The reduction identifier must match a previously30
declared reduction identifier of the same name and type for each of the list items. This match is31
done by means of a name lookup in the base language.32

C++
If the type is of class type and the reduction identifier is implicitly declared, then it must provide the33
operator as described in Section 6.5.5 as well as one of:34

186 OpenMP API – Version 6.0 Preview 2 November 2023

• A default constructor and an assignment operator that accepts a type that can be implicitly1
constructed from an integer expression.2

template<typename T>3
requires(T&& t) {4

T();5
t = 0;6

};7

• A single-argument constructor that accepts a type that can be implicitly constructed from an8
integer expression.9

template<typename T>10
requires() {11

T(0);12
};13

The first of these that matches will be used, with the initializer value being passed to the assignment14
operator or constructor.15

C++
Any copies of a list item associated with the reduction are initialized with the initializer value of the16
reduction identifier. Any copies are combined using the combiner associated with the reduction17
identifier.18

Execution Model Events19
The reduction-begin event occurs before a task begins to perform loads and stores that belong to the20
implementation of a reduction and the reduction-end event occurs after the task has completed21
loads and stores associated with the reduction. If a task participates in multiple reductions, each22
reduction may be bracketed by its own pair of reduction-begin/reduction-end events or multiple23
reductions may be bracketed by a single pair of events. The interval defined by a pair of24
reduction-begin/reduction-end events may not contain a task scheduling point.25

Tool Callbacks26
A thread dispatches a registered ompt_callback_reduction with27
ompt_sync_region_reduction in its kind argument and ompt_scope_begin as its28
endpoint argument for each occurrence of a reduction-begin event in that thread. Similarly, a thread29
dispatches a registered ompt_callback_reduction with30
ompt_sync_region_reduction in its kind argument and ompt_scope_end as its31
endpoint argument for each occurrence of a reduction-end event in that thread. These callbacks32
occur in the context of the task that performs the reduction and has the type signature33
ompt_callback_sync_region_t.34

CHAPTER 6. DATA ENVIRONMENT 187

Restrictions1
Restrictions common to reduction clauses are as follows:2

C
• For a max or min reduction, the type of the list item must be an allowed arithmetic data type:3
char, int, float, double, or _Bool, possibly modified with long, short, signed,4
or unsigned.5

C
C++

• For a max or min reduction, the type of the list item must be an allowed arithmetic data type:6
char, wchar_t, int, float, double, or bool, possibly modified with long, short,7
signed, or unsigned.8

C++

Cross References9
• ompt_callback_sync_region_t, see Section 20.5.2.1310

• ompt_scope_endpoint_t, see Section 20.4.4.1111

• ompt_sync_region_t, see Section 20.4.4.1412

6.5.7 Reduction Scoping Clauses13

Reduction scoping clauses define the region in which a reduction is computed by tasks or SIMD14
lanes. All properties common to all reduction clauses, which are defined in Section 6.5.5 and15
Section 6.5.6, apply to reduction scoping clauses.16

The number of copies created for each list item and the time at which those copies are initialized17
are determined by the particular reduction scoping clause that appears on the construct. The time at18
which the original list item contains the result of the reduction is determined by the particular19
reduction scoping clause. To avoid data races, concurrent reads or updates of the original list item20
must be synchronized with that update of the original list item, which may occur after the construct21
on which the reduction scoping clause appears, for example, due to the use of the nowait clause.22

The location in the OpenMP program at which values are combined and the order in which values23
are combined are unspecified. Thus, when comparing sequential and parallel executions, or when24
comparing one parallel execution to another (even if the number of threads used is the same),25
bitwise-identical results are not guaranteed. Similarly, side effects (such as floating-point26
exceptions) may not be identical and may not occur at the same location in the OpenMP program.27

188 OpenMP API – Version 6.0 Preview 2 November 2023

6.5.8 Reduction Participating Clauses1

A reduction participating clause specifies a task or a SIMD lane as a participant in a reduction2
defined by a reduction scoping clause. All properties common to all reduction clauses, which are3
defined in Section 6.5.5 and Section 6.5.6, apply to reduction participating clauses.4

Accesses to the original list item may be replaced by accesses to copies of the original list item5
created by a region that corresponds to a construct with a reduction scoping clause.6

In any case, the final value of the reduction must be determined as if all tasks or SIMD lanes that7
participate in the reduction are executed sequentially in some arbitrary order.8

6.5.9 reduction Clause9

Name: reduction Properties: data-environment attribute, data-
sharing attribute, privatization, reduction
scoping, reduction participating

10

Arguments11
Name Type Properties
list list of variable list item type default12

Modifiers13
Name Modifies Type Properties
reduction-
identifier

list An OpenMP reduction iden-
tifier

required, ultimate

reduction-modifier list Keyword: default,
inscan, task

default

directive-name-
modifier

all arguments Keyword:
directive-name

unique

14

Directives15
do, for, loop, parallel, scope, sections, simd, taskloop, teams16

Semantics17
The reduction clause is a reduction scoping clause and a reduction participating clause, as18
described in Section 6.5.7 and Section 6.5.8. For each list item, a private copy is created for each19
implicit task or SIMD lane and is initialized with the initializer value of the reduction-identifier.20
After the end of the region, the original list item is updated with the values of the private copies21
using the combiner associated with the reduction-identifier.22

If reduction-modifier is not present or the default reduction-modifier is present, the behavior is23
as follows. For parallel and worksharing constructs, one or more private copies of each list24
item are created for each implicit task, as if the private clause had been used. For the simd25
construct, one or more private copies of each list item are created for each SIMD lane, as if the26

CHAPTER 6. DATA ENVIRONMENT 189

private clause had been used. For the taskloop construct, private copies are created1
according to the rules of the reduction scoping clause. For the teams construct, one or more2
private copies of each list item are created for the initial task of each team in the league, as if the3
private clause had been used. For the loop construct, private copies are created and used in the4
construct according to the description and restrictions in Section 6.3. At the end of a region that5
corresponds to a construct for which the reduction clause was specified, the original list item is6
updated by combining its original value with the final value of each of the private copies, using the7
combiner of the specified reduction-identifier.8

If the inscan reduction-modifier is present, a scan computation is performed over updates to the9
list item performed in each logical iteration of the associated loops (see Section 6.6). The list items10
are privatized in the construct according to the description and restrictions in Section 6.3. At the11
end of the region, each original list item is assigned the value described in Section 6.6.12

If the task reduction-modifier is present for a parallel or worksharing construct, then each list13
item is privatized according to the description and restrictions in Section 6.3, and an unspecified14
number of additional private copies may be created to support task reductions. Any copies15
associated with the reduction are initialized before they are accessed by the tasks that participate in16
the reduction, which include all implicit tasks in the corresponding region and all participating17
explicit tasks that specify an in_reduction clause (see Section 6.5.11). After the end of the18
region, the original list item contains the result of the reduction.19

Restrictions20
Restrictions to the reduction clause are as follows:21

• All restrictions common to all reduction clauses, as listed in Section 6.5.5 and Section 6.5.6,22
apply to this clause.23

• A list item that appears in a reduction clause on a worksharing construct must be shared24
in the parallel region to which the worksharing region binds.25

• If an array section or array element appears as a list item in a reduction clause on a26
worksharing construct, all threads of the team must specify the same storage location.27

• Each list item specified with the inscan reduction-modifier must appear as a list item in an28
inclusive or exclusive clause on a scan directive enclosed by the construct.29

• If the inscan reduction-modifier is specified, a reduction clause without the inscan30
reduction-modifier must not appear on the same construct.31

• A reduction clause with the task reduction-modifier may only appear on a parallel32
construct or a worksharing construct, or a combined construct or a composite construct for33
which any of the aforementioned constructs is a constituent construct and neither simd nor34
loop are constituent constructs.35

• A reduction clause with the inscan reduction-modifier may only appear on a36
worksharing-loop construct or a simd construct, or a combined construct or a composite37

190 OpenMP API – Version 6.0 Preview 2 November 2023

construct for which any of the aforementioned constructs is a constituent construct and1
distribute is not a constituent construct.2

• The inscan reduction-modifier must not be specified on a construct for which the3
ordered or schedule clause is specified.4

• A list item that appears in a reduction clause of the innermost enclosing worksharing5
construct or parallel construct must not be accessed in an explicit task generated by a6
construct for which an in_reduction clause over the same list item does not appear.7

• The task reduction-modifier must not appear in a reduction clause if the nowait8
clause is specified on the same construct.9

C / C++
• If a list item in a reduction clause on a worksharing construct has a reference type then it10

must bind to the same object for all threads of the team.11

• If a list item in a reduction clause on a worksharing construct is an array section or an12
array element then the base pointer must point to the same variable for all thread of the team.13

• A variable of class type (or array thereof) that appears in a reduction clause with the14
inscan reduction-modifier requires an accessible, unambiguous default constructor for the15
class type; the number of calls to it while performing the scan computation is unspecified.16

• A variable of class type (or array thereof) that appears in a reduction clause with the17
inscan reduction-modifier requires an accessible, unambiguous copy assignment operator18
for the class type; the number of calls to it while performing the scan computation is19
unspecified.20

C / C++

Cross References21
• ordered clause, see Section 5.4.422

• private clause, see Section 6.4.323

• schedule clause, see Section 12.6.324

• do directive, see Section 12.6.225

• for directive, see Section 12.6.126

• loop directive, see Section 12.827

• parallel directive, see Section 11.228

• scan directive, see Section 6.629

• scope directive, see Section 12.230

• sections directive, see Section 12.331

• simd directive, see Section 11.532

CHAPTER 6. DATA ENVIRONMENT 191

• taskloop directive, see Section 13.71

• teams directive, see Section 11.32

• List Item Privatization, see Section 6.33

6.5.10 task_reduction Clause4

Name: task_reduction Properties: data-environment attribute, data-
sharing attribute, privatization, reduction
scoping

5

Arguments6
Name Type Properties
list list of variable list item type default7

Modifiers8
Name Modifies Type Properties
reduction-
identifier

list An OpenMP reduction iden-
tifier

required, ultimate

directive-name-
modifier

all arguments Keyword:
directive-name

unique
9

Directives10
taskgroup11

Semantics12
The task_reduction clause is a reduction scoping clause, as described in Section 6.5.7, that13
specifies a reduction among tasks. For each list item, the number of copies is unspecified. Any14
copies associated with the reduction are initialized before they are accessed by the tasks that15
participate in the reduction. After the end of the region, the original list item contains the result of16
the reduction.17

Restrictions18
Restrictions to the task_reduction clause are as follows:19

• All restrictions common to all reduction clauses, as listed in Section 6.5.5 and Section 6.5.6,20
apply to this clause.21

Cross References22
• taskgroup directive, see Section 16.423

192 OpenMP API – Version 6.0 Preview 2 November 2023

6.5.11 in_reduction Clause1

Name: in_reduction Properties: data-environment attribute, data-
sharing attribute, privatization, reduction par-
ticipating

2

Arguments3
Name Type Properties
list list of variable list item type default4

Modifiers5
Name Modifies Type Properties
reduction-
identifier

list An OpenMP reduction iden-
tifier

required, ultimate

directive-name-
modifier

all arguments Keyword:
directive-name

unique
6

Directives7
target, task, taskloop8

Semantics9
The in_reduction clause is a reduction participating clause, as described in Section 6.5.8, that10
specifies that a task participates in a reduction. For a given list item, the in_reduction clause11
defines a task to be a participant in a task reduction that is defined by an enclosing region for a12
matching list item that appears in a task_reduction clause or a reduction clause with13
task as the reduction-modifier, where either:14

1. The matching list item has the same storage location as the list item in the in_reduction15
clause; or16

2. A private copy, derived from the matching list item, that is used to perform the task reduction17
has the same storage location as the list item in the in_reduction clause.18

For the task construct, the generated task becomes the participating task. For each list item, a19
private copy may be created as if the private clause had been used.20

For the target construct, the target task becomes the participating task. For each list item, a21
private copy may be created in the data environment of the target task as if the private clause22
had been used. This private copy will be implicitly mapped into the device data environment of the23
target device, if the target device is not the parent device.24

At the end of the task region, if a private copy was created its value is combined with a copy created25
by a reduction scoping clause or with the original list item.26

CHAPTER 6. DATA ENVIRONMENT 193

Restrictions1
Restrictions to the in_reduction clause are as follows:2

• All restrictions common to all reduction clauses, as listed in Section 6.5.5 and Section 6.5.6,3
apply to this clause.4

• A list item that appears in a task_reduction clause or a reduction clause with task5
as the reduction-modifier that is specified on a construct that corresponds to a region in6
which the region of the participating task is a closely nested region must match each list item.7
The construct that corresponds to the innermost enclosing region that meets this condition8
must specify the same reduction-identifier for the matching list item as the in_reduction9
clause.10

Cross References11
• target directive, see Section 14.812

• task directive, see Section 13.613

• taskloop directive, see Section 13.714

6.5.12 induction Clause15

Name: induction Properties: data-environment attribute, data-
sharing attribute, privatization16

Arguments17
Name Type Properties
list list of variable list item type default18

Modifiers19
Name Modifies Type Properties
induction-
identifier

list OpenMP induction identifier required, ultimate

step-modifier list Complex, name: step Ar-
guments:
induction-step expression

of induction-step type
(region-invariant)

required

induction-modifier list Keyword: relaxed,
strict

default

directive-name-
modifier

all arguments Keyword:
directive-name

unique

20

Directives21
distribute, do, for, simd, taskloop22

194 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
The induction clause provides a superset of the functionality provided by the private clause.2
A list item that appears in an induction clause is subject to the private clause semantics3
described in Section 6.4.3, except as otherwise specified.4

When an induction clause is specified on a loop-nest-associated directive and the strict5
induction-modifier is present, the value of the new list item at the beginning of each collapsed6
iteration is determined by the closed form of the induction operation. The value of the original list7
item at the end of the last collapsed iteration is the result of applying the inductor expression to the8
value of the new list item at the beginning of that collapsed iteration. When the relaxed9
induction-modifier is present, the implementation may assume that the value of the new list item at10
the end of the previous collapsed iteration, if executed by the same task or SIMD lane, is the value11
determined by the closed form of the induction operation. When an induction-modifier is not12
specified, the behavior is as if the relaxed induction-modifier is present.13

The value of the new list item at the end of the last collapsed iteration is assigned to the original list14
item.15

If the construct is a worksharing-loop construct with the nowait clause present and the original16
list item is shared in the enclosing context, access to the original list item after the construct may17
create a data race. To avoid this data race, user code must insert synchronization.18

The induction-identifier must match a previously declared induction identifier of the same name19
and type for each of the list items and for the induction-step-expr. This match is done by means of a20
name lookup in the base language.21

Restrictions22
Restrictions to the induction clause are as follows:23

• All restrictions listed in Section 6.5.5 apply to this clause.24

• The induction-step must not be an array or array section.25

• If an array section or array element appears as a list item in an induction clause on a26
worksharing construct, all threads of the team must specify the same storage location.27

C / C++
• If a list item in an induction clause on a worksharing construct has a reference type and28

the original list item is shared in the enclosing context then it must bind to the same object for29
all threads of the team.30

• If a list item in an induction clause on a worksharing construct is an array section or an31
array element and the original list item is shared in the enclosing context then the base32
pointer must point to the same variable for all threads of the team.33

C / C++

CHAPTER 6. DATA ENVIRONMENT 195

Cross References1
• private clause, see Section 6.4.32

• distribute directive, see Section 12.73

• do directive, see Section 12.6.24

• for directive, see Section 12.6.15

• simd directive, see Section 11.56

• taskloop directive, see Section 13.77

• List Item Privatization, see Section 6.38

6.5.13 declare reduction Directive9

Name: declare reduction Association: none
Category: declarative Properties: pure10

Arguments11
declare reduction(reduction-specifier)12

Name Type Properties
reduction-specifier OpenMP reduction specifier default13

Clauses14
combiner, initializer15

Additional information16
The syntax reduction-identifier : typename-list : combiner-expr, where combiner is an OpenMP17
combiner expression, may alternatively be used for reduction-specifier. The combiner clause18
must not be specified if this syntax is used. This syntax has been deprecated.19

Semantics20
The declare reduction directive declares a reduction-identifier that can be used in a21
reduction clause as a user-defined reduction. The directive argument reduction-specifier uses the22
following syntax:23

reduction-identifier : typename-list24

where reduction-identifier is a reduction identifier and typename-list is a type-name list.25

The reduction-identifier and the type identify the declare reduction directive. The26
reduction-identifier can later be used in a reduction clause that uses variables of the types specified27
in the declare reduction directive. If the directive specifies several types then the behavior28
is as if a declare reduction directive was specified for each type. The visibility and29
accessibility of a user-defined reduction are the same as those of a variable declared at the same30
location in the program.31

196 OpenMP API – Version 6.0 Preview 2 November 2023

C++
The declare reduction directive can also appear at the locations in a program where a static1
data member could be declared. In this case, the visibility and accessibility of the declaration are2
the same as those of a static data member declared at the same location in the program.3

C++
The enclosing context of the combiner-expr specified by the combiner clause and of the4
initializer-expr that is specified by the initializer clause is that of the declare5
reduction directive. The combiner-expr and the initializer-expr must be correct in the base6
language as if they were the body of a function defined at the same location in the program.7

Fortran
If a type with deferred or assumed length type parameter is specified in a declare reduction8
directive, the reduction-identifier of that directive can be used in a reduction clause with any9
variable of the same type and the same kind parameter, regardless of the length type parameters10
with which the variable is declared.11

If the reduction-identifier is the same as the name of a user-defined operator or an extended12
operator, or the same as a generic name that is one of the allowed intrinsic procedures, and if the13
operator or procedure name appears in an accessibility statement in the same module, the14
accessibility of the corresponding declare reduction directive is determined by the15
accessibility attribute of the statement.16

If the reduction-identifier is the same as a generic name that is one of the allowed intrinsic17
procedures and is accessible, and if it has the same name as a derived type in the same module, the18
accessibility of the corresponding declare reduction directive is determined by the19
accessibility of the generic name according to the base language.20

Fortran

Restrictions21
Restrictions to the declare reduction directive are as follows:22

• A reduction-identifier may not be re-declared in the current scope for the same type or for a23
type that is compatible according to the base language rules.24

• The typename-list must not declare new types.25

C / C++
• A type name in a declare reduction directive cannot be a function type, an array type,26

a reference type, or a type qualified with const, volatile or restrict.27

C / C++
Fortran

• If the length type parameter is specified for a type, it must be a constant, a colon (:) or an28
asterisk (*).29

CHAPTER 6. DATA ENVIRONMENT 197

• If a type with deferred or assumed length parameter is specified in a declare1
reduction directive, no other declare reduction directive with the same type, the2
same kind parameters and the same reduction-identifier is allowed in the same scope.3

Fortran
Cross References4

• combiner clause, see Section 6.5.145

• initializer clause, see Section 6.5.156

• OpenMP Combiner Expressions, see Section 6.5.2.17

• OpenMP Initializer Expressions, see Section 6.5.2.28

• OpenMP Reduction and Induction Identifiers, see Section 6.5.19

6.5.14 combiner Clause10

Name: combiner Properties: unique, required11

Arguments12
Name Type Properties
combiner-expr expression of combiner type default13

Modifiers14
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique15

Directives16
declare reduction17

Semantics18
This clause specifies combiner-expr as the combiner expression for a user-defined reduction.19

Cross References20
• declare reduction directive, see Section 6.5.1321

• OpenMP Combiner Expressions, see Section 6.5.2.122

6.5.15 initializer Clause23

Name: initializer Properties: unique24

Arguments25
Name Type Properties
initializer-expr expression of initializer type default26

198 OpenMP API – Version 6.0 Preview 2 November 2023

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique2

Directives3
declare reduction4

Semantics5
This clause specifies initializer-expr as the initializer expression for a user-defined-reduction.6

Cross References7
• declare reduction directive, see Section 6.5.138

• OpenMP Initializer Expressions, see Section 6.5.2.29

6.5.16 declare induction Directive10

Name: declare induction Association: none
Category: declarative Properties: pure11

Arguments12
declare induction(induction-specifier)13

Name Type Properties
induction-specifier OpenMP induction specifier default14

Clauses15
collector, inductor16

Semantics17
The declare induction directive declares an induction-identifier that can be used in an18
induction clause as a user-defined-induction. The directive argument induction-specifier uses19
the following syntax:20

induction-identifier : type-specifier-list21

type-specifier-list := type-specifier | type-specifier , type-specifier-list22

type-specifier := typename-list | typename-pair23

typename-pair := (type , type)24

where induction-identifier is an induction identifier and typename-list is a type-name list.25

The induction-identifier identifies the declare induction directive. The induction-identifier26
can be used in an induction clause that lists induction variables of the types specified in the27
typename-list, with corresponding step expressions of the same type if the type-specifier-list item28
uses the form that specifies only one type. If the type-specifier-list item uses the typename-pair29

CHAPTER 6. DATA ENVIRONMENT 199

form then the induction-identifier can be used in an induction clause that lists that pair, in1
which case the induction variable must be of the first type specified in the typename-pair while the2
corresponding step expression must be of the second type in the typename-pair.3

The visibility and accessibility of a user-defined-induction are the same as those of a variable4
declared at the same location in the program.5

C++
The declare induction directive can also appear at the locations in a program where a static6
data member could be declared. In this case, the visibility and accessibility of the declaration are7
the same as those of a static data member declared at the same location in the program.8

C++
The enclosing context of the inductor expression specified by the inductor clause and of the9
collector expression specified by the collector clause is that of the declare induction10
directive. The inductor expression and the collector expression must be correct in the base language11
as if they were the body of a function defined at the same location in the program.12

Fortran
If the induction-identifier is the same as the name of a user-defined operator or an extended13
operator, or the same as a generic name that is one of the allowed intrinsic procedures, and if the14
operator or procedure name appears in an accessibility statement in the same module, the15
accessibility of the corresponding declare induction directive is determined by the16
accessibility attribute of the statement.17

If the induction-identifier is the same as a generic name that is one of the allowed intrinsic18
procedures and is accessible, and if it has the same name as a derived type in the same module, the19
accessibility of the corresponding declare induction directive is determined by the20
accessibility of the generic name according to the base language.21

Fortran

Restrictions22
Restrictions to the declare induction directive are as follows:23

• A induction-identifier may not be re-declared in the current scope for the same type or for a24
type that is compatible according to the base language rules.25

• The typename-list must not declare new types.26

C / C++
• A type name in a declare induction directive cannot be a function type, an array type,27

a reference type, or a type qualified with const, volatile or restrict.28

C / C++

200 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• collector clause, see Section 6.5.182

• inductor clause, see Section 6.5.173

• OpenMP Collector Expressions, see Section 6.5.2.44

• OpenMP Inductor Expressions, see Section 6.5.2.35

• OpenMP Reduction and Induction Identifiers, see Section 6.5.16

6.5.17 inductor Clause7

Name: inductor Properties: unique, required8

Arguments9
Name Type Properties
inductor-expr expression of inductor type default10

Modifiers11
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique12

Directives13
declare induction14

Semantics15
This clause specifies inductor-expr as the inductor expression for a user-defined induction.16

Cross References17
• declare induction directive, see Section 6.5.1618

• OpenMP Inductor Expressions, see Section 6.5.2.319

6.5.18 collector Clause20

Name: collector Properties: unique, required21

Arguments22
Name Type Properties
collector-expr expression of collector type default23

CHAPTER 6. DATA ENVIRONMENT 201

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique2

Directives3
declare induction4

Semantics5
This clause specifies collector-expr as the collector expression for a user-defined induction, which6
ensures that a collector is available for use in the closed form of the induction operation.7

Cross References8
• declare induction directive, see Section 6.5.169

• OpenMP Collector Expressions, see Section 6.5.2.410

6.6 scan Directive11

Name: scan Association: separating
Category: subsidiary Properties: pure12

Separated directives13
do, for, simd14

Clauses15
exclusive, inclusive16

Clause set17
Properties: unique, required, exclusive Members: exclusive, inclusive18

Semantics19
The scan directive is a subsidiary directive that separates the final-loop-body of an enclosing20
simd construct or worksharing-loop construct (or a composite construct that combines them) into21
a structured block sequence that serves as an input phase and a structured block sequence that22
serves as a scan phase. The input phase contains all computations that update the list item in the23
collapsed iteration, and the scan phase ensures that any statement that reads the list item uses the24
result of the scan computation for that collapsed iteration. Thus, the scan directive specifies that a25
scan computation updates each list item on each collapsed iteration of the enclosing canonical loop26
nest that is associated with the separated construct.27

If the inclusive clause is specified, the input phase includes the preceding structured block28
sequence and the scan phase includes the following structured block sequence and, thus, the29
directive specifies that an inclusive scan computation is performed for each list item of list. If the30
exclusive clause is specified, the input phase excludes the preceding structured block sequence31
and instead includes the following structured block sequence, while the scan phase includes the32

202 OpenMP API – Version 6.0 Preview 2 November 2023

preceding structured block sequence and, thus, the directive specifies that an exclusive scan1
computation is performed for each list item of list.2

The result of a scan computation for a given collapsed iteration is calculated according to the last3
generalized prefix sum (PRESUMlast) applied over the sequence of values given by the value of the4
original list item prior to the associated loops and all preceding updates to the new list item in the5
collapsed iteration space. The operation PRESUMlast(op, a1, . . . , aN) is defined for a given binary6
operator op and a sequence of N values a1, . . . , aN as follows:7

• if N = 1, a18

• if N > 1, op(PRESUMlast(op, a1, . . . , aj), PRESUMlast(op, ak, . . . , aN)),9
1 ≤ j + 1 = k ≤ N.10

At the beginning of the input phase of each collapsed iteration, the new list item is initialized with11
the value of the initializer expression of the reduction-identifier specified by the reduction12
clause on the separated construct. The update value of a new list item is, for a given collapsed13
iteration, the value of the new list item on completion of its input phase.14

Let orig-val be the value of the original list item on entry to the separated construct. Let combiner15
be the combiner expression for the reduction-identifier specified by the reduction clause on the16
construct. Let ui be the update value of a list item for collapsed iteration i. For list items that appear17
in an inclusive clause on the scan directive, at the beginning of the scan phase for collapsed18
iteration i the new list item is assigned the result of the operation PRESUMlast(combiner, orig-val,19
u0, . . . , ui). For list items that appear in an exclusive clause on the scan directive, at the20
beginning of the scan phase for collapsed iteration i = 0 the list item is assigned the value orig-val,21
and at the beginning of the scan phase for collapsed iteration i > 0 the list item is assigned the22
result of the operation PRESUMlast(combiner, orig-val, u0, . . . , ui-1).23

For list items that appear in an inclusive clause, at the end of the separated construct, the24
original list item is assigned the private copy from the last collapsed iteration of the associated25
loops of the separated construct. For list items that appear in an exclusive clause, let k be the26
last collapsed iteration of the associated loops of the separated construct. At the end of the27
separated construct, the original list item is assigned the result of the operation PRESUMlast(28
combiner, orig-val, u0, . . . , uk).29

Restrictions30
Restrictions to the scan directive are as follows:31

• A separated construct must have at most one scan directive as a separating directive.32

• The associated loops of the directive to which the scan directive is associated must all be33
perfectly nested loops.34

• Each list item that appears in the inclusive or exclusive clause must appear in a35
reduction clause with the inscan modifier on the separated construct.36

• Each list item that appears in a reduction clause with the inscan modifier on the37
separated construct must appear in a clause on the scan separating directive.38

CHAPTER 6. DATA ENVIRONMENT 203

• Cross-iteration dependences across different collapsed iterations must not exist, except for1
dependences for the list items specified in an inclusive or exclusive clause.2

• Intra-iteration dependences from a statement in the structured block sequence that precede a3
scan directive to a statement in the structured block sequence that follows a scan directive4
must not exist, except for dependences for the list items specified in an inclusive or5
exclusive clause.6

• The private copy of list item that appear in the inclusive or exclusive clause must not7
be modified in the scan phase.8

Cross References9
• exclusive clause, see Section 6.6.210

• inclusive clause, see Section 6.6.111

• reduction clause, see Section 6.5.912

• do directive, see Section 12.6.213

• for directive, see Section 12.6.114

• simd directive, see Section 11.515

6.6.1 inclusive Clause16

Name: inclusive Properties: innermost-leaf, unique17

Arguments18
Name Type Properties
list list of variable list item type default19

Modifiers20
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique21

Directives22
scan23

Semantics24
The inclusive clause is used on a separating directive that separates a structured block into two25
structured block sequences. The clause determines the association of the structured block sequence26
that precedes the directive on which the clause appears to a phase of that directive.27

The list items that appear in an inclusive clause may include array sections and array elements.28

Cross References29
• scan directive, see Section 6.630

204 OpenMP API – Version 6.0 Preview 2 November 2023

6.6.2 exclusive Clause1

Name: exclusive Properties: innermost-leaf, unique2

Arguments3
Name Type Properties
list list of variable list item type default4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
scan8

Semantics9
The exclusive clause is used on a separating directive that separates a structured block into two10
structured block sequences. The clause determines the association of the structured block sequence11
that precedes the directive on which the clause appears to a phase of that directive.12

The list items that appear in an exclusive clause may include array sections and array elements.13

Cross References14
• scan directive, see Section 6.615

6.7 Data Copying Clauses16

This section describes the copyin clause and the copyprivate clause. These two clauses17
support copying data values from private variables or threadprivate variables of an implicit task or18
thread to the corresponding variables of other implicit tasks or threads in the team.19

6.7.1 copyin Clause20

Name: copyin Properties: outermost-leaf, data copying21

Arguments22
Name Type Properties
list list of variable list item type default23

Modifiers24
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique25

CHAPTER 6. DATA ENVIRONMENT 205

Directives1
parallel2

Semantics3
The copyin clause provides a mechanism to copy the value of a threadprivate variable of the4
primary thread to the threadprivate variable of each other member of the team that is executing the5
parallel region.6

C / C++
The copy is performed after the team is formed and prior to the execution of the associated7
structured block. For variables of non-array type, the copy is by copy assignment. For an array of8
elements of non-array type, each element is copied as if by assignment from an element of the array9
of the primary thread to the corresponding element of the array of all other threads.10

C / C++
C++

For class types, the copy assignment operator is invoked. The order in which copy assignment11
operators for different variables of the same class type are invoked is unspecified.12

C++
Fortran

The copy is performed, as if by assignment, after the team is formed and prior to the execution of13
the associated structured block.14

Named variables that appear in a threadprivate common block may be specified. The whole15
common block does not need to be specified.16

On entry to any parallel region, the copy of each thread of a variable that is affected by a17
copyin clause for the parallel region will acquire the type parameters, allocation, association,18
and definition status of the copy of the primary thread, according to the following rules:19

• If the original list item has the POINTER attribute, each copy receives the same association20
status as that of the copy of the primary thread as if by pointer assignment.21

• If the original list item does not have the POINTER attribute, each copy becomes defined22
with the value of the copy of the primary thread as if by intrinsic assignment unless the list23
item has a type bound procedure as a defined assignment. If the original list item that does24
not have the POINTER attribute has the allocation status of unallocated, each copy will have25
the same status.26

• If the original list item is unallocated or unassociated, each copy inherits the declared type27
parameters and the default type parameter values from the original list item.28

Fortran

Restrictions29
Restrictions to the copyin clause are as follows:30

• A list item that appears in a copyin clause must be threadprivate.31

206 OpenMP API – Version 6.0 Preview 2 November 2023

C++
• A variable of class type (or array thereof) that appears in a copyin clause requires an1

accessible, unambiguous copy assignment operator for the class type.2

C++
Fortran

• A common block name that appears in a copyin clause must be declared to be a common3
block in the same scoping unit in which the copyin clause appears.4

• A polymorphic variable with the ALLOCATABLE attribute must not be a list item.5

Fortran

Cross References6
• parallel directive, see Section 11.27

• threadprivate directive, see Section 6.28

6.7.2 copyprivate Clause9

Name: copyprivate Properties: innermost-leaf, end-clause, data
copying10

Arguments11
Name Type Properties
list list of variable list item type default12

Modifiers13
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique14

Directives15
single16

Semantics17
The copyprivate clause provides a mechanism to use a private variable to broadcast a value18
from the data environment of one implicit task to the data environments of the other implicit tasks19
that belong to the parallel region. The effect of the copyprivate clause on the specified list20
items occurs after the execution of the structured block associated with the associated construct,21
and before any of the threads in the team have left the barrier at the end of the construct. To avoid22
data races, concurrent reads or updates of the list item must be synchronized with the update of the23
list item that occurs as a result of the copyprivate clause if, for example, the nowait clause is24
used to remove the barrier.25

CHAPTER 6. DATA ENVIRONMENT 207

C / C++
In all other implicit tasks that belong to the parallel region, each specified list item becomes defined1
with the value of the corresponding list item in the implicit task associated with the thread that2
executed the structured block. For variables of non-array type, the definition occurs by copy3
assignment. For an array of elements of non-array type, each element is copied by copy assignment4
from an element of the array in the data environment of the implicit task that is associated with the5
thread that executed the structured block to the corresponding element of the array in the data6
environment of the other implicit tasks.7

C / C++
C++

For class types, a copy assignment operator is invoked. The order in which copy assignment8
operators for different variables of class type are called is unspecified.9

C++
Fortran

If a list item does not have the POINTER attribute, then in all other implicit tasks that belong to the10
parallel region, the list item becomes defined as if by intrinsic assignment with the value of the11
corresponding list item in the implicit task that is associated with the thread that executed the12
structured block. If the list item has a type bound procedure as a defined assignment, the13
assignment is performed by the defined assignment.14

If the list item has the POINTER attribute then in all other implicit tasks that belong to the parallel15
region the list item receives, as if by pointer assignment, the same association status as the16
corresponding list item in the implicit task that is associated with the thread that executed the17
structured block.18

The order in which any final subroutines for different variables of a finalizable type are called is19
unspecified.20

Fortran

Restrictions21
Restrictions to the copyprivate clause are as follows:22

• All list items that appear in a copyprivate clause must be either threadprivate or private23
in the enclosing context.24

C++
• A variable of class type (or array thereof) that appears in a copyprivate clause requires25

an accessible unambiguous copy assignment operator for the class type.26

C++
Fortran

• A common block that appears in a copyprivate clause must be threadprivate.27

• Pointers with the INTENT(IN) attribute must not appear in a copyprivate clause.28

208 OpenMP API – Version 6.0 Preview 2 November 2023

• Any list item with the ALLOCATABLE attribute must have the allocation status of allocated1
when the intrinsic assignment is performed.2

• If a list item is a polymorphic variable with the ALLOCATABLE attribute, the behavior is3
unspecified.4

Fortran

Cross References5
• firstprivate clause, see Section 6.4.46

• private clause, see Section 6.4.37

• single directive, see Section 12.18

6.8 Data-Mapping Control9

This section describes the available mechanisms for controlling how data are mapped to device data10
environments. It covers implicitly determined data-mapping attribute rules for variables referenced11
in target constructs, clauses that support explicitly determined data-mapping attributes, and12
clauses for mapping variables with static lifetimes and making procedures available on other13
devices. It also describes how mappers may be defined and referenced to control the mapping of14
data with user-defined types. When storage is mapped, the programmer must ensure, by adding15
proper synchronization or by explicit unmapping, that the storage does not reach the end of its16
lifetime before it is unmapped.17

6.8.1 Implicit Data-Mapping Attribute Rules18

When specified, data-mapping attribute clauses on target directives determine the data-mapping19
attributes for variables referenced in a target construct. Otherwise, the first matching rule from20
the following list determines the implicitly determined data-mapping attribute (or implicitly21
determined data-sharing attribute) for variables referenced in a target construct that do not have22
a predetermined data-sharing attribute according to Section 6.1.1. References to structure elements23
or array elements are treated as references to the structure or array, respectively, for the purposes of24
implicitly determined data-mapping attributes or implicitly determined data-sharing attributes of25
variables referenced in a target construct.26

• If a variable appears in an enter or link clause on a declare target directive that does not27
have a device_type clause with the nohost device-type-description then it is treated as28
if it had appeared in a map clause with a map-type of tofrom.29

• If a variable is the base variable of a list item in a reduction, lastprivate or linear30
clause on a combined target construct then the list item is treated as if it had appeared in a31
map clause with a map-type of tofrom if Section 18.2 specifies this behavior.32

CHAPTER 6. DATA ENVIRONMENT 209

• If a variable is the base variable of a list item in an in_reduction clause on a target1
construct then it is treated as if the list item had appeared in a map clause with a map-type of2
tofrom and an always-modifier.3

• If a defaultmap clause is present for the category of the variable and specifies an implicit4
behavior other than default, the data-mapping attribute or data-sharing attribute is5
determined by that clause.6

C++
• If the target construct is within a class non-static member function, and a variable is an7

accessible data member of the object for which the non-static data member function is8
invoked, the variable is treated as if the this[:1] expression had appeared in a map clause9
with a map-type of tofrom. Additionally, if the variable is of type pointer or reference to10
pointer, it is also treated as if it is the base expression of a zero-offset assumed-size array that11
appears in a map clause with the alloc map-type.12

• If the this keyword is referenced inside a target construct within a class non-static13
member function, it is treated as if the this[:1] expression had appeared in a map clause14
with a map-type of tofrom.15

C++
C / C++

• A variable that is of type pointer, but is neither a pointer to function nor (for C++) a pointer16
to a member function, is treated as if it is the base expression of a zero-offset assumed-size17
array that appears in a map clause with the alloc map-type.18

C / C++
C++

• A variable that is of type reference to pointer, but is neither a reference to pointer to function19
nor a reference to a pointer to a member function, is treated as if it is the base expression of a20
zero-offset assumed-size array that appears in a map clause with the alloc map-type.21

C++
Fortran

• If a combined target construct is associated with a DO CONCURRENT loop, a variable that has22
SHARED locality in the loop is treated as if it had appeared in a map clause with a map-type23
of tofrom.24

Fortran
• If a variable is not a scalar variable then it is treated as if it had appeared in a map clause with25

a map-type of tofrom.26

Fortran
• If a scalar variable has the TARGET, ALLOCATABLE or POINTER attribute then it is treated27

as if it had appeared in a map clause with a map-type of tofrom.28

Fortran

210 OpenMP API – Version 6.0 Preview 2 November 2023

• If the above rules do not apply then a scalar variable is not mapped but instead has an1
implicitly determined data-sharing attribute of firstprivate (see Section 6.1.1).2

6.8.2 Mapper Identifiers and mapper Modifiers3

Modifiers4
Name Modifies Type Properties
mapper locator-list Complex, name: mapper

Arguments:
mapper-identifier OpenMP

identifier (default)

unique

5

Clauses6
from, map, to7

Mapper identifiers can be used to uniquely identify the mapper used in a map or data-motion clause8
through a mapper modifier, which is a unique, complex modifier. A declare mapper directive9
defines a mapper identifier that can later be specified in a mapper modifier as its10
modifier-parameter-specification. Each mapper identifier is a base language identifier or default11
where default is the default mapper for all types.12

A non-structure type T has a predefined default mapper that is defined as if by the following13
declare mapper directive:14

C / C++
#pragma omp declare mapper(T v) map(tofrom: v)15

C / C++
Fortran

!$omp declare mapper(T :: v) map(tofrom: v)16

Fortran
A structure type T has a predefined default mapper that is defined as if by a declare mapper17
directive that specifies v in a map clause with the alloc map-type and each structure element of v18
in a map clause with the tofrom map-type.19

A declare mapper directive that uses the default mapper identifier overrides the predefined20
default mapper for the given type, making it the default mapper for variables of that type.21

Cross References22
• from clause, see Section 6.9.223

• map clause, see Section 6.8.324

• to clause, see Section 6.9.125

CHAPTER 6. DATA ENVIRONMENT 211

6.8.3 map Clause1

Name: map Properties: data-environment attribute, data-
mapping attribute2

Arguments3
Name Type Properties
locator-list list of locator list item type default4

Modifiers5
Name Modifies Type Properties
always-modifier locator-list Keyword: always map-type-

modifying
close-modifier locator-list Keyword: close map-type-

modifying
present-modifier locator-list Keyword: present map-type-

modifying
self-modifier locator-list Keyword: self map-type-

modifying
mapper locator-list Complex, name: mapper

Arguments:
mapper-identifier OpenMP

identifier (default)

unique

iterator locator-list Complex, name: iterator
Arguments:
iterator-specifier OpenMP

expression (repeatable)

unique

map-type locator-list Keyword: alloc, delete,
from, release, to,
tofrom

default

directive-name-
modifier

all arguments Keyword:
directive-name

unique

6

Directives7
declare mapper, target, target data, target enter data, target exit8
data9

Semantics10
The map clause specifies how an original list item is mapped from the data environment of the11
current task to a corresponding list item in the device data environment of the device identified by12
the construct. If a map-type is not specified, the map-type defaults to tofrom unless the list item is13
an assumed-size array, in which case the map-type defaults to alloc. The map clause is a14

212 OpenMP API – Version 6.0 Preview 2 November 2023

map-entering clause, which can only appear on constructs that have the map-entering property, if1
the map-type is to, tofrom or alloc. The map clause is a map-exiting clause, which can only2
appear on constructs that have the map-exiting property, if the map-type is from, tofrom,3
release or delete.4

The list items that appear in a map clause may include array sections, assumed-size arrays, and5
structure elements. A list item in a map clause may reference any iterator-identifier defined in its6
iterator modifier. A list item may appear more than once in the map clauses that are specified on7
the same directive.8

C / C++
If a list item is a zero-length array section that has a single array subscript, the behavior is as if the9
list item is an assumed-size array that is instead mapped with the alloc map-type.10

C / C++
When a list item in a map clause that is not an assumed-size array is mapped on a map-entering11
construct and corresponding storage is created in the device data environment on entry to the region,12
the list item becomes a matchable candidate with an associated starting address, ending address,13
and base address that define its mapped address range and extended address range. The current set14
of matchable candidates consists of any map clause list item on the construct that is a matchable15
candidate and all matchable candidates that were previously mapped and are still mapped.16

A list item in a map clause that is an assumed-size array is treated as if an array section, with a base17
expression, lower bound and length determined as follows, is substituted in its place if a matched18
candidate is found. If the assumed-size array is an array section, the base expression of the19
substitute array section is the same as for the assumed-size array; otherwise, the base expression is20
the assumed-size array. If the mapped address range of a matchable candidate includes the first21
storage location of the assumed-size array, it is a matched candidate. If a matchable candidate does22
not exist for which the mapped address range includes the first storage location of the assumed-size23
array, then a matchable candidate is a matched candidate if its extended address range includes the24
first storage location of the assumed-size array. If multiple matched candidates exist, an arbitrary25
one of them is the found matched candidate. The lower bound and length of the substitute array26
section are set such that its storage is identical to the storage of the found matched candidate. If a27
matched candidate is not found then a substitute array section is not formed and no further actions28
that are described in this section are performed for the list item.29

A list item that is an array or array section and for which the map type is tofrom, to, or from is30
mapped as if the map type decays to alloc or, if the construct on which the map clause appears is31
target exit data, to release. If a list item is an array or array section, the array elements32
become implicitly mapped list items with the same modifiers (including the original map type) as in33
the clause. If the array or array section is implicitly mapped and corresponding storage exists in the34
device data environment prior to a task encountering the construct on which the clauserefmap35
clause appears, only those array elements that have corresponding storage are implicitly mapped.36

If a mapper modifier is not present, the behavior is as if a mapper modifier was specified with the37
default parameter. The map behavior of a list item in a map clause is modified by a visible38

CHAPTER 6. DATA ENVIRONMENT 213

user-defined mapper (see Section 6.8.7) if the mapper-identifier of the mapper modifier is defined1
for a base language type that matches the type of the list item. Otherwise, the predefined default2
mapper for the type of the list item applies. The effect of the mapper is to remove the list item from3
the map clause and to apply the clauses specified in the declared mapper to the construct on which4
the map clause appears. In the clauses applied by the mapper, references to var are replaced with5
references to the list item and the map-type is replaced with a final map type that is determined6
according to the rules of map-type decay (see Section 6.8.7). If any modifier with the7
map-type-modifying property appears in the map clause then the effect is as if that map-type8
modifier appears in each map clause specified in the declared mapper.9

Fortran
If a component of a derived type list item is a map clause list item that results from the predefined10
default mapper for that derived type, and if the derived type component is not an explicit list item or11
the base expression of an explicit list item in a map clause on the construct, then:12

• If it has the POINTER attribute, it is attach-ineligible; and13

• If it has the ALLOCATABLE attribute and an allocated allocation status, and it is present in14
the device data environment when the construct is encountered, the map clause may treat its15
allocation status as if it is unallocated if the corresponding component does not have16
allocated storage.17

If a list item in a map clause is an associated pointer that is not attach-ineligible and the pointer is18
not the base pointer of another list item in a map clause on the same construct, then it is treated as if19
its pointer target is implicitly mapped in the same clause. For the purposes of the map clause, the20
mapped pointer target is treated as if its base pointer is the associated pointer.21

Fortran
C++

If a list item has a closure type that is associated with a lambda expression, it is mapped as if it has22
a structure type. For each variable that is captured by reference by the lambda expression,23
references to the variable in the function call operator for the new list item refer to its corresponding24
storage in the device data environment, if it exists prior to a task encountering the construct25
associated with the map clause, and otherwise refer to its original storage. For each pointer that is26
not a function pointer that is captured by the lambda expression, the behavior is as if the pointer or,27
for capture by copy, the corresponding pointer member of the closure object is the base expression28
of an zero-offset assumed-size array that appears in a map clause with the alloc map-type.29

If the this pointer is captured by a lambda expression in class scope, and a variable of the30
associated closure type is later mapped explicitly or implicitly with its full static type, the behavior31
is as if the object to which this points is also mapped as an array section, of length one, for which32
the base pointer is the non-static data member that corresponds to the this pointer in the closure33
object.34

C++

214 OpenMP API – Version 6.0 Preview 2 November 2023

If a map clause with a present-modifier appears on a construct and on entry to the region the1
corresponding list item is not present in the device data environment, runtime error termination is2
performed.3

If a map-entering clause has the self-modifier, the resulting mapping operations are self maps.4

The map clauses on a construct collectively determine the set of mappable storage blocks for that5
construct. All map clause list items that share storage or have the same containing structure or6
containing array result in a single mappable storage block that contains the storage of the list items.7
The storage for each other map clause list item becomes a distinct mappable storage block.8

For each mappable storage block that is determined by the map clauses on a map-entering9
construct, on entry to the region the following sequence of steps occurs as if performed as a single10
atomic operation:11

1. If a corresponding storage block is not present in the device data environment then:12

a) A corresponding storage block, which may share storage with the original storage13
block, is created in the device data environment of the target device;14

b) The corresponding storage block receives a reference count that is initialized to zero.15
This reference count also applies to any part of the corresponding storage block.16

2. The reference count of the corresponding storage block is incremented by one.17

3. For each map clause list item on the construct that is contained by the mappable storage18
block:19

a) If the reference count of the corresponding storage block is one, a new list item with20
language-specific attributes derived from the original list item is created in the21
corresponding storage block. The reference count of the new list item is always equal to22
the reference count of its storage.23

b) If the reference count of the corresponding list item is one or if the always-modifier is24
specified, and if the map-type is to or tofrom, the corresponding list item is updated25
as if the list item appeared in a to clause on a target update directive.26

If the effect of the map clauses on a construct would assign the value of an original list item to a27
corresponding list item more than once, then an implementation is allowed to ignore additional28
assignments of the same value to the corresponding list item.29

In all cases on entry to the region, concurrent reads or updates of any part of the corresponding list30
item must be synchronized with any update of the corresponding list item that occurs as a result of31
the map clause to avoid data races.32

For map clauses on map-entering constructs, if any list item has a base pointer for which a33
corresponding pointer exists in the device data environment after all mappable storage blocks are34
mapped, and either a new list item or the corresponding pointer is created in the device data35
environment on entry to the region, then pointer attachment is performed and the corresponding36

CHAPTER 6. DATA ENVIRONMENT 215

pointer becomes an attached pointer to the corresponding list item via corresponding base pointer1
initialization.2

The original list item and corresponding list item may share storage such that writes to either item3
by one task followed by a read or write of the other list item by another task without intervening4
synchronization can result in data races. They are guaranteed to share storage if the mapping5
operation is a self map, if the map clause appears on a target construct that corresponds to an6
inactive target region, if it appears on a mapping-only construct that applies to the device data7
environment of the host device, or if the corresponding list item has an attached pointer that shares8
storage with its original pointer.9

For each mappable storage block that is determined by the map clauses on a map-exiting construct,10
and for which corresponding storage is present in the device data environment, on exit from the11
region the following sequence of steps occurs as if performed as a single atomic operation:12

1. For each map clause list item that is contained by the mappable storage block:13

a) If the reference count of the corresponding list item is one or if the always-modifier is14
specified, and if the map-type is from or tofrom, the original list item is updated as if15
the list item appeared in a from clause on a target update directive.16

2. If the map-type is not delete and the reference count of the corresponding storage block is17
finite then the reference count is decremented by one.18

3. If the map-type is delete and the reference count of the corresponding storage block is19
finite then the reference count is set to zero.20

4. If the reference count of the corresponding storage block is zero, all storage to which that21
reference count applies is removed from the device data environment.22

If the effect of the map clauses on a construct would assign the value of a corresponding list item to23
an original list item more than once, then an implementation is allowed to ignore additional24
assignments of the same value to the original list item.25

In all cases on exit from the region, concurrent reads or updates of any part of the original list item26
must be synchronized with any update of the original list item that occurs as a result of the map27
clause to avoid data races.28

If a single contiguous part of the original storage of a list item that results from an implicitly29
determined data-mapping attribute has corresponding storage in the device data environment prior30
to a task encountering the construct on which the map clause appears, only that part of the original31
storage will have corresponding storage in the device data environment as a result of the map clause.32

If a list item with an implicitly determined data-mapping attribute does not have any corresponding33
storage in the device data environment prior to a task encountering the construct associated with the34
map clause, and one or more contiguous parts of the original storage are either list items or base35
pointers to list items that are explicitly mapped on the construct, only those parts of the original36
storage will have corresponding storage in the device data environment as a result of the map37
clauses on the construct.38

216 OpenMP API – Version 6.0 Preview 2 November 2023

C / C++
If a new list item is created then the new list item will have the same static type as the original list1
item, and language-specific attributes of the new list item, including size and alignment, are2
determined by that type.3

C / C++
C++

If corresponding storage that differs from the original storage is created in a device data4
environment, all new list items that are created in that corresponding storage are default initialized.5
Default initialization for new list items of class type, including their data members, is performed as6
if with an implicitly-declared default constructor and as if non-static data member initializers are7
ignored.8

If the type of a new list item is a reference to a type T then it is initialized to refer to the object in9
the device data environment that corresponds to the object referenced by the original list item. The10
effect is as if the object were mapped through a pointer with an array section of length one and11
elements of type T.12

C++
Fortran

If a new list item is created then the new list item will have the same type, type parameter, and rank13
as the original list item. The new list item inherits all default values for the type parameters from14
the original list item.15

If the allocation status of an original list item that has the ALLOCATABLE attribute is changed16
while a corresponding list item is present in the device data environment, the allocation status of the17
corresponding list item is unspecified until entry to a region that corresponds to a map-entering18
construct that maps the list item with a map clause for which the always-modifier is specified.19

Fortran
The close-modifier is a hint that the corresponding storage should be close to the target device.20

If a map-entering clause specifies a self map for a list item then runtime error termination is21
performed if any of the following is true:22

• The original list item is not accessible and cannot be made accessible from the device;23

• The corresponding list item is present prior to a task encountering the construct on which the24
clause appears, and the corresponding storage differs from the original storage; or25

• The list item is a pointer that would be assigned a different value as a result of pointer26
attachment.27

Execution Model Events28
The target-map event occurs in a thread that executes the outermost region that corresponds to an29
encountered device construct with a map clause, after the target-task-begin event for the device30
construct and before any mapping operations are performed.31

CHAPTER 6. DATA ENVIRONMENT 217

The target-data-op-begin event occurs before a thread initiates a data operation on the target device1
that is associated with a map clause, in the outermost region that corresponds to the encountered2
construct.3

The target-data-op-end event occurs after a thread initiates a data operation on the target device4
that is associated with a map clause, in the outermost region that corresponds to the encountered5
construct.6

Tool Callbacks7
A thread dispatches one or more registered ompt_callback_target_map or8
ompt_callback_target_map_emi callbacks for each occurrence of a target-map event in9
that thread. The callback occurs in the context of the target task and has type signature10
ompt_callback_target_map_t or ompt_callback_target_map_emi_t,11
respectively.12

A thread dispatches a registered ompt_callback_target_data_op_emi callback with13
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-op-begin14
event in that thread. Similarly, a thread dispatches a registered15
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint16
argument for each occurrence of a target-data-op-end event in that thread. These callbacks have17
type signature ompt_callback_target_data_op_emi_t.18

A thread dispatches a registered ompt_callback_target_data_op callback for each19
occurrence of a target-data-op-end event in that thread. The callback occurs in the context of the20
target task and has type signature ompt_callback_target_data_op_t.21

Restrictions22
Restrictions to the map clause are as follows:23

• Two list items of the map clauses on the same construct must not share original storage24
unless one of the following is true: they are the same list item, one is the containing structure25
of the other, at least one is an assumed-size array, or at least one is implicitly mapped due to26
the list item also appearing in a use_device_addr clause.27

• If the same list item appears more than once in map clauses on the same construct, the map28
clauses must specify the same mapper modifier.29

• A variable that is a groupprivate variable or a device local variable must not appear as a list30
item in a map clause.31

• If a list item is an array section, it must specify contiguous storage.32

• If an expression that is used to form a list item in a map clause contains an iterator identifier,33
the list item instances that would result from different values of the iterator must not have the34
same containing array and must not have base pointers that share original storage.35

• If multiple list items are explicitly mapped on the same construct and have the same36
containing array or have base pointers that share original storage, and if any of the list items37

218 OpenMP API – Version 6.0 Preview 2 November 2023

do not have corresponding list items that are present in the device data environment prior to a1
task encountering the construct, then the list items must refer to the same array elements of2
either the containing array or the implicit array of the base pointers.3

• If any part of the original storage of a list item that is explicitly mapped by a map clause has4
corresponding storage in the device data environment prior to a task encountering the5
construct associated with the map clause, all of the original storage must have corresponding6
storage in the device data environment prior to the task encountering the construct.7

• If an array appears as a list item in a map clause and it has corresponding storage in the8
device data environment, the corresponding storage must correspond to a single mappable9
storage block that was previously mapped.10

• If a list item is an element of a structure, and a different element of the structure has a11
corresponding list item in the device data environment prior to a task encountering the12
construct associated with the map clause, then the list item must also have a corresponding13
list item in the device data environment prior to the task encountering the construct.14

• Each list item must have a mappable type.15

• If a mapper modifier appears in a map clause, the type on which the specified mapper16
operates must match the type of the list items in the clause.17

• Handles for memory spaces and memory allocators must not appear as list items in a map18
clause.19

• If a list item is an assumed-size array, multiple matched candidates must not exist unless they20
are subobjects of the same containing structure.21

• If a list item is an assumed-size array, the map-type must be alloc.22

• If a list item appears in a map clause with the self-modifier, any other list item in a map23
clause on the same construct that has the same base variable or base pointer must also be24
specified with the self-modifier.25

C++
• If a list item has a polymorphic class type and its static type does not match its dynamic type,26

the behavior is unspecified if the map clause is specified on a map-entering construct and a27
corresponding list item is not present in the device data environment prior to a task28
encountering the construct.29

• No type mapped through a reference may contain a reference to its own type, or any30
references to types that could produce a cycle of references.31

C++
C / C++

• A list item cannot be a variable that is a member of a structure of a union type.32

• A bit-field cannot appear in a map clause.33

CHAPTER 6. DATA ENVIRONMENT 219

• A pointer that has a corresponding pointer that is an attached pointer must not be modified1
for the duration of the lifetime of the list item to which the corresponding pointer is attached2
in the device data environment.3

C / C++
Fortran

• The association status of a list item that is a pointer must not be undefined unless it is a4
structure component and it results from a predefined default mapper.5

• If a list item of a map clause is an allocatable variable or is the subobject of an allocatable6
variable, the original list item may not be allocated, deallocated or reshaped while the7
corresponding list item has allocated storage.8

• A pointer that has a corresponding pointer that is an attached pointer and is associated with a9
given pointer target must not become associated with a different pointer target for the10
duration of the lifetime of the list item to which the corresponding pointer is attached in the11
device data environment.12

• If an array section is mapped and the size of the array section is smaller than that of the13
whole array, the behavior of referencing the whole array in a target region is unspecified.14

• A list item must not be a complex part designator.15

Fortran

Cross References16
• declare mapper directive, see Section 6.8.717

• target directive, see Section 14.818

• target data directive, see Section 14.519

• target enter data directive, see Section 14.620

• target exit data directive, see Section 14.721

• target update directive, see Section 14.922

• Array Sections, see Section 4.2.523

• iterator modifier, see Section 4.2.624

• mapper modifier, see Section 6.8.225

• ompt_callback_target_data_op_emi_t and26
ompt_callback_target_data_op_t, see Section 20.5.2.2527

• ompt_callback_target_map_emi_t and ompt_callback_target_map_t,28
see Section 20.5.2.2729

220 OpenMP API – Version 6.0 Preview 2 November 2023

6.8.4 enter Clause1

Name: enter Properties: data-environment attribute, data-
mapping attribute2

Arguments3
Name Type Properties
list list of extended list item type default4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
declare target8

Semantics9
The enter clause is a data-mapping attribute clause.10

If a procedure name appears in an enter clause in the same compilation unit in which the11
definition of the procedure occurs then a device-specific version of the procedure is created for all12
device to which the directive of the clause applies.13

C / C++
If a variable appears in an enter clause in the same compilation unit in which the definition of the14
variable occurs then a corresponding list item to the original list item is created in the device data15
environment of all devices to which the directive of the clause applies.16

C / C++
Fortran

If a variable that is host associated appears in an enter clause then a corresponding list item to the17
original list item is created in the device data environment of all devices to which the directive of18
the clause applies.19

Fortran
If a variable appears in an enter clause then the corresponding list item in the device data20
environment of each device to which the directive of the clause applies is initialized once, in the21
manner specified by the OpenMP program, but at an unspecified point in the OpenMP program22
prior to the first reference to that list item. The list item is never removed from those device data23
environments, as if its reference count was initialized to positive infinity.24

Restrictions25
Restrictions to the enter clause are as follows:26

• Each list item must have a mappable type.27

• Each list item must have static storage duration.28

CHAPTER 6. DATA ENVIRONMENT 221

Cross References1
• declare target directive, see Section 8.8.12

6.8.5 link Clause3

Name: link Properties: data-environment attribute4

Arguments5
Name Type Properties
list list of variable list item type default6

Modifiers7
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique8

Directives9
declare target10

Semantics11
The link clause supports compilation of device procedures that refer to variables with static12
storage duration that appear as list items in the clause. The declare target directive on which13
the clause appears does not map the list items. Instead, they are mapped according to the14
data-mapping rules described in Section 6.8.15

Restrictions16
Restrictions to the link clause are as follows:17

• Each list item must have a mappable type.18

• Each list item must have static storage duration.19

Cross References20
• declare target directive, see Section 8.8.121

• Data-Mapping Control, see Section 6.822

6.8.6 defaultmap Clause23

Name: defaultmap Properties: unique, post-modified24

Arguments25
Name Type Properties
implicit-behavior Keyword: alloc, default,

firstprivate, from, none,
present, self, to, tofrom

default
26

222 OpenMP API – Version 6.0 Preview 2 November 2023

Modifiers1
Name Modifies Type Properties
variable-category implicit-behavior Keyword: aggregate,

all, allocatable,
pointer, scalar

default

directive-name-
modifier

all arguments Keyword:
directive-name

unique

2

Directives3
target4

Semantics5
The defaultmap clause controls the implicitly determined data-mapping attributes or implicitly6
determined data-sharing attributes of certain variables that are referenced in a target construct,7
in accordance with the rules given in Section 6.8.1. The variable-category specifies the variables8
for which the attribute may be set, and the attribute is specified by implicit-behavior. If no9
variable-category is specified in the clause then the effect is as if all was specified for the10
variable-category.11

C / C++
The scalar variable-category specifies non-pointer variables of scalar type.12

C / C++
Fortran

The scalar variable-category specifies non-pointer and non-allocatable variables of scalar type.13
The allocatable variable-category specifies variables with the ALLOCATABLE attribute.14

Fortran
The pointer variable-category specifies variables of pointer type. The aggregate15
variable-category specifies aggregate variables. Finally, the all variable-category specifies all16
variables.17

If implicit-behavior is the name of a map type, the attribute is a data-mapping attribute determined18
by an implicit map clause with the specified map type. If implicit-behavior is firstprivate,19
the attribute is a data-sharing attribute of firstprivate. If implicit-behavior is present, the20
attribute is a data-mapping attribute determined by an implicit map clause with a map-type of21
alloc and the present-modifier. If implicit-behavior is self, the attribute is a data-mapping22
attribute determined by an implicit map clause with a map-type of alloc and the self-modifier. If23
implicit-behavior is none then no implicitly determined data-mapping attributes or implicitly24
determined data-sharing attributes are defined for variables in variable-category, except for25
variables that appear in the enter or link clause of a declare target directive. If26
implicit-behavior is default then the clause has no effect.27

CHAPTER 6. DATA ENVIRONMENT 223

Restrictions1
Restrictions to the defaultmap clause are as follows:2

• A given variable-category may be specified in at most one defaultmap clause on a3
construct.4

• If a defaultmap clause specifies the all variable-category, no other defaultmap5
clause may appear on the construct.6

• If implicit-behavior is none, each variable that is specified by variable-category and is7
referenced in the construct but does not have a predetermined data-sharing attribute and does8
not appear in an enter or link clause on a declare target directive must be9
explicitly listed in a data-environment attribute clause on the construct.10

C / C++
• The specified variable-category must not be allocatable.11

C / C++

Cross References12
• target directive, see Section 14.813

• Implicit Data-Mapping Attribute Rules, see Section 6.8.114

6.8.7 declare mapper Directive15

Name: declare mapper Association: none
Category: declarative Properties: pure16

Arguments17
declare mapper(mapper-specifier)18

Name Type Properties
mapper-specifier OpenMP mapper specifier default19

Clauses20
map21

Semantics22
User-defined mappers can be defined using the declare mapper directive. The23
mapper-specifier argument declares the mapper using the following syntax:24

C / C++
[mapper-identifier :] type var25

C / C++

224 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
[mapper-identifier :] type :: var1

Fortran
where mapper-identifier is a mapper identifier, type is a type that is permitted in a type-name list,2
and var is a base language identifier.3

The type and an optional mapper-identifier uniquely identify the mapper for use in a map clause or4
data-motion clause later in the OpenMP program. The visibility and accessibility of this declaration5
are the same as those of a variable declared at the same location in the OpenMP program.6

If mapper-identifier is not specified, the behavior is as if mapper-identifier is default.7

The variable declared by var is available for use in all map clauses on the directive, and no part of8
the variable to be mapped is mapped by default.9

The effect that a user-defined mapper has on either a map clause that maps a list item of the given10
base language type or a data-motion clause that invokes the mapper and updates a list item of the11
given base language type is to replace the map or update with a set of map clauses or updates12
derived from the map clauses specified by the mapper, as described in Section 6.8.3 and13
Section 6.9.14

The final map types that a mapper applies for a map clause that maps a list item of the given type15
are determined according to the rules of map-type decay, defined according to Table 6.5. Table 6.516
shows the final map type that is determined by the combination of two map types, where the rows17
represent the map type specified by the mapper and the columns represent the map type specified18
by a map clause that invokes the mapper. For a target exit data construct that invokes a19
mapper with a map clause that has the from map type, if a map clause in the mapper specifies an20
alloc or to map type then the result is a release map type.21

A list item in a map clause that appears on a declare mapper directive may include array22
sections.23

All map clauses that are introduced by a mapper are further subject to mappers that are in scope,24
except a map clause with list item var maps var without invoking a mapper.25

TABLE 6.5: Map-Type Decay of Map Type Combinations

alloc to from tofrom release delete
alloc alloc alloc alloc (release) alloc release delete
to alloc to alloc (release) to release delete
from alloc alloc from from release delete
tofrom alloc to from tofrom release delete

CHAPTER 6. DATA ENVIRONMENT 225

C++
The declare mapper directive can also appear at locations in the OpenMP program at which a1
static data member could be declared. In this case, the visibility and accessibility of the declaration2
are the same as those of a static data member declared at the same location in the OpenMP3
program.4

C++

Restrictions5
Restrictions to the declare mapper directive are as follows:6

• No instance of type can be mapped as part of the mapper, either directly or indirectly through7
another base language type, except the instance var that is passed as the list item. If a set of8
declare mapper directives results in a cyclic definition then the behavior is unspecified.9

• The type must not declare a new base language type.10

• At least one map clause that maps var or at least one element of var is required.11

• List items in map clauses on the declare mapper directive may only refer to the declared12
variable var and entities that could be referenced by a procedure defined at the same location.13

• Neither the release or delete map-type may be specified on any map clause.14

• If a mapper-modifier is specified for a map clause, its parameter must be default.15

• Multiple declare mapper directives that specify the same mapper-identifier for the same16
base language type or for compatible base language types, according to the base language17
rules, may not appear in the same scope.18

C
• type must be a struct or union type.19

C
C++

• type must be a struct, union, or class type.20

• If type is struct or class, it must not be derived from any virtual base class.21

C++
Fortran

• type must not be an intrinsic type, an abstract type, or a parameterized derived type.22

Fortran

Cross References23
• map clause, see Section 6.8.324

226 OpenMP API – Version 6.0 Preview 2 November 2023

6.9 Data-Motion Clauses1

Data-motion clauses specify data movement between a device set that is specified by the construct2
on which they appear. One member of that device set is always the encountering device. How the3
other devices, which are the target device, are determined is defined by the construct specification.4
Each data-motion clause specifies a data-motion attribute relative to the target devices.5

A data-motion clause specifies an OpenMP locator list as its argument. A corresponding list item6
and an original list item exist for each list item. If the corresponding list item is not present in the7
device data environment then no assignment occurs between the corresponding list item and the8
original list item. Otherwise, each corresponding list item in the device data environment has an9
original list item in the data environment of the encountering task. Assignment is performed to10
either the original list item or the corresponding list item as specified with the specific data-motion11
clauses. List items may reference any iterator-identifier defined in its iterator modifier. The list12
items may include array sections with stride expressions.13

C / C++
The list items may use shape-operators.14

C / C++
If a list item is an array or array section then it is treated as if it is replaced by each of its array15
elements in the clause.16

If the mapper modifier is not specified, the behavior is as if the modifier was specified with the17
default mapper-identifier mapper modifier. The effect of a data-motion clause on a list item is18
modified by a visible user-defined mapper if a mapper modifier is specified with a19
mapper-identifier for a type that matches the type of the list item. Otherwise, the predefined default20
mapper for the type of the list item applies. Each list item is replaced with the list items that the21
given mapper specifies are to be mapped with a compatible map type with respect to the22
data-motion attribute of the clause.23

If a present expectation is specified and the corresponding list item is not present in the device24
data environment then runtime error termination is performed. For a list item that is replaced with a25
set of list items as a result of a user-defined mapper, the expectation only applies to those mapper26
list items that share storage with the original list item.27

Fortran
If a list item or a subobject of a list item has the ALLOCATABLE attribute, its assignment is28
performed only if its allocation status is allocated and only with respect to the allocated storage. If a29
list item has the POINTER attribute and its association status is associated, the effect is as if the30
assignment is performed with respect to the pointer target.31

On exit from the associated region, if the corresponding list item is an attached pointer, the original32
list item, if associated, will be associated with the same pointer target with which it was associated33
on entry to the region and the corresponding list item, if associated, will be associated with the34
same pointer target with which it was associated on entry to the region.35

Fortran

CHAPTER 6. DATA ENVIRONMENT 227

C / C++
On exit from the associated region, if the corresponding list item is an attached pointer, the original1
list item will have the value it had on entry to the region and the corresponding list item will have2
the value it had on entry to the region.3

C / C++
For each list item that is not an attached pointer, the value of the assigned list item is assigned the4
value of the other list item. To avoid data races, concurrent reads or updates of the assigned list5
item must be synchronized with the update of an assigned list item that occurs as a result of a6
data-motion clause.7

Restrictions8
Restrictions to data-motion clauses are as follows:9

• Each list item of locator-list must have a mappable type.10

• If an array appears as a list item in a data-motion clause and it has corresponding storage in11
the device data environment, the corresponding storage must correspond to a single12
mappable storage block that was previously mapped.13

• If a mapper modifier appears in a data-motion clause, the specified mapper must operate on a14
type that matches either the type or array element type of each list item in the clause.15

Fortran
• The association status of a list item that is a pointer must not be undefined unless it is a16

structure component and it results from a predefined default mapper.17

Fortran

Cross References18
• device clause, see Section 14.219

• from clause, see Section 6.9.220

• to clause, see Section 6.9.121

• declare mapper directive, see Section 6.8.722

• target update directive, see Section 14.923

• Array Sections, see Section 4.2.524

• Array Shaping, see Section 4.2.425

• iterator modifier, see Section 4.2.626

228 OpenMP API – Version 6.0 Preview 2 November 2023

6.9.1 to Clause1

Name: to Properties: data-motion attribute2

Arguments3
Name Type Properties
locator-list list of locator list item type default4

Modifiers5
Name Modifies Type Properties
expectation locator-list Keyword: present default
mapper locator-list Complex, name: mapper

Arguments:
mapper-identifier OpenMP

identifier (default)

unique

iterator locator-list Complex, name: iterator
Arguments:
iterator-specifier OpenMP

expression (repeatable)

unique

directive-name-
modifier

all arguments Keyword:
directive-name

unique

6

Directives7
target update8

Semantics9
The to clause is a data-motion clause that specifies movement to the target devices from the10
encountering device so the corresponding list items are the assigned list items and the compatible11
map types are to and tofrom.12

C++
A list item for which a mapper does not exist is ignored if it has static storage duration and either it13
has the constexpr specifier or it is a non-mutable member of a structure that has the14
constexpr specifier.15

C++

Cross References16
• target update directive, see Section 14.917

• iterator modifier, see Section 4.2.618

CHAPTER 6. DATA ENVIRONMENT 229

6.9.2 from Clause1

Name: from Properties: data-motion attribute2

Arguments3
Name Type Properties
locator-list list of locator list item type default4

Modifiers5
Name Modifies Type Properties
expectation locator-list Keyword: present default
mapper locator-list Complex, name: mapper

Arguments:
mapper-identifier OpenMP

identifier (default)

unique

iterator locator-list Complex, name: iterator
Arguments:
iterator-specifier OpenMP

expression (repeatable)

unique

directive-name-
modifier

all arguments Keyword:
directive-name

unique

6

Directives7
target update8

Semantics9
The from clause is a data-motion clause that specifies movement from the target devices to the10
encountering device so the original list items are the assigned list items and the compatible map11
types are from and tofrom.12

C
A list item for which a mapper does not exist is ignored if it has the const specifier or if it is a13
member of a structure that has the const specifier.14

C
C++

A list item for which a mapper does not exist is ignored if it has the const or constexpr15
specifier or if it is a non-mutable member of a structure that has the const or constexpr16
specifier.17

C++

230 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• target update directive, see Section 14.92

• iterator modifier, see Section 4.2.63

6.10 uniform Clause4

Name: uniform Properties: data-environment attribute5

Arguments6
Name Type Properties
parameter-list list of parameter list item type default7

Modifiers8
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique9

Directives10
declare simd11

Semantics12
The uniform clause declares one or more arguments to have an invariant value for all concurrent13
invocations of the function in the execution of a single SIMD loop.14

Cross References15
• declare simd directive, see Section 8.716

6.11 aligned Clause17

Name: aligned Properties: data-environment attribute, post-
modified18

Arguments19
Name Type Properties
list list of variable list item type default20

Modifiers21
Name Modifies Type Properties
alignment list OpenMP integer expression positive, region

invariant, ultimate,
unique

directive-name-
modifier

all arguments Keyword:
directive-name

unique

22

CHAPTER 6. DATA ENVIRONMENT 231

Directives1
declare simd, simd2

Semantics3
C / C++

The aligned clause declares that the object to which each list item points is aligned to the4
number of bytes expressed in alignment.5

C / C++
Fortran

The aligned clause declares that the target of each list item is aligned to the number of bytes6
expressed in alignment.7

Fortran
The alignment modifier specifies the alignment that the program ensures related to the list items. If8
the alignment modifier is not specified, implementation defined default alignments for SIMD9
instructions on the target platforms are assumed.10

Restrictions11
Restrictions to the aligned clause are as follows:12

C
• The type of each list item must be an array or pointer type.13

C
C++

• The type of each list item must be an array, pointer, reference to array, or reference to pointer14
type.15

C++
Fortran

• Each list item must be an array.16

Fortran

Cross References17
• declare simd directive, see Section 8.718

• simd directive, see Section 11.519

6.12 groupprivate Directive20

Name: groupprivate Association: none
Category: declarative Properties: pure21

232 OpenMP API – Version 6.0 Preview 2 November 2023

Arguments1
groupprivate(list)2

Name Type Properties
list list of variable list item type default3

Clauses4
device_type5

Semantics6
The groupprivate directive specifies that list items are replicated such that each contention7
group receives its own copy. Each copy of the list item is uninitialized upon creation. The lifetime8
of a groupprivate variable is limited to the lifetime of all tasks in the contention group.9

For a device_type clause that is specified implicitly or explicitly on the directive, the behavior10
is as if the list items appear in a local clause on a declare target directive on which the same11
device_type clause is specified and at the same program point.12

All references to a variable in list in any task will refer to the groupprivate copy of that variable that13
is created for the contention group of the innermost enclosing implicit parallel region.14

Restrictions15
Restrictions to the groupprivate directive are as follows:16

• A task that executes in a particular contention group must not access the storage of a17
groupprivate copy of the list item that is created for a different contention group.18

• A variable that is declared with an initializer must not appear in a groupprivate directive.19

C / C++
• Each list item must be a file-scope, namespace-scope, or static block-scope variable.20

• No list item may have an incomplete type.21

• The address of a groupprivate variable must not be an address constant.22

• If any list item is a file-scope variable, the directive must appear outside any definition or23
declaration, and must lexically precede all references to any of the variables in the list.24

• If any list item is a namespace-scope variable, the directive must appear outside any25
definition or declaration other than the namespace definition itself and must lexically precede26
all references to any of the variables in the list.27

• Each variable in the list of a groupprivate directive at file, namespace, or class scope28
must refer to a variable declaration at file, namespace, or class scope that lexically precedes29
the directive.30

• If any list item is a static block-scope variable, the directive must appear in the scope of the31
variable and not in a nested scope and must lexically precede all references to any of the32
variables in the list.33

CHAPTER 6. DATA ENVIRONMENT 233

• Each variable in the list of a groupprivate directive in block scope must have static1
storage duration and must refer to a variable declaration in the same scope that lexically2
precedes the directive.3

• If a variable is specified in a groupprivate directive in one compilation unit, it must be4
specified in a groupprivate directive in every compilation unit in which it is declared.5

C / C++
C++

• If any list item is a static class member variable, the directive must appear in the class6
definition, in the same scope in which the member variable is declared, and must lexically7
precede all references the variable.8

• A groupprivate variable must not have an incomplete type or a reference type.9

C++
Fortran

• Each list item must be a named variable or a named common block; a named common block10
must appear between slashes.11

• The list argument must not include any coarrays or associate names.12

• The groupprivate directive must appear in the declaration section of a scoping unit in13
which the common block or variable is declared.14

• If a groupprivate directive that specifies a common block name appears in one15
compilation unit, then such a directive must also appear in every other compilation unit that16
contains a COMMON statement that specifies the same name. Each such directive must appear17
after the last such COMMON statement in that compilation unit.18

• If a groupprivate variable or a groupprivate common block is declared with the BIND19
attribute, the corresponding C entities must also be specified in a groupprivate directive20
in the C program.21

• A variable may only appear as an argument in a groupprivate directive in the scope in22
which it is declared. It must not be an element of a common block or appear in an23
EQUIVALENCE statement.24

• A variable that appears as a list item in a groupprivate directive must be declared in the25
scope of a module or have the SAVE attribute, either explicitly or implicitly.26

• The effect of an access to a groupprivate variable in a DO CONCURRENT construct is27
unspecified.28

Fortran

Cross References29
• device_type clause, see Section 14.130

234 OpenMP API – Version 6.0 Preview 2 November 2023

6.13 local Clause1

Name: local Properties: data-environment attribute2

Arguments3
Name Type Properties
list list of variable list item type default4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
declare target8

Semantics9
The local clause specifies that a reference to a list item on a given device will refer to a copy of10
the list item that is a device local variable and is in memory associated with the device.11

Cross References12
• declare target directive, see Section 8.8.113

CHAPTER 6. DATA ENVIRONMENT 235

7 Memory Management1

This chapter defines directives, clauses and related concepts for managing memory used by2
OpenMP programs.3

7.1 Memory Spaces4

OpenMP memory spaces represent storage resources where variables can be stored and retrieved.5
Table 7.1 shows the list of predefined memory spaces. The selection of a given memory space6
expresses an intent to use storage with certain traits for the allocations. The actual storage resources7
that each memory space represents are implementation defined.8

TABLE 7.1: Predefined Memory Spaces

Memory space name Storage selection intent

omp_default_mem_space Represents the system default storage

omp_large_cap_mem_space Represents storage with large capacity

omp_const_mem_space Represents storage optimized for variables with con-
stant values

omp_high_bw_mem_space Represents storage with high bandwidth

omp_low_lat_mem_space Represents storage with low latency

Variables allocated in the omp_const_mem_space memory space may be initialized through9
the firstprivate clause or with compile-time constants for static and constant variables.10
Implementation defined mechanisms to provide the constant value of these variables may also be11
supported.12

Restrictions13
Restrictions to OpenMP memory spaces are as follows:14

• Variables in the omp_const_mem_space memory space may not be written.15

236

7.2 Memory Allocators1

OpenMP memory allocators can be used by an OpenMP program to make allocation requests.2
When a memory allocator receives a request to allocate storage of a certain size, an allocation of3
logically consecutive memory in the resources of its associated memory space of at least the size4
that was requested will be returned if possible. This allocation will not overlap with any other5
existing allocation from a memory allocator.6

The behavior of the allocation process can be affected by the allocator traits that the user specifies.7
Table 7.2 shows the allowed allocator traits, their possible values and the default value of each trait.8

TABLE 7.2: Allocator Traits

Allocator trait Allowed values Default value

sync_hint contended, uncontended,
serialized, private

contended

alignment Positive integer powers of 2 1 byte

access all, memspace, device, cgroup,
pteam, thread

memspace

pool_size Any positive integer Implementation de-
fined

fallback default_mem_fb, null_fb,
abort_fb, allocator_fb

See below

fb_data An allocator handle (none)

pinned true, false false

partition environment, nearest, blocked,
interleaved

environment

pin_device Conforming device number (none)

preferred_device Conforming device number (none)

target_access single, multiple single

atomic_scope all, device device

part_size Positive integer value Implementation de-
fined

CHAPTER 7. MEMORY MANAGEMENT 237

The sync_hint trait describes the expected manner in which multiple threads may use the1
allocator. The values and their descriptions are:2

• contended: high contention is expected on the allocator; that is, many tasks are expected3
to request allocations simultaneously;4

• uncontended: low contention is expected on the allocator; that is, few task are expected to5
request allocations simultaneously;6

• serialized: one task at a time will request allocations with the allocator. Requesting two7
allocations simultaneously when specifying serialized results in unspecified behavior;8
and9

• private: the same thread will execute all tasks that request allocations with the allocator.10
Requesting an allocation from tasks that different threads execute, simultaneously or not,11
when specifying private results in unspecified behavior.12

Allocated memory will be byte aligned to at least the value specified for the alignment trait of13
the allocator. Some directives and API routines can specify additional requirements on alignment14
beyond those described in this section.15

The access trait defines the access group of tasks that may access memory that is allocated by a16
memory allocator. If the value is all, the access group consists of all tasks that execute on all17
available devices. If the value is memspace, the access group consists of all tasks that execute on18
all devices that are associated with the allocator. if the value is device, the access group consists19
of all tasks that execute on the device where the allocation was requested. If the value is cgroup,20
the access group consists of all tasks in the same contention group as the task that requested the21
allocation. If the value is pteam, the access group consists of all current team tasks of the22
innermost enclosing parallel region in which the allocation was requested. If the value is thread,23
the access group consists of all tasks that are executed by the same thread that executed the24
allocation request. Memory returned by the allocator will be memory accessible by all tasks in the25
same access group as the task that requested the allocation. Attempts to access this memory from a26
task that is not in same access group results in unspecified behavior.27

The total amount of storage in bytes that an allocator can use for allocation requests from tasks in28
the same access group is limited by the pool_size trait. Requests that would result in using more29
storage than pool_size will not be fulfilled by the allocator.30

The fallback trait specifies how the memory allocator behaves when it cannot fulfill an31
allocation request. If the fallback trait is set to null_fb, the allocator returns the value zero if32
it fails to allocate the memory. If the fallback trait is set to abort_fb, the behavior is as if an33
error directive for which sev-level is fatal and action-time is execution is encountered if34
the allocation fails. If the fallback trait is set to allocator_fb then when an allocation fails35
the request will be delegated to the allocator specified in the fb_data trait. If the fallback trait36
is set to default_mem_fb then when an allocation fails another allocation will be tried in37
omp_default_mem_space, which assumes all allocator traits to be set to their default values38
except for fallback trait, which will be set to null_fb. The default value for the fallback39

238 OpenMP API – Version 6.0 Preview 2 November 2023

trait is null_fb for any allocator that is associated with a target memory space. Otherwise, the1
default value is default_mem_fb.2

All memory that is allocated with an allocator for which the pinned trait is specified as true3
must remain in the same storage resource at the same location for its entire lifetime. If4
pin_device is also specified then the allocation must be allocated in that device.5

The partition trait describes the partitioning of allocated memory over the storage resources6
represented by the memory space associated with the allocator. The partitioning will be done in7
parts with a minimum size that is implementation defined. The values are:8

• environment: the placement of allocated memory is determined by the execution9
environment;10

• nearest: allocated memory is placed in the storage resource that is nearest to the thread11
that requests the allocation;12

• blocked: allocated memory is partitioned into parts of approximately the same size with at13
most one part per storage resource; and14

• interleaved: allocated memory parts are distributed in a round-robin fashion across the15
storage resources such that the size of each part is the value of the part_size trait except16
possibly the last part, which can be smaller.17

The part_size trait specifies the size of the parts allocated over the storage resources for some18
of the partition trait policies. The actual value of the trait might be rounded up to an19
implementation defined value to comply with hardware restrictions of the storage resources.20

If the preferred_device trait is specified then storage resources of the specified device are21
preferred to fulfill the allocation.22

If the value of the target_access trait is single then data from this allocator cannot be23
accessed on two different devices unless, for any given host device access, the entry and exit of the24
target region in which any accesses occur either both precede or both follow the host device access25
in happens-before order. Additionally, for any two target regions that may access data from this26
allocator and execute on distinct devices, the entry and exit of one of the regions must precede those27
of the other in happens-before order. If the value of the target_access trait is multiple then28
accesses of data from this allocator from different devices may be arbitrarily interleaved, provided29
that synchronization ensures data races do not occur.30

If the value of the atomic_scope trait is all then all storage locations of data from this31
allocator have an atomic scope that consists of all threads on the devices associated with the32
allocator. If the value is device then all storage locations have an atomic scope that consists of all33
threads on the device on which the atomic operation is performed.34

Table 7.3 shows the list of predefined memory allocators and their associated memory spaces. The35
predefined memory allocators have default values for their allocator traits unless otherwise36
specified.37

CHAPTER 7. MEMORY MANAGEMENT 239

TABLE 7.3: Predefined Allocators

Allocator name Associated memory space Non-default trait
values

omp_default_mem_alloc omp_default_mem_space fallback:null_fb

omp_large_cap_mem_alloc omp_large_cap_mem_space (none)

omp_const_mem_alloc omp_const_mem_space (none)

omp_high_bw_mem_alloc omp_high_bw_mem_space (none)

omp_low_lat_mem_alloc omp_low_lat_mem_space (none)

omp_cgroup_mem_alloc Implementation defined access:cgroup

omp_pteam_mem_alloc Implementation defined access:pteam

omp_thread_mem_alloc Implementation defined access:thread

Fortran
If any operation of the base language causes a reallocation of a variable that is allocated with a1
memory allocator then that memory allocator will be used to deallocate the current memory and to2
allocate the new memory. For any allocatable subcomponents, the allocator that is used for the3
deallocation and allocation is unspecified.4

Fortran

Restrictions5
• If the pin_device trait is specified, its value must be the device number of a device6

associated with the memory allocator.7

• If the preferred_device trait is specified, its value must be the device number of a8
device associated with the memory allocator.9

7.3 align Clause10

Name: align Properties: unique11

Arguments12
Name Type Properties
alignment expression of integer type constant, positive13

Modifiers14
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique15

240 OpenMP API – Version 6.0 Preview 2 November 2023

Directives1
allocate2

Semantics3
The align clause is used to specify the byte alignment to use for allocations associated with the4
construct on which the clause appears. Specifically, each allocation is byte aligned to at least the5
maximum of the value to which alignment evaluates, the alignment trait of the allocator being6
used for the allocation, and the alignment required by the base language for the type of the variable7
that is allocated. On constructs on which the clause may appear, if it is not specified then the effect8
is as if it was specified with the alignment trait of the allocator being used for the allocation.9

Restrictions10
Restrictions to the align clause are as follows:11

• alignment must evaluate to a power of two.12

Cross References13
• allocate directive, see Section 7.514

• Memory Allocators, see Section 7.215

7.4 allocator Clause16

Name: allocator Properties: unique17

Arguments18
Name Type Properties
allocator expression of allocator_handle type default19

Modifiers20
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique21

Directives22
allocate23

Semantics24
The allocator clause specifies the memory allocator to be used for allocations associated with25
the construct on which the clause appears. Specifically, the allocator to which allocator evaluates is26
used for the allocations. On constructs on which the clause may appear, if it is not specified then the27
effect is as if it was specified with the value of the def-allocator-var ICV.28

CHAPTER 7. MEMORY MANAGEMENT 241

Cross References1
• allocate directive, see Section 7.52

• Memory Allocators, see Section 7.23

• def-allocator-var ICV, see Table 2.14

7.5 allocate Directive5

Name: allocate Association: none
Category: declarative Properties: pure6

Arguments7
Name Type Properties
list list of variable list item type default8

Clauses9
align, allocator10

Semantics11
The storage for each list item that appears in the allocate directive is provided an allocation12
through the memory allocator as determined by the allocator clause with an alignment as13
determined by the align clause. The scope of this allocation is that of the list item in the base14
language. At the end of the scope for a given list item the memory allocator used to allocate that list15
item deallocates the storage.16

For allocations that arise from this directive the null_fb value of the fallback allocator trait17
behaves as if the abort_fb had been specified.18

Restrictions19
Restrictions to the allocate directive are as follows:20

• An allocate directive must appear in the same scope as the declarations of each of its list21
items and must follow all such declarations.22

• A declared variable may appear as a list item in at most one allocate directive in a given23
compilation unit.24

• allocate directives that appear in a target region must specify an allocator clause25
unless a requires directive with the dynamic_allocators clause is present in the26
same compilation unit.27

242 OpenMP API – Version 6.0 Preview 2 November 2023

C / C++
• If a list item has static storage duration, the allocator clause must be specified and the1

allocator expression in the clause must be a constant expression that evaluates to one of the2
predefined memory allocator values.3

• A variable that is declared in a namespace or global scope may only appear as a list item in an4
allocate directive if an allocate directive that lists the variable follows a declaration5
that defines the variable and if all allocate directives that list it specify the same allocator.6

• A list item must not be a function parameter.7

C / C++
C

• After a list item has been allocated, the scope that contains the allocate directive must not8
end abnormally, such as through a call to the longjmp function.9

C
C++

• After a list item has been allocated, the scope that contains the allocate directive must not10
end abnormally, such as through a call to the longjmp function, other than through C++11
exceptions.12

• A variable that has a reference type must not appear as a list item in an allocate directive.13

C++
Fortran

• A list item that is specified in an allocate directive must not have the ALLOCATABLE or14
POINTER attribute.15

• If a list item has the SAVE attribute, either explicitly or implicitly, or is a common block16
name then the allocator clause must be specified and only predefined memory allocator17
parameters can be used in the clause.18

• A variable that is part of a common block must not be specified as a list item in an19
allocate directive, except implicitly via the named common block.20

• A named common block may appear as a list item in at most one allocate directive in a21
given compilation unit.22

• If a named common block appears as a list item in an allocate directive, it must appear as23
a list item in an allocate directive that specifies the same allocator in every compilation24
unit in which the common block is used.25

• An associate name must not appear as a list item in an allocate directive.26

• A list item must not be a dummy argument.27

Fortran

CHAPTER 7. MEMORY MANAGEMENT 243

Cross References1
• align clause, see Section 7.32

• allocator clause, see Section 7.43

• Memory Allocators, see Section 7.24

7.6 allocate Clause5

Name: allocate Properties: all-privatizing6

Arguments7
Name Type Properties
list list of variable list item type default8

Modifiers9
Name Modifies Type Properties
allocator-simple-
modifier

list expression of OpenMP allo-
cator_handle type

exclusive, unique

allocator-complex-
modifier

list Complex, name:
allocator Arguments:
allocator expression of al-

locator_handle type
(default)

unique

align-modifier list Complex, name: align Ar-
guments:
alignment expression of

integer type (constant,
positive)

unique

directive-name-
modifier

all arguments Keyword:
directive-name

unique

10

Directives11
allocators, distribute, do, for, parallel, scope, sections, single, target,12
task, taskgroup, taskloop, teams13

Semantics14
The allocate clause specifies the memory allocator to be used to obtain storage for a list of15
variables. If a list item in the clause also appears in a data-sharing attribute clause on the same16
directive that privatizes the list item, allocations that arise from that list item in the clause will be17
provided by the memory allocator. If the allocator-simple-modifier is specified, the behavior is as if18
the allocator-complex-modifier is instead specified with allocator-simple-modifier as its allocator19

244 OpenMP API – Version 6.0 Preview 2 November 2023

argument. The allocator-complex-modifier and align-modifier have the same syntax and semantics1
for the allocate clause as the allocator and align clauses have for the allocate2
directive.3

For allocations that arise from this clause, the null_fb value of the fallback allocator trait4
behaves as if the abort_fb had been specified.5

Restrictions6
Restrictions to the allocate clause are as follows:7

• For any list item that is specified in the allocate clause on a directive other than the8
allocators directive, a data-sharing attribute clause that may create a private copy of that9
list item must be specified on the same directive.10

• For task, taskloop or target directives, allocation requests to memory allocators with11
the access trait set to thread result in unspecified behavior.12

• allocate clauses that appear on a target construct or on constructs in a target region13
must specify an allocator-simple-modifier or allocator-complex-modifier unless a14
requires directive with the dynamic_allocators clause is present in the same15
compilation unit.16

Cross References17
• align clause, see Section 7.318

• allocator clause, see Section 7.419

• allocators directive, see Section 7.720

• distribute directive, see Section 12.721

• do directive, see Section 12.6.222

• for directive, see Section 12.6.123

• parallel directive, see Section 11.224

• scope directive, see Section 12.225

• sections directive, see Section 12.326

• single directive, see Section 12.127

• target directive, see Section 14.828

• task directive, see Section 13.629

• taskgroup directive, see Section 16.430

• taskloop directive, see Section 13.731

• teams directive, see Section 11.332

• Memory Allocators, see Section 7.233

CHAPTER 7. MEMORY MANAGEMENT 245

Fortran

7.7 allocators Construct1

Name: allocators Association: block (allocator structured
block)

Category: executable Properties: default
2

Clauses3
allocate4

Semantics5
The allocators construct specifies that memory allocators are used for certain variables that are6
allocated by the associated allocate-stmt. The list items that appear in an allocate clause may7
include structure elements. If a variable that is to be allocated appears as a list item in an8
allocate clause on the directive, an allocator is used to allocate storage for the variable9
according to the semantics of the allocate clause. If a variable that is to be allocated does not10
appear as a list item in an allocate clause, the allocation is performed according to the base11
language implementation.12

Restrictions13
Restrictions to the allocators construct are as follows:14

• A list item that appears in an allocate clause must appear as one of the variables that is15
allocated by the allocate-stmt in the associated allocator structured block.16

Cross References17
• allocate clause, see Section 7.618

• Memory Allocators, see Section 7.219

• OpenMP Allocator Structured Blocks, see Section 5.3.120

Fortran

7.8 uses_allocators Clause21

Name: uses_allocators Properties: data-environment attribute, data-
sharing attribute22

Arguments23
Name Type Properties
allocator expression of allocator_handle type default24

246 OpenMP API – Version 6.0 Preview 2 November 2023

Modifiers1
Name Modifies Type Properties
mem-space allocator Complex, name: memspace

Arguments:
memspace-handle

expression of
memspace_handle type
(default)

default

traits-array allocator Complex, name: traits
Arguments:
traits variable of alloctrait

array type (default)

default

directive-name-
modifier

all arguments Keyword:
directive-name

unique

2

Directives3
target4

Semantics5
The uses_allocators clause enables the use of the specified allocator in the region associated6
with the directive on which the clause appears. If allocator refers to a predefined allocator, that7
predefined allocator will be available for use in the region. If allocator does not refer to a8
predefined allocator, the effect is as if allocator is specified on a private clause. The resulting9
corresponding item is assigned the result of a call to omp_init_allocator at the beginning of10
the associated region with arguments memspace-handle, the number of traits in the traits array, and11
traits. If mem-space is not specified or omp_null_mem_space is specified, the effect is as if12
memspace-handle is specified as omp_default_mem_space. If traits-array is not specified,13
the effect is as if traits is specified as an empty array. Further, at the end of the associated region,14
the effect is as if this allocator is destroyed as if by a call to omp_destroy_allocator.15

Restrictions16
• The allocator expression must be a base language identifier.17

• If allocator is a predefined allocator, no modifiers may be specified.18

• If allocator is not a predefined allocator, it must be a variable.19

• The allocator argument must not appear in other data-sharing attribute clauses or20
data-mapping attribute clauses on the same construct.21

C / C++
• The traits argument for the traits-array modifier must be a constant array, have constant22

values and be defined in the same scope as the construct on which the clause appears.23

C / C++

CHAPTER 7. MEMORY MANAGEMENT 247

Fortran
• The traits argument for the traits-array modifier must be a named constant of rank one.1

Fortran
• The memspace-handle argument for the mem-space modifier must be an identifier that2

matches one of the predefined memory space names.3

Cross References4
• target directive, see Section 14.85

• Memory Allocators, see Section 7.26

• Memory Spaces, see Section 7.17

• omp_destroy_allocator, see Section 19.13.58

• omp_init_allocator, see Section 19.13.39

248 OpenMP API – Version 6.0 Preview 2 November 2023

8 Variant Directives1

This chapter defines directives and related concepts to support the seamless adaption of OpenMP2
programs to OpenMP contexts.3

8.1 OpenMP Contexts4

At any point in an OpenMP program, an OpenMP context exists that defines traits that describe the5
active constructs, the execution devices, functionality supported by the implementation and6
available dynamic values. The traits are grouped into trait sets. The defined trait sets are: the7
construct trait set; the device trait set; the target device trait set; the implementation trait set; and the8
dynamic trait set. Traits are categorized as name-list traits, clause-list traits, non-property traits and9
extension traits. This categorization determines the syntax that is used to match the trait, as defined10
in Section 8.2.11

The construct trait set is composed of the directive names, each being a trait, of all enclosing12
constructs at that point in the OpenMP program up to a target construct. Combined constructs13
and composite constructs are added to the set as distinct constructs in the same nesting order14
specified by the original constructs. The dispatch construct is added to the construct trait set15
only for the target-call of the associated function dispatch structured block. The construct trait set16
is ordered by nesting level in ascending order. Specifically, the ordering of the set of constructs is17
c1, . . . , cN , where c1 is the construct at the outermost nesting level and cN is the construct at the18
innermost nesting level. In addition, if the point in the OpenMP program is not enclosed by a19
target construct, the following rules are applied in order:20

1. For procedures with a declare simd directive, the simd trait is added to the beginning of21
the construct trait set as c1 for any generated SIMD versions so the total size of the trait set is22
increased by one.23

2. For procedures that are determined to be function variants by a declare variant directive, the24
trait selectors c1, . . . , cM of the construct selector set are added in the same order to the25
beginning of the construct trait set as c1, . . . , cM so the total size of the trait set is increased26
by M .27

3. For procedures that are determined to be target variants by a declare target directive, the28
target trait is added to the beginning of the construct trait set as c1 so the total size of the trait29
set is increased by one.30

249

The simd trait is a clause-list trait that is defined with properties that match the clauses that can be1
specified on the declare simd directive with the same names and semantics. The simd trait2
defines at least the simdlen property and one of the inbranch or notinbranch properties. Traits in the3
construct trait set other than simd are non-property traits.4

The device trait set includes traits that define the characteristics of the device being targeted by the5
compiler at that point in the OpenMP program. For each target device that the implementation6
supports, a target device trait set exists that defines the characteristics of that device. At least the7
following traits must be defined for the device trait set and all target device trait sets:8

• The kind(kind-list) name-list trait specifies the general kind of the device. Each member of9
kind-list is a kind-name, for which the following values are defined:10

– host, which specifies that the device is the host device;11

– nohost, which specifies that the device is not the host device; and12

– the values defined in the OpenMP Additional Definitions document.13

• The isa(isa-list) name-list trait specifies the Instruction Set Architectures supported by the14
device. Each member of isa-list is an isa-name, for which the accepted values are15
implementation defined.16

• The arch(arch-list) name-list trait specifies the architectures supported by the device. Each17
member of arch-list is an arch-name, for which the accepted values are implementation18
defined.19

The target device trait set also defines the following trait:20

• The device_num trait specifies the device number of the device.21

The implementation trait set includes traits that describe the functionality supported by the OpenMP22
implementation at that point in the OpenMP program. At least the following traits can be defined:23

• The vendor(vendor-list) name-list trait, which specifies the vendor identifiers of the24
implementation. Each member of vendor-list is a vendor-name, for which the defined values25
are in the OpenMP Additional Definitions document.26

• The extension(extension-list) name-list trait, which specifies vendor-specific extensions to the27
OpenMP specification. Each member of extension-list is an extension-name, for which the28
accepted values are implementation defined.29

• A requires(requires-lst) clause-list trait, for which the properties are the clauses that have30
been supplied to the requires directive prior to the program point as well as31
implementation defined implicit requirements.32

Implementations can define additional traits in the device trait set, target device trait set and33
implementation trait set; these traits are extension traits.34

The dynamic trait set includes traits that define the dynamic properties of an OpenMP program at a35
point in its execution. The data state trait in the dynamic trait set refers to the complete data state of36
the OpenMP program that may be accessed at runtime.37

250 OpenMP API – Version 6.0 Preview 2 November 2023

8.2 Context Selectors1

Context selectors are used to define the properties that can match an OpenMP context. OpenMP2
defines different trait selector sets, each of which contains different trait selectors.3

The syntax for a context selector is context-selector-specification as described in the following4
grammar:5

context-selector-specification:6
trait-set-selector[,trait-set-selector[,...]]7

8
trait-set-selector:9

trait-set-selector-name={trait-selector[, trait-selector[, ...]]}10
11

trait-selector:12
trait-selector-name[([trait-score:] trait-property[, trait-property[, ...]])]13

14
trait-property:15

trait-property-name16
trait-property-clause17
trait-property-expression18
trait-property-extension19

20
trait-property-clause:21

clause22
23

trait-property-name:24
identifier25
string-literal26

27
trait-property-expression28

scalar-expression (for C/C++)29
scalar-logical-expression (for Fortran)30
scalar-integer-expression (for Fortran)31

32
trait-score:33

score(score-expression)34
35

trait-property-extension:36
trait-property-name37
identifier(trait-property-extension[, trait-property-extension[, ...]])38
constant integer expression39

For trait selectors that correspond to name-list traits, each trait-property should be40
trait-property-name and for any value that is a valid identifier both the identifier and the41

CHAPTER 8. VARIANT DIRECTIVES 251

corresponding string literal (for C/C++) and the corresponding char-literal-constant (for Fortran)1
representation are considered representations of the same value.2

For trait selectors that correspond to clause-list traits, each trait-property should be3
trait-property-clause. The syntax is the same as for the matching clause.4

The construct selector set defines the traits in the construct trait set that should be active in the5
OpenMP context. Each trait selector that can be defined in the construct selector set is the6
directive-name of a context-matching construct. Each trait-property of the simd trait selector is a7
trait-property-clause. The syntax is the same as for a valid clause of the declare simd directive8
and the restrictions on the clauses from that directive apply. The construct selector set is an9
ordered list c1, . . . , cN .10

The device selector set and implementation selector set define the traits that should be11
active in the corresponding trait set of the OpenMP context. The target_device selector set12
defines the traits that should be active in the target device trait set for the device that the specified13
device_num trait selector identifies. The same traits that are defined in the corresponding trait14
sets can be used as trait selectors with the same properties. The kind trait selector of the device15
selector set and target_device selector set can also specify the value any, which is as if no16
kind trait selector was specified. If a device_num trait selector does not appear in the17
target_device selector set then a device_num trait selector that specifies the value of the18
default-device-var ICV is implied. For the device_num trait selector of the target_device19
selector set, a single trait-property-expression must be specified. For the20
atomic_default_mem_order trait selector of the implementation selector set, a single21
trait-property must be specified as an identifier equal to one of the valid arguments to the22
atomic_default_mem_order clause on the requires directive. For the requires trait23
selector of the implementation selector set, each trait-property is a trait-property-clause. The24
syntax is the same as for a valid clause of the requires directive and the restrictions on the25
clauses from that directive apply.26

The user selector set defines the condition trait selector that provides additional user-defined27
conditions. The condition trait selector contains a single trait-property-expression that must28
evaluate to true for the trait selector to be true. Any non-constant trait-property-expression that is29
evaluated to determine the suitability of a variant is evaluated according to the data state trait in the30
dynamic trait set of the OpenMP context. The user selector set is dynamic if the condition31
trait selector is present and the expression in the condition trait selector is not a constant32
expression; otherwise, it is static.33

All parts of a context selector define the static part of the context selector except the following34
parts, which define the dynamic part of the context selector:35

• Its user selector set if it is dynamic; and36

• Its target_device selector set.37

For the match clause of a declare variant directive, any argument of the base function that38
is referenced in an expression that appears in the context selector is treated as a reference to the39

252 OpenMP API – Version 6.0 Preview 2 November 2023

expression that is passed into that argument at the call to the base function. Otherwise, a variable or1
procedure reference in an expression that appears in a context selector is a reference to the variable2
or procedure of that name that is visible at the location of the directive on which the context3
selector appears.4

C++
Each occurrence of the this pointer in an expression in a context selector that appears in the5
match clause of a declare variant directive is treated as an expression that is the address of6
the object on which the associated base function is invoked.7

C++
Implementations can allow further trait selectors to be specified. Each specified trait-property for8
these implementation defined trait selectors should be a trait-property-extension. Implementations9
can ignore specified trait selectors that are not those described in this section.10

Restrictions11
Restrictions to context selectors are as follows:12

• Each trait-property may only be specified once in a trait selector other than those in the13
construct selector set.14

• Each trait-set-selector-name may only be specified once.15

• Each trait-selector-name may only be specified once.16

• A trait-score cannot be specified in traits from the construct selector set, the device17
selector set or the target_device selector sets.18

• A score-expression must be a non-negative constant integer expression.19

• The expression of a device_num trait must evaluate to a non-negative integer value that is20
less than or equal to the value returned by omp_get_num_devices.21

• A variable or procedure that is referenced in an expression that appears in a context selector22
must be visible at the location of the directive on which the context selector appears unless23
the directive is a declare variant directive and the variable is an argument of the24
associated base function.25

• If trait-property any is specified in the kind trait-selector of the device selector set or26
the target_device selector sets, no other trait-property may be specified in the same27
selector set.28

• For a trait-selector that corresponds to a name-list trait, at least one trait-property must be29
specified.30

• For a trait-selector that corresponds to a non-property trait, no trait-property may be31
specified.32

• For the requires trait selector of the implementation selector set, at least one33
trait-property must be specified.34

CHAPTER 8. VARIANT DIRECTIVES 253

8.3 Matching and Scoring Context Selectors1

A context selector is compatible with an OpenMP context if the following conditions are satisfied:2

• All trait selectors in its user selector set are true;3

• All traits and trait properties that are defined by trait selectors in the target_device4
selector set are active in the target device trait set for the device that is identified by the5
device_num trait selector;6

• All traits and trait properties that are defined by trait selectors in its construct selector set,7
its device selector set and its implementation selector set are active in the8
corresponding trait sets of the OpenMP context;9

• For each trait selector in the context selector, its properties are a subset of the properties of10
the corresponding trait of the OpenMP context;11

• Trait selectors in its construct selector set appear in the same relative order as their12
corresponding traits in the construct trait set of the OpenMP context; and13

• No specified implementation defined trait selector is ignored by the implementation.14

Some properties of the simd trait selector have special rules to match the properties of the simd15
trait:16

• The simdlen(N) property of the trait selector matches the simdlen(M) trait of the17
OpenMP context if M is a multiple of N ; and18

• The aligned(list:N) property of the trait selector matches the aligned(list:M) trait of the19
OpenMP context if N is a multiple of M .20

Among compatible context selectors, a score is computed using the following algorithm:21

1. Each trait selector for which the corresponding trait appears in the construct trait set in the22
OpenMP context is given the value 2p−1 where p is the position of the corresponding trait,23
cp, in the construct trait set; if the traits that correspond to the construct selector set24
appear multiple times in the OpenMP context, the highest valued subset of context traits that25
contains all trait selectors in the same order are used;26

2. The kind, arch, and isa trait selectors, if specified, are given the values 2l, 2l+1 and 2l+2,27
respectively, where l is the number of traits in the construct trait set;28

3. Trait selectors for which a trait-score is specified are given the value specified by the29
trait-score score-expression;30

4. The values given to any additional trait selectors allowed by the implementation are31
implementation defined;32

5. Other trait selectors are given a value of zero; and33

254 OpenMP API – Version 6.0 Preview 2 November 2023

6. A context selector that is a strict subset of another context selector has a score of zero. For1
other context selectors, the final score is the sum of the values of all specified trait selectors2
plus 1.3

8.4 Metadirectives4

A metadirective is a directive that can specify multiple directive variants of which one may be5
conditionally selected to replace the metadirective based on the enclosing context. A metadirective6
is replaced by a nothing directive or one of the directive variants specified by the when clauses7
or the otherwise clause. If no otherwise clause is specified the effect is as if one was8
specified without an associated directive variant.9

The OpenMP context for a given metadirective is defined according to Section 8.1. The order of10
clauses that appear on a metadirective is significant and, if specified, otherwise must be the last11
clause specified on a metadirective.12

Replacement candidates for a metadirective are ordered according to the following rules in13
decreasing precedence:14

• A candidate is before another one if the score associated with the context selector of the15
corresponding when clause is higher.16

• A candidate that was explicitly specified is before one that was implicitly specified.17

• Candidates are ordered according to the order in which they lexically appear on the18
metadirective.19

The list of dynamic replacement candidates is the prefix of the sorted list of replacement candidates20
up to and including the first candidate for which the corresponding when or otherwise clause21
has a static context selector. The first dynamic replacement candidate for which the corresponding22
when or otherwise clause has a compatible context selector, according to the matching rules23
defined in Section 8.3, replaces the metadirective.24

Restrictions25
Restrictions to metadirectives are as follows:26

• Replacement of the metadirective with the directive variant associated with any of the27
dynamic replacement candidates must result in a conforming program.28

• Insertion of user code at the location of a metadirective must be allowed if the first dynamic29
replacement candidate does not have a static context selector.30

• If the list of dynamic replacement candidates has multiple items then all items must be31
executable directives.32

CHAPTER 8. VARIANT DIRECTIVES 255

Fortran
• A metadirective that appears in the specification part of a subprogram must follow all1

variant-generating declarative directives that appear in the same specification part.2

• A metadirective is pure if and only if all directive variants specified for it are pure.3

Fortran

8.4.1 when Clause4

Name: when Properties: default5

Arguments6
Name Type Properties
directive-variant directive-specification optional, unique7

Modifiers8
Name Modifies Type Properties
context-selector directive-variant An OpenMP context-

selector-specification
required, unique

directive-name-
modifier

all arguments Keyword:
directive-name

unique
9

Directives10
begin metadirective, metadirective11

Semantics12
The specified directive-variant is a replacement candidate for the metadirective on which the clause13
is specified if the static part of the context selector specified by context-selector is compatible with14
the OpenMP context according to the matching rules defined in Section 8.3. If a when clause does15
not explicitly specify a directive variant, it implicitly specifies a nothing directive as the directive16
variant.17

Expressions that appear in the context selector of a when clause are evaluated if no prior dynamic18
replacement candidate has a compatible context selector, and the number of times each expression19
is evaluated is implementation defined. All variables referenced by these expressions are20
considered to be referenced by the metadirective.21

A directive variant that is associated with a when clause can only affect the OpenMP program if22
the directive variant is a dynamic replacement candidate.23

256 OpenMP API – Version 6.0 Preview 2 November 2023

Restrictions1
Restrictions to the when clause are as follows:2

• directive-variant must not specify a metadirective.3

• context-selector must not specify any properties for the simd trait selector.4

C / C++
• directive-variant must not specify a begin declare variant directive.5

C / C++
Cross References6

• begin metadirective directive, see Section 8.4.47

• metadirective directive, see Section 8.4.38

• nothing directive, see Section 9.79

• Context Selectors, see Section 8.210

8.4.2 otherwise Clause11

Name: otherwise Properties: unique, ultimate12

Arguments13
Name Type Properties
directive-variant directive-specification optional, unique14

Modifiers15
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique16

Directives17
begin metadirective, metadirective18

Semantics19
The otherwise clause is treated as a when clause with the specified directive variant, if any, and20
a static context selector that is always compatible and has a score lower than the scores associated21
with any other directive variant.22

Restrictions23
Restrictions to the otherwise clause are as follows:24

• directive-variant must not specify a metadirective.25

C / C++
• directive-variant must not specify a begin declare variant directive.26

C / C++

CHAPTER 8. VARIANT DIRECTIVES 257

Cross References1
• when clause, see Section 8.4.12

• begin metadirective directive, see Section 8.4.43

• metadirective directive, see Section 8.4.34

8.4.3 metadirective5

Name: metadirective Association: none
Category: meta Properties: pure6

Clauses7
otherwise, when8

Semantics9
The metadirective specifies metadirective semantics.10

Cross References11
• otherwise clause, see Section 8.4.212

• when clause, see Section 8.4.113

• Metadirectives, see Section 8.414

8.4.4 begin metadirective15

Name: begin metadirective Association: delimited
Category: meta Properties: pure16

Clauses17
otherwise, when18

Semantics19
The begin metadirective is a metadirective for which the specified directive variants other20
than the nothing directive must accept a paired end directive. For any directive variant that is21
selected to replace the begin metadirective directive, the end metadirective22
directive is implicitly replaced by its paired end directive to demarcate the statements that are23
affected by or are associated with the directive variant. If the nothing directive is selected to24
replace the begin metadirective directive, the paired end metadirective is ignored.25

Restrictions26
The restrictions to begin metadirective are as follows:27

• Any directive-variant that is specified by a when or otherwise clause must be a directive28
that has a paired end directive or must be the nothing directive.29

258 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• otherwise clause, see Section 8.4.22

• when clause, see Section 8.4.13

• nothing directive, see Section 9.74

• Metadirectives, see Section 8.45

8.5 Declare Variant Directives6

Declare variant directives declare base functions to have the specified function variant. The context7
selector specified by context-selector in the match clause is associated with the function variant.8

The OpenMP context for a direct call to a given base function is defined according to Section 8.1. If9
a declare variant directive for the base function is visible at the call site and the static part of the10
context selector that is associated with the declared function variant is compatible with the11
OpenMP context of the call according to the matching rules defined in Section 8.3 then the function12
variant is a replacement candidate to be called instead of the base function. Replacement13
candidates are ordered in decreasing order of the score associated with the context selector. If two14
replacement candidates have the same score then their order is implementation defined.15

The list of dynamic replacement candidates is the prefix of the sorted list of replacement candidates16
up to and including the first candidate for which the corresponding match clause has a static17
context selector.18

The first dynamic replacement candidate for which the corresponding match clause has a19
compatible context selector is called instead of the base function. If no compatible candidate exists20
then the base function is called.21

Expressions that appear in the context selector of a match clause are evaluated if no prior dynamic22
replacement candidate has a compatible context selector, and the number of times each expression23
is evaluated is implementation defined. All variables referenced by these expressions are24
considered to be referenced at the call site.25

C++
For calls to constexpr base functions that are evaluated in constant expressions, whether variant26
substitution occurs is implementation defined.27

C++
For indirect function calls that can be determined to call a particular base function, whether variant28
substitution occurs is unspecified.29

Any differences that the specific OpenMP context requires in the prototype of the function variant30
from the base function prototype are implementation defined.31

Different declare variant directives may be specified for different declarations of the same base32
function.33

CHAPTER 8. VARIANT DIRECTIVES 259

Restrictions1
Restrictions to declare variant directives are as follows:2

• Calling procedures that a declare variant directive determined to be a function variant3
directly in an OpenMP context that is different from the one that the construct selector4
set of the context selector specifies is non-conforming.5

• If a procedure is determined to be a function variant through more than one declare variant6
directive then the construct selector set of their context selectors must be the same.7

• A procedure determined to be a function variant may not be specified as a base function in8
another declare variant directive.9

• An adjust_args clause or append_args clause may only be specified if the10
dispatch trait selector of the construct selector set appears in the match clause.11

C / C++
• The type of the function variant must be compatible with the type of the base function after12

the implementation defined transformation for its OpenMP context.13

C / C++
C++

• Declare variant directives may not be specified for virtual, defaulted or deleted functions.14

• Declare variant directives may not be specified for constructors or destructors.15

• Declare variant directives may not be specified for immediate functions.16

• The procedure that a declare variant directive determined to be a function variant may not be17
an immediate function.18

C++

Cross References19
• begin declare variant directive, see Section 8.5.520

• declare variant directive, see Section 8.5.421

• Context Selectors, see Section 8.222

• OpenMP Contexts, see Section 8.123

8.5.1 match Clause24

Name: match Properties: unique, required25

Arguments26
Name Type Properties
context-selector An OpenMP context-selector-

specification
default27

260 OpenMP API – Version 6.0 Preview 2 November 2023

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique2

Directives3
begin declare variant, declare variant4

Semantics5
The context-selector argument of the match clause specifies the context selector to use to6
determine if a specified function variant is a replacement candidate for the specified base function7
in a given OpenMP context.8

Restrictions9
Restrictions to the match clause are as follows:10

• All variables that are referenced in an expression that appears in the context selector of a11
match clause must be accessible at each call site to the base function according to the base12
language rules.13

Cross References14
• begin declare variant directive, see Section 8.5.515

• declare variant directive, see Section 8.5.416

• Context Selectors, see Section 8.217

8.5.2 adjust_args Clause18

Name: adjust_args Properties: default19

Arguments20
Name Type Properties
parameter-list list of parameter list item type default21

Modifiers22
Name Modifies Type Properties
adjust-op parameter-list Keyword:

need_device_ptr,
nothing

required

directive-name-
modifier

all arguments Keyword:
directive-name

unique

23

Directives24
declare variant25

CHAPTER 8. VARIANT DIRECTIVES 261

Semantics1
The adjust_args clause specifies how to adjust the arguments of the base function when a2
specified function variant is selected for replacement. For each adjust_args clause that is3
present on the selected function variant, the adjustment operation specified by the adjust-op4
modifier is applied to each argument specified in the clause before being passed to the selected5
function variant. If the adjust-op modifier is nothing, the argument is passed to the selected6
function variant without being modified.7

If the adjust-op modifier is need_device_ptr, the arguments are converted to corresponding8
device pointers of the default device if they are not already device pointers. If the current task has9
the is_device_ptr property for a given argument in its interoperability requirement set, the argument10
is not adjusted. Otherwise, the argument is converted in the same manner that a11
use_device_ptr clause on a target data construct converts its pointer list items into12
device pointers. If the argument cannot be converted into a device pointer then NULL is passed as13
the argument.14

Restrictions15
Fortran

• Each argument that appears in the clause with a need_device_ptr adjust-op must be of16
type C_PTR in the dummy argument declaration of the function variant.17

Fortran

Cross References18
• declare variant directive, see Section 8.5.419

8.5.3 append_args Clause20

Name: append_args Properties: unique21

Arguments22
Name Type Properties
append-op-list list of OpenMP operation list item type default23

Modifiers24
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique25

Directives26
declare variant27

262 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
The append_args clause specifies additional arguments to pass in the call when a specified2
function variant is selected for replacement. If no interop clause is specified on an associated3
dispatch construct then the arguments are constructed according to each specified list item in4
append-op-list. If an interop clause is specified with n variables on an associated dispatch5
construct then the arguments are constructed in the same order in which they appear in the6
interop clause and the first n list items in the append-op-list are omitted. Any remaining list7
items in the append-op-list are used to construct additional arguments that follow the arguments8
that are constructed from the variables from the interop clause. In either case, the arguments are9
passed to the function variant after any named arguments of the base function in the same order in10
which they are constructed. If the base function is variadic, the constructed arguments are passed11
before any variadic arguments.12

The supported OpenMP operations in append-op-list are:13

interop14

The interop operation accepts as its operator-parameter-specification any15
modifier-specification-list that is accepted by the init clause on the interop construct.16

Each interop operation for an append-op-list list item that is not omitted constructs an argument17
of interop OpenMP type using the interoperability requirement set of the encountering task.18
The argument is constructed as if by an interop construct with an init clause that specifies the19
modifier-specification-list specified in the interop operation. If the interoperability requirement20
set contains one or more properties that could be used as clauses for an interop construct of21
interop-type, the behavior is as if the corresponding clauses would also be part of the interop22
construct and those properties are removed from the interoperability requirement set.23

This argument is destroyed after the call to the selected function variant returns, as if an interop24
construct with a destroy clause was used with the same clauses that were used to initialize the25
argument.26

Cross References27
• init clause, see Section 15.1.228

• declare variant directive, see Section 8.5.429

• interop directive, see Section 15.130

• Interoperability Requirement Set, see Section 15.231

• OpenMP Operations, see Section 4.2.332

CHAPTER 8. VARIANT DIRECTIVES 263

8.5.4 declare variant Directive1

Name: declare variant Association: declaration
Category: declarative Properties: pure2

Arguments3
declare variant([base–name:]variant-name)4

Name Type Properties
base-name identifier of function type optional
variant-name identifier of function type default

5

Clauses6
adjust_args, append_args, match7

Semantics8
The declare variant directive specifies declare variant semantics for a single replacement9
candidate. variant-name identifies the function variant while base-name identifies the base10
function.11

C
Any expressions in the match clause are interpreted as if they appeared in the scope of arguments12
of the base function.13

C
C++

variant-name and any expressions in the match clause are interpreted as if they appeared at the14
scope of the trailing return type of the base function.15

The function variant is determined by base language standard name lookup rules ([basic.lookup])16
of variant-name using the argument types at the call site after implementation defined changes have17
been made according to the OpenMP context.18

C++
Fortran

The procedure to which base-name refers is resolved at the location of the directive according to the19
establishment rules for procedure names in the base language.20

If a declare variant directive appears in the specification part of a subprogram or an21
interface body, its bound procedure is this subprogram or the procedure defined by the interface22
body, respectively. Otherwise there is no bound procedure.23

Fortran

264 OpenMP API – Version 6.0 Preview 2 November 2023

Restrictions1
C / C++

• If base-name is specified, it must match the name used in the associated declaration, if any2
declaration is associated.3

C / C++
Fortran

• If the declare variant directive does not have a bound procedure or the base function4
is not the bound procedure, base-name must be specified.5

• base-name must not be a generic name, an entry name, the name of a procedure pointer, a6
dummy procedure or a statement function.7

• The procedure base-name must have an accessible explicit interface at the location of the8
directive.9

Fortran

Cross References10
• adjust_args clause, see Section 8.5.211

• append_args clause, see Section 8.5.312

• match clause, see Section 8.5.113

• Declare Variant Directives, see Section 8.514

C / C++

8.5.5 begin declare variant Directive15

Name: begin declare variant Association: delimited (declaration-
definition-seq)

Category: declarative Properties: default
16

Clauses17
match18

Semantics19
The begin declare variant directive associates the context selector in the match clause20
with each function definition in declaration-definition-seq. For the purpose of call resolution, each21
function definition that appears between a begin declare variant directive and its paired22
end directive is a function variant for an assumed base function, with the same name and a23
compatible prototype, that is declared elsewhere without an associated declare variant directive.24

CHAPTER 8. VARIANT DIRECTIVES 265

If a declare variant directive appears between a begin declare variant directive and its1
paired end directive, the effective context selectors of the outer directive are appended to the2
context selector of the inner directive to form the effective context selector of the inner directive. If3
a trait-set-selector is present on both directives, the trait-selector list of the outer directive is4
appended to the trait-selector list of the inner directive after equivalent trait-selectors have been5
removed from the outer list. Restrictions that apply to explicitly specified context selectors also6
apply to effective context selectors constructed through this process.7

The symbol name of a function definition that appears between a begin declare variant8
directive and its paired end directive is determined through the base language rules after the name9
of the function has been augmented with a string that is determined according to the effective10
context selector of the begin declare variant directive. The symbol names of two11
definitions of a function are considered to be equal if and only if their effective context selectors are12
equivalent.13

If the context selector of a begin declare variant directive contains traits in the device or14
implementation set that are known never to be compatible with an OpenMP context during the15
current compilation, the preprocessed code that follows the begin declare variant16
directive up to its paired end directive is elided.17

Any expressions in the match clause are interpreted at the location of the directive.18

Restrictions19
The restrictions to begin declare variant directive are as follows:20

• match clause must not contain a simd trait selector.21

• Two begin declare variant directives and their paired end directives must either22
encompass disjoint source ranges or be perfectly nested.23

C++
• A match clause must not contain a dynamic context selector that references the this24

pointer.25

• If an expression in the context selector that appears in match clause references the this26
pointer, the base function must be a non-static member function.27

C++

Cross References28
• match clause, see Section 8.5.129

• Declare Variant Directives, see Section 8.530

C / C++

266 OpenMP API – Version 6.0 Preview 2 November 2023

8.6 dispatch Construct1

Name: dispatch Association: block (function dispatch struc-
tured block)

Category: executable Properties: context-matching
2

Clauses3
depend, device, interop, is_device_ptr, nocontext, novariants, nowait4

Binding5
The binding task set for a dispatch region is the generating task. The dispatch region binds6
to the region of the generating task.7

Semantics8
The dispatch construct controls whether variant substitution occurs for target-call in the9
associated function dispatch structured block. The dispatch construct may also specify10
properties to be passed to the function variant if variant substitution occurs.11

Properties added to the interoperability requirement set can be removed by the effect of other12
directives (see Section 15.2) before the dispatch region is executed. If one or more depend13
clauses are present on the dispatch construct, they are added as depend properties of the14
interoperability requirement set. If a nowait clause is present on the dispatch construct the15
nowait property is added to the interoperability requirement set. For each list item specified in an16
is_device_ptr clause, an is_device_ptr property for that list item is added to the17
interoperability requirement set.18

If the interoperability requirement set contains one or more depend properties, the behavior is as if19
those properties were applied as depend clauses to a taskwait construct that is executed before20
the dispatch region is executed.21

The presence of the nowait property in the interoperability requirement set has no effect on the22
dispatch construct.23

If the device clause is present, the value of the default-device-var ICV is set to the value of the24
expression in the clause on entry to the dispatch region and is restored to its previous value at25
the end of the region.26

If variant substitution occurs, the interop clause specifies additional arguments to pass to the27
function variant selected for replacement.28

If the interop clause is present and has only one interop-var, and the device clause is not29
specified, the behavior is as if the device clause is present with a device-description equivalent to30
the device_num property of the interop-var.31

Restrictions32
Restrictions to the dispatch construct are as follows:33

• If the interop clause is present and has more than one interop-var then the device34
clause must also be present.35

CHAPTER 8. VARIANT DIRECTIVES 267

Cross References1
• depend clause, see Section 16.9.52

• device clause, see Section 14.23

• interop clause, see Section 8.6.14

• is_device_ptr clause, see Section 6.4.75

• nocontext clause, see Section 8.6.36

• novariants clause, see Section 8.6.27

• nowait clause, see Section 16.68

• Interoperability Requirement Set, see Section 15.29

• OpenMP Function Dispatch Structured Blocks, see Section 5.3.210

8.6.1 interop Clause11

Name: interop Properties: unique12

Arguments13
Name Type Properties
interop-var-list list of variable of interop OpenMP type default14

Modifiers15
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique16

Directives17
dispatch18

Semantics19
The interop clause specifies additional arguments to pass to the function variant when variant20
substitution occurs for the target-call in a dispatch construct. The variables in the21
interop-var-list are passed in the same order in which they are specified in the interop clause.22

Restrictions23
Restrictions to the interop clause are as follows:24

• If the interop clause is specified on a dispatch construct, the matching declare25
variant directive for the target-call must have an append_args clause with a number of26
list items that equals or exceeds the number of list items in the interop clause.27

268 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• dispatch directive, see Section 8.62

8.6.2 novariants Clause3

Name: novariants Properties: unique4

Arguments5
Name Type Properties
do-not-use-variant expression of OpenMP logical type default6

Modifiers7
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique8

Directives9
dispatch10

Semantics11
If do-not-use-variant evaluates to true, no function variant is selected for the target-call of the12
dispatch region associated with the novariants clause even if one would be selected13
normally. The use of a variable in do-not-use-variant causes an implicit reference to the variable in14
all enclosing constructs. do-not-use-variant is evaluated in the enclosing context.15

Cross References16
• dispatch directive, see Section 8.617

8.6.3 nocontext Clause18

Name: nocontext Properties: unique19

Arguments20
Name Type Properties
do-not-update-context expression of OpenMP logical type default21

Modifiers22
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique23

Directives24
dispatch25

CHAPTER 8. VARIANT DIRECTIVES 269

Semantics1
If do-not-update-context evaluates to true, the construct on which the nocontext clause appears2
is not added to the construct trait set of the OpenMP context. The use of a variable in3
do-not-update-context causes an implicit reference to the variable in all enclosing constructs.4
do-not-update-context is evaluated in the enclosing context.5

Cross References6
• dispatch directive, see Section 8.67

8.7 declare simd Directive8

Name: declare simd Association: declaration
Category: declarative Properties: pure9

Arguments10
declare simd[(proc-name)]11

Name Type Properties
proc-name identifier of function type optional12

Clause groups13
branch14

Clauses15
aligned, linear, simdlen, uniform16

Semantics17
The association of one or more declare simd directives with a procedure declaration or18
definition enables the creation of corresponding SIMD versions of the associated procedure that19
can be used to process multiple arguments from a single invocation in a SIMD loop concurrently.20

If a SIMD version is created and the simdlen clause is not specified, the number of concurrent21
arguments for the function is implementation defined.22

For purposes of the linear clause, any integer-typed parameter that is specified in a uniform23
clause on the directive is considered to be constant and so may be used in a step-complex-modifier24
as linear-step.25

C / C++
The expressions that appear in the clauses of each directive are evaluated in the scope of the26
arguments of the procedure declaration or definition.27

C / C++
C++

The special this pointer can be used as if it was one of the arguments to the procedure in any of28
the linear, aligned, or uniform clauses.29

C++

270 OpenMP API – Version 6.0 Preview 2 November 2023

Restrictions1
Restrictions to the declare simd directive are as follows:2

• The procedure body must be a structured block.3

• The execution of the procedure, when called from a SIMD loop, may not result in the4
execution of any constructs except for atomic constructs and ordered constructs on5
which the simd clause is specified.6

• The execution of the procedure may not have any side effects that would alter its execution7
for concurrent iterations of a SIMD chunk.8

C / C++
• If the procedure has any declarations then the declare simd directive for any declaration9

that has one must be equivalent to the one specified for the definition.10

• The procedure may not contain calls to the longjmp or setjmp functions.11

C / C++
C++

• The procedure may not contain throw statements.12

C++
Fortran

• proc-name must not be a generic name, procedure pointer, or entry name.13

• If proc-name is omitted, the declare simd directive must appear in the specification part14
of a subroutine subprogram or a function subprogram for which creation of the SIMD15
versions is enabled.16

• Any declare simd directive must appear in the specification part of a subroutine17
subprogram, function subprogram, or interface body to which it applies.18

• If a declare simd directive is specified in an interface block for a procedure, it must19
match a declare simd directive in the definition of the procedure.20

• If a procedure is declared via a procedure declaration statement, the procedure proc-name21
should appear in the same specification.22

• If a declare simd directive is specified for a procedure name with an explicit interface23
and a declare simd directive is also specified for the definition of the procedure then the24
two declare simd directives must specify equivalent clauses.25

• Procedures pointers may not be used to access versions created by the declare simd26
directive.27

Fortran

CHAPTER 8. VARIANT DIRECTIVES 271

Cross References1
• aligned clause, see Section 6.112

• linear clause, see Section 6.4.63

• reduction clause, see Section 6.5.94

• simdlen clause, see Section 11.5.35

• uniform clause, see Section 6.106

8.7.1 branch Clauses7

Clause groups8
Properties: unique, exclusive Members:

Clauses
inbranch, notinbranch

9

Directives10
declare simd11

Semantics12
The branch clause group defines a set of clauses that indicate if a procedure can be assumed to be13
or not to be encountered in a branch. If neither clause is specified, then the procedure may or may14
not be called from inside a conditional statement of the calling context.15

Cross References16
• declare simd directive, see Section 8.717

8.7.1.1 inbranch Clause18

Name: inbranch Properties: unique19

Arguments20
Name Type Properties
inbranch expression of OpenMP logical type constant, optional21

Modifiers22
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique23

Directives24
declare simd25

272 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
If inbranch evaluates to true, the inbranch clause specifies that the procedure will always be2
called from inside a conditional statement of the calling context. If inbranch evaluates to false, the3
procedure may be called other than from inside a conditional statement. If inbranch is not4
specified, the effect is as if inbranch evaluates to true.5

Cross References6
• declare simd directive, see Section 8.77

8.7.1.2 notinbranch Clause8

Name: notinbranch Properties: unique9

Arguments10
Name Type Properties
notinbranch expression of OpenMP logical type constant, optional11

Modifiers12
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique13

Directives14
declare simd15

Semantics16
If notinbranch evaluates to true, the notinbranch clause specifies that the procedure will never17
be called from inside a conditional statement of the calling context. If notinbranch evaluates to18
false, the procedure may be called from inside a conditional statement. If notinbranch is not19
specified, the effect is as if notinbranch evaluates to true.20

Cross References21
• declare simd directive, see Section 8.722

8.8 Declare Target Directives23

Declare target directives apply to procedures and/or variables to ensure that they can be executed or24
accessed on a device. Variables are either replicated as device local variables for each device25
through a local clause, are mapped for all device executions through an enter clause, or are26
mapped for specific device executions through a link clause. An implementation may generate27
different versions of a procedure to be used for target regions that execute on different devices.28
Whether it generates different versions, and whether it calls a different version in a target region29
from the version that it calls outside a target region, are implementation defined.30

CHAPTER 8. VARIANT DIRECTIVES 273

To facilitate device usage, OpenMP defines rules that implicitly specify declare target directives for1
procedures and variables. The remainder of this section defines those rules as well as restrictions2
that apply to all declare target directives.3

C++
If a variable with static storage duration has the constexpr specifier and is not a groupprivate4
variable then the variable is treated as if it had appeared as a list item in an enter clause on a5
declare target directive.6

C++
If a variable with static storage duration that is not a device local variable (including not a7
groupprivate variable) is declared in a device procedure then the variable is treated as if it had8
appeared as a list item in an enter clause on a declare target directive.9

If a procedure is referenced outside of any reverse-offload region in a procedure that appears as a10
list item in an enter clause on a non-host declare target directive then the name of the referenced11
procedure is treated as if it had appeared in an enter clause on a declare target directive.12

C / C++
If a variable with static storage duration or a function (except lambda for C++) is referenced in the13
initializer expression list of a variable with static storage duration that appears as a list item in an14
enter or local clause on a declare target directive then the name of the referenced variable or15
procedure is treated as if it had appeared in an enter clause on a declare target directive.16

C / C++
Fortran

If a declare target directive has a device_type clause then any enclosed internal17
procedure cannot contain any declare target directives. The enclosing device_type18
clause implicitly applies to internal procedures.19

Fortran
A reference to a device local variable that has static storage duration inside a device procedure is20
replaced with a reference to the copy of the variable for the device. Otherwise, a reference to a21
variable that has static storage duration in a device procedure is replaced with a reference to a22
corresponding variable in the device data environment. If the corresponding variable does not exist23
or the variable does not appear in an enter or link clause on a declare target directive, the24
behavior is unspecified.25

Execution Model Events26
The target-global-data-op event occurs when an original list item is associated with a27
corresponding list item on a device as a result of a declare target directive; the event occurs before28
the first access to the corresponding list item.29

274 OpenMP API – Version 6.0 Preview 2 November 2023

Tool Callbacks1
A thread dispatches a registered ompt_callback_target_data_op callback, or a registered2
ompt_callback_target_data_op_emi callback with ompt_scope_beginend as its3
endpoint argument for each occurrence of a target-global-data-op event in that thread. These4
callbacks have type signature ompt_callback_target_data_op_t or5
ompt_callback_target_data_op_emi_t, respectively.6

Restrictions7
Restrictions to any declare target directive are as follows:8

• The same list item must not explicitly appear in both an enter clause on one declare target9
directive and a link or local clause on another declare target directive.10

• The same list item must not explicitly appear in both a link clause on one declare target11
directive and a local clause on another declare target directive.12

• If a variable appears in a enter clause on the declare target directive, its initializer must not13
refer to a variable that appears in a link clause on a declare target directive.14

Cross References15
• enter clause, see Section 6.8.416

• link clause, see Section 6.8.517

• begin declare target directive, see Section 8.8.218

• declare target directive, see Section 8.8.119

• target directive, see Section 14.820

• ompt_callback_target_data_op_emi_t and21
ompt_callback_target_data_op_t, see Section 20.5.2.2522

8.8.1 declare target Directive23

Name: declare target Association: none
Category: declarative Properties: device, declare target, pure24

Arguments25
declare target(extended-list)26

Name Type Properties
extended-list list of extended list item type optional27

Clauses28
device_type, enter, indirect, link, local29

CHAPTER 8. VARIANT DIRECTIVES 275

Semantics1
The declare target directive is a declare target directive. If the extended-list argument is2
specified, the effect is as if any list items from extended-list that are not groupprivate variables3
appear in the extended-list argument to an implicit enter clause and any list items that are4
groupprivate variables appear in the list argument to an implicit local clause.5

C / C++
If the declare target directive is specified as an attribute specifier with the decl attribute6
and a decl attribute is not used on the declaration to specify groupprivate variables, the effect is as7
if an enter clause is specified if a link or local clause is not specified.8

If the declare target directive is specified as an attribute specifier with the decl attribute9
and a decl attribute is used on the declaration to specify groupprivate variables, the effect is as if a10
local clause is specified.11

C / C++
Fortran

If a declare target directive does not have any clauses and does not have an extended-list12
then an implicit enter clause with one list item is formed from the name of the enclosing13
subroutine subprogram, function subprogram or interface body to which it applies.14

Fortran

Restrictions15
Restrictions to the declare target directive are as follows:16

• If the extended-list argument is specified, no clauses may be specified.17

• If the directive has a clause, it must contain at least one enter clause, link clause, or18
local clause.19

• A variable for which nohost is specified may not appear ina link clause.20

• A groupprivate variable must not appear in any enter clauses or link clauses.21

Fortran
• If a list item is a procedure name, it must not be a generic name, procedure pointer, entry22

name, or statement function name.23

• If no clauses are specified or if a device_type clause is specified, the directive must24
appear in a specification part of a subroutine subprogram, function subprogram or interface25
body.26

• If a list item is a procedure name, the directive must be in the specification part of that27
subroutine or function subprogram or in the specification part of that subroutine or function28
in an interface body.29

• If an extended list item is a variable name, the directive must appear in the specification part30
of a subroutine subprogram, function subprogram, program or module.31

276 OpenMP API – Version 6.0 Preview 2 November 2023

• If the directive is specified in an interface block for a procedure, it must match a declare1
target directive in the definition of the procedure, including the device_type clause if2
present.3

• If an external procedure is a type-bound procedure of a derived type and the directive is4
specified in the definition of the external procedure, it must appear in the interface block that5
is accessible to the derived-type definition.6

• If any procedure is declared via a procedure declaration statement that is not in the7
type-bound procedure part of a derived-type definition, any declare target directive8
with the procedure name must appear in the same specification part.9

• The directive must appear in the declaration section of a scoping unit in which the common10
block or variable is declared.11

• If a declare target directive that specifies a common block name appears in one12
program unit, then such a directive must also appear in every other program unit that contains13
a COMMON statement that specifies the same name, after the last such COMMON statement in14
the program unit.15

• If a list item is declared with the BIND attribute, the corresponding C entities must also be16
specified in a declare target directive in the C program.17

• A variable can only appear in a declare target directive in the scope in which it is18
declared. It must not be an element of a common block or appear in an EQUIVALENCE19
statement.20

• A variable that appears in a declare target directive must be declared in the Fortran21
scope of a module or have the SAVE attribute, either explicitly or implicitly.22

Fortran

Cross References23
• device_type clause, see Section 14.124

• enter clause, see Section 6.8.425

• indirect clause, see Section 8.8.326

• link clause, see Section 6.8.527

• local clause, see Section 6.1328

• Declare Target Directives, see Section 8.829

CHAPTER 8. VARIANT DIRECTIVES 277

C / C++

8.8.2 begin declare target Directive1

Name: begin declare target Association: delimited (declaration-
definition-seq)

Category: declarative Properties: device, declare target
2

Clauses3
device_type, indirect4

Semantics5
The begin declare target directive is a declare target directive. The directive and its6
paired end directive form a delimited code region that defines an implicit extended-list and implicit7
local-list that is converted to an implicit enter clause with the extended-list as its argument and8
an implicit local clause with the local-list as its argument, respectively.9

The implicit extended-list consists of the variable and procedure names of any variable or10
procedure declarations at file scope that appear in the delimited code region, excluding declarations11
of groupprivate variables. If any groupprivate variables are declared in the delimited code region,12
the effect is as if the variables appear in the implicit local-list.13

C++
Additionally, the implicit extended-list and local-list consist of the variable and procedure names of14
any variable or procedure declarations at namespace or class scope that appear in the delimited15
code region, including the operator() member function of the resulting closure type of any16
lambda expression that is defined in the delimited code region.17

C++
The delimited code region may contain declare target directives. If a device_type clause is18
present on the contained declare target directive, then its argument determines which versions are19
made available. If a list item appears both in an implicit and explicit list, the explicit list determines20
which versions are made available.21

Restrictions22
Restrictions to the begin declare target directive are as follows:23

C++
• The function names of overloaded functions or template functions may only be specified24

within an implicit extended-list.25

• If a lambda declaration and definition appears between a begin declare target26
directive and the paired end directive, all variables that are captured by the lambda27
expression must also appear in an enter clause.28

• A module export or import statement may not appear between a begin declare29
target directive and the paired end directive.30

C++

278 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• device_type clause, see Section 14.12

• enter clause, see Section 6.8.43

• indirect clause, see Section 8.8.34

• Declare Target Directives, see Section 8.85

C / C++

8.8.3 indirect Clause6

Name: indirect Properties: unique7

Arguments8
Name Type Properties
invoked-by-fptr expression of OpenMP logical type constant, optional9

Modifiers10
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique11

Directives12
begin declare target, declare target13

Semantics14
If invoked-by-fptr evaluates to true, any procedure that appear in an enter clause on the directive15
on which the indirect clause is specified may be called with an indirect device invocation. If the16
invoked-by-fptr does not evaluate to true, any procedures that appear in an enter clause on the17
directive may not be called with an indirect device invocation. Unless otherwise specified by an18
indirect clause, procedures may not be called with an indirect device invocation. If the19
indirect clause is specified and invoked-by-fptr is not specified, the effect of the clause is as if20
invoked-by-fptr evaluates to true.21

C / C++
If a procedure appears in the implicit enter clause of a begin declare target directive22
and in the enter clause of a declare target directive that is contained in the delimited code region23
of the begin declare target directive, and if an indirect clause appears on both24
directives, then the indirect clause on the begin declare target directive has no effect25
or that procedure.26

C / C++

CHAPTER 8. VARIANT DIRECTIVES 279

Restrictions1
Restrictions to the indirect clause are as follows:2

• If invoked-by-fptr evaluates to true, a device_type clause must not appear on the same3
directive unless it specifies any for its device-type-description.4

Cross References5
• begin declare target directive, see Section 8.8.26

• declare target directive, see Section 8.8.17

280 OpenMP API – Version 6.0 Preview 2 November 2023

9 Informational and Utility Directives1

An informational directive conveys information about code properties to the compiler while a2
utility directive facilitates interactions with the compiler or supports code readability. A utility3
directive is informational unless the at clause implies it to be an executable directive.4

9.1 error Directive5

Name: error Association: none
Category: utility Properties: pure6

Clauses7
at, message, severity8

Semantics9
The error directive instructs the compiler or runtime to perform an error action. The error action10
displays an implementation defined message. The severity clause determines whether the error11
action is abortive following the display of the message. If sev-level is fatal and action-time is12
compilation, the message is displayed and compilation of the current compilation unit is13
aborted. If sev-level is fatal and action-time is execution, the message is displayed and14
program execution is aborted.15

Execution Model Events16
The runtime-error event occurs when a thread encounters an error directive for which the at17
clause specifies execution.18

Tool Callbacks19
A thread dispatches a registered ompt_callback_error callback for each occurrence of a20
runtime-error event in the context of the encountering task. This callback has the type signature21
ompt_callback_error_t.22

Restrictions23
Restrictions to the error directive are as follows:24

• The directive is pure only if action-time is compilation.25

281

Cross References1
• at clause, see Section 9.22

• message clause, see Section 9.33

• severity clause, see Section 9.44

• ompt_callback_error_t, see Section 20.5.2.305

9.2 at Clause6

Name: at Properties: unique7

Arguments8
Name Type Properties
action-time Keyword: compilation,

execution
default9

Modifiers10
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique11

Directives12
error13

Semantics14
The at clause determines when the implementation performs an action that is associated with a15
utility directive. If action-time is compilation, the action is performed during compilation if the16
directive appears in a declarative context or in an executable context that is reachable at runtime. If17
action-time is compilation and the directive appears in an executable context that is not18
reachable at runtime, the action may or may not be performed. If action-time is execution, the19
action is performed during program execution when a thread encounters the directive and the20
directive is considered to be an executable directive. If the at clause is not specified, the effect is as21
if action-time is compilation.22

Cross References23
• error directive, see Section 9.124

282 OpenMP API – Version 6.0 Preview 2 November 2023

9.3 message Clause1

Name: message Properties: unique2

Arguments3
Name Type Properties
msg-string expression of string type default4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
error, parallel8

Semantics9
The message clause specifies that msg-string is included in the implementation defined message10
that is associated with the directive on which the clause appears.11

Restrictions12
• If the action-time is compilation, msg-string must be a constant expression.13

Cross References14
• error directive, see Section 9.115

• parallel directive, see Section 11.216

9.4 severity Clause17

Name: severity Properties: unique18

Arguments19
Name Type Properties
sev-level Keyword: fatal, warning default20

Modifiers21
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique22

Directives23
error, parallel24

CHAPTER 9. INFORMATIONAL AND UTILITY DIRECTIVES 283

Semantics1
The severity clause determines the action that the implementation performs if an error is2
encountered with respect to the directive on which the clause appears. If sev-level is warning, the3
implementation takes no action besides displaying the message that is associated with the directive.4
If sev-level is fatal, the implementation performs the abortive action associated with the5
directive on which the clause appears. If no severity clause is specified then the effect is as if6
sev-level is fatal.7

Cross References8
• error directive, see Section 9.19

• parallel directive, see Section 11.210

9.5 requires Directive11

Name: requires Association: none
Category: informational Properties: default12

Clause groups13
requirement14

Semantics15
The requires directive specifies features that an implementation must support for correct16
execution and requirements for the execution of all code in the current compilation unit. The17
behavior that a requirement clause specifies may override the normal behavior specified elsewhere18
in this document. Whether an implementation supports the feature that a given requirement clause19
specifies is implementation defined.20

The clauses of a requires directive are added to the requires trait in the OpenMP context for all21
program points that follow the directive.22

Restrictions23
Restrictions to the requires directive are as follows:24

• A requires directive may not appear lexically after a context selector in which any clause25
of the requires directive is used.26

C
• The requires directive may only appear at file scope.27

C
C++

• The requires directive may only appear at file or namespace scope.28

C++

284 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
• The requires directive must appear in the specification part of a program unit, either after1

all USE statements, IMPORT statements, and IMPLICIT statements or by referencing a2
module. Additionally, it may appear in the specification part of an internal or module3
subprogram that appears by referencing a module if each clause already appeared with the4
same arguments in the specification part of the program unit.5

Fortran

9.5.1 requirement Clauses6

Clause groups7
Properties: required, unique Members:

Clauses
atomic_default_mem_order,
dynamic_allocators,
reverse_offload,
self_maps, unified_address,
unified_shared_memory

8

Directives9
requires10

Semantics11
The requirement clause group defines a clause set that indicates the requirements that a program12
requires the implementation to support. If an implementation supports a given requirement clause13
then the use of that clause on a requires directive will cause the implementation to ensure the14
enforcement of a guarantee represented by the specific member of the clause group. If the15
implementation does not support the requirement then it must perform compile-time error16
termination.17

Restrictions18
• All compilation units of a program that contain declare target directives, device constructs or19

device procedures must specify the same set of requirements that are defined by clauses with20
the device global requirement property in the requirement clause group.21

Cross References22
• requires directive, see Section 9.523

CHAPTER 9. INFORMATIONAL AND UTILITY DIRECTIVES 285

9.5.1.1 atomic_default_mem_order Clause1

Name: atomic_default_mem_order Properties: unique2

Arguments3
Name Type Properties
memory-order Keyword: acq_rel, acquire,

relaxed, release, seq_cst
default4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
requires8

Semantics9
The atomic_default_mem_order clause specifies the default memory ordering behavior for10
atomic constructs that an implementation must provide. The effect is as if its argument appears as11
a clause on any atomic construct that does not specify a memory-order clause.12

Restrictions13
Restrictions to the atomic_default_mem_order clause are as follows:14

• All requires directives in the same compilation unit that specify the15
atomic_default_mem_order requirement must specify the same argument.16

• Any directive that specifies the atomic_default_mem_order clause must not appear17
lexically after any atomic construct on which a memory-order clause is not specified.18

Cross References19
• memory-order Clauses, see Section 16.8.120

• atomic directive, see Section 16.8.521

• requires directive, see Section 9.522

9.5.1.2 dynamic_allocators Clause23

Name: dynamic_allocators Properties: unique24

Arguments25
Name Type Properties
required expression of OpenMP logical type constant, optional26

286 OpenMP API – Version 6.0 Preview 2 November 2023

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique2

Directives3
requires4

Semantics5
If required evaluates to true, the dynamic_allocators clause removes certain restrictions on6
the use of memory allocators in target regions. Specifically, allocators (including the default7
allocator that is specified by the def-allocator-var ICV) may be used in a target region or in an8
allocate clause on a target construct without specifying the uses_allocators clause on9
the target construct. Additionally, the implementation must support calls to the10
omp_init_allocator and omp_destroy_allocator API routines in target regions.11
If required is not specified, the effect is as if required evaluates to true.12

Cross References13
• allocate clause, see Section 7.614

• uses_allocators clause, see Section 7.815

• requires directive, see Section 9.516

• target directive, see Section 14.817

• def-allocator-var ICV, see Table 2.118

• omp_destroy_allocator, see Section 19.13.519

• omp_init_allocator, see Section 19.13.320

9.5.1.3 reverse_offload Clause21

Name: reverse_offload Properties: unique, device global require-
ment22

Arguments23
Name Type Properties
required expression of OpenMP logical type constant, optional24

Modifiers25
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique26

CHAPTER 9. INFORMATIONAL AND UTILITY DIRECTIVES 287

Directives1
requires2

Semantics3
If required evaluates to true, the reverse_offload clause requires an implementation to4
guarantee that if a target construct specifies a device clause in which the ancestor5
devie-modifier appears, the target region can execute on the parent device of an enclosing6
target region. If required is not specified, the effect is as if required evaluates to true.7

Restrictions8
Restrictions to the reverse_offload clause are as follows:9

C / C++
• Any directive that specifies a reverse_offload clause must appear lexically before any10

device constructs or device procedures.11

C / C++

Cross References12
• device clause, see Section 14.213

• requires directive, see Section 9.514

• target directive, see Section 14.815

• Declare Target Directives, see Section 8.816

9.5.1.4 unified_address Clause17

Name: unified_address Properties: unique, device global require-
ment18

Arguments19
Name Type Properties
required expression of OpenMP logical type constant, optional20

Modifiers21
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique22

Directives23
requires24

288 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
If required evaluates to true, the unified_address clause requires an implementation to2
guarantee that all devices accessible through OpenMP API routines and directives use a unified3
address space. In this address space, a pointer will always refer to the same location in memory4
from all devices accessible through OpenMP. Any OpenMP mechanism that returns a device5
pointer is guaranteed to return a device address that supports pointer arithmetic, and the6
is_device_ptr clause is not necessary to obtain device addresses from device pointers for use7
inside target regions. Host pointers may be passed as device pointer arguments to device8
memory routines and device pointers may be passed as host pointer arguments to device memory9
routines. Non-host devices may still have discrete memories and dereferencing a device pointer on10
the host device or a host pointer on a non-host device remains unspecified behavior. Memory local11
to a specific execution context may be exempt from the unified_address requirement,12
following the restrictions of locality to a given execution context, thread or contention group. If13
required is not specified, the effect is as if required evaluates to true.14

Restrictions15
Restrictions to the unified_address clause are as follows:16

C / C++
• Any directive that specifies a unified_address clause must appear lexically before any17

device constructs or device procedures.18

C / C++

Cross References19
• is_device_ptr clause, see Section 6.4.720

• requires directive, see Section 9.521

• target directive, see Section 14.822

• Declare Target Directives, see Section 8.823

9.5.1.5 unified_shared_memory Clause24

Name: unified_shared_memory Properties: unique, device global require-
ment25

Arguments26
Name Type Properties
required expression of OpenMP logical type constant, optional27

Modifiers28
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique29

CHAPTER 9. INFORMATIONAL AND UTILITY DIRECTIVES 289

Directives1
requires2

Semantics3
If required evaluates to true, the unified_shared_memory clause requires the implementation4
to guarantee that all devices share memory that is generally accessible to all threads.5

The unified_shared_memory clause implies the unified_address requirement,6
inheriting all of its behaviors.7

The implementation must guarantee that storage locations in memory are accessible to threads on8
all accessible devices, except for memory that is local to a specific execution context and exempt9
from the unified_address requirement (see Section 9.5.1.4). Every device address that refers10
to storage allocated through OpenMP API routines is a valid host pointer that may be dereferenced11
and may be used as a host address. Values stored into memory by one device may not be visible to12
another device until synchronization establishes a happens-before order between the memory13
accesses.14

The use of declare target directives in an OpenMP program is optional for referencing variables15
with static storage duration in device procedures.16

Any data object that results from the declaration of a variable that has static storage duration is17
treated as if it is mapped with a persistent self map at the beginning of the program to the device18
data environments of all target devices if:19

• The variable is not a device local variable;20

• The variable is not listed in an enter clause on a declare target directive; and21

• The variable is referenced in a device procedure.22

If required is not specified, the effect is as if required evaluates to true.23

Restrictions24
Restrictions to the unified_shared_memory clause are as follows:25

C / C++
• Any directive that specifies a unified_shared_memory clause must appear lexically26

before any device constructs or device procedures.27

C / C++

Cross References28
• requires directive, see Section 9.529

• target directive, see Section 14.830

• Declare Target Directives, see Section 8.831

290 OpenMP API – Version 6.0 Preview 2 November 2023

9.5.1.6 self_maps Clause1

Name: self_maps Properties: unique, device global require-
ment2

Arguments3
Name Type Properties
required expression of OpenMP logical type constant, optional4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
requires8

Semantics9
If required evaluates to true, the self_maps clause implies the unified_shared_memory10
clause, inheriting all of its behaviors. Additionally, map-entering clauses in the compilation unit11
behave as if all resulting mapping operations are self maps, and all corresponding list items created12
by the enter clauses specified by declare target directives in the compilation unit share storage13
with the original list items.14

Restrictions15
Restrictions to the self_maps clause are as follows:16

C / C++
• Any directive that specifies a self_maps clause must appear lexically before any device17

constructs or device procedures.18

C / C++

Cross References19
• requires directive, see Section 9.520

• target directive, see Section 14.821

• Declare Target Directives, see Section 8.822

9.6 Assumption Directives23

Different assumption directives facilitate definition of assumptions for a scope that is appropriate to24
each base language. The assumption scope of a particular format is defined in the section that25
defines that directive. If the invariants do not hold at runtime, the behavior is unspecified.26

CHAPTER 9. INFORMATIONAL AND UTILITY DIRECTIVES 291

9.6.1 assumption Clauses1

Clause groups2
Properties: required, unique Members:

Clauses
absent, contains, holds,
no_openmp, no_openmp_constructs,
no_openmp_routines, no_parallelism

3

Directives4
assume, assumes, begin assumes5

Semantics6
The assumption clause group defines a clause set that indicate the invariants that a program ensures7
the implementation can exploit.8

The absent and contains clauses accept a directive-name list that may match a construct that9
is encountered within the assumption scope. An encountered construct matches the directive name10
if it or (if it is a combined construct or composite construct) one of its leaf constructs has the same11
directive-name as one of the list items.12

Restrictions13
The restrictions to assumption clauses are as follows:14

• A directive-name list item must not specify a combined directive or a composite directive.15

• A directive-name list item must not specify a directive that is a declarative directive, an16
informational directive, or a metadirective.17

Cross References18
• assume directive, see Section 9.6.319

• assumes directive, see Section 9.6.220

• begin assumes directive, see Section 9.6.421

9.6.1.1 absent Clause22

Name: absent Properties: unique23

Arguments24
Name Type Properties
directive-name-list list of directive-name list item type default25

292 OpenMP API – Version 6.0 Preview 2 November 2023

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique2

Directives3
assume, assumes, begin assumes4

Semantics5
The absent clause specifies that the program guarantees that no construct that match a6
directive-name list item are encountered in the assumption scope.7

Cross References8
• assume directive, see Section 9.6.39

• assumes directive, see Section 9.6.210

• begin assumes directive, see Section 9.6.411

9.6.1.2 contains Clause12

Name: contains Properties: unique13

Arguments14
Name Type Properties
directive-name-list list of directive-name list item type default15

Modifiers16
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique17

Directives18
assume, assumes, begin assumes19

Semantics20
The contains clause specifies that constructs that match the directive-name list items are likely21
to be encountered in the assumption scope.22

Cross References23
• assume directive, see Section 9.6.324

• assumes directive, see Section 9.6.225

• begin assumes directive, see Section 9.6.426

CHAPTER 9. INFORMATIONAL AND UTILITY DIRECTIVES 293

9.6.1.3 holds Clause1

Name: holds Properties: unique2

Arguments3
Name Type Properties
hold-expr expression of OpenMP logical type default4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
assume, assumes, begin assumes8

Semantics9
When the holds clause appears on an assumption directive, the program guarantees that the listed10
expression evaluates to true in the assumption scope. The effect of the clause does not include an11
observable evaluation of the expression.12

Cross References13
• assume directive, see Section 9.6.314

• assumes directive, see Section 9.6.215

• begin assumes directive, see Section 9.6.416

9.6.1.4 no_openmp Clause17

Name: no_openmp Properties: unique18

Arguments19
Name Type Properties
can_assume expression of OpenMP logical type constant, optional20

Modifiers21
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique22

Directives23
assume, assumes, begin assumes24

294 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
If can_assume evaluates to true, the no_openmp clause guarantees that no OpenMP related code2
is executed in the assumption scope.3

C++
The no_openmp clause also guarantees that no thread will throw an exception in the assumption4
scope if it is contained in a region that arises from an exception-aborting directive.5

C++

Cross References6
• assume directive, see Section 9.6.37

• assumes directive, see Section 9.6.28

• begin assumes directive, see Section 9.6.49

9.6.1.5 no_openmp_constructs Clause10

Name: no_openmp_constructs Properties: unique11

Arguments12
Name Type Properties
can_assume expression of OpenMP logical type constant, optional13

Modifiers14
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique15

Directives16
assume, assumes, begin assumes17

Semantics18
If can_assume evaluates to true, the no_openmp_constructs clause guarantees that no19
constructs are encountered in the assumption scope.20

Cross References21
• assume directive, see Section 9.6.322

• assumes directive, see Section 9.6.223

• begin assumes directive, see Section 9.6.424

CHAPTER 9. INFORMATIONAL AND UTILITY DIRECTIVES 295

9.6.1.6 no_openmp_routines Clause1

Name: no_openmp_routines Properties: unique2

Arguments3
Name Type Properties
can_assume expression of OpenMP logical type constant, optional4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
assume, assumes, begin assumes8

Semantics9
If can_assume evaluates to true, the no_openmp_routines clause guarantees that no OpenMP10
API routines are executed in the assumption scope.11

Cross References12
• assume directive, see Section 9.6.313

• assumes directive, see Section 9.6.214

• begin assumes directive, see Section 9.6.415

9.6.1.7 no_parallelism Clause16

Name: no_parallelism Properties: unique17

Arguments18
Name Type Properties
can_assume expression of OpenMP logical type constant, optional19

Modifiers20
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique21

Directives22
assume, assumes, begin assumes23

Semantics24
If can_assume evaluates to true, the no_parallelism clause guarantees that no tasks (explicit25
or implicit) will be generated and that no simd constructs will be executed in the assumption scope.26

296 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• assume directive, see Section 9.6.32

• assumes directive, see Section 9.6.23

• begin assumes directive, see Section 9.6.44

9.6.2 assumes Directive5

Name: assumes Association: none
Category: informational Properties: pure6

Clause groups7
assumption8

Semantics9
The assumption scope of the assumes directive is the code executed and reached from the current10
compilation unit.11

Fortran
Referencing a module that has an assumes directive in its specification part does not have the12
effect as if the assumes directive appeared in the specification part of the referencing scope.13

Fortran

Restrictions14
The restrictions to the assumes directive are as follows:15

C
• The assumes directive may only appear at file scope.16

C
C++

• The assumes directive may only appear at file or namespace scope.17

C++
Fortran

• The assumes directive may only appear in the specification part of a module or18
subprogram, after all USE statements, IMPORT statements, and IMPLICIT statements.19

Fortran

CHAPTER 9. INFORMATIONAL AND UTILITY DIRECTIVES 297

9.6.3 assume Directive1

Name: assume Association: block
Category: informational Properties: pure2

Clause groups3
assumption4

Semantics5
The assumption scope of the assume directive is the code executed in the corresponding region or6
in any region that is nested in the corresponding region.7

C / C++

9.6.4 begin assumes Directive8

Name: begin assumes Association: delimited (declaration-
definition-seq)

Category: informational Properties: default
9

Clause groups10
assumption11

Semantics12
The assumption scope of the begin assumes directive is the code that is executed and reached13
from any of the declared functions in the delimited code region.14

C / C++

9.7 nothing Directive15

Name: nothing Association: none
Category: utility Properties: pure, loop-transforming16

Clauses17
apply18

Loop Modifiers for the apply Clause19
loop-modifier Number of Generated Loops Description
identity (default) 1 the copy of the associated loop20

21

298 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
The nothing directive has no effect on the execution of the OpenMP program unless otherwise2
specified by the apply clause.3

If the nothing directive immediately precedes a canonical loop nest then it forms a4
loop-transforming construct. It associates with the outermost loop and generates one loop that has5
the same logical iterations in the same order as the associated loop.6

Restrictions7
• The apply clause can be specified if and only if the nothing directive forms a8

loop-transforming construct.9

Cross References10
• apply clause, see Section 10.611

• Loop-Transforming Constructs, see Chapter 1012

• Metadirectives, see Section 8.413

CHAPTER 9. INFORMATIONAL AND UTILITY DIRECTIVES 299

10 Loop-Transforming Constructs1

A loop-transforming construct replaces itself, including its associated loop (see Section 5.4.1) or2
associated loop sequence (see Section 5.4.6), with a structured block that may be another loop nest3
or loop sequence. If the replacement of a loop-transforming construct is another loop nest or4
sequence, that loop nest or sequence, possibly as part of an enclosing loop nest or sequence, may be5
associated with another loop-nest-associated directive or loop-sequence-associated directive. A6
nested loop-transforming construct and any loop-transforming constructs that result from its7
apply clauses are replaced before any enclosing loop-transforming construct.8

A loop-sequence-transforming construct generates a canonical loop sequence. The canonical loop9
nests that are before the affected loop nests as specified by the looprange clause are prepended10
to the generated canonical loop nest, and the loop nests trailing the affected loop nests are appended11
to the generated canonical loop nest.12

All generated loops have canonical loop nest form, unless otherwise specified. Loop iteration13
variables of generated loops are always private in the innermost enclosing parallelism-generating14
construct.15

At the beginning of each logical iteration, the loop iteration variable or the variable declared by16
range-decl has the value that it would have if the associated loop was not associated with any17
directive. After the execution of the loop-transforming construct, the loop iteration variables of any18
of its associated loops have the values that they would have without the loop-transforming directive.19

Restrictions20
The following restrictions apply to loop-transforming constructs:21

• The replacement of a loop-transforming construct with its generated loop nests or generated22
loop sequences must result in a conforming program.23

Cross References24
• nothing directive, see Section 9.725

• Canonical Loop Nest Form, see Section 5.4.126

300

10.1 tile Construct1

Name: tile Association: loop nest
Category: executable Properties: pure, loop-transforming, simdiz-

able
2

Clauses3
apply, sizes4

Loop Modifiers for the apply Clause5
loop-modifier Number of Generated Loops Description
grid n the grid loops g1, . . . , gn
intratile n the intra-tile loops t1, . . . , tn

6

7

Semantics8
The tile construct is associated with n loops, where n is the number of items in the sizes9
clause, which consists of items s1, . . . , sn. Let ℓ1, . . . , ℓn be the associated loops, from outermost10
to innermost, which the construct replaces with a loop nest that consists of 2n perfectly nested11
loops. Let g1, . . . , gn, t1, . . . , tn be the generated loops, from outermost to innermost. The loops12
g1, . . . , gn are the grid loops and the loops t1, . . . , tn are the intra-tile loops.13

Let Ω be the logical iteration vector space of the associated loops. For any (α1, . . . , αn) ∈ Nn,14
define the set of iterations {(i1, . . . , in) ∈ Ω | ∀k ∈ {1, . . . , n} : skαk ≤ ik < skαk + sk} to be15
tile Tα1,...,αn

and G = {Tα1,...,αn
| Tα1,...,αn

̸= ∅} to be the set of tiles with at least one iteration.16
Tiles that contain

∏n
k=1 sk iterations are complete tiles. Otherwise, they are partial tiles.17

The grid loops iterate over all tiles {Tα1,...,αn
∈ G} in lexicographic order with respect to their18

indices (α1, . . . , αn) and the intra-tile loops iterate over the iterations in Tα1,...,αn
in the19

lexicographic order of the corresponding iteration vectors. An implementation may reorder the20
sequential execution of two iterations if at least one is from a partial tile and if their respective21
logical iteration vectors in loop-nest do not have a product order relation.22

Restrictions23
Restrictions to the tile construct are as follows:24

• The depth of the associated loop nest must be greater than or equal to n.25

• All loops that are associated with the construct must be perfectly nested loops.26

• No loop that is associated with the construct may be a non-rectangular loop.27

• A grid loop and an intra-tile loop that are generated from the same tile construct must not28
be associated with the same loop-nest-associated directive.29

Cross References30
• apply clause, see Section 10.631

• sizes clause, see Section 10.1.132

CHAPTER 10. LOOP-TRANSFORMING CONSTRUCTS 301

10.1.1 sizes Clause1

Name: sizes Properties: unique, required2

Arguments3
Name Type Properties
size-list list of OpenMP integer expression type constant, positive4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
tile8

Semantics9
The sizes clause specifies a list of n compile-time constant, positive OpenMP integer10
expressions. The list items are not required to be unique.11

Cross References12
• tile directive, see Section 10.113

10.2 unroll Construct14

Name: unroll Association: loop nest
Category: executable Properties: pure, loop-transforming, simdiz-

able
15

Clauses16
apply, full, partial17

Clause set18
Properties: exclusive Members: full, partial19

Loop Modifiers for the apply Clause20
loop-modifier Number of Generated Loops Description
unrolled (default) 1 the grid loop g1 of the tiling step21

22

302 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
The unroll construct is associated with one loop, which is unrolled according to its specified2
clauses. If no clauses are specified, if and how the loop is unrolled is implementation defined. The3
unroll construct results in a generated loop that has canonical loop nest form if and only if the4
partial clause is specified.5

If the apply clause is specified on construct without a loop-modifier, the effect is as if unrolled6
is specified.7

Restrictions8
Restrictions to the unroll directive are as follows:9

• The apply clause can only be specified if the partial clause is specified.10

Cross References11
• apply clause, see Section 10.612

• full clause, see Section 10.2.113

• partial clause, see Section 10.2.214

10.2.1 full Clause15

Name: full Properties: unique16

Arguments17
Name Type Properties
fully_unroll expression of OpenMP logical type constant, optional18

Modifiers19
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique20

Directives21
unroll22

Semantics23
If fully_unroll evaluates to true, the full clause specifies that the associated loop is fully unrolled.24
The construct is replaced by a structured block that only contains n instances of its loop body, one25
for each of the n associated iterations and in their logical iteration order. If fully_unroll evaluates to26
false, the full clause has no effect. If fully_unroll is not specified, the effect is as if fully_unroll27
evaluates to true.28

CHAPTER 10. LOOP-TRANSFORMING CONSTRUCTS 303

Restrictions1
Restrictions to the full clause are as follows:2

• The iteration count of the associated loop must be a compile-time constant.3

Cross References4
• unroll directive, see Section 10.25

10.2.2 partial Clause6

Name: partial Properties: unique7

Arguments8
Name Type Properties
unroll-factor expression of integer type optional, constant, posi-

tive
9

Modifiers10
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique11

Directives12
unroll13

Semantics14
The partial clause specifies that the associated loop is first tiled with a tile size of unroll-factor.15
Then, the generated intra-tile loop is fully unrolled. If the partial clause is used without an16
unroll-factor argument then the unroll factor is a positive integer that is implementation defined.17

Cross References18
• unroll directive, see Section 10.219

10.3 reverse Construct20

Name: reverse Association: loop nest
Category: executable Properties: pure, loop-transforming, simdiz-

able
21

Clauses22
apply23

304 OpenMP API – Version 6.0 Preview 2 November 2023

Loop Modifiers for the apply Clause1
loop-modifier Number of Generated Loops Description
reversed (default) 1 the reversed loop2

3

Semantics4
The reverse construct is associated with one loop, the outermost loop, where5
0, 1, . . . , n− 2, n− 1 are the logical iteration numbers of that loop. The construct transforms that6
loop into a loop in which iterations occur in the order n− 1, n− 2, . . . , 1, 0.7

Cross References8
• apply clause, see Section 10.69

10.4 interchange Construct10

Name: interchange Association: loop nest
Category: executable Properties: pure, loop-transforming, simdiz-

able
11

Clauses12
apply, permutation13

Loop Modifiers for the apply Clause14
loop-modifier Number of Generated Loops Description
interchanged (de-
fault)

n the generated loops, in the new
order

15

16

Semantics17
The interchange construct is associated with n loops, where s1, . . . , sn are the n items in the18
permutation-list argument of the permutation clause. Let ℓ1, . . . , ℓn be the associated loops,19
from outermost to innermost. The original associated loops are replaced with the loops in the order20
ℓs1 , . . . , ℓsn .21

If the permutation clause is not specified, the effect is as if permutation(2,1) was22
specified.23

Restrictions24
Restrictions to the interchange clause are as follows:25

• The associated loop nest must be rectangular.26

• The associated loop nest must be perfectly nested loops.27

CHAPTER 10. LOOP-TRANSFORMING CONSTRUCTS 305

Cross References1
• apply clause, see Section 10.62

• permutation clause, see Section 10.4.13

10.4.1 permutation Clause4

Name: permutation Properties: unique5

Arguments6
Name Type Properties
permutation-list list of OpenMP integer expression type constant, positive7

Modifiers8
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique9

Directives10
interchange11

Semantics12
The permutation clause specifies a list of n compile-time constant, positive OpenMP integer13
expressions.14

Restrictions15
Restrictions to the permutation clause are as follows:16

• Every integer from 1 to n must appear exactly once in permutation-list.17

• n must be at least 2.18

Cross References19
• interchange directive, see Section 10.420

10.5 fuse Construct21

Name: fuse Association: loop sequence
Category: executable Properties: pure, loop-transforming, simdiz-

able
22

Clauses23
looprange24

306 OpenMP API – Version 6.0 Preview 2 November 2023

Loop Modifiers for the apply Clause1
loop-modifier Number of Generated Loops Description
fused (default) 1 the fused loop2

3

Semantics4
The fuse construct merges the affected loop nests specified by the looprange clause into a5
single canonical loop nest where execution of each logical iteration of the generated loop executes a6
logical iteration of each affected loop nest.7

Let ℓ1, . . . , ℓn be the affected loop nests with m1, . . . , mn logical iterations each, and ikj the jth8
logical iteration of loop ℓk. Let ikj be an empty iteration if j ≥ mk. Let mmax be the number of9
logical iterations of the affected loop nest with the most logical iterations. The loop generated by10
the fuse construct has mmax logical iterations, where execution of the jth logical iteration11
executes the logical iterations i1j , . . . , inj , in that order.12

Cross References13
• looprange clause, see Section 5.4.714

10.6 apply Clause15

Name: apply Properties: default16

Arguments17
Name Type Properties
applied-directives list of directive specification list item

type
default18

Modifiers19
Name Modifies Type Properties
loop-modifier applied-directives Keyword: fused,

grid, identity,
interchanged,
intratile, reversed,
unrolled

default

directive-name-
modifier

all arguments Keyword:
directive-name

unique

20

Directives21
interchange, nothing, reverse, tile, unroll22

CHAPTER 10. LOOP-TRANSFORMING CONSTRUCTS 307

Semantics1
The apply clause applies loop-transforming constructs, specified by the applied-directives list, to2
the generated loops of a loop-transforming construct. The loop-modifier specifies to which3
generated loops the directives are applied. An applied loop-transforming construct may also specify4
apply clauses.5

The valid loop-modifier keywords, the default loop-modifier if it exists, the number of6
applied-directives list items, and the target of each applied-directives list item is defined by the7
loop-transforming construct to which it applies. The directive specified by the i-th item in the8
applied-directives list is applied to the i-th generated loop according to the loop-modifier keyword9
description. If the loop-modifier is omitted and a default loop-modifier exists for the apply clause10
on the construct, the behavior is as if the default loop-modifier is specified.11

The list items of the apply clause arguments are not required to be directive-wide unique.12

Restrictions13
Restrictions to the apply clause are as follows:14

• A list item in an apply clause must be nothing or the directive-specification of a15
loop-transforming construct.16

• A given loop-modifier keyword must not appear in more than one apply17
clause-argument-specification on the same construct.18

• If a directive does not define a default loop-modifier keyword, the loop-modifier modifier19
must not be omitted.20

Cross References21
• interchange directive, see Section 10.422

• metadirective directive, see Section 8.4.323

• nothing directive, see Section 9.724

• reverse directive, see Section 10.325

• tile directive, see Section 10.126

• unroll directive, see Section 10.227

308 OpenMP API – Version 6.0 Preview 2 November 2023

11 Parallelism Generation and Control1

This chapter defines constructs for generating and controlling parallelism.2

11.1 omp_curr_progress_width Identifier3

The omp_curr_progress_width identifier is a context-specific OpenMP constant that is an4
OpenMP integer expression. It evaluates to the maximum size, in terms of hardware threads, of a5
progress unit that is available to threads that are executing tasks in the current contention group.6

11.2 parallel Construct7

Name: parallel Association: block
Category: executable Properties: parallelism-generating, team-

generating, cancellable, thread-limiting,
context-matching

8

Clauses9
allocate, copyin, default, firstprivate, if, message, num_threads, private,10
proc_bind, reduction, safesync, severity, shared11

Binding12
The binding thread set for a parallel region is the encountering thread. The encountering thread13
becomes the primary thread of the new team.14

Semantics15
When a thread encounters a parallel construct, a team is formed to execute the parallel16
region (see Section 11.2.1 for more information about how the number of threads in the team is17
determined, including the evaluation of the if and num_threads clauses). The thread that18
encountered the parallel construct becomes the primary thread of the new team, with a thread19
number of zero for the duration of the new parallel region. All threads in the new team,20
including the primary thread, execute the region. Once the team is formed, the number of threads in21
the team remains constant for the duration of that parallel region.22

Within a parallel region, thread numbers uniquely identify each thread. Thread numbers are23
consecutive whole numbers ranging from zero for the primary thread up to one less than the24

309

number of threads in the team. A thread may obtain its own thread number by a call to the1
omp_get_thread_num library routine.2

A set of implicit tasks, equal in number to the number of threads in the team, is generated by the3
encountering thread. The structured block of the parallel construct determines the code that4
will be executed in each implicit task. Each task is assigned to a different thread in the team and5
becomes tied. The task region of the task that the encountering thread is executing is suspended and6
each thread in the team executes its implicit task. Each thread can execute a path of statements that7
is different from that of the other threads.8

The implementation may cause any thread to suspend execution of its implicit task at a task9
scheduling point, and to switch to execution of any explicit task generated by any of the threads in10
the team, before eventually resuming execution of the implicit task (for more details see11
Chapter 13).12

An implicit barrier occurs at the end of a parallel region. After the end of a parallel region,13
only the primary thread of the team resumes execution of the enclosing task region.14

If a thread in a team that is executing a parallel region encounters another parallel15
directive, it forms a new team, according to the rules in Section 11.2.1, and it becomes the primary16
thread of that new team.17

If execution of a thread terminates while inside a parallel region, execution of all threads in all18
teams terminates. The order of termination of threads is unspecified. All work done by a team prior19
to any barrier that the team has passed in the program is guaranteed to be complete. The amount of20
work done by each thread after the last barrier that it passed and before it terminates is unspecified.21

Execution Model Events22
The parallel-begin event occurs in a thread that encounters a parallel construct before any23
implicit task is generated for the corresponding parallel region.24

Upon generation of each implicit task, an implicit-task-begin event occurs in the thread that25
executes the implicit task after the implicit task is fully initialized but before the thread begins to26
execute the structured block of the parallel construct.27

If a new native thread is created for the team that executes the parallel region upon28
encountering the construct, a native-thread-begin event occurs as the first event in the context of the29
new thread prior to the implicit-task-begin event.30

Events associated with implicit barriers occur at the end of a parallel region. Section 16.3.231
describes events associated with implicit barriers.32

When a thread completes an implicit task, an implicit-task-end event occurs in the thread after33
events associated with implicit barrier synchronization in the implicit task.34

The parallel-end event occurs in the thread that encounters the parallel construct after the35
thread executes its implicit-task-end event but before the thread resumes execution of the36
encountering task.37

310 OpenMP API – Version 6.0 Preview 2 November 2023

If a native thread is destroyed at the end of a parallel region, a native-thread-end event occurs1
in the worker thread that uses the native thread as the last event prior to destruction of the native2
thread.3

Tool Callbacks4
A thread dispatches a registered ompt_callback_parallel_begin callback for each5
occurrence of a parallel-begin event in that thread. The callback occurs in the task that encounters6
the parallel construct. This callback has the type signature7
ompt_callback_parallel_begin_t. In the dispatched callback,8
(flags & ompt_parallel_team) evaluates to true.9

A thread dispatches a registered ompt_callback_implicit_task callback with10
ompt_scope_begin as its endpoint argument for each occurrence of an implicit-task-begin11
event in that thread. Similarly, a thread dispatches a registered12
ompt_callback_implicit_task callback with ompt_scope_end as its endpoint13
argument for each occurrence of an implicit-task-end event in that thread. The callbacks occur in14
the context of the implicit task and have type signature ompt_callback_implicit_task_t.15
In the dispatched callback, (flags & ompt_task_implicit) evaluates to true.16

A thread dispatches a registered ompt_callback_parallel_end callback for each17
occurrence of a parallel-end event in that thread. The callback occurs in the task that encounters18
the parallel construct. This callback has the type signature19
ompt_callback_parallel_end_t.20

A thread dispatches a registered ompt_callback_thread_begin callback for any21
native-thread-begin event in that thread. The callback occurs in the context of the thread. The22
callback has type signature ompt_callback_thread_begin_t.23

A thread dispatches a registered ompt_callback_thread_end callback for any24
native-thread-end event in that thread. The callback occurs in the context of the thread. The25
callback has type signature ompt_callback_thread_end_t.26

Cross References27
• allocate clause, see Section 7.628

• copyin clause, see Section 6.7.129

• default clause, see Section 6.4.130

• firstprivate clause, see Section 6.4.431

• if clause, see Section 4.532

• message clause, see Section 9.333

• num_threads clause, see Section 11.2.234

• private clause, see Section 6.4.335

• proc_bind clause, see Section 11.2.436

CHAPTER 11. PARALLELISM GENERATION AND CONTROL 311

• reduction clause, see Section 6.5.91

• safesync clause, see Section 11.2.52

• severity clause, see Section 9.43

• shared clause, see Section 6.4.24

• omp_get_thread_num, see Section 19.2.45

• ompt_callback_implicit_task_t, see Section 20.5.2.116

• ompt_callback_parallel_begin_t, see Section 20.5.2.37

• ompt_callback_parallel_end_t, see Section 20.5.2.48

• ompt_callback_thread_begin_t, see Section 20.5.2.19

• ompt_callback_thread_end_t, see Section 20.5.2.210

• ompt_scope_endpoint_t, see Section 20.4.4.1111

• Determining the Number of Threads for a parallel Region, see Section 11.2.112

11.2.1 Determining the Number of Threads for a parallel13

Region14

When execution encounters a parallel directive, the value of the if clause or the first item of15
the nthreads list of the num_threads clause (if any) on the directive, the current parallel context,16
and the values of the nthreads-var, dyn-var, thread-limit-var, and max-active-levels-var ICVs are17
used to determine the number of threads to use in the region.18

Using a variable in an if-expression of an if clause or in an element of the nthreads list of a19
num_threads clause of a parallel construct causes an implicit reference to the variable in all20
enclosing constructs. The if-expression and the nthreads list items are evaluated in the context21
outside of the parallel construct, and no ordering of those evaluations is specified. In what22
order or how many times any side effects of the evaluation of the nthreads list items or an23
if-expression occur is also unspecified.24

When a thread encounters a parallel construct, the number of threads is determined according25
to Algorithm 11.1.26

Cross References27
• if clause, see Section 4.528

• num_threads clause, see Section 11.2.229

• parallel directive, see Section 11.230

• dyn-var ICV, see Table 2.131

• max-active-levels-var ICV, see Table 2.132

312 OpenMP API – Version 6.0 Preview 2 November 2023

Algorithm 11.1 Determine Number of Threads
let ThreadsBusy be the number of threads currently executing tasks in this contention group;
let StructuredThreadsBusy be the number of structured threads currently executing tasks in this
contention group;
if an if clause exists then let IfClauseValue be the value of if-expression;
else let IfClauseValue = true;
if a num_threads clause exists then let ThreadsRequested be the value of the first item of the
nthreads list;
else let ThreadsRequested = value of the first element of nthreads-var;
let ThreadsAvailable = min(thread-limit-var - ThreadsBusy, structured-thread-limit-var - Struc-
turedThreadsBusy) + 1;
if (IfClauseValue = false) then number of threads = 1;
else if (active-levels-var ≥ max-active-levels-var) then number of threads = 1;
else if (dyn-var = true) and (ThreadsRequested ≤ ThreadsAvailable)

then 1 ≤ number of threads ≤ ThreadsRequested;
else if (dyn-var = true) and (ThreadsRequested > ThreadsAvailable)

then 1 ≤ number of threads ≤ ThreadsAvailable;
else if (dyn-var = false) and (ThreadsRequested ≤ ThreadsAvailable)

then number of threads = ThreadsRequested;
else if (dyn-var = false) and (ThreadsRequested > ThreadsAvailable)

then behavior is implementation defined

CHAPTER 11. PARALLELISM GENERATION AND CONTROL 313

• nthreads-var ICV, see Table 2.11

• thread-limit-var ICV, see Table 2.12

11.2.2 num_threads Clause3

Name: num_threads Properties: unique4

Arguments5
Name Type Properties
nthreads list of OpenMP integer expression type positive6

Modifiers7
Name Modifies Type Properties
prescriptiveness nthreads Keyword: strict default
directive-name-
modifier

all arguments Keyword:
directive-name

unique8

Directives9
parallel10

Semantics11
The num_threads clause specifies the desired number of threads to execute a parallel12
region. Algorithm 11.1 determines the number of threads that execute the parallel region. If13
prescriptiveness is specified as strict and an implementation determines that Algorithm 11.114
would always result in a number of threads other than the value of the first item of the nthreads list15
then compile-time error termination may be performed in which case the effect of any message16
clause associated with the directive is implementation defined. Otherwise, if prescriptiveness is17
specified as strict and Algorithm 11.1 would result in a number of threads other than the value18
of the first item of the nthreads list then runtime error termination is performed. In both error19
termination scenarios, the effect is as if an error directive has been encountered on which any20
specified message and severity clauses and an at clause with execution as action-time21
are specified.22

Cross References23
• at clause, see Section 9.224

• message clause, see Section 9.325

• parallel directive, see Section 11.226

314 OpenMP API – Version 6.0 Preview 2 November 2023

11.2.3 Controlling OpenMP Thread Affinity1

When a thread encounters a parallel directive without a proc_bind clause, the bind-var ICV2
is used to determine the policy for assigning threads to places within the input place partition, as3
defined in the following paragraph. If the parallel directive has a proc_bind clause then the4
thread affinity policy specified by the proc_bind clause overrides the policy specified by the first5
element of the bind-var ICV. Once a thread in the team is assigned to a place, the OpenMP6
implementation should not move it to another place.7

If the encountering thread is a free-agent thread that is executing an explicit task that was created in8
an implicit parallel region, the input place partition for all thread affinity policies is the value of the9
place-partition-var ICV of the initial task. If the encountering thread is a free-agent thread that is10
executing an explicit task that was created in an explicit parallel region, the input place partition for11
all thread affinity policies is the input place partition of that parallel region. If the encountering12
thread is not a free-agent thread, the input place partition for all thread affinity policies is the value13
of the place-partition-var ICV of its binding implicit task.14

Under the primary and close thread affinity policies, the place-partition-var ICV of each15
implicit task is assigned the input place partition. As discussed below, under the spread thread16
affinity policy, the place-partition-var ICV of each implicit task is derived from the value of the17
input place partition.18

The place-assignment-var ICV is a list of positions. Each position is assigned to a group that is19
derived based on the thread affinity policy that applies to the parallel directive as described20
below. A set of places is assigned to each group and its positions; if more than one place is assigned21
to a group, the positions assigned to the group are associated with the places in round robin fashion22
with wrap-around, starting with the first place that is assigned to the group. Each thread assigned to23
the team is bound to the place that is associated with the group that includes the position that equals24
its thread number. That is, each thread of the team is assigned to the position of the25
place-assignment-var that corresponds to its thread number.26

Free-agent threads that execute tasks bound to the team are assigned to the first position of the27
place-assignment-var that has not been assigned to any other thread and are bound to a place that is28
associated with that position. If another OpenMP thread is bound to that place, the place to which29
the free-agent thread is bound is implementation defined.30

The assignment of positions to groups that determines the place-assignment-var ICV uses the31
following symbols:32

• T : the number of threads in the team;33

• P : the number of places in the input place partition;34

• L: the value of the thread-limit-var ICV;35

• NG: the total number of groups;36

• BT : the below thread count, which is equal to ⌊⌊T/NG⌋⌋;37

CHAPTER 11. PARALLELISM GENERATION AND CONTROL 315

• AT : the above thread count, which is equal to ⌈⌈T/NG⌉⌉;1

• ET : the excess thread count, which is equal to TmodNG;2

• gi: a member of the set of groups, g0, . . . , gNG−1; and3

• lj : the group assigned to position j;4

The place-assignment-var ICV consists of L positions. Thus, each thread affinity policy determines5
the composition of each group gi by assigning position j to one of them for each j,6
j = 0, . . . , L− 1.7

Under the primary thread affinity policy, NG = 1 and all positions are assigned to a single8
group, g0. The place assigned to g0 is the place to which the encountering thread is assigned. Thus,9
all positions of the place-assignment-var ICV are associated with the same place as the primary10
thread.11

The close thread affinity policy sets NG to P . Each place in the input place partition is assigned12
to one group, starting with the place to which the encountering thread is assigned, which is13
assigned to g0. The place assigned to group gi is then the next place in the place partition of the one14
assigned to group gi−1 with wrap around with respect to the input place partition.15

The purpose of the spread thread affinity policy is to create a sparse distribution for a team of T16
threads among the P places of the parent’s place partition. A sparse distribution is achieved by first17
subdividing the parent partition into T subpartitions if T ≤ P (in which case NG = T), or P18
subpartitions if T > P (in which case NG = P). The subpartitions are determined as follows:19

• T ≤ P : The input place partition is split into T subpartitions, where each subpartition20
contains ⌊⌊P/T⌋⌋ or ⌈⌈P/T⌉⌉ consecutive places; if PmodT is not zero, which subpartitions21
contain ⌈⌈P/T⌉⌉ places is implementation defined;22

• T > P : The input place partition is split into P subpartitions, each with a single place.23

In either case, a subpartitition is assigned to each group. The subpartition that is assigned to group24
g0 is the one that includes the place on which the encountering thread is executing. The25
subpartition that is assigned to group gi is the one that includes the next place to those in the26
subpartition assigned to group gi−1, with wrap around with respect to the input place partition. The27
place-partition-var ICV of each implicit task is set to the subpartition associated with the group to28
which its corresponding position is assigned. Thus, the subpartitioning is not only a mechanism for29
achieving a sparse distribution, it also defines a subset of places for a thread to use when creating a30
nested parallel region.31

Both the close and the spread thread affinity policies assign the values of the32
place-assignment-var ICV as follows:33

• For positions from 0 up to T − 1: The positions are partitioned into NG sets of consecutive34
positions, ET of which have AT positions and NG− ET of which have BT positions35
(when ET is not zero, which sets have which count is implementation defined unless the36
thread affinity policy is close and T < P , in which case the first T groups are assigned the37

316 OpenMP API – Version 6.0 Preview 2 November 2023

sets with AT positions) and the sets are assigned to each group, with the first set, which starts1
with position 0, assigned to the first group, g0, and with each successive set i, which starts2
with the position immediately after the last position in the set assigned to group gi−1,3
assigned to the next group gi;4

• If ET ̸= 0, for the positions from T up to (AT ∗NG)− 1: Each of these positions is5
assigned to a group gi that received fewer than AT positons in the above step such that each6
such gi is assigned AT positions (which positions are assigned to which group is7
implementation defined);8

• For the remaining positions from AT ∗NG up to L: Each position is assigned to a group in9
round robin fashion, starting with g0.10

The determination of whether the affinity request can be fulfilled is implementation defined. If it11
cannot be fulfilled, then the affinity of threads in the team is implementation defined.12

13

Note – Wrap around is needed if the end of a place partition is reached before all thread14
assignments are done. For example, wrap around may be needed in the case of close and T ≤ P ,15
if the primary thread is assigned to a place other than the first place in the place partition. In this16
case, thread 1 is assigned to the place after the place of the primary thread, thread 2 is assigned to17
the place after that, and so on. The end of the place partition may be reached before all threads are18
assigned. In this case, assignment of threads is resumed with the first place in the place partition.19

20

Cross References21
• proc_bind clause, see Section 11.2.422

• parallel directive, see Section 11.223

• bind-var ICV, see Table 2.124

• place-partition-var ICV, see Table 2.125

11.2.4 proc_bind Clause26

Name: proc_bind Properties: unique27

Arguments28
Name Type Properties
affinity-policy Keyword: close, primary,

spread
default29

Modifiers30
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique31

CHAPTER 11. PARALLELISM GENERATION AND CONTROL 317

Directives1
parallel2

Semantics3
The proc_bind clause specifies the mapping of threads to places within the current place4
partition, that is, within the place listed in the place-partition-var ICV for the implicit task of the5
encountering thread. The effect of the possible values for affinity-policy are described in6
Section 11.2.37

Cross References8
• parallel directive, see Section 11.29

• Controlling OpenMP Thread Affinity, see Section 11.2.310

• place-partition-var ICV, see Table 2.111

11.2.5 safesync Clause12

Name: safesync Properties: unique13

Arguments14
Name Type Properties
width expression of integer type positive, optional15

Modifiers16
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique17

Directives18
parallel19

Semantics20
The safesync clause specifies that threads in the new team are partitioned, in thread number21
order, into progress groups of size width, except for the last progress group, which may contain less22
than width threads. Among threads that are executing tasks in the same contention group in23
parallel, only threads that are in the same progress group execute in the same progress unit. If the24
width argument is not specified, the behavior is as if the width argument is one.25

Cross References26
• parallel directive, see Section 11.227

318 OpenMP API – Version 6.0 Preview 2 November 2023

11.3 teams Construct1

Name: teams Association: block
Category: executable Properties: parallelism-generating, team-

generating, thread-limiting, context-matching
2

Clauses3
allocate, default, firstprivate, if, num_teams, private, reduction, shared,4
thread_limit5

Binding6
The binding thread set for a teams region is the encountering thread.7

Semantics8
When a thread encounters a teams construct, a league of teams is created. Each team is an initial9
team, and the initial thread in each team executes the teams region. The number of teams created10
is determined by evaluating the if and num_teams clauses. Once the teams are created, the11
number of initial teams remains constant for the duration of the teams region. Within a teams12
region, initial team numbers uniquely identify each initial team. Initial teams numbers are13
consecutive whole numbers ranging from zero to one less than the number of initial teams.14

When an if clause is present on a teams construct and the if clause expression evaluates to15
false, the number of formed teams is one. The use of a variable in an if clause expression of a16
teams construct causes an implicit reference to the variable in all enclosing constructs. The if17
clause expression is evaluated in the context outside of the teams construct.18

If a thread_limit clause is not present on the teams construct, but the construct is closely19
nested inside a target construct on which the thread_limit clause is specified, the behavior20
is as if that thread_limit clause is also specified for the teams construct.21

On a combined construct or composite construct that includes target and teams constructs, the22
expressions in num_teams and thread_limit clauses are evaluated on the host device on23
entry to the target construct.24

The place list, given by the place-partition-var ICV of the encountering thread, is split into25
subpartitions in an implementation defined manner, and each team is assigned to a subpartition by26
setting the place-partition-var of its initial thread to the subpartition.27

The teams construct sets the default-device-var ICV for each initial thread to an implementation28
defined value.29

After the teams have completed execution of the teams region, the encountering task resumes30
execution of the enclosing task region.31

CHAPTER 11. PARALLELISM GENERATION AND CONTROL 319

Execution Model Events1
The teams-begin event occurs in a thread that encounters a teams construct before any initial task2
is generated for the corresponding teams region.3

Upon generation of each initial task, an initial-task-begin event occurs in the thread that executes4
the initial task after the initial task is fully initialized but before the thread begins to execute the5
structured block of the teams construct.6

If a new native thread is created for the league of teams that executes the teams region upon7
encountering the construct, a native-thread-begin event occurs as the first event in the context of the8
new thread prior to the initial-task-begin event.9

When a thread completes an initial task, an initial-task-end event occurs in the thread.10

The teams-end event occurs in the thread that encounters the teams construct after the thread11
executes its initial-task-end event but before it resumes execution of the encountering task.12

If a native thread is destroyed at the end of a teams region, a native-thread-end event occurs in the13
initial thread that uses the native thread as the last event prior to destruction of the native thread.14

Tool Callbacks15
A thread dispatches a registered ompt_callback_parallel_begin callback for each16
occurrence of a teams-begin event in that thread. The callback occurs in the task that encounters the17
teams construct. This callback has the type signature18
ompt_callback_parallel_begin_t. In the dispatched callback,19
(flags & ompt_parallel_league) evaluates to true.20

A thread dispatches a registered ompt_callback_implicit_task callback with21
ompt_scope_begin as its endpoint argument for each occurrence of an initial-task-begin event22
in that thread. Similarly, a thread dispatches a registered ompt_callback_implicit_task23
callback with ompt_scope_end as its endpoint argument for each occurrence of an24
initial-task-end event in that thread. The callbacks occur in the context of the initial task and have25
type signature ompt_callback_implicit_task_t. In the dispatched callback,26
(flags & ompt_task_initial) evaluates to true.27

A thread dispatches a registered ompt_callback_parallel_end callback for each28
occurrence of a teams-end event in that thread. The callback occurs in the task that encounters the29
teams construct. This callback has the type signature ompt_callback_parallel_end_t.30

A thread dispatches a registered ompt_callback_thread_begin callback for each31
native-thread-begin event in that thread. The callback occurs in the context of the thread. The32
callback has type signature ompt_callback_thread_begin_t.33

A thread dispatches a registered ompt_callback_thread_end callback for each34
native-thread-end event in that thread. The callback occurs in the context of the thread. The35
callback has type signature ompt_callback_thread_end_t.36

320 OpenMP API – Version 6.0 Preview 2 November 2023

Restrictions1
Restrictions to the teams construct are as follows:2

• If a reduction-modifier is specified in a reduction clause that appears on the directive then3
the reduction-modifier must be default.4

• A teams region must be strictly nested within the implicit parallel region that surrounds the5
whole OpenMP program or a target region. If a teams region is nested inside a target6
region, the corresponding target construct must not contain any statements, declarations7
or directives outside of the corresponding teams construct.8

• distribute regions, including any distribute regions arising from composite9
constructs, parallel regions, including any parallel regions arising from combined10
constructs, loop regions, omp_get_num_teams() regions, and11
omp_get_team_num() regions are the only regions that may be strictly nested inside the12
teams region.13

Cross References14
• allocate clause, see Section 7.615

• default clause, see Section 6.4.116

• firstprivate clause, see Section 6.4.417

• if clause, see Section 4.518

• num_teams clause, see Section 11.3.119

• private clause, see Section 6.4.320

• reduction clause, see Section 6.5.921

• shared clause, see Section 6.4.222

• thread_limit clause, see Section 14.323

• distribute directive, see Section 12.724

• parallel directive, see Section 11.225

• target directive, see Section 14.826

• omp_get_num_teams, see Section 19.4.127

• omp_get_team_num, see Section 19.4.228

• ompt_callback_implicit_task_t, see Section 20.5.2.1129

• ompt_callback_parallel_begin_t, see Section 20.5.2.330

• ompt_callback_parallel_end_t, see Section 20.5.2.431

• ompt_callback_thread_begin_t, see Section 20.5.2.132

• ompt_callback_thread_end_t, see Section 20.5.2.233

CHAPTER 11. PARALLELISM GENERATION AND CONTROL 321

11.3.1 num_teams Clause1

Name: num_teams Properties: unique2

Arguments3
Name Type Properties
upper-bound expression of integer type positive4

Modifiers5
Name Modifies Type Properties
lower-bound upper-bound OpenMP integer expression positive, ultimate,

unique
directive-name-
modifier

all arguments Keyword:
directive-name

unique
6

Directives7
teams8

Semantics9
The num_teams clause specifies the bounds on the number of teams formed by the construct on10
which it appears. lower-bound specifies the lower bound and upper-bound specifies the upper11
bound on the number of teams requested. If lower-bound is not specified, the effect is as if12
lower-bound is specified as equal to upper-bound. The number of teams formed is implementation13
defined, but it will be greater than or equal to the lower bound and less than or equal to the upper14
bound.15

If the num_teams clause is not specified on a construct then the effect is as if upper-bound was16
specified as follows. If the value of the nteams-var ICV is greater than zero, the effect is as if17
upper-bound was specified as an implementation defined value greater than zero but less than or18
equal to the value of the nteams-var ICV. Otherwise, the effect is as if upper-bound was specified19
as an implementation defined value greater than or equal to one.20

Restrictions21
• lower-bound must be less than or equal to upper-bound.22

Cross References23
• teams directive, see Section 11.324

11.4 order Clause25

Name: order Properties: unique26

Arguments27
Name Type Properties
ordering Keyword: concurrent default28

322 OpenMP API – Version 6.0 Preview 2 November 2023

Modifiers1
Name Modifies Type Properties
order-modifier ordering Keyword: reproducible,

unconstrained
default

directive-name-
modifier

all arguments Keyword:
directive-name

unique
2

Directives3
distribute, do, for, loop, simd4

Semantics5
The order clause specifies an ordering of execution for the collapsed iterations of a6
loop-collapsing construct. If ordering is concurrent, different collapsed iterations may execute7
in any order, including in parallel, as if by the binding thread set of the region. The binding thread8
set may recruit or create additional native threads to participate in the parallel execution of any9
collapsed iterations.10

The order-modifier on the order clause affects the schedule specification for the purpose of11
determining its consistency with other schedules (see Section 5.4.5). If order-modifier is12
reproducible, the loop schedule for the construct on which the clause appears is reproducible,13
whereas if order-modifier is unconstrained, the loop schedule is not reproducible.14

Restrictions15
Restrictions to the order clause are as follows:16

• The only constructs that may be encountered inside a region that corresponds to a construct17
with an order clause that specifies concurrent are the loop construct, the parallel18
construct, the simd construct, the atomic construct, and combined constructs for which19
the first construct is a parallel construct.20

• A region that corresponds to a construct with an order clause that specifies concurrent21
may not contain calls to procedures that contain directives.22

• A region that corresponds to a construct with an order clause that specifies concurrent23
may not contain OpenMP runtime API calls.24

• If a threadprivate variable is referenced inside a region that corresponds to a construct with25
an order clause that specifies concurrent, the behavior is unspecified.26

Cross References27
• distribute directive, see Section 12.728

• do directive, see Section 12.6.229

• for directive, see Section 12.6.130

• loop directive, see Section 12.831

• simd directive, see Section 11.532

CHAPTER 11. PARALLELISM GENERATION AND CONTROL 323

11.5 simd Construct1

Name: simd Association: loop nest
Category: executable Properties: parallelism-generating, context-

matching, simdizable, pure
2

Separating directives3
scan4

Clauses5
aligned, collapse, if, induction, lastprivate, linear, nontemporal, order,6
private, reduction, safelen, simdlen7

Binding8
A simd region binds to the current task region. The binding thread set of the simd region is the9
current team.10

Semantics11
The simd construct enables the execution of multiple collapsed iterations concurrently by using12
SIMD instructions. At the beginning of each collapsed iteration, the loop iteration variable or the13
variable declared by range-decl of each collapsed loop has the value that it would have if the set of14
the collapsed loops was executed sequentially. The number of collapsed iterations that are executed15
concurrently at any given time is implementation defined. Each concurrent iteration will be16
executed by a different SIMD lane. Each set of concurrent iterations is a SIMD chunk. Lexical17
forward dependences in the iterations of the original loop must be preserved within each SIMD18
chunk, unless an order clause that specifies concurrent is present.19

When an if clause is present with an if-expression that evaluates to false, the preferred number of20
iterations to be executed concurrently is one, regardless of whether a simdlen clause is specified.21

Restrictions22
Restrictions to the simd construct are as follows:23

• If both simdlen and safelen clauses are specified, the value of the simdlen length24
must be less than or equal to the value of the safelen length.25

• Only simdizable constructs may be encountered during execution of a simd region.26

• If an order clause that specifies concurrent appears on a simd directive, the safelen27
clause must not also appear.28

C / C++
• The simd region cannot contain calls to the longjmp or setjmp functions.29

C / C++

324 OpenMP API – Version 6.0 Preview 2 November 2023

C++
• No exceptions can be raised in the simd region.1

• The only random access iterator types that are allowed for the collapsed loops are pointer2
types.3

C++

Cross References4
• aligned clause, see Section 6.115

• collapse clause, see Section 5.4.36

• if clause, see Section 4.57

• induction clause, see Section 6.5.128

• lastprivate clause, see Section 6.4.59

• linear clause, see Section 6.4.610

• nontemporal clause, see Section 11.5.111

• order clause, see Section 11.412

• private clause, see Section 6.4.313

• reduction clause, see Section 6.5.914

• safelen clause, see Section 11.5.215

• simdlen clause, see Section 11.5.316

• scan directive, see Section 6.617

11.5.1 nontemporal Clause18

Name: nontemporal Properties: default19

Arguments20
Name Type Properties
list list of variable list item type default21

Modifiers22
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique23

Directives24
simd25

CHAPTER 11. PARALLELISM GENERATION AND CONTROL 325

Semantics1
The nontemporal clause specifies that accesses to the storage locations to which the list items2
refer have low temporal locality across the iterations in which those storage locations are accessed.3
The list items of the nontemporal clause may also appear as list items of data environment4
attribute clauses.5

Cross References6
• simd directive, see Section 11.57

11.5.2 safelen Clause8

Name: safelen Properties: unique9

Arguments10
Name Type Properties
length expression of integer type positive, constant11

Modifiers12
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique13

Directives14
simd15

Semantics16
The safelen clause specifies that no two concurrent iterations within a SIMD chunk can have a17
distance in the collapsed iteration space that is greater than or equal to the value given in the clause.18

Cross References19
• simd directive, see Section 11.520

11.5.3 simdlen Clause21

Name: simdlen Properties: unique22

Arguments23
Name Type Properties
length expression of integer type positive, constant24

Modifiers25
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique26

326 OpenMP API – Version 6.0 Preview 2 November 2023

Directives1
declare simd, simd2

Semantics3
When the simdlen clause appears on a simd construct, length is treated as a hint that specifies4
the preferred number of collapsed iterations to be executed concurrently. When the simdlen5
clause appears on a declare simd construct, if a SIMD version of the associated procedure is6
created, length corresponds to the number of concurrent arguments of the procedure.7

Cross References8
• declare simd directive, see Section 8.79

• simd directive, see Section 11.510

11.6 masked Construct11

Name: masked Association: block
Category: executable Properties: thread-limiting12

Clauses13
filter14

Binding15
The binding thread set for a masked region is the current team. A masked region binds to the16
innermost enclosing parallel region.17

Semantics18
The masked construct specifies a structured block that is executed by a subset of the threads of the19
current team. The filter clause selects a subset of the threads of the team that executes the20
binding parallel region to execute the structured block of the masked region. Other threads in the21
team do not execute the associated structured block. No implied barrier occurs either on entry to or22
exit from the masked construct. The result of evaluating the thread_num argument of the filter23
clause may vary across threads.24

If more than one thread in the team executes the structured block of a masked region, the25
structured block must include any synchronization required to ensure that data races do not occur.26

Execution Model Events27
The masked-begin event occurs in any thread of a team that executes the masked region on entry28
to the region.29

The masked-end event occurs in any thread of a team that executes the masked region on exit from30
the region.31

CHAPTER 11. PARALLELISM GENERATION AND CONTROL 327

Tool Callbacks1
A thread dispatches a registered ompt_callback_masked callback with2
ompt_scope_begin as its endpoint argument for each occurrence of a masked-begin event in3
that thread. Similarly, a thread dispatches a registered ompt_callback_masked callback with4
ompt_scope_end as its endpoint argument for each occurrence of a masked-end event in that5
thread. These callbacks occur in the context of the task executed by the current thread and have the6
type signature ompt_callback_masked_t.7

Cross References8
• filter clause, see Section 11.6.19

• ompt_callback_masked_t, see Section 20.5.2.1210

• ompt_scope_endpoint_t, see Section 20.4.4.1111

11.6.1 filter Clause12

Name: filter Properties: unique13

Arguments14
Name Type Properties
thread_num expression of integer type default15

Modifiers16
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique17

Directives18
masked19

Semantics20
If thread_num specifies the thread number of the current thread in the current team then the21
filter clause selects the current thread. If the filter clause is not specified, the effect is as if22
the clause is specified with thread_num equal to zero, so that the filter clause selects the23
primary thread. The use of a variable in a thread_num argument expression causes an implicit24
reference to the variable in all enclosing constructs.25

Cross References26
• masked directive, see Section 11.627

328 OpenMP API – Version 6.0 Preview 2 November 2023

12 Work-Distribution Constructs1

A work-distribution construct distributes the execution of the corresponding region among the2
threads in its binding thread set. Threads execute portions of the region in the context of the3
implicit tasks that each one is executing.4

A work-distribution construct is a worksharing construct if the binding thread set is a team. A5
worksharing region has no barrier on entry. However, an implied barrier exists at the end of the6
worksharing region, unless a nowait clause is specified with do_not_synchronize specified as7
true, in which case an implementation may omit the barrier at the end of the worksharing region. In8
this case, threads that finish early may proceed straight to the instructions that follow the9
worksharing region without waiting for the other members of the team to finish the worksharing10
region, and without performing a flush operation.11

If a work-distribution construct is a partitioned construct then all user code encountered in the12
region, but not in a nested region that is not a closely nested region, is executed by one thread from13
the binding thread set.14

Restrictions15
The following restrictions apply to work-distribution constructs:16

• Each work-distribution region must be encountered by all threads in the binding thread set or17
by none at all unless cancellation has been requested for the innermost enclosing parallel18
region.19

• The sequence of encountered work-distribution regions that have the same binding thread set20
must be the same for every thread in the binding thread set.21

• The sequence of encountered worksharing regions and barrier regions that bind to the22
same team must be the same for every thread in the team.23

Fortran
• A variable must not be private within a teams or parallel region if it has either24
LOCAL_INIT or SHARED locality in a DO CONCURRENT loop that is associated with a25
work-distribution construct, where the teams or parallel region is a binding region of26
the corresponding work-distribution region.27

• If a variable is accessed in more than one iteration of a DO CONCURRENT loop that is28
associated with the loop directive and at least one of the accesses modifies the variable, the29
variable must have locality specified in the DO CONCURRENT loop.30

Fortran

CHAPTER 12. WORK-DISTRIBUTION CONSTRUCTS 329

12.1 single Construct1

Name: single Association: block
Category: executable Properties: work-distribution, team-executed,

partitioned, worksharing, thread-limiting
2

Clauses3
allocate, copyprivate, firstprivate, nowait, private4

Clause set5
Properties: exclusive Members: copyprivate, nowait6

Binding7
The binding thread set for a single region is the current team. A single region binds to the8
innermost enclosing parallel region. Only the threads of the team that executes the binding parallel9
region participate in the execution of the structured block and the implied barrier of the single10
region if the barrier is not eliminated by a nowait clause.11

Semantics12
The single construct specifies that the associated structured block is executed by only one of the13
threads in the team (not necessarily the primary thread), in the context of its implicit task. The14
method of choosing a thread to execute the structured block each time the team encounters the15
construct is implementation defined. An implicit barrier occurs at the end of a single region if16
the nowait clause does not specify otherwise.17

Execution Model Events18
The single-begin event occurs after an implicit task encounters a single construct but before the19
task starts to execute the structured block of the single region.20

The single-end event occurs after an implicit task finishes execution of a single region but before21
it resumes execution of the enclosing region.22

Tool Callbacks23
A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin24
as its endpoint argument for each occurrence of a single-begin event in that thread. Similarly, a25
thread dispatches a registered ompt_callback_work callback with ompt_scope_end as its26
endpoint argument for each occurrence of a single-end event in that thread. For each of these27
callbacks, the wstype argument is ompt_work_single_executor if the thread executes the28
structured block associated with the single region; otherwise, the wstype argument is29
ompt_work_single_other. The callback has type signature ompt_callback_work_t.30

330 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• allocate clause, see Section 7.62

• copyprivate clause, see Section 6.7.23

• firstprivate clause, see Section 6.4.44

• nowait clause, see Section 16.65

• private clause, see Section 6.4.36

• ompt_callback_work_t, see Section 20.5.2.57

• ompt_scope_endpoint_t, see Section 20.4.4.118

• ompt_work_t, see Section 20.4.4.169

12.2 scope Construct10

Name: scope Association: block
Category: executable Properties: work-distribution, team-executed,

worksharing, thread-limiting
11

Clauses12
allocate, firstprivate, nowait, private, reduction13

Binding14
The binding thread set for a scope region is the current team. A scope region binds to the15
innermost enclosing parallel region. Only the threads of the team that executes the binding parallel16
region participate in the execution of the structured block and the implied barrier of the scope17
region if the barrier is not eliminated by a nowait clause.18

Semantics19
The scope construct specifies that all threads in a team execute the associated structured block and20
any additionally specified OpenMP operations. An implicit barrier occurs at the end of a scope21
region if the nowait clause does not specify otherwise.22

Execution Model Events23
The scope-begin event occurs after an implicit task encounters a scope construct but before the24
task starts to execute the structured block of the scope region.25

The scope-end event occurs after an implicit task finishes execution of a scope region but before it26
resumes execution of the enclosing region.27

CHAPTER 12. WORK-DISTRIBUTION CONSTRUCTS 331

Tool Callbacks1
A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin2
as its endpoint argument and ompt_work_scope as its work_type argument for each occurrence3
of a scope-begin event in that thread. Similarly, a thread dispatches a registered4
ompt_callback_work callback with ompt_scope_end as its endpoint argument and5
ompt_work_scope as its work_type argument for each occurrence of a scope-end event in that6
thread. The callbacks occur in the context of the implicit task. The callbacks have type signature7
ompt_callback_work_t.8

Cross References9
• allocate clause, see Section 7.610

• firstprivate clause, see Section 6.4.411

• nowait clause, see Section 16.612

• private clause, see Section 6.4.313

• reduction clause, see Section 6.5.914

• ompt_callback_work_t, see Section 20.5.2.515

• ompt_scope_endpoint_t, see Section 20.4.4.1116

• ompt_work_t, see Section 20.4.4.1617

12.3 sections Construct18

Name: sections Association: block
Category: executable Properties: work-distribution, team-executed,

partitioned, worksharing, thread-limiting, can-
cellable

19

Separating directives20
section21

Clauses22
allocate, firstprivate, lastprivate, nowait, private, reduction23

Binding24
The binding thread set for a sections region is the current team. A sections region binds to25
the innermost enclosing parallel region. Only the threads of the team that executes the binding26
parallel region participate in the execution of the structured block sequences and the implied barrier27
of the sections region if the barrier is not eliminated by a nowait clause.28

332 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
The sections construct is a non-iterative worksharing construct that contains a structured block2
that consists of a set of structured block sequences that are to be distributed among and executed by3
the threads in a team. Each structured block sequence is executed by one of the threads in the team4
in the context of its implicit task. An implicit barrier occurs at the end of a sections region if the5
nowait clause does not specify otherwise.6

Each structured block sequence in the sections construct is preceded by a section subsidiary7
directive except possibly the first sequence, for which a preceding section subsidiary directive is8
optional. The method of scheduling the structured block sequences among the threads in the team9
is implementation defined.10

Execution Model Events11
The sections-begin event occurs after an implicit task encounters a sections construct but before12
the task executes any structured block sequences of the sections region.13

The sections-end event occurs after an implicit task finishes execution of a sections region but14
before it resumes execution of the enclosing context.15

Tool Callbacks16
A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin17
as its endpoint argument and ompt_work_sections as its work_type argument for each18
occurrence of a sections-begin event in that thread. Similarly, a thread dispatches a registered19
ompt_callback_work callback with ompt_scope_end as its endpoint argument and20
ompt_work_sections as its work_type argument for each occurrence of a sections-end event21
in that thread. The callbacks occur in the context of the implicit task. The callbacks have type22
signature ompt_callback_work_t.23

Cross References24
• allocate clause, see Section 7.625

• firstprivate clause, see Section 6.4.426

• lastprivate clause, see Section 6.4.527

• nowait clause, see Section 16.628

• private clause, see Section 6.4.329

• reduction clause, see Section 6.5.930

• section directive, see Section 12.3.131

• ompt_callback_dispatch_t, see Section 20.5.2.632

• ompt_callback_work_t, see Section 20.5.2.533

• ompt_scope_endpoint_t, see Section 20.4.4.1134

• ompt_work_t, see Section 20.4.4.1635

CHAPTER 12. WORK-DISTRIBUTION CONSTRUCTS 333

12.3.1 section Directive1

Name: section Association: separating
Category: subsidiary Properties: default2

Separated directives3
sections4

Semantics5
The section directive splits a structured block sequence that is associated with a sections6
construct into two structured block sequences.7

Execution Model Events8
The section-begin event occurs before an implicit task starts to execute a structured block sequence9
in the sections construct for each of those structured block sequences that the task executes.10

Tool Callbacks11
A thread dispatches a registered ompt_callback_dispatch callback for each occurrence of a12
section-begin event in that thread. The callback occurs in the context of the implicit task. The13
callback has type signature ompt_callback_dispatch_t.14

Cross References15
• sections directive, see Section 12.316

Fortran

12.4 workshare Construct17

Name: workshare Association: block
Category: executable Properties: work-distribution, team-executed,

partitioned, worksharing
18

Clauses19
nowait20

Binding21
The binding thread set for a workshare region is the current team. A workshare region binds22
to the innermost enclosing parallel region. Only the threads of the team that executes the binding23
parallel region participate in the execution of the units of work and the implied barrier of the24
workshare region if the barrier is not eliminated by a nowait clause.25

334 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran (cont.)

Semantics1
The workshare construct divides the execution of the associated structured block into separate2
units of work and causes the threads of the team to share the work such that each unit of work is3
executed only once by one thread, in the context of its implicit task. An implicit barrier occurs at4
the end of a workshare region if a nowait clause does not specify otherwise.5

An implementation of the workshare construct must insert any synchronization that is required6
to maintain Fortran semantics. For example, the effects of each statement within the structured7
block must appear to occur before the execution of the following statements, and the evaluation of8
the right hand side of an assignment must appear to complete prior to the effects of assigning to the9
left hand side.10

The statements in the workshare construct are divided into units of work as follows:11

• For array expressions within each statement, including transformational array intrinsic12
functions that compute scalar values from arrays:13

– Evaluation of each element of the array expression, including any references to14
elemental functions, is a unit of work.15

– Evaluation of transformational array intrinsic functions may be subdivided into any16
number of units of work.17

• For array assignment statements, assignment of each element is a unit of work.18

• For scalar assignment statements, each assignment operation is a unit of work.19

• For WHERE statements or constructs, evaluation of the mask expression and the masked20
assignments are each a unit of work.21

• For FORALL statements or constructs, evaluation of the mask expression, expressions22
occurring in the specification of the iteration space, and the masked assignments are each a23
unit of work.24

• For atomic constructs, critical constructs, and parallel constructs, the construct is25
a unit of work. A new team executes the statements contained in a parallel construct.26

• If none of the rules above apply to a portion of a statement in the structured block, then that27
portion is a unit of work.28

The transformational array intrinsic functions are MATMUL, DOT_PRODUCT, SUM, PRODUCT,29
MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD, PACK, UNPACK, RESHAPE, TRANSPOSE,30
EOSHIFT, CSHIFT, MINLOC, and MAXLOC.31

The units of work are assigned to the threads that execute a workshare region such that each unit32
of work is executed once.33

If an array expression in the structured block references the value, association status, or allocation34
status of private variables, the value of the expression is undefined, unless the same value would be35
computed by every thread.36

CHAPTER 12. WORK-DISTRIBUTION CONSTRUCTS 335

Fortran (cont.)

If an array assignment, a scalar assignment, a masked array assignment, or a FORALL assignment1
assigns to a private variable in the structured block, the result is unspecified.2

The workshare directive causes the sharing of work to occur only in the workshare construct,3
and not in the remainder of the workshare region.4

Execution Model Events5
The workshare-begin event occurs after an implicit task encounters a workshare construct but6
before the task starts to execute the structured block of the workshare region.7

The workshare-end event occurs after an implicit task finishes execution of a workshare region8
but before it resumes execution of the enclosing context.9

Tool Callbacks10
A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin11
as its endpoint argument and ompt_work_workshare as its work_type argument for each12
occurrence of a workshare-begin event in that thread. Similarly, a thread dispatches a registered13
ompt_callback_work callback with ompt_scope_end as its endpoint argument and14
ompt_work_workshare as its work_type argument for each occurrence of a workshare-end15
event in that thread. The callbacks occur in the context of the implicit task. The callbacks have type16
signature ompt_callback_work_t.17

Restrictions18
Restrictions to the workshare construct are as follows:19

• The only OpenMP constructs that may be closely nested constructs of a workshare20
construct are the atomic, critical, and parallel constructs.21

• Base language statements that are encountered inside a workshare construct but that are22
not enclosed within a parallel or atomic construct that is nested inside the23
workshare construct must consist of only the following:24

– array assignments;25

– scalar assignments;26

– FORALL statements;27

– FORALL constructs;28

– WHERE statements;29

– WHERE constructs; and30

– BLOCK constructs that are strictly structured blocks associated with directives.31

• All array assignments, scalar assignments, and masked array assignments that are32
encountered inside a workshare construct but are not nested inside a parallel construct33
that is nested inside the workshare construct must be intrinsic assignments.34

336 OpenMP API – Version 6.0 Preview 2 November 2023

• The construct must not contain any user-defined function calls unless either the function is1
pure and elemental or the function call is contained inside a parallel construct that is2
nested inside the workshare construct.3

Cross References4
• nowait clause, see Section 16.65

• atomic directive, see Section 16.8.56

• critical directive, see Section 16.27

• parallel directive, see Section 11.28

• ompt_callback_work_t, see Section 20.5.2.59

• ompt_scope_endpoint_t, see Section 20.4.4.1110

• ompt_work_t, see Section 20.4.4.1611

Fortran
Fortran

12.5 coexecute Construct12

Name: coexecute Association: block
Category: executable Properties: work-distribution, partitioned13

Binding14
The binding region is the innermost enclosing teams region. The binding thread set is the set of15
initial threads executing the enclosing teams region.16

Semantics17
The coexecute construct divides the execution of the associated structured block into separate18
units of work and causes the threads of the binding thread set to share the work such that each unit19
of work is executed only once by one thread, in the context of its implicit task. No implicit barrier20
occurs at the end of a coexecute region.21

An implementation must enforce ordering of statements that is required to maintain Fortran22
semantics. For example, the effects of each statement within the structured block must appear to23
occur before the execution of the subsequent statements, and the evaluation of the right hand side of24
an assignment must appear to complete prior to the effects of assigning to the left hand side.25

The statements in the coexecute construct are divided into units of work as follows:26

• For array expressions within each statement, including transformational array intrinsic27
functions that compute scalar values from arrays:28

– Evaluation of each element of the array expression, including any references to pure29
elemental procedures, is a unit of work.30

CHAPTER 12. WORK-DISTRIBUTION CONSTRUCTS 337

Fortran (cont.)

– Evaluation of transformational array intrinsic functions may be subdivided into any1
number of units of work.2

• For array assignment statements, assignment of each element is a unit of work.3

• For scalar assignment statements, each assignment operation is a unit of work.4

The transformational array intrinsic functions are MATMUL, DOT_PRODUCT, SUM, PRODUCT,5
MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD, PACK, UNPACK, RESHAPE, TRANSPOSE,6
EOSHIFT, CSHIFT, MINLOC, and MAXLOC.7

The units of work are assigned to the binding thread set that execute a coexecute region such8
that each unit of work is executed once.9

If an array expression in the structured block references the value, association status, or allocation10
status of private variables, the value of the expression is undefined, unless the same value would be11
computed by every thread.12

Execution Model Events13
The coexecute-begin event occurs after an initial task encounters a coexecute construct but14
before the task starts to execute the structured block of the coexecute region.15

The coexecute-end event occurs after an initial task finishes execution of a coexecute region but16
before it resumes execution of the enclosing context.17

Tool Callbacks18
A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin19
as its endpoint argument and ompt_work_coexecute as its work_type argument for each20
occurrence of a coexecute-begin event in that thread. Similarly, a thread dispatches a registered21
ompt_callback_work callback with ompt_scope_end as its endpoint argument and22
ompt_work_coexecute as its work_type argument for each occurrence of a coexecute-end23
event in that thread. The callbacks occur in the context of the implicit task. The callbacks have type24
signature ompt_callback_work_t.25

Restrictions26
Restrictions to the coexecute construct are as follows:27

• The coexecute construct must be a closely nested construct inside a teams construct.28

• No explicit region may be nested inside a coexecute region.29

• Base language statements that are encountered inside a coexecute must consist of only the30
following:31

– array assignments;32

– scalar assignments; and33

– calls to pure and elemental procedures.34

338 OpenMP API – Version 6.0 Preview 2 November 2023

• All array assignments and scalar assignments that are encountered inside a coexecute1
construct must be intrinsic assignments.2

• The construct must not contain any calls to procedures that are not pure and elemental.3

• If a threadprivate variable or groupprivate variable is referenced inside a coexecute4
region, the behavior is unspecified.5

Cross References6
• target directive, see Section 14.87

• teams directive, see Section 11.38

• ompt_callback_work_t, see Section 20.5.2.59

Fortran

12.6 Worksharing-Loop Constructs10

Binding11
The binding thread set for a worksharing-loop region is the current team. A worksharing-loop12
region binds to the innermost enclosing parallel region. Only those threads participate in execution13
of the associated iterations and the implied barrier of the worksharing-loop region when that barrier14
is not eliminated by a nowait clause.15

Semantics16
The worksharing-loop construct is a worksharing construct that specifies that the collapsed17
iterations will be executed in parallel by threads in the team in the context of their implicit tasks.18
The collapsed iterations are distributed across threads that already are assigned to the team that is19
executing the parallel region to which the worksharing-loop region binds. Each thread executes its20
assigned chunks in the context of its implicit task. The execution of the collapsed iterations of a21
given chunk is consistent with their sequential order.22

At the beginning of each collapsed iteration, the loop iteration variable or the variable declared by23
range-decl of each collapsed loop has the value that it would have if the collapsed loops were24
executed sequentially.25

The schedule kind is reproducible if one of the following conditions is true:26

• The order clause is specified with the reproducible order-modifier modifier; or27

• The schedule clause is specified with static as the kind argument but not with the28
simd ordering-modifier and the order clause is not specified with the unconstrained29
order-modifier.30

OpenMP programs can only depend on which thread executes a particular collapsed iteration if the31
schedule kind is reproducible. Schedule reproducibility also determines the consistency with the32
execution of constructs with the same schedule kind.33

CHAPTER 12. WORK-DISTRIBUTION CONSTRUCTS 339

Execution Model Events1
The ws-loop-begin event occurs after an implicit task encounters a worksharing-loop construct but2
before the task starts execution of the structured block of the worksharing-loop region.3

The ws-loop-end event occurs after a worksharing-loop region finishes execution but before4
resuming execution of the encountering task.5

The ws-loop-iteration-begin event occurs at the beginning of each collapsed iteration of a6
worksharing-loop region. The ws-loop-chunk-begin event occurs for each scheduled chunk of a7
worksharing-loop region before the implicit task executes any of the collapsed iterations.8

Tool Callbacks9
A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin10
as its endpoint argument for each occurrence of a ws-loop-begin event in that thread. Similarly, a11
thread dispatches a registered ompt_callback_work callback with ompt_scope_end as its12
endpoint argument for each occurrence of a ws-loop-end event in that thread. The callbacks occur13
in the context of the implicit task. The callbacks have type signature ompt_callback_work_t14
and the work_type argument indicates the schedule kind as shown in Table 12.1.15

A thread dispatches a registered ompt_callback_dispatch callback for each occurrence of a16
ws-loop-iteration-begin or ws-loop-chunk-begin event in that thread. The callback occurs in the17
context of the implicit task. The callback has type signature ompt_callback_dispatch_t.18

TABLE 12.1: ompt_callback_work Callback Work Types for Worksharing-Loop

Value of work_type If determined schedule is

ompt_work_loop unknown at runtime

ompt_work_loop_static static

ompt_work_loop_dynamic dynamic

ompt_work_loop_guided guided

ompt_work_loop_other implementation defined

Restrictions19
Restrictions to the worksharing-loop construct are as follows:20

• The associated iteration space must be the same for all threads in the team.21

• The value of the run-sched-var ICV must be the same for all threads in the team.22

Cross References23
• OMP_SCHEDULE, see Section 3.2.124

• nowait clause, see Section 16.625

• order clause, see Section 11.426

340 OpenMP API – Version 6.0 Preview 2 November 2023

• schedule clause, see Section 12.6.31

• do directive, see Section 12.6.22

• for directive, see Section 12.6.13

• Consistent Loop Schedules, see Section 5.4.54

• ompt_callback_work_t, see Section 20.5.2.55

• ompt_scope_endpoint_t, see Section 20.4.4.116

• ompt_work_t, see Section 20.4.4.167

C / C++

12.6.1 for Construct8

Name: for Association: loop nest
Category: executable Properties: work-distribution, team-executed,

partitioned, worksharing, worksharing-loop,
cancellable, context-matching

9

Separating directives10
scan11

Clauses12
allocate, collapse, firstprivate, induction, lastprivate, linear, nowait,13
order, ordered, private, reduction, schedule14

Semantics15
The for construct is a worksharing-loop construct.16

Cross References17
• allocate clause, see Section 7.618

• collapse clause, see Section 5.4.319

• firstprivate clause, see Section 6.4.420

• induction clause, see Section 6.5.1221

• lastprivate clause, see Section 6.4.522

• linear clause, see Section 6.4.623

• nowait clause, see Section 16.624

• order clause, see Section 11.425

• ordered clause, see Section 5.4.426

CHAPTER 12. WORK-DISTRIBUTION CONSTRUCTS 341

• private clause, see Section 6.4.31

• reduction clause, see Section 6.5.92

• schedule clause, see Section 12.6.33

• scan directive, see Section 6.64

• Worksharing-Loop Constructs, see Section 12.65

C / C++
Fortran

12.6.2 do Construct6

Name: do Association: loop
Category: executable Properties: work-distribution, team-executed,

partitioned, worksharing, worksharing-loop,
cancellable, context-matching

7

Separating directives8
scan9

Clauses10
allocate, collapse, firstprivate, induction, lastprivate, linear, nowait,11
order, ordered, private, reduction, schedule12

Semantics13
The do construct is a worksharing-loop construct.14

Cross References15
• allocate clause, see Section 7.616

• collapse clause, see Section 5.4.317

• firstprivate clause, see Section 6.4.418

• induction clause, see Section 6.5.1219

• lastprivate clause, see Section 6.4.520

• linear clause, see Section 6.4.621

• nowait clause, see Section 16.622

• order clause, see Section 11.423

• ordered clause, see Section 5.4.424

• private clause, see Section 6.4.325

• reduction clause, see Section 6.5.926

342 OpenMP API – Version 6.0 Preview 2 November 2023

• schedule clause, see Section 12.6.31

• scan directive, see Section 6.62

• Worksharing-Loop Constructs, see Section 12.63

Fortran

12.6.3 schedule Clause4

Name: schedule Properties: unique5

Arguments6
Name Type Properties
kind Keyword: auto, dynamic, guided,

runtime, static
default

chunk_size expression of integer type ultimate, optional, posi-
tive, region-invariant

7

Modifiers8
Name Modifies Type Properties
ordering-modifier kind Keyword: monotonic,

nonmonotonic
unique

chunk-modifier kind Keyword: simd unique
directive-name-
modifier

all arguments Keyword:
directive-name

unique

9

Directives10
do, for11

Semantics12
The schedule clause specifies how collapsed iterations of a worksharing-loop construct are13
divided into chunks, and how these chunks are distributed among threads of the team.14

The chunk_size expression is evaluated using the original list items of any variables that are made15
private variables in the worksharing-loop construct. Whether, in what order, or how many times,16
any side effects of the evaluation of this expression occur is unspecified. The use of a variable in a17
schedule clause expression of a worksharing-loop construct causes an implicit reference to the18
variable in all enclosing constructs.19

If the kind argument is static, chunks of increasing collapsed iteration numbers are assigned to20
the threads of the team in a round-robin fashion in the order of the thread number. Each chunk21
includes chunk_size collapsed iterations, except possibly for the chunk that contains the22
sequentially last iteration, which may have fewer iterations. If chunk_size is not specified, the23
collapsed iteration space is divided into chunks that are approximately equal in size, and at most24
one chunk is distributed to each thread.25

CHAPTER 12. WORK-DISTRIBUTION CONSTRUCTS 343

If the kind argument is dynamic, each thread executes a chunk, then requests another chunk, until1
no chunks remain to be assigned. Each chunk contains chunk_size collapsed iterations, except for2
the chunk that contains the sequentially last iteration, which may have fewer iterations. If3
chunk_size is not specified, it defaults to 1.4

If the kind argument is guided, each thread executes a chunk, then requests another chunk, until5
no chunks remain to be assigned. For a chunk_size of 1, the size of each chunk is proportional to6
the number of unassigned collapsed iterations divided by the number of threads in the team,7
decreasing to 1. For a chunk_size with value k > 1, the size of each chunk is determined in the8
same way, with the restriction that the chunks do not contain fewer than k collapsed iterations9
(except for the chunk that contains the sequentially last iteration, which may have fewer than k10
iterations). If chunk_size is not specified, it defaults to 1.11

If the kind argument is auto, the decision regarding scheduling is implementation defined. If the12
schedule clause is not specified on a worksharing-loop construct then the effect is as if the13
schedule clause was specified with auto as its kind argument.14

If the kind argument is runtime, the decision regarding scheduling is deferred until runtime, and15
the behavior is as if the clause specifies kind, chunk-size and ordering-modifier as set in the16
run-sched-var ICV. If the schedule clause explicitly specifies any modifiers then they override17
any corresponding modifiers that are specified in the run-sched-var ICV.18

If the simd chunk-modifier is specified and the canonical loop nest is associated with a SIMD19
construct, new_chunk_size = ⌈⌈chunk_size/simd_width⌉⌉ ∗ simd_width is the chunk_size for20
all chunks except the first and last chunks, where simd_width is an implementation defined value.21
The first chunk will have at least new_chunk_size collapsed iterations except if it is also the last22
chunk. The last chunk may have fewer collapsed iterations than new_chunk_size. If the simd23
chunk-modifier is specified and the canonical loop nest is not associated with a SIMD construct, the24
modifier is ignored.25

26

Note – For a team of p threads and collapsed loops of n collapsed iterations, let ⌈⌈n/p⌉⌉ be the27
integer q that satisfies n = p ∗ q − r, with 0 <= r < p. One compliant implementation of the28
static schedule kind (with no specified chunk_size) would behave as though chunk_size had29
been specified with value q. Another compliant implementation would assign q collapsed iterations30
to the first p− r threads, and q − 1 collapsed iterations to the remaining r threads. This illustrates31
why a conforming program must not rely on the details of a particular implementation.32

A compliant implementation of the guided schedule kind with a chunk_size value of k would33
assign q = ⌈⌈n/p⌉⌉ collapsed iterations to the first available thread and set n to the larger of n− q34
and p ∗ k. It would then repeat this process until q is greater than or equal to the number of35
remaining collapsed iterations, at which time the remaining iterations form the final chunk.36
Another compliant implementation could use the same method, except with q = ⌈⌈n/(2p)⌉⌉, and set37
n to the larger of n− q and 2 ∗ p ∗ k.38

39

344 OpenMP API – Version 6.0 Preview 2 November 2023

If the monotonic ordering-modifier is specified then each thread executes the chunks that it is1
assigned in increasing collapsed iteration order. When the nonmonotonic ordering-modifier is2
specified then chunks may be assigned to threads in any order and the behavior of an application3
that depends on any execution order of the chunks is unspecified. If an ordering-modifier is not4
specified, the effect is as if the monotonic ordering-modifier is specified if the kind argument is5
static or an ordered clause is specified on the construct; otherwise, the effect is as if the6
nonmonotonic ordering-modifier is specified.7

Restrictions8
Restrictions to the schedule clause are as follows:9

• The schedule clause cannot be specified if any of the collapsed loops is a non-rectangular10
loop.11

• The value of the chunk_size expression must be the same for all threads in the team.12

• If runtime or auto is specified for kind, chunk_size must not be specified.13

• The nonmonotonic ordering-modifier cannot be specified if an ordered clause is14
specified on the same construct.15

Cross References16
• ordered clause, see Section 5.4.417

• do directive, see Section 12.6.218

• for directive, see Section 12.6.119

• run-sched-var ICV, see Table 2.120

12.7 distribute Construct21

Name: distribute Association: loop nest
Category: executable Properties: work-distribution, partitioned22

Clauses23
allocate, collapse, dist_schedule, firstprivate, induction, lastprivate,24
order, private25

Binding26
The binding thread set for a distribute region is the set of initial threads executing an27
enclosing teams region. A distribute region binds to this teams region.28

CHAPTER 12. WORK-DISTRIBUTION CONSTRUCTS 345

Semantics1
The distribute construct specifies that the collapsed iterations will be executed by the initial2
teams in the context of their implicit tasks. The collapsed iterations are distributed across the initial3
threads of all initial teams that execute the teams region to which the distribute region binds.4
No implicit barrier occurs at the end of a distribute region. To avoid data races the original list5
items that are modified due to lastprivate clauses should not be accessed between the end of6
the distribute construct and the end of the teams region to which the distribute binds.7

If the dist_schedule clause is not specified, the schedule is implementation defined.8

At the beginning of each collapsed iteration, the loop iteration variable or the variable declared by9
range-decl of each collapsed loop has the value that it would have if the set of collapsed loops was10
executed sequentially.11

The schedule is reproducible if one of the following conditions is true:12

• The order clause is specified with the reproducible order-modifier modifier; or13

• The dist_schedule clause is specified with static as the kind argument and the14
order clause is not specified with the unconstrained order-modifier.15

OpenMP programs can only depend on which team executes a particular collapsed iteration if the16
schedule is reproducible. Schedule reproducibility also determines the consistency with the17
execution of constructs with the same schedule.18

Execution Model Events19
The distribute-begin event occurs after an initial task encounters a distribute construct but20
before the task starts to execute the structured block of the distribute region.21

The distribute-end event occurs after an initial task finishes execution of a distribute region22
but before it resumes execution of the enclosing context.23

The distribute-chunk-begin event occurs for each scheduled chunk of a distribute region24
before execution of any collapsed iteration.25

Tool Callbacks26
A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin27
as its endpoint argument and ompt_work_distribute as its work_type argument for each28
occurrence of a distribute-begin event in that thread. Similarly, a thread dispatches a registered29
ompt_callback_work callback with ompt_scope_end as its endpoint argument and30
ompt_work_distribute as its work_type argument for each occurrence of a distribute-end31
event in that thread. The callbacks occur in the context of the implicit task. The callbacks have type32
signature ompt_callback_work_t.33

A thread dispatches a registered ompt_callback_dispatch callback for each occurrence of a34
distribute-chunk-begin event in that thread. The callback occurs in the context of the initial task.35
The callback has type signature ompt_callback_dispatch_t.36

346 OpenMP API – Version 6.0 Preview 2 November 2023

Restrictions1
Restrictions to the distribute construct are as follows:2

• The associated iteration space must the same for all teams in the league.3

• The region that corresponds to the distribute construct must be a strictly nested region4
of a teams region.5

• A list item may appear in a firstprivate or lastprivate clause, but not in both.6

• The conditional lastprivate-modifier must not be specified.7

• All list items that appear in an induction clause must be private variables in the enclosing8
context.9

Cross References10
• allocate clause, see Section 7.611

• collapse clause, see Section 5.4.312

• dist_schedule clause, see Section 12.7.113

• firstprivate clause, see Section 6.4.414

• induction clause, see Section 6.5.1215

• lastprivate clause, see Section 6.4.516

• order clause, see Section 11.417

• private clause, see Section 6.4.318

• teams directive, see Section 11.319

• Consistent Loop Schedules, see Section 5.4.520

• ompt_callback_work_t, see Section 20.5.2.521

• ompt_work_t, see Section 20.4.4.1622

12.7.1 dist_schedule Clause23

Name: dist_schedule Properties: unique24

Arguments25
Name Type Properties
kind Keyword: static default
chunk_size expression of integer type ultimate, optional, posi-

tive, region-invariant

26

CHAPTER 12. WORK-DISTRIBUTION CONSTRUCTS 347

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique2

Directives3
distribute4

Semantics5
The dist_schedule clause specifies how collapsed iterations of a distribute construct are6
divided into chunks, and how these chunks are distributed among the teams of the league. If7
chunk_size is not specified, the collapsed iteration space is divided into chunks that are8
approximately equal in size, and at most one chunk is distributed to each initial team of the league.9
If the chunk_size argument is specified, collapsed iterations are divided into chunks of chunk_size10
iterations. The chunk_size expression is evaluated using the original list items of any variables that11
become private variables in the distribute construct. Whether, in what order, or how many12
times, any side effects of the evaluation of this expression occur is unspecified. The use of a13
variable in a dist_schedule clause expression of a distribute construct causes an implicit14
reference to the variable in all enclosing constructs. These chunks are assigned to the initial teams15
of the league in a round-robin fashion in the order of their team number.16

Restrictions17
Restrictions to the dist_schedule clause are as follows:18

• The value of the chunk_size expression must be the same for all teams in the league.19

• The dist_schedule clause cannot be specified if any of the collapsed loops is a20
non-rectangular loop.21

Cross References22
• distribute directive, see Section 12.723

12.8 loop Construct24

Name: loop Association: loop nest
Category: executable Properties: work-distribution, team-executed,

partitioned, worksharing, simdizable
25

Clauses26
bind, collapse, lastprivate, order, private, reduction27

Binding28
The bind clause determines the binding region, which determines the binding thread set.29

348 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
A loop construct specifies that the collapsed iterations execute in the context of the binding thread2
set, in an order specified by the order clause. If the order clause is not specified, the behavior is3
as if the order clause is present and specifies the concurrent ordering. The collapsed4
iterations are executed as if by the binding thread set, once per instance of the loop region that is5
encountered by the binding thread set.6

At the beginning of each collapsed iteration, the loop iteration variable or the variable declared by7
range-decl of each collapsed loop has the value that it would have if the collapsed loops were8
executed sequentially.9

The loop schedule for a loop construct is reproducible unless the order clause is present with the10
unconstrained order-modifier.11

If the loop region binds to a teams region, the threads in the binding thread set may continue12
execution after the loop region without waiting for all collapsed iterations to complete. The13
collapsed iterations are guaranteed to complete before the end of the teams region. If the loop14
region does not bind to a teams region, all collapsed iterations must complete before the15
encountering threads continue execution after the loop region.16

While a loop construct is always a work-distribution construct, it is a worksharing construct if and17
only if its binding region is the innermost enclosing parallel region.18

Fortran
The associated loop may be a DO CONCURRENT loop.19

Fortran

Restrictions20
Restrictions to the loop construct are as follows:21

• A list item may not appear in a lastprivate clause unless it is the loop iteration variable22
of an associated loop.23

• If a reduction-modifier is specified in a reduction clause that appears on the directive then24
the reduction-modifier must be default.25

• If a loop construct is not nested inside another construct then the bind clause must be26
present.27

• If a loop region binds to a teams region or parallel region, it must be encountered by all28
threads in the binding thread set or by none of them.29

Fortran
• If the associated loop is a DO CONCURRENT loop, neither the data-sharing attribute clauses30

nor the collapse clause may be specified.31

Fortran

CHAPTER 12. WORK-DISTRIBUTION CONSTRUCTS 349

Cross References1
• bind clause, see Section 12.8.12

• collapse clause, see Section 5.4.33

• lastprivate clause, see Section 6.4.54

• order clause, see Section 11.45

• private clause, see Section 6.4.36

• reduction clause, see Section 6.5.97

• teams directive, see Section 11.38

• Consistent Loop Schedules, see Section 5.4.59

12.8.1 bind Clause10

Name: bind Properties: unique11

Arguments12
Name Type Properties
binding Keyword: parallel, teams,

thread
default13

Modifiers14
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique15

Directives16
loop17

Semantics18
The bind clause specifies the binding region of the construct on which it appears. Specifically, if19
binding is teams and an innermost enclosing teams region exists then the binding region is that20
teams region; if binding is parallel then the binding region is the innermost enclosing parallel21
region, which may be an implicit parallel region; and if binding is thread then the binding region22
is not defined. If the bind clause is not specified on a construct for which it may be specified and23
the construct is a closely nested construct of a teams or parallel construct, the effect is as if24
binding is teams or parallel. If none of those conditions hold, the binding region is not25
defined.26

The specified binding region determines the binding thread set. Specifically, if the binding region is27
a teams region, then the binding thread set is the set of initial threads that are executing that28
region while if the binding region is a parallel region, then the binding thread set is the team of29
threads that are executing that region. If the binding region is not defined, then the binding thread30
set is the encountering thread.31

350 OpenMP API – Version 6.0 Preview 2 November 2023

Restrictions1
Restrictions to the bind clause are as follows:2

• If teams is specified as binding then the corresponding loop region must be a strictly3
nested region of a teams region.4

• If teams is specified as binding and the corresponding loop region executes on a non-host5
device then the behavior of a reduction clause that appears on the corresponding loop6
construct is unspecified if the construct is not nested inside a teams construct.7

• If parallel is specified as binding, the behavior is unspecified if the corresponding loop8
region is a closely nested region of a simd region.9

Cross References10
• loop directive, see Section 12.811

• parallel construct, see Section 11.212

• teams construct, see Section 11.3.13

CHAPTER 12. WORK-DISTRIBUTION CONSTRUCTS 351

13 Tasking Constructs1

This chapter defines directives and concepts related to explicit tasks.2

13.1 untied Clause3

Name: untied Properties: unique4

Arguments5
Name Type Properties
can_change_threads expression of OpenMP logical type constant, optional6

Modifiers7
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique8

Directives9
task, taskloop10

Semantics11
If can-change-threads evaluates to true, the untied clause specifies that tasks generated by the12
construct on which it appears are untied tasks, which means that any thread in the binding thread set13
can resume the task region after a suspension. If can-change-threads evaluates to false or if the14
untied clause is not specified on a construct on which it may appear, generated tasks are tied; if a15
tied task is suspended, its task region can only be resumed by the thread that started its execution.16
If a generated task is a final task or an included task, the untied clause is ignored and the task is17
tied. If can-change-threads is not specified, the effect is as if can-change-threads evaluates to true.18

Cross References19
• task directive, see Section 13.620

• taskloop directive, see Section 13.721

352

13.2 mergeable Clause1

Name: mergeable Properties: unique2

Arguments3
Name Type Properties
can_merge expression of OpenMP logical type constant, optional4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
task, taskloop8

Semantics9
If can_merge evaluates to true, the mergeable clause specifies that tasks generated by the10
construct on which it appears are mergeable tasks. If can_merge evaluates to false, the11
mergeable clause specifies that tasks generated by the construct on which it appears are not12
mergeable tasks. If can_merge is not specified, the effect is as if can_merge evaluates to true.13

Cross References14
• task directive, see Section 13.615

• taskloop directive, see Section 13.716

13.3 final Clause17

Name: final Properties: unique18

Arguments19
Name Type Properties
finalize expression of OpenMP logical type default20

Modifiers21
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique22

Directives23
task, taskloop24

CHAPTER 13. TASKING CONSTRUCTS 353

Semantics1
The final clause specifies that tasks generated by the construct on which it appears are final tasks2
if the finalize expression evaluates to true. All task constructs that are encountered during3
execution of a final task generate included final tasks. The use of a variable in a finalize expression4
causes an implicit reference to the variable in all enclosing constructs. The finalize expression is5
evaluated in the context outside of the construct on which the clause appears,6

Cross References7
• task directive, see Section 13.68

• taskloop directive, see Section 13.79

13.4 threadset Clause10

Name: threadset Properties: unique11

Arguments12
Name Type Properties
set Keyword: omp_pool, omp_team default13

Modifiers14
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique15

Directives16
task, taskloop17

Semantics18
The threadset clause specifies the set of threads that may execute tasks that are generated by the19
construct on which it appears. If the set argument is omp_team, the generated tasks may only be20
scheduled onto threads of the current team. If the set argument is omp_pool, the generated tasks21
may be scheduled onto unassigned threads of the current OpenMP thread pool in addition to22
threads of the current team. If the threadset clause is not specified on a construct on which it23
may appear, then the effect is as if the threadset clause was specified with omp_team as its set24
argument.25

If the encountering task is a final task, the threadset clause is ignored.26

Cross References27
• task directive, see Section 13.628

• taskloop directive, see Section 13.729

354 OpenMP API – Version 6.0 Preview 2 November 2023

13.5 priority Clause1

Name: priority Properties: unique2

Arguments3
Name Type Properties
priority-value expression of integer type constant, non-negative4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
task, taskloop8

Semantics9
The priority clause specifies a hint for the task execution order of tasks generated by the10
construct on which it appears in the priority-value argument. Among all tasks ready to be executed,11
higher priority tasks (those with a higher numerical priority-value) are recommended to execute12
before lower priority ones. The default priority-value when no priority clause is specified is13
zero (the lowest priority). If a specified priority-value is higher than the max-task-priority-var ICV14
then the implementation will use the value of that ICV. An OpenMP program that relies on the task15
execution order being determined by the priority-value may have unspecified behavior.16

Cross References17
• task directive, see Section 13.618

• taskloop directive, see Section 13.719

• max-task-priority-var ICV, see Table 2.120

13.6 task Construct21

Name: task Association: block
Category: executable Properties: parallelism-generating, thread-

limiting, task-generating
22

Clauses23
affinity, allocate, default, depend, detach, final, firstprivate, if,24
in_reduction, mergeable, priority, private, shared, threadset, untied25

Clause set26
Properties: exclusive Members: detach, mergeable27

CHAPTER 13. TASKING CONSTRUCTS 355

Binding1
The binding thread set of the task region is the set of threads specified in the threadset clause.2
A task region binds to the innermost enclosing parallel region.3

Semantics4
When a thread encounters a task construct, an explicit task is generated from the code for the5
associated structured block. The data environment of the task is created according to the6
data-sharing attribute clauses on the task construct, per-data environment ICVs, and any defaults7
that apply. The data environment of the task is destroyed when the execution code of the associated8
structured block is completed.9

The encountering thread may immediately execute the task, or defer its execution. In the latter case,10
any thread of the current binding thread set may be assigned the task. Task completion of the task11
can be guaranteed using task synchronization constructs and clauses. If a task construct is12
encountered during execution of an outer task, the generated task region that corresponds to this13
construct is not a part of the outer task region unless the generated task is an included task.14

A detachable task is completed when the execution of its associated structured block is completed15
and the allow-completion event is fulfilled. If no detach clause is present on a task construct,16
the generated task is completed when the execution of its associated structured block is completed.17

A thread that encounters a task scheduling point within the task region may temporarily suspend18
the task region.19

The task construct includes a task scheduling point in the task region of its generating task,20
immediately following the generation of the explicit task. Each explicit task region includes a task21
scheduling point at the end of its associated structured block.22

When storage is shared by an explicit task region, the programmer must ensure, by adding proper23
synchronization, that the storage does not reach the end of its lifetime before the explicit task24
region completes its execution.25

When an if clause is present on a task construct and the if clause expression evaluates to false,26
an undeferred task is generated, and the encountering thread must suspend the current task region,27
for which execution cannot be resumed until execution of the structured block that is associated28
with the generated task is completed. The use of a variable in an if clause expression of a task29
construct causes an implicit reference to the variable in all enclosing constructs. The if clause30
expression is evaluated in the context outside of the task construct.31

Execution Model Events32
The task-create event occurs when a thread encounters a construct that causes a new task to be33
created. The event occurs after the task is initialized but before it begins execution or is deferred.34

Tool Callbacks35
A thread dispatches a registered ompt_callback_task_create callback for each occurrence36
of a task-create event in the context of the encountering task. This callback has the type signature37

356 OpenMP API – Version 6.0 Preview 2 November 2023

ompt_callback_task_create_t and the flags argument indicates the task types shown in1
Table 13.1.2

TABLE 13.1: ompt_callback_task_create Callback Flags Evaluation

Operation Evaluates to true

(flags & ompt_task_explicit) Always in the dispatched callback

(flags & ompt_task_undeferred) If the task is an undeferred task

(flags & ompt_task_final) If the task is a final task

(flags & ompt_task_untied) If the task is an untied task

(flags & ompt_task_mergeable) If the task is a mergeable task

(flags & ompt_task_merged) If the task is a merged task

Cross References3
• affinity clause, see Section 13.6.14

• allocate clause, see Section 7.65

• default clause, see Section 6.4.16

• depend clause, see Section 16.9.57

• detach clause, see Section 13.6.28

• final clause, see Section 13.39

• firstprivate clause, see Section 6.4.410

• if clause, see Section 4.511

• in_reduction clause, see Section 6.5.1112

• mergeable clause, see Section 13.213

• priority clause, see Section 13.514

• private clause, see Section 6.4.315

• shared clause, see Section 6.4.216

• threadset clause, see Section 13.417

• untied clause, see Section 13.118

• Task Scheduling, see Section 13.1019

• omp_fulfill_event, see Section 19.11.120

• ompt_callback_task_create_t, see Section 20.5.2.721

CHAPTER 13. TASKING CONSTRUCTS 357

13.6.1 affinity Clause1

Name: affinity Properties: unique2

Arguments3
Name Type Properties
locator-list list of locator list item type default4

Modifiers5
Name Modifies Type Properties
iterator locator-list Complex, name: iterator

Arguments:
iterator-specifier OpenMP

expression (repeatable)

unique

directive-name-
modifier

all arguments Keyword:
directive-name

unique

6

Directives7
task8

Semantics9
The affinity clause specifies a hint to indicate data affinity of tasks generated by the construct10
on which it appears. The hint recommends to execute generated tasks close to the location of the11
original list items. A program that relies on the task execution location being determined by this list12
may have unspecified behavior.13

The list items that appear in the affinity clause may also appear in data-environment clauses.14
The list items may reference any iterators-identifier that is defined in the same clause and may15
include array sections.16

C / C++
The list items that appear in the affinity clause may use shape-operators.17

C / C++

Cross References18
• task directive, see Section 13.619

• iterator modifier, see Section 4.2.620

358 OpenMP API – Version 6.0 Preview 2 November 2023

13.6.2 detach Clause1

Name: detach Properties: innermost-leaf, unique2

Arguments3
Name Type Properties
event-handle variable of event_handle type default4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
task8

Semantics9
The detach clause specifies that the task generated by the construct on which it appears is a10
detachable task. A new allow-completion event is created and connected to the completion of the11
associated task region. The original event-handle is updated to represent that allow-completion12
event before the task data environment is created. The event-handle is considered as if it was13
specified on a firstprivate clause. The use of a variable in a detach clause expression of a14
task construct causes an implicit reference to the variable in all enclosing constructs.15

Restrictions16
Restrictions to the detach clause are as follows:17

• If a detach clause appears on a directive, then the encountering task must not be a final task.18

• A variable that appears in a detach clause cannot appear as a list item on a data19
environment attribute clause on the same construct.20

• A variable that is part of an aggregate variable cannot appear in a detach clause.21

Fortran
• event-handle must not have the POINTER attribute.22

• If event-handle has the ALLOCATABLE attribute, the allocation status must be allocated23
when the task construct is encountered, and the allocation status must not be changed,24
either explicitly or implicitly, in the task region.25

Fortran

Cross References26
• firstprivate clause, see Section 6.4.4.27

• task directive, see Section 13.628

CHAPTER 13. TASKING CONSTRUCTS 359

13.7 taskloop Construct1

Name: taskloop Association: loop nest
Category: executable Properties: parallelism-generating, task-

generating
2

Clauses3
allocate, collapse, default, final, firstprivate, grainsize, if,4
in_reduction, induction, lastprivate, mergeable, nogroup, num_tasks,5
priority, private, reduction, shared, threadset, untied6

Clause set synchronization-clause7

Properties: exclusive Members: nogroup, reduction8

Clause set granularity-clause9

Properties: exclusive Members: grainsize, num_tasks10

Binding11
The binding thread set of the taskloop region is the set of threads specified in the threadset12
clause. A taskloop region binds to the innermost enclosing parallel region.13

Semantics14
When a thread encounters a taskloop construct, the construct partitions the collapsed iterations15
into chunks, each of which is assigned to an explicit task for parallel execution. The iteration count16
for each associated loop is computed before entry to the outermost loop. The data environment of17
each generated task is created according to the data-sharing attribute clauses on the taskloop18
construct, per-data environment ICVs, and any defaults that apply. The order of the creation of the19
loop tasks is unspecified. Programs that rely on any execution order of the logical iterations are20
non-conforming.21

If the nogroup clause is not present, the taskloop construct executes as if it was enclosed in a22
taskgroup construct with no statements or directives outside of the taskloop construct. Thus,23
the taskloop construct creates an implicit taskgroup region. If the nogroup clause is24
present, no implicit taskgroup region is created.25

If a reduction clause is present, the behavior is as if a task_reduction clause with the26
same reduction identifier and list items was applied to the implicit taskgroup construct that27
encloses the taskloop construct. The taskloop construct executes as if each generated task28
was defined by a task construct on which an in_reduction clause with the same reduction29
identifier and list items is present. Thus, the generated tasks are participants of the reduction30
defined by the task_reduction clause that was applied to the implicit taskgroup construct.31

If an in_reduction clause is present, the behavior is as if each generated task was defined by a32
task construct on which an in_reduction clause with the same reduction identifier and list33

360 OpenMP API – Version 6.0 Preview 2 November 2023

items is present. Thus, the generated tasks are participants of a reduction previously defined by a1
reduction scoping clause.2

If a threadset clause is present, the behavior is as if each generated task was defined by a task3
construct on which a threadset clause with the same set of threads is present. Thus, the binding4
thread set of the generated tasks is the same as that of the taskloop region.5

If no clause from the granularity-clause clause set is present, the number of loop tasks generated6
and the number of logical iterations assigned to these tasks is implementation defined.7

At the beginning of each logical iteration, the loop iteration variable or the variable declared by8
range-decl of each collapsed loop has the value that it would have if the collapsed loops were9
executed sequentially.10

When an if clause is present and the if clause expression evaluates to false, undeferred tasks are11
generated. The use of a variable in an if clause expression causes an implicit reference to the12
variable in all enclosing constructs.13

C++
For firstprivate variables of class type, the number of invocations of copy constructors that14
perform the initialization is implementation defined.15

C++
When storage is shared by a taskloop region, the programmer must ensure, by adding proper16
synchronization, that the storage does not reach the end of its lifetime before the taskloop region17
and its descendent tasks complete their execution.18

Execution Model Events19
The taskloop-begin event occurs upon entering the taskloop region. A taskloop-begin will20
precede any task-create events for the generated tasks. The taskloop-end event occurs upon21
completion of the taskloop region.22

Events for an implicit taskgroup region that surrounds the taskloop region are the same as23
for the taskgroup construct.24

The taskloop-iteration-begin event occurs at the beginning of each logical iteration of a taskloop25
region before an explicit task executes the logical iteration. The taskloop-chunk-begin event occurs26
before an explicit task executes any of its associated logical iterations in a taskloop region.27

Tool Callbacks28
A thread dispatches a registered ompt_callback_work callback for each occurrence of a29
taskloop-begin and taskloop-end event in that thread. The callback occurs in the context of the30
encountering task. The callback has type signature ompt_callback_work_t. The callback31
receives ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate,32
and ompt_work_taskloop as its work_type argument.33

A thread dispatches a registered ompt_callback_dispatch callback for each occurrence of a34
taskloop-iteration-begin or taskloop-chunk-begin event in that thread.35

CHAPTER 13. TASKING CONSTRUCTS 361

The callback binds to the explicit task executing the logical iterations. The callback has type1
signature ompt_callback_dispatch_t.2

Restrictions3
Restrictions to the taskloop construct are as follows:4

• The reduction-modifier must be default.5

• The conditional lastprivate-modifier must not be specified.6

Cross References7
• allocate clause, see Section 7.68

• collapse clause, see Section 5.4.39

• default clause, see Section 6.4.110

• final clause, see Section 13.311

• firstprivate clause, see Section 6.4.412

• grainsize clause, see Section 13.7.113

• if clause, see Section 4.514

• in_reduction clause, see Section 6.5.1115

• induction clause, see Section 6.5.1216

• lastprivate clause, see Section 6.4.517

• mergeable clause, see Section 13.218

• nogroup clause, see Section 16.719

• num_tasks clause, see Section 13.7.220

• priority clause, see Section 13.521

• private clause, see Section 6.4.322

• reduction clause, see Section 6.5.923

• shared clause, see Section 6.4.224

• threadset clause, see Section 13.425

• untied clause, see Section 13.126

• task directive, see Section 13.627

• taskgroup directive, see Section 16.428

• Canonical Loop Nest Form, see Section 5.4.129

• ompt_callback_dispatch_t, see Section 20.5.2.630

362 OpenMP API – Version 6.0 Preview 2 November 2023

• ompt_callback_work_t, see Section 20.5.2.51

• ompt_scope_endpoint_t, see Section 20.4.4.112

• ompt_work_t, see Section 20.4.4.163

13.7.1 grainsize Clause4

Name: grainsize Properties: unique5

Arguments6
Name Type Properties
grain-size expression of integer type positive7

Modifiers8
Name Modifies Type Properties
prescriptiveness grain-size Keyword: strict unique
directive-name-
modifier

all arguments Keyword:
directive-name

unique9

Directives10
taskloop11

Semantics12
The grainsize clause specifies the number of logical iterations, Lt, that are assigned to each13
generated task t. If prescriptiveness is not specified as strict, other than possibly for the14
generated task that contains the sequentially last iteration, Lt is greater than or equal to the15
minimum of the value of the grain-size expression and the number of logical iterations, but less than16
two times the value of the grain-size expression. If prescriptiveness is specified as strict, other17
than possibly for the generated task that contains the sequentially last iteration, Lt is equal to the18
value of the grain-size expression. In both cases, the generated task that contains the sequentially19
last iteration may have fewer logical iterations than the value of the grain-size expression.20

Restrictions21
Restrictions to the grainsize clause are as follows:22

• None of the associated loops may be non-rectangular loops.23

Cross References24
• taskloop directive, see Section 13.725

CHAPTER 13. TASKING CONSTRUCTS 363

13.7.2 num_tasks Clause1

Name: num_tasks Properties: unique2

Arguments3
Name Type Properties
num-tasks expression of integer type positive4

Modifiers5
Name Modifies Type Properties
prescriptiveness num-tasks Keyword: strict unique
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
taskloop8

Semantics9
The num_tasks clause specifies that the taskloop construct create as many tasks as the10
minimum of the num-tasks expression and the number of logical iterations. Each task must have at11
least one logical iteration. If prescriptiveness is specified as strict for a taskloop region with12
N logical iterations, the logical iterations are partitioned in a balanced manner and each partition is13
assigned, in order, to a generated task. The partition size is ⌈⌈N/num-tasks⌉⌉ until the number of14
remaining logical iterations divides the number of remaining tasks evenly,at which point the15
partition size becomes ⌊⌊N/num-tasks⌋⌋.16

Restrictions17
Restrictions to the num_tasks clause are as follows:18

• None of the associated loops may be non-rectangular loops.19

Cross References20
• taskloop directive, see Section 13.721

13.8 taskyield Construct22

Name: taskyield Association: none
Category: executable Properties: default23

Binding24
A taskyield region binds to the current task region. The binding thread set of the taskyield25
region is the current team.26

Semantics27
The taskyield region includes an explicit task scheduling point in the current task region.28

364 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• Task Scheduling, see Section 13.102

13.9 Initial Task3

Execution Model Events4
No events are associated with the implicit parallel region in each initial thread.5

The initial-thread-begin event occurs in an initial thread after the OpenMP runtime invokes the tool6
initializer but before the initial thread begins to execute the first OpenMP region in the initial task.7

The initial-task-begin event occurs after an initial-thread-begin event but before the first OpenMP8
region in the initial task begins to execute.9

The initial-task-end event occurs before an initial-thread-end event but after the last OpenMP10
region in the initial task finishes execution.11

The initial-thread-end event occurs as the final event in an initial thread at the end of an initial task12
immediately prior to invocation of the tool finalizer.13

Tool Callbacks14
A thread dispatches a registered ompt_callback_thread_begin callback for the15
initial-thread-begin event in an initial thread. The callback occurs in the context of the initial16
thread. The callback has type signature ompt_callback_thread_begin_t. The callback17
receives ompt_thread_initial as its thread_type argument.18

A thread dispatches a registered ompt_callback_implicit_task callback with19
ompt_scope_begin as its endpoint argument for each occurrence of an initial-task-begin event20
in that thread. Similarly, a thread dispatches a registered ompt_callback_implicit_task21
callback with ompt_scope_end as its endpoint argument for each occurrence of an22
initial-task-end event in that thread. The callbacks occur in the context of the initial task and have23
type signature ompt_callback_implicit_task_t. In the dispatched callback,24
(flag & ompt_task_initial) always evaluates to true.25

A thread dispatches a registered ompt_callback_thread_end callback for the26
initial-thread-end event in that thread. The callback occurs in the context of the thread. The27
callback has type signature ompt_callback_thread_end_t. The implicit parallel region28
does not dispatch a ompt_callback_parallel_end callback; however, the implicit parallel29
region can be finalized within this ompt_callback_thread_end callback.30

Cross References31
• ompt_callback_implicit_task_t, see Section 20.5.2.1132

• ompt_callback_parallel_begin_t, see Section 20.5.2.333

• ompt_callback_parallel_end_t, see Section 20.5.2.434

• ompt_callback_thread_begin_t, see Section 20.5.2.135

CHAPTER 13. TASKING CONSTRUCTS 365

• ompt_callback_thread_end_t, see Section 20.5.2.21

• ompt_task_flag_t, see Section 20.4.4.192

• ompt_thread_t, see Section 20.4.4.103

13.10 Task Scheduling4

Whenever a thread reaches a task scheduling point, it may begin or resume execution of a task from5
its schedulable task set. An idle thread is treated as if it is always at a task scheduling point. For6
other threads, task scheduling points are implied at the following locations:7

• during the generation of an explicit task;8

• the point immediately following the generation of an explicit task;9

• after the point of completion of the structured block associated with a task;10

• in a taskyield region;11

• in a taskwait region;12

• at the end of a taskgroup region;13

• in an implicit barrier region;14

• in an explicit barrier region;15

• during the generation of a target region;16

• the point immediately following the generation of a target region;17

• at the beginning and end of a target data region;18

• in a target update region;19

• in a target enter data region;20

• in a target exit data region;21

• in the omp_target_memcpy routine;22

• in the omp_target_memcpy_async routine;23

• in the omp_target_memcpy_rect routine;24

• in the omp_target_memcpy_rect_async routine;25

• in the omp_target_memset routine; and26

• in the omp_target_memset_async routine.27

When a thread encounters a task scheduling point it may do one of the following, subject to the task28
scheduling constraints specified below:29

366 OpenMP API – Version 6.0 Preview 2 November 2023

• begin execution of a tied task in its schedulable task set;1

• resume the suspended task region of any task to which it is tied;2

• begin execution of an untied task in its schedulable task set; or3

• resume the suspended task region of any untied task in its schedulable task set.4

If more than one of the above choices is available, which one is chosen is unspecified.5

Task Scheduling Constraints are as follows:6

1. If any suspended tasks are tied to the thread and are not suspended in a barrier region, a new7
explicit tied task may be scheduled only if it is a descendent task of all of those suspended8
tasks. Otherwise, any new explicit tied task may be scheduled.9

2. A dependent task shall not start its execution until its task dependences are fulfilled.10

3. A task shall not be scheduled while another task has been scheduled but has not yet11
completed, if they are mutually exclusive tasks.12

4. A task shall not start or resume execution on an unassigned thread if it would result in the13
total number of free-agent threads in the OpenMP thread pool exceeding14
free-agent-thread-limit-var.15

A program that relies on any other assumption about task scheduling is non-conforming.16

17

Note – Task scheduling points dynamically divide task regions into parts. Each part is executed18
uninterrupted from start to end. Different parts of the same task region are executed in the order in19
which they are encountered. In the absence of task synchronization constructs, the order in which a20
thread executes parts of different schedulable tasks is unspecified.21

A program must behave correctly and consistently with all conceivable scheduling sequences that22
are compatible with the rules above.23

For example, if threadprivate storage is accessed (explicitly in the source code or implicitly24
in calls to library routines) in one part of a task region, its value cannot be assumed to be preserved25
into the next part of the same task region if another schedulable task exists that modifies it.26

As another example, if a lock acquire and release happen in different parts of a task region, no27
attempt should be made to acquire the same lock in any part of another task that the executing28
thread may schedule. Otherwise, a deadlock is possible. A similar situation can occur when a29
critical region spans multiple parts of a task and another schedulable task contains a30
critical region with the same name.31

The use of threadprivate variables and the use of locks or critical sections in an explicit task with an32
if clause must take into account that when the if clause evaluates to false, the task is executed33
immediately, without regard to Task Scheduling Constraint 2.34

35

CHAPTER 13. TASKING CONSTRUCTS 367

Execution Model Events1
The task-schedule event occurs in a thread when the thread switches tasks at a task scheduling2
point; no event occurs when switching to or from a merged task.3

Tool Callbacks4
A thread dispatches a registered ompt_callback_task_schedule callback for each5
occurrence of a task-schedule event in the context of the task that begins or resumes. This callback6
has the type signature ompt_callback_task_schedule_t. The argument prior_task_status7
is used to indicate the cause for suspending the prior task. This cause may be the completion of the8
prior task region, the encountering of a taskyield construct, or the encountering of an active9
cancellation point.10

Cross References11
• ompt_callback_task_schedule_t, see Section 20.5.2.1012

368 OpenMP API – Version 6.0 Preview 2 November 2023

14 Device Directives and Clauses1

This chapter defines constructs and concepts related to device execution.2

14.1 device_type Clause3

Name: device_type Properties: unique4

Arguments5
Name Type Properties
device-type-description Keyword: any, host, nohost default6

Modifiers7
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique8

Directives9
begin declare target, declare target, groupprivate10

Semantics11
The device_type clause specifies if a version of the procedure or variable should be made12
available on the host device, non-host devices or both the host device and non-host devices. If13
host is specified then only a host device version of the procedure or variable is made available. If14
any is specified then both host device and non-host device versions of the procedure or variable are15
made available. If nohost is specified for a procedure then only non-host device versions of the16
procedure are made available. If nohost is specified for a variable then that variable is not17
available on the host device. If the device_type clause is not specified, the behavior is as if the18
device_type clause appears with any specified.19

Cross References20
• begin declare target directive, see Section 8.8.221

• declare target directive, see Section 8.8.122

• groupprivate directive, see Section 6.1223

369

14.2 device Clause1

Name: device Properties: unique2

Arguments3
Name Type Properties
device-description expression of integer type default4

Modifiers5
Name Modifies Type Properties
device-modifier device-description Keyword: ancestor,

device_num
default

directive-name-
modifier

all arguments Keyword:
directive-name

unique
6

Directives7
dispatch, interop, target, target data, target enter data, target exit8
data, target update9

Semantics10
The device clause identifies the target device that is associated with a device construct.11

If device_num is specified as the device-modifier, the device-description specifies the device12
number of the target device. If device-modifier does not appear in the clause, the behavior of the13
clause is as if device-modifier is device_num. If the device-description evaluates to14
omp_invalid_device, runtime error termination is performed.15

If ancestor is specified as the device-modifier, the device-description specifies the number of16
target nesting levels of the target device. Specifically, if the device-description evaluates to 1, the17
target device is the parent device of the enclosing target region. If the construct on which the18
device clause appears is not encountered in a target region, the current device is treated as the19
parent device.20

Unless otherwise specified, for directives that accept the device clause, if no device clause is21
present, the behavior is as if the device clause appears without a device-modifier and with a22
device-description that evaluates to the value of the default-device-var ICV.23

Restrictions24
• The ancestor device-modifier must not appear on the device clause on any directive25

other than the target construct.26

• If the ancestor device-modifier is specified, the device-description must evaluate to 1 and27
a requires directive with the reverse_offload clause must be specified;28

• If the device_num device-modifier is specified and target-offload-var is not mandatory,29
device-description must evaluate to a conforming device number.30

370 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• dispatch directive, see Section 8.62

• interop directive, see Section 15.13

• target directive, see Section 14.84

• target data directive, see Section 14.55

• target enter data directive, see Section 14.66

• target exit data directive, see Section 14.77

• target update directive, see Section 14.98

• target-offload-var ICV, see Table 2.19

14.3 thread_limit Clause10

Name: thread_limit Properties: unique11

Arguments12
Name Type Properties
threadlim expression of integer type positive13

Modifiers14
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique15

Directives16
target, teams17

Semantics18
As described in Section 2.4, some constructs limit the number of threads that may participate in the19
parallel execution of tasks in a contention group initiated by each team by setting the value of the20
thread-limit-var ICV for the initial task to an implementation defined value greater than zero. If the21
thread_limit clause is specified, the number of threads will be less than or equal to threadlim.22
Otherwise, if the teams-thread-limit-var ICV is greater than zero, the effect is as if the23
thread_limit clause was specified with a threadlim that evaluates to an implementation24
defined value less than or equal to the teams-thread-limit-var ICV.25

Cross References26
• target directive, see Section 14.827

• teams directive, see Section 11.328

CHAPTER 14. DEVICE DIRECTIVES AND CLAUSES 371

14.4 Device Initialization1

Execution Model Events2
The device-initialize event occurs in a thread that begins initialization of OpenMP on the device,3
after OpenMP initialization of the device, which may include device-side tool initialization,4
completes.5

The device-load event for a code block for a target device occurs in some thread before any thread6
executes code from that code block on that target device.7

The device-unload event for a target device occurs in some thread whenever a code block is8
unloaded from the device.9

The device-finalize event for a target device that has been initialized occurs in some thread before10
an OpenMP implementation shuts down.11

Tool Callbacks12
A thread dispatches a registered ompt_callback_device_initialize callback for each13
occurrence of a device-initialize event in that thread. This callback has type signature14
ompt_callback_device_initialize_t.15

A thread dispatches a registered ompt_callback_device_load callback for each occurrence16
of a device-load event in that thread. This callback has type signature17
ompt_callback_device_load_t.18

A thread dispatches a registered ompt_callback_device_unload callback for each19
occurrence of a device-unload event in that thread. This callback has type signature20
ompt_callback_device_unload_t.21

A thread dispatches a registered ompt_callback_device_finalize callback for each22
occurrence of a device-finalize event in that thread. This callback has type signature23
ompt_callback_device_finalize_t.24

Restrictions25
Restrictions to OpenMP device initialization are as follows:26

• No thread may offload execution of a construct to a device until a dispatched27
ompt_callback_device_initialize callback completes.28

• No thread may offload execution of a construct to a device after a dispatched29
ompt_callback_device_finalize callback occurs.30

Cross References31
• ompt_callback_device_finalize_t, see Section 20.5.2.2032

• ompt_callback_device_initialize_t, see Section 20.5.2.1933

• ompt_callback_device_load_t, see Section 20.5.2.2134

• ompt_callback_device_unload_t, see Section 20.5.2.2235

372 OpenMP API – Version 6.0 Preview 2 November 2023

14.5 target data Construct1

Name: target data Association: block
Category: executable Properties: device, device-affecting, data-

mapping, map-entering, map-exiting,
mapping-only

2

Clauses3
device, if, map, use_device_addr, use_device_ptr4

Clause set data-environment-clause5

Properties: required Members: map, use_device_addr,
use_device_ptr

6

Binding7
The binding task set for a target data region is the generating task. The target data8
region binds to the region of the generating task.9

Semantics10
The target data construct maps variables to a device data environment. When a target11
data construct is encountered, the encountering task executes the region. When an if clause is12
present and if-expression evaluates to false, the target device is the host device. Variables are13
mapped for the extent of the region, according to any data-mapping attribute clauses, from the data14
environment of the encountering task to the device data environment.15

A list item that appears in a map clause may also appear in a use_device_ptr clause or a16
use_device_addr clause. If one or more map clauses are present, the list item conversions that17
are performed for any use_device_ptr and use_device_addr clauses occur after all18
variables are mapped on entry to the region according to those map clauses.19

Execution Model Events20
The events associated with entering a target data region are the same events as are associated21
with a target enter data construct, as described in Section 14.6.22

The events associated with exiting a target data region are the same events as are associated23
with a target exit data construct, as described in Section 14.7.24

Tool Callbacks25
The tool callbacks dispatched when entering a target data region are the same as the tool26
callbacks dispatched when encountering a target enter data construct, as described in27
Section 14.6.28

The tool callbacks dispatched when exiting a target data region are the same as the tool29
callbacks dispatched when encountering a target exit data construct, as described in30
Section 14.7.31

CHAPTER 14. DEVICE DIRECTIVES AND CLAUSES 373

Restrictions1
Restrictions to the target data construct are as follows:2

• A map-type in a map clause must be to, from, tofrom or alloc.3

Cross References4
• device clause, see Section 14.25

• if clause, see Section 4.56

• map clause, see Section 6.8.37

• use_device_addr clause, see Section 6.4.108

• use_device_ptr clause, see Section 6.4.89

14.6 target enter data Construct10

Name: target enter data Association: none
Category: executable Properties: parallelism-generating, task-

generating, device, device-affecting, data-
mapping, map-entering, mapping-only

11

Clauses12
depend, device, if, map, nowait13

Binding14
The binding task set for a target enter data region is the generating task, which is the target15
task generated by the target enter data construct. The target enter data region16
binds to the corresponding target task region.17

Semantics18
When a target enter data construct is encountered, the list items are mapped to the device19
data environment according to the map clause semantics. The target enter data construct20
generates a target task. The generated task region encloses the target enter data region. If21
a depend clause is present, it is associated with the target task. If the nowait clause is present,22
execution of the target task may be deferred. If the nowait clause is not present, the target task is23
an included task.24

All clauses are evaluated when the target enter data construct is encountered. The data25
environment of the target task is created according to the data-mapping attribute clauses on the26
target enter data construct, ICVs with data environment ICV scope, and any default27
data-sharing attribute rules that apply to the target enter data construct. If a variable or28
part of a variable is mapped by the target enter data construct, the variable has a default29
data-sharing attribute of shared in the data environment of the target task.30

374 OpenMP API – Version 6.0 Preview 2 November 2023

Assignment operations associated with mapping a variable (see Section 6.8.3) occur when the1
target task executes.2

When an if clause is present and if-expression evaluates to false, the target device is the host3
device.4

Execution Model Events5
Events associated with a target task are the same as for the task construct defined in Section 13.6.6

The target-enter-data-begin event occurs after creation of the target task and completion of all7
predecessor tasks that are not target tasks for the same device. The target-enter-data-begin event is8
a target-task-begin event.9

The target-enter-data-end event occurs after all other events associated with the target enter10
data construct.11

Tool Callbacks12
Callbacks associated with events for target tasks are the same as for the task construct defined in13
Section 13.6; (flags & ompt_task_target) always evaluates to true in the dispatched callback.14

A thread dispatches a registered ompt_callback_target or15
ompt_callback_target_emi callback with ompt_scope_begin as its endpoint16
argument and ompt_target_enter_data or ompt_target_enter_data_nowait if17
the nowait clause is present as its kind argument for each occurrence of a target-enter-data-begin18
event in that thread in the context of the target task on the host device. Similarly, a thread dispatches19
a registered ompt_callback_target or ompt_callback_target_emi callback with20
ompt_scope_end as its endpoint argument and ompt_target_enter_data or21
ompt_target_enter_data_nowait if the nowait clause is present as its kind argument22
for each occurrence of a target-enter-data-end event in that thread in the context of the target task23
on the host device. These callbacks have type signature ompt_callback_target_t or24
ompt_callback_target_emi_t, respectively.25

Restrictions26
Restrictions to the target enter data construct are as follows:27

• At least one map clause must appear on the directive.28

• All map clauses must be map-entering clauses.29

Cross References30
• depend clause, see Section 16.9.531

• device clause, see Section 14.232

• if clause, see Section 4.533

• map clause, see Section 6.8.334

• nowait clause, see Section 16.635

CHAPTER 14. DEVICE DIRECTIVES AND CLAUSES 375

• task directive, see Section 13.61

• ompt_callback_target_emi_t and ompt_callback_target_t, see2
Section 20.5.2.263

14.7 target exit data Construct4

Name: target exit data Association: none
Category: executable Properties: parallelism-generating, task-

generating, device, device-affecting, data-
mapping, map-exiting, mapping-only

5

Clauses6
depend, device, if, map, nowait7

Binding8
The binding task set for a target exit data region is the generating task, which is the target9
task generated by the target exit data construct. The target exit data region binds10
to the corresponding target task region.11

Semantics12
When a target exit data construct is encountered, the list items in the map clauses are13
unmapped from the device data environment according to the map clause semantics. The target14
exit data construct generates a target task. The generated task region encloses the target15
exit data region. If a depend clause is present, it is associated with the target task. If the16
nowait clause is present, execution of the target task may be deferred. If the nowait clause is17
not present, the target task is an included task.18

All clauses are evaluated when the target exit data construct is encountered. The data19
environment of the target task is created according to the data-mapping attribute clauses on the20
target exit data construct, ICVs with data environment ICV scope, and any default21
data-sharing attribute rules that apply to the target exit data construct. If a variable or part22
of a variable is mapped by the target exit data construct, the variable has a default23
data-sharing attribute of shared in the data environment of the target task.24

Assignment operations associated with mapping a variable (see Section 6.8.3) occur when the25
target task executes.26

When an if clause is present and if-expression evaluates to false, the target device is the host27
device.28

376 OpenMP API – Version 6.0 Preview 2 November 2023

Execution Model Events1
Events associated with a target task are the same as for the task construct defined in Section 13.6.2

The target-exit-data-begin event occurs after creation of the target task and completion of all3
predecessor tasks that are not target tasks for the same device. The target-exit-data-begin event is a4
target-task-begin event.5

The target-exit-data-end event occurs after all other events associated with the target exit6
data construct.7

Tool Callbacks8
Callbacks associated with events for target tasks are the same as for the task construct defined in9
Section 13.6; (flags & ompt_task_target) always evaluates to true in the dispatched callback.10

A thread dispatches a registered ompt_callback_target or11
ompt_callback_target_emi callback with ompt_scope_begin as its endpoint12
argument and ompt_target_exit_data or ompt_target_exit_data_nowait if the13
nowait clause is present as its kind argument for each occurrence of a target-exit-data-begin14
event in that thread in the context of the target task on the host device. Similarly, a thread dispatches15
a registered ompt_callback_target or ompt_callback_target_emi callback with16
ompt_scope_end as its endpoint argument and ompt_target_exit_data or17
ompt_target_exit_data_nowait if the nowait clause is present as its kind argument for18
each occurrence of a target-exit-data-end event in that thread in the context of the target task on the19
host device. These callbacks have type signature ompt_callback_target_t or20
ompt_callback_target_emi_t, respectively.21

Restrictions22
Restrictions to the target exit data construct are as follows:23

• At least one map clause must appear on the directive.24

• All map clauses must be map-exiting clauses.25

Cross References26
• depend clause, see Section 16.9.527

• device clause, see Section 14.228

• if clause, see Section 4.529

• map clause, see Section 6.8.330

• nowait clause, see Section 16.631

• task directive, see Section 13.632

• ompt_callback_target_emi_t and ompt_callback_target_t, see33
Section 20.5.2.2634

CHAPTER 14. DEVICE DIRECTIVES AND CLAUSES 377

14.8 target Construct1

Name: target Association: block
Category: executable Properties: parallelism-generating, team-

generating, thread-limiting, exception-
aborting, task-generating, device, device-
affecting, data-mapping, map-entering, map-
exiting, context-matching

2

Clauses3
allocate, defaultmap, depend, device, firstprivate, has_device_addr, if,4
in_reduction, is_device_ptr, map, nowait, private, thread_limit,5
uses_allocators6

Binding7
The binding task set for a target region is the generating task, which is the target task generated8
by the target construct. The target region binds to the corresponding target task region.9

Semantics10
The target construct provides a superset of the functionality provided by the target data11
directive, except for the use_device_ptr and use_device_addr clauses. The functionality12
added to the target directive is the inclusion of an executable region to be executed on a device.13
The target construct generates a target task. The generated task region encloses the target14
region. If a depend clause is present, it is associated with the target task. The device clause15
determines the device on which the target region executes. If the nowait clause is present,16
execution of the target task may be deferred. If the nowait clause is not present, the target task is17
an included task.18

All clauses are evaluated when the target construct is encountered. The data environment of the19
target task is created according to the data-sharing attribute clauses and data-mapping attribute20
clauses on the target construct, ICVs with data environment ICV scope, and any default21
data-sharing attribute rules that apply to the target construct. If a variable or part of a variable is22
mapped by the target construct and does not appear as a list item in an in_reduction clause23
on the construct, the variable has a default data-sharing attribute of shared in the data environment24
of the target task. Assignment operations associated with mapping a variable (see Section 6.8.3)25
occur when the target task executes.26

If the device clause is specified with the ancestor device-modifier, the encountering thread27
waits for completion of the target region on the parent device before resuming. For any list item28
that appears in a map clause on the same construct, if the corresponding list item exists in the device29
data environment of the parent device, it is treated as if it has a reference count of positive infinity.30

When an if clause is present and if-expression evaluates to false, the effect is as if a device31
clause that specifies omp_initial_device as the device number is present, regardless of any32
other device clause on the directive.33

378 OpenMP API – Version 6.0 Preview 2 November 2023

If a procedure is explicitly or implicitly referenced in a target construct that does not specify a1
device clause in which the ancestor device-modifier appears then that procedure is treated as2
if its name had appeared in an enter clause on a declare target directive.3

If a variable with static storage duration is declared in a target construct that does not specify a4
device clause in which the ancestor device-modifier appears then the named variable is treated5
as if it had appeared in an enter clause on a declare target directive if it is not a groupprivate6
variable and otherwise as if it had appeared in a local clause on a declare target directive.7

C / C++
If a list item in a map clause has a base pointer that is predetermined firstprivate (see Section 6.1.1)8
and on entry to the target region the list item is mapped, the firstprivate pointer is updated via9
corresponding base pointer initialization.10

C / C++
Fortran

When an internal procedure is called in a target region, any references to variables that are host11
associated in the procedure have unspecified behavior.12

Fortran

Execution Model Events13
Events associated with a target task are the same as for the task construct defined in Section 13.6.14

Events associated with the initial task that executes the target region are defined in Section 13.9.15

The target-submit-begin event occurs prior to initiating creation of an initial task on a target device16
for a target region.17

The target-submit-end event occurs after initiating creation of an initial task on a target device for a18
target region.19

The target-begin event occurs after creation of the target task and completion of all predecessor20
tasks that are not target tasks for the same device. The target-begin event is a target-task-begin21
event.22

The target-end event occurs after the target-submit-begin, target-submit-end and target-begin23
events associated with the target construct and any events associated with map clauses on the24
construct. If the nowait clause is not present, the target-end event also occurs after all events25
associated with the target task and initial task.26

CHAPTER 14. DEVICE DIRECTIVES AND CLAUSES 379

Tool Callbacks1
Callbacks associated with events for target tasks are the same as for the task construct defined in2
Section 13.6; (flags & ompt_task_target) always evaluates to true in the dispatched callback.3

A thread dispatches a registered ompt_callback_target or4
ompt_callback_target_emi callback with ompt_scope_begin as its endpoint5
argument and ompt_target or ompt_target_nowait if the nowait clause is present as its6
kind argument for each occurrence of a target-begin event in that thread in the context of the target7
task on the host device. Similarly, a thread dispatches a registered ompt_callback_target or8
ompt_callback_target_emi callback with ompt_scope_end as its endpoint argument9
and ompt_target or ompt_target_nowait if the nowait clause is present as its kind10
argument for each occurrence of a target-end event in that thread in the context of the target task on11
the host device. These callbacks have type signature ompt_callback_target_t or12
ompt_callback_target_emi_t, respectively.13

A thread dispatches a registered ompt_callback_target_submit_emi callback with14
ompt_scope_begin as its endpoint argument for each occurrence of a target-submit-begin15
event in that thread. Similarly, a thread dispatches a registered16
ompt_callback_target_submit_emi callback with ompt_scope_end as its endpoint17
argument for each occurrence of a target-submit-end event in that thread. These callbacks have type18
signature ompt_callback_target_submit_emi_t.19

A thread dispatches a registered ompt_callback_target_submit callback for each20
occurrence of a target-submit-begin event in that thread. The callback occurs in the context of the21
target task and has type signature ompt_callback_target_submit_t.22

Restrictions23
Restrictions to the target construct are as follows:24

• Device-affecting constructs, other than target constructs for which the ancestor25
device-modifier is specified, must not be encountered during execution of a target region.26

• The result of an omp_set_default_device, omp_get_default_device, or27
omp_get_num_devices routine called within a target region is unspecified.28

• The effect of an access to a threadprivate variable in a target region is unspecified.29

• If a list item in a map clause is a structure element, any other element of that structure that is30
referenced in the target construct must also appear as a list item in a map clause.31

• A list item in a data-sharing attribute clause that is specified on a target construct must not32
have the same base variable as a list item in a map clause on the construct.33

• A variable referenced in a target region but not the target construct that is not declared34
in the target region must appear in a declare target directive.35

• A map-type in a map clause must be to, from, tofrom or alloc.36

380 OpenMP API – Version 6.0 Preview 2 November 2023

• If a device clause is specified with the ancestor device-modifier, only the device,1
firstprivate, private, defaultmap, nowait, and map clauses may appear on the2
construct and no constructs or calls to routines are allowed inside the corresponding target3
region.4

• Memory allocators that do not appear in a uses_allocators clause cannot appear as an5
allocator in an allocate clause or be used in the target region unless a requires6
directive with the dynamic_allocators clause is present in the same compilation unit.7

• Any IEEE floating-point exception status flag, halting mode, or rounding mode set prior to a8
target region is unspecified in the region.9

• Any IEEE floating-point exception status flag, halting mode, or rounding mode set in a10
target region is unspecified upon exiting the region.11

• An OpenMP program must not rely on the value of a function address in a target region12
except for assignments, comparisons to zero and indirect calls.13

C / C++
• Upon exit from a target region, the value of an attached pointer must not be different from14

the value when entering the region.15

C / C++
C++

• The run-time type information (RTTI) of an object can only be accessed from the device on16
which it was constructed.17

• Invoking a virtual member function of an object on a device other than the device on which18
the object was constructed results in unspecified behavior, unless the object is accessible and19
was constructed on the host device.20

• If an object of polymorphic class type is destructed, virtual member functions of any21
previously existing corresponding objects in other device data environments must not be22
invoked.23

C++
Fortran

• An attached pointer that is associated with a given pointer target must not be associated with24
a different pointer target upon exit from a target region.25

• A reference to a coarray that is encountered on a non-host device must not be coindexed or26
appear as an actual argument to a procedure where the corresponding dummy argument is a27
coarray.28

• If the allocation status of a mapped variable or a list item that appears in a29
has_device_addr clause that has the ALLOCATABLE attribute is unallocated on entry to30
a target region, the allocation status of the corresponding variable in the device data31
environment must be unallocated upon exiting the region.32

CHAPTER 14. DEVICE DIRECTIVES AND CLAUSES 381

• If the allocation status of a mapped variable or a list item that appears in a1
has_device_addr clause that has the ALLOCATABLE attribute is allocated on entry to a2
target region, the allocation status and shape of the corresponding variable in the device3
data environment may not be changed, either explicitly or implicitly, in the region after entry4
to it.5

• If the association status of a list item with the POINTER attribute that appears in a map or6
has_device_addr clause on the construct is associated upon entry to the target7
region, the list item must be associated with the same pointer target upon exit from the region.8

• If the association status of a list item with the POINTER attribute that appears in a map or9
has_device_addr clause on the construct is disassociated upon entry to the target10
region, the list item must be disassociated upon exit from the region.11

• An OpenMP program must not rely on the association status of a procedure pointer in a12
target region except for calls to the ASSOCIATED inquiry function without the optional13
proc-target argument, pointer assignments and indirect calls.14

Fortran

Cross References15
• allocate clause, see Section 7.616

• defaultmap clause, see Section 6.8.617

• depend clause, see Section 16.9.518

• device clause, see Section 14.219

• firstprivate clause, see Section 6.4.420

• has_device_addr clause, see Section 6.4.921

• if clause, see Section 4.522

• in_reduction clause, see Section 6.5.1123

• is_device_ptr clause, see Section 6.4.724

• map clause, see Section 6.8.325

• nowait clause, see Section 16.626

• private clause, see Section 6.4.327

• thread_limit clause, see Section 14.328

• uses_allocators clause, see Section 7.829

• target data directive, see Section 14.530

• task directive, see Section 13.631

382 OpenMP API – Version 6.0 Preview 2 November 2023

• ompt_callback_target_emi_t and ompt_callback_target_t, see1
Section 20.5.2.262

• ompt_callback_target_submit_emi_t and3
ompt_callback_target_submit_t, see Section 20.5.2.284

14.9 target update Construct5

Name: target update Association: none
Category: executable Properties: parallelism-generating, task-

generating, device, device-affecting
6

Clauses7
depend, device, from, if, nowait, to8

Clause set9
Properties: required Members: from, to10

Binding11
The binding task set for a target update region is the generating task, which is the target task12
generated by the target update construct. The target update region binds to the13
corresponding target task region.14

Semantics15
The target update directive makes the corresponding list items in the device data16
environment consistent with their original list items, according to the specified data-motion clauses.17
The target update construct generates a target task. The generated task region encloses the18
target update region. If a depend clause is present, it is associated with the target task. If19
the nowait clause is present, execution of the target task may be deferred. If the nowait clause20
is not present, the target task is an included task.21

All clauses are evaluated when the target update construct is encountered. The data22
environment of the target task is created according to data-motion clauses on the target23
update construct, ICVs with data environment ICV scope, and any default data-sharing attribute24
rules that apply to the target update construct. If a variable or part of a variable is a list item25
in a data-motion clause on the target update construct, the variable has a default data-sharing26
attribute of shared in the data environment of the target task.27

Assignment operations associated with any data-motion clauses occur when the target task28
executes. When an if clause is present and if-expression evaluates to false, no assignments occur.29

CHAPTER 14. DEVICE DIRECTIVES AND CLAUSES 383

Execution Model Events1
Events associated with a target task are the same as for the task construct defined in Section 13.6.2

The target-update-begin event occurs after creation of the target task and completion of all3
predecessor tasks that are not target tasks for the same device.4

The target-update-end event occurs after all other events associated with the target update5
construct.6

The target-data-op-begin event occurs in the target update region before a thread initiates a7
data operation on the target device.8

The target-data-op-end event occurs in the target update region after a thread initiates a data9
operation on the target device.10

Tool Callbacks11
Callbacks associated with events for target tasks are the same as for the task construct defined in12
Section 13.6; (flags & ompt_task_target) always evaluates to true in the dispatched callback.13

A thread dispatches a registered ompt_callback_target or14
ompt_callback_target_emi callback with ompt_scope_begin as its endpoint15
argument and ompt_target_update or ompt_target_update_nowait if the nowait16
clause is present as its kind argument for each occurrence of a target-update-begin event in that17
thread in the context of the target task on the host device. Similarly, a thread dispatches a registered18
ompt_callback_target or ompt_callback_target_emi callback with19
ompt_scope_end as its endpoint argument and ompt_target_update or20
ompt_target_update_nowait if the nowait clause is present as its kind argument for each21
occurrence of a target-update-end event in that thread in the context of the target task on the host22
device. These callbacks have type signature ompt_callback_target_t or23
ompt_callback_target_emi_t, respectively.24

A thread dispatches a registered ompt_callback_target_data_op_emi callback with25
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-op-begin26
event in that thread. Similarly, a thread dispatches a registered27
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint28
argument for each occurrence of a target-data-op-end event in that thread. These callbacks have29
type signature ompt_callback_target_data_op_emi_t.30

A thread dispatches a registered ompt_callback_target_data_op callback for each31
occurrence of a target-data-op-end event in that thread. The callback occurs in the context of the32
target task and has type signature ompt_callback_target_data_op_t.33

Cross References34
• depend clause, see Section 16.9.535

• device clause, see Section 14.236

• from clause, see Section 6.9.237

384 OpenMP API – Version 6.0 Preview 2 November 2023

• if clause, see Section 4.51

• nowait clause, see Section 16.62

• to clause, see Section 6.9.13

• task directive, see Section 13.64

• ompt_callback_target_emi_t and ompt_callback_target_t, see5
Section 20.5.2.266

• ompt_callback_task_create_t, see Section 20.5.2.77

CHAPTER 14. DEVICE DIRECTIVES AND CLAUSES 385

15 Interoperability1

An OpenMP implementation may interoperate with one or more foreign runtime environments2
through the use of the interop construct that is described in this chapter, the interop operation3
for a declared variant function and the interoperability routines that are available through the4
OpenMP Runtime API.5

C / C++
The implementation must provide foreign-runtime-id values that are enumerators of type6
omp_interop_fr_t and that correspond to the supported foreign runtime environments.7

C / C++
Fortran

The implementation must provide foreign-runtime-id values that are named integer constants with8
kind omp_interop_fr_kind and that correspond to the supported foreign runtime9
environments.10

Fortran
Each foreign-runtime-id value provided by an implementation will be available as11
omp_ifr_name, where name is the name of the foreign runtime environment. Available names12
include those that are listed in the OpenMP Additional Definitions document; implementation13
defined names may also be supported. The value of omp_ifr_last is defined as one greater14
than the value of the highest supported foreign-runtime-id value that is listed in the aforementioned15
document.16

Cross References17
• Interoperability Routines, see Section 19.1218

15.1 interop Construct19

Name: interop Association: none
Category: executable Properties: device20

Clauses21
depend, destroy, device, init, nowait, use22

Clause set action-clause23

Properties: required Members: destroy, init, use24

386 OpenMP API – Version 6.0 Preview 2 November 2023

Binding1
The binding task set for an interop region is the generating task. The interop region binds to2
the region of the generating task.3

Semantics4
The interop construct retrieves interoperability properties from the OpenMP implementation to5
enable interoperability with foreign execution contexts. When an interop construct is6
encountered, the encountering task executes the region.7

For each action-clause, the interop-type set is the set of interop-type modifiers specified for the8
clause if the clause is init or for the init clause that initialized the interop-var that is specified9
for the clause if the clause is not init.10

If the interop-type set includes targetsync, an empty mergeable task is generated. If the11
nowait clause is not present on the construct then the task is also an included task. Any depend12
clauses that are present on the construct apply to the generated task.13

The interop construct ensures an ordered execution of the generated task relative to foreign tasks14
executed in the foreign execution context through the foreign synchronization object that is15
accessible through the targetsync property. When the creation of the foreign task precedes the16
encountering of an interop construct in happens before order (see Section 1.4.5), the foreign task17
must complete execution before the generated task begins execution. Similarly, when the creation18
of a foreign task follows the encountering of an interop construct in happens before order, the19
foreign task must not begin execution until the generated task completes execution. No ordering is20
imposed between the encountering thread and either foreign tasks or OpenMP tasks by the21
interop construct.22

If the interop-type set does not include targetsync, the nowait clause has no effect.23

Restrictions24
Restrictions to the interop construct are as follows:25

• A depend clause can only appear on the directive if the interop-type includes26
targetsync.27

• Each interop-var may be specified for at most one action-clause of each interop construct.28

Cross References29
• depend clause, see Section 16.9.530

• destroy clause, see Section 4.631

• device clause, see Section 14.232

• init clause, see Section 15.1.233

• nowait clause, see Section 16.634

• use clause, see Section 15.1.335

• Interoperability Routines, see Section 19.1236

CHAPTER 15. INTEROPERABILITY 387

15.1.1 OpenMP Foreign Runtime Identifiers1

An OpenMP foreign runtime identifier, foreign-runtime-id, is a base language string literal or a2
compile-time constant OpenMP integer expression. Allowed values for foreign-runtime-id include3
the names (as string literals) and integer values that the OpenMP Additional Definitions document4
specifies and the corresponding omp_ifr_name constants of OpenMP interop_fr type.5
Implementation defined values for foreign-runtime-id may also be supported.6

15.1.2 init Clause7

Name: init Properties: innermost-leaf8

Arguments9
Name Type Properties
interop-var variable of omp_interop_t type default10

Modifiers11
Name Modifies Type Properties
interop-preference interop-var Complex, name:

prefer_type Arguments:
preference_list OpenMP

foreign runtime prefer-
ence list (default)

complex, unique

interop-type interop-var Keyword: target,
targetsync

repeatable, re-
quired

directive-name-
modifier

all arguments Keyword:
directive-name

unique

12

Directives13
interop14

Semantics15
The init clause specifies that interop-var is initialized to refer to the list of properties associated16
with any interop-type. For any interop-type, the properties type, type_name, vendor,17
vendor_name and device_num will be available. If the implementation cannot initialize18
interop-var, it is initialized to the value of omp_interop_none, which is defined to be zero.19

The targetsync interop-type will additionally provide the targetsync property, which is the20
handle to a foreign synchronization object for enabling synchronization between OpenMP tasks and21
foreign tasks that execute in the foreign execution context.22

The target interop-type will additionally provide the following properties:23

• device, which will be a foreign device handle;24

388 OpenMP API – Version 6.0 Preview 2 November 2023

• device_context, which will be a foreign device context handle; and1

• platform, which will be a handle to a foreign platform of the device.2

If the prefer_type interop-preference modifier is specified, the first supported3
foreign-runtime-id in preference-list in left-to-right order is used. The foreign-runtime-id that is4
used if the implementation does not support any of the items in preference-list is implementation5
defined.6

Restrictions7
Restrictions to the init clause are as follows:8

• Each interop-type may be specified at most once.9

• interop-var must be non-const.10

Cross References11
• interop directive, see Section 15.112

• OpenMP Foreign Runtime Identifiers, see Section 15.1.113

15.1.3 use Clause14

Name: use Properties: default15

Arguments16
Name Type Properties
interop-var variable of omp_interop_t type default17

Modifiers18
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique19

Directives20
interop21

Semantics22
The use clause specifies the interop-var that is used for the effects of the directive on which the23
clause appears. However, interop-var is not initialized, destroyed or otherwise modified. The24
interop-type is inferred based on the interop-type used to initialize interop-var.25

Cross References26
• interop directive, see Section 15.127

CHAPTER 15. INTEROPERABILITY 389

15.2 Interoperability Requirement Set1

The interoperability requirement set of each task is a logical set of properties that can be added or2
removed by different directives. These properties can be queried by other constructs that have3
interoperability semantics.4

A construct can add the following properties to the set:5

• depend, which specifies that the construct requires enforcement of the synchronization6
relationship expressed by the depend clause;7

• nowait, which specifies that the construct is asynchronous; and8

• is_device_ptr(list-item), which specifies that the list-item is a device pointer in the construct.9

The following directives may add properties to the set:10

• dispatch.11

The following directives may remove properties from the set:12

• declare variant.13

Cross References14
• dispatch directive, see Section 8.615

• Declare Variant Directives, see Section 8.516

390 OpenMP API – Version 6.0 Preview 2 November 2023

16 Synchronization Constructs and1

Clauses2

A synchronization construct imposes an order on the completion of code executed by different3
threads through synchronizing flushes that are executed as part of the region that corresponds to the4
construct. Section 1.4.4 and Section 1.4.6 describe synchronization through the use of5
synchronizing flushes and atomic operations. Section 16.8.7 defines the behavior of synchronizing6
flushes that are implied at various other locations in an OpenMP program.7

16.1 Synchronization Hints8

The programmer can provide hints about the expected dynamic behavior or suggested9
implementation of a lock by using omp_init_lock_with_hint or10
omp_init_nest_lock_with_hint to initialize it. Synchronization hints may also be11
provided for atomic and critical directives by using the hint clause. The effect of a hint12
does not change the semantics of the associated construct; if ignoring the hint changes the program13
semantics, the result is unspecified.14

Cross References15
• hint clause, see Section 16.1.216

• atomic directive, see Section 16.8.517

• critical directive, see Section 16.218

• omp_init_lock_with_hint and omp_init_nest_lock_with_hint, see19
Section 19.9.220

16.1.1 Synchronization Hint Type21

Synchronization hints are specified with an OpenMP sync_hint type. The C/C++ header file22
(omp.h) and the Fortran include file (omp_lib.h) and/or Fortran module file (omp_lib) define23
the valid synchronization hint constants. The valid constants must include the following, which can24
be extended with implementation defined values:25

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 391

C / C++
typedef enum omp_sync_hint_t {1

omp_sync_hint_none = 0x0,2
omp_sync_hint_uncontended = 0x1,3
omp_sync_hint_contended = 0x2,4
omp_sync_hint_nonspeculative = 0x4,5
omp_sync_hint_speculative = 0x8,6

} omp_sync_hint_t;7

C / C++
Fortran

integer (kind=omp_sync_hint_kind), &8
parameter :: omp_sync_hint_none = &9

int(Z’0’, kind=omp_sync_hint_kind)10
integer (kind=omp_sync_hint_kind), &11

parameter :: omp_sync_hint_uncontended = &12
int(Z’1’, kind=omp_sync_hint_kind)13

integer (kind=omp_sync_hint_kind), &14
parameter :: omp_sync_hint_contended = &15

int(Z’2’, kind=omp_sync_hint_kind)16
integer (kind=omp_sync_hint_kind), &17

parameter :: omp_sync_hint_nonspeculative = &18
int(Z’4’, kind=omp_sync_hint_kind)19

integer (kind=omp_sync_hint_kind), &20
parameter :: omp_sync_hint_speculative = &21

int(Z’8’, kind=omp_sync_hint_kind)22

Fortran
Synchronization hints can be combined by using the + or | operators in C/C++ or the + operator in23
Fortran. Combining omp_sync_hint_none with any other synchronization hint is equivalent to24
specifying the other synchronization hint.25

The intended meaning of each synchronization hint is:26

• omp_sync_hint_uncontended: low contention is expected in this operation, that is,27
few threads are expected to perform the operation simultaneously in a manner that requires28
synchronization;29

• omp_sync_hint_contended: high contention is expected in this operation, that is,30
many threads are expected to perform the operation simultaneously in a manner that requires31
synchronization;32

• omp_sync_hint_speculative: the programmer suggests that the operation should be33
implemented using speculative techniques such as transactional memory; and34

392 OpenMP API – Version 6.0 Preview 2 November 2023

• omp_sync_hint_nonspeculative: the programmer suggests that the operation1
should not be implemented using speculative techniques such as transactional memory.2

3

Note – Future OpenMP specifications may add additional synchronization hints to the4
sync_hint type. Implementers are advised to add implementation defined synchronization hints5
starting from the most significant bit of the type and to include the name of the implementation in6
the name of the added synchronization hint to avoid name conflicts with other OpenMP7
implementations.8

9

Restrictions10
Restrictions to the synchronization hints are as follows:11

• The synchronization hints omp_sync_hint_uncontended and12
omp_sync_hint_contended may not be combined.13

• The synchronization hints omp_sync_hint_nonspeculative and14
omp_sync_hint_speculative may not be combined.15

16.1.2 hint Clause16

Name: hint Properties: unique17

Arguments18
Name Type Properties
hint-expr expression of sync_hint type default19

Modifiers20
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique21

Directives22
atomic, critical23

Semantics24
The hint clause gives the implementation additional information about the expected runtime25
properties of the region that corresponds to the construct on which it appears and that can26
optionally be used to optimize the implementation. The presence of a hint clause does not affect27
the semantics of the construct. If no hint clause is specified for a construct that accepts it, the28
effect is as if hint(omp_sync_hint_none) had been specified.29

Restrictions30
• hint-expr must evaluate to a valid synchronization hint.31

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 393

Cross References1
• atomic directive, see Section 16.8.52

• critical directive, see Section 16.23

• Synchronization Hint Type, see Section 16.1.14

16.2 critical Construct5

Name: critical Association: block
Category: executable Properties: thread-limiting, thread-exclusive6

Arguments7
critical(name)8

Name Type Properties
name base language identifier optional9

Clauses10
hint11

Binding12
The binding thread set for a critical region is all threads executing tasks in the contention13
group.14

Semantics15
The name argument is used to identify the critical construct. For any critical construct for16
which name is not specified, the effect is as if an identical (unspecified) name was specified. The17
regions that correspond to any critical construct of a given name are executed as if only by a18
single thread at a time among all threads associated with the contention group that execute the19
regions, without regard to the teams to which the threads belong.20

C / C++
Identifiers used to identify a critical construct have external linkage and are in a name space21
that is separate from the name spaces used by labels, tags, members, and ordinary identifiers.22

C / C++
Fortran

The names of critical constructs are global entities of the OpenMP program. If a name23
conflicts with any other entity, the behavior of the program is unspecified.24

Fortran

394 OpenMP API – Version 6.0 Preview 2 November 2023

Execution Model Events1
The critical-acquiring event occurs in a thread that encounters the critical construct on entry2
to the critical region before initiating synchronization for the region.3

The critical-acquired event occurs in a thread that encounters the critical construct after it4
enters the region, but before it executes the structured block of the critical region.5

The critical-released event occurs in a thread that encounters the critical construct after it6
completes any synchronization on exit from the critical region.7

Tool Callbacks8
A thread dispatches a registered ompt_callback_mutex_acquire callback for each9
occurrence of a critical-acquiring event in that thread. This callback has the type signature10
ompt_callback_mutex_acquire_t.11

A thread dispatches a registered ompt_callback_mutex_acquired callback for each12
occurrence of a critical-acquired event in that thread. This callback has the type signature13
ompt_callback_mutex_t.14

A thread dispatches a registered ompt_callback_mutex_released callback for each15
occurrence of a critical-released event in that thread. This callback has the type signature16
ompt_callback_mutex_t.17

The callbacks occur in the task that encounters the critical construct. The callbacks should18
receive ompt_mutex_critical as their kind argument if practical, but a less specific kind is19
acceptable.20

Restrictions21
Restrictions to the critical construct are as follows:22

• Unless omp_sync_hint_none is specified in a hint clause, the critical construct23
must specify a name.24

• The hint-expr that is specified in the hint clause on each critical construct with the25
same name must evaluate to the same value.26

Fortran
• If a name is specified on a critical directive, the same name must also be specified on the27
end critical directive.28

• If no name appears on the critical directive, no name can appear on the end29
critical directive.30

Fortran

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 395

Cross References1
• hint clause, see Section 16.1.22

• ompt_callback_mutex_acquire_t, see Section 20.5.2.143

• ompt_callback_mutex_t, see Section 20.5.2.154

• ompt_mutex_t, see Section 20.4.4.175

16.3 Barriers6

16.3.1 barrier Construct7

Name: barrier Association: none
Category: executable Properties: team-executed8

Binding9
The binding thread set for a barrier region is the current team. A barrier region binds to the10
innermost enclosing parallel region.11

Semantics12
The barrier construct specifies an explicit barrier at the point at which the construct appears.13
Unless the binding region is canceled, all threads of the team that executes that binding region must14
enter the barrier region and complete execution of all explicit tasks bound to that binding region15
before any of the threads continue execution beyond the barrier.16

The barrier region includes an implicit task scheduling point in the current task region.17

Execution Model Events18
The explicit-barrier-begin event occurs in each thread that encounters the barrier construct on19
entry to the barrier region.20

The explicit-barrier-wait-begin event occurs when a task begins an interval of active or passive21
waiting in a barrier region.22

The explicit-barrier-wait-end event occurs when a task ends an interval of active or passive waiting23
and resumes execution in a barrier region.24

The explicit-barrier-end event occurs in each thread that encounters the barrier construct after25
the barrier synchronization on exit from the barrier region.26

A cancellation event occurs if cancellation is activated at an implicit cancellation point in a27
barrier region.28

396 OpenMP API – Version 6.0 Preview 2 November 2023

Tool Callbacks1
A thread dispatches a registered ompt_callback_sync_region callback with2
ompt_sync_region_barrier_explicit as its kind argument and ompt_scope_begin3
as its endpoint argument for each occurrence of an explicit-barrier-begin event. Similarly, a thread4
dispatches a registered ompt_callback_sync_region callback with5
ompt_sync_region_barrier_explicit as its kind argument and ompt_scope_end as6
its endpoint argument for each occurrence of an explicit-barrier-end event. These callbacks occur7
in the context of the task that encountered the barrier construct and have type signature8
ompt_callback_sync_region_t.9

A thread dispatches a registered ompt_callback_sync_region_wait callback with10
ompt_sync_region_barrier_explicit as its kind argument and ompt_scope_begin11
as its endpoint argument for each occurrence of an explicit-barrier-wait-begin event. Similarly, a12
thread dispatches a registered ompt_callback_sync_region_wait callback with13
ompt_sync_region_barrier_explicit as its kind argument and ompt_scope_end as14
its endpoint argument for each occurrence of an explicit-barrier-wait-end event. These callbacks15
occur in the context of the task that encountered the barrier construct and have type signature16
ompt_callback_sync_region_t.17

A thread dispatches a registered ompt_callback_cancel callback with18
ompt_cancel_detected as its flags argument for each occurrence of a cancellation event in19
that thread. The callback occurs in the context of the encountering task. The callback has type20
signature ompt_callback_cancel_t.21

Restrictions22
Restrictions to the barrier construct are as follows:23

• Each barrier region must be encountered by all threads in a team or by none at all, unless24
cancellation has been requested for the innermost enclosing parallel region.25

• The sequence of worksharing regions and barrier regions encountered must be the same26
for every thread in a team.27

Cross References28
• ompt_callback_cancel_t, see Section 20.5.2.1829

• ompt_callback_sync_region_t, see Section 20.5.2.1330

• ompt_scope_endpoint_t, see Section 20.4.4.1131

• ompt_sync_region_t, see Section 20.4.4.1432

16.3.2 Implicit Barriers33

This section describes the OMPT events and tool callbacks associated with implicit barriers, which34
occur at the end of various regions as defined in the description of the constructs to which they35
correspond. Implicit barriers are task scheduling points. For a description of task scheduling36
points, associated events, and tool callbacks, see Section 13.10.37

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 397

Execution Model Events1
The implicit-barrier-begin event occurs in each task that encounters an implicit barrier at the2
beginning of the implicit barrier region.3

The implicit-barrier-wait-begin event occurs when a task begins an interval of active or passive4
waiting in an implicit barrier region.5

The implicit-barrier-wait-end event occurs when a task ends an interval of active or waiting and6
resumes execution of an implicit barrier region.7

The implicit-barrier-end event occurs in a task that encounters an implicit barrier after the barrier8
synchronization on exit from an implicit barrier region.9

A cancellation event occurs if cancellation is activated at an implicit cancellation point in an10
implicit barrier region.11

Tool Callbacks12
A thread dispatches a registered ompt_callback_sync_region callback for each13
implicit-barrier-begin and implicit-barrier-end event. Similarly, a thread dispatches a registered14
ompt_callback_sync_region_wait callback for each implicit-barrier-wait-begin and15
implicit-barrier-wait-end event. All callbacks for implicit barrier events execute in the context of16
the encountering task and have type signature ompt_callback_sync_region_t.17

For the implicit barrier at the end of a worksharing construct, the kind argument is18
ompt_sync_region_barrier_implicit_workshare. For the implicit barrier at the end19
of a parallel region, the kind argument is20
ompt_sync_region_barrier_implicit_parallel. For a barrier at the end of a21
teams region, the kind argument is ompt_sync_region_barrier_teams. For an extra22
barrier added by an OpenMP implementation, the kind argument is23
ompt_sync_region_barrier_implementation.24

A thread dispatches a registered ompt_callback_cancel callback with25
ompt_cancel_detected as its flags argument for each occurrence of a cancellation event in26
that thread. The callback occurs in the context of the encountering task. The callback has type27
signature ompt_callback_cancel_t.28

Restrictions29
Restrictions to implicit barriers are as follows:30

• If a thread is in the state ompt_state_wait_barrier_implicit_parallel, a call31
to ompt_get_parallel_info may return a pointer to a copy of the data object32
associated with the parallel region rather than a pointer to the associated data object itself.33
Writing to the data object returned by omp_get_parallel_info when a thread is in the34
state ompt_state_wait_barrier_implicit_parallel results in unspecified35
behavior.36

398 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• ompt_callback_cancel_t, see Section 20.5.2.182

• ompt_callback_sync_region_t, see Section 20.5.2.133

• ompt_cancel_flag_t, see Section 20.4.4.264

• ompt_scope_endpoint_t, see Section 20.4.4.115

• ompt_sync_region_t, see Section 20.4.4.146

16.3.3 Implementation-Specific Barriers7

An OpenMP implementation can execute implementation-specific barriers that the OpenMP8
specification does not imply; therefore, no execution model events are bound to them. The9
implementation can handle these barriers like implicit barriers and dispatch all events as for10
implicit barriers. Any callbacks for these events use11
ompt_sync_region_barrier_implementation — or12
ompt_sync_region_barrier, if the implementation cannot make a distinction — as the kind13
argument when they are dispatched.14

16.4 taskgroup Construct15

Name: taskgroup Association: block
Category: executable Properties: cancellable16

Clauses17
allocate, task_reduction18

Binding19
The binding task set of a taskgroup region is all tasks of the current team that are generated in20
the region. A taskgroup region binds to the innermost enclosing parallel region.21

Semantics22
The taskgroup construct specifies a wait on completion of the taskgroup set associated with the23
taskgroup region. When a thread encounters a taskgroup construct, it starts executing the24
region.25

An implicit task scheduling point occurs at the end of the taskgroup region. The current task is26
suspended at the task scheduling point until all tasks in the taskgroup set complete execution.27

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 399

Execution Model Events1
The taskgroup-begin event occurs in each thread that encounters the taskgroup construct on2
entry to the taskgroup region.3

The taskgroup-wait-begin event occurs when a task begins an interval of active or passive waiting4
in a taskgroup region.5

The taskgroup-wait-end event occurs when a task ends an interval of active or passive waiting and6
resumes execution in a taskgroup region.7

The taskgroup-end event occurs in each thread that encounters the taskgroup construct after the8
taskgroup synchronization on exit from the taskgroup region.9

Tool Callbacks10
A thread dispatches a registered ompt_callback_sync_region callback with11
ompt_sync_region_taskgroup as its kind argument and ompt_scope_begin as its12
endpoint argument for each occurrence of a taskgroup-begin event in the task that encounters the13
taskgroup construct. Similarly, a thread dispatches a registered14
ompt_callback_sync_region callback with ompt_sync_region_taskgroup as its15
kind argument and ompt_scope_end as its endpoint argument for each occurrence of a16
taskgroup-end event in the task that encounters the taskgroup construct. These callbacks occur17
in the task that encounters the taskgroup construct and have the type signature18
ompt_callback_sync_region_t.19

A thread dispatches a registered ompt_callback_sync_region_wait callback with20
ompt_sync_region_taskgroup as its kind argument and ompt_scope_begin as its21
endpoint argument for each occurrence of a taskgroup-wait-begin event. Similarly, a thread22
dispatches a registered ompt_callback_sync_region_wait callback with23
ompt_sync_region_taskgroup as its kind argument and ompt_scope_end as its24
endpoint argument for each occurrence of a taskgroup-wait-end event. These callbacks occur in the25
context of the task that encounters the taskgroup construct and have type signature26
ompt_callback_sync_region_t.27

Cross References28
• allocate clause, see Section 7.629

• task_reduction clause, see Section 6.5.1030

• Task Scheduling, see Section 13.1031

• ompt_callback_sync_region_t, see Section 20.5.2.1332

• ompt_scope_endpoint_t, see Section 20.4.4.1133

• ompt_sync_region_t, see Section 20.4.4.1434

400 OpenMP API – Version 6.0 Preview 2 November 2023

16.5 taskwait Construct1

Name: taskwait Association: none
Category: executable Properties: default2

Clauses3
depend, nowait4

Binding5
The binding thread set of the taskwait region is the current team. The taskwait region binds6
to the current task region.7

Semantics8
The taskwait construct specifies a wait on the completion of child tasks of the current task.9

If no depend clause is present on the taskwait construct, the current task region is suspended10
at an implicit task scheduling point associated with the construct. The current task region remains11
suspended until all child tasks that it generated before the taskwait region complete execution.12

If one or more depend clauses are present on the taskwait construct and the nowait clause is13
not also present, the behavior is as if these clauses were applied to a task construct with an empty14
associated structured block that generates a mergeable task and included task. Thus, the current15
task region is suspended until the predecessor tasks of this task complete execution.16

If one or more depend clauses are present on the taskwait construct and the nowait clause is17
also present, the behavior is as if these clauses were applied to a task construct with an empty18
associated structured block that generates a task for which execution may be deferred. Thus, all19
predecessor tasks of this task must complete execution before any subsequently generated task that20
depends on this task starts its execution.21

Execution Model Events22
The taskwait-begin event occurs in a thread when it encounters a taskwait construct with no23
depend clause on entry to the taskwait region.24

The taskwait-wait-begin event occurs when a task begins an interval of active or passive waiting in25
a region that corresponds to a taskwait construct with no depend clause.26

The taskwait-wait-end event occurs when a task ends an interval of active or passive waiting and27
resumes execution from a region that corresponds to a taskwait construct with no depend28
clause.29

The taskwait-end event occurs in a thread when it encounters a taskwait construct with no30
depend clause after the taskwait synchronization on exit from the taskwait region.31

The taskwait-init event occurs in a thread when it encounters a taskwait construct with one or32
more depend clauses on entry to the taskwait region.33

The taskwait-complete event occurs on completion of the dependent task that results from a34
taskwait construct with one or more depend clauses, in the context of the thread that executes35

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 401

the dependent task and before any subsequently generated task that depends on the dependent task1
starts its execution.2

Tool Callbacks3
A thread dispatches a registered ompt_callback_sync_region callback with4
ompt_sync_region_taskwait as its kind argument and ompt_scope_begin as its5
endpoint argument for each occurrence of a taskwait-begin event in the task that encounters the6
taskwait construct. Similarly, a thread dispatches a registered7
ompt_callback_sync_region callback with ompt_sync_region_taskwait as its8
kind argument and ompt_scope_end as its endpoint argument for each occurrence of a9
taskwait-end event in the task that encounters the taskwait construct. These callbacks occur in10
the task that encounters the taskwait construct and have the type signature11
ompt_callback_sync_region_t.12

A thread dispatches a registered ompt_callback_sync_region_wait callback with13
ompt_sync_region_taskwait as its kind argument and ompt_scope_begin as its14
endpoint argument for each occurrence of a taskwait-wait-begin event. Similarly, a thread15
dispatches a registered ompt_callback_sync_region_wait callback with16
ompt_sync_region_taskwait as its kind argument and ompt_scope_end as its endpoint17
argument for each occurrence of a taskwait-wait-end event. These callbacks occur in the context of18
the task that encounters the taskwait construct and have type signature19
ompt_callback_sync_region_t.20

A thread dispatches a registered ompt_callback_task_create callback for each occurrence21
of a taskwait-init event in the context of the encountering task. This callback has the type signature22
ompt_callback_task_create_t. In the dispatched callback, (flags &23
ompt_task_taskwait) always evaluates to true. If the nowait clause is not present, (flags &24
ompt_task_undeferred) also evaluates to true.25

A thread dispatches a registered ompt_callback_task_schedule callback for each26
occurrence of a taskwait-complete event. This callback has the type signature27
ompt_callback_task_schedule_t with ompt_taskwait_complete as its28
prior_task_status argument.29

Restrictions30
Restrictions to the taskwait construct are as follows:31

• The mutexinoutset task-dependence-type may not appear in a depend clause on a32
taskwait construct.33

• If the task-dependence-type of a depend clause is depobj then the depend objects may not34
represent dependences of the mutexinoutset dependence type.35

• The nowait clause may only appear on a taskwait directive if the depend clause is36
present.37

402 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• depend clause, see Section 16.9.52

• nowait clause, see Section 16.63

• task directive, see Section 13.64

• ompt_callback_sync_region_t, see Section 20.5.2.135

• ompt_scope_endpoint_t, see Section 20.4.4.116

• ompt_sync_region_t, see Section 20.4.4.147

16.6 nowait Clause8

Name: nowait Properties: outermost-leaf, unique, end-
clause9

Arguments10
Name Type Properties
do_not_synchronize expression of OpenMP logical type optional11

Modifiers12
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique13

Directives14
dispatch, do, for, interop, scope, sections, single, target, target enter15
data, target exit data, target update, taskwait, workshare16

Semantics17
If do_not_synchronize evaluates to true, the nowait clause overrides any synchronization that18
would otherwise occur at the end of a construct. It can also specify that an interoperability19
requirement set includes the nowait property. If do_not_synchronize is not specified, the effect is as20
if do_not_synchronize evaluates to true. If do_not_synchronize evaluates to false, the effect is as if21
the nowait clause is not specified on the directive.22

If the construct includes an implicit barrier and do_not_synchronize evaluates to true, the nowait23
clause specifies that the barrier will not occur. If the construct includes an implicit barrier and the24
nowait is not specified, the barrier will occur.25

For constructs that generate a task, if do_not_synchronize evaluates to true, the nowait clause26
specifies that the generated task may be deferred. If the nowait clause is not specified on the27
directive then the generated task is an included task (so it executes synchronously in the context of28
the encountering task).29

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 403

For constructs that generate an interoperability requirement set, the nowait clause adds the nowait1
property to the set if do-not-synchronize evaluates to true.2

Restrictions3
Restrictions to the nowait clause are as follows:4

• The do_not_synchronize argument must evaluate to the same value for all threads in the5
binding thread set, if defined for the construct on which the nowait clause appears.6

• The do_not_synchronize argument must evaluate to the same value for all tasks in the binding7
task set, if defined for the construct on which the nowait clause appears.8

Cross References9
• dispatch directive, see Section 8.610

• do directive, see Section 12.6.211

• for directive, see Section 12.6.112

• interop directive, see Section 15.113

• scope directive, see Section 12.214

• sections directive, see Section 12.315

• single directive, see Section 12.116

• target directive, see Section 14.817

• target enter data directive, see Section 14.618

• target exit data directive, see Section 14.719

• target update directive, see Section 14.920

• taskwait directive, see Section 16.521

• workshare directive, see Section 12.422

16.7 nogroup Clause23

Name: nogroup Properties: outermost-leaf, unique24

Arguments25
Name Type Properties
do_not_synchronize expression of OpenMP logical type optional26

Modifiers27
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique28

404 OpenMP API – Version 6.0 Preview 2 November 2023

Directives1
taskloop2

Semantics3
If do_not_synchronize evaluates to true, the nogroup clause overrides any implicit taskgroup4
that would otherwise enclose the construct. If do_not_synchronize evaluates to false, the effect is as5
if the nogroup clause is not specified on the directive. If do_not_synchronize is not specified, the6
effect is as if do_not_synchronize evaluates to true.7

Cross References8
• taskloop directive, see Section 13.79

16.8 OpenMP Memory Ordering10

This sections describes constructs and clauses that support ordering of memory operations.11

16.8.1 memory-order Clauses12

Clause groups13
Properties: unique, exclusive, inarguable Members:

Clauses
acq_rel, acquire, relaxed, release,
seq_cst

14

Directives15
atomic, flush16

Semantics17
The memory-order clause group defines a set of clauses that indicate the memory ordering18
requirements for the visibility of the effects of the constructs on which they may be specified.19

Cross References20
• atomic directive, see Section 16.8.521

• flush directive, see Section 16.8.622

• OpenMP Memory Consistency, see Section 1.4.623

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 405

16.8.1.1 acq_rel Clause1

Name: acq_rel Properties: unique2

Arguments3
Name Type Properties
use-semantics expression of OpenMP logical type constant, optional4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
atomic, flush8

Semantics9
If use_semantics evaluates to true, the acq_rel clause specifies for the construct to use10
acquire/release memory ordering semantics. If use_semantics evaluates to false, the effect is as if11
the acq_rel clause is not specified. If use_semantics is not specified, the effect is as if12
use_semantics evaluates to true.13

Cross References14
• atomic directive, see Section 16.8.515

• flush directive, see Section 16.8.616

• OpenMP Memory Consistency, see Section 1.4.617

16.8.1.2 acquire Clause18

Name: acquire Properties: unique19

Arguments20
Name Type Properties
use_semantics expression of OpenMP logical type constant, optional21

Modifiers22
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique23

Directives24
atomic, flush25

406 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
If use_semantics evaluates to true, the acquire clause specifies for the construct to use acquire2
memory ordering semantics. If use_semantics evaluates to false, the effect is as if the acquire3
clause is not specified. If use_semantics is not specified, the effect is as if use_semantics evaluates4
to true.5

Cross References6
• atomic directive, see Section 16.8.57

• flush directive, see Section 16.8.68

• OpenMP Memory Consistency, see Section 1.4.69

16.8.1.3 relaxed Clause10

Name: relaxed Properties: unique11

Arguments12
Name Type Properties
use_semantics expression of OpenMP logical type constant, optional13

Modifiers14
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique15

Directives16
atomic, flush17

Semantics18
If use_semantics evaluates to true, the relaxed clause specifies for the construct to use relaxed19
memory ordering semantics. If use_semantics evaluates to false, the effect is as if the relaxed20
clause is not specified. If use_semantics is not specified, the effect is as if use_semantics evaluates21
to true.22

Cross References23
• atomic directive, see Section 16.8.524

• flush directive, see Section 16.8.625

• OpenMP Memory Consistency, see Section 1.4.626

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 407

16.8.1.4 release Clause1

Name: release Properties: unique2

Arguments3
Name Type Properties
use_semantics expression of OpenMP logical type constant, optional4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
atomic, flush8

Semantics9
If use_semantics evaluates to true, the release clause specifies for the construct to use release10
memory ordering semantics. If use_semantics evaluates to false, the effect is as if the release11
clause is not specified. If use_semantics is not specified, the effect is as if use_semantics evaluates12
to true.13

Cross References14
• atomic directive, see Section 16.8.515

• flush directive, see Section 16.8.616

• OpenMP Memory Consistency, see Section 1.4.617

16.8.1.5 seq_cst Clause18

Name: seq_cst Properties: unique19

Arguments20
Name Type Properties
use_semantics expression of OpenMP logical type constant, optional21

Modifiers22
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique23

Directives24
atomic, flush25

408 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
If use_semantics evaluates to true, the seq_cst clause specifies for the construct to use2
sequentially consistent memory ordering semantics. If use_semantics evaluates to false, the effect3
is as if the seq_cst clause is not specified. If use_semantics is not specified, the effect is as if4
use_semantics evaluates to true.5

Cross References6
• atomic directive, see Section 16.8.57

• flush directive, see Section 16.8.68

• OpenMP Memory Consistency, see Section 1.4.69

16.8.2 atomic Clauses10

Clause groups11
Properties: unique, exclusive Members:

Clauses
read, update, write

12

Directives13
atomic14

Semantics15
The atomic clause group defines a set of clauses that defines the semantics for which a directive16
enforces atomicity. If a construct accepts the atomic clause group and no member of the clause17
group is specified, the effect is as if the update clause is specified.18

Cross References19
• atomic directive, see Section 16.8.520

16.8.2.1 read Clause21

Name: read Properties: innermost-leaf, unique22

Arguments23
Name Type Properties
use_semantics expression of OpenMP logical type constant, optional24

Modifiers25
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique26

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 409

Directives1
atomic2

Semantics3
If use_semantics evaluates to true, the read clause specifies that the atomic construct has atomic4
read semantics, which read the value of the shared variable atomically. If use_semantics evaluates5
to false, the effect is as if the read clause is not specified. If use_semantics is not specified, the6
effect is as if use_semantics evaluates to true.7

Cross References8
• atomic directive, see Section 16.8.59

16.8.2.2 update Clause10

Name: update Properties: innermost-leaf, unique11

Arguments12
Name Type Properties
use_semantics expression of OpenMP logical type constant, optional13

Modifiers14
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique15

Directives16
atomic17

Semantics18
If use_semantics evaluates to true, the update clause specifies that the atomic construct has19
atomic update semantics, which read and write the value of the shared variable atomically. If20
use_semantics evaluates to false, the effect is as if the update is not specified. If use_semantics is21
not specified, the effect is as if use_semantics evaluates to true.22

Cross References23
• atomic directive, see Section 16.8.524

16.8.2.3 write Clause25

Name: write Properties: innermost-leaf, unique26

Arguments27
Name Type Properties
use_semantics expression of OpenMP logical type constant, optional28

410 OpenMP API – Version 6.0 Preview 2 November 2023

Modifiers1
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique2

Directives3
atomic4

Semantics5
If use_semantics evaluates to true, the write clause specifies that the atomic construct has6
atomic write semantics, which write the value of the shared variable atomically. If use_semantics7
evaluates to false, the effect is as if the write clause is not specified. If use_semantics is not8
specified, the effect is as if use_semantics evaluates to true.9

Cross References10
• atomic directive, see Section 16.8.511

16.8.3 extended-atomic Clauses12

Clause groups13
Properties: unique Members:

Clauses
capture, compare, fail, weak

14

Directives15
atomic16

Semantics17
The extended-atomic clause group defines a set of clauses that extend the atomicity semantics18
specified by members of the atomic clause group.19

Restrictions20
Restrictions to the extended-atomic clause group are as follows:21

• The compare clause may not be specified such that use_semantics evaluates to false if the22
weak clause is specified such that use_semantics evaluates to true.23

Cross References24
• atomic Clauses, see Section 16.8.225

• atomic directive, see Section 16.8.526

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 411

16.8.3.1 capture Clause1

Name: capture Properties: innermost-leaf, unique2

Arguments3
Name Type Properties
use_semantics expression of OpenMP logical type constant, optional4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
atomic8

Semantics9
If use_semantics evaluates to true, the capture clause extends the semantics of the atomic10
construct to have atomic captured update semantics, which capture the value of the shared variable11
being updated atomically. If use_semantics evaluates to false, the value is not captured. If12
use_semantics is not specified, the effect is as if use_semantics evaluates to true.13

Cross References14
• atomic directive, see Section 16.8.515

16.8.3.2 compare Clause16

Name: compare Properties: innermost-leaf, unique17

Arguments18
Name Type Properties
use_semantics expression of OpenMP logical type constant, optional19

Modifiers20
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique21

Directives22
atomic23

Semantics24
If use_semantics evaluates to true, the compare clause extends the semantics of the atomic25
construct with atomic conditional update semantics so the atomic update is performed26
conditionally. If use_semantics evaluates to false, the atomic update is performed unconditionally.27
If use_semantics is not specified, the effect is as if use_semantics evaluates to true.28

412 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• atomic directive, see Section 16.8.52

16.8.3.3 fail Clause3

Name: fail Properties: innermost-leaf, unique4

Arguments5
Name Type Properties
memorder Keyword: acquire, relaxed,

seq_cst
default6

Modifiers7
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique8

Directives9
atomic10

Semantics11
The fail clause extends the semantics of the atomic construct to specify the memory ordering12
requirements for any comparison performed by any atomic conditional update that fails. Its13
argument overrides any other specified memory ordering. If an atomic construct has atomic14
conditional update semantics and the fail clause is not specified, the effect is as if the fail15
clause is specified with a default argument that depends on the effective memory ordering. If the16
effective memory ordering is acq_rel, the default argument is acquire. If the effective17
memory ordering is release, the default argument is relaxed. For any other effective memory18
ordering, the default argument is equal to that effective memory ordering. If the atomic construct19
does not have atomic conditional update semantics, the fail clause has no effect.20

Restrictions21
Restrictions to the fail clause are as follows:22

• memorder may not be acq_rel or release.23

Cross References24
• memory-order Clauses, see Section 16.8.125

• atomic directive, see Section 16.8.526

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 413

16.8.3.4 weak Clause1

Name: weak Properties: innermost-leaf, unique2

Arguments3
Name Type Properties
use_semantics expression of OpenMP logical type constant, optional4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
atomic8

Semantics9
If use_semantics evaluates to true, the weak clause has the same effect as the compare clause10
and, in addition, the atomic construct has weak comparison semantics, which mean that the11
comparison may spuriously fail, evaluating to not equal even when the values are equal. If12
use_semantics evaluates to false, the semantics of the atomic construct are not extended. If13
use_semantics is not specified, the effect is as if use_semantics evaluates to true.14

15

Note – Allowing for spurious failure by specifying a weak clause can result in performance gains16
on some systems when using compare-and-swap in a loop. For cases where a single17
compare-and-swap would otherwise be sufficient, using a loop over a weak compare-and-swap is18
unlikely to improve performance.19

20

Cross References21
• atomic directive, see Section 16.8.522

16.8.4 memscope Clause23

Name: memscope Properties: unique24

Arguments25
Name Type Properties
scope-specifier Keyword: all, cgroup, device default26

Modifiers27
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique28

414 OpenMP API – Version 6.0 Preview 2 November 2023

Directives1
atomic, flush2

Semantics3
The memscope clause determines the binding thread set of the region that corresponds to the4
construct on which it is specified.5

If the scope-specifier is device, the binding thread set consists of all threads on the device. If the6
scope-specifier is cgroup, the binding thread set consists of all threads that are executing tasks in7
the contention group. If the scope-specifier is all, the binding thread set consists of all threads on8
all devices.9

Unless otherwise stated, the thread-set of any flushes that are performed in an atomic or flush10
region is the same as the binding thread set of the region, as determined by the memscope clause.11

Restrictions12
The restrictions for the memscope clause are as follows:13

• The binding thread set defined by the scope-specifier of the memscope clause on an14
atomic construct must be a subset of the atomic scope of the atomically accessed memory.15

• The binding thread set defined by the scope-specifier of the memscope clause on an16
atomic construct must be a subset of all threads that are executing tasks in the contention17
group if the size of the atomically accessed storage location is not 8, 16, 32, or 64 bits.18

Cross References19
• atomic directive, see Section 16.8.520

• flush directive, see Section 16.8.621

16.8.5 atomic Construct22

Name: atomic Association: block (atomic structured block)
Category: executable Properties: simdizable23

Clause groups24
atomic, extended-atomic, memory-order25

Clauses26
hint, memscope27

This section uses the terminology and symbols defined for OpenMP atomic structured blocks (see28
Section 5.3.3).29

Binding30
The memscope clause determines the binding thread set for an atomic region. If the memscope31
clause is not present, the behavior is as if the memscope clause appeared on the construct with the32
device scope-specifier.33

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 415

Semantics1
The atomic construct ensures that a specific storage location is accessed atomically so that2
possible simultaneous reads and writes by multiple threads do not result in indeterminate values.3
An atomic region enforces exclusive access with respect to other atomic regions that access the4
same storage location x among all threads in the binding thread set without regard to the teams to5
which the threads belong.6

An atomic construct with the read clause results in an atomic read of the storage location7
designated by x. An atomic construct with the write clause results in an atomic write of the8
storage location designated by x. An atomic construct with the update clause results in an9
atomic update of the storage location designated by x using the designated operator or intrinsic.10
Only the read and write of the storage location designated by x are performed mutually atomically.11
The evaluation of expr or expr-list need not be atomic with respect to the read or write of the12
storage location designated by x. No task scheduling points are allowed between the read and the13
write of the storage location designated by x.14

If the capture clause is present, the atomic update is an atomic captured update — an atomic15
update to the storage location designated by x using the designated operator or intrinsic while also16
capturing the original or final value of the storage location designated by x with respect to the17
atomic update. The original or final value of the storage location designated by x is written in the18
storage location designated by v based on the base language semantics of structured block or19
statements of the atomic construct. Only the read and write of the storage location designated by20
x are performed mutually atomically. Neither the evaluation of expr or expr-list, nor the write to the21
storage location designated by v, need be atomic with respect to the read or write of the storage22
location designated by x.23

If the compare clause is present, the atomic update is an atomic conditional update. For forms24
that use an equality comparison, the operation is an atomic compare-and-swap. It atomically25
compares the value of x to e and writes the value of d into the storage location designated by x if26
they are equal. Based on the base language semantics of the associated structured block, the27
original or final value of the storage location designated by x is written to the storage location28
designated by v, which is allowed to be the same storage location as designated by e, or the result of29
the comparison is written to the storage location designated by r. Only the read and write of the30
storage location designated by x are performed mutually atomically. Neither the evaluation of either31
e or d nor writes to the storage locations designated by v and r need be atomic with respect to the32
read or write of the storage location designated by x.33

C / C++
If the compare clause is present, forms that use ordop are logically an atomic maximum or34
minimum, but they may be implemented with a compare-and-swap loop with short-circuiting. For35
forms where statement is cond-expr-stmt, if the result of the condition implies that the value of x36
does not change then the update may not occur.37

C / C++

416 OpenMP API – Version 6.0 Preview 2 November 2023

If a memory-order clause is present, or implicitly provided by a requires directive, it specifies1
the effective memory ordering. Otherwise the effect is as if the relaxed memory-order clause is2
specified.3

The atomic construct may be used to enforce memory consistency between threads, based on the4
guarantees provided by Section 1.4.6. A strong flush on the storage location designated by x is5
performed on entry to and exit from the atomic operation, ensuring that the set of all atomic6
operations applied to the same storage location in a race-free program has a total completion order.7
If the write or update clause is specified, the atomic operation is not an atomic conditional8
update for which the comparison fails, and the effective memory ordering is release, acq_rel,9
or seq_cst, the strong flush on entry to the atomic operation is also a release flush. If the read10
or update clause is specified and the effective memory ordering is acquire, acq_rel, or11
seq_cst then the strong flush on exit from the atomic operation is also an acquire flush.12
Therefore, if the effective memory ordering is not relaxed, release flushes and/or acquire flushes13
are implied and permit synchronization between the threads without the use of explicit flush14
directives.15

For all forms of the atomic construct, any combination of two or more of these atomic16
constructs enforces mutually exclusive access to the storage locations designated by x among17
threads in the binding thread set. To avoid data races, all accesses of the storage locations18
designated by x that could potentially occur in parallel must be protected with an atomic19
construct.20

atomic regions do not guarantee exclusive access with respect to any accesses outside of atomic21
regions to the same storage location x even if those accesses occur during a critical or22
ordered region, while an OpenMP lock is owned by the executing task, or during the execution23
of a reduction clause.24

However, other OpenMP synchronization can ensure the desired exclusive access. For example, a25
barrier that follows a series of atomic updates to x guarantees that subsequent accesses do not form26
a race with the atomic accesses.27

A compliant implementation may enforce exclusive access between atomic regions that update28
different storage locations. The circumstances under which this occurs are implementation defined.29

If the storage location designated by x is not size-aligned (that is, if the byte alignment of x is not a30
multiple of the size of x), then the behavior of the atomic region is implementation defined.31

Execution Model Events32
The atomic-acquiring event occurs in the thread that encounters the atomic construct on entry to33
the atomic region before initiating synchronization for the region.34

The atomic-acquired event occurs in the thread that encounters the atomic construct after it35
enters the region, but before it executes the structured block of the atomic region.36

The atomic-released event occurs in the thread that encounters the atomic construct after it37
completes any synchronization on exit from the atomic region.38

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 417

Tool Callbacks1
A thread dispatches a registered ompt_callback_mutex_acquire callback for each2
occurrence of an atomic-acquiring event in that thread. This callback has the type signature3
ompt_callback_mutex_acquire_t.4

A thread dispatches a registered ompt_callback_mutex_acquired callback for each5
occurrence of an atomic-acquired event in that thread. This callback has the type signature6
ompt_callback_mutex_t.7

A thread dispatches a registered ompt_callback_mutex_released callback with8
ompt_mutex_atomic as the kind argument if practical, although a less specific kind may be9
used, for each occurrence of an atomic-released event in that thread. This callback has the type10
signature ompt_callback_mutex_t and occurs in the task that encounters the atomic11
construct.12

Restrictions13
Restrictions to the atomic construct are as follows:14

• Constructs may not be encountered during execution of an atomic region.15

• If a capture or compare clause is specified, the atomic clause must be update.16

• If a capture clause is specified but the compare clause is not specified, an17
update-capture-atomic structured block must be associated with the construct.18

• If both capture and compare clauses are specified, a conditional-update-capture-atomic19
structured block must be associated with the construct.20

• If a compare clause is specified but the capture clause is not specified, a21
conditional-update-atomic structured block must be associated with the construct.22

• If a write clause is specified, a write-atomic structured block must be associated with the23
construct.24

• If a read clause is specified, a read-atomic structured block must be associated with the25
construct.26

• If the atomic clause is read then the memory-order clause must not be release.27

• If the atomic clause is write then the memory-order clause must not be acquire.28

• The weak clause may only appear if the resulting atomic operation is an atomic conditional29
update for which the comparison tests for equality.30

C / C++
• All atomic accesses to the storage locations designated by x throughout the OpenMP31

program are required to have a compatible type.32

• The fail clause may only appear if the resulting atomic operation is an atomic conditional33
update.34

C / C++

418 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
• All atomic accesses to the storage locations designated by x throughout the OpenMP1

program are required to have the same type and type parameters.2

• The fail clause may only appear if the resulting atomic operation is an atomic conditional3
update or an atomic update where intrinsic-procedure-name is either MAX or MIN.4

Fortran

Cross References5
• hint clause, see Section 16.1.26

• memscope clause, see Section 16.8.47

• barrier directive, see Section 16.3.18

• critical directive, see Section 16.29

• flush directive, see Section 16.8.610

• requires directive, see Section 9.511

• Lock Routines, see Section 19.912

• OpenMP Atomic Structured Blocks, see Section 5.3.313

• Synchronization Hints, see Section 16.114

• ompt_callback_mutex_acquire_t, see Section 20.5.2.1415

• ompt_callback_mutex_t, see Section 20.5.2.1516

• ompt_mutex_t, see Section 20.4.4.1717

• ordered Construct, see Section 16.1018

16.8.6 flush Construct19

Name: flush Association: none
Category: executable Properties: default20

Arguments21
flush(list)22

Name Type Properties
list list of variable list item type optional23

Clause groups24
memory-order25

Clauses26
memscope27

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 419

Binding1
The memscope clause determines the binding thread set for a flush region. If the memscope2
clause is not present the behavior is as if the memscope clause appeared on the construct with the3
device scope-specifier.4

Semantics5
The flush construct executes the OpenMP flush operation. This operation makes the temporary6
view of memory of a thread consistent with memory and enforces an order on the memory7
operations of the variables explicitly specified or implied. Execution of a flush region affects the8
memory and it affects the temporary view of memory of the encountering thread. It does not affect9
the temporary view of other threads. Other threads in the thread-set must themselves execute a flush10
in order to be guaranteed to observe the effects of the flush of the encountering thread. See the11
memory model description in Section 1.4 and the memscope clause description in Section 16.8.412
for more details on thread-sets.13

If neither a memory-order clause nor a list argument appears on a flush construct then the14
behavior is as if the memory-order clause is seq_cst.15

A flush construct with the seq_cst clause, executed on a given thread, operates as if all storage16
locations that are accessible to the thread are flushed by a strong flush; that is, the flush has the17
strong flush property. A flush construct with a list applies a strong flush to the items in the list,18
and the flush does not complete until the operation is complete for all specified list items. An19
implementation may implement a flush construct with a list by ignoring the list and treating it20
the same as a flush construct with the seq_cst clause.21

If no list items are specified, the flush operation has the release flush property and/or the acquire22
flush property:23

• If the memory-order clause is seq_cst or acq_rel, the flush is both a release flush and24
an acquire flush.25

• If the memory-order clause is release, the flush is a release flush.26

• If the memory-order clause is acquire, the flush is an acquire flush.27

C / C++
If a pointer is present in the list, the pointer itself is flushed, not the storage locations to which the28
pointer refers.29

A flush construct without a list corresponds to a call to atomic_thread_fence, where the30
argument is given by the identifier that results from prefixing memory_order_ to the31
memory-order clause name.32

For a flush construct without a list, the generated flush region implicitly performs the33
corresponding call to atomic_thread_fence. The behavior of an explicit call to34
atomic_thread_fence that occurs in an OpenMP program and does not have the argument35
memory_order_consume is as if the call is replaced by its corresponding flush construct.36

C / C++

420 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
If the list item or a subobject of the list item has the POINTER attribute, the allocation or1
association status of the POINTER item is flushed, but the pointer target is not. If the list item is of2
type C_PTR, the variable is flushed, but the storage location that corresponds to that address is not3
flushed. If the list item or the subobject of the list item has the ALLOCATABLE attribute and has an4
allocation status of allocated, the allocated variable is flushed; otherwise the allocation status is5
flushed.6

Fortran
Execution Model Events7
The flush event occurs in a thread that encounters the flush construct.8

Tool Callbacks9
A thread dispatches a registered ompt_callback_flush callback for each occurrence of a10
flush event in that thread. This callback has the type signature ompt_callback_flush_t.11

Restrictions12
Restrictions to the flush construct are as follows:13

• If a memory-order clause is specified, the list argument must not be specified.14

• The memory-order clause must not be relaxed.15

Cross References16
• memscope clause, see Section 16.8.417

• ompt_callback_flush_t, see Section 20.5.2.1718

16.8.7 Implicit Flushes19

Flushes implied when executing an atomic region are described in Section 16.8.5.20

A flush region that corresponds to a flush directive with the release clause present is implied21
at the following locations:22

• During a barrier region;23

• At entry to a parallel region;24

• At entry to a teams region;25

• At exit from a critical region;26

• During an omp_unset_lock region;27

• During an omp_unset_nest_lock region;28

• During an omp_fulfill_event region;29

• Immediately before every task scheduling point;30

• At exit from the task region of each implicit task;31

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 421

• At exit from an ordered region, if a threads clause or a doacross clause with a1
source task-dependence-type is present, or if no clauses are present; and2

• During a cancel region, if the cancel-var ICV is true.3

For a target construct, the thread-set of an implicit release flush that is performed in a target task4
during the generation of the target region and that is performed on exit from the initial task5
region that implicitly encloses the target region consists of the thread that executes the target6
task and the initial thread that executes the target region.7

A flush region that corresponds to a flush directive with the acquire clause present is implied8
at the following locations:9

• During a barrier region;10

• At exit from a teams region;11

• At entry to a critical region;12

• If the region causes the lock to be set, during:13

– an omp_set_lock region;14

– an omp_test_lock region;15

– an omp_set_nest_lock region; and16

– an omp_test_nest_lock region;17

• Immediately after every task scheduling point;18

• At entry to the task region of each implicit task;19

• At entry to an ordered region, if a threads clause or a doacross clause with a sink20
task-dependence-type is present, or if no clauses are present; and21

• Immediately before a cancellation point, if the cancel-var ICV is true and cancellation has22
been activated.23

For a target construct, the thread-set of an implicit acquire flush that is performed in a target task24
following the generation of the target region or that is performed on entry to the initial task25
region that implicitly encloses the target region consists of the thread that executes the target26
task and the initial thread that executes the target region.27

28

Note – A flush region is not implied at the following locations:29

• At entry to worksharing regions; and30

• At entry to or exit from masked regions.31

32

422 OpenMP API – Version 6.0 Preview 2 November 2023

The synchronization behavior of implicit flushes is as follows:1

• When a thread executes an atomic region for which the corresponding construct has the2
release, acq_rel, or seq_cst clause and specifies an atomic operation that starts a3
given release sequence, the release flush that is performed on entry to the atomic operation4
synchronizes with an acquire flush that is performed by a different thread and has an5
associated atomic operation that reads a value written by a modification in the release6
sequence.7

• When a thread executes an atomic region for which the corresponding construct has the8
acquire, acq_rel, or seq_cst clause and specifies an atomic operation that reads a9
value written by a given modification, a release flush that is performed by a different thread10
and has an associated release sequence that contains that modification synchronizes with the11
acquire flush that is performed on exit from the atomic operation.12

• When a thread executes a critical region that has a given name, the behavior is as if the13
release flush performed on exit from the region synchronizes with the acquire flush14
performed on entry to the next critical region with the same name that is performed by a15
different thread, if it exists.16

• When a thread team executes a barrier region, the behavior is as if the release flush17
performed by each thread within the region, and the release flush performed by any other18
thread upon fulfilling the allow-completion event for a detachable task bound to the binding19
parallel region of the region, synchronizes with the acquire flush performed by all other20
threads within the region.21

• When a thread executes a taskwait region that does not result in the creation of a22
dependent task and the task that encounters the corresponding taskwait construct has at23
least one child task, the behavior is as if each thread that executes a child task that is24
generated before the taskwait region performs a release flush upon completion of the25
associated structured block of the child task that synchronizes with an acquire flush26
performed in the taskwait region. If the child task is a detachable task, the thread that27
fulfills its allow-completion event performs a release flush upon fulfilling the event that28
synchronizes with the acquire flush performed in the taskwait region.29

• When a thread executes a taskgroup region, the behavior is as if each thread that executes30
a remaining descendent task performs a release flush upon completion of the associated31
structured block of the descendent task that synchronizes with an acquire flush performed on32
exit from the taskgroup region. If the descendent task is a detachable task, the thread that33
fulfills its allow-completion event performs a release flush upon fulfilling the event that34
synchronizes with the acquire flush performed in the taskgroup region.35

• When a thread executes an ordered region that does not arise from a stand-alone36
ordered directive, the behavior is as if the release flush performed on exit from the region37
synchronizes with the acquire flush performed on entry to an ordered region encountered38
in the next collapsed iteration to be executed by a different thread, if it exists.39

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 423

• When a thread executes an ordered region that arises from a stand-alone ordered1
directive, the behavior is as if the release flush performed in the ordered region from a2
given source doacross iteration synchronizes with the acquire flush performed in all3
ordered regions executed by a different thread that are waiting for dependences on that4
doacross iteration to be satisfied.5

• When a team begins execution of a parallel region, the behavior is as if the release flush6
performed by the primary thread on entry to the parallel region synchronizes with the7
acquire flush performed on entry to each implicit task that is assigned to a different thread.8

• When an initial thread begins execution of a target region that is generated by a different9
thread from a target task, the behavior is as if the release flush performed by the generating10
thread in the target task synchronizes with the acquire flush performed by the initial thread on11
entry to its initial task region.12

• When an initial thread completes execution of a target region that is generated by a13
different thread from a target task, the behavior is as if the release flush performed by the14
initial thread on exit from its initial task region synchronizes with the acquire flush performed15
by the generating thread in the target task.16

• When a thread encounters a teams construct, the behavior is as if the release flush17
performed by the thread on entry to the teams region synchronizes with the acquire flush18
performed on entry to each initial task that is executed by a different initial thread that19
participates in the execution of the teams region.20

• When a thread that encounters a teams construct reaches the end of the teams region, the21
behavior is as if the release flush performed by each different participating initial thread at22
exit from its initial task synchronizes with the acquire flush performed by the thread at exit23
from the teams region.24

• When a task generates an explicit task that begins execution on a different thread, the25
behavior is as if the thread that is executing the generating task performs a release flush that26
synchronizes with the acquire flush performed by the thread that begins to execute the27
explicit task.28

• When an undeferred task completes execution on a given thread that is different from the29
thread on which its generating task is suspended, the behavior is as if a release flush30
performed by the thread that completes execution of the associated structured block of the31
undeferred task synchronizes with an acquire flush performed by the thread that resumes32
execution of the generating task.33

• When a dependent task with one or more predecessor tasks begins execution on a given34
thread, the behavior is as if each release flush performed by a different thread on completion35
of the associated structured block of a predecessor task synchronizes with the acquire flush36
performed by the thread that begins to execute the dependent task. If the predecessor task is a37
detachable task, the thread that fulfills its allow-completion event performs a release flush38
upon fulfilling the event that synchronizes with the acquire flush performed when the39

424 OpenMP API – Version 6.0 Preview 2 November 2023

dependent task begins to execute.1

• When a task begins execution on a given thread and it is mutually exclusive with respect to2
another sibling task that is executed by a different thread, the behavior is as if each release3
flush performed on completion of the sibling task synchronizes with the acquire flush4
performed by the thread that begins to execute the task.5

• When a thread executes a cancel region, the cancel-var ICV is true, and cancellation is not6
already activated for the specified region, the behavior is as if the release flush performed7
during the cancel region synchronizes with the acquire flush performed by a different8
thread immediately before a cancellation point in which that thread observes cancellation was9
activated for the region.10

• When a thread executes an omp_unset_lock region that causes the specified lock to be11
unset, the behavior is as if a release flush is performed during the omp_unset_lock12
region that synchronizes with an acquire flush that is performed during the next13
omp_set_lock or omp_test_lock region to be executed by a different thread that14
causes the specified lock to be set.15

• When a thread executes an omp_unset_nest_lock region that causes the specified16
nested lock to be unset, the behavior is as if a release flush is performed during the17
omp_unset_nest_lock region that synchronizes with an acquire flush that is performed18
during the next omp_set_nest_lock or omp_test_nest_lock region to be19
executed by a different thread that causes the specified nested lock to be set.20

16.9 OpenMP Dependences21

This section describes constructs and clauses in OpenMP that support the specification and22
enforcement of dependences. OpenMP supports two kinds of dependences: task dependences,23
which enforce orderings between tasks; and doacross dependences, which enforce orderings24
between doacross iterations of a loop.25

16.9.1 task-dependence-type Modifier26

Modifiers27
Name Modifies Type Properties
task-dependence-
type

locator-list Keyword: depobj, in,
inout, inoutset,
mutexinoutset, out

required, ultimate
28

Clauses29
depend, update30

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 425

Semantics1
Clauses that are related to task dependences use the task-dependence-type modifier to identify the2
type of dependence relevant to that clause. The effect of the type of dependence is associated with3
locator list items as described with the depend clause, see Section 16.9.5.4

Cross References5
• depend clause, see Section 16.9.56

• update clause, see Section 16.9.37

16.9.2 Depend Objects8

OpenMP depend objects can be used to supply user-computed dependences to depend clauses.9
Depend objects must be accessed only through the depobj construct or through the depend10
clause; OpenMP programs that otherwise access depend objects are non-conforming programs.11

A depend object can be in one of the following states: uninitialized or initialized. Initially, depend12
objects are in the uninitialized state.13

16.9.3 update Clause14

Name: update Properties: innermost-leaf, unique15

Arguments16
Name Type Properties
task-dependence-type Keyword: depobj, in, inout,

inoutset, mutexinoutset, out
default17

Modifiers18
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique19

Directives20
depobj21

Semantics22
The update clause sets the dependence type of a depend object to task-dependence-type.23

Restrictions24
Restrictions to the update clause are as follows:25

• task-dependence-type must not be depobj.26

426 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• depobj directive, see Section 16.9.42

• task-dependence-type modifier, see Section 16.9.13

16.9.4 depobj Construct4

Name: depobj Association: none
Category: executable Properties: default5

Arguments6
depobj(depend-object)7

Name Type Properties
depend-object variable of depend type default8

Clauses9
depend, destroy, update10

Clause set11
Properties: unique, required, exclusive Members: depend, destroy, update12

Binding13
The binding thread set for a depobj region is the encountering thread.14

Semantics15
The depobj construct initializes, updates or destroys a depend object. If a depend clause is16
specified, the state of depend-object is set to initialized and depend-object is set to represent the17
dependence that the depend clause specifies. If an update clause is specified, depend-object is18
updated to represent the new dependence type. If a destroy clause is specified, the state of19
depend-object is set to uninitialized.20

Restrictions21
Restrictions to the depobj construct are as follows:22

• A depend clause on a depobj construct must specify a locator-list with only one list item.23

• The state of depend-object must be uninitialized if a depend clause is specified.24

• The state of depend-object must be initialized if a destroy clause or update clause is25
specified.26

• If the depend-object represents a dependence for the omp_all_memory locator, an27
update clause must specify either an out or inout task-dependence-type.28

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 427

Cross References1
• depend clause, see Section 16.9.52

• destroy clause, see Section 4.63

• update clause, see Section 16.9.34

• task-dependence-type modifier, see Section 16.9.15

16.9.5 depend Clause6

Name: depend Properties: default7

Arguments8
Name Type Properties
locator-list list of locator list item type default9

Modifiers10
Name Modifies Type Properties
task-dependence-
type

locator-list Keyword: depobj, in,
inout, inoutset,
mutexinoutset, out

required, ultimate

iterator locator-list Complex, name: iterator
Arguments:
iterator-specifier OpenMP

expression (repeatable)

unique

directive-name-
modifier

all arguments Keyword:
directive-name

unique

11

Directives12
depobj, dispatch, interop, target, target enter data, target exit data,13
target update, task, taskwait14

Semantics15
The depend clause enforces additional constraints on the scheduling of tasks. These constraints16
establish dependences only between sibling tasks. Task dependences are derived from the17
task-dependence-type and the list items.18

The storage location of a list item matches the storage location of another list item if they have the19
same storage location, or if any of the list items is omp_all_memory.20

For the in task-dependence-type, if the storage location of at least one of the list items matches the21
storage location of a list item appearing in a depend clause with an out, inout,22
mutexinoutset, or inoutset task-dependence-type on a construct from which a sibling task23
was previously generated, then the generated task will be a dependent task of that sibling task.24

428 OpenMP API – Version 6.0 Preview 2 November 2023

For the out task-dependence-typeand inout task-dependence-type, if the storage location of at1
least one of the list items matches the storage location of a list item appearing in a depend clause2
with an in, out, inout, mutexinoutset, or inoutset task-dependence-type on a construct3
from which a sibling task was previously generated, then the generated task will be a dependent4
task of that sibling task.5

For the mutexinoutset task-dependence-type, if the storage location of at least one of the list6
items matches the storage location of a list item appearing in a depend clause with an in, out,7
inout, or inoutset task-dependence-type on a construct from which a sibling task was8
previously generated, then the generated task will be a dependent task of that sibling task.9

If a list item appearing in a depend clause with a mutexinoutset task-dependence-type on a10
task-generating construct matches a list item appearing in a depend clause with a11
mutexinoutset task-dependence-type on a different task-generating construct, and both12
constructs generate sibling tasks, the sibling tasks will be mutually exclusive tasks.13

For the inoutset task-dependence-type, if the storage location of at least one of the list items14
matches the storage location of a list item appearing in a depend clause with an in, out, inout,15
or mutexinoutset task-dependence-type on a construct from which a sibling task was16
previously generated, then the generated task will be a dependent task of that sibling task.17

When the task-dependence-type is depobj, the task dependences are derived from the task18
dependences represented by the depend objects specified in the depend clause as if the depend19
clauses of the depobj constructs were specified in the current construct.20

The list items that appear in the depend clause may reference any iterator-identifier defined in its21
iterator modifier.22

The list items that appear in the depend clause may include array sections or the23
omp_all_memory reserved locator.24

Fortran
If a list item has the ALLOCATABLE attribute and its allocation status is unallocated, the behavior25
is unspecified. If a list item has the POINTER attribute and its association status is disassociated or26
undefined, the behavior is unspecified.27

Fortran
C / C++

The list items that appear in a depend clause may use shape-operators.28

C / C++
29

Note – The enforced task dependence establishes a synchronization of memory accesses30
performed by a dependent task with respect to accesses performed by the predecessor tasks.31
However, the programmer must properly synchronize with respect to other concurrent accesses that32
occur outside of those tasks.33

34

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 429

Execution Model Events1
The task-dependences event occurs in a thread that encounters a task-generating construct or a2
taskwait construct with a depend clause immediately after the task-create event for the new3
task or the taskwait-init event.4

The task-dependence event indicates an unfulfilled dependence for the generated task. This event5
occurs in a thread that observes the unfulfilled dependence before it is satisfied.6

Tool Callbacks7
A thread dispatches the ompt_callback_dependences callback for each occurrence of the8
task-dependences event to announce its dependences with respect to the list items in the depend9
clause. This callback has type signature ompt_callback_dependences_t.10

A thread dispatches the ompt_callback_task_dependence callback for a task-dependence11
event to report a dependence between a predecessor task (src_task_data) and a dependent task12
(sink_task_data). This callback has type signature ompt_callback_task_dependence_t.13

Restrictions14
Restrictions to the depend clause are as follows:15

• List items, other than reserved locators, used in depend clauses of the same task or sibling16
tasks must indicate identical storage locations or disjoint storage locations.17

• List items used in depend clauses cannot be zero-length array sections.18

• The omp_all_memory reserved locator can only be used in a depend clause with an out19
or inout task-dependence-type.20

• Array sections cannot be specified in depend clauses with the depobj21
task-dependence-type.22

• List items used in depend clauses with the depobj task-dependence-type must be23
expressions of the OpenMP depend type that correspond to depend objects in the initialized24
state.25

• List items that are expressions of the OpenMP depend type can only be used in depend26
clauses with the depobj task-dependence-type.27

Fortran
• A common block name cannot appear in a depend clause.28

Fortran
C / C++

• A bit-field cannot appear in a depend clause.29

C / C++

430 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• depobj directive, see Section 16.9.42

• dispatch directive, see Section 8.63

• interop directive, see Section 15.14

• target directive, see Section 14.85

• target enter data directive, see Section 14.66

• target exit data directive, see Section 14.77

• target update directive, see Section 14.98

• task directive, see Section 13.69

• taskwait directive, see Section 16.510

• Array Sections, see Section 4.2.511

• Array Shaping, see Section 4.2.412

• iterator modifier, see Section 4.2.613

• task-dependence-type modifier, see Section 16.9.114

• ompt_callback_dependences_t, see Section 20.5.2.815

• ompt_callback_task_dependence_t, see Section 20.5.2.916

16.9.6 doacross Clause17

Name: doacross Properties: required18

Arguments19
Name Type Properties
iteration-specifier OpenMP iteration specifier default20

Modifiers21
Name Modifies Type Properties
dependence-type iteration-specifier Keyword: sink, source required
directive-name-
modifier

all arguments Keyword:
directive-name

unique22

Directives23
ordered-standalone24

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 431

Semantics1
The doacross clause identifies doacross dependences that imply additional constraints on the2
scheduling of doacross logical iterations of a doacross loop nest. These constraints establish3
dependences only between doacross iterations. The iteration-specifier specifies a doacross iteration4
and is either a loop-iteration vector or uses the omp_cur_iteration keyword (see5
Section 5.4.2).6

The source dependence-type specifies that the current doacross iteration is a source iteration and,7
thus, satisfies doacross dependences that arise from the current doacross iteration. If the source8
dependence-type is specified then the iteration-specifier argument is optional; if iteration-specifier9
is omitted, it is assumed to be omp_cur_iteration.10

The sink dependence-type specifies the current doacross iteration is a sink iteration and, thus, has11
a doacross dependence, where iteration-specifier indicates the doacross iteration that satisfies the12
dependence. If iteration-specifier indicates a doacross iteration that does not occur in the doacross13
iteration space, the doacross clause is ignored. If all doacross clauses on an ordered14
construct are ignored then the construct is ignored.15

16

Note – If the sink dependence-type is specified for an iteration-specifier that does not indicate an17
earlier iteration of the doacross iteration space, deadlock may occur.18

19

Restrictions20
Restrictions to the doacross clause are as follows:21

• If iteration-specifier is a loop-iteration vector and it has n elements, the innermost22
loop-nest-associated construct that encloses the construct on which the clause appears must23
specify an ordered clause for which the parameter value equals n.24

• If iteration-specifier is specified with the omp_cur_iteration keyword and with sink25
as the dependence-type then it must be omp_cur_iteration - 1.26

• If iteration-specifier is specified with source as the dependence-type then it must be27
omp_cur_iteration.28

• If iteration-specifier is a loop-iteration vector and the sink dependence-type is specified29
then for each element, if the loop iteration variable vari has an integral or pointer type, the ith30
expression of vector must be computable without overflow in that type for any value of vari31
that can encounter the construct on which the doacross clause appears.32

C++
• If iteration-specifier is a loop-iteration vector and the sink dependence-type is specified33

then for each element, if the loop iteration variable vari is of a random access iterator type34
other than pointer type, the ith expression of vector must be computable without overflow in35
the type that would be used by std::distance applied to variables of the type of vari for36
any value of vari that can encounter the construct on which the doacross clause appears.37

C++

432 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• ordered clause, see Section 5.4.42

• ordered directive, see Section 16.10.13

• OpenMP Loop-Iteration Spaces and Vectors, see Section 5.4.24

16.10 ordered Construct5

This section describes two forms for the ordered construct, the stand-alone ordered construct6
and the block-associated ordered construct. Both forms include the execution model events, tool7
callbacks, and restrictions listed in this section.8

Execution Model Events9
The ordered-acquiring event occurs in the task that encounters the ordered construct on entry to10
the ordered region before it initiates synchronization for the region.11

The ordered-acquired event occurs in the task that encounters the ordered construct after it12
enters the region, but before it executes the structured block of the ordered region.13

The ordered-released event occurs in the task that encounters the ordered construct after it14
completes any synchronization on exit from the ordered region.15

Tool Callbacks16
A thread dispatches a registered ompt_callback_mutex_acquire callback for each17
occurrence of an ordered-acquiring event in that thread. This callback has the type signature18
ompt_callback_mutex_acquire_t.19

A thread dispatches a registered ompt_callback_mutex_acquired callback for each20
occurrence of an ordered-acquired event in that thread. This callback has the type signature21
ompt_callback_mutex_t.22

A thread dispatches a registered ompt_callback_mutex_released callback with23
ompt_mutex_ordered as the kind argument if practical, although a less specific kind may be24
used, for each occurrence of an ordered-released event in that thread. This callback has the type25
signature ompt_callback_mutex_t and occurs in the task that encounters the construct.26

Restrictions27
• The construct that corresponds to the binding region of an ordered region must specify an28
ordered clause.29

• The construct that corresponds to the binding region of an ordered region must not specify30
a reduction clause with the inscan modifier.31

• The regions of a stand-alone orderedconstruct and a block-associated ordered construct32
must not have the same binding region.33

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 433

Cross References1
• ompt_callback_mutex_acquire_t, see Section 20.5.2.142

• ompt_callback_mutex_t, see Section 20.5.2.153

16.10.1 Stand-alone ordered Construct4

Name: ordered Association: none
Category: executable Properties: default5

Clauses6
doacross7

Binding8
The binding thread set for a stand-alone ordered region is the current team. A stand-alone9
ordered region binds to the innermost enclosing worksharing-loop region.10

Semantics11
The innermost enclosing worksharing-loop construct of a stand-alone ordered construct is12
associated with a doacross loop nest of n associated loops given by the argument in the ordered13
clause of that construct.14

The stand-alone ordered construct specifies that execution must not violate doacross15
dependences as specified in the doacross clauses that appear on the construct. When a thread16
that is executing a doacross iteration encounters an ordered construct with one or more17
doacross clauses for which the sink dependence-type is specified, the thread waits until its18
dependences on all valid doacross iterations specified by the doacross clauses are satisfied19
before it continues execution. A specific dependence is satisfied when a thread that is executing the20
corresponding doacross iteration encounters an ordered construct with a doacross clause for21
which the source dependence-type is specified.22

Execution Model Events23
The doacross-sink event occurs in the task that encounters an ordered construct for each24
doacross clause for which the sink dependence-type is specified after the dependence is25
fulfilled.26

The doacross-source event occurs in the task that encounters an ordered construct with a27
doacross clause for which the source dependence-type is specified before signaling that the28
dependence has been fulfilled.29

434 OpenMP API – Version 6.0 Preview 2 November 2023

Tool Callbacks1
A thread dispatches a registered ompt_callback_dependences callback with all vector2
entries listed as ompt_dependence_type_sink in the deps argument for each occurrence of a3
doacross-sink event in that thread. A thread dispatches a registered4
ompt_callback_dependences callback with all vector entries listed as5
ompt_dependence_type_source in the deps argument for each occurrence of a6
doacross-source event in that thread. These callbacks have the type signature7
ompt_callback_dependences_t.8

Restrictions9
Additional restrictions to the stand-alone ordered construct are as follows:10

• At most one doacross clause may appear on the construct with source as the11
dependence-type.12

• All doacross clauses that appear on the construct must specify the same dependence-type.13

• The construct must not be an orphaned construct.14

Cross References15
• doacross clause, see Section 16.9.616

• Worksharing-Loop Constructs, see Section 12.617

• ompt_callback_dependences_t, see Section 20.5.2.818

16.10.2 Block-associated ordered Construct19

Name: ordered Association: block
Category: executable Properties: simdizable, thread-limiting,

thread-exclusive
20

Clause groups21
parallelization-level22

Binding23
The binding thread set for a block-associated ordered region is the current team. A24
block-associated ordered region binds to the innermost enclosing worksharing-loop region,25
simd region or worksharing-loop SIMD region.26

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 435

Semantics1
If no clauses are specified, the effect is as if the threads parallelization-level clause was2
specified. If the threads clause is specified, the threads in the team that is executing the3
worksharing-loop region execute ordered regions sequentially in the order of the collapsed4
iterations. If the simd parallelization-level clause is specified, the ordered regions encountered5
by any thread will execute one at a time in the order of the collapsed iterations. With either6
parallelization-level, execution of code outside the region for different collapsed iterations can run7
in parallel; execution of that code within the same collapsed iteration must observe any constraints8
imposed by the base language semantics.9

When the thread that is executing the first collapsed iteration of the loop encounters a10
block-associated ordered construct, it can enter the ordered region without waiting. When a11
thread that is executing any subsequent collapsed iteration encounters a block-associated ordered12
construct, it waits at the beginning of the ordered region until execution of all ordered regions13
that belong to all previous collapsed iterations has completed. ordered regions that bind to14
different regions execute independently of each other.15

Restrictions16
Additional restrictions to the block-associated ordered construct are as follows:17

• The construct is simdizable only if the simd parallelization-level clause is specified.18

• If the simd parallelization-level clause is specified, the binding region must be a simd19
region or one that corresponds to a combined construct or composite construct for which the20
simd construct is a leaf construct.21

• If the threads parallelization-level clause is specified, the binding region must be a22
worksharing-loop region or one that corresponds to a combined construct or composite23
construct for which a worksharing-loop construct is a leaf construct.24

• If the threads parallelization-level clause is specified and the binding region corresponds25
to a combined construct or composite construct then the simd construct must not be a leaf26
construct unless the simd parallelization-level clause is also specified.27

• During execution of the collapsed iteration associated with a loop-nest-associated directive, a28
thread must not execute more than one block-associated ordered region that binds to the29
corresponding region of the loop-nest-associated directive.30

• An ordered clause with a parameter value equal to one must appear on the construct that31
corresponds to the binding region.32

Cross References33
• parallelization-level Clauses, see Section 16.10.334

• ordered clause, see Section 5.4.435

• simd directive, see Section 11.536

• Worksharing-Loop Constructs, see Section 12.637

436 OpenMP API – Version 6.0 Preview 2 November 2023

16.10.3 parallelization-level Clauses1

Clause groups2
Properties: unique Members:

Clauses
simd, threads

3

Directives4
ordered-blockassoc5

Semantics6
The parallelization-level clause group defines a set of clauses that indicate the level of7
parallelization with which to associate a construct.8

Cross References9
• ordered directive, see Section 16.10.210

16.10.3.1 threads Clause11

Name: threads Properties: innermost-leaf, unique12

Arguments13
Name Type Properties
apply-to-threads expression of OpenMP logical type constant, optional14

Modifiers15
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique16

Directives17
ordered-blockassoc18

Semantics19
If apply_to_threads evaluates to true, the effect is as if the threads parallelization-level clause is20
specified. If apply_to_threads evaluates to false, the effect is as if the threads clause is not21
specified. If apply_to_threads is not specified, the effect is as if apply_to_threads evaluates to true.22

Cross References23
• ordered directive, see Section 16.10.224

CHAPTER 16. SYNCHRONIZATION CONSTRUCTS AND CLAUSES 437

16.10.3.2 simd Clause1

Name: simd Properties: innermost-leaf, unique2

Arguments3
Name Type Properties
apply-to-simd expression of OpenMP logical type constant, optional4

Modifiers5
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique6

Directives7
ordered-blockassoc8

Semantics9
If apply_to_simd evaluates to true, the effect is as if the simd parallelization-level clause is10
specified. If apply_to_simd evaluates to false, the effect is as if the simd clause is not specified. If11
apply_to_simd is not specified, the effect is as if apply_to_simd evaluates to true.12

Cross References13
• ordered directive, see Section 16.10.214

438 OpenMP API – Version 6.0 Preview 2 November 2023

17 Cancellation Constructs1

This chapter defines constructs related to cancellation of OpenMP regions.2

17.1 cancel-directive-name Clauses3

Clause groups4
Properties: required, unique, exclusive Members:

Clauses
do, for, parallel, sections,
taskgroup

5

Modifiers6
Name Modifies Type Properties
directive-name-
modifier

all arguments Keyword:
directive-name

unique7

Directives8
cancel, cancellation point9

Semantics10
For each directive that has the cancellable property (i.e., the directive is a cancellable construct), a11
corresponding clause for which clause-name is the directive-name of that directive is a member of12
the cancel-directive-name clause group. Each member of the cancel-directive-name clause group13
takes an optional argument, apply-to-directive, that must be a constant expression of logical type.14
For each member of the clause group, if apply_to_directive evaluates to true then the semantics of15
the construct on which the clause appears are applied for the directive with the directive-name16
specified by the clause. If apply_to_directive evaluates to false, the effect is equivalent to specifying17
an if clause for which if-expression evaluates to false. If apply_to_directive is not specified, the18
effect is as if apply_to_directive evaluates to true.19

Restrictions20
Restrictions to any clauses in the cancel-directive-name clause group are as follows:21

• If apply_to_directive evaluates to false and an if clause is specified for the same constituent22
construct, if-expression must evaluate to false.23

439

Cross References1
• cancel directive, see Section 17.22

• cancellation point directive, see Section 17.33

• do directive, see Section 12.6.24

• for directive, see Section 12.6.15

• parallel directive, see Section 11.26

• sections directive, see Section 12.37

• taskgroup directive, see Section 16.48

17.2 cancel Construct9

Name: cancel Association: none
Category: executable Properties: default10

Clause groups11
cancel-directive-name12

Clauses13
if14

Binding15
The binding thread set of the cancel region is the current team. The binding region of the16
cancel region is the innermost enclosing region of the type that corresponds to17
cancel-directive-name.18

Semantics19
The cancel construct activates cancellation of the innermost enclosing region of the type20
specified by cancel-directive-name, which must be the directive-name of a cancellable construct.21
Cancellation of the binding region is activated only if the cancel-var ICV is true, in which case the22
cancel construct causes the encountering task to continue execution at the end of the binding23
region if cancel-directive-name is not taskgroup. If the cancel-var ICV is true and24
cancel-directive-name is taskgroup, the encountering task continues execution at the end of the25
current task region. If the cancel-var ICV is false, the cancel construct is ignored.26

Threads check for active cancellation only at cancellation points that are implied at the following27
locations:28

• cancel regions;29

• cancellation point regions;30

• barrier regions;31

440 OpenMP API – Version 6.0 Preview 2 November 2023

• at the end of a worksharing-loop construct with a nowait clause and for which the same list1
item appears in both firstprivate and lastprivate clauses; and2

• implicit barrier regions.3

When a thread reaches one of the above cancellation points and if the cancel-var ICV is true, then:4

• If the thread is at a cancel or cancellation point region and cancel-directive-name5
is not taskgroup, the thread continues execution at the end of the canceled region if6
cancellation has been activated for the innermost enclosing region of the type specified.7

• If the thread is at a cancel or cancellation point region and cancel-directive-name8
is taskgroup, the encountering task checks for active cancellation of all of the taskgroup9
sets to which the encountering task belongs, and continues execution at the end of the current10
task region if cancellation has been activated for any of the taskgroup sets.11

• If the encountering task is at a barrier region or at the end of a worksharing-loop construct12
with a nowait clause and for which the same list item appears in both firstprivate13
and lastprivate clauses, the encountering task checks for active cancellation of the14
innermost enclosing parallel region. If cancellation has been activated, then the15
encountering task continues execution at the end of the canceled region.16

When cancellation of tasks is activated through a cancel construct with taskgroup for17
cancel-directive-name, the tasks that belong to the taskgroup set of the innermost enclosing18
taskgroup region will be canceled. The task that encountered that construct continues execution19
at the end of its task region, which implies completion of that task. Any task that belongs to the20
innermost enclosing taskgroup and has already begun execution must run to completion or until21
a cancellation point is reached. Upon reaching a cancellation point and if cancellation is active, the22
task continues execution at the end of its task region, which implies the completion of the task. Any23
task that belongs to the innermost enclosing taskgroup and that has not begun execution may be24
discarded, which implies its completion.25

When cancellation of tasks is activated through a cancel construct with cancel-directive-name26
other than taskgroup, each thread of the binding thread set resumes execution at the end of the27
canceled region if a cancellation point is encountered. If the canceled region is a parallel28
region, any tasks that have been created by a task or a taskloop construct and their descendent29
tasks are canceled according to the above taskgroup cancellation semantics. If the canceled30
region is not a parallel region, no task cancellation occurs.31

C++
The usual C++ rules for object destruction are followed when cancellation is performed.32

C++
Fortran

All private objects or subobjects with the ALLOCATABLE attribute that are allocated inside the33
canceled construct are deallocated.34

Fortran

CHAPTER 17. CANCELLATION CONSTRUCTS 441

If the canceled construct specifies a reduction scoping clause or lastprivate clause, the final1
values of the list items that appear in those clauses are undefined.2

When an if clause is present on a cancel construct and if-expression evaluates to false, the3
cancel construct does not activate cancellation. The cancellation point associated with the4
cancel construct is always encountered regardless of the value of if-expression.5

6

Note – The programmer is responsible for releasing locks and other synchronization data structures7
that might cause a deadlock when a cancel construct is encountered and blocked threads cannot8
be canceled. The programmer is also responsible for ensuring proper synchronizations to avoid9
deadlocks that might arise from cancellation of regions that contain synchronization constructs.10

11

Execution Model Events12
If a task encounters a cancel construct that will activate cancellation then a cancel event occurs.13

A discarded-task event occurs for any discarded tasks.14

Tool Callbacks15
A thread dispatches a registered ompt_callback_cancel callback for each occurrence of a16
cancel event in the context of the encountering task. This callback has type signature17
ompt_callback_cancel_t; (flags & ompt_cancel_activated) always evaluates to18
true in the dispatched callback; (flags & ompt_cancel_parallel) evaluates to true in the19
dispatched callback if cancel-directive-name is parallel;20
(flags & ompt_cancel_sections) evaluates to true in the dispatched callback if21
cancel-directive-name is sections; (flags & ompt_cancel_loop) evaluates to true in the22
dispatched callback if cancel-directive-name is for or do; and23
(flags & ompt_cancel_taskgroup) evaluates to true in the dispatched callback if24
cancel-directive-name is taskgroup.25

A thread dispatches a registered ompt_callback_cancel callback with its task_data26
argument pointing to the ompt_data_t object associated with the discarded task and with27
ompt_cancel_discarded_task as its flags argument for each occurrence of a28
discarded-task event. The callback occurs in the context of the task that discards the task and has29
type signature ompt_callback_cancel_t.30

Restrictions31
Restrictions to the cancel construct are as follows:32

• The behavior for concurrent cancellation of a region and a region nested within it is33
unspecified.34

• If cancel-directive-name is taskgroup, the cancel construct must be a closely nested35
construct of a task or a taskloop construct and the cancel region must be a closely36
nested region of a taskgroup region.37

442 OpenMP API – Version 6.0 Preview 2 November 2023

• If cancel-directive-name is not taskgroup, the cancel construct must be a closely nested1
construct of a construct that matches cancel-directive-name.2

• A worksharing construct that is canceled must not have a nowait clause or a reduction3
clause with a user-defined reduction that uses omp_orig in the initializer-expr of the4
corresponding declare reduction directive.5

• A worksharing-loop construct that is canceled must not have an ordered clause or a6
reduction clause with the inscan reduction-modifier.7

• When cancellation is active for a parallel region, a thread in the team that binds to that8
region may not be executing or encounter a worksharing construct with an ordered clause,9
a reduction clause with the inscan reduction-modifier or a reduction clause with a10
user-defined reduction that uses omp_orig in the initializer-expr of the corresponding11
declare reduction directive.12

• During execution of a construct that may be subject to cancellation, a thread must not13
encounter an orphaned cancellation point. That is, a cancellation point must only be14
encountered within that construct and must not be encountered elsewhere in its region.15

Cross References16
• firstprivate clause, see Section 6.4.417

• if clause, see Section 4.518

• nowait clause, see Section 16.619

• ordered clause, see Section 5.4.420

• private clause, see Section 6.4.321

• reduction clause, see Section 6.5.922

• barrier directive, see Section 16.3.123

• cancellation point directive, see Section 17.324

• declare reduction directive, see Section 6.5.1325

• task directive, see Section 13.626

• cancel-var ICV, see Table 2.127

• omp_get_cancellation, see Section 19.2.828

• ompt_callback_cancel_t, see Section 20.5.2.1829

• ompt_cancel_flag_t, see Section 20.4.4.2630

CHAPTER 17. CANCELLATION CONSTRUCTS 443

17.3 cancellation point Construct1

Name: cancellation point Association: none
Category: executable Properties: default2

Clause groups3
cancel-directive-name4

Binding5
The binding thread set of the cancellation point construct is the current team. The binding6
region of the cancellation point region is the innermost enclosing region of the type that7
corresponds to cancel-directive-name.8

Semantics9
The cancellation point construct introduces a user-defined cancellation point at which an10
implicit task or explicit task must check if cancellation of the innermost enclosing region of the11
type specified by cancel-directive-name, which must be the directive-name of a cancellable12
construct, has been activated. This construct does not implement any synchronization between13
threads or tasks. The semantics, including the execution model events and tool callbacks, for when14
an implicit task or explicit task reaches a user-defined cancellation point are identical to those of15
any other cancellation point and are defined in Section 17.2.16

Restrictions17
Restrictions to the cancellation point construct are as follows:18

• A cancellation point construct for which cancel-directive-name is taskgroup19
must be a closely nested construct of a task or taskloop construct, and the20
cancellation point region must be a closely nested region of a taskgroup region.21

• A cancellation point construct for which cancel-directive-name is not taskgroup22
must be a closely nested construct inside a construct that matches cancel-directive-name.23

Cross References24
• cancel-var ICV, see Table 2.125

• omp_get_cancellation, see Section 19.2.826

• ompt_callback_cancel_t, see Section 20.5.2.1827

444 OpenMP API – Version 6.0 Preview 2 November 2023

18 Composition of Constructs1

This chapter defines rules and mechanisms for nesting regions and for combining constructs.2

18.1 Nesting of Regions3

This section describes a set of restrictions on the nesting of regions. The restrictions on nesting are4
as follows:5

• A team-executed region may not be closely nested inside a partitioned worksharing region, a6
region that corresponds to a thread-exclusive construct, or a region that corresponds to a7
task-generating construct that is not to a team-generating construct.8

• An ordered region that corresponds to an ordered construct without any clause or with9
the threads or depend clause may not be closely nested inside a critical, ordered,10
loop, task, or taskloop region.11

• An ordered region that corresponds to an ordered construct without the simd clause12
specified must be closely nested inside a worksharing-loop region.13

• An ordered region that corresponds to an ordered construct with the simd clause14
specified must be closely nested inside a simd or worksharing-loop SIMD region.15

• An ordered region that corresponds to an ordered construct with both the simd and16
threads clauses must be closely nested inside a worksharing-loop SIMD region or closely17
nested inside a worksharing-loop and simd region.18

• A critical region may not be nested (closely or otherwise) inside a critical region19
with the same name. This restriction is not sufficient to prevent deadlock.20

• OpenMP constructs may not be encountered during execution of an atomic region.21

• The only OpenMP constructs that can be encountered during execution of a simd (or22
worksharing-loop SIMD) region are the atomic construct, the loop construct without a23
defined binding region, the simd construct and the ordered construct with the simd24
clause.25

• If a target update, target data, target enter data, or target exit data26
construct is encountered during execution of a target region, the behavior is unspecified.27

445

• If a target construct is encountered during execution of a target region and a device1
clause in which the ancestor device-modifier appears is not present on the construct, the2
behavior is unspecified.3

• A teams region must be strictly nested either within the implicit parallel region that4
surrounds the whole OpenMP program or within a target region. If a teams construct is5
nested within a target construct, that target construct must contain no statements,6
declarations or directives outside of the teams construct.7

• distribute regions, including any distribute regions arising from composite8
constructs, parallel regions, including any parallel regions arising from combined9
constructs, loop regions, omp_get_num_teams() regions, and10
omp_get_team_num() regions are the only OpenMP regions that may be strictly nested11
inside the teams region.12

• A loop region that binds to a teams region must be strictly nested inside a teams region.13

• A distribute region must be strictly nested inside a teams region.14

• If cancel-directive-name is taskgroup, the cancel construct must be closely nested15
inside a task construct and the cancel region must be closely nested inside a16
taskgroup region. Otherwise, the cancel construct must be closely nested inside an17
OpenMP construct for which directive-name is cancel-directive-name.18

• A cancellation point construct for which cancel-directive-name is taskgroup must19
be closely nested inside a task construct, and the cancellation point region must be20
closely nested inside a taskgroup region. Otherwise, a cancellation point21
construct must be closely nested inside an OpenMP construct for which directive-name is22
cancel-directive-name.23

• The only constructs that may be encountered inside a region that corresponds to a construct24
with an order clause that specifies concurrent are the loop, parallel and simd25
constructs, and combined constructs for which directive-name-A is parallel.26

• A region that corresponds to a construct with an order clause that specifies concurrent27
may not contain calls to the OpenMP Runtime API or to procedures that contain OpenMP28
directives.29

18.2 Clauses on Combined and Composite30

Constructs31

This section specifies the handling of clauses on combined constructs or composite constructs and32
the handling of implicit clauses from variables with predetermined data sharing if they are not33
predetermined only on a particular construct. Some clauses are permitted only on a single leaf34
construct of the combined construct or composite construct, in which case the effect is as if the35
clause is applied to that specific construct. Other clauses that are permitted on more than one leaf36

446 OpenMP API – Version 6.0 Preview 2 November 2023

construct have the effect as if they are applied to a subset of those construct, as detailed in this1
section. Unless otherwise specified, the effect of a clause on a combined directive or composite2
directive is as if it is applied to all leaf constructs that permit it (i.e., it has the default3
all-constituents property).4

Unless otherwise specified, certain clause properties determine how each clause with those5
properties applies to the constituents of combined directives and composite directives. Regardless6
of any specified directive-name-modifier, the effect of any clause with the once-for-all-constituents7
property on a combined construct or composite construct is as if it is applied once to the combined8
construct or composite construct regardless of how many constituent constructs to which they may9
apply. The effect of any clause with the all-privatizing property on a combined directive or10
composite directive is as if it is applied to all leaf constructs that permit the clause and to which a11
data-sharing attribute clause that may create a private copy of the same list item is applied. Unless12
otherwise specified, the effect of any clause with the innermost-leaf property on a combined13
construct or composite construct is as if it is applied only to the innermost leaf construct that14
permits it. Unless otherwise specified, the effect of any clause with the outermost-leaf property on a15
combined construct or composite construct is as if it is applied only to the outermost leaf construct16
that permits it.17

The effect of the firstprivate clause is as if it is applied to one or more leaf constructs as18
follows:19

• To the distribute construct if it is among the constituent constructs;20

• To the teams construct if it is among the constituent constructs and the distribute21
construct is not;22

• To a worksharing construct that accepts the clause if one is among the constituent constructs;23

• To the taskloop construct if it is among the constituent constructs;24

• To the parallel construct if it is among the constituent construct and neither a25
taskloop construct nor a worksharing construct that accepts the clause is among them;26

• To the target construct if it is among the constituent constructs and the same list item27
neither appears in a lastprivate clause nor is the base variable or base pointer of a list28
item that appears in a map clause.29

If the parallel construct is among the constituent constructs and the effect is not as if the30
firstprivate clause is applied to it by the above rules, then the effect is as if the shared31
clause with the same list item is applied to the parallel construct. If the teams construct is32
among the constituent constructs and the effect is not as if the firstprivate clause is applied to33
it by the above rules, then the effect is as if the shared clause with the same list item is applied to34
the teams construct.35

The effect of the lastprivate clause is as if it is applied to all leaf constructs that permit the36
clause. If the parallel construct is among the constituent constructs and the list item is not also37
specified in the firstprivate clause, then the effect of the lastprivate clause is as if the38

CHAPTER 18. COMPOSITION OF CONSTRUCTS 447

shared clause with the same list item is applied to the parallel construct. If the teams1
construct is among the constituent constructs and the list item is not also specified in the2
firstprivate clause, then the effect of the lastprivate clause is as if the shared clause3
with the same list item is applied to the teams construct. If the target construct is among the4
constituent constructs and the list item is not the base variable or base pointer of a list item that5
appears in a map clause, the effect of the lastprivate clause is as if the same list item appears6
in a map clause with a map-type of tofrom.7

The effect of the reduction clause is as if it is applied to all leaf constructs that permit the8
clause, except for the following constructs:9

• The parallel construct, when combined with the sections, worksharing-loop, loop,10
or taskloop construct; and11

• The teams construct, when combined with the loop construct.12

For the parallel and teams constructs above, the effect of the reduction clause instead is as13
if each list item or, for any list item that is an array item, its corresponding base array or14
corresponding base pointer appears in a shared clause for the construct. If the task15
reduction-modifier is specified, the effect is as if it only modifies the behavior of the reduction16
clause on the innermost leaf construct that accepts the modifier (see Section 6.5.9). If the inscan17
reduction-modifier is specified, the effect is as if it modifies the behavior of the reduction clause18
on all constructs of the combined construct to which the clause is applied and that accept the19
modifier. If a list item in a reduction clause on a combined target construct does not have the20
same base variable or base pointer as a list item in a map clause on the construct, then the effect is21
as if the list item in the reduction clause appears as a list item in a map clause with a map-type22
of tofrom.23

The effect of the linear clause is as if it is applied to the innermost leaf construct. Additionally,24
if the list item is not the iteration variable of a simd or worksharing-loop SIMD construct, the25
effect on the outer leaf constructs is as if the list item was specified in firstprivate and26
lastprivate clauses on the combined or composite construct, with the rules specified above27
applied. If a list item of the linear clause is the iteration variable of a simd or worksharing-loop28
SIMD construct and it is not declared in the construct, the effect on the outer leaf constructs is as if29
the list item was specified in a lastprivate clause on the combined or composite construct with30
the rules specified above applied.31

If the clauses have expressions on them, such as for various clauses where the argument of the32
clause is an expression, or lower-bound, length, or stride expressions inside array sections (or33
subscript and stride expressions in subscript-triplet for Fortran), or linear-step or alignment34
expressions, the expressions are evaluated immediately before the construct to which the clause has35
been split or duplicated per the above rules (therefore inside of the outer leaf constructs). However,36
the expressions inside the num_teams and thread_limit clauses are always evaluated before37
the outermost leaf construct.38

The restriction that a list item may not appear in more than one data sharing clause with the39
exception of specifying a variable in both firstprivate and lastprivate clauses applies40

448 OpenMP API – Version 6.0 Preview 2 November 2023

after the clauses are split or duplicated per the above rules.1

Restrictions2
Restrictions to clauses on combined and composite constructs are as follows:3

• A clause that appears on a combined or composite construct must apply to at least one of the4
leaf constructs per the rules defined in this section.5

18.3 Combined and Composite Directive Names6

Combined directives are shortcuts for specifying one directive immediately nested inside another7
directive. Composite directives are also shortcuts for specifying the effect of one directive8
immediately following the effect of another construct. However, composite directives define9
semantics to combine directive that cannot otherwise be immediately nested.10

For all combined and composite constructs, directive-name concatenates directive-name-A, the11
directive name of the enclosing construct, with an intervening space followed by directive-name-B,12
the directive name of the nested construct. If directive-name-A and directive-name-B both13
correspond to loop-associated constructs then directive-name is a composite construct. Otherwise14
directive-name is a combined construct.15

If directive-name-A is taskloop, for or do then directive-name-B may be simd.16

If directive-name-A is masked then directive-name-B may be taskloop or the directive name of17
a combined or composite construct for which directive-name-A is taskloop.18

If directive-name-A is parallel then directive-name-B may be loop, sections,19
workshare, masked, for, do or the directive name of a combined or composite construct for20
which directive-name-A is masked, for or do.21

If directive-name-A is distribute then directive-name-B may be simd or the directive name of22
a combined or composite construct for which directive-name-A is parallel and for or do is a23
leaf construct.24

If directive-name-A is teams then directive-name-B may be loop, coexecute, distribute25
or the directive name of a combined or composite construct for which directive-name-A is26
distribute.27

If directive-name-A is target then directive-name-B may be simd, parallel, teams, the28
directive name of a combined or composite construct for which directive-name-A is teams or the29
directive name of a combined or composite construct for which directive-name-A is parallel30
and loop, for or do is a leaf construct.31

Cross References32
• coexecute directive, see Section 12.533

• distribute directive, see Section 12.734

CHAPTER 18. COMPOSITION OF CONSTRUCTS 449

• do directive, see Section 12.6.21

• for directive, see Section 12.6.12

• loop directive, see Section 12.83

• masked directive, see Section 11.64

• parallel directive, see Section 11.25

• sections directive, see Section 12.36

• target directive, see Section 14.87

• taskloop directive, see Section 13.78

• teams directive, see Section 11.39

• workshare directive, see Section 12.410

18.4 Combined Construct Semantics11

The semantics of the combined constructs are identical to that of explicitly specifying the first12
construct containing one instance of the second construct and no other statements. All combined13
and composite directives for which a loop-associated construct is a leaf construct are themselves14
loop-associated constructs. For combined constructs, tool callbacks are invoked as if the constructs15
were explicitly nested.16

Restrictions17
Restrictions to combined constructs are as follows:18

• The restrictions of directive-name-A and directive-name-B apply.19

• If directive-name-A is parallel, the in_reduction clause must not be specified.20

• If directive-name-A is parallel and target is not among the constituent constructs, the21
nowait clause must not be specified.22

• If directive-name-A is target, the copyin clause must not be specified.23

Cross References24
• copyin clause, see Section 6.7.125

• in_reduction clause, see Section 6.5.1126

• nowait clause, see Section 16.627

• parallel directive, see Section 11.228

• target directive, see Section 14.829

450 OpenMP API – Version 6.0 Preview 2 November 2023

18.5 Composite Construct Semantics1

Composite constructs combine constructs that otherwise cannot be immediately nested.2
Specifically, composite constructs apply multiple loop-associated constructs to the same canonical3
loop nest. The semantics of each composite construct first apply the semantics of the enclosing4
construct as specified by directive-name-A and any clauses that apply to it. For each task (possibly5
implicit, possibly initial) as appropriate for the semantics of directive-name-A, the application of its6
semantics yields a nested loop of depth two in which the outer loop iterates over the chunks7
assigned to that task and the inner loop iterates over the collapsed iteration of each chunk. The8
semantics of directive-name-B and any clauses that apply to it are then applied to that inner loop.9
For composite constructs, tool callbacks are invoked as if the constructs were explicitly nested.10

If directive-name-A is taskloop and directive-name-B is simd then for the application of the11
simd construct, the effect of any in_reduction clause is as if a reduction clause with the12
same reduction operator and list items is present.13

Restrictions14
Restrictions to composite constructs are as follows:15

• The restrictions of directive-name-A and directive-name-B apply.16

• If directive-name-A is distribute, the linear clause may only be specified for loop17
iteration variables of loops that are associated with the construct.18

• If directive-name-A is distribute, the ordered clause must not be specified.19

Cross References20
• in_reduction clause, see Section 6.5.1121

• linear clause, see Section 6.4.622

• ordered clause, see Section 5.4.423

• reduction clause, see Section 6.5.924

• distribute directive, see Section 12.725

• simd directive, see Section 11.526

• taskloop directive, see Section 13.727

CHAPTER 18. COMPOSITION OF CONSTRUCTS 451

Part III1

Runtime Library Routines2

452

19 Runtime Library Routines1

This chapter describes the OpenMP API runtime library routines and queryable runtime states. All2
OpenMP Runtime API names have an omp_ prefix. Names that begin with the ompx_ prefix are3
reserved for implementation-defined extensions to the OpenMP Runtime API. In this chapter, true4
and false are used as generic terms to simplify the description of the routines.5

C / C++
true means a non-zero integer value and false means an integer value of zero.6

C / C++
Fortran

true means a logical value of .TRUE. and false means a logical value of .FALSE..7

Fortran
Fortran

Restrictions8
The following restrictions apply to all OpenMP runtime library routines:9

• OpenMP runtime library routines may not be called from PURE or ELEMENTAL procedures.10

• OpenMP runtime library routines may not be called in DO CONCURRENT constructs.11

Fortran

CHAPTER 19. RUNTIME LIBRARY ROUTINES 453

19.1 Runtime Library Definitions1

For each base language, a compliant implementation must supply a set of definitions for the2
OpenMP API runtime library routines and the special data types of their parameters. The set of3
definitions must contain a declaration for each OpenMP API runtime library routine and variable4
and a definition of each required data type listed below. In addition, each set of definitions may5
specify other implementation specific values.6

C / C++
The library routines are external functions with “C” linkage.7

Prototypes for the C/C++ runtime library routines described in this chapter shall be provided in a8
header file named omp.h. This file also defines the following:9

• The type omp_allocator_handle_t, which must be an implementation-defined (for10
C++ possibly scoped) enum type with at least the omp_null_allocator enumerator11
with the value zero and an enumerator for each predefined memory allocator in Table 7.3;12

• omp_atv_default, which is an instance of a type compatible with omp_uintptr_t13
with the value -1;14

• The type omp_control_tool_result_t;15

• The type omp_control_tool_t;16

• The type omp_depend_t;17

• The type omp_event_handle_t, which must be an implementation-defined (for C++18
possibly scoped) enum type;19

• The enumerator omp_initial_device with value -1;20

• The type omp_interop_t, which must be an implementation-defined integral or pointer21
type;22

• The type omp_interop_fr_t, which must be an implementation-defined enum type with23
enumerators named omp_ifr_name where name is a foreign runtime name that is defined24
in the OpenMP Additional Definitions document;25

• The type omp_intptr_t, which is a signed integer type that is at least the size of a pointer26
on any device;27

• The enumerator omp_invalid_device with an implementation-defined value less than28
-1;29

• The type omp_lock_t;30

• The type omp_memspace_handle_t, which must be an implementation-defined (for31
C++ possibly scoped) enum type with at least the omp_null_mem_space enumerator32
with the value zero and an enumerator for each predefined memory space in Table 7.1;33

454 OpenMP API – Version 6.0 Preview 2 November 2023

• The type omp_nest_lock_t;1

• The type omp_pause_resource_t;2

• The type omp_proc_bind_t;3

• The type omp_sched_t;4

• The type omp_sync_hint_t; and5

• The type omp_uintptr_t, which is an unsigned integer type capable of holding a pointer6
on any device.7

• The enumerator omp_unassigned_thread with an implementation-defined value less8
than -1;9

C / C++
C++

The OpenMP enumeration types provided in the omp.h header file shall not be scoped10
enumeration types unless explicitly allowed.11

The omp.h header file also defines a class template that models the Allocator concept in the12
omp::allocator namespace for each predefined memory allocator in Table 7.3 for which the13
name includes neither the omp_ prefix nor the _alloc suffix.14

C++
Fortran

The OpenMP Fortran API runtime library routines are external procedures. The return values of15
these routines are of default kind, unless otherwise specified.16

Interface declarations for the OpenMP Fortran runtime library routines described in this chapter17
shall be provided in the form of a Fortran module named omp_lib or a Fortran include file18
named omp_lib.h. Whether the omp_lib.h file provides derived-type definitions or those19
routines that require an explicit interface is implementation defined. Whether the include file or20
the module file (or both) is provided is also implementation defined.21

These files also define the following:22

• The default integer named constant omp_allocator_handle_kind;23

• An integer named constant of kind omp_allocator_handle_kind for each predefined24
memory allocator in Table 7.3;25

• The integer named constant omp_null_allocator of kind26
omp_allocator_handle_kind;27

• The default integer named constant omp_alloctrait_key_kind;28

• The default integer named constant omp_alloctrait_val_kind;29

• The default integer named constant omp_control_tool_kind;30

CHAPTER 19. RUNTIME LIBRARY ROUTINES 455

• The default integer named constant omp_control_tool_result_kind;1

• The default integer named constant omp_depend_kind;2

• The default integer named constant omp_event_handle_kind;3

• The default integer named constant omp_initial_device with value -1;4

• The default integer named constant omp_interop_kind;5

• The default integer named constant omp_interop_fr_kind;6

• An integer named constant omp_ifr_name of kind omp_interop_fr_kind for each7
name that is a foreign runtime name that is defined in the OpenMP Additional Definitions8
document;9

• The default integer named constant omp_invalid_device with an10
implementation-defined value less than -1;11

• The default integer named constant omp_lock_kind;12

• The default integer named constant omp_memspace_handle_kind;13

• An integer named constant of kind omp_memspace_handle_kind for each predefined14
memory space in Table 7.1;15

• The integer named constant omp_null_mem_space of kind16
omp_memspace_handle_kind;17

• The default integer named constant omp_nest_lock_kind;18

• The default integer named constant omp_pause_resource_kind;19

• The default integer named constant omp_proc_bind_kind;20

• The default integer named constant omp_sched_kind;21

• The default integer named constant omp_sync_hint_kind; and22

• The default integer named constant omp_unassigned_thread with an23
implementation-defined value less than -1;24

• The default integer named constant openmp_version with a value yyyymm where yyyy25
and mm are the year and month designations of the version of the OpenMP Fortran API that26
the implementation supports; this value matches that of the C preprocessor macro _OPENMP,27
when a macro preprocessor is supported (see Section 4.3).28

Whether any of the OpenMP runtime library routines that take an argument are extended with a29
generic interface so arguments of different KIND type can be accommodated is implementation30
defined.31

Fortran

456 OpenMP API – Version 6.0 Preview 2 November 2023

19.2 Thread Team Routines1

This section describes routines that affect and monitor thread teams that execute tasks in the current2
contention group.3

19.2.1 omp_set_num_threads4

Summary5
The omp_set_num_threads routine affects the number of threads to be used for subsequent6
parallel regions that do not specify a num_threads clause, by setting the value of the first7
element of the nthreads-var ICV of the current task.8

Format9
C / C++

void omp_set_num_threads(int num_threads);10

C / C++
Fortran

subroutine omp_set_num_threads(num_threads)11
integer num_threads12

Fortran

Constraints on Arguments13
The value of the argument passed to this routine must evaluate to a positive integer, or else the14
behavior of this routine is implementation defined.15

Binding16
The binding task set for an omp_set_num_threads region is the generating task.17

Effect18
The effect of this routine is to set the value of the first element of the nthreads-var ICV of the19
current task to the value specified in the argument.20

Cross References21
• num_threads clause, see Section 11.2.222

• parallel directive, see Section 11.223

• nthreads-var ICV, see Table 2.124

• Determining the Number of Threads for a parallel Region, see Section 11.2.125

19.2.2 omp_get_num_threads26

Summary27
The omp_get_num_threads routine returns the number of threads in the current team.28

CHAPTER 19. RUNTIME LIBRARY ROUTINES 457

Format1
C / C++

int omp_get_num_threads(void);2

C / C++
Fortran

integer function omp_get_num_threads()3

Fortran

Binding4
The binding region for an omp_get_num_threads region is the innermost enclosing parallel5
region.6

Effect7
The omp_get_num_threads routine returns the number of threads in the team that is executing8
the parallel region to which the routine region binds.9

19.2.3 omp_get_max_threads10

Summary11
The omp_get_max_threads routine returns an upper bound on the number of threads that12
could be used to form a new team if a parallel construct without a num_threads clause is13
encountered after execution returns from this routine.14

Format15
C / C++

int omp_get_max_threads(void);16

C / C++
Fortran

integer function omp_get_max_threads()17

Fortran

Binding18
The binding task set for an omp_get_max_threads region is the generating task.19

Effect20
The value returned by omp_get_max_threads is the value of the first element of the21
nthreads-var ICV of the current task. This value is also an upper bound on the number of threads22
that could be used to form a new team if a parallel region without a num_threads clause is23
encountered after execution returns from this routine.24

458 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• num_threads clause, see Section 11.2.22

• parallel directive, see Section 11.23

• nthreads-var ICV, see Table 2.14

• Determining the Number of Threads for a parallel Region, see Section 11.2.15

19.2.4 omp_get_thread_num6

Summary7
The omp_get_thread_num routine returns the thread number, within the current team, of the8
calling thread.9

Format10
C / C++

int omp_get_thread_num(void);11

C / C++
Fortran

integer function omp_get_thread_num()12

Fortran

Binding13
The binding thread set for an omp_get_thread_num region is the current team. The binding14
region for an omp_get_thread_num region is the innermost enclosing parallel region.15

Effect16
The omp_get_thread_num routine returns the thread number of the calling thread, within the17
team that is executing the parallel region to which the routine region binds. For assigned threads,18
the thread number is an integer between 0 and one less than the value returned by19
omp_get_num_threads, inclusive. The thread number of the primary thread of the team is 0.20
For unassigned threads, the thread number is the value omp_unassigned_thread.21

Cross References22
• omp_get_num_threads, see Section 19.2.223

19.2.5 omp_in_parallel24

Summary25
The omp_in_parallel routine returns true if the active-levels-var ICV is greater than zero;26
otherwise, it returns false.27

CHAPTER 19. RUNTIME LIBRARY ROUTINES 459

Format1
C / C++

int omp_in_parallel(void);2

C / C++
Fortran

logical function omp_in_parallel()3

Fortran

Binding4
The binding task set for an omp_in_parallel region is the generating task.5

Effect6
The effect of the omp_in_parallel routine is to return true if the current task is enclosed by an7
active parallel region, and the parallel region is enclosed by the outermost initial task region on8
the device; otherwise it returns false.9

Cross References10
• parallel directive, see Section 11.211

• active-levels-var ICV, see Table 2.112

19.2.6 omp_set_dynamic13

Summary14
The omp_set_dynamic routine enables or disables dynamic adjustment of the number of15
threads available for the execution of subsequent parallel regions by setting the value of the16
dyn-var ICV.17

Format18
C / C++

void omp_set_dynamic(int dynamic_threads);19

C / C++
Fortran

subroutine omp_set_dynamic(dynamic_threads)20
logical dynamic_threads21

Fortran

Binding22
The binding task set for an omp_set_dynamic region is the generating task.23

460 OpenMP API – Version 6.0 Preview 2 November 2023

Effect1
For implementations that support dynamic adjustment of the number of threads, if the argument to2
omp_set_dynamic evaluates to true, dynamic adjustment is enabled for the current task;3
otherwise, dynamic adjustment is disabled for the current task. For implementations that do not4
support dynamic adjustment of the number of threads, this routine has no effect: the value of5
dyn-var remains false.6

Cross References7
• dyn-var ICV, see Table 2.18

19.2.7 omp_get_dynamic9

Summary10
The omp_get_dynamic routine returns the value of the dyn-var ICV, which determines whether11
dynamic adjustment of the number of threads is enabled or disabled.12

Format13
C / C++

int omp_get_dynamic(void);14

C / C++
Fortran

logical function omp_get_dynamic()15

Fortran

Binding16
The binding task set for an omp_get_dynamic region is the generating task.17

Effect18
This routine returns true if dynamic adjustment of the number of threads is enabled for the current19
task; otherwise, it returns false. If an implementation does not support dynamic adjustment of the20
number of threads, then this routine always returns false.21

Cross References22
• dyn-var ICV, see Table 2.123

CHAPTER 19. RUNTIME LIBRARY ROUTINES 461

19.2.8 omp_get_cancellation1

Summary2
The omp_get_cancellation routine returns the value of the cancel-var ICV, which3
determines if cancellation is enabled or disabled.4

Format5
C / C++

int omp_get_cancellation(void);6

C / C++
Fortran

logical function omp_get_cancellation()7

Fortran

Binding8
The binding task set for an omp_get_cancellation region is the whole program.9

Effect10
This routine returns true if cancellation is enabled. It returns false otherwise.11

Cross References12
• cancel-var ICV, see Table 2.113

19.2.9 omp_set_schedule14

Summary15
The omp_set_schedule routine affects the schedule that is applied when runtime is used as16
schedule kind, by setting the value of the run-sched-var ICV.17

Format18
C / C++

void omp_set_schedule(omp_sched_t kind, int chunk_size);19

C / C++
Fortran

subroutine omp_set_schedule(kind, chunk_size)20
integer (kind=omp_sched_kind) kind21
integer chunk_size22

Fortran

462 OpenMP API – Version 6.0 Preview 2 November 2023

Constraints on Arguments1
The first argument passed to this routine can be one of the valid OpenMP schedule kinds (except for2
runtime) or any implementation-specific schedule. The C/C++ header file (omp.h) and the3
Fortran include file (omp_lib.h) and/or Fortran module file (omp_lib) define the valid4
constants. The valid constants must include the following, which can be extended with5
implementation-specific values:6

C / C++
typedef enum omp_sched_t {7

// schedule kinds8
omp_sched_static = 0x1,9
omp_sched_dynamic = 0x2,10
omp_sched_guided = 0x3,11
omp_sched_auto = 0x4,12

13
// schedule modifier14
omp_sched_monotonic = 0x80000000u15

} omp_sched_t;16

C / C++
Fortran

! schedule kinds17
integer(kind=omp_sched_kind), &18

parameter :: omp_sched_static = &19
int(Z’1’, kind=omp_sched_kind)20

integer(kind=omp_sched_kind), &21
parameter :: omp_sched_dynamic = &22

int(Z’2’, kind=omp_sched_kind)23
integer(kind=omp_sched_kind), &24

parameter :: omp_sched_guided = &25
int(Z’3’, kind=omp_sched_kind)26

integer(kind=omp_sched_kind), &27
parameter :: omp_sched_auto = &28

int(Z’4’, kind=omp_sched_kind)29
30

! schedule modifier31
integer(kind=omp_sched_kind), &32

parameter :: omp_sched_monotonic = &33
int(Z’80000000’, kind=omp_sched_kind)34

Fortran

Binding35
The binding task set for an omp_set_schedule region is the generating task.36

CHAPTER 19. RUNTIME LIBRARY ROUTINES 463

Effect1
The effect of this routine is to set the value of the run-sched-var ICV of the current task to the2
values specified in the two arguments. The schedule is set to the schedule kind that is specified by3
the first argument kind. It can be any of the standard schedule kinds or any other4
implementation-specific one. For the schedule kinds static, dynamic, and guided, the5
chunk_size is set to the value of the second argument, or to the default chunk_size if the value of the6
second argument is less than 1; for the schedule kind auto, the second argument has no meaning;7
for implementation-specific schedule kinds, the values and associated meanings of the second8
argument are implementation defined.9

Each of the schedule kinds can be combined with the omp_sched_monotonic modifier by10
using the + or | operators in C/C++ or the + operator in Fortran. If the schedule kind is combined11
with the omp_sched_monotonic modifier, the schedule is modified as if the monotonic12
schedule modifier was specified. Otherwise, the schedule modifier is nonmonotonic.13

Cross References14
• run-sched-var ICV, see Table 2.115

19.2.10 omp_get_schedule16

Summary17
The omp_get_schedule routine returns the schedule that is applied when the runtime schedule18
is used.19

Format20
C / C++

void omp_get_schedule(omp_sched_t *kind, int *chunk_size);21

C / C++
Fortran

subroutine omp_get_schedule(kind, chunk_size)22
integer (kind=omp_sched_kind) kind23
integer chunk_size24

Fortran

Binding25
The binding task set for an omp_get_schedule region is the generating task.26

Effect27
This routine returns the run-sched-var ICV in the task to which the routine binds. The first28
argument kind returns the schedule to be used. It can be any of the standard schedule kinds as29
defined in Section 19.2.9, or any implementation-specific schedule kind. If the returned schedule30
kind is static, dynamic, or guided, the second argument chunk_size returns the chunk size to31
be used, or a value less than 1 if the default chunk size is to be used. The value returned by the32
second argument is implementation defined for any other schedule kinds.33

464 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• run-sched-var ICV, see Table 2.12

19.2.11 omp_get_thread_limit3

Summary4
The omp_get_thread_limit routine returns the maximum number of OpenMP threads5
available to execute tasks in the current contention group.6

Format7
C / C++

int omp_get_thread_limit(void);8

C / C++
Fortran

integer function omp_get_thread_limit()9

Fortran

Binding10
The binding task set for an omp_get_thread_limit region is the generating task.11

Effect12
The omp_get_thread_limit routine returns the value of the thread-limit-var ICV.13

Cross References14
• thread-limit-var ICV, see Table 2.115

19.2.12 omp_get_supported_active_levels16

Summary17
The omp_get_supported_active_levels routine returns the number of active levels of18
parallelism supported by the implementation.19

Format20
C / C++

int omp_get_supported_active_levels(void);21

C / C++
Fortran

integer function omp_get_supported_active_levels()22

Fortran

CHAPTER 19. RUNTIME LIBRARY ROUTINES 465

Binding1
The binding task set for an omp_get_supported_active_levels region is the generating2
task.3

Effect4
The omp_get_supported_active_levels routine returns the number of active level of5
parallelism supported by the implementation. The max-active-levels-var ICV cannot have a value6
that is greater than this number. The value that the omp_get_supported_active_levels7
routine returns is implementation defined, but it must be greater than 0.8

Cross References9
• max-active-levels-var ICV, see Table 2.110

19.2.13 omp_set_max_active_levels11

Summary12
The omp_set_max_active_levels routine limits the number of nested active parallel13
regions when a new nested parallel region is generated by the current task by setting the14
max-active-levels-var ICV.15

Format16
C / C++

void omp_set_max_active_levels(int max_levels);17

C / C++
Fortran

subroutine omp_set_max_active_levels(max_levels)18
integer max_levels19

Fortran
Constraints on Arguments20
The value of the argument passed to this routine must evaluate to a non-negative integer, otherwise21
the behavior of this routine is implementation defined.22

Binding23
The binding task set for an omp_set_max_active_levels region is the generating task.24

Effect25
The effect of this routine is to set the value of the max-active-levels-var ICV to the value specified26
in the argument.27

If the number of active levels requested exceeds the number of active levels of parallelism supported28
by the implementation, the value of the max-active-levels-var ICV will be set to the number of29
active levels supported by the implementation. If the number of active levels requested is less than30
the value of the active-levels-var ICV, the value of the max-active-levels-var ICV will be set to an31
implementation-defined value between the requested number and active-levels-var, inclusive.32

466 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• max-active-levels-var ICV, see Table 2.12

19.2.14 omp_get_max_active_levels3

Summary4
The omp_get_max_active_levels routine returns the value of the max-active-levels-var5
ICV, which determines the maximum number of nested active parallel regions when the innermost6
parallel region is generated by the current task.7

Format8
C / C++

int omp_get_max_active_levels(void);9

C / C++
Fortran

integer function omp_get_max_active_levels()10

Fortran

Binding11
The binding task set for an omp_get_max_active_levels region is the generating task.12

Effect13
The omp_get_max_active_levels routine returns the value of the max-active-levels-var14
ICV. The current task may only generate an active parallel region if the returned value is greater15
than the value of the active-levels-var ICV.16

Cross References17
• max-active-levels-var ICV, see Table 2.118

19.2.15 omp_get_level19

Summary20
The omp_get_level routine returns the value of the levels-var ICV.21

Format22
C / C++

int omp_get_level(void);23

C / C++
Fortran

integer function omp_get_level()24

Fortran

CHAPTER 19. RUNTIME LIBRARY ROUTINES 467

Binding1
The binding task set for an omp_get_level region is the generating task.2

Effect3
The effect of the omp_get_level routine is to return the number of nested parallel regions4
(whether active or inactive) that enclose the current task such that all of the parallel regions are5
enclosed by the outermost initial task region on the current device.6

Cross References7
• parallel directive, see Section 11.28

• levels-var ICV, see Table 2.19

19.2.16 omp_get_ancestor_thread_num10

Summary11
The omp_get_ancestor_thread_num routine returns, for a given nested level of the12
encountering thread, the thread number of the ancestor thread of the encountering thread.13

Format14
C / C++

int omp_get_ancestor_thread_num(int level);15

C / C++
Fortran

integer function omp_get_ancestor_thread_num(level)16
integer level17

Fortran

Binding18
The binding thread set for an omp_get_ancestor_thread_num region is the encountering19
thread. The binding region for an omp_get_ancestor_thread_num region is the innermost20
enclosing parallel region.21

Effect22
The omp_get_ancestor_thread_num routine returns the thread number of the ancestor23
thread at a given nest level of the encountering thread or the thread number of the encountering24
thread. If the requested nest level is outside the range of 0 and the nest level of the encountering25
thread, as returned by the omp_get_level routine, the routine returns -1.26

27

Note – When the omp_get_ancestor_thread_num routine is called with value of28
level=0, the routine always returns 0. If level=omp_get_level(), the routine has the29
same effect as the omp_get_thread_num routine.30

31

468 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• parallel directive, see Section 11.22

• omp_get_level, see Section 19.2.153

• omp_get_thread_num, see Section 19.2.44

19.2.17 omp_get_team_size5

Summary6
The omp_get_team_size routine returns, for a given nested level of the encountering thread,7
the size of the current team to which the ancestor thread or the encountering task belongs.8

Format9
C / C++

int omp_get_team_size(int level);10

C / C++
Fortran

integer function omp_get_team_size(level)11
integer level12

Fortran
Binding13
The binding thread set for an omp_get_team_size region is the encountering thread. The14
binding region for an omp_get_team_size region is the innermost enclosing parallel15
region.16

Effect17
The omp_get_team_size routine returns the size of the current team to which the ancestor18
thread or the encountering task belongs. If the requested nested level is outside the range of 0 and19
the nested level of the encountering thread, as returned by the omp_get_level routine, the20
routine returns -1. Inactive parallel regions are regarded as active parallel regions executed with21
one thread.22

23

Note – When the omp_get_team_size routine is called with a value of level=0, the routine24
always returns 1. If level=omp_get_level(), the routine has the same effect as the25
omp_get_num_threads routine.26

27

Cross References28
• parallel directive, see Section 11.229

• omp_get_level, see Section 19.2.1530

• omp_get_num_threads, see Section 19.2.231

CHAPTER 19. RUNTIME LIBRARY ROUTINES 469

19.2.18 omp_get_active_level1

Summary2
The omp_get_active_level routine returns the value of the active-levels-var ICV.3

Format4
C / C++

int omp_get_active_level(void);5

C / C++
Fortran

integer function omp_get_active_level()6

Fortran

Binding7
The binding task set for an omp_get_active_level region is the generating task.8

Effect9
The effect of the omp_get_active_level routine is to return the number of nested active10
parallel regions enclosing the current task such that all of the parallel regions are enclosed11
by the outermost initial task region on the current device.12

Cross References13
• parallel directive, see Section 11.214

• active-levels-var ICV, see Table 2.115

19.3 Thread Affinity Routines16

This section describes routines that affect and access thread affinity policies that are in effect.17

19.3.1 omp_get_proc_bind18

Summary19
The omp_get_proc_bind routine returns the thread affinity policy to be used for the20
subsequent nested parallel regions that do not specify a proc_bind clause.21

Format22
C / C++

omp_proc_bind_t omp_get_proc_bind(void);23

C / C++
Fortran

integer (kind=omp_proc_bind_kind) function omp_get_proc_bind()24

Fortran

470 OpenMP API – Version 6.0 Preview 2 November 2023

Constraints on Arguments1
The value returned by this routine must be one of the valid affinity policy kinds. The C/C++ header2
file (omp.h) and the Fortran include file (omp_lib.h) and/or Fortran module file (omp_lib)3
define the valid constants. The valid constants must include the following:4

C / C++
typedef enum omp_proc_bind_t {5

omp_proc_bind_false = 0,6
omp_proc_bind_true = 1,7
omp_proc_bind_primary = 2,8
omp_proc_bind_close = 3,9
omp_proc_bind_spread = 410

} omp_proc_bind_t;11

C / C++
Fortran

integer (kind=omp_proc_bind_kind), &12
parameter :: omp_proc_bind_false = 013

integer (kind=omp_proc_bind_kind), &14
parameter :: omp_proc_bind_true = 115

integer (kind=omp_proc_bind_kind), &16
parameter :: omp_proc_bind_primary = 217

integer (kind=omp_proc_bind_kind), &18
parameter :: omp_proc_bind_close = 319

integer (kind=omp_proc_bind_kind), &20
parameter :: omp_proc_bind_spread = 421

Fortran

Binding22
The binding task set for an omp_get_proc_bind region is the generating task.23

Effect24
The effect of this routine is to return the value of the first element of the bind-var ICV of the current25
task. See Section 11.2.3 for the rules that govern the thread affinity policy.26

Cross References27
• parallel directive, see Section 11.228

• Controlling OpenMP Thread Affinity, see Section 11.2.329

• bind-var ICV, see Table 2.130

CHAPTER 19. RUNTIME LIBRARY ROUTINES 471

19.3.2 omp_get_num_places1

Summary2
The omp_get_num_places routine returns the number of places available to the execution3
environment in the place list.4

Format5
C / C++

int omp_get_num_places(void);6

C / C++
Fortran

integer function omp_get_num_places()7

Fortran

Binding8
The binding thread set for an omp_get_num_places region is all threads on a device. The9
effect of executing this routine is not related to any specific region corresponding to any construct10
or API routine.11

Effect12
The omp_get_num_places routine returns the number of places in the place list. This value is13
equivalent to the number of places in the place-partition-var ICV in the execution environment of14
the initial task.15

Cross References16
• place-partition-var ICV, see Table 2.117

19.3.3 omp_get_place_num_procs18

Summary19
The omp_get_place_num_procs routine returns the number of processors available to the20
execution environment in the specified place.21

Format22
C / C++

int omp_get_place_num_procs(int place_num);23

C / C++
Fortran

integer function omp_get_place_num_procs(place_num)24
integer place_num25

Fortran

472 OpenMP API – Version 6.0 Preview 2 November 2023

Binding1
The binding thread set for an omp_get_place_num_procs region is all threads on a device.2
The effect of executing this routine is not related to any specific region corresponding to any3
construct or API routine.4

Effect5
The omp_get_place_num_procs routine returns the number of processors associated with6
the place numbered place_num. The routine returns zero when place_num is negative or is greater7
than or equal to the value returned by omp_get_num_places().8

Cross References9
• omp_get_num_places, see Section 19.3.210

19.3.4 omp_get_place_proc_ids11

Summary12
The omp_get_place_proc_ids routine returns the numerical identifiers of the processors13
available to the execution environment in the specified place.14

Format15
C / C++

void omp_get_place_proc_ids(int place_num, int *ids);16

C / C++
Fortran

subroutine omp_get_place_proc_ids(place_num, ids)17
integer place_num18
integer ids(*)19

Fortran

Binding20
The binding thread set for an omp_get_place_proc_ids region is all threads on a device.21
The effect of executing this routine is not related to any specific region corresponding to any22
construct or API routine.23

Effect24
The omp_get_place_proc_ids routine returns the numerical identifiers of each processor25
associated with the place numbered place_num. The numerical identifiers are non-negative and26
their meaning is implementation defined. The numerical identifiers are returned in the array ids and27
their order in the array is implementation defined. The array must be sufficiently large to contain28
omp_get_place_num_procs(place_num) integers; otherwise, the behavior is unspecified.29
The routine has no effect when place_num has a negative value or a value greater than or equal to30
omp_get_num_places().31

CHAPTER 19. RUNTIME LIBRARY ROUTINES 473

Cross References1
• OMP_PLACES, see Section 3.1.52

• omp_get_num_places, see Section 19.3.23

• omp_get_place_num_procs, see Section 19.3.34

19.3.5 omp_get_place_num5

Summary6
The omp_get_place_num routine returns the place number of the place to which the7
encountering thread is bound.8

Format9
C / C++

int omp_get_place_num(void);10

C / C++
Fortran

integer function omp_get_place_num()11

Fortran

Binding12
The binding thread set for an omp_get_place_num region is the encountering thread.13

Effect14
When the encountering thread is bound to a place, the omp_get_place_num routine returns the15
place number associated with the thread. The returned value is between 0 and one less than the16
value returned by omp_get_num_places(), inclusive. When the encountering thread is not17
bound to a place, the routine returns -1.18

Cross References19
• omp_get_num_places, see Section 19.3.220

19.3.6 omp_get_partition_num_places21

Summary22
The omp_get_partition_num_places routine returns the number of places in the place23
partition of the innermost implicit task.24

Format25
C / C++

int omp_get_partition_num_places(void);26

C / C++

474 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
integer function omp_get_partition_num_places()1

Fortran

Binding2
The binding task set for an omp_get_partition_num_places region is the encountering3
implicit task.4

Effect5
The omp_get_partition_num_places routine returns the number of places in the6
place-partition-var ICV.7

Cross References8
• place-partition-var ICV, see Table 2.19

19.3.7 omp_get_partition_place_nums10

Summary11
The omp_get_partition_place_nums routine returns the list of place numbers that12
correspond to the places in the place-partition-var ICV of the innermost implicit task.13

Format14
C / C++

void omp_get_partition_place_nums(int *place_nums);15

C / C++
Fortran

subroutine omp_get_partition_place_nums(place_nums)16
integer place_nums(*)17

Fortran

Binding18
The binding task set for an omp_get_partition_place_nums region is the encountering19
implicit task.20

Effect21
The omp_get_partition_place_nums routine returns the list of place numbers that22
correspond to the places in the place-partition-var ICV of the innermost implicit task. The array23
must be sufficiently large to contain omp_get_partition_num_places() integers;24
otherwise, the behavior is unspecified.25

Cross References26
• place-partition-var ICV, see Table 2.127

• omp_get_partition_num_places, see Section 19.3.628

CHAPTER 19. RUNTIME LIBRARY ROUTINES 475

19.3.8 omp_set_affinity_format1

Summary2
The omp_set_affinity_format routine sets the affinity format to be used on the device by3
setting the value of the affinity-format-var ICV.4

Format5
C / C++

void omp_set_affinity_format(const char *format);6

C / C++
Fortran

subroutine omp_set_affinity_format(format)7
character(len=*), intent(in) :: format8

Fortran

Binding9
When called from a sequential part of the program, the binding thread set for an10
omp_set_affinity_format region is the encountering thread. When called from within any11
parallel or teams region, the binding thread set (and binding region, if required) for the12
omp_set_affinity_format region is implementation defined.13

Effect14
The effect of omp_set_affinity_format routine is to copy the character string specified by15
the format argument into the affinity-format-var ICV on the current device.16

This routine has the described effect only when called from a sequential part of the program. When17
called from within a parallel or teams region, the effect of this routine is implementation18
defined.19

Restrictions20
Restrictions to the omp_set_affinity_format routine are as follows.21

• When called from within a target region the effect is unspecified.22

Cross References23
• OMP_AFFINITY_FORMAT, see Section 3.2.524

• OMP_DISPLAY_AFFINITY, see Section 3.2.425

• Controlling OpenMP Thread Affinity, see Section 11.2.326

• omp_capture_affinity, see Section 19.3.1127

• omp_display_affinity, see Section 19.3.1028

• omp_get_affinity_format, see Section 19.3.929

476 OpenMP API – Version 6.0 Preview 2 November 2023

19.3.9 omp_get_affinity_format1

Summary2
The omp_get_affinity_format routine returns the value of the affinity-format-var ICV on3
the device.4

Format5
C / C++

size_t omp_get_affinity_format(char *buffer, size_t size);6

C / C++
Fortran

integer function omp_get_affinity_format(buffer)7
character(len=*), intent(out) :: buffer8

Fortran

Binding9
When called from a sequential part of the program, the binding thread set for an10
omp_get_affinity_format region is the encountering thread. When called from within any11
parallel or teams region, the binding thread set (and binding region, if required) for the12
omp_get_affinity_format region is implementation defined.13

Effect14
C / C++

The omp_get_affinity_format routine returns the number of characters in the15
affinity-format-var ICV on the current device, excluding the terminating null byte (’\0’) and if16
size is non-zero, writes the value of the affinity-format-var ICV on the current device to buffer17
followed by a null byte. If the return value is larger or equal to size, the affinity format specification18
is truncated, with the terminating null byte stored to buffer[size-1]. If size is zero, nothing is19
stored and buffer may be NULL.20

C / C++
Fortran

The omp_get_affinity_format routine returns the number of characters that are required to21
hold the affinity-format-var ICV on the current device and writes the value of the22
affinity-format-var ICV on the current device to buffer. If the return value is larger than23
len(buffer), the affinity format specification is truncated.24

Fortran
If the buffer argument does not conform to the specified format then the result is implementation25
defined.26

Restrictions27
Restrictions to the omp_get_affinity_format routine are as follows.28

• When called from within a target region the effect is unspecified.29

CHAPTER 19. RUNTIME LIBRARY ROUTINES 477

Cross References1
• parallel directive, see Section 11.22

• teams directive, see Section 11.33

• affinity-format-var ICV, see Table 2.14

19.3.10 omp_display_affinity5

Summary6
The omp_display_affinity routine prints the OpenMP thread affinity information using the7
format specification provided.8

Format9
C / C++

void omp_display_affinity(const char *format);10

C / C++
Fortran

subroutine omp_display_affinity(format)11
character(len=*), intent(in) :: format12

Fortran

Binding13
The binding thread set for an omp_display_affinity region is the encountering thread.14

Effect15
The omp_display_affinity routine prints the thread affinity information of the current16
thread in the format specified by the format argument, followed by a new-line. If the format is17
NULL (for C/C++) or a zero-length string (for Fortran and C/C++), the value of the18
affinity-format-var ICV is used. If the format argument does not conform to the specified format19
then the result is implementation defined.20

Restrictions21
Restrictions to the omp_display_affinity routine are as follows.22

• When called from within a target region the effect is unspecified.23

Cross References24
• affinity-format-var ICV, see Table 2.125

19.3.11 omp_capture_affinity26

Summary27
The omp_capture_affinity routine prints the OpenMP thread affinity information into a28
buffer using the format specification provided.29

478 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C / C++

size_t omp_capture_affinity(2
char *buffer,3
size_t size,4
const char *format5

);6

C / C++
Fortran

integer function omp_capture_affinity(buffer,format)7
character(len=*), intent(out) :: buffer8
character(len=*), intent(in) :: format9

Fortran

Binding10
The binding thread set for an omp_capture_affinity region is the encountering thread.11

Effect12
C / C++

The omp_capture_affinity routine returns the number of characters in the entire thread13
affinity information string excluding the terminating null byte (’\0’). If size is non-zero, it writes14
the thread affinity information of the current thread in the format specified by the format argument15
into the character string buffer followed by a null byte. If the return value is larger or equal to16
size, the thread affinity information string is truncated, with the terminating null byte stored to17
buffer[size-1]. If size is zero, nothing is stored and buffer may be NULL. If the format is NULL18
or a zero-length string, the value of the affinity-format-var ICV is used.19

C / C++
Fortran

The omp_capture_affinity routine returns the number of characters required to hold the20
entire thread affinity information string and prints the thread affinity information of the current21
thread into the character string buffer with the size of len(buffer) in the format specified by22
the format argument. If the format is a zero-length string, the value of the affinity-format-var ICV23
is used. If the return value is larger than len(buffer), the thread affinity information string is24
truncated. If the format is a zero-length string, the value of the affinity-format-var ICV is used.25

Fortran
If the format argument does not conform to the specified format then the result is implementation26
defined.27

Restrictions28
Restrictions to the omp_capture_affinity routine are as follows.29

• When called from within a target region the effect is unspecified.30

CHAPTER 19. RUNTIME LIBRARY ROUTINES 479

Cross References1
• affinity-format-var ICV, see Table 2.12

19.4 Teams Region Routines3

This section describes routines that affect and monitor the league of teams that may execute a4
teams region.5

19.4.1 omp_get_num_teams6

Summary7
The omp_get_num_teams routine returns the number of initial teams in the current teams8
region.9

Format10
C / C++

int omp_get_num_teams(void);11

C / C++
Fortran

integer function omp_get_num_teams()12

Fortran

Binding13
The binding task set for an omp_get_num_teams region is the generating task14

Effect15
The effect of this routine is to return the number of initial teams in the current teams region. The16
routine returns 1 if it is called from outside of a teams region.17

Cross References18
• teams directive, see Section 11.319

19.4.2 omp_get_team_num20

Summary21
The omp_get_team_num routine returns the initial team number of the calling thread.22

Format23
C / C++

int omp_get_team_num(void);24

C / C++

480 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
integer function omp_get_team_num()1

Fortran

Binding2
The binding task set for an omp_get_team_num region is the generating task.3

Effect4
The omp_get_team_num routine returns the initial team number of the calling thread. The5
initial team number is an integer between 0 and one less than the value returned by6
omp_get_num_teams(), inclusive. The routine returns 0 if it is called outside of a teams7
region.8

Cross References9
• teams directive, see Section 11.310

• omp_get_num_teams, see Section 19.4.111

19.4.3 omp_set_num_teams12

Summary13
The omp_set_num_teams routine affects the number of threads to be used for subsequent14
teams regions that do not specify a num_teams clause, by setting the value of the nteams-var15
ICV of the current device.16

Format17
C / C++

void omp_set_num_teams(int num_teams);18

C / C++
Fortran

subroutine omp_set_num_teams(num_teams)19
integer num_teams20

Fortran

Constraints on Arguments21
The value of the argument passed to this routine must evaluate to a positive integer, or else the22
behavior of this routine is implementation defined.23

Binding24
The binding task set for an omp_set_num_teams region is the generating task.25

Effect26
The effect of this routine is to set the value of the nteams-var ICV of the current device to the value27
specified in the argument.28

CHAPTER 19. RUNTIME LIBRARY ROUTINES 481

Restrictions1
Restrictions to the omp_set_num_teams routine are as follows:2

• The routine may not be called from within a parallel region that is not the implicit parallel3
region that surrounds the whole OpenMP program.4

Cross References5
• num_teams clause, see Section 11.3.16

• teams directive, see Section 11.37

• nteams-var ICV, see Table 2.18

19.4.4 omp_get_max_teams9

Summary10
The omp_get_max_teams routine returns an upper bound on the number of teams that could be11
created by a teams construct without a num_teams clause that is encountered after execution12
returns from this routine.13

Format14
C / C++

int omp_get_max_teams(void);15

C / C++
Fortran

integer function omp_get_max_teams()16

Fortran

Binding17
The binding task set for an omp_get_max_teams region is the generating task.18

Effect19
The value returned by omp_get_max_teams is the value of the nteams-var ICV of the current20
device. This value is also an upper bound on the number of teams that can be created by a teams21
construct without a num_teams clause that is encountered after execution returns from this22
routine.23

Cross References24
• num_teams clause, see Section 11.3.125

• teams directive, see Section 11.326

• nteams-var ICV, see Table 2.127

482 OpenMP API – Version 6.0 Preview 2 November 2023

19.4.5 omp_set_teams_thread_limit1

Summary2
The omp_set_teams_thread_limit routine defines the maximum number of OpenMP3
threads that can execute tasks in each contention group that a teams construct creates.4

Format5
C / C++

void omp_set_teams_thread_limit(int thread_limit);6

C / C++
Fortran

subroutine omp_set_teams_thread_limit(thread_limit)7
integer thread_limit8

Fortran

Constraints on Arguments9
The value of the argument passed to this routine must evaluate to a positive integer, or else the10
behavior of this routine is implementation defined.11

Binding12
The binding task set for an omp_set_teams_thread_limit region is the generating task.13

Effect14
The omp_set_teams_thread_limit routine sets the value of the teams-thread-limit-var15
ICV to the value of the thread_limit argument. If the value of thread_limit exceeds the number of16
OpenMP threads that an implementation supports for each contention group created by a teams17
construct, the value of the teams-thread-limit-var ICV will be set to the number that is supported by18
the implementation.19

Restrictions20
Restrictions to the omp_set_teams_thread_limit routine are as follows:21

• The routine may not be called from within a parallel region other than the implicit parallel22
region that surrounds the whole OpenMP program.23

Cross References24
• thread_limit clause, see Section 14.325

• teams directive, see Section 11.326

• teams-thread-limit-var ICV, see Table 2.127

CHAPTER 19. RUNTIME LIBRARY ROUTINES 483

19.4.6 omp_get_teams_thread_limit1

Summary2
The omp_get_teams_thread_limit routine returns the maximum number of OpenMP3
threads available to execute tasks in each contention group that a teams construct creates.4

Format5
C / C++

int omp_get_teams_thread_limit(void);6

C / C++
Fortran

integer function omp_get_teams_thread_limit()7

Fortran

Binding8
The binding task set for an omp_get_teams_thread_limit region is the generating task.9

Effect10
The omp_get_teams_thread_limit routine returns the value of the teams-thread-limit-var11
ICV.12

Cross References13
• teams directive, see Section 11.314

• teams-thread-limit-var ICV, see Table 2.115

19.5 Tasking Routines16

This section describes routines that pertain to OpenMP explicit tasks.17

19.5.1 omp_get_max_task_priority18

Summary19
The omp_get_max_task_priority routine returns the maximum value that can be specified20
in the priority clause.21

Format22
C / C++

int omp_get_max_task_priority(void);23

C / C++
Fortran

integer function omp_get_max_task_priority()24

Fortran

484 OpenMP API – Version 6.0 Preview 2 November 2023

Binding1
The binding thread set for an omp_get_max_task_priority region is all threads on the2
device. The effect of executing this routine is not related to any specific region that corresponds to3
any construct or API routine.4

Effect5
The omp_get_max_task_priority routine returns the value of the max-task-priority-var6
ICV, which determines the maximum value that can be specified in the priority clause.7

Cross References8
• priority clause, see Section 13.59

• max-task-priority-var ICV, see Table 2.110

19.5.2 omp_in_explicit_task11

Summary12
The omp_in_explicit_task routine returns the value of the explicit-task-var ICV.13

Format14
C / C++

int omp_in_explicit_task(void);15

C / C++
Fortran

logical function omp_in_explicit_task()16

Fortran

Binding17
The binding task set for an omp_in_explicit_task region is the generating task.18

Effect19
The omp_in_explicit_task routine returns the value of the explicit-task-var ICV, which20
indicates whether the encountering region is an explicit task region.21

Cross References22
• task directive, see Section 13.623

• explicit-task-var ICV, see Table 2.124

19.5.3 omp_in_final25

Summary26
The omp_in_final routine returns true if the routine is executed in a final task region;27
otherwise, it returns false.28

CHAPTER 19. RUNTIME LIBRARY ROUTINES 485

Format1
C / C++

int omp_in_final(void);2

C / C++
Fortran

logical function omp_in_final()3

Fortran

Binding4
The binding task set for an omp_in_final region is the generating task.5

Effect6
omp_in_final returns true if the enclosing task region is final. Otherwise, it returns false.7

19.5.4 omp_is_free_agent8

Summary9
The omp_is_free_agent routine returns true if the encountering thread is a free-agent thread;10
otherwise, it returns false.11

Format12
C / C++

int omp_is_free_agent(void);13

C / C++
Fortran

logical function omp_is_free_agent()14

Fortran

Binding15
The binding task set for an omp_is_free_agent region is the generating task.16

Effect17
The omp_is_free_agent routine returns true if a free-agent thread is executing the enclosing18
task region at the time the routine is called. Otherwise, it returns false.19

Cross References20
• threadset clause, see Section 13.421

• task directive, see Section 13.622

486 OpenMP API – Version 6.0 Preview 2 November 2023

19.5.5 omp_ancestor_is_free_agent1

Summary2
The omp_ancestor_is_free_agent routine returns true if the ancestor thread of the3
encountering thread is a free-agent thread, for a given nested level of the encountering thread;4
otherwise, it returns false.5

Format6
C / C++

int omp_ancestor_is_free_agent(int level);7

C / C++
Fortran

logical function omp_ancestor_is_free_agent(level)8
integer level9

Fortran

Binding10
The binding task set for an omp_ancestor_is_free_agent region is the generating task.11

Effect12
The omp_ancestor_is_free_agent routine returns true if the ancestor thread of the13
encountering thread is a free-agent thread, for a given nested level of the encountering thread;14
otherwise, it returns false. If the requested nesting level is outside the range of 0 and the nesting15
level of the current task, as returned by the omp_get_level routine, the routine returns false.16

17

Note – When the omp_ancestor_is_free_agent routine is called with a value of level18
=omp_get_level(), the routine has the same effect as the omp_is_free_agent routine.19

20

Cross References21
• threadset clause, see Section 13.422

• task directive, see Section 13.623

• omp_get_level, see Section 19.2.1524

CHAPTER 19. RUNTIME LIBRARY ROUTINES 487

19.6 Resource Relinquishing Routines1

This section describes routines that relinquish resources used by the OpenMP runtime.2

19.6.1 omp_pause_resource3

Summary4
The omp_pause_resource routine allows the runtime to relinquish resources used by OpenMP5
on the specified device.6

Format7
C / C++

int omp_pause_resource(omp_pause_resource_t kind, int device_num);8

C / C++
Fortran

integer function omp_pause_resource(kind, device_num)9
integer (kind=omp_pause_resource_kind) kind10
integer device_num11

Fortran
Constraints on Arguments12
The first argument passed to this routine can be one of the valid OpenMP pause kind, or any13
implementation-specific pause kind. The C/C++ header file (omp.h) and the Fortran include file14
(omp_lib.h) and/or Fortran module file (omp_lib) define the valid constants. The valid15
constants must include the following, which can be extended with implementation-specific values:16

C / C++
typedef enum omp_pause_resource_t {17

omp_pause_soft = 1,18
omp_pause_hard = 2,19
omp_pause_stop_tool = 320

} omp_pause_resource_t;21

C / C++
Fortran

integer (kind=omp_pause_resource_kind), parameter :: &22
omp_pause_soft = 123

integer (kind=omp_pause_resource_kind), parameter :: &24
omp_pause_hard = 225

integer (kind=omp_pause_resource_kind), parameter :: &26
omp_pause_stop_tool = 327

Fortran
The second argument passed to this routine indicates the device that will be paused. The28
device_num parameter must be a conforming device number. If the device number has the value29
omp_invalid_device, runtime error termination is performed.30

488 OpenMP API – Version 6.0 Preview 2 November 2023

Binding1
The binding task set for an omp_pause_resource region is the whole program.2

Effect3
The omp_pause_resource routine allows the runtime to relinquish resources used by OpenMP4
on the specified device.5

The omp_pause_resource routine implies a barrier.6

If successful, the omp_pause_hard value results in a hard pause for which the OpenMP state is7
not guaranteed to persist across the omp_pause_resource call. A hard pause may relinquish8
any data allocated by OpenMP on a given device, including data allocated by memory routines for9
that device as well as data present on the device as a result of a declare target directive or10
target data construct. A hard pause may also relinquish any data associated with a11
threadprivate directive. When relinquished and when applicable, base language appropriate12
deallocation/finalization is performed. When relinquished and when applicable, mapped data on a13
device will not be copied back from the device to the host.14

If successful, the omp_pause_soft value results in a soft pause for which the OpenMP state is15
guaranteed to persist across the call, with the exception of any data associated with a16
threadprivate directive, which may be relinquished across the call. When relinquished and17
when applicable, base language appropriate deallocation/finalization is performed.18

19

Note – A hard pause may relinquish more resources, but may resume processing OpenMP regions20
more slowly. A soft pause allows OpenMP regions to restart more quickly, but may relinquish fewer21
resources. An OpenMP implementation will reclaim resources as needed for OpenMP regions22
encountered after the omp_pause_resource region. Since a hard pause may unmap data on the23
specified device, appropriate data mapping is required before using data on the specified device24
after the omp_pause_region region.25

26

The routine returns zero in case of success, and non-zero otherwise.27

Tool Callbacks28
If the tool is not allowed to interact with the specified device after encountering this call, then the29
runtime must call the tool finalizer for that device.30

Restrictions31
Restrictions to the omp_pause_resource routine are as follows:32

• The omp_pause_resource region may not be nested in any explicit OpenMP region.33

• The routine may only be called when all explicit tasks that do not bind to the implicit parallel34
region to which the encountering thread binds have finalized execution.35

• The omp_pause_stop_tool value must not be specified.36

CHAPTER 19. RUNTIME LIBRARY ROUTINES 489

Cross References1
• target data directive, see Section 14.52

• threadprivate directive, see Section 6.23

• Declare Target Directives, see Section 8.84

19.6.2 omp_pause_resource_all5

Summary6
The omp_pause_resource_all routine allows the runtime to relinquish resources used by7
OpenMP on all devices.8

Format9
C / C++

int omp_pause_resource_all(omp_pause_resource_t kind);10

C / C++
Fortran

integer function omp_pause_resource_all(kind)11
integer (kind=omp_pause_resource_kind) kind12

Fortran

Binding13
The binding task set for an omp_pause_resource_all region is the whole program.14

Effect15
The omp_pause_resource_all routine allows the runtime to relinquish resources used by16
OpenMP on all devices. It is equivalent to calling the omp_pause_resource routine once for17
each available device, including the host device.18

The omp_pause_resource_all routine implies a barrier.19

The argument kind passed to this routine can be one of the valid OpenMP pause kind as defined in20
Section 19.6.1, or any implementation-specific pause kind.21

If successful, the omp_pause_stop_tool value results in a hard pause for which the OpenMP22
state is not guaranteed to persist across the omp_pause_resource call. In addition to the23
effects described above, the implementation will shutdown the OMPT interface as if the program24
execution was ending.25

Tool Callbacks26
If the tool is not allowed to interact with a given device after encountering this call, then the27
runtime must call the tool finalizer for that device.28

490 OpenMP API – Version 6.0 Preview 2 November 2023

Restrictions1
Restrictions to the omp_pause_resource_all routine are as follows:2

• The omp_pause_resource_all region may not be nested in any explicit OpenMP3
region.4

• The routine may only be called when all explicit tasks that do not bind to the implicit parallel5
region to which the encountering thread binds have finalized execution.6

Cross References7
• omp_pause_resource, see Section 19.6.18

19.7 Device Information Routines9

This section describes routines that pertain to the set of devices that are available to an OpenMP10
program.11

19.7.1 omp_get_num_procs12

Summary13
The omp_get_num_procs routine returns the number of processors available to the device.14

Format15
C / C++

int omp_get_num_procs(void);16

C / C++
Fortran

integer function omp_get_num_procs()17

Fortran

Binding18
The binding thread set for an omp_get_num_procs region is all threads on a device. The effect19
of executing this routine is not related to any specific region corresponding to any construct or API20
routine.21

Effect22
The omp_get_num_procs routine returns the number of processors that are available to the23
device at the time the routine is called. This value may change between the time that it is24
determined by the omp_get_num_procs routine and the time that it is read in the calling25
context due to system actions outside the control of the OpenMP implementation.26

CHAPTER 19. RUNTIME LIBRARY ROUTINES 491

19.7.2 omp_get_max_progress_width1

Summary2
The omp_get_max_progress_width routine returns the maximum size of progress units on3
the specified device.4

Format5
C / C++

int omp_get_max_progress_width(int device_num);6

C / C++
Fortran

integer function omp_get_max_progress_width(device_num)7
integer device_num8

Fortran

Constraints on Arguments9
The device_num argument must be a conforming device number.10

Binding11
The binding task set for an omp_get_max_progress_width region is the generating task.12

Effect13
The effect of the omp_get_progress_max_width routine is to return the maximum size, in14
terms of hardware threads, of progress units on the device specified by device_num.15

Cross References16
• parallel directive, see Section 11.217

19.7.3 omp_set_default_device18

Summary19
The omp_set_default_device routine controls the default target device by assigning the20
value of the default-device-var ICV.21

Format22
C / C++

void omp_set_default_device(int device_num);23

C / C++
Fortran

subroutine omp_set_default_device(device_num)24
integer device_num25

Fortran

492 OpenMP API – Version 6.0 Preview 2 November 2023

Binding1
The binding task set for an omp_set_default_device region is the generating task.2

Effect3
The effect of this routine is to set the value of the default-device-var ICV of the current task to the4
value specified in the argument. When called from within a target region the effect of this5
routine is unspecified.6

Cross References7
• target directive, see Section 14.88

• default-device-var ICV, see Table 2.19

19.7.4 omp_get_default_device10

Summary11
The omp_get_default_device routine returns the default target device.12

Format13
C / C++

int omp_get_default_device(void);14

C / C++
Fortran

integer function omp_get_default_device()15

Fortran

Binding16
The binding task set for an omp_get_default_device region is the generating task.17

Effect18
The omp_get_default_device routine returns the value of the default-device-var ICV of the19
current task. When called from within a target region the effect of this routine is unspecified.20

Cross References21
• target directive, see Section 14.822

• default-device-var ICV, see Table 2.123

19.7.5 omp_get_num_devices24

Summary25
The omp_get_num_devices routine returns the number of non-host devices available for26
offloading code or data.27

CHAPTER 19. RUNTIME LIBRARY ROUTINES 493

Format1
C / C++

int omp_get_num_devices(void);2

C / C++
Fortran

integer function omp_get_num_devices()3

Fortran

Binding4
The binding task set for an omp_get_num_devices region is the generating task.5

Effect6
The omp_get_num_devices routine returns the number of available non-host devices onto7
which code or data may be offloaded. When called from within a target region the effect of this8
routine is unspecified.9

Cross References10
• target directive, see Section 14.811

19.7.6 omp_get_device_num12

Summary13
The omp_get_device_num routine returns the device number of the device on which the14
calling thread is executing.15

Format16
C / C++

int omp_get_device_num(void);17

C / C++
Fortran

integer function omp_get_device_num()18

Fortran

Binding19
The binding task set for an omp_get_device_num region is the generating task.20

Effect21
The omp_get_device_num routine returns the device number of the device on which the22
calling thread is executing. When called on the host device, it will return the same value as the23
omp_get_initial_device routine.24

494 OpenMP API – Version 6.0 Preview 2 November 2023

19.7.7 omp_is_initial_device1

Summary2
The omp_is_initial_device routine returns true if the current task is executing on the host3
device; otherwise, it returns false.4

Format5
C / C++

int omp_is_initial_device(void);6

C / C++
Fortran

logical function omp_is_initial_device()7

Fortran

Binding8
The binding task set for an omp_is_initial_device region is the generating task.9

Effect10
The effect of this routine is to return true if the current task is executing on the host device;11
otherwise, it returns false.12

19.7.8 omp_get_initial_device13

Summary14
The omp_get_initial_device routine returns a device number that represents the host15
device.16

Format17
C / C++

int omp_get_initial_device(void);18

C / C++
Fortran

integer function omp_get_initial_device()19

Fortran

Binding20
The binding task set for an omp_get_initial_device region is the generating task.21

Effect22
The effect of this routine is to return the device number of the host device. The value of the device23
number is the value returned by the omp_get_num_devices routine. When called from within24
a target region the effect of this routine is unspecified.25

CHAPTER 19. RUNTIME LIBRARY ROUTINES 495

Cross References1
• target directive, see Section 14.82

19.8 Device Memory Routines3

This section describes routines that support allocation of memory and management of pointers in4
the data environments of target devices.5

If the device_num, src_device_num, or dst_device_num argument of a device memory routine has6
the value omp_invalid_device, runtime error termination is performed.7

19.8.1 omp_target_alloc8

Summary9
The omp_target_alloc routine allocates memory in a device data environment and returns a10
device pointer to that memory.11

Format12
C / C++

void* omp_target_alloc(size_t size, int device_num);13

C / C++
Fortran

type(c_ptr) function omp_target_alloc(size, device_num) bind(c)14
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t, c_int15
integer(c_size_t), value :: size16
integer(c_int), value :: device_num17

Fortran

Constraints on Arguments18
The device_num argument must be a conforming device number.19

Binding20
The binding task set for an omp_target_alloc region is the generating task, which is the target21
task generated by the call to the omp_target_alloc routine.22

Effect23
The omp_target_alloc routine returns a device pointer that references the device address of a24
storage location of size bytes. The storage location is dynamically allocated in the device data25
environment of the device specified by device_num. The omp_target_alloc routine executes26
as if part of a target task that is generated by the call to the routine and that is an included task. The27
omp_target_alloc routine returns NULL if it cannot dynamically allocate the memory in the28
device data environment or if size is 0. The device pointer returned by omp_target_alloc can29
be used in an is_device_ptr clause (see Section 6.4.7).30

496 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
The omp_target_alloc routine requires an explicit interface and so might not be provided in1
omp_lib.h.2

Fortran

Execution Model Events3
The target-data-allocation-begin event occurs before a thread initiates a data allocation on a target4
device.5

The target-data-allocation-end event occurs after a thread initiates a data allocation on a target6
device.7

Tool Callbacks8
A thread dispatches a registered ompt_callback_target_data_op_emi callback with9
ompt_scope_begin as its endpoint argument for each occurrence of a10
target-data-allocation-begin event in that thread. Similarly, a thread dispatches a registered11
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint12
argument for each occurrence of a target-data-allocation-end event in that thread. These callbacks13
have type signature ompt_callback_target_data_op_emi_t.14

A thread dispatches a registered ompt_callback_target_data_op callback for each15
occurrence of a target-data-allocation-end event in that thread. The callback occurs in the context16
of the target task and has type signature ompt_callback_target_data_op_t.17

Restrictions18
Restrictions to the omp_target_alloc routine are as follows.19

• Freeing the storage returned by omp_target_alloc with any routine other than20
omp_target_free results in unspecified behavior.21

• When called from within a target region the effect is unspecified.22

C / C++
• Unless the unified_address clause appears on a requires directive in the23

compilation unit, pointer arithmetic is not supported on the device pointer returned by24
omp_target_alloc.25

C / C++

Cross References26
• is_device_ptr clause, see Section 6.4.727

• target directive, see Section 14.828

• omp_target_free, see Section 19.8.229

• ompt_callback_target_data_op_emi_t and30
ompt_callback_target_data_op_t, see Section 20.5.2.2531

CHAPTER 19. RUNTIME LIBRARY ROUTINES 497

19.8.2 omp_target_free1

Summary2
The omp_target_free routine frees the device memory allocated by the3
omp_target_alloc routine.4

Format5
C / C++

void omp_target_free(void *device_ptr, int device_num);6

C / C++
Fortran

subroutine omp_target_free(device_ptr, device_num) bind(c)7
use, intrinsic :: iso_c_binding, only : c_ptr, c_int8
type(c_ptr), value :: device_ptr9
integer(c_int), value :: device_num10

Fortran

Constraints on Arguments11
An OpenMP program that calls omp_target_free with a non-null pointer that does not have a12
value returned from omp_target_alloc is a non-conforming program. The device_num13
argument must be a conforming device number.14

Binding15
The binding task set for an omp_target_free region is the generating task, which is the target16
task generated by the call to the omp_target_free routine.17

Effect18
The omp_target_free routine frees the memory in the device data environment associated19
with device_ptr. If device_ptr is NULL, the operation is ignored. The omp_target_free20
routine executes as if part of a target task that is generated by the call to the routine and that is an21
included task. Synchronization must be inserted to ensure that all accesses to device_ptr are22
completed before the call to omp_target_free.23

Fortran
The omp_target_free routine requires an explicit interface and so might not be provided in24
omp_lib.h.25

Fortran

Execution Model Events26
The target-data-free-begin event occurs before a thread initiates a data free on a target device.27

The target-data-free-end event occurs after a thread initiates a data free on a target device.28

498 OpenMP API – Version 6.0 Preview 2 November 2023

Tool Callbacks1
A thread dispatches a registered ompt_callback_target_data_op_emi callback with2
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-free-begin3
event in that thread. Similarly, a thread dispatches a registered4
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint5
argument for each occurrence of a target-data-free-end event in that thread. These callbacks have6
type signature ompt_callback_target_data_op_emi_t.7

A thread dispatches a registered ompt_callback_target_data_op callback for each8
occurrence of a target-data-free-begin event in that thread. The callback occurs in the context of the9
target task and has type signature ompt_callback_target_data_op_t.10

Restrictions11
Restrictions to the omp_target_free routine are as follows.12

• When called from within a target region the effect is unspecified.13

Cross References14
• target directive, see Section 14.815

• omp_target_alloc, see Section 19.8.116

• ompt_callback_target_data_op_emi_t and17
ompt_callback_target_data_op_t, see Section 20.5.2.2518

19.8.3 omp_target_is_present19

Summary20
The omp_target_is_present routine tests whether a host pointer refers to storage that is21
mapped to a given device.22

Format23
C / C++

int omp_target_is_present(const void *ptr, int device_num);24

C / C++
Fortran

integer(c_int) function omp_target_is_present(ptr, device_num) &25
bind(c)26

use, intrinsic :: iso_c_binding, only : c_ptr, c_int27
type(c_ptr), value :: ptr28
integer(c_int), value :: device_num29

Fortran

CHAPTER 19. RUNTIME LIBRARY ROUTINES 499

Constraints on Arguments1
The value of ptr must be a valid host pointer or NULL. The device_num argument must be a2
conforming device number.3

Binding4
The binding task set for an omp_target_is_present region is the encountering task.5

Effect6
The omp_target_is_present routine returns a non-zero value if device_num refers to the7
host device or if ptr refers to storage that has corresponding storage in the device data environment8
of device device_num. Otherwise, the routine returns zero.9

Fortran
The omp_target_is_present routine requires an explicit interface and so might not be10
provided in omp_lib.h.11

Fortran

Restrictions12
Restrictions to the omp_target_is_present routine are as follows.13

• When called from within a target region the effect is unspecified.14

Cross References15
• target directive, see Section 14.816

19.8.4 omp_target_is_accessible17

Summary18
The omp_target_is_accessible routine tests whether memory is accessible from a given19
device.20

Format21
C / C++

int omp_target_is_accessible(const void *ptr, size_t size,22
int device_num);23

C / C++
Fortran

integer(c_int) function omp_target_is_accessible(&24
ptr, size, device_num) bind(c)25

use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t, c_int26
type(c_ptr), value :: ptr27
integer(c_size_t), value :: size28
integer(c_int), value :: device_num29

Fortran

500 OpenMP API – Version 6.0 Preview 2 November 2023

Constraints on Arguments1
The value of size must be positive. The device_num argument must be a conforming device number.2

Binding3
The binding task set for an omp_target_is_accessible region is the encountering task.4

Effect5
This routine returns a non-zero value if the storage of size bytes that corresponds to the address6
range starting at the address given by ptr is accessible from device device_num. Otherwise, it7
returns zero. The value of ptr is interpreted as an address in the address space of the specified8
device.9

Fortran
The omp_target_is_accessible routine requires an explicit interface and so might not be10
provided in omp_lib.h.11

Fortran

Restrictions12
Restrictions to the omp_target_is_accessible routine are as follows.13

• When called from within a target region the effect is unspecified.14

Cross References15
• target directive, see Section 14.816

19.8.5 omp_target_memcpy17

Summary18
The omp_target_memcpy routine copies memory between any combination of host and device19
pointers.20

Format21
C / C++

int omp_target_memcpy(22
void *dst,23
const void *src,24
size_t length,25
size_t dst_offset,26
size_t src_offset,27
int dst_device_num,28
int src_device_num29

);30

C / C++

CHAPTER 19. RUNTIME LIBRARY ROUTINES 501

Fortran
integer(c_int) function omp_target_memcpy(dst, src, length, &1

dst_offset, src_offset, dst_device_num, src_device_num) bind(c)2
use, intrinsic :: iso_c_binding, only : c_ptr, c_int, c_size_t3
type(c_ptr), value :: dst, src4
integer(c_size_t), value :: length, dst_offset, src_offset5
integer(c_int), value :: dst_device_num, src_device_num6

Fortran
Constraints on Arguments7
Each device pointer specified must be valid for the device on the same side of the copy. The8
dst_device_num and src_device_num arguments must be conforming device numbers.9

Binding10
The binding task set for an omp_target_memcpy region is the generating task, which is the11
target task generated by the call to the omp_target_memcpy routine.12

Effect13
This routine copies length bytes of memory at offset src_offset from src in the device data14
environment of device src_device_num to dst starting at offset dst_offset in the device data15
environment of device dst_device_num. The omp_target_memcpy routine executes as if part of16
a target task that is generated by the call to the routine and that is an included task. The return value17
is zero on success and non-zero on failure. This routine contains a task scheduling point.18

Fortran
The omp_target_memcpy routine requires an explicit interface and so might not be provided in19
omp_lib.h.20

Fortran
Execution Model Events21
The target-data-op-begin event occurs before a thread initiates a data transfer in the22
omp_target_memcpy region.23

The target-data-op-end event occurs after a thread initiates a data transfer in the24
omp_target_memcpy region.25

Tool Callbacks26
A thread dispatches a registered ompt_callback_target_data_op_emi callback with27
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-op-begin28
event in that thread. Similarly, a thread dispatches a registered29
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint30
argument for each occurrence of a target-data-op-end event in that thread. These callbacks have31
type signature ompt_callback_target_data_op_emi_t.32

A thread dispatches a registered ompt_callback_target_data_op callback for each33
occurrence of a target-data-op-end event in that thread. The callback occurs in the context of the34
target task and has type signature ompt_callback_target_data_op_t.35

502 OpenMP API – Version 6.0 Preview 2 November 2023

Restrictions1
Restrictions to the omp_target_memcpy routine are as follows.2

• When called from within a target region the effect is unspecified.3

Cross References4
• target directive, see Section 14.85

• ompt_callback_target_data_op_emi_t and6
ompt_callback_target_data_op_t, see Section 20.5.2.257

19.8.6 omp_target_memcpy_rect8

Summary9
The omp_target_memcpy_rect routine copies a rectangular subvolume from a10
multi-dimensional array to another multi-dimensional array. The omp_target_memcpy_rect11
routine performs a copy between any combination of host and device pointers.12

Format13
C / C++

int omp_target_memcpy_rect(14
void *dst,15
const void *src,16
size_t element_size,17
int num_dims,18
const size_t *volume,19
const size_t *dst_offsets,20
const size_t *src_offsets,21
const size_t *dst_dimensions,22
const size_t *src_dimensions,23
int dst_device_num,24
int src_device_num25

);26

C / C++
Fortran

integer(c_int) function omp_target_memcpy_rect(dst,src,element_size, &27
num_dims, volume, dst_offsets, src_offsets, dst_dimensions, src_dimensions, &28
dst_device_num, src_device_num) bind(c)29

use, intrinsic :: iso_c_binding, only : c_ptr, c_int, c_size_t30
type(c_ptr), value :: dst, src31
integer(c_size_t), value :: element_size32
integer(c_int), value :: num_dims, dst_device_num, src_device_num33
integer(c_size_t), intent(in) :: volume(*), dst_offsets(*), &34

src_offsets(*), dst_dimensions(*), src_dimensions(*)35

Fortran

CHAPTER 19. RUNTIME LIBRARY ROUTINES 503

Constraints on Arguments1
Each device pointer specified must be valid for the device on the same side of the copy. The2
dst_device_num and src_device_num arguments must be conforming device numbers. The length3
of the offset and dimension arrays must be at least the value of num_dims. The value of num_dims4
must be between 1 and the implementation-defined limit, which must be at least three.5

Fortran
Because the interface binds directly to a C language function the function assumes C memory6
ordering.7

Fortran

Binding8
The binding task set for an omp_target_memcpy_rect region is the generating task, which is9
the target task generated by the call to the omp_target_memcpy_rect routine.10

Effect11
This routine copies a rectangular subvolume of src, in the device data environment of device12
src_device_num, to dst, in the device data environment of device dst_device_num. The volume is13
specified in terms of the size of an element, number of dimensions, and constant arrays of length14
num_dims. The maximum number of dimensions supported is at least three; support for higher15
dimensionality is implementation defined. The volume array specifies the length, in number of16
elements, to copy in each dimension from src to dst. The dst_offsets (src_offsets) parameter17
specifies the number of elements from the origin of dst (src) in elements. The dst_dimensions18
(src_dimensions) parameter specifies the length of each dimension of dst (src).19

The omp_target_memcpy_rect routine executes as if part of a target task that is generated by20
the call to the routine and that is an included task. The routine returns zero if successful.21
Otherwise, it returns a non-zero value. The routine contains a task scheduling point.22

An application can determine the inclusive number of dimensions supported by an implementation23
by passing NULL for both dst and src. The routine returns the number of dimensions supported by24
the implementation for the specified device numbers. No copy operation is performed.25

Fortran
The omp_target_memcpy_rect routine requires an explicit interface and so might not be26
provided in omp_lib.h.27

Fortran

Execution Model Events28
The target-data-op-begin event occurs before a thread initiates a data transfer in the29
omp_target_memcpy_rect region.30

The target-data-op-end event occurs after a thread initiates a data transfer in the31
omp_target_memcpy_rect region.32

504 OpenMP API – Version 6.0 Preview 2 November 2023

Tool Callbacks1
A thread dispatches a registered ompt_callback_target_data_op_emi callback with2
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-op-begin3
event in that thread. Similarly, a thread dispatches a registered4
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint5
argument for each occurrence of a target-data-op-end event in that thread. These callbacks have6
type signature ompt_callback_target_data_op_emi_t.7

A thread dispatches a registered ompt_callback_target_data_op callback for each8
occurrence of a target-data-op-end event in that thread. The callback occurs in the context of the9
target task and has type signature ompt_callback_target_data_op_t.10

Restrictions11
Restrictions to the omp_target_memcpy_rect routine are as follows.12

• When called from within a target region the effect is unspecified.13

Cross References14
• target directive, see Section 14.815

• ompt_callback_target_data_op_emi_t and16
ompt_callback_target_data_op_t, see Section 20.5.2.2517

19.8.7 omp_target_memcpy_async18

Summary19
The omp_target_memcpy_async routine asynchronously performs a copy between any20
combination of host and device pointers.21

Format22
C / C++

int omp_target_memcpy_async(23
void *dst,24
const void *src,25
size_t length,26
size_t dst_offset,27
size_t src_offset,28
int dst_device_num,29
int src_device_num,30
int depobj_count,31
omp_depend_t *depobj_list32

);33

C / C++

CHAPTER 19. RUNTIME LIBRARY ROUTINES 505

Fortran
integer(c_int) function omp_target_memcpy_async(dst, src, length, &1

dst_offset, src_offset, dst_device_num, src_device_num, &2
depobj_count, depobj_list) bind(c)3

use, intrinsic :: iso_c_binding, only : c_ptr, c_int, c_size_t4
type(c_ptr), value :: dst, src5
integer(c_size_t), value :: length, dst_offset, src_offset6
integer(c_int), value :: dst_device_num, src_device_num, depobj_count7
integer(omp_depend_kind), optional :: depobj_list(*)8

Fortran

Constraints on Arguments9
Each device pointer specified must be valid for the device on the same side of the copy. The10
dst_device_num and src_device_num arguments must be conforming device numbers.11

Binding12
The binding task set for an omp_target_memcpy_async region is the generating task, which13
is the target task generated by the call to the omp_target_memcpy_async routine.14

Effect15
This routine performs an asynchronous memory copy where length bytes of memory at offset16
src_offset from src in the device data environment of device src_device_num are copied to dst17
starting at offset dst_offset in the device data environment of device dst_device_num. The18
omp_target_memcpy_async routine executes as if part of a target task that is generated by the19
call to the routine and for which execution may be deferred. Task dependences are expressed with20
zero or more OpenMP depend objects. The dependences are specified by passing the number of21
depend objects followed by an array of the objects. The generated target task is not a dependent task22
if the program passes in a count of zero for depobj_count. depobj_list is ignored if the value of23
depobj_count is zero.24

The routine returns zero if successful. Otherwise, it returns a non-zero value. The routine contains25
a task scheduling point.26

Fortran
The omp_target_memcpy_async routine requires an explicit interface and so might not be27
provided in omp_lib.h.28

Fortran

506 OpenMP API – Version 6.0 Preview 2 November 2023

Execution Model Events1
Events associated with a target task are the same as for the task construct defined in Section 13.6.2
Events associated with task dependences that result from depobj_list are the same as for a depend3
clause with the debobj task-dependence-type defined in Section 16.9.5.4

The target-data-op-begin event occurs before a thread initiates a data transfer in the5
omp_target_memcpy_async region.6

The target-data-op-end event occurs after a thread initiates a data transfer in the7
omp_target_memcpy_async region.8

Tool Callbacks9
Callbacks associated with events for target tasks are the same as for the task construct defined in10
Section 13.6; (flags & ompt_task_target) always evaluates to true in the dispatched callback.11

Callbacks associated with events for task dependences are the same as for the depend clause12
defined in Section 16.9.5.13

A thread dispatches a registered ompt_callback_target_data_op_emi callback with14
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-op-begin15
event in that thread. Similarly, a thread dispatches a registered16
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint17
argument for each occurrence of a target-data-op-end event in that thread. These callbacks have18
type signature ompt_callback_target_data_op_emi_t.19

A thread dispatches a registered ompt_callback_target_data_op callback for each20
occurrence of a target-data-op-end event in that thread. The callback occurs in the context of the21
target task and has type signature ompt_callback_target_data_op_t.22

Restrictions23
Restrictions to the omp_target_memcpy_async routine are as follows.24

• When called from within a target region the effect is unspecified.25

Cross References26
• target directive, see Section 14.827

• Depend Objects, see Section 16.9.228

• ompt_callback_target_data_op_emi_t and29
ompt_callback_target_data_op_t, see Section 20.5.2.2530

19.8.8 omp_target_memcpy_rect_async31

Summary32
The omp_target_memcpy_rect_async routine asynchronously performs a copy between33
any combination of host and device pointers.34

CHAPTER 19. RUNTIME LIBRARY ROUTINES 507

Format1
C / C++

int omp_target_memcpy_rect_async(2
void *dst,3
const void *src,4
size_t element_size,5
int num_dims,6
const size_t *volume,7
const size_t *dst_offsets,8
const size_t *src_offsets,9
const size_t *dst_dimensions,10
const size_t *src_dimensions,11
int dst_device_num,12
int src_device_num,13
int depobj_count,14
omp_depend_t *depobj_list15

);16

C / C++
Fortran

integer(c_int) function omp_target_memcpy_rect_async(dst, src, &17
element_size, num_dims, volume, dst_offsets, src_offsets, &18
dst_dimensions, src_dimensions, dst_device_num, src_device_num, &19
depobj_count, depobj_list) bind(c)20

use, intrinsic :: iso_c_binding, only : c_ptr, c_int, c_size_t21
type(c_ptr), value :: dst, src22
integer(c_size_t), value :: element_size23
integer(c_int), value :: num_dims, dst_device_num, src_device_num, &24

depobj_count25
integer(c_size_t), intent(in) :: volume(*), dst_offsets(*), &26

src_offsets(*), dst_dimensions(*), src_dimensions(*)27
integer(omp_depend_kind), optional :: depobj_list(*)28

Fortran

Constraints on Arguments29
Each device pointer specified must be valid for the device on the same side of the copy. The30
dst_device_num and src_device_num arguments must be conforming device numbers. The length31
of the offset and dimension arrays must be at least the value of num_dims. The value of num_dims32
must be between 1 and the implementation-defined limit, which must be at least three.33

Fortran
Because the interface binds directly to a C language function the function assumes C memory34
ordering.35

Fortran

508 OpenMP API – Version 6.0 Preview 2 November 2023

Binding1
The binding task set for an omp_target_memcpy_rect_async region is the generating task,2
which is the target task generated by the call to the omp_target_memcpy_rect_async3
routine.4

Effect5
This routine copies a rectangular subvolume of src, in the device data environment of device6
src_device_num, to dst, in the device data environment of device dst_device_num. The volume is7
specified in terms of the size of an element, number of dimensions, and constant arrays of length8
num_dims. The maximum number of dimensions supported is at least three; support for higher9
dimensionality is implementation defined. The volume array specifies the length, in number of10
elements, to copy in each dimension from src to dst. The dst_offsets (src_offsets) parameter11
specifies the number of elements from the origin of dst (src) in elements. The dst_dimensions12
(src_dimensions) parameter specifies the length of each dimension of dst (src).13

The omp_target_memcpy_rect_async routine executes as if part of a target task that is14
generated by the call to the routine and for which execution may be deferred. Task dependences are15
expressed with zero or more OpenMP depend objects. The dependences are specified by passing16
the number of depend objects followed by an array of the objects. The generated target task is not a17
dependent task if the program passes in a count of zero for depobj_count. depobj_list is ignored if18
the value of depobj_count is zero.19

The routine returns zero if successful. Otherwise, it returns a non-zero value. The routine contains20
a task scheduling point.21

An application can determine the number of inclusive dimensions supported by an implementation22
by passing NULL for both dst and src. The routine returns the number of dimensions supported by23
the implementation for the specified device numbers. No copy operation is performed.24

Fortran
The omp_target_memcpy_rect_async routine requires an explicit interface and so might25
not be provided in omp_lib.h.26

Fortran

Execution Model Events27
Events associated with a target task are the same as for the task construct defined in Section 13.6.28
Events associated with task dependences that result from depobj_list are the same as for a depend29
clause with the debobj task-dependence-type defined in Section 16.9.5.30

The target-data-op-begin event occurs before a thread initiates a data transfer in the31
omp_target_memcpy_rect_async region.32

The target-data-op-end event occurs after a thread initiates a data transfer in the33
omp_target_memcpy_rect_async region.34

CHAPTER 19. RUNTIME LIBRARY ROUTINES 509

Tool Callbacks1
Callbacks associated with events for target tasks are the same as for the task construct defined in2
Section 13.6; (flags & ompt_task_target) always evaluates to true in the dispatched callback.3

Callbacks associated with events for task dependences are the same as for the depend clause4
defined in Section 16.9.5.5

A thread dispatches a registered ompt_callback_target_data_op_emi callback with6
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-op-begin7
event in that thread. Similarly, a thread dispatches a registered8
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint9
argument for each occurrence of a target-data-op-end event in that thread. These callbacks have10
type signature ompt_callback_target_data_op_emi_t.11

A thread dispatches a registered ompt_callback_target_data_op callback for each12
occurrence of a target-data-op-end event in that thread. The callback occurs in the context of the13
target task and has type signature ompt_callback_target_data_op_t.14

Restrictions15
Restrictions to the omp_target_memcpy_rect_async routine are as follows.16

• When called from within a target region the effect is unspecified.17

Cross References18
• target directive, see Section 14.819

• Depend Objects, see Section 16.9.220

• ompt_callback_target_data_op_emi_t and21
ompt_callback_target_data_op_t, see Section 20.5.2.2522

19.8.9 omp_target_memset23

Summary24
The omp_target_memset routine fills memory in a device data environment with a given value.25

Format26
C / C++

void* omp_target_memset(void *ptr, int val, size_t count,27
int device_num);28

C / C++

510 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
type(c_ptr) function omp_target_memset(ptr, val, count, device_num) &1

bind(c)2
use, intrinsic :: iso_c_binding, only : c_ptr, c_int, c_size_t3
type(c_ptr), value :: ptr4
integer(c_int), value :: val5
integer(c_size_t), value :: count6
integer(c_int), value :: device_num7

Fortran

Constraints on Arguments8
The value of ptr must be a valid pointer to device memory for the device denoted by the value of9
device_num. The device_num argument must be a conforming device number.10

Binding11
The binding task set for an omp_target_memset region is the generating task, which is the12
target task generated by the call to the omp_target_memset routine.13

Effect14
The omp_target_memset routine fills the first count bytes pointed to by ptr with the value val15
(converted to unsigned char) in the device data environment associated with device16
device_num. If count is zero, the routine has no effect. If ptr is NULL, the effect is unspecified.17
The omp_target_memset routine returns ptr.18

The omp_target_memset routine executes as if part of a target task that is generated by the call19
to the routine and that is an included task. The omp_target_memset routine contains a task20
scheduling point.21

Fortran
The omp_target_memset routine requires an explicit interface and so might not be provided in22
omp_lib.h.23

Fortran

Execution Model Events24
The target-data-op-begin event occurs before a thread initiates filling the memory in the25
omp_target_memset region.26

The target-data-op-end event occurs after a thread initiates filling the memory in the27
omp_target_memset region.28

CHAPTER 19. RUNTIME LIBRARY ROUTINES 511

Tool Callbacks1
A thread dispatches a registered ompt_callback_target_data_op_emi callback with2
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-op-begin3
event in that thread. Similarly, a thread dispatches a registered4
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint5
argument for each occurrence of a target-data-op-end event in that thread. These callbacks have6
type signature ompt_callback_target_data_op_emi_t.7

A thread dispatches a registered ompt_callback_target_data_op callback for each8
occurrence of a target-data-op-end event in that thread. The callback occurs in the context of the9
target task and has type signature ompt_callback_target_data_op_t.10

Restrictions11
The restrictions to the omp_target_memset routine are as follows:12

• When called from within a target region the effect is unspecified.13

Cross References14
• omp_target_alloc, see Section 19.8.115

• omp_target_free, see Section 19.8.216

• ompt_callback_target_data_op_emi_t and17
ompt_callback_target_data_op_t, see Section 20.5.2.2518

19.8.10 omp_target_memset_async19

Summary20
The omp_target_memset_async routine fills memory in the device data environment with a21
given value.22

Format23
C / C++

void* omp_target_memset_async(void *ptr, int val, size_t count,24
int device_num,25
int depobj_count,26
omp_depend_t *depobj_list);27

C / C++

512 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
type(c_ptr) function omp_target_memset_async(ptr, val, count, &1

device_num, &2
depobj_count, depobj_list) &3

bind(c)4
use, intrinsic :: iso_c_binding, only : c_ptr, c_int, c_size_t5
type(c_ptr), value :: ptr6
integer(c_int), value :: val7
integer(c_size_t), value :: count8
integer(c_int), value :: device_num9
integer(c_int), value :: depobj_count10
integer(omp_depend_kind), optional :: depobj_list(*)11

Fortran

Constraints on Arguments12
The value of ptr must be a valid pointer to device memory for the device denoted by the value of13
device_num. The device_num argument must be a conforming device number.14

Binding15
The binding task set for an omp_target_memset_async region is the generating task, which16
is the target task generated by the call to the omp_target_memset_async routine.17

Effect18
The omp_target_memset_async routine fills the first count bytes pointed to by ptr with the19
value val (converted to unsigned char) in the device data environment associated with device20
device_num. If count is zero, the routine has no effect. If ptr is NULL, the effect is unspecified.21
The omp_target_memset_async routine returns ptr.22

The omp_target_memset_async routine executes as if part of a target task that is generated23
by the call to the routine and for which execution may be deferred. Task dependences are expressed24
with zero or more OpenMP depend objects. The dependences are specified by passing the number25
of depend objects followed by an array of the objects. The generated target task is not a dependent26
task if the program passes in a count of zero for depobj_count. The depobj_list argument is ignored27
if the value of depobj_count is zero.28

The routine contains a task scheduling point.29

Fortran
The omp_target_memset_async routine requires an explicit interface and so might not be30
provided in omp_lib.h.31

Fortran

CHAPTER 19. RUNTIME LIBRARY ROUTINES 513

Execution Model Events1
Events associated with a target task are the same as for the task construct defined in Section 13.6.2
Events associated with task dependences that result from depobj_list are the same as for a depend3
clause with the depobj task-dependence-type defined in Section 16.9.5.4

The target-data-op-begin and target-data-op-end events in the omp_target_memset_async5
region are the same as those in the omp_target_memset region.6

Tool Callbacks7
Callbacks associated with events for target tasks are the same as for the task construct defined in8
Section 13.6; (flags & ompt_task_target) always evaluates to true in the dispatched callback.9

Callbacks associated with events for task dependences are the same as for the depend clause10
defined in Section 16.9.5.11

A thread dispatches a registered ompt_callback_target_data_op_emi callback with12
ompt_scope_begin as its endpoint argument for each occurrence of a target-data-op-begin13
event in that thread. Similarly, a thread dispatches a registered14
ompt_callback_target_data_op_emi callback with ompt_scope_end as its endpoint15
argument for each occurrence of a target-data-op-end event in that thread. These callbacks have16
type signature ompt_callback_target_data_op_emi_t.17

A thread dispatches a registered ompt_callback_target_data_op callback for each18
occurrence of a target-data-op-end event in that thread. The callback occurs in the context of the19
target task and has type signature ompt_callback_target_data_op_t.20

Restrictions21
The restrictions to the omp_target_memset_async routine are as follows:22

• When called from within a target region the effect is unspecified.23

Cross References24
• Depend Objects, see Section 16.9.225

• omp_target_alloc, see Section 19.8.126

• omp_target_free, see Section 19.8.227

• ompt_callback_target_data_op_emi_t and28
ompt_callback_target_data_op_t, see Section 20.5.2.2529

19.8.11 omp_target_associate_ptr30

Summary31
The omp_target_associate_ptr routine maps a device pointer, which may be returned32
from omp_target_alloc or implementation-defined runtime routines, to a host pointer.33

514 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C / C++

int omp_target_associate_ptr(2
const void *host_ptr,3
const void *device_ptr,4
size_t size,5
size_t device_offset,6
int device_num7

);8

C / C++
Fortran

integer(c_int) function omp_target_associate_ptr(host_ptr, &9
device_ptr, size, device_offset, device_num) bind(c)10

use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t, c_int11
type(c_ptr), value :: host_ptr, device_ptr12
integer(c_size_t), value :: size, device_offset13
integer(c_int), value :: device_num14

Fortran

Constraints on Arguments15
The value of device_ptr value must be a valid pointer to device memory for the device denoted by16
the value of device_num. The device_num argument must be a conforming device number.17

Binding18
The binding task set for an omp_target_associate_ptr region is the generating task, which19
is the target task generated by the call to the omp_target_associate_ptr routine.20

Effect21
The omp_target_associate_ptr routine associates a device pointer in the device data22
environment of device device_num with a host pointer such that when the host pointer appears in a23
subsequent map clause, the associated device pointer is used as the target for data motion24
associated with that host pointer. The device_offset parameter specifies the offset into device_ptr25
that is used as the base address for the device side of the mapping. The reference count of the26
resulting mapping will be infinite. After being successfully associated, the buffer to which the27
device pointer points is invalidated and accessing data directly through the device pointer results in28
unspecified behavior. The pointer can be retrieved for other uses by using the29
omp_target_disassociate_ptr routine to disassociate it .30

The omp_target_associate_ptr routine executes as if part of a target task that is generated31
by the call to the routine and that is an included task. The routine returns zero if successful.32
Otherwise it returns a non-zero value.33

Only one device buffer can be associated with a given host pointer value and device number pair.34
Attempting to associate a second buffer will return non-zero. Associating the same pair of pointers35

CHAPTER 19. RUNTIME LIBRARY ROUTINES 515

on the same device with the same offset has no effect and returns zero. Associating pointers that1
share underlying storage will result in unspecified behavior. The omp_target_is_present2
function can be used to test whether a given host pointer has a corresponding variable in the device3
data environment.4

Fortran
The omp_target_associate_ptr routine requires an explicit interface and so might not be5
provided in omp_lib.h.6

Fortran
Execution Model Events7
The target-data-associate event occurs before a thread initiates a device pointer association on a8
target device.9

Tool Callbacks10
A thread dispatches a registered ompt_callback_target_data_op callback, or a registered11
ompt_callback_target_data_op_emi callback with ompt_scope_beginend as its12
endpoint argument for each occurrence of a target-data-associate event in that thread. These13
callbacks have type signature ompt_callback_target_data_op_t or14
ompt_callback_target_data_op_emi_t, respectively.15

Restrictions16
Restrictions to the omp_target_associate_ptr routine are as follows.17

• When called from within a target region the effect is unspecified.18

Cross References19
• target directive, see Section 14.820

• omp_target_alloc, see Section 19.8.121

• omp_target_disassociate_ptr, see Section 19.8.1222

• omp_target_is_present, see Section 19.8.323

• ompt_callback_target_data_op_emi_t and24
ompt_callback_target_data_op_t, see Section 20.5.2.2525

19.8.12 omp_target_disassociate_ptr26

Summary27
The omp_target_disassociate_ptr removes the associated pointer for a given device28
from a host pointer.29

Format30
C / C++

int omp_target_disassociate_ptr(const void *ptr, int device_num);31

C / C++

516 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
integer(c_int) function omp_target_disassociate_ptr(ptr, &1

device_num) bind(c)2
use, intrinsic :: iso_c_binding, only : c_ptr, c_int3
type(c_ptr), value :: ptr4
integer(c_int), value :: device_num5

Fortran

Constraints on Arguments6
The device_num argument must be a conforming device number.7

Binding8
The binding task set for an omp_target_disassociate_ptr region is the generating task,9
which is the target task generated by the call to the omp_target_disassociate_ptr routine.10

Effect11
The omp_target_disassociate_ptr removes the associated device data on device12
device_num from the presence table for host pointer ptr. A call to this routine on a pointer that is13
not NULL and does not have associated data on the given device results in unspecified behavior.14
The reference count of the mapping is reduced to zero, regardless of its current value. The15
omp_target_disassociate_ptr routine executes as if part of a target task that is generated16
by the call to the routine and that is an included task. The routine returns zero if successful.17
Otherwise it returns a non-zero value. After a call to omp_target_disassociate_ptr, the18
contents of the device buffer are invalidated.19

Fortran
The omp_target_disassociate_ptr routine requires an explicit interface and so might not20
be provided in omp_lib.h.21

Fortran

Execution Model Events22
The target-data-disassociate event occurs before a thread initiates a device pointer disassociation23
on a target device.24

Tool Callbacks25
A thread dispatches a registered ompt_callback_target_data_op callback, or a registered26
ompt_callback_target_data_op_emi callback with ompt_scope_beginend as its27
endpoint argument for each occurrence of a target-data-disassociate event in that thread. These28
callbacks have type signature ompt_callback_target_data_op_t or29
ompt_callback_target_data_op_emi_t, respectively.30

Restrictions31
Restrictions to the omp_target_disassociate_ptr routine are as follows.32

• When called from within a target region the effect is unspecified.33

CHAPTER 19. RUNTIME LIBRARY ROUTINES 517

Cross References1
• target directive, see Section 14.82

• ompt_callback_target_data_op_emi_t and3
ompt_callback_target_data_op_t, see Section 20.5.2.254

19.8.13 omp_get_mapped_ptr5

Summary6
The omp_get_mapped_ptr routine returns the device pointer that is associated with a host7
pointer for a given device.8

Format9
C / C++

void * omp_get_mapped_ptr(const void *ptr, int device_num);10

C / C++
Fortran

type(c_ptr) function omp_get_mapped_ptr(ptr, &11
device_num) bind(c)12

use, intrinsic :: iso_c_binding, only : c_ptr, c_int13
type(c_ptr), value :: ptr14
integer(c_int), value :: device_num15

Fortran

Constraints on Arguments16
The device_num argument must be a conforming device number.17

Binding18
The binding task set for an omp_get_mapped_ptr region is the encountering task.19

Effect20
The omp_get_mapped_ptr routine returns the associated device pointer on device device_num.21
A call to this routine for a pointer that is not NULL and does not have an associated pointer on the22
given device will return NULL. The routine returns NULL if unsuccessful. Otherwise it returns the23
device pointer, which is ptr if device_num is the value returned by24
omp_get_initial_device().25

Fortran
The omp_get_mapped_ptr routine requires an explicit interface and so might not be provided26
in omp_lib.h.27

Fortran

Execution Model Events28
No events are associated with this routine.29

518 OpenMP API – Version 6.0 Preview 2 November 2023

Restrictions1
Restrictions to the omp_get_mapped_ptr routine are as follows.2

• When called from within a target region the effect is unspecified.3

Cross References4
• omp_get_initial_device, see Section 19.7.85

19.9 Lock Routines6

The OpenMP runtime library includes a set of general-purpose lock routines that can be used for7
synchronization. These general-purpose lock routines operate on OpenMP locks that are8
represented by OpenMP lock variables. OpenMP lock variables must be accessed only through the9
routines described in this section; programs that otherwise access OpenMP lock variables are10
non-conforming.11

An OpenMP lock can be in one of the following states: uninitialized; unlocked; or locked. If a lock12
is in the unlocked state, a task can set the lock, which changes its state to locked. The task that sets13
the lock is then said to own the lock. A task that owns a lock can unset that lock, returning it to the14
unlocked state. A program in which a task unsets a lock that is owned by another task is15
non-conforming.16

Two types of locks are supported: simple locks and nestable locks. A nestable lock can be set17
multiple times by the same task before being unset; a simple lock cannot be set if it is already18
owned by the task trying to set it. Simple lock variables are associated with simple locks and can19
only be passed to simple lock routines. Nestable lock variables are associated with nestable locks20
and can only be passed to nestable lock routines.21

Each type of lock can also have a synchronization hint that contains information about the intended22
usage of the lock by the application code. The effect of the hint is implementation defined. An23
OpenMP implementation can use this hint to select a usage-specific lock, but hints do not change24
the mutual exclusion semantics of locks. A conforming implementation can safely ignore the hint.25

Constraints on the state and ownership of the lock accessed by each of the lock routines are26
described with the routine. If these constraints are not met, the behavior of the routine is27
unspecified.28

The OpenMP lock routines access a lock variable such that they always read and update the most29
current value of the lock variable. An OpenMP program does not need to include explicit flush30
directives to ensure that the lock variable’s value is consistent among different tasks.31

Binding32
The binding task set for all lock routine regions is all tasks in the contention group.33

CHAPTER 19. RUNTIME LIBRARY ROUTINES 519

Simple Lock Routines1
C / C++

The type omp_lock_t represents a simple lock. For the following routines, a simple lock variable2
must be of omp_lock_t type. All simple lock routines require an argument that is a pointer to a3
variable of type omp_lock_t.4

C / C++
Fortran

For the following routines, a simple lock variable must be an integer variable of5
kind=omp_lock_kind.6

Fortran
The simple lock routines are as follows:7

• The omp_init_lock routine initializes a simple lock;8

• The omp_init_lock_with_hint routine initializes a simple lock and attaches a hint to9
it;10

• The omp_destroy_lock routine uninitializes a simple lock;11

• The omp_set_lock routine waits until a simple lock is available and then sets it;12

• The omp_unset_lock routine unsets a simple lock; and13

• The omp_test_lock routine tests a simple lock and sets it if it is available.14

Nestable Lock Routines15
C / C++

The type omp_nest_lock_t represents a nestable lock. For the following routines, a nestable16
lock variable must be of omp_nest_lock_t type. All nestable lock routines require an17
argument that is a pointer to a variable of type omp_nest_lock_t.18

C / C++
Fortran

For the following routines, a nestable lock variable must be an integer variable of19
kind=omp_nest_lock_kind.20

Fortran
The nestable lock routines are as follows:21

• The omp_init_nest_lock routine initializes a nestable lock;22

• The omp_init_nest_lock_with_hint routine initializes a nestable lock and attaches23
a hint to it;24

• The omp_destroy_nest_lock routine uninitializes a nestable lock;25

520 OpenMP API – Version 6.0 Preview 2 November 2023

• The omp_set_nest_lock routine waits until a nestable lock is available and then sets it;1

• The omp_unset_nest_lock routine unsets a nestable lock; and2

• The omp_test_nest_lock routine tests a nestable lock and sets it if it is available.3

Restrictions4
Restrictions to OpenMP lock routines are as follows:5

• The use of the same OpenMP lock in different contention groups results in unspecified6
behavior.7

19.9.1 omp_init_lock and omp_init_nest_lock8

Summary9
These routines initialize an OpenMP lock without a hint.10

Format11
C / C++

void omp_init_lock(omp_lock_t *lock);12
void omp_init_nest_lock(omp_nest_lock_t *lock);13

C / C++
Fortran

subroutine omp_init_lock(svar)14
integer (kind=omp_lock_kind) svar15

16
subroutine omp_init_nest_lock(nvar)17
integer (kind=omp_nest_lock_kind) nvar18

Fortran

Constraints on Arguments19
A program that accesses a lock that is not in the uninitialized state through either routine is20
non-conforming.21

Effect22
The effect of these routines is to initialize the lock to the unlocked state; that is, no task owns the23
lock. In addition, the nesting count for a nestable lock is set to zero.24

Execution Model Events25
The lock-init event occurs in a thread that executes an omp_init_lock region after initialization26
of the lock, but before it finishes the region. The nest-lock-init event occurs in a thread that executes27
an omp_init_nest_lock region after initialization of the lock, but before it finishes the region.28

CHAPTER 19. RUNTIME LIBRARY ROUTINES 521

Tool Callbacks1
A thread dispatches a registered ompt_callback_lock_init callback with2
omp_sync_hint_none as the hint argument and ompt_mutex_lock as the kind argument3
for each occurrence of a lock-init event in that thread. Similarly, a thread dispatches a registered4
ompt_callback_lock_init callback with omp_sync_hint_none as the hint argument5
and ompt_mutex_nest_lock as the kind argument for each occurrence of a nest-lock-init6
event in that thread. These callbacks have the type signature7
ompt_callback_mutex_acquire_t and occur in the task that encounters the routine.8

Cross References9
• ompt_callback_mutex_acquire_t, see Section 20.5.2.1410

19.9.2 omp_init_lock_with_hint and11

omp_init_nest_lock_with_hint12

Summary13
These routines initialize an OpenMP lock with a hint. The effect of the hint is14
implementation-defined. The OpenMP implementation can ignore the hint without changing15
program semantics.16

Format17
C / C++

void omp_init_lock_with_hint(18
omp_lock_t *lock,19
omp_sync_hint_t hint20

);21
void omp_init_nest_lock_with_hint(22

omp_nest_lock_t *lock,23
omp_sync_hint_t hint24

);25

C / C++
Fortran

subroutine omp_init_lock_with_hint(svar, hint)26
integer (kind=omp_lock_kind) svar27
integer (kind=omp_sync_hint_kind) hint28

29
subroutine omp_init_nest_lock_with_hint(nvar, hint)30
integer (kind=omp_nest_lock_kind) nvar31
integer (kind=omp_sync_hint_kind) hint32

Fortran

522 OpenMP API – Version 6.0 Preview 2 November 2023

Constraints on Arguments1
A program that accesses a lock that is not in the uninitialized state through either routine is2
non-conforming. The second argument passed to these routines (hint) is a hint as described in3
Section 16.1.4

Effect5
The effect of these routines is to initialize the lock to the unlocked state and, optionally, to choose a6
specific lock implementation based on the hint. After initialization no task owns the lock. In7
addition, the nesting count for a nestable lock is set to zero.8

Execution Model Events9
The lock-init-with-hint event occurs in a thread that executes an omp_init_lock_with_hint10
region after initialization of the lock, but before it finishes the region. The nest-lock-init-with-hint11
event occurs in a thread that executes an omp_init_nest_lock region after initialization of the12
lock, but before it finishes the region.13

Tool Callbacks14
A thread dispatches a registered ompt_callback_lock_init callback with the same value15
for its hint argument as the hint argument of the call to omp_init_lock_with_hint and16
ompt_mutex_lock as the kind argument for each occurrence of a lock-init-with-hint event in17
that thread. Similarly, a thread dispatches a registered ompt_callback_lock_init callback18
with the same value for its hint argument as the hint argument of the call to19
omp_init_nest_lock_with_hint and ompt_mutex_nest_lock as the kind argument20
for each occurrence of a nest-lock-init-with-hint event in that thread. These callbacks have the type21
signature ompt_callback_mutex_acquire_t and occur in the task that encounters the22
routine.23

Cross References24
• Synchronization Hints, see Section 16.125

• ompt_callback_mutex_acquire_t, see Section 20.5.2.1426

19.9.3 omp_destroy_lock and omp_destroy_nest_lock27

Summary28
These routines ensure that the OpenMP lock is uninitialized.29

Format30
C / C++

void omp_destroy_lock(omp_lock_t *lock);31
void omp_destroy_nest_lock(omp_nest_lock_t *lock);32

C / C++

CHAPTER 19. RUNTIME LIBRARY ROUTINES 523

Fortran
subroutine omp_destroy_lock(svar)1
integer (kind=omp_lock_kind) svar2

3
subroutine omp_destroy_nest_lock(nvar)4
integer (kind=omp_nest_lock_kind) nvar5

Fortran

Constraints on Arguments6
A program that accesses a lock that is not in the unlocked state through either routine is7
non-conforming.8

Effect9
The effect of these routines is to change the state of the lock to uninitialized.10

Execution Model Events11
The lock-destroy event occurs in a thread that executes an omp_destroy_lock region before it12
finishes the region. The nest-lock-destroy event occurs in a thread that executes an13
omp_destroy_nest_lock region before it finishes the region.14

Tool Callbacks15
A thread dispatches a registered ompt_callback_lock_destroy callback with16
ompt_mutex_lock as the kind argument for each occurrence of a lock-destroy event in that17
thread. Similarly, a thread dispatches a registered ompt_callback_lock_destroy callback18
with ompt_mutex_nest_lock as the kind argument for each occurrence of a nest-lock-destroy19
event in that thread. These callbacks have the type signature ompt_callback_mutex_t and20
occur in the task that encounters the routine.21

Cross References22
• ompt_callback_mutex_t, see Section 20.5.2.1523

19.9.4 omp_set_lock and omp_set_nest_lock24

Summary25
These routines provide a means of setting an OpenMP lock. The calling task region behaves as if it26
was suspended until the lock can be set by this task.27

Format28
C / C++

void omp_set_lock(omp_lock_t *lock);29
void omp_set_nest_lock(omp_nest_lock_t *lock);30

C / C++

524 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
subroutine omp_set_lock(svar)1
integer (kind=omp_lock_kind) svar2

3
subroutine omp_set_nest_lock(nvar)4
integer (kind=omp_nest_lock_kind) nvar5

Fortran

Constraints on Arguments6
A program that accesses a lock that is in the uninitialized state through either routine is7
non-conforming. A simple lock accessed by omp_set_lock that is in the locked state must not8
be owned by the task that contains the call or deadlock will result.9

Effect10
Each of these routines has an effect equivalent to suspension of the task that is executing the routine11
until the specified lock is available.12

13

Note – The semantics of these routines is specified as if they serialize execution of the region14
guarded by the lock. However, implementations may implement them in other ways provided that15
the isolation properties are respected so that the actual execution delivers a result that could arise16
from some serialization.17

18

A simple lock is available if it is unlocked. Ownership of the lock is granted to the task that19
executes the routine. A nestable lock is available if it is unlocked or if it is already owned by the20
task that executes the routine. The task that executes the routine is granted, or retains, ownership of21
the lock, and the nesting count for the lock is incremented.22

Execution Model Events23
The lock-acquire event occurs in a thread that executes an omp_set_lock region before the24
associated lock is requested. The nest-lock-acquire event occurs in a thread that executes an25
omp_set_nest_lock region before the associated lock is requested.26

The lock-acquired event occurs in a thread that executes an omp_set_lock region after it27
acquires the associated lock but before it finishes the region. The nest-lock-acquired event occurs in28
a thread that executes an omp_set_nest_lock region if the thread did not already own the29
lock, after it acquires the associated lock but before it finishes the region.30

The nest-lock-owned event occurs in a thread when it already owns the lock and executes an31
omp_set_nest_lock region. The event occurs after the nesting count is incremented but32
before the thread finishes the region.33

CHAPTER 19. RUNTIME LIBRARY ROUTINES 525

Tool Callbacks1
A thread dispatches a registered ompt_callback_mutex_acquire callback for each2
occurrence of a lock-acquire or nest-lock-acquire event in that thread. This callback has the type3
signature ompt_callback_mutex_acquire_t.4

A thread dispatches a registered ompt_callback_mutex_acquired callback for each5
occurrence of a lock-acquired or nest-lock-acquired event in that thread. This callback has the type6
signature ompt_callback_mutex_t.7

A thread dispatches a registered ompt_callback_nest_lock callback with8
ompt_scope_begin as its endpoint argument for each occurrence of a nest-lock-owned event in9
that thread. This callback has the type signature ompt_callback_nest_lock_t.10

The above callbacks occur in the task that encounters the lock function. The kind argument of these11
callbacks is ompt_mutex_lock when the events arise from an omp_set_lock region while it12
is ompt_mutex_nest_lock when the events arise from an omp_set_nest_lock region.13

Cross References14
• ompt_callback_mutex_acquire_t, see Section 20.5.2.1415

• ompt_callback_mutex_t, see Section 20.5.2.1516

• ompt_callback_nest_lock_t, see Section 20.5.2.1617

19.9.5 omp_unset_lock and omp_unset_nest_lock18

Summary19
These routines provide the means of unsetting an OpenMP lock.20

Format21
C / C++

void omp_unset_lock(omp_lock_t *lock);22
void omp_unset_nest_lock(omp_nest_lock_t *lock);23

C / C++
Fortran

subroutine omp_unset_lock(svar)24
integer (kind=omp_lock_kind) svar25

26
subroutine omp_unset_nest_lock(nvar)27
integer (kind=omp_nest_lock_kind) nvar28

Fortran

Constraints on Arguments29
A program that accesses a lock that is not in the locked state or that is not owned by the task that30
contains the call through either routine is non-conforming.31

526 OpenMP API – Version 6.0 Preview 2 November 2023

Effect1
For a simple lock, the omp_unset_lock routine causes the lock to become unlocked. For a2
nestable lock, the omp_unset_nest_lock routine decrements the nesting count, and causes the3
lock to become unlocked if the resulting nesting count is zero. For either routine, if the lock4
becomes unlocked, and if one or more task regions were effectively suspended because the lock was5
unavailable, the effect is that one task is chosen and given ownership of the lock.6

Execution Model Events7
The lock-release event occurs in a thread that executes an omp_unset_lock region after it8
releases the associated lock but before it finishes the region. The nest-lock-release event occurs in a9
thread that executes an omp_unset_nest_lock region after it releases the associated lock but10
before it finishes the region.11

The nest-lock-held event occurs in a thread that executes an omp_unset_nest_lock region12
before it finishes the region when the thread still owns the lock after the nesting count is13
decremented.14

Tool Callbacks15
A thread dispatches a registered ompt_callback_mutex_released callback with16
ompt_mutex_lock as the kind argument for each occurrence of a lock-release event in that17
thread. Similarly, a thread dispatches a registered ompt_callback_mutex_released18
callback with ompt_mutex_nest_lock as the kind argument for each occurrence of a19
nest-lock-release event in that thread. These callbacks have the type signature20
ompt_callback_mutex_t and occur in the task that encounters the routine.21

A thread dispatches a registered ompt_callback_nest_lock callback with22
ompt_scope_end as its endpoint argument for each occurrence of a nest-lock-held event in that23
thread. This callback has the type signature ompt_callback_nest_lock_t.24

Cross References25
• ompt_callback_mutex_t, see Section 20.5.2.1526

• ompt_callback_nest_lock_t, see Section 20.5.2.1627

19.9.6 omp_test_lock and omp_test_nest_lock28

Summary29
These routines attempt to set an OpenMP lock but do not suspend execution of the task that30
executes the routine.31

Format32
C / C++

int omp_test_lock(omp_lock_t *lock);33
int omp_test_nest_lock(omp_nest_lock_t *lock);34

C / C++

CHAPTER 19. RUNTIME LIBRARY ROUTINES 527

Fortran
logical function omp_test_lock(svar)1
integer (kind=omp_lock_kind) svar2

3
integer function omp_test_nest_lock(nvar)4
integer (kind=omp_nest_lock_kind) nvar5

Fortran

Constraints on Arguments6
A program that accesses a lock that is in the uninitialized state through either routine is7
non-conforming. The behavior is unspecified if a simple lock accessed by omp_test_lock is in8
the locked state and is owned by the task that contains the call.9

Effect10
These routines attempt to set a lock in the same manner as omp_set_lock and11
omp_set_nest_lock, except that they do not suspend execution of the task that executes the12
routine. For a simple lock, the omp_test_lock routine returns true if the lock is successfully13
set; otherwise, it returns false. For a nestable lock, the omp_test_nest_lock routine returns14
the new nesting count if the lock is successfully set; otherwise, it returns zero.15

Execution Model Events16
The lock-test event occurs in a thread that executes an omp_test_lock region before the17
associated lock is tested. The nest-lock-test event occurs in a thread that executes an18
omp_test_nest_lock region before the associated lock is tested.19

The lock-test-acquired event occurs in a thread that executes an omp_test_lock region before it20
finishes the region if the associated lock was acquired. The nest-lock-test-acquired event occurs in a21
thread that executes an omp_test_nest_lock region before it finishes the region if the22
associated lock was acquired and the thread did not already own the lock.23

The nest-lock-owned event occurs in a thread that executes an omp_test_nest_lock region24
before it finishes the region after the nesting count is incremented if the thread already owned the25
lock.26

Tool Callbacks27
A thread dispatches a registered ompt_callback_mutex_acquire callback for each28
occurrence of a lock-test or nest-lock-test event in that thread. This callback has the type signature29
ompt_callback_mutex_acquire_t.30

A thread dispatches a registered ompt_callback_mutex_acquired callback for each31
occurrence of a lock-test-acquired or nest-lock-test-acquired event in that thread. This callback has32
the type signature ompt_callback_mutex_t.33

A thread dispatches a registered ompt_callback_nest_lock callback with34
ompt_scope_begin as its endpoint argument for each occurrence of a nest-lock-owned event in35
that thread. This callback has the type signature ompt_callback_nest_lock_t.36

528 OpenMP API – Version 6.0 Preview 2 November 2023

The above callbacks occur in the task that encounters the lock function. The kind argument of these1
callbacks is ompt_mutex_test_lock when the events arise from an omp_test_lock2
region while it is ompt_mutex_test_nest_lock when the events arise from an3
omp_test_nest_lock region.4

Cross References5
• ompt_callback_mutex_acquire_t, see Section 20.5.2.146

• ompt_callback_mutex_t, see Section 20.5.2.157

• ompt_callback_nest_lock_t, see Section 20.5.2.168

19.10 Timing Routines9

This section describes routines that support a portable wall clock timer.10

19.10.1 omp_get_wtime11

Summary12
The omp_get_wtime routine returns elapsed wall clock time in seconds.13

Format14
C / C++

double omp_get_wtime(void);15

C / C++
Fortran

double precision function omp_get_wtime()16

Fortran

Binding17
The binding thread set for an omp_get_wtime region is the encountering thread. The routine’s18
return value is not guaranteed to be consistent across any set of threads.19

Effect20
The omp_get_wtime routine returns a value equal to the elapsed wall clock time in seconds21
since some time-in-the-past. The actual time-in-the-past is arbitrary, but it is guaranteed not to22
change during the execution of the application program. The time returned is a per-thread time, so23
it is not required to be globally consistent across all threads that participate in an application.24

CHAPTER 19. RUNTIME LIBRARY ROUTINES 529

19.10.2 omp_get_wtick1

Summary2
The omp_get_wtick routine returns the precision of the timer used by omp_get_wtime.3

Format4
C / C++

double omp_get_wtick(void);5

C / C++
Fortran

double precision function omp_get_wtick()6

Fortran

Binding7
The binding thread set for an omp_get_wtick region is the encountering thread. The routine’s8
return value is not guaranteed to be consistent across any set of threads.9

Effect10
The omp_get_wtick routine returns a value equal to the number of seconds between successive11
clock ticks of the timer used by omp_get_wtime.12

19.11 Event Routine13

This section describes a routine that supports OpenMP event objects.14

Binding15
The binding thread set for all event routine regions is the encountering thread.16

19.11.1 omp_fulfill_event17

Summary18
This routine fulfills and destroys an OpenMP event.19

Format20
C / C++

void omp_fulfill_event(omp_event_handle_t event);21

C / C++
Fortran

subroutine omp_fulfill_event(event)22
integer (kind=omp_event_handle_kind) event23

Fortran

530 OpenMP API – Version 6.0 Preview 2 November 2023

Constraints on Arguments1
A program that calls this routine on an event that was already fulfilled is non-conforming. A2
program that calls this routine with an event handle that was not created by the detach clause is3
non-conforming.4

Effect5
The effect of this routine is to fulfill the event associated with the event handle argument. The effect6
of fulfilling the event will depend on how the event was created. The event is destroyed and cannot7
be accessed after calling this routine, and the event handle becomes unassociated with any event.8

Execution Model Events9
The task-fulfill event occurs in a thread that executes an omp_fulfill_event region before the10
event is fulfilled if the OpenMP event object was created by a detach clause on a task.11

Tool Callbacks12
A thread dispatches a registered ompt_callback_task_schedule callback with NULL as13
its next_task_data argument while the argument prior_task_data binds to the detachable task for14
each occurrence of a task-fulfill event. If the task-fulfill event occurs before the detachable task15
finished the execution of the associated structured-block, the callback has16
ompt_task_early_fulfill as its prior_task_status argument; otherwise the callback has17
ompt_task_late_fulfill as its prior_task_status argument. This callback has type18
signature ompt_callback_task_schedule_t.19

Restrictions20
Restrictions to the omp_fulfill_event routine are as follows:21

• The event handler passed to the routine must have been created by a thread in the same device22
as the thread that invoked the routine.23

Cross References24
• detach clause, see Section 13.6.225

• ompt_callback_task_schedule_t, see Section 20.5.2.1026

C / C++

19.12 Interoperability Routines27

The interoperability routines provide mechanisms to inspect the properties associated with an28
omp_interop_t object. Such objects may be initialized, destroyed or otherwise used by an29
interop construct. Additionally, an omp_interop_t object can be initialized to30
omp_interop_none, which is defined to be zero. An omp_interop_t object may only be31
accessed or modified through OpenMP directives and API routines.32

An omp_interop_t object can be copied without affecting, or copying, the underlying state.33
Destruction of an omp_interop_t object destroys the state to which all copies of the object refer.34

CHAPTER 19. RUNTIME LIBRARY ROUTINES 531

TABLE 19.1: Required Values of the omp_interop_property_t enum Type

Enum Name Contexts Name Property
omp_ipr_fr_id = -1 all fr_id An intptr_t value that rep-

resents the foreign runtime id of
context

omp_ipr_fr_name = -2 all fr_name C string value that represents the
foreign runtime name of context

omp_ipr_vendor = -3 all vendor An intptr_t that represents
the vendor of context

omp_ipr_vendor_name =
-4

all vendor_name C string value that represents the
vendor of context

omp_ipr_device_num = -5 all device_num The OpenMP device ID for
the device in the range 0 to
omp_get_num_devices()
inclusive

omp_ipr_platform = -6 target platform A foreign platform handle usu-
ally spanning multiple devices

omp_ipr_device = -7 target device A foreign device handle
omp_ipr_device_context
= -8

target device_context A handle to an instance of a
foreign device context

omp_ipr_targetsync = -9 targetsync targetsync A handle to a synchronization
object of a foreign execution
context

omp_ipr_first = -9

OpenMP reserves all negative values for properties, as listed in Table 19.1; implementation-defined1
properties may use zero and positive values. The special property, omp_ipr_first, will always2
have the lowest property value, which may change in future versions of this specification. Valid3
values and types for the properties that Table 19.1 lists are specified in the OpenMP Additional4
Definitions document or are implementation defined unless otherwise specified.5

Table 19.2 lists the return codes used by routines that take an int* ret_code argument.6

Binding7
The binding task set for all interoperability routine regions is the generating task.8

C / C++

C / C++

19.12.1 omp_get_num_interop_properties9

Summary10
The omp_get_num_interop_properties routine retrieves the number of11
implementation-defined properties available for an omp_interop_t object.12

532 OpenMP API – Version 6.0 Preview 2 November 2023

TABLE 19.2: Required Values for the omp_interop_rc_t enum Type

Enum Name Description
omp_irc_no_value = 1 Parameters valid, no meaningful value available
omp_irc_success = 0 Successful, value is usable
omp_irc_empty = -1 The object provided is equal to omp_interop_none
omp_irc_out_of_range = -2 Property ID is out of range, see Table 19.1
omp_irc_type_int = -3 Property type is int; use omp_get_interop_int
omp_irc_type_ptr = -4 Property type is pointer; use omp_get_interop_ptr
omp_irc_type_str = -5 Property type is string; use omp_get_interop_str
omp_irc_other = -6 Other error; use omp_get_interop_rc_desc

Format1
int omp_get_num_interop_properties(const omp_interop_t interop);2

Effect3
The omp_get_num_interop_properties routine returns the number of4
implementation-defined properties available for interop. The total number of properties available5
for interop is the returned value minus omp_ipr_first.6

C / C++

C / C++

19.12.2 omp_get_interop_int7

Summary8
The omp_get_interop_int routine retrieves an integer property from an omp_interop_t9
object.10

Format11
omp_intptr_t omp_get_interop_int(const omp_interop_t interop,12

omp_interop_property_t property_id,13
int *ret_code);14

Effect15
The omp_get_interop_int routine returns the requested integer property, if available, and16
zero if an error occurs or no value is available. If the interop is omp_interop_none, an empty17
error occurs. If the property_id is less than omp_ipr_first or greater than or equal to18
omp_get_num_interop_properties(interop), an out of range error occurs. If the19
requested property value is not convertible into an integer value, a type error occurs.20

If a non-null pointer is passed to ret_code, an omp_interop_rc_t value that indicates the21
return code is stored in the object to which ret_code points. If an error occurred, the stored value22
will be negative and it will match the error as defined in Table 19.2. On success, zero will be stored.23

CHAPTER 19. RUNTIME LIBRARY ROUTINES 533

If no error occurred but no meaningful value can be returned, omp_irc_no_value, which is1
one, will be stored.2

Restrictions3
Restrictions to the omp_get_interop_int routine are as follows:4

• The behavior of the routine is unspecified if an invalid omp_interop_t object is provided.5

Cross References6
• omp_get_num_interop_properties, see Section 19.12.17

C / C++

C / C++

19.12.3 omp_get_interop_ptr8

Summary9
The omp_get_interop_ptr routine retrieves a pointer property from an omp_interop_t10
object.11

Format12
void* omp_get_interop_ptr(const omp_interop_t interop,13

omp_interop_property_t property_id,14
int *ret_code);15

Effect16
The omp_get_interop_ptr routine returns the requested pointer property, if available, and17
NULL if an error occurs or no value is available. If the interop is omp_interop_none, an18
empty error occurs. If the property_id is less than omp_ipr_first or greater than or equal to19
omp_get_num_interop_properties(interop), an out of range error occurs. If the20
requested property value is not convertible into a pointer value, a type error occurs.21

If a non-null pointer is passed to ret_code, an omp_interop_rc_t value that indicates the22
return code is stored in the object to which the ret_code points. If an error occurred, the stored23
value will be negative and it will match the error as defined in Table 19.2. On success, zero will be24
stored. If no error occurred but no meaningful value can be returned, omp_irc_no_value,25
which is one, will be stored.26

Restrictions27
Restrictions to the omp_get_interop_ptr routine are as follows:28

• The behavior of the routine is unspecified if an invalid omp_interop_t object is provided.29

• Memory referenced by the pointer returned by the omp_get_interop_ptr routine is30
managed by the OpenMP implementation and should not be freed or modified.31

Cross References32
• omp_get_num_interop_properties, see Section 19.12.133

C / C++

534 OpenMP API – Version 6.0 Preview 2 November 2023

C / C++

19.12.4 omp_get_interop_str1

Summary2
The omp_get_interop_str routine retrieves a string property from an omp_interop_t3
object.4

Format5
const char* omp_get_interop_str(const omp_interop_t interop,6

omp_interop_property_t property_id,7
int *ret_code);8

Effect9
The omp_get_interop_str routine returns the requested string property as a C string, if10
available, and NULL if an error occurs or no value is available. If the interop is11
omp_interop_none, an empty error occurs. If the property_id is less than omp_ipr_first12
or greater than or equal to omp_get_num_interop_properties(interop), an out of range13
error occurs. If the requested property value is not convertible into a string value, a type error14
occurs.15

If a non-null pointer is passed to ret_code, an omp_interop_rc_t value that indicates the16
return code is stored in the object to which the ret_code points. If an error occurred, the stored17
value will be negative and it will match the error as defined in Table 19.2. On success, zero will be18
stored. If no error occurred but no meaningful value can be returned, omp_irc_no_value,19
which is one, will be stored.20

Restrictions21
Restrictions to the omp_get_interop_str routine are as follows:22

• The behavior of the routine is unspecified if an invalid omp_interop_t object is provided.23

• Memory referenced by the pointer returned by the omp_get_interop_str routine is24
managed by the OpenMP implementation and should not be freed or modified.25

Cross References26
• omp_get_num_interop_properties, see Section 19.12.127

C / C++

C / C++

19.12.5 omp_get_interop_name28

Summary29
The omp_get_interop_name routine retrieves a property name from an omp_interop_t30
object.31

CHAPTER 19. RUNTIME LIBRARY ROUTINES 535

Format1
const char* omp_get_interop_name(const omp_interop_t interop,2

omp_interop_property_t property_id)3
;4

Effect5
The omp_get_interop_name routine returns the name of the property identified by6
property_id as a C string. Property names for non-implementation defined properties are listed in7
Table 19.1. If the property_id is less than omp_ipr_first or greater than or equal to8
omp_get_num_interop_properties(interop), NULL is returned.9

Restrictions10
Restrictions to the omp_get_interop_name routine are as follows:11

• The behavior of the routine is unspecified if an invalid object is provided.12

• Memory referenced by the pointer returned by the omp_get_interop_name routine is13
managed by the OpenMP implementation and should not be freed or modified.14

Cross References15
• omp_get_num_interop_properties, see Section 19.12.116

C / C++

C / C++

19.12.6 omp_get_interop_type_desc17

Summary18
The omp_get_interop_type_desc routine retrieves a description of the type of a property19
associated with an omp_interop_t object.20

Format21
const char* omp_get_interop_type_desc(const omp_interop_t interop,22

omp_interop_property_t23
property_id);24

Effect25
The omp_get_interop_type_desc routine returns a C string that describes the type of the26
property identified by property_id in human-readable form. That may contain a valid C type27
declaration possibly followed by a description or name of the type. If interop has the value28
omp_interop_none, NULL is returned. If the property_id is less than omp_ipr_first or29
greater than or equal to omp_get_num_interop_properties(interop), NULL is returned.30

536 OpenMP API – Version 6.0 Preview 2 November 2023

Restrictions1
Restrictions to the omp_get_interop_type_desc routine are as follows:2

• The behavior of the routine is unspecified if an invalid object is provided.3

• Memory referenced by the pointer returned from the omp_get_interop_type_desc4
routine is managed by the OpenMP implementation and should not be freed or modified.5

Cross References6
• omp_get_num_interop_properties, see Section 19.12.17

C / C++

C / C++

19.12.7 omp_get_interop_rc_desc8

Summary9
The omp_get_interop_rc_desc routine retrieves a description of the return code associated10
with an omp_interop_t object.11

Format12
const char* omp_get_interop_rc_desc(const omp_interop_t interop,13

omp_interop_rc_t ret_code);14

Effect15
The omp_get_interop_rc_desc routine returns a C string that describes the return code16
ret_code in human-readable form.17

Restrictions18
Restrictions to the omp_get_interop_rc_desc routine are as follows:19

• The behavior of the routine is unspecified if an invalid object is provided or if ret_code was20
not last written by an interoperability routine invoked with the omp_interop_t object21
interop.22

• Memory referenced by the pointer returned by the omp_get_interop_rc_desc routine23
is managed by the OpenMP implementation and should not be freed or modified.24

C / C++

CHAPTER 19. RUNTIME LIBRARY ROUTINES 537

19.13 Memory Management Routines1

This section describes routines that support memory management on the current device. Instances2
of memory management types must be accessed only through the routines described in this section;3
programs that otherwise access instances of these types are non-conforming.4

Restrictions5
C / C++

For all routines in this section that allocate memory, the following restrictions apply:6

• Unless the unified_address requirement is specified or the current device is an7
associated device of the allocator, pointer arithmetic is not supported on the returned pointers.8

C / C++

19.13.1 Memory Management Types9

The following type definitions are used by the memory management routines:10

C / C++
typedef enum omp_alloctrait_key_t {11

omp_atk_sync_hint = 1,12
omp_atk_alignment = 2,13
omp_atk_access = 3,14
omp_atk_pool_size = 4,15
omp_atk_fallback = 5,16
omp_atk_fb_data = 6,17
omp_atk_pinned = 7,18
omp_atk_partition = 8,19
omp_atk_pin_device = 9,20
omp_atk_preferred_device = 10,21
omp_atk_device_access = 11,22
omp_atk_target_access = 12,23
omp_atk_atomic_scope = 13,24
omp_atk_part_size = 1425

} omp_alloctrait_key_t;26
27

typedef enum omp_alloctrait_value_t {28
omp_atv_false = 0,29
omp_atv_true = 1,30
omp_atv_contended = 3,31
omp_atv_uncontended = 4,32
omp_atv_serialized = 5,33
omp_atv_private = 6,34
omp_atv_device = 7,35

538 OpenMP API – Version 6.0 Preview 2 November 2023

omp_atv_thread = 8,1
omp_atv_pteam = 9,2
omp_atv_cgroup = 10,3
omp_atv_default_mem_fb = 11,4
omp_atv_null_fb = 12,5
omp_atv_abort_fb = 13,6
omp_atv_allocator_fb = 14,7
omp_atv_environment = 15,8
omp_atv_nearest = 16,9
omp_atv_blocked = 17,10
omp_atv_interleaved = 18,11
omp_atv_all = 19,12
omp_atv_single = 20,13
omp_atv_multiple = 21,14
omp_atv_memspace = 2215

} omp_alloctrait_value_t;16
17

typedef struct omp_alloctrait_t {18
omp_alloctrait_key_t key;19
omp_uintptr_t value;20

} omp_alloctrait_t;21

C / C++
Fortran

integer(kind=omp_alloctrait_key_kind), &22
parameter :: omp_atk_sync_hint = 123

integer(kind=omp_alloctrait_key_kind), &24
parameter :: omp_atk_alignment = 225

integer(kind=omp_alloctrait_key_kind), &26
parameter :: omp_atk_access = 327

integer(kind=omp_alloctrait_key_kind), &28
parameter :: omp_atk_pool_size = 429

integer(kind=omp_alloctrait_key_kind), &30
parameter :: omp_atk_fallback = 531

integer(kind=omp_alloctrait_key_kind), &32
parameter :: omp_atk_fb_data = 633

integer(kind=omp_alloctrait_key_kind), &34
parameter :: omp_atk_pinned = 735

integer(kind=omp_alloctrait_key_kind), &36
parameter :: omp_atk_partition = 837

integer(kind=omp_alloctrait_key_kind), &38
parameter :: omp_atk_pin_device = 939

integer(kind=omp_alloctrait_key_kind), &40
parameter :: omp_atk_preferred_device = 1041

CHAPTER 19. RUNTIME LIBRARY ROUTINES 539

Fortran (cont.)

integer(kind=omp_alloctrait_key_kind), &1
parameter :: omp_atk_device_access = 112

integer(kind=omp_alloctrait_key_kind), &3
parameter :: omp_atk_target_access = 124

integer(kind=omp_alloctrait_key_kind), &5
parameter :: omp_atk_atomic_scope = 136

integer(kind=omp_alloctrait_key_kind), &7
parameter :: omp_atk_part_size = 148

9
integer(kind=omp_alloctrait_val_kind), &10

parameter :: omp_atv_default = -111
integer(kind=omp_alloctrait_val_kind), &12

parameter :: omp_atv_false = 013
integer(kind=omp_alloctrait_val_kind), &14

parameter :: omp_atv_true = 115
integer(kind=omp_alloctrait_val_kind), &16

parameter :: omp_atv_contended = 317
integer(kind=omp_alloctrait_val_kind), &18

parameter :: omp_atv_uncontended = 419
integer(kind=omp_alloctrait_val_kind), &20

parameter :: omp_atv_serialized = 521
integer(kind=omp_alloctrait_val_kind), &22

parameter :: omp_atv_private = 623
integer(kind=omp_alloctrait_val_kind), &24

parameter :: omp_atv_device = 725
integer(kind=omp_alloctrait_val_kind), &26

parameter :: omp_atv_thread = 827
integer(kind=omp_alloctrait_val_kind), &28

parameter :: omp_atv_pteam = 929
integer(kind=omp_alloctrait_val_kind), &30

parameter :: omp_atv_cgroup = 1031
integer(kind=omp_alloctrait_val_kind), &32

parameter :: omp_atv_default_mem_fb = 1133
integer(kind=omp_alloctrait_val_kind), &34

parameter :: omp_atv_null_fb = 1235
integer(kind=omp_alloctrait_val_kind), &36

parameter :: omp_atv_abort_fb = 1337
integer(kind=omp_alloctrait_val_kind), &38

parameter :: omp_atv_allocator_fb = 1439
integer(kind=omp_alloctrait_val_kind), &40

parameter :: omp_atv_environment = 1541
integer(kind=omp_alloctrait_val_kind), &42

parameter :: omp_atv_nearest = 1643

540 OpenMP API – Version 6.0 Preview 2 November 2023

integer(kind=omp_alloctrait_val_kind), &1
parameter :: omp_atv_blocked = 172

integer(kind=omp_alloctrait_val_kind), &3
parameter :: omp_atv_interleaved = 184

integer(kind=omp_alloctrait_val_kind), &5
parameter :: omp_atv_all = 196

integer(kind=omp_alloctrait_val_kind), &7
parameter :: omp_atv_single = 208

integer(kind=omp_alloctrait_val_kind), &9
parameter :: omp_atv_multiple = 2110

integer(kind=omp_alloctrait_val_kind), &11
parameter :: omp_atv_memspace = 2212

13
! omp_alloctrait might not be provided in omp_lib.h.14
type omp_alloctrait15

integer(kind=omp_alloctrait_key_kind) key16
integer(kind=omp_alloctrait_val_kind) value17

end type omp_alloctrait18
19

integer(kind=omp_memspace_handle_kind), &20
parameter :: omp_null_mem_space = 021

22
integer(kind=omp_allocator_handle_kind), &23

parameter :: omp_null_allocator = 024

Fortran

19.13.2 Memory Space Routines25

Summary26
The following routines return a memory space that represents a set of resources accessible by one27
or more devices.28

Format29
C / C++

omp_memspace_handle_t omp_get_devices_memspace(30
int ndevs,31
const int *devs,32
omp_memspace_handle_t memspace33

);34

CHAPTER 19. RUNTIME LIBRARY ROUTINES 541

omp_memspace_handle_t omp_get_device_memspace(1
int dev,2
omp_memspace_handle_t memspace3

);4
5

omp_memspace_handle_t omp_get_devices_and_host_memspace(6
int ndevs,7
const int *devs,8
omp_memspace_handle_t memspace9

);10
11

omp_memspace_handle_t omp_get_device_and_host_memspace(12
int dev,13
omp_memspace_handle_t memspace14

);15
16

omp_memspace_handle_t omp_get_devices_all_memspace(17
omp_memspace_handle_t memspace18

);19

C / C++
Fortran

integer(kind=omp_memspace_handle_kind) &20
function omp_get_devices_memspace(ndevs, devs, memspace)21
integer, intent(in) :: ndevs22
integer, intent(in) :: devs(*)23
integer(kind=omp_memspace_handle_kind), intent(in) :: memspace24

25
integer(kind=omp_memspace_handle_kind) &26
function omp_get_device_memspace(dev, memspace)27
integer, intent(in) :: dev28
integer(kind=omp_memspace_handle_kind), intent(in) :: memspace29

30
integer(kind=omp_memspace_handle_kind) &31
function omp_get_devices_and_host_memspace(ndevs, devs, memspace)32
integer, intent(in) :: ndevs33
integer, intent(in) :: devs(*)34
integer(kind=omp_memspace_handle_kind), intent(in) :: memspace35

36
integer(kind=omp_memspace_handle_kind) &37
function omp_get_device_and_host_memspace(dev, memspace)38
integer, intent(in) :: dev39
integer(kind=omp_memspace_handle_kind), intent(in) :: memspace40

41

542 OpenMP API – Version 6.0 Preview 2 November 2023

integer(kind=omp_memspace_handle_kind) &1
function omp_get_devices_all_memspace(memspace)2
integer(kind=omp_memspace_handle_kind), intent(in) :: memspace3

Fortran

Constraints on Arguments4
The memspace argument must be one of the predefined memory spaces.5

The ndevs argument to omp_get_devices_memspace and6
omp_get_target_devices_and_host_memspace must be greater than zero. The devs7
argument to omp_get_devices_memspace and8
omp_get_devices_and_host_memspace must point to an array that contains at least ndevs9
values. Each value must be a conforming device number. If there are more than ndevs values, the10
additional values will be ignored.11

The dev argument to omp_get_device_memspace and12
omp_get_device_and_host_memspace must be a conforming device number.13

Binding14
The binding thread set for these routines region is all threads on the device.15

Effect16
The effect of these routines is to return a handle to a memory space that represents a set of storage17
resources such that for each storage resource the following requirements are true:18

• The storage resource is accessible by each of the devices selected by the routine; and19

• The storage resource is part of memspace in each of the devices selected by the routine.20

If no set of storage resources matches the above requirements, then the special value21
omp_null_mem_space is returned.22

The devices selected by omp_get_devices_memspace are those specified in the devs23
argument.24

The device selected by omp_get_device_memspace is the device specified in the dev25
argument.26

The devices selected by omp_get_devices_and_host_memspace are those specified in the27
devs argument and the initial device.28

The device selected by omp_get_device_and_host_memspace are the device specified in29
the dev argument and the initial device.30

The devices selected by omp_get_devices_all_memspace are all available devices.31

The memory spaces returned by these routine are target memory spaces if any of the selected32
devices is not the current device.33

CHAPTER 19. RUNTIME LIBRARY ROUTINES 543

Restrictions1
The restrictions to these routines are as follows:2

• These routines must only be invoked on the initial device.3

Cross References4
• requires directive, see Section 9.55

• target directive, see Section 14.86

• Memory Spaces, see Section 7.17

19.13.3 omp_init_allocator8

Summary9
The omp_init_allocator routine initializes an allocator and associates it with a memory10
space.11

Format12
C / C++

omp_allocator_handle_t omp_init_allocator(13
omp_memspace_handle_t memspace,14
int ntraits,15
const omp_alloctrait_t traits[]16

);17

C / C++
Fortran

integer(kind=omp_allocator_handle_kind) &18
function omp_init_allocator(memspace, ntraits, traits)19
integer(kind=omp_memspace_handle_kind), intent(in) :: memspace20
integer, intent(in) :: ntraits21
type(omp_alloctrait), intent(in) :: traits(*)22

Fortran

Constraints on Arguments23
The memspace argument must be a valid memory space handle or the value24
omp_null_mem_space. If the ntraits argument is greater than zero then the traits argument25
must specify at least that many traits. If it specifies fewer than ntraits traits the behavior is26
unspecified.27

Binding28
The binding thread set for an omp_init_allocator region is all threads on a device. The29
effect of executing this routine is not related to any specific region that corresponds to any construct30
or API routine.31

544 OpenMP API – Version 6.0 Preview 2 November 2023

Effect1
The omp_init_allocator routine creates a new allocator that is associated with the2
memspace memory space and returns a handle to it. All allocations through the created allocator3
will behave according to the allocator traits specified in the traits argument. The number of traits in4
the traits argument is specified by the ntraits argument. Specifying the same allocator trait more5
than once results in unspecified behavior. The routine returns a handle for the created allocator. If6
the special omp_atv_default value is used for a given trait, then its value will be the default7
value specified in Table 7.2 for that given trait.8

If memspace is omp_default_mem_space and the traits argument is an empty set this routine9
will always return a handle to an allocator. Otherwise if an allocator based on the requirements10
cannot be created then the special omp_null_allocator handle is returned.11

If memspace has the value omp_null_mem_space the effect of this routine will be as if the12
value of memspace was omp_default_mem_space.13

Restrictions14
The restrictions to the omp_init_allocator routine are as follows:15

• The use of an allocator returned by this routine on a device other than the one on which it was16
created results in unspecified behavior.17

• Unless a requires directive with the dynamic_allocators clause is present in the18
same compilation unit, using this routine in a target region results in unspecified behavior.19

• If memspace is a target memory space, the values device, cgroup, pteam or thread20
must not be specified for the access allocator trait.21

Cross References22
• requires directive, see Section 9.523

• target directive, see Section 14.824

• Memory Allocators, see Section 7.225

• Memory Spaces, see Section 7.126

19.13.4 Memory Allocator Routines27

Summary28
These routines return the default memory allocator for a given device for a certain kind of memory.29

Format30
C / C++

omp_allocator_handle_t omp_get_devices_allocator(31
int ndevs,32
const int *devs,33
omp_memspace_handle_t memspace34

);35

CHAPTER 19. RUNTIME LIBRARY ROUTINES 545

omp_allocator_handle_t omp_get_device_allocator(1
int dev,2
omp_memspace_handle_t memspace3

);4
5

omp_allocator_handle_t omp_get_devices_and_host_allocator(6
int ndevs,7
const int *devs,8
omp_memspace_handle_t memspace9

);10
11

omp_allocator_handle_t omp_get_device_and_host_allocator(12
int dev,13
omp_memspace_handle_t memspace14

);15
16

omp_allocator_handle_t omp_get_devices_all_allocator(17
omp_memspace_handle_t memspace18

);19

C / C++
Fortran

integer(kind=omp_allocator_handle_kind) &20
function omp_get_devices_allocator(ndevs, devs, memspace)21
integer, intent(in) :: ndevs22
integer, intent(in) :: devs(*)23
integer(kind=omp_memspace_handle_kind), intent(in) :: memspace24

25
integer(kind=omp_allocator_handle_kind) &26
function omp_get_device_allocator(dev, memspace)27
integer, intent(in) :: dev28
integer(kind=omp_memspace_handle_kind), intent(in) :: memspace29

30
integer(kind=omp_allocator_handle_kind) &31
function omp_get_devices_and_host_allocator(ndevs, devs, memspace)32
integer, intent(in) :: ndevs33
integer, intent(in) :: devs(*)34
integer(kind=omp_memspace_handle_kind), intent(in) :: memspace35

36
integer(kind=omp_allocator_handle_kind) &37
function omp_get_device_and_host_allocator(dev, memspace)38
integer, intent(in) :: dev39
integer(kind=omp_memspace_handle_kind), intent(in) :: memspace40

41

546 OpenMP API – Version 6.0 Preview 2 November 2023

integer(kind=omp_allocator_handle_kind) &1
function omp_get_devices_all_allocator(memspace)2
integer(kind=omp_memspace_handle_kind), intent(in) :: memspace3

Fortran

Constraints on Arguments4
The memspace argument must be one of the predefined memory spaces. The ndevs argument to5
omp_get_devices_allocator and omp_get_devices_and_host_allocator must6
be greater than zero. The devs argument to omp_get_devices_allocator and7
omp_get_devices_and_host_allocator must point to an array that contains at least8
ndevs values. Each value must be a conforming device number. If there are more than ndevs values,9
the additional values will be ignored.10

The dev argument to omp_get_device_allocator and11
omp_get_device_and_host_allocator must be a conforming device number.12

Binding13
The binding thread set for these routines region is all threads on a device. The effect of executing14
this routine is not related to any specific region that corresponds to any construct or API routine.15

Effect16
The effect of these routines is to return the predefined allocator for memory of kind memspace for17
the selected devices. If the implementation does not have a predefined allocator that satisfies the18
request, then the special value omp_null_allocator is returned.19

The selected devices for omp_get_devices_allocator are those specified in the devs20
argument.21

The selected device for omp_get_device_allocator is the device specified in the dev22
argument.23

The selected devices for omp_get_devices_and_host_allocator are those specified in24
the devs argument and the initial device.25

The selected devices for omp_get_device_and_host_allocator are the device specified26
in the dev argument and the initial device.27

The selected devices for omp_get_devices_all_allocator are all available devices.28

Each of these routines returns an allocator that may be used anywhere that requires a predefined29
allocator specified in Table 7.3. The allocator is associated with a target memory space if any of the30
selected devices is not the current device.31

Restrictions32
The restrictions to these routines are as follows:33

• These routines can only be invoked on the initial device.34

CHAPTER 19. RUNTIME LIBRARY ROUTINES 547

Cross References1
• requires directive, see Section 9.52

• target directive, see Section 14.83

• Memory Allocators, see Section 7.24

• Memory Spaces, see Section 7.15

19.13.5 omp_destroy_allocator6

Summary7
The omp_destroy_allocator routine releases all resources used by the allocator handle.8

Format9
C / C++

void omp_destroy_allocator(omp_allocator_handle_t allocator);10

C / C++
Fortran

subroutine omp_destroy_allocator(allocator)11
integer(kind=omp_allocator_handle_kind), intent(in) :: allocator12

Fortran

Constraints on Arguments13
The allocator argument must not represent a predefined memory allocator.14

Binding15
The binding thread set for an omp_destroy_allocator region is all threads on a device. The16
effect of executing this routine is not related to any specific region that corresponds to any construct17
or API routine.18

Effect19
The omp_destroy_allocator routine releases all resources used to implement the allocator20
handle. If allocator is omp_null_allocator then this routine will have no effect.21

Restrictions22
The restrictions to the omp_destroy_allocator routine are as follows:23

• Accessing any memory allocated by the allocator after this call results in unspecified24
behavior.25

• Unless a requires directive with the dynamic_allocators clause is present in the26
same compilation unit, using this routine in a target region results in unspecified behavior.27

548 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• requires directive, see Section 9.52

• target directive, see Section 14.83

• Memory Allocators, see Section 7.24

19.13.6 omp_set_default_allocator5

Summary6
The omp_set_default_allocator routine sets the default memory allocator to be used by7
allocation calls, allocate clauses and allocate and allocators directives that do not8
specify an allocator.9

Format10
C / C++

void omp_set_default_allocator(omp_allocator_handle_t allocator);11

C / C++
Fortran

subroutine omp_set_default_allocator(allocator)12
integer(kind=omp_allocator_handle_kind), intent(in) :: allocator13

Fortran

Constraints on Arguments14
The allocator argument must be a valid memory allocator handle.15

Binding16
The binding task set for an omp_set_default_allocator region is the binding implicit task.17

Effect18
The effect of this routine is to set the value of the def-allocator-var ICV of the binding implicit task19
to the value specified in the allocator argument.20

Cross References21
• allocate clause, see Section 7.622

• allocate directive, see Section 7.523

• allocators directive, see Section 7.724

• Memory Allocators, see Section 7.225

• def-allocator-var ICV, see Table 2.126

CHAPTER 19. RUNTIME LIBRARY ROUTINES 549

19.13.7 omp_get_default_allocator1

Summary2
The omp_get_default_allocator routine returns a handle to the memory allocator to be3
used by allocation calls, allocate clauses and allocate and allocators directives that do4
not specify an allocator.5

Format6
C / C++

omp_allocator_handle_t omp_get_default_allocator(void);7

C / C++
Fortran

integer(kind=omp_allocator_handle_kind)&8
function omp_get_default_allocator()9

Fortran
Binding10
The binding task set for an omp_get_default_allocator region is the binding implicit task.11

Effect12
The effect of this routine is to return the value of the def-allocator-var ICV of the binding implicit13
task.14

Cross References15
• allocate clause, see Section 7.616

• allocate directive, see Section 7.517

• allocators directive, see Section 7.718

• Memory Allocators, see Section 7.219

• def-allocator-var ICV, see Table 2.120

19.13.8 omp_alloc and omp_aligned_alloc21

Summary22
The omp_alloc and omp_aligned_alloc routines request a memory allocation from a23
memory allocator.24

Format25
C

void *omp_alloc(size_t size, omp_allocator_handle_t allocator);26
void *omp_aligned_alloc(27

size_t alignment,28
size_t size,29
omp_allocator_handle_t allocator30

);31

C

550 OpenMP API – Version 6.0 Preview 2 November 2023

C++
void *omp_alloc(1

size_t size,2
omp_allocator_handle_t allocator=omp_null_allocator3

);4
void *omp_aligned_alloc(5

size_t alignment,6
size_t size,7
omp_allocator_handle_t allocator=omp_null_allocator8

);9

C++
Fortran

type(c_ptr) function omp_alloc(size, allocator) bind(c)10
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t11
integer(c_size_t), value :: size12
integer(omp_allocator_handle_kind), value :: allocator13

14
type(c_ptr) function omp_aligned_alloc(alignment, &15

size, allocator) bind(c)16
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t17
integer(c_size_t), value :: alignment, size18
integer(omp_allocator_handle_kind), value :: allocator19

Fortran

Constraints on Arguments20
Unless dynamic_allocators appears on a requires directive in the same compilation unit,21
omp_alloc and omp_aligned_alloc invocations that appear in target regions must not22
pass omp_null_allocator as the allocator argument, which must be a constant expression23
that evaluates to one of the predefined memory allocator values. The alignment argument to24
omp_aligned_alloc must be a power of two and the size argument must be a multiple of25
alignment.26

Binding27
The binding task set for an omp_alloc or omp_aligned_alloc region is the generating task.28

Effect29
The omp_alloc and omp_aligned_alloc routines request a memory allocation of size bytes30
from the specified memory allocator. If the allocator argument is omp_null_allocator the31
memory allocator used by the routines will be the one specified by the def-allocator-var ICV of the32
binding implicit task. Upon success they return a pointer to the allocated memory. Otherwise, the33
behavior that the fallback trait of the allocator specifies will be followed. If size is 0,34
omp_alloc and omp_aligned_alloc will return NULL.35

CHAPTER 19. RUNTIME LIBRARY ROUTINES 551

Memory allocated by omp_alloc will be byte-aligned to at least the maximum of the alignment1
required by malloc and the alignment trait of the allocator. Memory allocated by2
omp_aligned_alloc will be byte-aligned to at least the maximum of the alignment required by3
malloc, the alignment trait of the allocator and the alignment argument value.4

Pointers returned by these routines are considered device pointers if at least one of the devices5
associated with the allocator is not the current device.6

Fortran
The omp_alloc and omp_aligned_alloc routines require an explicit interface and so might7
not be provided in omp_lib.h.8

Fortran

Cross References9
• requires directive, see Section 9.510

• target directive, see Section 14.811

• Memory Allocators, see Section 7.212

• def-allocator-var ICV, see Table 2.113

19.13.9 omp_free14

Summary15
The omp_free routine deallocates previously allocated memory.16

Format17
C

void omp_free (void *ptr, omp_allocator_handle_t allocator);18

C
C++

void omp_free(19
void *ptr,20
omp_allocator_handle_t allocator=omp_null_allocator21

);22

C++
Fortran

subroutine omp_free(ptr, allocator) bind(c)23
use, intrinsic :: iso_c_binding, only : c_ptr24
type(c_ptr), value :: ptr25
integer(omp_allocator_handle_kind), value :: allocator26

Fortran

552 OpenMP API – Version 6.0 Preview 2 November 2023

Binding1
The binding task set for an omp_free region is the generating task.2

Effect3
The omp_free routine deallocates the memory to which ptr points. The ptr argument must have4
been returned by an OpenMP allocation routine. If the allocator argument is specified it must be5
the memory allocator to which the allocation request was made. If the allocator argument is6
omp_null_allocator the implementation will determine that value automatically. If ptr is7
NULL, no operation is performed.8

Fortran
The omp_free routine requires an explicit interface and so might not be provided in9
omp_lib.h.10

Fortran
Restrictions11
The restrictions to the omp_free routine are as follows:12

• Using omp_free on memory that was already deallocated or that was allocated by an13
allocator that has already been destroyed with omp_destroy_allocator results in14
unspecified behavior.15

Cross References16
• Memory Allocators, see Section 7.217

• omp_destroy_allocator, see Section 19.13.518

19.13.10 omp_calloc and omp_aligned_calloc19

Summary20
The omp_calloc and omp_aligned_calloc routines request a zero initialized memory21
allocation from a memory allocator.22

Format23
C

void *omp_calloc(24
size_t nmemb,25
size_t size,26
omp_allocator_handle_t allocator27

);28
void *omp_aligned_calloc(29

size_t alignment,30
size_t nmemb,31
size_t size,32
omp_allocator_handle_t allocator33

);34

C

CHAPTER 19. RUNTIME LIBRARY ROUTINES 553

C++
void *omp_calloc(1

size_t nmemb,2
size_t size,3
omp_allocator_handle_t allocator=omp_null_allocator4

);5
void *omp_aligned_calloc(6

size_t alignment,7
size_t nmemb,8
size_t size,9
omp_allocator_handle_t allocator=omp_null_allocator10

);11

C++
Fortran

type(c_ptr) function omp_calloc(nmemb, size, allocator) bind(c)12
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t13
integer(c_size_t), value :: nmemb, size14
integer(omp_allocator_handle_kind), value :: allocator15

16
type(c_ptr) function omp_aligned_calloc(alignment, nmemb, size, &17

allocator) bind(c)18
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t19
integer(c_size_t), value :: alignment, nmemb, size20
integer(omp_allocator_handle_kind), value :: allocator21

Fortran

Constraints on Arguments22
Unless dynamic_allocators appears on a requires directive in the same compilation unit,23
omp_calloc and omp_aligned_calloc invocations that appear in target regions must24
not pass omp_null_allocator as the allocator argument, which must be a constant expression25
that evaluates to one of the predefined memory allocator values. The alignment argument to26
omp_aligned_calloc must be a power of two and the size argument must be a multiple of27
alignment.28

Binding29
The binding task set for an omp_calloc or omp_aligned_calloc region is the generating30
task.31

554 OpenMP API – Version 6.0 Preview 2 November 2023

Effect1
The omp_calloc and omp_aligned_calloc routines request a memory allocation from the2
specified memory allocator for an array of nmemb elements each of which has a size of size bytes.3
If the allocator argument is omp_null_allocator the memory allocator used by the routines4
will be the one specified by the def-allocator-var ICV of the binding implicit task. Upon success5
they return a pointer to the allocated memory. Otherwise, the behavior that the fallback trait of6
the allocator specifies will be followed. Any memory allocated by these routines will be set to zero7
before returning. If either nmemb or size is 0, omp_calloc and omp_aligned_calloc will8
return NULL.9

Memory allocated by omp_calloc will be byte-aligned to at least the maximum of the alignment10
required by malloc and the alignment trait of the allocator. Memory allocated by11
omp_aligned_calloc will be byte-aligned to at least the maximum of the alignment required12
by malloc, the alignment trait of the allocator and the alignment argument value.13

Fortran
The omp_calloc and omp_aligned_calloc routines require an explicit interface and so14
might not be provided in omp_lib.h.15

Fortran

Cross References16
• requires directive, see Section 9.517

• target directive, see Section 14.818

• Memory Allocators, see Section 7.219

• def-allocator-var ICV, see Table 2.120

19.13.11 omp_realloc21

Summary22
The omp_realloc routine deallocates previously allocated memory and requests a memory23
allocation from a memory allocator.24

Format25
C

void *omp_realloc(26
void *ptr,27
size_t size,28
omp_allocator_handle_t allocator,29
omp_allocator_handle_t free_allocator30

);31

C

CHAPTER 19. RUNTIME LIBRARY ROUTINES 555

C++
void *omp_realloc(1

void *ptr,2
size_t size,3
omp_allocator_handle_t allocator=omp_null_allocator,4
omp_allocator_handle_t free_allocator=omp_null_allocator5

);6

C++
Fortran

type(c_ptr) &7
function omp_realloc(ptr, size, allocator, free_allocator) bind(c)8
use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t9
type(c_ptr), value :: ptr10
integer(c_size_t), value :: size11
integer(omp_allocator_handle_kind), value :: allocator, free_allocator12

Fortran
Constraints on Arguments13
Unless a dynamic_allocators clause appears on a requires directive in the same14
compilation unit, omp_realloc invocations that appear in target regions must not pass15
omp_null_allocator as the allocator or free_allocator argument, which must be constant16
expressions that evaluate to one of the predefined memory allocator values.17

Binding18
The binding task set for an omp_realloc region is the generating task.19

Effect20
The omp_realloc routine deallocates the memory to which ptr points and requests a new21
memory allocation of size bytes from the specified memory allocator. If the free_allocator22
argument is specified, it must be the memory allocator to which the previous allocation request was23
made. If the free_allocator argument is omp_null_allocator the implementation will24
determine that value automatically. If the allocator argument is omp_null_allocator the25
behavior is as if the memory allocator that allocated the memory to which ptr argument points is26
passed to the allocator argument. Upon success it returns a (possibly moved) pointer to the27
allocated memory and the contents of the new object shall be the same as that of the old object28
prior to deallocation, up to the minimum size of old allocated size and size. Any bytes in the new29
object beyond the old allocated size will have unspecified values. If the allocation failed, the30
behavior that the fallback trait of the allocator specifies will be followed. If ptr is NULL,31
omp_realloc will behave the same as omp_alloc with the same size and allocator arguments.32
If size is 0, omp_realloc will return NULL and the old allocation will be deallocated. If size is33
not 0, the old allocation will be deallocated if and only if the function returns a non-null value.34

Memory allocated by omp_realloc will be byte-aligned to at least the maximum of the35
alignment required by malloc and the alignment trait of the allocator.36

556 OpenMP API – Version 6.0 Preview 2 November 2023

Fortran
The omp_realloc routine requires an explicit interface and so might not be provided in1
omp_lib.h.2

Fortran

Restrictions3
The restrictions to the omp_realloc routine are as follows:4

• The ptr argument must have been returned by an OpenMP allocation routine.5

• Using omp_realloc on memory that was already deallocated or that was allocated by an6
allocator that has already been destroyed with omp_destroy_allocator results in7
unspecified behavior.8

Cross References9
• requires directive, see Section 9.510

• target directive, see Section 14.811

• Memory Allocators, see Section 7.212

• omp_alloc and omp_aligned_alloc, see Section 19.13.813

• omp_destroy_allocator, see Section 19.13.514

19.13.12 omp_get_memspace_num_resources15

Summary16
The omp_get_memspace_num_resources routine returns the number of resources17
associated with the specified memory space.18

Format19
C / C++

int omp_get_memspace_num_resources(20
omp_memspace_handle_t memspace21

);22

C / C++
Fortran

integer &23
function omp_get_memspace_num_resources(memspace)24
integer(kind=omp_memspace_handle_kind), intent(in) :: memspace25

Fortran

Constraints on Arguments26
The memspace argument must be a valid memory space.27

CHAPTER 19. RUNTIME LIBRARY ROUTINES 557

Binding1
The binding thread set for an omp_get_memspace_num_resources region is all threads on a2
device. The effect of executing this routine is not related to any specific region that corresponds to3
any construct or API routine.4

Effect5
The omp_get_memspace_num_resources returns the number of distinct storage resources6
that are associated with the memory space represented by the memspace handle.7

Cross References8
• Memory Spaces, see Section 7.19

19.13.13 omp_get_submemspace10

Summary11
The omp_get_submemspace routine returns a new memory space that contains a subset of the12
resources of the original memory space.13

Format14
C / C++

omp_memspace_handle_t omp_get_submemspace(15
omp_memspace_handle_t memspace,16
int num_resources,17
int *resources18

);19

C / C++
Fortran

integer(kind=omp_memspace_handle_kind) &20
function omp_get_submemspace (memspace, num_resources, resources)21
integer(kind=omp_memspace_handle_kind), intent(in) :: memspace22
integer, intent(in):: num_resources23
integer, intent(in):: resources(*)24

Fortran

Constraints on Arguments25
The memspace argument must be a valid memory space.26

The num_resources argument must be a non-negative value.27

The resources array must contain at least as many entries as specified by the num_resources28
argument. Each entry value must be a value between 0 and the number of resources associated with29
memspace minus 1.30

558 OpenMP API – Version 6.0 Preview 2 November 2023

Binding1
The binding thread set for an omp_get_submemspace region is all threads on a device. The2
effect of executing this routine is not related to any specific region that corresponds to any construct3
or API routine.4

Effect5
The omp_get_submemspace returns a new memory space that represents only the resources of6
memspace that are specified by the resources argument.7

If num_resources is zero or a memory space cannot be created for the requested resources the8
special value omp_null_mem_space is returned.9

Cross References10
• Memory Spaces, see Section 7.111

19.14 Tool Control Routine12

Summary13
The omp_control_tool routine enables a program to pass commands to an active tool.14

Format15
C / C++

int omp_control_tool(int command, int modifier, void *arg);16

C / C++
Fortran

integer function omp_control_tool(command, modifier)17
integer (kind=omp_control_tool_kind) command18
integer modifier19

Fortran

Constraints on Arguments20
The following enumeration type defines four standard commands. Table 19.3 describes the actions21
that these commands request from a tool.22

C / C++
typedef enum omp_control_tool_t {23

omp_control_tool_start = 1,24
omp_control_tool_pause = 2,25
omp_control_tool_flush = 3,26
omp_control_tool_end = 427

} omp_control_tool_t;28

C / C++

CHAPTER 19. RUNTIME LIBRARY ROUTINES 559

Fortran
integer (kind=omp_control_tool_kind), &1

parameter :: omp_control_tool_start = 12
integer (kind=omp_control_tool_kind), &3

parameter :: omp_control_tool_pause = 24
integer (kind=omp_control_tool_kind), &5

parameter :: omp_control_tool_flush = 36
integer (kind=omp_control_tool_kind), &7

parameter :: omp_control_tool_end = 48

Fortran
Tool-specific values for command must be greater or equal to 64. Tools must ignore command9
values that they are not explicitly designed to handle. Other values accepted by a tool for command,10
and any values for modifier and arg are tool-defined.11

TABLE 19.3: Standard Tool Control Commands

Command Action

omp_control_tool_start Start or restart monitoring if it is off. If monitoring
is already on, this command is idempotent. If moni-
toring has already been turned off permanently, this
command will have no effect.

omp_control_tool_pause Temporarily turn monitoring off. If monitoring is
already off, it is idempotent.

omp_control_tool_flush Flush any data buffered by a tool. This command may
be applied whether monitoring is on or off.

omp_control_tool_end Turn monitoring off permanently; the tool finalizes
itself and flushes all output.

Binding12
The binding task set for an omp_control_tool region is the generating task.13

Effect14
An OpenMP program may use omp_control_tool to pass commands to a tool. An application15
can use omp_control_tool to request that a tool starts or restarts data collection when a code16
region of interest is encountered, that a tool pauses data collection when leaving the region of17
interest, that a tool flushes any data that it has collected so far, or that a tool ends data collection.18
Additionally, omp_control_tool can be used to pass tool-specific commands to a particular19
tool. The following types correspond to return values from omp_control_tool:20

560 OpenMP API – Version 6.0 Preview 2 November 2023

C / C++
typedef enum omp_control_tool_result_t {1

omp_control_tool_notool = -2,2
omp_control_tool_nocallback = -1,3
omp_control_tool_success = 0,4
omp_control_tool_ignored = 15

} omp_control_tool_result_t;6

C / C++
Fortran

integer (kind=omp_control_tool_result_kind), &7
parameter :: omp_control_tool_notool = -28

integer (kind=omp_control_tool_result_kind), &9
parameter :: omp_control_tool_nocallback = -110

integer (kind=omp_control_tool_result_kind), &11
parameter :: omp_control_tool_success = 012

integer (kind=omp_control_tool_result_kind), &13
parameter :: omp_control_tool_ignored = 114

Fortran
If the OMPT interface state is OMPT inactive, the OpenMP implementation returns15
omp_control_tool_notool. If the OMPT interface state is OMPT active, but no callback is16
registered for the tool-control event, the OpenMP implementation returns17
omp_control_tool_nocallback. An OpenMP implementation may return other18
implementation defined negative values strictly smaller than -64; an OpenMP program may assume19
that any negative return value indicates that a tool has not received the command. A return value of20
omp_control_tool_success indicates that the tool has performed the specified command. A21
return value of omp_control_tool_ignored indicates that the tool has ignored the specified22
command. A tool may return other positive values strictly greater than 64 that are tool-defined.23

Execution Model Events24
The tool-control event occurs in the thread that encounters a call to omp_control_tool at a25
point inside its corresponding region.26

Tool Callbacks27
A thread dispatches a registered ompt_callback_control_tool callback for each28
occurrence of a tool-control event. The callback executes in the context of the call that occurs in the29
user program and has type signature ompt_callback_control_tool_t. The callback may30
return any non-negative value, which will be returned to the OpenMP program by the OpenMP31
implementation as the return value of the omp_control_tool call that triggered the callback.32

Arguments passed to the callback are those passed by the user to omp_control_tool. If the33
call is made in Fortran, the tool will be passed NULL as the third argument to the callback. If any34
of the four standard commands is presented to a tool, the tool will ignore the modifier and arg35
argument values.36

CHAPTER 19. RUNTIME LIBRARY ROUTINES 561

Restrictions1
Restrictions on access to the state of an OpenMP first-party tool are as follows:2

• An OpenMP program may access the tool state modified by an OMPT callback only by using3
omp_control_tool.4

Cross References5
• OMPT Interface, see Chapter 206

• ompt_callback_control_tool_t, see Section 20.5.2.297

19.15 Environment Display Routine8

Summary9
The omp_display_env routine displays the OpenMP version number and the initial values of10
ICVs associated with the environment variables described in Chapter 3.11

Format12
C / C++

void omp_display_env(int verbose);13

C / C++
Fortran

subroutine omp_display_env(verbose)14
logical,intent(in) :: verbose15

Fortran

Binding16
The binding thread set for an omp_display_env region is the encountering thread.17

Effect18
Each time the omp_display_env routine is invoked, the runtime system prints the OpenMP19
version number and the initial values of the ICVs associated with the environment variables20
described in Chapter 3. The displayed values are the values of the ICVs after they have been21
modified according to the environment variable settings and before the execution of any OpenMP22
construct or API routine.23

The display begins with "OPENMP DISPLAY ENVIRONMENT BEGIN", followed by the24
_OPENMP version macro (or the openmp_version named constant for Fortran) and ICV values,25
in the format NAME ’=’ VALUE. NAME corresponds to the macro or environment variable name,26
optionally prepended with a bracketed DEVICE. VALUE corresponds to the value of the macro or27
ICV associated with this environment variable. Values are enclosed in single quotes. DEVICE28
corresponds to the device on which the value of the ICV is applied. The display is terminated with29
"OPENMP DISPLAY ENVIRONMENT END".30

562 OpenMP API – Version 6.0 Preview 2 November 2023

If the verbose argument evaluates to false, the runtime displays the OpenMP version number1
defined by the _OPENMP version macro (or the openmp_version named constant for Fortran)2
value and the initial ICV values for the environment variables listed in Chapter 3. If the verbose3
argument evaluates to true, the runtime may also display the values of vendor-specific ICVs that4
may be modified by vendor-specific environment variables.5

Example output:6

OPENMP DISPLAY ENVIRONMENT BEGIN7
_OPENMP=’202111’8
[host] OMP_SCHEDULE=’GUIDED,4’9
[host] OMP_NUM_THREADS=’4,3,2’10
[device] OMP_NUM_THREADS=’2’11
[host,device] OMP_DYNAMIC=’TRUE’12
[host] OMP_PLACES=’{0:4},{4:4},{8:4},{12:4}’13
...14

OPENMP DISPLAY ENVIRONMENT END15

Restrictions16
Restrictions to the omp_display_env routine are as follows.17

• When called from within a target region the effect is unspecified.18

Cross References19
• OMP_DISPLAY_ENV, see Section 3.720

CHAPTER 19. RUNTIME LIBRARY ROUTINES 563

Part IV1

Tool Interfaces2

564

20 OMPT Interface1

This chapter describes OMPT, which is an interface for first-party tools. First-party tools are linked2
or loaded directly into the OpenMP program. OMPT defines mechanisms to initialize a tool, to3
examine thread state associated with a thread, to interpret the call stack of a thread, to receive4
notification about events, to trace activity on target devices, to assess implementation-dependent5
details of an OpenMP implementation (such as supported states and mutual exclusion6
implementations), and to control a tool from an OpenMP program.7

20.1 OMPT Interfaces Definitions8

C / C++
A compliant implementation must supply a set of definitions for the OMPT runtime entry points,9
OMPT callback signatures, and the special data types of their parameters and return values. These10
definitions, which are listed throughout this chapter, and their associated declarations shall be11
provided in a header file named omp-tools.h. In addition, the set of definitions may specify12
other implementation-specific values.13

The ompt_start_tool function is an external function with C linkage.14

C / C++

20.2 Activating a First-Party Tool15

To activate a tool, an OpenMP implementation first determines whether the tool should be16
initialized. If so, the OpenMP implementation invokes the initializer of the tool, which enables the17
tool to prepare to monitor execution on the host. The tool may then also arrange to monitor18
computation that executes on target devices. This section explains how the tool and an OpenMP19
implementation interact to accomplish these tasks.20

20.2.1 ompt_start_tool21

Summary22
In order to use the OMPT interface provided by an OpenMP implementation, a tool must implement23
the ompt_start_tool function, through which the OpenMP implementation initializes the tool.24

CHAPTER 20. OMPT INTERFACE 565

Format1
C

ompt_start_tool_result_t *ompt_start_tool(2
unsigned int omp_version,3
const char *runtime_version4

);5

C

Semantics6
For a tool to use the OMPT interface that an OpenMP implementation provides, the tool must define7
a globally-visible implementation of the function ompt_start_tool. The tool indicates that it8
will use the OMPT interface that an OpenMP implementation provides by returning a non-null9
pointer to an ompt_start_tool_result_t structure from the ompt_start_tool10
implementation that it provides. The ompt_start_tool_result_t structure contains11
pointers to tool initialization and finalization callbacks as well as a tool data word that an OpenMP12
implementation must pass by reference to these callbacks. A tool may return NULL from13
ompt_start_tool to indicate that it will not use the OMPT interface in a particular execution.14

A tool may use the omp_version argument to determine if it is compatible with the OMPT interface15
that the OpenMP implementation provides.16

Description of Arguments17
The argument omp_version is the value of the _OPENMP version macro associated with the18
OpenMP API implementation. This value identifies the OpenMP API version that an OpenMP19
implementation supports, which specifies the version of the OMPT interface that it supports.20

The argument runtime_version is a version string that unambiguously identifies the OpenMP21
implementation.22

Constraints on Arguments23
The argument runtime_version must be an immutable string that is defined for the lifetime of a24
program execution.25

Effect26
If a tool returns a non-null pointer to an ompt_start_tool_result_t structure, an OpenMP27
implementation will call the tool initializer specified by the initialize field in this structure before28
beginning execution of any construct or completing execution of any environment routine29
invocation; the OpenMP implementation will call the tool finalizer specified by the finalize field in30
this structure when the OpenMP implementation shuts down.31

Cross References32
• Tool Initialization and Finalization, see Section 20.4.133

566 OpenMP API – Version 6.0 Preview 2 November 2023

Inactive
Runtime

(re)start tool-var Pending

Find next tool

Return
value r

Active

Call
ompt_start_tool

Found?Inactive
Runtime shutdown

or pause

Call
r->initialize

Return
value

enabled

disabled

r=non-null

r=NULLyes

no

1

0

FIGURE 20.1: First-Party Tool Activation Flow Chart

20.2.2 Determining Whether a First-Party Tool Should be1

Initialized2

An OpenMP implementation examines the tool-var ICV as one of its first initialization steps. If the3
value of tool-var is disabled, the initialization continues without a check for the presence of a tool4
and the functionality of the OMPT interface will be unavailable as the OpenMP program executes.5
In this case, the OMPT interface state remains OMPT inactive.6

Otherwise, the OMPT interface state changes to OMPT pending and the OpenMP implementation7
activates any first-party tool that it finds. A tool can provide a definition of ompt_start_tool8
to an OpenMP implementation in three ways:9

• By statically-linking its definition of ompt_start_tool into an OpenMP program;10

• By introducing a dynamically-linked library that includes its definition of11
ompt_start_tool into the program’s address space; or12

• By providing, in the tool-libraries-var ICV, the name of a dynamically-linked library that is13
appropriate for the OpenMP architecture and operating system used by the OpenMP program14

CHAPTER 20. OMPT INTERFACE 567

and that includes a definition of ompt_start_tool.1

If the value of tool-var is enabled, the OpenMP implementation must check if a tool has provided2
an implementation of ompt_start_tool. The OpenMP implementation first checks if a3
tool-provided implementation of ompt_start_tool is available in the address space, either4
statically-linked into the OpenMP program or in a dynamically-linked library loaded in the address5
space. If multiple implementations of ompt_start_tool are available, the OpenMP6
implementation will use the first tool-provided implementation of ompt_start_tool that it7
finds.8

If the implementation does not find a tool-provided implementation of ompt_start_tool in the9
address space, it consults the tool-libraries-var ICV, which contains a (possibly empty) list of10
dynamically-linked libraries. As described in detail in Section 3.3.2, the libraries in11
tool-libraries-var are then searched for the first usable implementation of ompt_start_tool12
that one of the libraries in the list provides.13

If the implementation finds a tool-provided definition of ompt_start_tool, it invokes that14
method; if a NULL pointer is returned, the OMPT interface state remains OMPT pending and the15
implementation continues to look for implementations of ompt_start_tool; otherwise a16
non-null pointer to an ompt_start_tool_result_t structure is returned, the OMPT17
interface state changes to OMPT active and the OpenMP implementation makes the OMPT18
interface available as the program executes. In this case, as the OpenMP implementation completes19
its initialization, it initializes the OMPT interface.20

If no tool can be found, the OMPT interface state changes to OMPT inactive.21

Cross References22
• Tool Initialization and Finalization, see Section 20.4.123

• tool-libraries-var ICV, see Table 2.124

• tool-var ICV, see Table 2.125

• ompt_start_tool, see Section 20.2.126

20.2.3 Initializing a First-Party Tool27

To initialize the OMPT interface, the OpenMP implementation invokes the tool initializer that is28
specified in the ompt_start_tool_result_t structure that is indicated by the non-null29
pointer that ompt_start_tool returns. The initializer is invoked prior to the occurrence of any30
OpenMP event.31

A tool initializer, described in Section 20.5.1.1, uses the function specified in its lookup argument32
to look up pointers to OMPT interface runtime entry points that the OpenMP implementation33
provides; this process is described in Section 20.2.3.1. Typically, a tool initializer obtains a pointer34
to the ompt_set_callback runtime entry point with type signature35

568 OpenMP API – Version 6.0 Preview 2 November 2023

ompt_set_callback_t and then uses this runtime entry point to perform callback registration1
for events, as described in Section 20.2.4.2

A tool initializer may use the ompt_enumerate_states runtime entry point, which has type3
signature ompt_enumerate_states_t, to determine the thread states that an OpenMP4
implementation employs. Similarly, it may use the ompt_enumerate_mutex_impls runtime5
entry point, which has type signature ompt_enumerate_mutex_impls_t, to determine the6
mutual exclusion implementations that the OpenMP implementation employs.7

If a tool initializer returns a non-zero value, the OMPT interface state remains active for the8
execution; otherwise, the OMPT interface state changes to inactive.9

Cross References10
• Tool Initialization and Finalization, see Section 20.4.111

• ompt_enumerate_mutex_impls_t, see Section 20.6.1.212

• ompt_enumerate_states_t, see Section 20.6.1.113

• ompt_set_callback_t, see Section 20.6.1.314

• ompt_start_tool, see Section 20.2.115

20.2.3.1 Binding Entry Points in the OMPT Callback Interface16

Functions that an OpenMP implementation provides to support the OMPT interface are not defined17
as global function symbols. Instead, they are defined as runtime entry points that a tool can only18
identify through the lookup function that is provided as an argument with type signature19
ompt_function_lookup_t to the tool initializer. A tool can use this function to obtain a20
pointer to each of the runtime entry points that an OpenMP implementation provides to support the21
OMPT interface. Once a tool has obtained a lookup function, it may employ it at any point in the22
future.23

For each runtime entry point in the OMPT interface for the host device, Table 20.1 provides the24
string name by which it is known and its associated type signature. Implementations can provide25
additional implementation-specific names and corresponding entry points. Any names that begin26
with ompt_ are reserved names.27

During initialization, a tool should look up each runtime entry point in the OMPT interface by28
name and bind a pointer maintained by the tool that can later be used to invoke the entry point. The29
entry points described in Table 20.1 enable a tool to assess the thread states and mutual exclusion30
implementations that an OpenMP implementation supports for callback registration, to inspect31
registered callbacks, to introspect OpenMP state associated with threads, and to use tracing to32
monitor computations that execute on target devices.33

Detailed information about each runtime entry point listed in Table 20.1 is included as part of the34
description of its type signature.35

CHAPTER 20. OMPT INTERFACE 569

TABLE 20.1: OMPT Callback Interface Runtime Entry Point Names and Their Type Signatures

Entry Point String Name Type signature
“ompt_enumerate_states” ompt_enumerate_states_t
“ompt_enumerate_mutex_impls” ompt_enumerate_mutex_impls_t
“ompt_set_callback” ompt_set_callback_t
“ompt_get_callback” ompt_get_callback_t
“ompt_get_thread_data” ompt_get_thread_data_t
“ompt_get_num_places” ompt_get_num_places_t
“ompt_get_place_proc_ids” ompt_get_place_proc_ids_t
“ompt_get_place_num” ompt_get_place_num_t
“ompt_get_partition_place_nums” ompt_get_partition_place_nums_t
“ompt_get_proc_id” ompt_get_proc_id_t
“ompt_get_state” ompt_get_state_t
“ompt_get_parallel_info” ompt_get_parallel_info_t
“ompt_get_task_info” ompt_get_task_info_t
“ompt_get_task_memory” ompt_get_task_memory_t
“ompt_get_num_devices” ompt_get_num_devices_t
“ompt_get_num_procs” ompt_get_num_procs_t
“ompt_get_target_info” ompt_get_target_info_t
“ompt_get_unique_id” ompt_get_unique_id_t
“ompt_finalize_tool” ompt_finalize_tool_t

Cross References1
• ompt_enumerate_mutex_impls_t, see Section 20.6.1.22

• ompt_enumerate_states_t, see Section 20.6.1.13

• Lookup Entry Points: ompt_function_lookup_t, see Section 20.6.34

• ompt_get_callback_t, see Section 20.6.1.45

• ompt_get_num_devices_t, see Section 20.6.1.176

• ompt_get_num_places_t, see Section 20.6.1.77

• ompt_get_num_procs_t, see Section 20.6.1.68

• ompt_get_parallel_info_t, see Section 20.6.1.139

• ompt_get_partition_place_nums_t, see Section 20.6.1.1010

• ompt_get_place_num_t, see Section 20.6.1.911

• ompt_get_place_proc_ids_t, see Section 20.6.1.812

• ompt_get_proc_id_t, see Section 20.6.1.1113

• ompt_get_state_t, see Section 20.6.1.1214

570 OpenMP API – Version 6.0 Preview 2 November 2023

• ompt_get_target_info_t, see Section 20.6.1.161

• ompt_get_task_info_t, see Section 20.6.1.142

• ompt_get_task_memory_t, see Section 20.6.1.153

• ompt_get_thread_data_t, see Section 20.6.1.54

• ompt_get_unique_id_t, see Section 20.6.1.185

• ompt_set_callback_t, see Section 20.6.1.36

20.2.4 Monitoring Activity on the Host with OMPT7

To monitor the execution of an OpenMP program on the host device, a tool initializer must register8
to receive notification of events that occur as an OpenMP program executes. A tool can use the9
ompt_set_callback runtime entry point to perform callback registrations for events. The10
return codes for ompt_set_callback use the ompt_set_result_t enumeration type. If11
the ompt_set_callback runtime entry point is called outside a tool initializer, callback12
registration may fail for supported callbacks with a return value of ompt_set_error.13

All registered callbacks and all callbacks returned by ompt_get_callback use the dummy type14
signature ompt_callback_t.15

For callbacks listed in Table 20.2, ompt_set_always is the only registration return code that is16
allowed. An OpenMP implementation must guarantee that the callback will be invoked every time17
that a runtime event that is associated with it occurs. Support for such callbacks is required in a18
minimal implementation of the OMPT interface.19

For any other callbacks not listed in Table 20.2, the ompt_set_callback runtime entry may20
return any non-error code. Whether an OpenMP implementation invokes a registered callback21
never, sometimes, or always is implementation defined. If registration for a callback allows a return22
code of ompt_set_never, support for invoking such a callback may not be present in a minimal23
implementation of the OMPT interface. The return code from callback registration indicates the24
implementation defined level of support for the callback.25

Two techniques reduce the size of the OMPT interface. First, in cases where events are naturally26
paired, for example, the beginning and end of a region, and the arguments needed by the callback at27
each endpoint are identical, a tool registers a single callback for the pair of events, with28
ompt_scope_begin or ompt_scope_end provided as an argument to identify for which29
endpoint the callback is invoked. Second, when a class of events is amenable to uniform treatment,30
OMPT provides a single callback for that class of events, for example, an31
ompt_callback_sync_region_wait callback is used for multiple kinds of synchronization32
regions, such as barrier, taskwait, and taskgroup regions. Some events, for example,33
ompt_callback_sync_region_wait, use both techniques.34

Cross References35
• ompt_get_callback_t, see Section 20.6.1.436

CHAPTER 20. OMPT INTERFACE 571

TABLE 20.2: Callbacks for which ompt_set_callback Must Return ompt_set_always

Callback Name
ompt_callback_thread_begin
ompt_callback_thread_end
ompt_callback_parallel_begin
ompt_callback_parallel_end
ompt_callback_task_create
ompt_callback_task_schedule
ompt_callback_implicit_task
ompt_callback_target
ompt_callback_target_emi
ompt_callback_target_data_op
ompt_callback_target_data_op_emi
ompt_callback_target_submit
ompt_callback_target_submit_emi
ompt_callback_control_tool
ompt_callback_device_initialize
ompt_callback_device_finalize
ompt_callback_device_load
ompt_callback_device_unload
ompt_callback_error

• ompt_set_callback_t, see Section 20.6.1.31

• ompt_set_result_t, see Section 20.4.4.22

20.2.5 Tracing Activity on Target Devices with OMPT3

A target device may or may not initialize a full OpenMP runtime system. Unless it does,4
monitoring activity on a device using a tool interface based on callbacks may not be possible. To5
accommodate such cases, the OMPT interface defines a monitoring interface for tracing activity on6
target devices. Tracing activity on a target device involves the following steps:7

• To prepare to trace device activity, a tool must register for an8
ompt_callback_device_initialize callback. A tool may also register for an9
ompt_callback_device_load callback to be notified when code is loaded onto a10
target device or an ompt_callback_device_unload callback to be notified when11
code is unloaded from a target device. A tool may also optionally register an12
ompt_callback_device_finalize callback.13

• When an OpenMP implementation initializes a target device, the OpenMP implementation14
dispatches the device initialization callback of the tool on the host device. If the OpenMP15

572 OpenMP API – Version 6.0 Preview 2 November 2023

TABLE 20.3: OMPT Tracing Interface Runtime Entry Point Names and Their Type Signatures

Entry Point String Name Type Signature
“ompt_get_device_num_procs” ompt_get_device_num_procs_t
“ompt_get_device_time” ompt_get_device_time_t
“ompt_translate_time” ompt_translate_time_t
“ompt_set_trace_ompt” ompt_set_trace_ompt_t
“ompt_set_trace_native” ompt_set_trace_native_t
“ompt_start_trace” ompt_start_trace_t
“ompt_pause_trace” ompt_pause_trace_t
“ompt_flush_trace” ompt_flush_trace_t
“ompt_stop_trace” ompt_stop_trace_t
“ompt_advance_buffer_cursor” ompt_advance_buffer_cursor_t
“ompt_get_record_type” ompt_get_record_type_t
“ompt_get_record_ompt” ompt_get_record_ompt_t
“ompt_get_record_native” ompt_get_record_native_t
“ompt_get_record_abstract” ompt_get_record_abstract_t

implementation or target device does not support tracing, the OpenMP implementation1
passes NULL to the device initializer of the tool for its lookup argument; otherwise, the2
OpenMP implementation passes a pointer to a device-specific runtime entry point with type3
signature ompt_function_lookup_t to the device initializer of the tool.4

• If the lookup argument of the device initializer of the tool is a non-null pointer, the tool may5
use it to determine the runtime entry points in the tracing interface that are available for the6
device and may bind the returned function pointers to tool variables. Table 20.3 indicates the7
names of runtime entry points that may be available for a device; an implementation may8
provide additional implementation defined names and corresponding entry points. The driver9
for the device provides the runtime entry points that enable a tool to control the trace10
collection interface of the device. The native trace format that the interface uses may be11
device specific and the available kinds of trace records are implementation defined. Some12
devices may allow a tool to collect traces of records in a standard format known as OMPT13
trace records. Each OMPT trace record serves as a substitute for an OMPT callback that is14
not appropriate to be dispatched on the device. The fields in each trace record type are15
defined in the description of the callback that the record represents. If this type of record is16
provided then the lookup function returns values for the runtime entry points17
ompt_set_trace_ompt and ompt_get_record_ompt, which support collecting18
and decoding OMPT traces. If the native tracing format for a device is the OMPT format then19
tracing can be controlled using the runtime entry points for native or OMPT tracing.20

• The tool uses the ompt_set_trace_native and/or the ompt_set_trace_ompt21
runtime entry point to specify what types of events or activities to monitor on the device. The22
return codes for ompt_set_trace_ompt and ompt_set_trace_native use the23
ompt_set_result_t enumeration type. If the ompt_set_trace_native or the24
ompt_set_trace_ompt runtime entry point is called outside a device initializer,25

CHAPTER 20. OMPT INTERFACE 573

registration of supported callbacks may fail with a return code of ompt_set_error.1

• The tool initiates tracing of device activity by invoking ompt_start_trace. Arguments2
to ompt_start_trace include two tool callbacks through which the OpenMP3
implementation can manage traces associated with the device. One callback allocates a buffer4
in which device activity can be deposited. The second callback processes a buffer of trace5
events from the device.6

• If the OpenMP implementation requires a trace buffer for device activity, the OpenMP7
implementation invokes the tool-supplied callback function on the host device to request a8
new buffer.9

• The OpenMP implementation monitors the execution of OpenMP constructs on the device10
and records a trace of events or activities into a trace buffer. If possible, device trace records11
are marked with a host_op_id—an identifier that associates device activities with the target12
operation that the host initiated to cause these activities. To correlate activities on the host13
with activities on a device, a tool can register a14
ompt_callback_target_submit_emi callback. Before and after the host initiates15
creation of an initial task on a device associated with a structured block for a target16
construct, the OpenMP implementation dispatches the17
ompt_callback_target_submit_emi callback on the host in the thread that is18
executing the task that encounters the target construct. This callback provides the tool19
with a pair of identifiers: one that identifies the target region and a second that uniquely20
identifies the initial task associated with that region. These identifiers help the tool correlate21
activities on the target device with their target region.22

• When appropriate, for example, when a trace buffer fills or needs to be flushed, the OpenMP23
implementation invokes the tool-supplied buffer completion callback to process a non-empty24
sequence of records in a trace buffer that is associated with the device.25

• The tool-supplied buffer completion callback may return immediately, ignoring records in the26
trace buffer, or it may iterate through them using the ompt_advance_buffer_cursor27
entry point to inspect each record. A tool may use the ompt_get_record_type runtime28
entry point to inspect the type of the record at the current cursor position. Three runtime29
entry points (ompt_get_record_ompt, ompt_get_record_native, and30
ompt_get_record_abstract) allow tools to inspect the contents of some or all31
records in a trace buffer. The ompt_get_record_native runtime entry point uses the32
native trace format of the device. The ompt_get_record_abstract runtime entry33
point decodes the contents of a native trace record and summarizes them as an34
ompt_record_abstract_t record. The ompt_get_record_ompt runtime entry35
point can only be used to retrieve records in OMPT format.36

• Once device tracing has been started, a tool may pause or resume device tracing at any time37
by invoking ompt_pause_trace with an appropriate flag value as an argument.38

• A tool may invoke the ompt_flush_trace runtime entry point for a device at any time39
between device initialization and finalization to cause the pending trace records for that40

574 OpenMP API – Version 6.0 Preview 2 November 2023

device to be flushed.1

• At any time, a tool may use the ompt_start_trace runtime entry point to start or the2
ompt_stop_trace runtime entry point to stop device tracing. When device tracing is3
stopped, the OpenMP implementation eventually gathers all trace records already collected4
from device tracing and presents them to the tool using the buffer completion callback.5

• An OpenMP implementation can be shut down while device tracing is in progress.6

• When an OpenMP implementation is shut down, it finalizes each device. Device finalization7
occurs in three steps. First, the OpenMP implementation halts any tracing in progress for the8
device. Second, the OpenMP implementation flushes all trace records collected for the9
device and uses the buffer completion callback associated with that device to present them to10
the tool. Finally, the OpenMP implementation dispatches any11
ompt_callback_device_finalize callback registered for the device.12

Restrictions13
Restrictions on tracing activity on devices are as follows:14

• Implementation-defined names must not start with the prefix ompt_, which is reserved for15
the OpenMP specification.16

Cross References17
• ompt_advance_buffer_cursor_t, see Section 20.6.2.1118

• ompt_callback_device_finalize_t, see Section 20.5.2.2019

• ompt_callback_device_initialize_t, see Section 20.5.2.1920

• ompt_flush_trace_t, see Section 20.6.2.921

• ompt_get_device_num_procs_t, see Section 20.6.2.122

• ompt_get_device_time_t, see Section 20.6.2.223

• ompt_get_record_abstract_t, see Section 20.6.2.1524

• ompt_get_record_native_t, see Section 20.6.2.1425

• ompt_get_record_ompt_t, see Section 20.6.2.1326

• ompt_get_record_type_t, see Section 20.6.2.1227

• ompt_pause_trace_t, see Section 20.6.2.828

• ompt_set_trace_native_t, see Section 20.6.2.529

• ompt_set_trace_ompt_t, see Section 20.6.2.430

• ompt_start_trace_t, see Section 20.6.2.731

• ompt_stop_trace_t, see Section 20.6.2.1032

• ompt_translate_time_t, see Section 20.6.2.333

CHAPTER 20. OMPT INTERFACE 575

20.3 Finalizing a First-Party Tool1

If the OMPT interface state is active, the tool finalizer, which has type signature2
ompt_finalize_t and is specified by the finalize field in the3
ompt_start_tool_result_t structure returned from the ompt_start_tool function, is4
called when the OpenMP implementation shuts down.5

Cross References6
• ompt_finalize_t, see Section 20.5.1.27

20.4 OMPT Data Types8

The C/C++ header file (omp-tools.h) provides the definitions of the types that are specified9
throughout this subsection.10

20.4.1 Tool Initialization and Finalization11

Summary12
A tool’s implementation of ompt_start_tool returns a pointer to an13
ompt_start_tool_result_t structure, which contains pointers to the tool’s initialization14
and finalization callbacks as well as an ompt_data_t object for use by the tool.15

Format16
C / C++

typedef struct ompt_start_tool_result_t {17
ompt_initialize_t initialize;18
ompt_finalize_t finalize;19
ompt_data_t tool_data;20

} ompt_start_tool_result_t;21

C / C++

Restrictions22
Restrictions to the ompt_start_tool_result_t type are as follows:23

• The initialize and finalize callback pointer values in an ompt_start_tool_result_t24
structure that ompt_start_tool returns must be non-null values.25

Cross References26
• ompt_data_t, see Section 20.4.4.427

• ompt_finalize_t, see Section 20.5.1.228

• ompt_initialize_t, see Section 20.5.1.129

• ompt_start_tool, see Section 20.2.130

576 OpenMP API – Version 6.0 Preview 2 November 2023

20.4.2 Callbacks1

Summary2
The ompt_callbacks_t enumeration type indicates the integer codes used to identify OpenMP3
callbacks when registering or querying them.4

Format5
C / C++

typedef enum ompt_callbacks_t {6
ompt_callback_thread_begin = 1,7
ompt_callback_thread_end = 2,8
ompt_callback_parallel_begin = 3,9
ompt_callback_parallel_end = 4,10
ompt_callback_task_create = 5,11
ompt_callback_task_schedule = 6,12
ompt_callback_implicit_task = 7,13
ompt_callback_target = 8,14
ompt_callback_target_data_op = 9,15
ompt_callback_target_submit = 10,16
ompt_callback_control_tool = 11,17
ompt_callback_device_initialize = 12,18
ompt_callback_device_finalize = 13,19
ompt_callback_device_load = 14,20
ompt_callback_device_unload = 15,21
ompt_callback_sync_region_wait = 16,22
ompt_callback_mutex_released = 17,23
ompt_callback_dependences = 18,24
ompt_callback_task_dependence = 19,25
ompt_callback_work = 20,26
ompt_callback_masked = 21,27
ompt_callback_target_map = 22,28
ompt_callback_sync_region = 23,29
ompt_callback_lock_init = 24,30
ompt_callback_lock_destroy = 25,31
ompt_callback_mutex_acquire = 26,32
ompt_callback_mutex_acquired = 27,33
ompt_callback_nest_lock = 28,34
ompt_callback_flush = 29,35
ompt_callback_cancel = 30,36
ompt_callback_reduction = 31,37
ompt_callback_dispatch = 32,38
ompt_callback_target_emi = 33,39
ompt_callback_target_data_op_emi = 34,40
ompt_callback_target_submit_emi = 35,41

CHAPTER 20. OMPT INTERFACE 577

ompt_callback_target_map_emi = 36,1
ompt_callback_error = 372

} ompt_callbacks_t;3

C / C++

20.4.3 Tracing4

OpenMP provides type definitions that support tracing with OMPT.5

20.4.3.1 Record Type6

Summary7
The ompt_record_t enumeration type indicates the integer codes used to identify OpenMP8
trace record formats.9

Format10
C / C++

typedef enum ompt_record_t {11
ompt_record_ompt = 1,12
ompt_record_native = 2,13
ompt_record_invalid = 314

} ompt_record_t;15

C / C++

20.4.3.2 Native Record Kind16

Summary17
The ompt_record_native_t enumeration type indicates the integer codes used to identify18
OpenMP native trace record contents.19

Format20
C / C++

typedef enum ompt_record_native_t {21
ompt_record_native_info = 1,22
ompt_record_native_event = 223

} ompt_record_native_t;24

C / C++

20.4.3.3 Native Record Abstract Type25

Summary26
The ompt_record_abstract_t type provides an abstract trace record format that is used to27
summarize native device trace records.28

578 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C / C++

typedef struct ompt_record_abstract_t {2
ompt_record_native_t rclass;3
const char *type;4
ompt_device_time_t start_time;5
ompt_device_time_t end_time;6
ompt_hwid_t hwid;7

} ompt_record_abstract_t;8

C / C++

Semantics9
An ompt_record_abstract_t record contains information that a tool can use to process a10
native record that it may not fully understand. The rclass field indicates that the record is11
informational or that it represents an event; this information can help a tool determine how to12
present the record. The record type field points to a statically-allocated, immutable character string13
that provides a meaningful name that a tool can use to describe the event to a user. The start_time14
and end_time fields are used to place an event in time. The times are relative to the device clock. If15
an event does not have an associated start_time (end_time), the value of the start_time (end_time)16
field is ompt_time_none. The hardware identifier field, hwid, indicates the location on the17
device where the event occurred. A hwid may represent a hardware abstraction such as a core or a18
hardware thread identifier. The meaning of a hwid value for a device is implementation defined. If19
no hardware abstraction is associated with the record then the value of hwid is ompt_hwid_none.20

20.4.3.4 Standard Trace Record Type21

Summary22
The ompt_record_ompt_t type provides a standard complete trace record format.23

Format24
C / C++

typedef struct ompt_record_ompt_t {25
ompt_callbacks_t type;26
ompt_device_time_t time;27
ompt_id_t thread_id;28
ompt_id_t target_id;29
union {30
ompt_record_thread_begin_t thread_begin;31
ompt_record_parallel_begin_t parallel_begin;32
ompt_record_parallel_end_t parallel_end;33
ompt_record_work_t work;34
ompt_record_dispatch_t dispatch;35
ompt_record_task_create_t task_create;36
ompt_record_dependences_t dependences;37

CHAPTER 20. OMPT INTERFACE 579

ompt_record_task_dependence_t task_dependence;1
ompt_record_task_schedule_t task_schedule;2
ompt_record_implicit_task_t implicit_task;3
ompt_record_masked_t masked;4
ompt_record_sync_region_t sync_region;5
ompt_record_mutex_acquire_t mutex_acquire;6
ompt_record_mutex_t mutex;7
ompt_record_nest_lock_t nest_lock;8
ompt_record_flush_t flush;9
ompt_record_cancel_t cancel;10
ompt_record_target_t target;11
ompt_record_target_data_op_t target_data_op;12
ompt_record_target_map_t target_map;13
ompt_record_target_kernel_t target_kernel;14
ompt_record_control_tool_t control_tool;15
ompt_record_error_t error;16

} record;17
} ompt_record_ompt_t;18

C / C++

Semantics19
The field type specifies the type of record provided by this structure. According to the type, event20
specific information is stored in the matching record entry.21

Restrictions22
Restrictions to the ompt_record_ompt_t type are as follows:23

• If type is set to ompt_callback_thread_end_t then the value of record is undefined.24

20.4.4 Miscellaneous Type Definitions25

This section describes miscellaneous types and enumerations used by the tool interface.26

20.4.4.1 ompt_callback_t27

Summary28
Pointers to tool callback functions with different type signatures are passed to the29
ompt_set_callback runtime entry point and returned by the ompt_get_callback30
runtime entry point. For convenience, these runtime entry points expect all type signatures to be31
cast to a dummy type ompt_callback_t.32

Format33
C / C++

typedef void (*ompt_callback_t) (void);34

C / C++

580 OpenMP API – Version 6.0 Preview 2 November 2023

20.4.4.2 ompt_set_result_t1

Summary2
The ompt_set_result_t enumeration type corresponds to values that the3
ompt_set_callback, ompt_set_trace_ompt and ompt_set_trace_native4
runtime entry points return.5

Format6
C / C++

typedef enum ompt_set_result_t {7
ompt_set_error = 0,8
ompt_set_never = 1,9
ompt_set_impossible = 2,10
ompt_set_sometimes = 3,11
ompt_set_sometimes_paired = 4,12
ompt_set_always = 513

} ompt_set_result_t;14

C / C++

Semantics15
Values of ompt_set_result_t, may indicate several possible outcomes. The16
ompt_set_error value indicates that the associated call failed. Otherwise, the value indicates17
when an event may occur and, when appropriate, callback dispatch leads to the invocation of the18
callback. The ompt_set_never value indicates that the event will never occur or that the19
callback will never be invoked at runtime. The ompt_set_impossible value indicates that the20
event may occur but that tracing of it is not possible. The ompt_set_sometimes value21
indicates that the event may occur and, for an implementation-defined subset of associated event22
occurrences, will be traced or the callback will be invoked at runtime. The23
ompt_set_sometimes_paired value indicates the same result as ompt_set_sometimes24
and, in addition, that a callback with an endpoint value of ompt_scope_begin will be invoked25
if and only if the same callback with an endpoint value of ompt_scope_end will also be invoked26
sometime in the future. The ompt_set_always value indicates that, whenever an associated27
event occurs, it will be traced or the callback will be invoked.28

Cross References29
• ompt_set_callback_t, see Section 20.6.1.330

• ompt_set_trace_native_t, see Section 20.6.2.531

• ompt_set_trace_ompt_t, see Section 20.6.2.432

20.4.4.3 ompt_id_t33

Summary34
The ompt_id_t type is used to provide various identifiers to tools.35

CHAPTER 20. OMPT INTERFACE 581

Format1
C / C++

typedef uint64_t ompt_id_t;2

C / C++
Semantics3
When tracing asynchronous activity on devices, identifiers enable tools to correlate target regions4
and operations that the host initiates with associated activities on a target device. In addition,5
OMPT provides identifiers to refer to parallel regions and tasks that execute on a device. These6
various identifiers are of type ompt_id_t.7

ompt_id_none is defined as an instance of type ompt_id_t with the value 0.8

Restrictions9
Restrictions to the ompt_id_t type are as follows:10

• Identifiers created on each device must be unique from the time an OpenMP implementation11
is initialized until it is shut down. Identifiers for each target region and target data operation12
instance that the host device initiates must be unique over time on the host. Identifiers for13
parallel and task region instances that execute on a device must be unique over time within14
that device.15

20.4.4.4 ompt_data_t16

Summary17
The ompt_data_t type represents data associated with threads and with parallel and task regions.18

Format19
C / C++

typedef union ompt_data_t {20
uint64_t value;21
void *ptr;22

} ompt_data_t;23

C / C++
Semantics24
The ompt_data_t type represents data that is reserved for tool use and that is related to a thread25
or to a parallel or task region. When an OpenMP implementation creates a thread or an instance of26
a parallel, teams, task, or target region, it initializes the associated ompt_data_t object with27
the value ompt_data_none, which is an instance of the type with the data and pointer fields28
equal to 0.29

20.4.4.5 ompt_device_t30

Summary31
The ompt_device_t opaque object type represents a device.32

582 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C / C++

typedef void ompt_device_t;2

C / C++

20.4.4.6 ompt_device_time_t3

Summary4
The ompt_device_time_t type represents raw device time values.5

Format6
C / C++

typedef uint64_t ompt_device_time_t;7

C / C++

Semantics8
The ompt_device_time_t opaque object type represents raw device time values.9
ompt_time_none refers to an unknown or unspecified time and is defined as an instance of type10
ompt_device_time_t with the value 0.11

20.4.4.7 ompt_buffer_t12

Summary13
The ompt_buffer_t opaque object type is a handle for a target buffer.14

Format15
C / C++

typedef void ompt_buffer_t;16

C / C++

20.4.4.8 ompt_buffer_cursor_t17

Summary18
The ompt_buffer_cursor_t opaque type is a handle for a position in a target buffer.19

Format20
C / C++

typedef uint64_t ompt_buffer_cursor_t;21

C / C++

CHAPTER 20. OMPT INTERFACE 583

20.4.4.9 ompt_dependence_t1

Summary2
The ompt_dependence_t type represents a task dependence.3

Format4
C / C++

typedef struct ompt_dependence_t {5
ompt_data_t variable;6
ompt_dependence_type_t dependence_type;7

} ompt_dependence_t;8

C / C++

Semantics9
The ompt_dependence_t type is a structure that holds information about a depend or10
doacross clause. For task dependences, the variable.ptr field points to the storage location of the11
dependence. For doacross dependences, the variable.value field contains the value of a vector12
element that describes the dependence. The dependence_type field indicates the type of the13
dependence. For task dependences with the reserved locator omp_all_memory, the value of14
variable is undefined and the dependence_type field contains the value of an enumerator that has15
the _all_memory suffix.16

Cross References17
• ompt_dependence_type_t, see Section 20.4.4.2418

20.4.4.10 ompt_thread_t19

Summary20
The ompt_thread_t enumeration type defines the valid thread type values.21

Format22
C / C++

typedef enum ompt_thread_t {23
ompt_thread_initial = 1,24
ompt_thread_worker = 2,25
ompt_thread_other = 3,26
ompt_thread_unknown = 427

} ompt_thread_t;28

C / C++

584 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
Any initial thread has thread type ompt_thread_initial. All threads that are2
thread-pool-worker threads have thread type ompt_thread_worker. A native thread that an3
OpenMP implementation uses but that does not execute user code has thread type4
ompt_thread_other. Any native thread that is created outside an OpenMP implementation5
and that is not an initial thread has thread type ompt_thread_unknown.6

20.4.4.11 ompt_scope_endpoint_t7

Summary8
The ompt_scope_endpoint_t enumeration type defines valid scope endpoint values.9

Format10
C / C++

typedef enum ompt_scope_endpoint_t {11
ompt_scope_begin = 1,12
ompt_scope_end = 2,13
ompt_scope_beginend = 314

} ompt_scope_endpoint_t;15

C / C++

20.4.4.12 ompt_dispatch_t16

Summary17
The ompt_dispatch_t enumeration type defines the valid dispatch kind values.18

Format19
C / C++

typedef enum ompt_dispatch_t {20
ompt_dispatch_iteration = 1,21
ompt_dispatch_section = 2,22
ompt_dispatch_ws_loop_chunk = 3,23
ompt_dispatch_taskloop_chunk = 4,24
ompt_dispatch_distribute_chunk = 525

} ompt_dispatch_t;26

C / C++

CHAPTER 20. OMPT INTERFACE 585

20.4.4.13 ompt_dispatch_chunk_t1

Summary2
The ompt_dispatch_chunk_t type represents a the chunk information for a dispatched chunk.3

Format4
C / C++

typedef struct ompt_dispatch_chunk_t {5
uint64_t start;6
uint64_t iterations;7

} ompt_dispatch_chunk_t;8

C / C++

Semantics9
The ompt_dispatch_chunk_t type is a structure that holds information about a chunk of10
logical iterations of a loop nest. The start field specifies the first logical iteration of the chunk and11
the iterations field specifies the number of iterations in the chunk. Whether the chunk of a taskloop12
is contiguous is implementation defined.13

20.4.4.14 ompt_sync_region_t14

Summary15
The ompt_sync_region_t enumeration type defines the valid synchronization region kind16
values.17

Format18
C / C++

typedef enum ompt_sync_region_t {19
ompt_sync_region_barrier_explicit = 3,20
ompt_sync_region_barrier_implementation = 4,21
ompt_sync_region_taskwait = 5,22
ompt_sync_region_taskgroup = 6,23
ompt_sync_region_reduction = 7,24
ompt_sync_region_barrier_implicit_workshare = 8,25
ompt_sync_region_barrier_implicit_parallel = 9,26
ompt_sync_region_barrier_teams = 1027

} ompt_sync_region_t;28

C / C++

20.4.4.15 ompt_target_data_op_t29

Summary30
The ompt_target_data_op_t enumeration type defines the valid target data operation values.31

586 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C / C++

typedef enum ompt_target_data_op_t {2
ompt_target_data_alloc = 1,3
ompt_target_data_transfer_to_device = 2, // deprecated4
ompt_target_data_transfer_from_device = 3, // deprecated5
ompt_target_data_delete = 4,6
ompt_target_data_associate = 5,7
ompt_target_data_disassociate = 6,8
ompt_target_data_transfer = 7,9
ompt_target_data_memset = 8,10
ompt_target_data_alloc_async = 17,11
ompt_target_data_transfer_to_device_async = 18, //12
deprecated13

ompt_target_data_transfer_from_device_async = 19, //14
deprecated15

ompt_target_data_delete_async = 20,16
ompt_target_data_transfer_async = 23,17
ompt_target_data_memset_async = 2418

} ompt_target_data_op_t;19

C / C++

Semantics20
The ompt_target_data_op_t enumeration type indicates the kind of target data operation for21
ompt_callback_target_data_op_emi_t which can be alloc, delete, associate,22
disassociate, or transfer. For asynchronous data operations the corresponding value with _async23
suffix is used.24

20.4.4.16 ompt_work_t25

Summary26
The ompt_work_t enumeration type defines the valid work type values.27

Format28
C / C++

typedef enum ompt_work_t {29
ompt_work_loop = 1,30
ompt_work_sections = 2,31
ompt_work_single_executor = 3,32
ompt_work_single_other = 4,33
ompt_work_workshare = 5,34
ompt_work_distribute = 6,35
ompt_work_taskloop = 7,36
ompt_work_scope = 8,37

CHAPTER 20. OMPT INTERFACE 587

ompt_work_loop_static = 10,1
ompt_work_loop_dynamic = 11,2
ompt_work_loop_guided = 12,3
ompt_work_loop_other = 13,4
ompt_work_coexecute = 145

} ompt_work_t;6

C / C++

20.4.4.17 ompt_mutex_t7

Summary8
The ompt_mutex_t enumeration type defines the valid mutex kind values.9

Format10
C / C++

typedef enum ompt_mutex_t {11
ompt_mutex_lock = 1,12
ompt_mutex_test_lock = 2,13
ompt_mutex_nest_lock = 3,14
ompt_mutex_test_nest_lock = 4,15
ompt_mutex_critical = 5,16
ompt_mutex_atomic = 6,17
ompt_mutex_ordered = 718

} ompt_mutex_t;19

C / C++

20.4.4.18 ompt_native_mon_flag_t20

Summary21
The ompt_native_mon_flag_t enumeration type defines the valid native monitoring flag22
values.23

Format24
C / C++

typedef enum ompt_native_mon_flag_t {25
ompt_native_data_motion_explicit = 0x01,26
ompt_native_data_motion_implicit = 0x02,27
ompt_native_kernel_invocation = 0x04,28
ompt_native_kernel_execution = 0x08,29
ompt_native_driver = 0x10,30
ompt_native_runtime = 0x20,31
ompt_native_overhead = 0x40,32
ompt_native_idleness = 0x8033

} ompt_native_mon_flag_t;34

C / C++

588 OpenMP API – Version 6.0 Preview 2 November 2023

20.4.4.19 ompt_task_flag_t1

Summary2
The ompt_task_flag_t enumeration type defines valid task types.3

Format4
C / C++

typedef enum ompt_task_flag_t {5
ompt_task_initial = 0x00000001,6
ompt_task_implicit = 0x00000002,7
ompt_task_explicit = 0x00000004,8
ompt_task_target = 0x00000008,9
ompt_task_taskwait = 0x00000010,10
ompt_task_undeferred = 0x08000000,11
ompt_task_untied = 0x10000000,12
ompt_task_final = 0x20000000,13
ompt_task_mergeable = 0x40000000,14
ompt_task_merged = 0x8000000015

} ompt_task_flag_t;16

C / C++
Semantics17
The ompt_task_flag_t enumeration type defines valid task type values. The least significant18
byte provides information about the general classification of the task. The other bits represent19
properties of the task.20

20.4.4.20 ompt_task_status_t21

Summary22
The ompt_task_status_t enumeration type indicates the reason that a task was switched23
when it reached a task scheduling point.24

Format25
C / C++

typedef enum ompt_task_status_t {26
ompt_task_complete = 1,27
ompt_task_yield = 2,28
ompt_task_cancel = 3,29
ompt_task_detach = 4,30
ompt_task_early_fulfill = 5,31
ompt_task_late_fulfill = 6,32
ompt_task_switch = 7,33
ompt_taskwait_complete = 834

} ompt_task_status_t;35

C / C++

CHAPTER 20. OMPT INTERFACE 589

Semantics1
The value ompt_task_complete of the ompt_task_status_t type indicates that the task2
that encountered the task scheduling point completed execution of the associated structured block3
and an associated allow-completion event was fulfilled. The value ompt_task_yield indicates4
that the task encountered a taskyield construct. The value ompt_task_cancel indicates5
that the task was canceled when it encountered an active cancellation point. The value6
ompt_task_detach indicates that a task for which the detach clause was specified completed7
execution of the associated structured block and is waiting for an allow-completion event to be8
fulfilled. The value ompt_task_early_fulfill indicates that the allow-completion event of9
the task was fulfilled before the task completed execution of the associated structured block. The10
value ompt_task_late_fulfill indicates that the allow-completion event of the task was11
fulfilled after the task completed execution of the associated structured block. The value12
ompt_taskwait_complete indicates completion of the dependent task that results from a13
taskwait construct with one or more depend clauses. The value ompt_task_switch is14
used for all other cases that a task was switched.15

20.4.4.21 ompt_target_t16

Summary17
The ompt_target_t enumeration type defines the valid target type values.18

Format19
C / C++

typedef enum ompt_target_t {20
ompt_target = 1,21
ompt_target_enter_data = 2,22
ompt_target_exit_data = 3,23
ompt_target_update = 4,24

25
ompt_target_nowait = 9,26
ompt_target_enter_data_nowait = 10,27
ompt_target_exit_data_nowait = 11,28
ompt_target_update_nowait = 1229

} ompt_target_t;30

C / C++

20.4.4.22 ompt_parallel_flag_t31

Summary32
The ompt_parallel_flag_t enumeration type defines valid invoker values.33

590 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C / C++

typedef enum ompt_parallel_flag_t {2
ompt_parallel_invoker_program = 0x00000001,3
ompt_parallel_invoker_runtime = 0x00000002,4
ompt_parallel_league = 0x40000000,5
ompt_parallel_team = 0x800000006

} ompt_parallel_flag_t;7

C / C++
Semantics8
The ompt_parallel_flag_t enumeration type defines valid invoker values, which indicate9
how the code that implements the associated block of the region is invoked or encountered.10

The value ompt_parallel_invoker_program indicates that the encountering thread for a11
parallel or teams region will execute the code that implements the associated block of the12
region as if directly invoked or encountered from application code. The value13
ompt_parallel_invoker_runtime indicates that the encountering thread for a parallel14
or teams region invokes the code that implements the associated block of the region from the15
runtime.16

The value ompt_parallel_league indicates that the callback is invoked due to the creation of17
a league of teams by a teams construct. The value ompt_parallel_team indicates that the18
callback is invoked due to the creation of a team of threads by a parallel construct.19

20.4.4.23 ompt_target_map_flag_t20

Summary21
The ompt_target_map_flag_t enumeration type defines the valid target map flag values.22

Format23
C / C++

typedef enum ompt_target_map_flag_t {24
ompt_target_map_flag_to = 0x01,25
ompt_target_map_flag_from = 0x02,26
ompt_target_map_flag_alloc = 0x04,27
ompt_target_map_flag_release = 0x08,28
ompt_target_map_flag_delete = 0x10,29
ompt_target_map_flag_implicit = 0x20,30
ompt_target_map_flag_always = 0x40,31
ompt_target_map_flag_present = 0x80,32
ompt_target_map_flag_close = 0x100,33
ompt_target_map_flag_shared = 0x20034

} ompt_target_map_flag_t;35

C / C++

CHAPTER 20. OMPT INTERFACE 591

Semantics1
The ompt_target_map_flag_ map-type flag is set if the mapping operations have that2
map-type. If the map-type for the mapping operations is tofrom, both the3
ompt_target_map_flag_to and ompt_target_map_flag_from flags are set. The4
ompt_target_map_implicit flag is set if the mapping operations result from implicit5
data-mapping rules. The ompt_target_map_flag_ map-type-modifier flag is set if the6
mapping operations are specified with that map-type-modifier. The7
ompt_target_map_flag_shared flag is set if the original and corresponding storage are8
shared in the mapping operation.9

20.4.4.24 ompt_dependence_type_t10

Summary11
The ompt_dependence_type_t enumeration type defines the valid task dependence type12
values.13

Format14
C / C++

typedef enum ompt_dependence_type_t {15
ompt_dependence_type_in = 1,16
ompt_dependence_type_out = 2,17
ompt_dependence_type_inout = 3,18
ompt_dependence_type_mutexinoutset = 4,19
ompt_dependence_type_source = 5,20
ompt_dependence_type_sink = 6,21
ompt_dependence_type_inoutset = 7,22
ompt_dependence_type_out_all_memory = 34,23
ompt_dependence_type_inout_all_memory = 3524

} ompt_dependence_type_t;25

C / C++

Semantics26
The ompt_dependence_type_ dependence-type value represents the task-dependence-type27
present in a depend clause or the dependence-type present in a doacross clause. If28
dependence-type is task-dependence-type _all_memory, then it represents a dependence for the29
omp_all_memory reserved locator.30

20.4.4.25 ompt_severity_t31

Summary32
The ompt_severity_t enumeration type defines the valid severity values.33

592 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C / C++

typedef enum ompt_severity_t {2
ompt_warning = 1,3
ompt_fatal = 24

} ompt_severity_t;5

C / C++

20.4.4.26 ompt_cancel_flag_t6

Summary7
The ompt_cancel_flag_t enumeration type defines the valid cancel flag values.8

Format9
C / C++

typedef enum ompt_cancel_flag_t {10
ompt_cancel_parallel = 0x01,11
ompt_cancel_sections = 0x02,12
ompt_cancel_loop = 0x04,13
ompt_cancel_taskgroup = 0x08,14
ompt_cancel_activated = 0x10,15
ompt_cancel_detected = 0x20,16
ompt_cancel_discarded_task = 0x4017

} ompt_cancel_flag_t;18

C / C++

20.4.4.27 ompt_hwid_t19

Summary20
The ompt_hwid_t opaque type is a handle for a hardware identifier for a target device.21

Format22
C / C++

typedef uint64_t ompt_hwid_t;23

C / C++

Semantics24
The ompt_hwid_t opaque type is a handle for a hardware identifier for a target device.25
ompt_hwid_none is an instance of the type that refers to an unknown or unspecified hardware26
identifier and that has the value 0. If no hwid is associated with an27
ompt_record_abstract_t then the value of hwid is ompt_hwid_none.28

Cross References29
• Native Record Abstract Type, see Section 20.4.3.330

CHAPTER 20. OMPT INTERFACE 593

20.4.4.28 ompt_state_t1

Summary2
If the OMPT interface is in the active state then an OpenMP implementation must maintain thread3
state information for each thread. The thread state maintained is an approximation of the4
instantaneous state of a thread.5

Format6
C / C++

A thread state must be one of the values of the enumeration type ompt_state_t or an7
implementation-defined state value of 512 or higher.8

typedef enum ompt_state_t {9
ompt_state_work_serial = 0x000,10
ompt_state_work_parallel = 0x001,11
ompt_state_work_reduction = 0x002,12
ompt_state_work_free_agent = 0x003,13

14
ompt_state_wait_barrier_implicit_parallel = 0x011,15
ompt_state_wait_barrier_implicit_workshare = 0x012,16
ompt_state_wait_barrier_explicit = 0x014,17
ompt_state_wait_barrier_implementation = 0x015,18
ompt_state_wait_barrier_teams = 0x016,19

20
ompt_state_wait_taskwait = 0x020,21
ompt_state_wait_taskgroup = 0x021,22

23
ompt_state_wait_mutex = 0x040,24
ompt_state_wait_lock = 0x041,25
ompt_state_wait_critical = 0x042,26
ompt_state_wait_atomic = 0x043,27
ompt_state_wait_ordered = 0x044,28

29
ompt_state_wait_target = 0x080,30
ompt_state_wait_target_map = 0x081,31
ompt_state_wait_target_update = 0x082,32

33
ompt_state_idle = 0x100,34
ompt_state_overhead = 0x101,35
ompt_state_undefined = 0x10236

} ompt_state_t;37

C / C++

594 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
A tool can query the OpenMP state of a thread at any time. If a tool queries the state of a thread that2
is not associated with OpenMP then the implementation reports the state as3
ompt_state_undefined.4

The value ompt_state_work_serial indicates that the thread is executing code outside all5
parallel regions. The value ompt_state_work_parallel indicates that the thread is6
executing code within the scope of a parallel region. The value7
ompt_state_work_reduction indicates that the thread is combining partial reduction8
results from threads in its team. An OpenMP implementation may never report a thread in this9
state; a thread that is combining partial reduction results may have its state reported as10
ompt_state_work_parallel or ompt_state_overhead. The value11
ompt_state_work_free_agent indicates that the thread is executing code within the scope12
of a task while not being assigned of its current team. The value13
ompt_state_wait_barrier_implicit_parallel indicates that the thread is waiting at14
the implicit barrier at the end of a parallel region. The value15
ompt_state_wait_barrier_implicit_workshare indicates that the thread is waiting16
at an implicit barrier at the end of a worksharing construct. The value17
ompt_state_wait_barrier_explicit indicates that the thread is waiting in an explicit18
barrier region. The value ompt_state_wait_barrier_implementation indicates19
that the thread is waiting in a barrier not required by the OpenMP specification but is introduced by20
an OpenMP implementation. The value ompt_state_wait_barrier_teams indicates that21
the thread is waiting at a barrier at the end of a teams region. The value22
ompt_state_wait_taskwait indicates that the thread is waiting at a taskwait construct.23
The value ompt_state_wait_taskgroup indicates that the thread is waiting at the end of a24
taskgroup construct. The value ompt_state_wait_mutex indicates that the thread is25
waiting for a mutex of an unspecified type. The value ompt_state_wait_lock indicates that26
the thread is waiting for a lock or nestable lock. The value ompt_state_wait_critical27
indicates that the thread is waiting to enter a critical region. The value28
ompt_state_wait_atomic indicates that the thread is waiting to enter an atomic region.29
The value ompt_state_wait_ordered indicates that the thread is waiting to enter an30
ordered region. The value ompt_state_wait_target indicates that the thread is waiting31
for a target region to complete. The value ompt_state_wait_target_map indicates that32
the thread is waiting for a target data mapping operation to complete. An implementation may33
report ompt_state_wait_target for target data constructs. The value34
ompt_state_wait_target_update indicates that the thread is waiting for a target35
update operation to complete. An implementation may report ompt_state_wait_target36
for target update constructs. The value ompt_state_idle indicates that the native thread37
is an idle thread, that is, it is an unassigned thread. The value ompt_state_overhead indicates38
that the thread is in the overhead state at any point while executing within the OpenMP runtime,39
except while waiting at a synchronization point. The value ompt_state_undefined indicates40
that the native thread is not created by the OpenMP implementation.41

CHAPTER 20. OMPT INTERFACE 595

20.4.4.29 ompt_frame_t1

Summary2
The ompt_frame_t type describes procedure frame information for an OpenMP task.3

Format4
C / C++

typedef struct ompt_frame_t {5
ompt_data_t exit_frame;6
ompt_data_t enter_frame;7
int exit_frame_flags;8
int enter_frame_flags;9

} ompt_frame_t;10

C / C++

Semantics11
Each ompt_frame_t object is associated with the task to which the procedure frames belong.12
Each non-merged initial, implicit, explicit, or target task with one or more frames on the stack of a13
native thread has an associated ompt_frame_t object.14

The exit_frame field of an ompt_frame_t object contains information to identify the first15
procedure frame executing the task region. The exit_frame for the ompt_frame_t object16
associated with the initial task that is not nested inside any OpenMP construct is17
ompt_data_none.18

The enter_frame field of an ompt_frame_t object contains information to identify the latest still19
active procedure frame executing the task region before entering the OpenMP runtime20
implementation or before executing a different task. If a task with frames on the stack is not21
executing implementation code in the OpenMP runtime, the value of enter_frame for the22
ompt_frame_t object associated with the task will be ompt_data_none.23

For exit_frame, the exit_frame_flags and, for enter_frame, the enter_frame_flags field indicates that24
the provided frame information points to a runtime or an OpenMP program frame address. The25
same fields also specify the kind of information that is provided to identify the frame, These fields26
are a disjunction of values in the ompt_frame_flag_t enumeration type.27

The lifetime of an ompt_frame_t object begins when a task is created and ends when the task is28
destroyed. Tools should not assume that a frame structure remains at a constant location in memory29
throughout the lifetime of the task. A pointer to an ompt_frame_t object is passed to some30
callbacks; a pointer to the ompt_frame_t object of a task can also be retrieved by a tool at any31
time, including in a signal handler, by invoking the ompt_get_task_info runtime entry point32
(described in Section 20.6.1.14). A pointer to an ompt_frame_t object that a tool retrieved is33
valid as long as the tool does not pass back control to the OpenMP implementation.34

596 OpenMP API – Version 6.0 Preview 2 November 2023

1

Note – A monitoring tool that uses asynchronous sampling can observe values of exit_frame and2
enter_frame at inconvenient times. Tools must be prepared to handle ompt_frame_t objects3
observed just prior to when their field values will be set or cleared.4

5

20.4.4.30 ompt_frame_flag_t6

Summary7
The ompt_frame_flag_t enumeration type defines valid frame information flags.8

Format9
C / C++

typedef enum ompt_frame_flag_t {10
ompt_frame_runtime = 0x00,11
ompt_frame_application = 0x01,12
ompt_frame_cfa = 0x10,13
ompt_frame_framepointer = 0x20,14
ompt_frame_stackaddress = 0x3015

} ompt_frame_flag_t;16

C / C++

Semantics17
The value ompt_frame_runtime of the ompt_frame_flag_t type indicates that a frame18
address is a procedure frame in the OpenMP runtime implementation. The value19
ompt_frame_application of the ompt_frame_flag_t type indicates that a frame20
address is a procedure frame in the OpenMP program21

Higher order bits indicate the kind of provided information that is unique for the particular frame22
pointer. The value ompt_frame_cfa indicates that a frame address specifies a canonical frame23
address. The value ompt_frame_framepointer indicates that a frame address provides the24
value of the frame pointer register. The value ompt_frame_stackaddress indicates that a25
frame address specifies a pointer address that is contained in the current stack frame.26

20.4.4.31 ompt_wait_id_t27

Summary28
The ompt_wait_id_t type describes wait identifiers for a thread.29

Format30
C / C++

typedef uint64_t ompt_wait_id_t;31

C / C++

CHAPTER 20. OMPT INTERFACE 597

Semantics1
Each thread maintains a wait identifier of type ompt_wait_id_t. When a task that a thread2
executes is waiting for mutual exclusion, the wait identifier of the thread indicates the reason that the3
thread is waiting. A wait identifier may represent a critical section name, a lock, a variable accessed4
in an atomic region, or a synchronization object that is internal to an OpenMP implementation.5
When a thread is not in a wait state then the value of the wait identifier of the thread is undefined.6
ompt_wait_id_none is defined as an instance of type ompt_wait_id_t with the value 0.7

20.5 OMPT Tool Callback Signatures and Trace8

Records9

The C/C++ header file (omp-tools.h) provides the definitions of the types that are specified10
throughout this subsection. Restrictions to the OpenMP tool callbacks are as follows:11

Restrictions12
• Tool callbacks may not use OpenMP directives or call any runtime library routines described13

in Chapter 19.14

• Tool callbacks must exit by either returning to the caller or aborting.15

20.5.1 Initialization and Finalization Callback Signature16

20.5.1.1 ompt_initialize_t17

Summary18
A callback with type signature ompt_initialize_t initializes the use of the OMPT interface.19

Format20
C / C++

typedef int (*ompt_initialize_t) (21
ompt_function_lookup_t lookup,22
int initial_device_num,23
ompt_data_t *tool_data24

);25

C / C++

Semantics26
To use the OMPT interface, an implementation of ompt_start_tool must return a non-null27
pointer to an ompt_start_tool_result_t structure that contains a pointer to a tool28
initializer function with type signature ompt_initialize_t. An OpenMP implementation will29
call the initializer after fully initializing itself but before beginning execution of any OpenMP30
construct or runtime library routine. The initializer returns a non-zero value if it succeeds;31
otherwise, the OMPT interface state changes to OMPT inactive as described in Section 20.2.3.32

598 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Arguments1
The lookup argument is a callback to an OpenMP runtime routine that must be used to obtain a2
pointer to each runtime entry point in the OMPT interface. The initial_device_num argument3
provides the value of omp_get_initial_device(). The tool_data argument is a pointer to4
the tool_data field in the ompt_start_tool_result_t structure that ompt_start_tool5
returned.6

Cross References7
• Tool Initialization and Finalization, see Section 20.4.18

• omp_get_initial_device, see Section 19.7.89

• ompt_data_t, see Section 20.4.4.410

• ompt_start_tool, see Section 20.2.111

20.5.1.2 ompt_finalize_t12

Summary13
A tool implements a finalizer with the type signature ompt_finalize_t to finalize its use of the14
OMPT interface.15

Format16
C / C++

typedef void (*ompt_finalize_t) (17
ompt_data_t *tool_data18

);19

C / C++

Semantics20
To use the OMPT interface, an implementation of ompt_start_tool must return a non-null21
pointer to an ompt_start_tool_result_t structure that contains a non-null pointer to a tool22
finalizer with type signature ompt_finalize_t. An OpenMP implementation must call the tool23
finalizer after the last OMPT event as the OpenMP implementation shuts down.24

Description of Arguments25
The tool_data argument is a pointer to the tool_data field in the26
ompt_start_tool_result_t structure returned by ompt_start_tool.27

Cross References28
• Tool Initialization and Finalization, see Section 20.4.129

• ompt_data_t, see Section 20.4.4.430

• ompt_start_tool, see Section 20.2.131

CHAPTER 20. OMPT INTERFACE 599

20.5.2 Event Callback Signatures and Trace Records1

This section describes the signatures of tool callback functions that an OMPT tool may register and2
that are called during the runtime of an OpenMP program. An implementation may also provide a3
trace of events per device. Along with the callbacks, the following defines standard trace records.4
For the trace records, tool data arguments are replaced by an ID, which must be initialized by the5
OpenMP implementation. Each of parallel_id, task_id, and thread_id must be unique per target6
region. Tool implementations of callbacks are not required to be async signal safe.7

Cross References8
• ompt_data_t, see Section 20.4.4.49

• ompt_id_t, see Section 20.4.4.310

20.5.2.1 ompt_callback_thread_begin_t11

Summary12
The ompt_callback_thread_begin_t type is used for callbacks that are dispatched when13
native threads are created.14

Format15
C / C++

typedef void (*ompt_callback_thread_begin_t) (16
ompt_thread_t thread_type,17
ompt_data_t *thread_data18

);19

C / C++

Trace Record20
C / C++

typedef struct ompt_record_thread_begin_t {21
ompt_thread_t thread_type;22

} ompt_record_thread_begin_t;23

C / C++

Description of Arguments24
The thread_type argument indicates the type of the new thread: initial, worker, or other. The25
binding of the thread_data argument is the new thread.26

600 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• parallel directive, see Section 11.22

• teams directive, see Section 11.33

• Initial Task, see Section 13.94

• ompt_data_t, see Section 20.4.4.45

• ompt_thread_t, see Section 20.4.4.106

20.5.2.2 ompt_callback_thread_end_t7

Summary8
The ompt_callback_thread_end_t type is used for callbacks that are dispatched when9
native threads are destroyed.10

Format11
C / C++

typedef void (*ompt_callback_thread_end_t) (12
ompt_data_t *thread_data13

);14

C / C++

Description of Arguments15
The binding of the thread_data argument is the thread that will be destroyed.16

Cross References17
• parallel directive, see Section 11.218

• teams directive, see Section 11.319

• Initial Task, see Section 13.920

• Standard Trace Record Type, see Section 20.4.3.421

• ompt_data_t, see Section 20.4.4.422

20.5.2.3 ompt_callback_parallel_begin_t23

Summary24
The ompt_callback_parallel_begin_t type is used for callbacks that are dispatched25
when a parallel or teams region starts.26

CHAPTER 20. OMPT INTERFACE 601

Format1
C / C++

typedef void (*ompt_callback_parallel_begin_t) (2
ompt_data_t *encountering_task_data,3
const ompt_frame_t *encountering_task_frame,4
ompt_data_t *parallel_data,5
unsigned int requested_parallelism,6
int flags,7
const void *codeptr_ra8

);9

C / C++

Trace Record10
C / C++

typedef struct ompt_record_parallel_begin_t {11
ompt_id_t encountering_task_id;12
ompt_id_t parallel_id;13
unsigned int requested_parallelism;14
int flags;15
const void *codeptr_ra;16

} ompt_record_parallel_begin_t;17

C / C++

Description of Arguments18
The binding of the encountering_task_data argument is the encountering task.19

The encountering_task_frame argument points to the frame object that is associated with the20
encountering task. The behavior for accessing the frame object after the callback returned is21
unspecified.22

The binding of the parallel_data argument is the parallel or teams region that is beginning.23

The requested_parallelism argument indicates the number of threads or teams that the user24
requested.25

The flags argument indicates whether the code for the region is inlined into the application or26
invoked by the runtime and also whether the region is a parallel or teams region. Valid values27
for flags are a disjunction of elements in the enum ompt_parallel_flag_t.28

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a29
runtime routine implements the region associated with a callback that has type signature30
ompt_callback_parallel_begin_t then codeptr_ra contains the return address of the call31
to that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the32
return address of the callback invocation. If attribution to source code is impossible or33
inappropriate, codeptr_ra may be NULL.34

602 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• parallel directive, see Section 11.22

• teams directive, see Section 11.33

• ompt_data_t, see Section 20.4.4.44

• ompt_frame_t, see Section 20.4.4.295

• ompt_parallel_flag_t, see Section 20.4.4.226

20.5.2.4 ompt_callback_parallel_end_t7

Summary8
The ompt_callback_parallel_end_t type is used for callbacks that are dispatched when a9
parallel or teams region ends.10

Format11
C / C++

typedef void (*ompt_callback_parallel_end_t) (12
ompt_data_t *parallel_data,13
ompt_data_t *encountering_task_data,14
int flags,15
const void *codeptr_ra16

);17

C / C++

Trace Record18
C / C++

typedef struct ompt_record_parallel_end_t {19
ompt_id_t parallel_id;20
ompt_id_t encountering_task_id;21
int flags;22
const void *codeptr_ra;23

} ompt_record_parallel_end_t;24

C / C++

Description of Arguments25
The binding of the parallel_data argument is the parallel or teams region that is ending.26

The binding of the encountering_task_data argument is the encountering task.27

The flags argument indicates whether the execution of the region is inlined into the application or28
invoked by the runtime and also whether it is a parallel or teams region. Values for flags are a29
disjunction of elements in the enum ompt_parallel_flag_t.30

CHAPTER 20. OMPT INTERFACE 603

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a1
runtime routine implements the region associated with a callback that has type signature2
ompt_callback_parallel_end_t then codeptr_ra contains the return address of the call to3
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the4
return address of the callback invocation. If attribution to source code is impossible or5
inappropriate, codeptr_ra may be NULL.6

Cross References7
• parallel directive, see Section 11.28

• teams directive, see Section 11.39

• ompt_data_t, see Section 20.4.4.410

• ompt_parallel_flag_t, see Section 20.4.4.2211

20.5.2.5 ompt_callback_work_t12

Summary13
The ompt_callback_work_t type is used for callbacks that are dispatched when worksharing14
regions and taskloop regions begin and end.15

Format16
C / C++

typedef void (*ompt_callback_work_t) (17
ompt_work_t work_type,18
ompt_scope_endpoint_t endpoint,19
ompt_data_t *parallel_data,20
ompt_data_t *task_data,21
uint64_t count,22
const void *codeptr_ra23

);24

C / C++

Trace Record25
C / C++

typedef struct ompt_record_work_t {26
ompt_work_t work_type;27
ompt_scope_endpoint_t endpoint;28
ompt_id_t parallel_id;29
ompt_id_t task_id;30
uint64_t count;31
const void *codeptr_ra;32

} ompt_record_work_t;33

C / C++

604 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Arguments1
The work_type argument indicates the kind of region.2

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a3
scope.4

The binding of the parallel_data argument is the current parallel region.5

The binding of the task_data argument is the current task.6

The count argument is a measure of the quantity of work involved in the construct. For a7
worksharing-loop or taskloop construct, count represents the number of iterations in the8
iteration space, which may be the result of collapsing several associated loops. For a sections9
construct, count represents the number of sections. For a workshare or coexecute construct,10
count represents the units of work, as defined by the workshare or coexecute construct. For a11
single or scope construct, count is always 1. When the endpoint argument signals the end of a12
scope, a count value of 0 indicates that the actual count value is not available.13

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a14
runtime routine implements the region associated with a callback that has type signature15
ompt_callback_work_t then codeptr_ra contains the return address of the call to that16
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return17
address of the callback invocation. If attribution to source code is impossible or inappropriate,18
codeptr_ra may be NULL.19

Cross References20
• taskloop directive, see Section 13.721

• Work-Distribution Constructs, see Chapter 1222

• ompt_data_t, see Section 20.4.4.423

• ompt_scope_endpoint_t, see Section 20.4.4.1124

• ompt_work_t, see Section 20.4.4.1625

20.5.2.6 ompt_callback_dispatch_t26

Summary27
The ompt_callback_dispatch_t type is used for callbacks that are dispatched when a28
thread begins to execute a section or loop iteration.29

CHAPTER 20. OMPT INTERFACE 605

Format1
C / C++

typedef void (*ompt_callback_dispatch_t) (2
ompt_data_t *parallel_data,3
ompt_data_t *task_data,4
ompt_dispatch_t kind,5
ompt_data_t instance6

);7

C / C++

Trace Record8
C / C++

typedef struct ompt_record_dispatch_t {9
ompt_id_t parallel_id;10
ompt_id_t task_id;11
ompt_dispatch_t kind;12
ompt_data_t instance;13

} ompt_record_dispatch_t;14

C / C++

Description of Arguments15
The binding of the parallel_data argument is the current parallel region.16

The binding of the task_data argument is the implicit task that executes the structured block of the17
parallel region.18

The kind argument indicates whether a loop iteration or a section is being dispatched.19

If the kind argument is ompt_dispatch_iteration, the value field of the instance argument20
contains the logical iteration number. If the kind argument is ompt_dispatch_section, the21
ptr field of the instance argument contains a code address that identifies the structured block. In22
cases where a runtime routine implements the structured block associated with this callback, the ptr23
field of the instance argument contains the return address of the call to the runtime routine. In cases24
where the implementation of the structured block is inlined, the ptr field of the instance argument25
contains the return address of the invocation of this callback. If the kind argument is26
ompt_dispatch_ws_loop_chunk, ompt_dispatch_taskloop_chunk or27
ompt_dispatch_distribute_chunk, the ptr field of the instance argument points to a28
structure of type ompt_dispatch_chunk_t that contains the information for the chunk.29

606 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• sections directive, see Section 12.32

• taskloop directive, see Section 13.73

• Worksharing-Loop Constructs, see Section 12.64

• ompt_data_t, see Section 20.4.4.45

• ompt_dispatch_chunk_t, see Section 20.4.4.136

• ompt_dispatch_t, see Section 20.4.4.127

20.5.2.7 ompt_callback_task_create_t8

Summary9
The ompt_callback_task_create_t type is used for callbacks that are dispatched when10
task regions are generated.11

Format12
C / C++

typedef void (*ompt_callback_task_create_t) (13
ompt_data_t *encountering_task_data,14
const ompt_frame_t *encountering_task_frame,15
ompt_data_t *new_task_data,16
int flags,17
int has_dependences,18
const void *codeptr_ra19

);20

C / C++

Trace Record21
C / C++

typedef struct ompt_record_task_create_t {22
ompt_id_t encountering_task_id;23
ompt_id_t new_task_id;24
int flags;25
int has_dependences;26
const void *codeptr_ra;27

} ompt_record_task_create_t;28

C / C++

CHAPTER 20. OMPT INTERFACE 607

Description of Arguments1
The binding of the encountering_task_data argument is the encountering task.2

The encountering_task_frame argument points to the frame object associated with the encountering3
task. The behavior for accessing the frame object after the callback returned is unspecified.4

The binding of the new_task_data argument is the generated task.5

The flags argument indicates the kind of task (explicit or target) that is generated. Values for flags6
are a disjunction of elements in the ompt_task_flag_t enumeration type.7

The has_dependences argument is true if the generated task has dependences and false otherwise.8

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a9
runtime routine implements the region associated with a callback that has type signature10
ompt_callback_task_create_t then codeptr_ra contains the return address of the call to11
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the12
return address of the callback invocation. If attribution to source code is impossible or13
inappropriate, codeptr_ra may be NULL.14

Cross References15
• task directive, see Section 13.616

• Initial Task, see Section 13.917

• ompt_data_t, see Section 20.4.4.418

• ompt_frame_t, see Section 20.4.4.2919

• ompt_task_flag_t, see Section 20.4.4.1920

20.5.2.8 ompt_callback_dependences_t21

Summary22
The ompt_callback_dependences_t type is used for callbacks that are related to23
dependences and that are dispatched when new tasks are generated and when ordered constructs24
are encountered.25

Format26
C / C++

typedef void (*ompt_callback_dependences_t) (27
ompt_data_t *task_data,28
const ompt_dependence_t *deps,29
int ndeps30

);31

C / C++

608 OpenMP API – Version 6.0 Preview 2 November 2023

Trace Record1
C / C++

typedef struct ompt_record_dependences_t {2
ompt_id_t task_id;3
ompt_dependence_t dep;4
int ndeps;5

} ompt_record_dependences_t;6

C / C++

Description of Arguments7
The binding of the task_data argument is the generated task for a depend clause on a task construct,8
the target task for a depend clause on a target construct respectively depend object in an9
asynchronous runtime routine, or the encountering implicit task for a depend clause of the ordered10
construct.11

The deps argument lists dependences of the new task or the dependence vector of the ordered12
construct. Dependences denoted with depend objects are described in terms of their dependence13
semantics.14

The ndeps argument specifies the length of the list passed by the deps argument. The memory for15
deps is owned by the caller; the tool cannot rely on the data after the callback returns.16

The performance monitor interface for tracing activity on target devices provides one record per17
dependence.18

Cross References19
• depend clause, see Section 16.9.520

• ordered directive, see Section 16.10.121

• ompt_data_t, see Section 20.4.4.422

• ompt_dependence_t, see Section 20.4.4.923

20.5.2.9 ompt_callback_task_dependence_t24

Summary25
The ompt_callback_task_dependence_t type is used for callbacks that are dispatched26
when unfulfilled task dependences are encountered.27

Format28
C / C++

typedef void (*ompt_callback_task_dependence_t) (29
ompt_data_t *src_task_data,30
ompt_data_t *sink_task_data31

);32

C / C++

CHAPTER 20. OMPT INTERFACE 609

Trace Record1
C / C++

typedef struct ompt_record_task_dependence_t {2
ompt_id_t src_task_id;3
ompt_id_t sink_task_id;4

} ompt_record_task_dependence_t;5

C / C++

Description of Arguments6
The binding of the src_task_data argument is a running task with an outgoing dependence.7

The binding of the sink_task_data argument is a task with an unsatisfied incoming dependence.8

Cross References9
• depend clause, see Section 16.9.510

• ompt_data_t, see Section 20.4.4.411

20.5.2.10 ompt_callback_task_schedule_t12

Summary13
The ompt_callback_task_schedule_t type is used for callbacks that are dispatched when14
task scheduling decisions are made.15

Format16
C / C++

typedef void (*ompt_callback_task_schedule_t) (17
ompt_data_t *prior_task_data,18
ompt_task_status_t prior_task_status,19
ompt_data_t *next_task_data20

);21

C / C++

Trace Record22
C / C++

typedef struct ompt_record_task_schedule_t {23
ompt_id_t prior_task_id;24
ompt_task_status_t prior_task_status;25
ompt_id_t next_task_id;26

} ompt_record_task_schedule_t;27

C / C++

Description of Arguments28
The prior_task_status argument indicates the status of the task that arrived at a task scheduling29
point.30

610 OpenMP API – Version 6.0 Preview 2 November 2023

The binding of the prior_task_data argument is the task that arrived at the scheduling point. This1
argument can be NULL if no task was active when the next task is scheduled.2

The binding of the next_task_data argument is the task that is resumed at the scheduling point.3
This argument is NULL if the callback is dispatched for a task-fulfill event or if the callback signals4
completion of a taskwait construct. This argument can be NULL if no task was active when the5
prior task was scheduled.6

Cross References7
• Task Scheduling, see Section 13.108

• ompt_data_t, see Section 20.4.4.49

• ompt_task_status_t, see Section 20.4.4.2010

20.5.2.11 ompt_callback_implicit_task_t11

Summary12
The ompt_callback_implicit_task_t type is used for callbacks that are dispatched when13
initial tasks and implicit tasks are generated and completed.14

Format15
C / C++

typedef void (*ompt_callback_implicit_task_t) (16
ompt_scope_endpoint_t endpoint,17
ompt_data_t *parallel_data,18
ompt_data_t *task_data,19
unsigned int actual_parallelism,20
unsigned int index,21
int flags22

);23

C / C++

Trace Record24
C / C++

typedef struct ompt_record_implicit_task_t {25
ompt_scope_endpoint_t endpoint;26
ompt_id_t parallel_id;27
ompt_id_t task_id;28
unsigned int actual_parallelism;29
unsigned int index;30
int flags;31

} ompt_record_implicit_task_t;32

C / C++

CHAPTER 20. OMPT INTERFACE 611

Description of Arguments1
The endpoint argument indicates that the callback signals the beginning of a scope or the end of a2
scope.3

The binding of the parallel_data argument is the current parallel or teams region. For the4
implicit-task-end and the initial-task-end events, this argument is NULL.5

The binding of the task_data argument is the implicit task that executes the structured block of the6
parallel or teams region.7

The actual_parallelism argument indicates the number of threads in the parallel region or the8
number of teams in the teams region. For initial tasks that are not closely nested in a teams9
construct, this argument is 1. For the implicit-task-end and the initial-task-end events, this10
argument is 0.11

The index argument indicates the thread number or team number of the calling thread, within the12
team or league that is executing the parallel or teams region to which the implicit task region13
binds. For initial tasks, that are not created by a teams construct, this argument is 1.14

The flags argument indicates the kind of task (initial or implicit).15

Cross References16
• parallel directive, see Section 11.217

• teams directive, see Section 11.318

• ompt_data_t, see Section 20.4.4.419

• ompt_scope_endpoint_t, see Section 20.4.4.1120

20.5.2.12 ompt_callback_masked_t21

Summary22
The ompt_callback_masked_t type is used for callbacks that are dispatched when masked23
regions start and end.24

Format25
C / C++

typedef void (*ompt_callback_masked_t) (26
ompt_scope_endpoint_t endpoint,27
ompt_data_t *parallel_data,28
ompt_data_t *task_data,29
const void *codeptr_ra30

);31

C / C++

612 OpenMP API – Version 6.0 Preview 2 November 2023

Trace Record1
C / C++

typedef struct ompt_record_masked_t {2
ompt_scope_endpoint_t endpoint;3
ompt_id_t parallel_id;4
ompt_id_t task_id;5
const void *codeptr_ra;6

} ompt_record_masked_t;7

C / C++
Description of Arguments8
The endpoint argument indicates that the callback signals the beginning of a scope or the end of a9
scope.10

The binding of the parallel_data argument is the current parallel region.11

The binding of the task_data argument is the encountering task.12

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a13
runtime routine implements the region associated with a callback that has type signature14
ompt_callback_masked_t then codeptr_ra contains the return address of the call to that15
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return16
address of the callback invocation. If attribution to source code is impossible or inappropriate,17
codeptr_ra may be NULL.18

Cross References19
• masked directive, see Section 11.620

• ompt_data_t, see Section 20.4.4.421

• ompt_scope_endpoint_t, see Section 20.4.4.1122

20.5.2.13 ompt_callback_sync_region_t23

Summary24
The ompt_callback_sync_region_t type is used for callbacks that are dispatched when25
barrier regions, taskwait regions, and taskgroup regions begin and end and when waiting26
begins and ends for them as well as for when reductions are performed.27

Format28
C / C++

typedef void (*ompt_callback_sync_region_t) (29
ompt_sync_region_t kind,30
ompt_scope_endpoint_t endpoint,31
ompt_data_t *parallel_data,32
ompt_data_t *task_data,33
const void *codeptr_ra34

);35

C / C++

CHAPTER 20. OMPT INTERFACE 613

Trace Record1
C / C++

typedef struct ompt_record_sync_region_t {2
ompt_sync_region_t kind;3
ompt_scope_endpoint_t endpoint;4
ompt_id_t parallel_id;5
ompt_id_t task_id;6
const void *codeptr_ra;7

} ompt_record_sync_region_t;8

C / C++

Description of Arguments9
The kind argument indicates the kind of synchronization.10

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a11
scope.12

The binding of the parallel_data argument is the current parallel region. For the13
implicit-barrier-end event at the end of a parallel region this argument is NULL. For the14
implicit-barrier-wait-begin and implicit-barrier-wait-end event at the end of a parallel region,15
whether this argument is NULL or points to the parallel data of the current parallel region is16
implementation defined.17

The binding of the task_data argument is the current task.18

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a19
runtime routine implements the region associated with a callback that has type signature20
ompt_callback_sync_region_t then codeptr_ra contains the return address of the call to21
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the22
return address of the callback invocation. If attribution to source code is impossible or23
inappropriate, codeptr_ra may be NULL.24

Cross References25
• barrier directive, see Section 16.3.126

• taskgroup directive, see Section 16.427

• taskwait directive, see Section 16.528

• Implicit Barriers, see Section 16.3.229

• Properties Common to All Reduction Clauses, see Section 6.5.630

• ompt_data_t, see Section 20.4.4.431

• ompt_scope_endpoint_t, see Section 20.4.4.1132

• ompt_sync_region_t, see Section 20.4.4.1433

614 OpenMP API – Version 6.0 Preview 2 November 2023

20.5.2.14 ompt_callback_mutex_acquire_t1

Summary2
The ompt_callback_mutex_acquire_t type is used for callbacks that are dispatched when3
locks are initialized, acquired and tested and when critical regions, atomic regions, and4
ordered regions are begun.5

Format6
C / C++

typedef void (*ompt_callback_mutex_acquire_t) (7
ompt_mutex_t kind,8
unsigned int hint,9
unsigned int impl,10
ompt_wait_id_t wait_id,11
const void *codeptr_ra12

);13

C / C++
Trace Record14

C / C++
typedef struct ompt_record_mutex_acquire_t {15

ompt_mutex_t kind;16
unsigned int hint;17
unsigned int impl;18
ompt_wait_id_t wait_id;19
const void *codeptr_ra;20

} ompt_record_mutex_acquire_t;21

C / C++
Description of Arguments22
The kind argument indicates the kind of mutual exclusion event.23

The hint argument indicates the hint that was provided when initializing an implementation of24
mutual exclusion. If no hint is available when a thread initiates acquisition of mutual exclusion, the25
runtime may supply omp_sync_hint_none as the value for hint.26

The impl argument indicates the mechanism chosen by the runtime to implement the mutual27
exclusion.28

The wait_id argument indicates the object being awaited.29

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a30
runtime routine implements the region associated with a callback that has type signature31
ompt_callback_mutex_acquire_t then codeptr_ra contains the return address of the call32
to that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the33
return address of the callback invocation. If attribution to source code is impossible or34
inappropriate, codeptr_ra may be NULL.35

CHAPTER 20. OMPT INTERFACE 615

Cross References1
• atomic directive, see Section 16.8.52

• critical directive, see Section 16.23

• ompt_wait_id_t, see Section 20.4.4.314

• omp_init_lock and omp_init_nest_lock, see Section 19.9.15

• ompt_mutex_t, see Section 20.4.4.176

• ordered Construct, see Section 16.107

20.5.2.15 ompt_callback_mutex_t8

Summary9
The ompt_callback_mutex_t type is used for callbacks that indicate important10
synchronization events.11

Format12
C / C++

typedef void (*ompt_callback_mutex_t) (13
ompt_mutex_t kind,14
ompt_wait_id_t wait_id,15
const void *codeptr_ra16

);17

C / C++
Trace Record18

C / C++
typedef struct ompt_record_mutex_t {19

ompt_mutex_t kind;20
ompt_wait_id_t wait_id;21
const void *codeptr_ra;22

} ompt_record_mutex_t;23

C / C++
Description of Arguments24
The kind argument indicates the kind of mutual exclusion event.25

The wait_id argument indicates the object being awaited.26

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a27
runtime routine implements the region associated with a callback that has type signature28
ompt_callback_mutex_t then codeptr_ra contains the return address of the call to that29
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return30
address of the callback invocation. If attribution to source code is impossible or inappropriate,31
codeptr_ra may be NULL.32

616 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• atomic directive, see Section 16.8.52

• critical directive, see Section 16.23

• omp_destroy_lock and omp_destroy_nest_lock, see Section 19.9.34

• ompt_wait_id_t, see Section 20.4.4.315

• omp_set_lock and omp_set_nest_lock, see Section 19.9.46

• omp_test_lock and omp_test_nest_lock, see Section 19.9.67

• omp_unset_lock and omp_unset_nest_lock, see Section 19.9.58

• ompt_mutex_t, see Section 20.4.4.179

• ordered Construct, see Section 16.1010

20.5.2.16 ompt_callback_nest_lock_t11

Summary12
The ompt_callback_nest_lock_t type is used for callbacks that indicate that a thread that13
owns a nested lock has performed an action related to the lock but has not relinquished ownership.14

Format15
C / C++

typedef void (*ompt_callback_nest_lock_t) (16
ompt_scope_endpoint_t endpoint,17
ompt_wait_id_t wait_id,18
const void *codeptr_ra19

);20

C / C++

Trace Record21
C / C++

typedef struct ompt_record_nest_lock_t {22
ompt_scope_endpoint_t endpoint;23
ompt_wait_id_t wait_id;24
const void *codeptr_ra;25

} ompt_record_nest_lock_t;26

C / C++

Description of Arguments27
The endpoint argument indicates that the callback signals the beginning of a scope or the end of a28
scope.29

The wait_id argument indicates the object being awaited.30

CHAPTER 20. OMPT INTERFACE 617

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a1
runtime routine implements the region associated with a callback that has type signature2
ompt_callback_nest_lock_t then codeptr_ra contains the return address of the call to that3
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return4
address of the callback invocation. If attribution to source code is impossible or inappropriate,5
codeptr_ra may be NULL.6

Cross References7
• ompt_wait_id_t, see Section 20.4.4.318

• omp_set_lock and omp_set_nest_lock, see Section 19.9.49

• omp_test_lock and omp_test_nest_lock, see Section 19.9.610

• omp_unset_lock and omp_unset_nest_lock, see Section 19.9.511

• ompt_scope_endpoint_t, see Section 20.4.4.1112

20.5.2.17 ompt_callback_flush_t13

Summary14
The ompt_callback_flush_t type is used for callbacks that are dispatched when flush15
constructs are encountered.16

Format17
C / C++

typedef void (*ompt_callback_flush_t) (18
ompt_data_t *thread_data,19
const void *codeptr_ra20

);21

C / C++

Trace Record22
C / C++

typedef struct ompt_record_flush_t {23
const void *codeptr_ra;24

} ompt_record_flush_t;25

C / C++

Description of Arguments26
The binding of the thread_data argument is the executing thread.27

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a28
runtime routine implements the region associated with a callback that has type signature29
ompt_callback_flush_t then codeptr_ra contains the return address of the call to that30

618 OpenMP API – Version 6.0 Preview 2 November 2023

runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return1
address of the callback invocation. If attribution to source code is impossible or inappropriate,2
codeptr_ra may be NULL.3

Cross References4
• flush directive, see Section 16.8.65

• ompt_data_t, see Section 20.4.4.46

20.5.2.18 ompt_callback_cancel_t7

Summary8
The ompt_callback_cancel_t type is used for callbacks that are dispatched for cancellation,9
cancel and discarded-task events.10

Format11
C / C++

typedef void (*ompt_callback_cancel_t) (12
ompt_data_t *task_data,13
int flags,14
const void *codeptr_ra15

);16

C / C++

Trace Record17
C / C++

typedef struct ompt_record_cancel_t {18
ompt_id_t task_id;19
int flags;20
const void *codeptr_ra;21

} ompt_record_cancel_t;22

C / C++

Description of Arguments23
The binding of the task_data argument is the task that encounters a cancel construct, a24
cancellation point construct, or a construct defined as having an implicit cancellation25
point.26

The flags argument, defined by the ompt_cancel_flag_t enumeration type, indicates whether27
cancellation is activated by the current task or detected as being activated by another task. The28
construct that is being canceled is also described in the flags argument. When several constructs are29
detected as being concurrently canceled, each corresponding bit in the argument will be set.30

CHAPTER 20. OMPT INTERFACE 619

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a1
runtime routine implements the region associated with a callback that has type signature2
ompt_callback_cancel_t then codeptr_ra contains the return address of the call to that3
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return4
address of the callback invocation. If attribution to source code is impossible or inappropriate,5
codeptr_ra may be NULL.6

Cross References7
• ompt_cancel_flag_t, see Section 20.4.4.268

20.5.2.19 ompt_callback_device_initialize_t9

Summary10
The ompt_callback_device_initialize_t type is used for callbacks that initialize11
device tracing interfaces.12

Format13
C / C++

typedef void (*ompt_callback_device_initialize_t) (14
int device_num,15
const char *type,16
ompt_device_t *device,17
ompt_function_lookup_t lookup,18
const char *documentation19

);20

C / C++

Semantics21
Registration of a callback with type signature ompt_callback_device_initialize_t for22
the ompt_callback_device_initialize event enables asynchronous collection of a trace23
for a device. The OpenMP implementation invokes this callback after OpenMP is initialized for the24
device but before execution of any OpenMP construct is started on the device.25

Description of Arguments26
The device_num argument identifies the logical device that is being initialized.27

The type argument is a C string that indicates the type of the device. A device type string is a28
semicolon-separated character string that includes, at a minimum, the vendor and model name of29
the device. These names may be followed by a semicolon-separated sequence of properties that30
describe the hardware or software of the device.31

The device argument is a pointer to an opaque object that represents the target device instance.32
Functions in the device tracing interface use this pointer to identify the device that is being33
addressed.34

620 OpenMP API – Version 6.0 Preview 2 November 2023

The lookup argument points to a runtime callback that a tool must use to obtain pointers to runtime1
entry points in the device’s OMPT tracing interface. If a device does not support tracing then2
lookup is NULL.3

The documentation argument is a C string that describes how to use any device-specific runtime4
entry points that can be obtained through the lookup argument. This documentation string may be a5
pointer to external documentation, or it may be inline descriptions that include names and type6
signatures for any device-specific interfaces that are available through the lookup argument along7
with descriptions of how to use these interface functions to control monitoring and analysis of8
device traces.9

Constraints on Arguments10
The type and documentation arguments must be immutable strings that are defined for the lifetime11
of program execution.12

Effect13
A device initializer must fulfill several duties. First, the type argument should be used to determine14
if any special knowledge about the hardware and/or software of a device is employed. Second, the15
lookup argument should be used to look up pointers to runtime entry points in the OMPT tracing16
interface for the device. Finally, these runtime entry points should be used to set up tracing for the17
device. Initialization of tracing for a target device is described in Section 20.2.5.18

Cross References19
• Lookup Entry Points: ompt_function_lookup_t, see Section 20.6.320

20.5.2.20 ompt_callback_device_finalize_t21

Summary22
The ompt_callback_device_initialize_t type is used for callbacks that finalize device23
tracing interfaces.24

Format25
C / C++

typedef void (*ompt_callback_device_finalize_t) (26
int device_num27

);28

C / C++

Description of Arguments29
The device_num argument identifies the logical device that is being finalized.30

CHAPTER 20. OMPT INTERFACE 621

Semantics1
A registered callback with type signature ompt_callback_device_finalize_t is2
dispatched for a device immediately prior to finalizing the device. Prior to dispatching a finalization3
callback for a device on which tracing is active, the OpenMP implementation stops tracing on the4
device and synchronously flushes all trace records for the device that have not yet been reported.5
These trace records are flushed through one or more buffer completion callbacks with type6
signature ompt_callback_buffer_complete_t as needed prior to the dispatch of the7
callback with type signature ompt_callback_device_finalize_t.8

Cross References9
• ompt_callback_buffer_complete_t, see Section 20.5.2.2410

20.5.2.21 ompt_callback_device_load_t11

Summary12
The ompt_callback_device_load_t type is used for callbacks that the OpenMP runtime13
invokes to indicate that it has just loaded code onto the specified device.14

Format15
C / C++

typedef void (*ompt_callback_device_load_t) (16
int device_num,17
const char *filename,18
int64_t offset_in_file,19
void *vma_in_file,20
size_t bytes,21
void *host_addr,22
void *device_addr,23
uint64_t module_id24

);25

C / C++

Description of Arguments26
The device_num argument specifies the device.27

The filename argument indicates the name of a file in which the device code can be found. A NULL28
filename indicates that the code is not available in a file in the file system.29

The offset_in_file argument indicates an offset into filename at which the code can be found. A30
value of -1 indicates that no offset is provided.31

ompt_addr_none is defined as a pointer with the value ~0.32

The vma_in_file argument indicates a virtual address in filename at which the code can be found. A33
value of ompt_addr_none indicates that a virtual address in the file is not available.34

622 OpenMP API – Version 6.0 Preview 2 November 2023

The bytes argument indicates the size of the device code object in bytes.1

The host_addr argument indicates the address at which a copy of the device code is available in2
host memory. A value of ompt_addr_none indicates that a host code address is not available.3

The device_addr argument indicates the address at which the device code has been loaded in device4
memory. A value of ompt_addr_none indicates that a device code address is not available.5

The module_id argument is an identifier that is associated with the device code object.6

Cross References7
• Device Directives and Clauses, see Chapter 148

20.5.2.22 ompt_callback_device_unload_t9

Summary10
The ompt_callback_device_unload_t type is used for callbacks that the OpenMP11
runtime invokes to indicate that it is about to unload code from the specified device.12

Format13
C / C++

typedef void (*ompt_callback_device_unload_t) (14
int device_num,15
uint64_t module_id16

);17

C / C++
Description of Arguments18
The device_num argument specifies the device.19

The module_id argument is an identifier that is associated with the device code object.20

Cross References21
• Device Directives and Clauses, see Chapter 1422

20.5.2.23 ompt_callback_buffer_request_t23

Summary24
The ompt_callback_buffer_request_t type is used for callbacks that are dispatched25
when a buffer to store event records for a device is requested.26

Format27
C / C++

typedef void (*ompt_callback_buffer_request_t) (28
int device_num,29
ompt_buffer_t **buffer,30
size_t *bytes31

);32

C / C++

CHAPTER 20. OMPT INTERFACE 623

Semantics1
A callback with type signature ompt_callback_buffer_request_t requests a buffer to2
store trace records for the specified device. A buffer request callback may set *bytes to 0 if it does3
not provide a buffer. If a callback sets *bytes to a value less than the minimum requested buffer size4
in *bytes on entry to the callback, further recording of events for the device may be disabled until5
the next invocation of ompt_start_trace. This action causes the device to drop future trace6
records until recording is restarted. A first party tool may use the ompt_get_buffer_limits7
runtime entry point to determine the recommended number of bytes to provide when fulfilling the8
buffer request.9

Description of Arguments10
The device_num argument specifies the device.11

The *buffer argument points to a buffer where device events may be recorded. The *bytes argument12
holds the minimum size of the buffer in bytes that is requested, which must not exceed the13
recommended buffer size returned by the ompt_get_buffer_limits runtime entry point for14
the same device. On return, it indicates size of the buffer to which *buffer points.15

Cross References16
• ompt_buffer_t, see Section 20.4.4.717

• ompt_get_buffer_limits_t, see Section 20.6.2.618

20.5.2.24 ompt_callback_buffer_complete_t19

Summary20
The ompt_callback_buffer_complete_t type is used for callbacks that are dispatched21
when devices will not record any more trace records in an event buffer and all records written to the22
buffer are valid.23

Format24
C / C++

typedef void (*ompt_callback_buffer_complete_t) (25
int device_num,26
ompt_buffer_t *buffer,27
size_t bytes,28
ompt_buffer_cursor_t begin,29
int buffer_owned30

);31

C / C++
Semantics32
A callback with type signature ompt_callback_buffer_complete_t provides a buffer that33
contains trace records for the specified device. Typically, a tool will iterate through the records in34
the buffer and process them. The OpenMP implementation makes these callbacks on a thread that35
is not an OpenMP primary or worker thread. The callee may not delete the buffer if the36
buffer_owned argument is 0. The buffer completion callback is not required to be async signal safe.37

624 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Arguments1
The device_num argument indicates the device for which the buffer contains events.2

The buffer argument is the address of a buffer that was previously allocated by a buffer request3
callback.4

The bytes argument indicates the full size of the buffer.5

The begin argument is an opaque cursor that indicates the position of the beginning of the first6
record in the buffer.7

The buffer_owned argument is 1 if the data to which the buffer points can be deleted by the callback8
and 0 otherwise. If multiple devices accumulate trace events into a single buffer, this callback may9
be invoked with a pointer to one or more trace records in a shared buffer with buffer_owned = 0. In10
this case, the callback may not delete the buffer.11

Cross References12
• ompt_buffer_cursor_t, see Section 20.4.4.813

• ompt_buffer_t, see Section 20.4.4.714

20.5.2.25 ompt_callback_target_data_op_emi_t and15
ompt_callback_target_data_op_t16

Summary17
The ompt_callback_target_data_op_emi_t and18
ompt_callback_target_data_op_t types are used for callbacks that are dispatched when19
a thread maps data to a device.20

Format21
C / C++

typedef void (*ompt_callback_target_data_op_emi_t) (22
ompt_scope_endpoint_t endpoint,23
ompt_data_t *target_task_data,24
ompt_data_t *target_data,25
ompt_id_t *host_op_id,26
ompt_target_data_op_t optype,27
void *dev1_addr,28
int dev1_device_num,29
void *dev2_addr,30
int dev2_device_num,31
size_t bytes,32
const void *codeptr_ra33

);34

CHAPTER 20. OMPT INTERFACE 625

typedef void (*ompt_callback_target_data_op_t) (1
ompt_id_t target_id,2
ompt_id_t host_op_id,3
ompt_target_data_op_t optype,4
void *dev1_addr,5
int dev1_device_num,6
void *dev2_addr,7
int dev2_device_num,8
size_t bytes,9
const void *codeptr_ra10

);11

C / C++

Trace Record12
C / C++

typedef struct ompt_record_target_data_op_t {13
ompt_id_t host_op_id;14
ompt_target_data_op_t optype;15
void *dev1_addr;16
int dev1_device_num;17
void *dev2_addr;18
int dev2_device_num;19
size_t bytes;20
ompt_device_time_t end_time;21
const void *codeptr_ra;22

} ompt_record_target_data_op_t;23

C / C++

Semantics24
A thread dispatches a registered ompt_callback_target_data_op_emi or25
ompt_callback_target_data_op callback when device memory is allocated or freed, as26
well as when data is copied to or from a device.27

28

Note – An OpenMP implementation may aggregate program variables and data operations upon29
them. For instance, an OpenMP implementation may synthesize a composite to represent multiple30
scalars and then allocate, free, or copy this composite as a whole rather than performing data31
operations on each scalar individually. Thus, callbacks may not be dispatched as separate data32
operations on each variable.33

34

626 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Arguments1
The endpoint argument indicates that the callback signals the beginning or end of a scope.2

The binding of the target_task_data argument is the target task region.3

The binding of the target_data argument is the target region.4

The host_op_id argument points to a tool-controlled integer value, which identifies a data operation5
on a target device.6

The optype argument indicates the kind of data operation.7

The dev1_addr argument indicates the data address on the device given by Table 20.4 or NULL for8
omp_target_alloc and omp_target_free.9

The dev1_device_num argument indicates the device number on the device given by Table 20.4.10

The dev2_addr argument indicates the data address on the device given by Table 20.4.11

The dev2_device_num argument indicates the device number on the device given by Table 20.4.12

Whether in some operations dev1_addr or dev2_addr may point to an intermediate buffer is13
implementation defined.14

The bytes argument indicates the size of data.15

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a16
runtime routine implements the region associated with a callback that has type signature17
ompt_callback_target_data_op_emi_t or ompt_callback_target_data_op_t18
then codeptr_ra contains the return address of the call to that runtime routine. If the19
implementation of the region is inlined then codeptr_ra contains the return address of the callback20
invocation. If attribution to source code is impossible or inappropriate, codeptr_ra may be NULL.21

If ompt_set_trace_ompt has configured the implementation to trace data operations to22
device memory then the implementation will log an ompt_record_target_data_op_t23
record in a trace. The fields in the record are as follows:24

• The host_op_id field contains a tool-controlled identifier that can be used to correlate a25
ompt_record_target_data_op_t record with its associated26
ompt_callback_target_data_op_emi or27
ompt_callback_target_data_op callback on the host;28

• The src_addr, src_device_num, dest_addr, dest_device_num, bytes, and codeptr_ra fields29
contain the values described above for the associated callback;30

• The time when the data operation began execution for the device is recorded in the time field31
of an enclosing ompt_record_t structure; and32

• The time when the data operation completed execution for the device is recorded in the33
end_time field.34

CHAPTER 20. OMPT INTERFACE 627

TABLE 20.4: Association of dev1 and dev2 arguments for target data operations

Data op dev1 dev2
alloc host device
transfer from device to device
delete host device
associate host device
disassociate host device

Restrictions1
Restrictions to the ompt_callback_target_data_op_emi and2
ompt_callback_target_data_op callbacks are as follows:3

• These callbacks must not be registered at the same time.4

Cross References5
• map clause, see Section 6.8.36

• ompt_data_t, see Section 20.4.4.47

• ompt_id_t, see Section 20.4.4.38

• ompt_scope_endpoint_t, see Section 20.4.4.119

• ompt_target_data_op_t, see Section 20.4.4.1510

20.5.2.26 ompt_callback_target_emi_t and11
ompt_callback_target_t12

Summary13
The ompt_callback_target_emi_t and ompt_callback_target_t types are used14
for callbacks that are dispatched when a thread begins to execute a device construct.15

Format16
C / C++

typedef void (*ompt_callback_target_emi_t) (17
ompt_target_t kind,18
ompt_scope_endpoint_t endpoint,19
int device_num,20
ompt_data_t *task_data,21
ompt_data_t *target_task_data,22
ompt_data_t *target_data,23
const void *codeptr_ra24

);25

628 OpenMP API – Version 6.0 Preview 2 November 2023

typedef void (*ompt_callback_target_t) (1
ompt_target_t kind,2
ompt_scope_endpoint_t endpoint,3
int device_num,4
ompt_data_t *task_data,5
ompt_id_t target_id,6
const void *codeptr_ra7

);8

C / C++

Trace Record9
C / C++

typedef struct ompt_record_target_t {10
ompt_target_t kind;11
ompt_scope_endpoint_t endpoint;12
int device_num;13
ompt_id_t task_id;14
ompt_id_t target_id;15
const void *codeptr_ra;16

} ompt_record_target_t;17

C / C++

Description of Arguments18
The kind argument indicates the kind of target region.19

The endpoint argument indicates that the callback signals the beginning of a scope or the end of a20
scope.21

The device_num argument indicates the device number of the device that will execute the target22
region.23

The binding of the task_data argument is the encountering task.24

The binding of the target_task_data argument is the target task region. If a target region has no25
target task or if the target task is merged, this argument is NULL.26

The binding of the target_data argument is the target region.27

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a28
runtime routine implements the region associated with a callback that has type signature29
ompt_callback_target_emi_t or ompt_callback_target_t then codeptr_ra30
contains the return address of the call to that runtime routine. If the implementation of the region is31
inlined then codeptr_ra contains the return address of the callback invocation. If attribution to32
source code is impossible or inappropriate, codeptr_ra may be NULL.33

CHAPTER 20. OMPT INTERFACE 629

Restrictions1
Restrictions to the ompt_callback_target_emi and ompt_callback_target callbacks2
are as follows:3

• These callbacks must not be registered at the same time.4

Cross References5
• target directive, see Section 14.86

• target data directive, see Section 14.57

• target enter data directive, see Section 14.68

• target exit data directive, see Section 14.79

• target update directive, see Section 14.910

• ompt_data_t, see Section 20.4.4.411

• ompt_id_t, see Section 20.4.4.312

• ompt_scope_endpoint_t, see Section 20.4.4.1113

• ompt_target_t, see Section 20.4.4.2114

20.5.2.27 ompt_callback_target_map_emi_t and15
ompt_callback_target_map_t16

Summary17
The ompt_callback_target_map_emi_t and ompt_callback_target_map_t types18
are used for callbacks that are dispatched to indicate data mapping relationships.19

Format20
C / C++

typedef void (*ompt_callback_target_map_emi_t) (21
ompt_data_t *target_data,22
unsigned int nitems,23
void **host_addr,24
void **device_addr,25
size_t *bytes,26
unsigned int *mapping_flags,27
const void *codeptr_ra28

);29

630 OpenMP API – Version 6.0 Preview 2 November 2023

typedef void (*ompt_callback_target_map_t) (1
ompt_id_t target_id,2
unsigned int nitems,3
void **host_addr,4
void **device_addr,5
size_t *bytes,6
unsigned int *mapping_flags,7
const void *codeptr_ra8

);9

C / C++

Trace Record10
C / C++

typedef struct ompt_record_target_map_t {11
ompt_id_t target_id;12
unsigned int nitems;13
void **host_addr;14
void **device_addr;15
size_t *bytes;16
unsigned int *mapping_flags;17
const void *codeptr_ra;18

} ompt_record_target_map_t;19

C / C++

Semantics20
An instance of a target, target data, target enter data, or target exit data21
construct may contain one or more map clauses. An OpenMP implementation may report the set of22
mappings associated with map clauses for a construct with a single23
ompt_callback_target_map_emi or ompt_callback_target_map callback to report24
the effect of all mappings or multiple ompt_callback_target_map_emi or25
ompt_callback_target_map callbacks with each reporting a subset of the mappings.26
Furthermore, an OpenMP implementation may omit mappings that it determines are unnecessary.27
If an OpenMP implementation issues multiple ompt_callback_target_map_emi or28
ompt_callback_target_map callbacks, these callbacks may be interleaved with29
ompt_callback_target_data_op_emi or ompt_callback_target_data_op30
callbacks used to report data operations associated with the mappings.31

Description of Arguments32
The binding of the target_data argument is the target region.33

The nitems argument indicates the number of data mappings that this callback reports.34

The host_addr argument indicates an array of host data addresses.35

The device_addr argument indicates an array of device data addresses.36

CHAPTER 20. OMPT INTERFACE 631

The bytes argument indicates an array of sizes of data.1

The mapping_flags argument indicates the kind of mapping operations, which may result from2
explicit map clauses or the implicit data-mapping rules defined in Section 6.8. Flags for the3
mapping operations include one or more values specified by the ompt_target_map_flag_t4
type.5

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a6
runtime routine implements the region associated with a callback that has type signature7
ompt_callback_target_map_t or ompt_callback_target_map_emi_t then8
codeptr_ra contains the return address of the call to that runtime routine. If the implementation of9
the region is inlined then codeptr_ra contains the return address of the callback invocation. If10
attribution to source code is impossible or inappropriate, codeptr_ra may be NULL.11

Restrictions12
Restrictions to the ompt_callback_target_data_map_emi and13
ompt_callback_target_data_map callbacks are as follows:14

• These callbacks must not be registered at the same time.15

Cross References16
• target directive, see Section 14.817

• target data directive, see Section 14.518

• target enter data directive, see Section 14.619

• target exit data directive, see Section 14.720

• ompt_callback_target_data_op_emi_t and21
ompt_callback_target_data_op_t, see Section 20.5.2.2522

• ompt_data_t, see Section 20.4.4.423

• ompt_id_t, see Section 20.4.4.324

• ompt_target_map_flag_t, see Section 20.4.4.2325

20.5.2.28 ompt_callback_target_submit_emi_t and26
ompt_callback_target_submit_t27

Summary28
The ompt_callback_target_submit_emi_t and29
ompt_callback_target_submit_t types are used for callbacks that are dispatched before30
and after the host initiates creation of an initial task on a device.31

632 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C / C++

typedef void (*ompt_callback_target_submit_emi_t) (2
ompt_scope_endpoint_t endpoint,3
ompt_data_t *target_data,4
ompt_id_t *host_op_id,5
unsigned int requested_num_teams6

);7

typedef void (*ompt_callback_target_submit_t) (8
ompt_id_t target_id,9
ompt_id_t host_op_id,10
unsigned int requested_num_teams11

);12

C / C++

Trace Record13
C / C++

typedef struct ompt_record_target_kernel_t {14
ompt_id_t host_op_id;15
unsigned int requested_num_teams;16
unsigned int granted_num_teams;17
ompt_device_time_t end_time;18

} ompt_record_target_kernel_t;19

C / C++

Semantics20
A thread dispatches a registered ompt_callback_target_submit_emi or21
ompt_callback_target_submit callback on the host before and after a target task initiates22
creation of an initial task on a device.23

Description of Arguments24
The endpoint argument indicates that the callback signals the beginning or end of a scope.25

The binding of the target_data argument is the target region.26

The host_op_id argument points to a tool-controlled integer value, which identifies an initial task27
on a target device.28

The requested_num_teams argument is the number of teams that the host requested to execute the29
kernel. The actual number of teams that execute the kernel may be smaller and generally will not be30
known until the kernel begins to execute on the device.31

If ompt_set_trace_ompt has configured the implementation to trace kernel execution for a32
device then the implementation will log an ompt_record_target_kernel_t record in a33
trace. The fields in the record are as follows:34

CHAPTER 20. OMPT INTERFACE 633

• The host_op_id field contains a tool-controlled identifier that can be used to correlate a1
ompt_record_target_kernel_t record with its associated2
ompt_callback_target_submit_emi or ompt_callback_target_submit3
callback on the host;4

• The requested_num_teams field contains the number of teams that the host requested to5
execute the kernel;6

• The granted_num_teams field contains the number of teams that the device actually used to7
execute the kernel;8

• The time when the initial task began execution on the device is recorded in the time field of9
an enclosing ompt_record_t structure; and10

• The time when the initial task completed execution on the device is recorded in the end_time11
field.12

Restrictions13
Restrictions to the ompt_callback_target_submit_emi and14
ompt_callback_target_submit callbacks are as follows:15

• These callbacks must not be registered at the same time.16

Cross References17
• target directive, see Section 14.818

• ompt_data_t, see Section 20.4.4.419

• ompt_id_t, see Section 20.4.4.320

• ompt_scope_endpoint_t, see Section 20.4.4.1121

20.5.2.29 ompt_callback_control_tool_t22

Summary23
The ompt_callback_control_tool_t type is used for callbacks that dispatch tool-control24
events.25

Format26
C / C++

typedef int (*ompt_callback_control_tool_t) (27
uint64_t command,28
uint64_t modifier,29
void *arg,30
const void *codeptr_ra31

);32

C / C++

634 OpenMP API – Version 6.0 Preview 2 November 2023

Trace Record1
C / C++

typedef struct ompt_record_control_tool_t {2
uint64_t command;3
uint64_t modifier;4
const void *codeptr_ra;5

} ompt_record_control_tool_t;6

C / C++

Semantics7
Callbacks with type signature ompt_callback_control_tool_t may return any8
non-negative value, which will be returned to the application as the return value of the9
omp_control_tool call that triggered the callback.10

Description of Arguments11
The command argument passes a command from an application to a tool. Standard values for12
command are defined by omp_control_tool_t in Section 19.14.13

The modifier argument passes a command modifier from an application to a tool.14

The command and modifier arguments may have tool-specific values. Tools must ignore command15
values that they are not designed to handle.16

The arg argument is a void pointer that enables a tool and an application to exchange arbitrary state.17
The arg argument may be NULL.18

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a19
runtime routine implements the region associated with a callback that has type signature20
ompt_callback_control_tool_t then codeptr_ra contains the return address of the call to21
that runtime routine. If the implementation of the region is inlined then codeptr_ra contains the22
return address of the callback invocation. If attribution to source code is impossible or23
inappropriate, codeptr_ra may be NULL.24

Constraints on Arguments25
Tool-specific values for command must be ≥ 64.26

Cross References27
• Tool Control Routine, see Section 19.1428

20.5.2.30 ompt_callback_error_t29

Summary30
The ompt_callback_error_t type is used for callbacks that dispatch runtime-error events.31

CHAPTER 20. OMPT INTERFACE 635

Format1
C / C++

typedef void (*ompt_callback_error_t) (2
ompt_severity_t severity,3
const char *message,4
size_t length,5
const void *codeptr_ra6

);7

C / C++

Trace Record8
C / C++

typedef struct ompt_record_error_t {9
ompt_severity_t severity;10
const char *message;11
size_t length;12
const void *codeptr_ra;13

} ompt_record_error_t;14

C / C++

Semantics15
A thread dispatches a registered ompt_callback_error_t callback when an error directive16
is encountered for which the at(execution) clause is specified.17

Description of Arguments18
The severity argument passes the specified severity level.19

The message argument passes the C string from the message clause.20

The length argument provides the length of the C string.21

The codeptr_ra argument relates the implementation of an OpenMP region to its source code. If a22
runtime routine implements the region associated with a callback that has type signature23
ompt_callback_error_t then codeptr_ra contains the return address of the call to that24
runtime routine. If the implementation of the region is inlined then codeptr_ra contains the return25
address of the callback invocation. If attribution to source code is impossible or inappropriate,26
codeptr_ra may be NULL.27

Cross References28
• error directive, see Section 9.129

• ompt_severity_t, see Section 20.4.4.2530

636 OpenMP API – Version 6.0 Preview 2 November 2023

20.6 OMPT Runtime Entry Points for Tools1

OMPT supports two principal sets of runtime entry points for tools. One set of runtime entry points2
enables a tool to register callbacks for OpenMP events and to inspect the state of an OpenMP thread3
while executing in a tool callback or a signal handler. The second set of runtime entry points4
enables a tool to trace activities on a device. When directed by the tracing interface, an OpenMP5
implementation will trace activities on a device, collect buffers of trace records, and invoke6
callbacks on the host to process these records. OMPT runtime entry points should not be global7
symbols since tools cannot rely on the visibility of such symbols.8

OMPT also supports runtime entry points for two classes of lookup routines. The first class of9
lookup routines contains a single member: a routine that returns runtime entry points in the OMPT10
callback interface. The second class of lookup routines includes a unique lookup routine for each11
kind of device that can return runtime entry points in a device’s OMPT tracing interface.12

The omp-tools.h C/C++ header file provides the definitions of the types that are specified13
throughout this subsection.14

Binding15
The binding thread set for each of the entry points in this section is the encountering thread unless16
otherwise specified. The binding task set is the task executing on the encountering thread.17

Restrictions18
Restrictions on OMPT runtime entry points are as follows:19

• OMPT runtime entry points must not be called from a signal handler on a native thread20
before a native-thread-begin or after a native-thread-end event.21

• OMPT device runtime entry points must not be called after a device-finalize event for that22
device.23

20.6.1 Entry Points in the OMPT Callback Interface24

Entry points in the OMPT callback interface enable a tool to register callbacks for OpenMP events25
and to inspect the state of an OpenMP thread while executing in a tool callback or a signal handler.26
Pointers to these runtime entry points are obtained through the lookup function that is provided27
through the OMPT initializer.28

20.6.1.1 ompt_enumerate_states_t29

Summary30
The ompt_enumerate_states_t type is the type signature of the31
ompt_enumerate_states runtime entry point, which enumerates the thread states that an32
OpenMP implementation supports.33

CHAPTER 20. OMPT INTERFACE 637

Format1
C / C++

typedef int (*ompt_enumerate_states_t) (2
int current_state,3
int *next_state,4
const char **next_state_name5

);6

C / C++

Semantics7
An OpenMP implementation may support only a subset of the states that the ompt_state_t8
enumeration type defines. An OpenMP implementation may also support implementation-specific9
states. The ompt_enumerate_states runtime entry point, which has type signature10
ompt_enumerate_states_t, enables a tool to enumerate the supported thread states.11

When a supported thread state is passed as current_state, the runtime entry point assigns the next12
thread state in the enumeration to the variable passed by reference in next_state and assigns the13
name associated with that state to the character pointer passed by reference in next_state_name.14

Whenever one or more states are left in the enumeration, the ompt_enumerate_states15
runtime entry point returns 1. When the last state in the enumeration is passed as current_state,16
ompt_enumerate_states returns 0, which indicates that the enumeration is complete.17

Description of Arguments18
The current_state argument must be a thread state that the OpenMP implementation supports. To19
begin enumerating the supported states, a tool should pass ompt_state_undefined as20
current_state. Subsequent invocations of ompt_enumerate_states should pass the value21
assigned to the variable that was passed by reference in next_state to the previous call.22

The value ompt_state_undefined is reserved to indicate an invalid thread state.23
ompt_state_undefined is defined as an integer with the value 0x102.24

The next_state argument is a pointer to an integer in which ompt_enumerate_states returns25
the value of the next state in the enumeration.26

The next_state_name argument is a pointer to a character string pointer through which27
ompt_enumerate_states returns a string that describes the next state.28

Constraints on Arguments29
Any string returned through the next_state_name argument must be immutable and defined for the30
lifetime of program execution.31

Cross References32
• ompt_state_t, see Section 20.4.4.2833

638 OpenMP API – Version 6.0 Preview 2 November 2023

20.6.1.2 ompt_enumerate_mutex_impls_t1

Summary2
The ompt_enumerate_mutex_impls_t type is the type signature of the3
ompt_enumerate_mutex_impls runtime entry point, which enumerates the kinds of mutual4
exclusion implementations that an OpenMP implementation employs.5

Format6
C / C++

typedef int (*ompt_enumerate_mutex_impls_t) (7
int current_impl,8
int *next_impl,9
const char **next_impl_name10

);11

C / C++
Semantics12
Mutual exclusion for locks, critical sections, and atomic regions may be implemented in13
several ways. The ompt_enumerate_mutex_impls runtime entry point, which has type14
signature ompt_enumerate_mutex_impls_t, enables a tool to enumerate the supported15
mutual exclusion implementations.16

When a supported mutex implementation is passed as current_impl, the runtime entry point assigns17
the next mutex implementation in the enumeration to the variable passed by reference in next_impl18
and assigns the name associated with that mutex implementation to the character pointer passed by19
reference in next_impl_name.20

Whenever one or more mutex implementations are left in the enumeration, the21
ompt_enumerate_mutex_impls runtime entry point returns 1. When the last mutex22
implementation in the enumeration is passed as current_impl, the runtime entry point returns 0,23
which indicates that the enumeration is complete.24

Description of Arguments25
The current_impl argument must be a mutex implementation that an OpenMP implementation26
supports. To begin enumerating the supported mutex implementations, a tool should pass27
ompt_mutex_impl_none as current_impl. Subsequent invocations of28
ompt_enumerate_mutex_impls should pass the value assigned to the variable that was29
passed in next_impl to the previous call.30

The value ompt_mutex_impl_none is reserved to indicate an invalid mutex implementation.31
ompt_mutex_impl_none is defined as an integer with the value 0.32

The next_impl argument is a pointer to an integer in which ompt_enumerate_mutex_impls33
returns the value of the next mutex implementation in the enumeration.34

The next_impl_name argument is a pointer to a character string pointer in which35
ompt_enumerate_mutex_impls returns a string that describes the next mutex36
implementation.37

CHAPTER 20. OMPT INTERFACE 639

Constraints on Arguments1
Any string returned through the next_impl_name argument must be immutable and defined for the2
lifetime of a program execution.3

20.6.1.3 ompt_set_callback_t4

Summary5
The ompt_set_callback_t type is the type signature of the ompt_set_callback runtime6
entry point, which registers a pointer to a tool callback that an OpenMP implementation invokes7
when a host OpenMP event occurs.8

Format9
C / C++

typedef ompt_set_result_t (*ompt_set_callback_t) (10
ompt_callbacks_t event,11
ompt_callback_t callback12

);13

C / C++

Semantics14
OpenMP implementations can use callbacks to indicate the occurrence of events during the15
execution of an OpenMP program. The ompt_set_callback runtime entry point, which has16
type signature ompt_set_callback_t, registers a callback for an OpenMP event on the17
current device, The return value of ompt_set_callback indicates the outcome of registering18
the callback.19

Description of Arguments20
The event argument indicates the event for which the callback is being registered.21

The callback argument is a tool callback function. If callback is NULL then callbacks associated22
with event are disabled. If callbacks are successfully disabled then ompt_set_always is23
returned.24

Constraints on Arguments25
When a tool registers a callback for an event, the type signature for the callback must match the26
type signature appropriate for the event.27

Restrictions28
Restrictions on the ompt_set_callback runtime entry point are as follows:29

• The entry point must not return ompt_set_impossible.30

640 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• Callbacks, see Section 20.4.22

• Monitoring Activity on the Host with OMPT, see Section 20.2.43

• ompt_callback_t, see Section 20.4.4.14

• ompt_get_callback_t, see Section 20.6.1.45

• ompt_set_result_t, see Section 20.4.4.26

20.6.1.4 ompt_get_callback_t7

Summary8
The ompt_get_callback_t type is the type signature of the ompt_get_callback runtime9
entry point, which retrieves a pointer to a registered tool callback routine (if any) that an OpenMP10
implementation invokes when a host OpenMP event occurs.11

Format12
C / C++

typedef int (*ompt_get_callback_t) (13
ompt_callbacks_t event,14
ompt_callback_t *callback15

);16

C / C++

Semantics17
The ompt_get_callback runtime entry point, which has type signature18
ompt_get_callback_t, retrieves a pointer to the tool callback that an OpenMP19
implementation may invoke when a host OpenMP event occurs. If the tool callback that is20
registered for the specified event is not NULL, the pointer to the tool callback is assigned to the21
variable passed by reference in callback and ompt_get_callback returns 1; otherwise, it22
returns 0. If ompt_get_callback returns 0, the value of the variable passed by reference as23
callback is undefined.24

Description of Arguments25
The event argument indicates the event for which the callback would be invoked.26

The callback argument returns a pointer to the callback associated with event.27

Constraints on Arguments28
The callback argument cannot be NULL and must point to valid storage.29

CHAPTER 20. OMPT INTERFACE 641

Cross References1
• Callbacks, see Section 20.4.22

• ompt_callback_t, see Section 20.4.4.13

• ompt_set_callback_t, see Section 20.6.1.34

20.6.1.5 ompt_get_thread_data_t5

Summary6
The ompt_get_thread_data_t type is the type signature of the7
ompt_get_thread_data runtime entry point, which returns the address of the thread data8
object for the current thread.9

Format10
C / C++

typedef ompt_data_t *(*ompt_get_thread_data_t) (void);11

C / C++

Semantics12
Each OpenMP thread can have an associated thread data object of type ompt_data_t. The13
ompt_get_thread_data runtime entry point, which has type signature14
ompt_get_thread_data_t, retrieves a pointer to the thread data object, if any, that is15
associated with the current thread. A tool may use a pointer to an OpenMP thread’s data object that16
ompt_get_thread_data retrieves to inspect or to modify the value of the data object. When17
an OpenMP thread is created, its data object is initialized with value ompt_data_none. This18
runtime entry point is async signal safe.19

Cross References20
• ompt_data_t, see Section 20.4.4.421

20.6.1.6 ompt_get_num_procs_t22

Summary23
The ompt_get_num_procs_t type is the type signature of the ompt_get_num_procs24
runtime entry point, which returns the number of processors currently available to the execution25
environment on the host device.26

Format27
C / C++

typedef int (*ompt_get_num_procs_t) (void);28

C / C++

Binding29
The binding thread set is all threads on the host device.30

642 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
The ompt_get_num_procs runtime entry point, which has type signature2
ompt_get_num_procs_t, returns the number of processors that are available on the host3
device at the time the routine is called. This value may change between the time that it is4
determined and the time that it is read in the calling context due to system actions outside the5
control of the OpenMP implementation. This runtime entry point is async signal safe.6

20.6.1.7 ompt_get_num_places_t7

Summary8
The ompt_get_num_places_t type is the type signature of the ompt_get_num_places9
runtime entry point, which returns the number of places currently available to the execution10
environment in the place list.11

Format12
C / C++

typedef int (*ompt_get_num_places_t) (void);13

C / C++

Binding14
The binding thread set is all threads on a device.15

Semantics16
The ompt_get_num_places runtime entry point, which has type signature17
ompt_get_num_places_t, returns the number of places in the place list. This value is18
equivalent to the number of places in the place-partition-var ICV in the execution environment of19
the initial task. This runtime entry point is async signal safe.20

Cross References21
• OMP_PLACES, see Section 3.1.522

• place-partition-var ICV, see Table 2.123

20.6.1.8 ompt_get_place_proc_ids_t24

Summary25
The ompt_get_place_procs_ids_t type is the type signature of the26
ompt_get_num_place_procs_ids runtime entry point, which returns the numerical27
identifiers of the processors that are available to the execution environment in the specified place.28

CHAPTER 20. OMPT INTERFACE 643

Format1
C / C++

typedef int (*ompt_get_place_proc_ids_t) (2
int place_num,3
int ids_size,4
int *ids5

);6

C / C++

Binding7
The binding thread set is all threads on a device.8

Semantics9
The ompt_get_place_proc_ids runtime entry point, which has type signature10
ompt_get_place_proc_ids_t, returns the numerical identifiers of each processor that is11
associated with the specified place. These numerical identifiers are non-negative, and their meaning12
is implementation defined.13

Description of Arguments14
The place_num argument specifies the place that is being queried.15

The ids argument is an array in which the routine can return a vector of processor identifiers in the16
specified place.17

The ids_size argument indicates the size of the result array that is specified by ids.18

Effect19
If the ids array of size ids_size is large enough to contain all identifiers then they are returned in ids20
and their order in the array is implementation defined. Otherwise, if the ids array is too small, the21
values in ids when the function returns are unspecified. The routine always returns the number of22
numerical identifiers of the processors that are available to the execution environment in the23
specified place.24

20.6.1.9 ompt_get_place_num_t25

Summary26
The ompt_get_place_num_t type is the type signature of the ompt_get_place_num27
runtime entry point, which returns the place number of the place to which the current thread is28
bound.29

Format30
C / C++

typedef int (*ompt_get_place_num_t) (void);31

C / C++

644 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
When the current thread is bound to a place, ompt_get_place_num returns the place number2
associated with the thread. The returned value is between 0 and one less than the value returned by3
ompt_get_num_places, inclusive. When the current thread is not bound to a place, the routine4
returns -1. This runtime entry point is async signal safe.5

20.6.1.10 ompt_get_partition_place_nums_t6

Summary7
The ompt_get_partition_place_nums_t type is the type signature of the8
ompt_get_partition_place_nums runtime entry point, which returns a list of place9
numbers that correspond to the places in the place-partition-var ICV of the innermost implicit task.10

Format11
C / C++

typedef int (*ompt_get_partition_place_nums_t) (12
int place_nums_size,13
int *place_nums14

);15

C / C++

Semantics16
The ompt_get_partition_place_nums runtime entry point, which has type signature17
ompt_get_partition_place_nums_t, returns a list of place numbers that correspond to18
the places in the place-partition-var ICV of the innermost implicit task. This runtime entry point is19
async signal safe.20

Description of Arguments21
The place_nums argument is an array in which the routine can return a vector of place identifiers.22

The place_nums_size argument indicates the size of the result array that the place_nums argument23
specifies.24

Effect25
If the place_nums array of size place_nums_size is large enough to contain all identifiers then they26
are returned in place_nums and their order in the array is implementation defined. Otherwise, if the27
place_nums array is too small, the values in place_nums when the function returns are unspecified.28
The routine always returns the number of places in the place-partition-var ICV of the innermost29
implicit task.30

Cross References31
• OMP_PLACES, see Section 3.1.532

• place-partition-var ICV, see Table 2.133

CHAPTER 20. OMPT INTERFACE 645

20.6.1.11 ompt_get_proc_id_t1

Summary2
The ompt_get_proc_id_t type is the type signature of the ompt_get_proc_id runtime3
entry point, which returns the numerical identifier of the processor of the current thread.4

Format5
C / C++

typedef int (*ompt_get_proc_id_t) (void);6

C / C++

Semantics7
The ompt_get_proc_id runtime entry point, which has type signature8
ompt_get_proc_id_t, returns the numerical identifier of the processor of the current thread.9
A defined numerical identifier is non-negative, and its meaning is implementation defined. A10
negative number indicates a failure to retrieve the numerical identifier. This runtime entry point is11
async signal safe.12

20.6.1.12 ompt_get_state_t13

Summary14
The ompt_get_state_t type is the type signature of the ompt_get_state runtime entry15
point, which returns the state and the wait identifier of the current thread.16

Format17
C / C++

typedef int (*ompt_get_state_t) (18
ompt_wait_id_t *wait_id19

);20

C / C++

Semantics21
Each thread has an associated state and a wait identifier. If the thread state indicates that the thread22
is waiting for mutual exclusion then its wait identifier contains a handle that indicates the data23
object upon which the thread is waiting. The ompt_get_state runtime entry point, which has24
type signature ompt_get_state_t, retrieves the state and wait identifier of the current thread.25
The returned value may be any one of the states predefined by ompt_state_t or a value that26
represents an implementation-specific state. The tool may obtain a string representation for each27
state with the ompt_enumerate_states function. If the returned state indicates that the28
thread is waiting for a lock, nest lock, critical region, atomic region, or ordered region29
and the wait identifier passed as the wait_id argument is not NULL then the value of the wait30
identifier is assigned to that argument. This runtime entry point is async signal safe.31

646 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Arguments1
The wait_id argument is a pointer to an opaque handle that is available to receive the value of the2
wait identifier of the thread. If wait_id is not NULL then the entry point assigns the value of the3
wait identifier of the thread to the object to which wait_id points. If the returned state is not one of4
the specified wait states then the value of the opaque object to which wait_id points is undefined5
after the call.6

Constraints on Arguments7
The argument passed to the runtime entry point must be a reference to a variable of the specified8
type or NULL.9

Cross References10
• ompt_wait_id_t, see Section 20.4.4.3111

• ompt_enumerate_states_t, see Section 20.6.1.112

• ompt_state_t, see Section 20.4.4.2813

20.6.1.13 ompt_get_parallel_info_t14

Summary15
The ompt_get_parallel_info_t type is the type signature of the16
ompt_get_parallel_info runtime entry point, which returns information about the parallel17
region, if any, at the specified ancestor level for the current execution context.18

Format19
C / C++

typedef int (*ompt_get_parallel_info_t) (20
int ancestor_level,21
ompt_data_t **parallel_data,22
int *team_size23

);24

C / C++

Semantics25
During execution, an OpenMP program may employ nested parallel regions. The26
ompt_get_parallel_info runtime entry point, which has type signature27
ompt_get_parallel_info_t, retrieves information about the current parallel region and any28
enclosing parallel regions for the current execution context. Information about a parallel region29
may not be available if the ancestor level is 0; otherwise it must be available if the parallel region30
exists at the specified ancestor level. The entry point returns 2 if a parallel region exists at the31
specified ancestor level and the information is available, 1 if a parallel region exists at the specified32
ancestor level but the information is currently unavailable, and 0 otherwise.33

CHAPTER 20. OMPT INTERFACE 647

A tool may use the pointer to the data object of a parallel region that it obtains from this runtime1
entry point to inspect or to modify the value of the data object. When a parallel region is created, its2
data object will be initialized with the value ompt_data_none.3

This runtime entry point is async signal safe.4

Between a parallel-begin event and an implicit-task-begin event, a call to5
ompt_get_parallel_info(0,...) may return information about the outer parallel team or6
the new parallel team.7

If a thread is in the state ompt_state_wait_barrier_implicit_parallel then a call to8
ompt_get_parallel_info may return a pointer to a copy of the specified parallel region’s9
parallel_data rather than a pointer to the data word for the region itself. This convention enables10
the primary thread for a parallel region to free storage for the region immediately after the region11
ends, yet avoid having some other thread in the team that is executing the region potentially12
reference the parallel_data object for the region after it has been freed.13

Description of Arguments14
The ancestor_level argument specifies the parallel region of interest by its ancestor level. Ancestor15
level 0 refers to the innermost parallel region; information about enclosing parallel regions may be16
obtained using larger values for ancestor_level.17

The parallel_data argument returns the parallel data if the argument is not NULL.18

The team_size argument returns the team size if the argument is not NULL.19

Effect20
If the runtime entry point returns 0 or 1, no argument is modified. Otherwise,21
ompt_get_parallel_info has the following effects:22

• If a non-null value was passed for parallel_data, the value returned in parallel_data is a23
pointer to a data word that is associated with the parallel region at the specified level; and24

• If a non-null value was passed for team_size, the value returned in the integer to which25
team_size point is the number of threads in the team that is associated with the parallel region.26

Constraints on Arguments27
While argument ancestor_level is passed by value, all other arguments to the entry point must be28
pointers to variables of the specified types or NULL.29

Cross References30
• ompt_data_t, see Section 20.4.4.431

20.6.1.14 ompt_get_task_info_t32

Summary33
The ompt_get_task_info_t type is the type signature of the ompt_get_task_info34
runtime entry point, which returns information about the task, if any, at the specified ancestor level35
in the current execution context.36

648 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C / C++

typedef int (*ompt_get_task_info_t) (2
int ancestor_level,3
int *flags,4
ompt_data_t **task_data,5
ompt_frame_t **task_frame,6
ompt_data_t **parallel_data,7
int *thread_num8

);9

C / C++

Semantics10
During execution, a thread may be executing a task. Additionally, the stack of the thread may11
contain procedure frames that are associated with suspended tasks or OpenMP runtime system12
routines. To obtain information about any task on the stack of the current thread, a tool uses the13
ompt_get_task_info runtime entry point, which has type signature14
ompt_get_task_info_t.15

Ancestor level 0 refers to the active task; information about other tasks with associated frames16
present on the stack in the current execution context may be queried at higher ancestor levels.17

Information about a task region may not be available if the ancestor level is 0; otherwise it must be18
available if the task region exists at the specified ancestor level. The entry point returns 2 if a task19
region exists at the specified ancestor level and the information is available, 1 if a task region exists20
at the specified ancestor level but the information is currently unavailable, and 0 otherwise.21

If a task exists at the specified ancestor level and the information is available then information is22
returned in the variables passed by reference to the entry point. If no task region exists at the23
specified ancestor level or the information is unavailable then the values of variables passed by24
reference to the entry point are undefined when ompt_get_task_info returns.25

A tool may use a pointer to a data object for a task or parallel region that it obtains from26
ompt_get_task_info to inspect or to modify the value of the data object. When either a27
parallel region or a task region is created, its data object will be initialized with the value28
ompt_data_none.29

This runtime entry point is async signal safe.30

Description of Arguments31
The ancestor_level argument specifies the task region of interest by its ancestor level. Ancestor32
level 0 refers to the active task; information about ancestor tasks found in the current execution33
context may be queried at higher ancestor levels.34

The flags argument returns the task type if the argument is not NULL.35

The task_data argument returns the task data if the argument is not NULL.36

CHAPTER 20. OMPT INTERFACE 649

The task_frame argument returns the task frame pointer if the argument is not NULL.1

The parallel_data argument returns the parallel data if the argument is not NULL.2

The thread_num argument returns the thread number if the argument is not NULL.3

Effect4
If the runtime entry point returns 0 or 1, no argument is modified. Otherwise,5
ompt_get_task_info has the following effects:6

• If a non-null value was passed for flags then the value returned in the integer to which flags7
points represents the type of the task at the specified level; possible task types include initial,8
implicit, explicit, and target tasks;9

• If a non-null value was passed for task_data then the value that is returned in the object to10
which it points is a pointer to a data word that is associated with the task at the specified level;11

• If a non-null value was passed for task_frame then the value that is returned in the object to12
which task_frame points is a pointer to the ompt_frame_t structure that is associated with13
the task at the specified level;14

• If a non-null value was passed for parallel_data then the value that is returned in the object to15
which parallel_data points is a pointer to a data word that is associated with the parallel16
region that contains the task at the specified level or, if the task at the specified level is an17
initial task, NULL; and18

• If a non-null value was passed for thread_num, then the value that is returned in the object to19
which thread_num points indicates the number of the thread in the parallel region that is20
executing the task at the specified level.21

Constraints on Arguments22
While argument ancestor_level is passed by value, all other arguments to23
ompt_get_task_info must be pointers to variables of the specified types or NULL.24

Cross References25
• ompt_data_t, see Section 20.4.4.426

• ompt_frame_t, see Section 20.4.4.2927

• ompt_task_flag_t, see Section 20.4.4.1928

20.6.1.15 ompt_get_task_memory_t29

Summary30
The ompt_get_task_memory_t type is the type signature of the31
ompt_get_task_memory runtime entry point, which returns information about memory ranges32
that are associated with the task.33

650 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C / C++

typedef int (*ompt_get_task_memory_t)(2
void **addr,3
size_t *size,4
int block5

);6

C / C++

Semantics7
During execution, an OpenMP thread may be executing an OpenMP task. The OpenMP8
implementation must preserve the data environment from the creation of the task for the execution9
of the task. The ompt_get_task_memory runtime entry point, which has type signature10
ompt_get_task_memory_t, provides information about the memory ranges used to store the11
data environment for the current task. Multiple memory ranges may be used to store these data.12
The block argument supports iteration over these memory ranges. The13
ompt_get_task_memory runtime entry point returns 1 if more memory ranges are available,14
and 0 otherwise. If no memory is used for a task, size is set to 0. In this case, addr is unspecified.15
This runtime entry point is async signal safe.16

Description of Arguments17
The addr argument is a pointer to a void pointer return value to provide the start address of a18
memory block.19

The size argument is a pointer to a size type return value to provide the size of the memory block.20

The block argument is an integer value to specify the memory block of interest.21

20.6.1.16 ompt_get_target_info_t22

Summary23
The ompt_get_target_info_t type is the type signature of the24
ompt_get_target_info runtime entry point, which returns identifiers that specify a thread’s25
current target region and target operation ID, if any.26

Format27
C / C++

typedef int (*ompt_get_target_info_t) (28
uint64_t *device_num,29
ompt_id_t *target_id,30
ompt_id_t *host_op_id31

);32

C / C++

CHAPTER 20. OMPT INTERFACE 651

Semantics1
The ompt_get_target_info entry point, which has type signature2
ompt_get_target_info_t, returns 1 if the current thread is in a target region and 03
otherwise. If the entry point returns 0 then the values of the variables passed by reference as its4
arguments are undefined. If the current thread is in a target region then5
ompt_get_target_info returns information about the current device, active target region,6
and active host operation, if any. This runtime entry point is async signal safe.7

Description of Arguments8
The device_num argument returns the device number if the current thread is in a target region.9

The target_id argument returns the target region identifier if the current thread is in a target10
region.11

If the current thread is in the process of initiating an operation on a target device (for example,12
copying data to or from an accelerator or launching a kernel), then host_op_id returns the identifier13
for the operation; otherwise, host_op_id returns ompt_id_none.14

Constraints on Arguments15
Arguments passed to the entry point must be valid references to variables of the specified types.16

Cross References17
• ompt_id_t, see Section 20.4.4.318

20.6.1.17 ompt_get_num_devices_t19

Summary20
The ompt_get_num_devices_t type is the type signature of the21
ompt_get_num_devices runtime entry point, which returns the number of available devices.22

Format23
C / C++

typedef int (*ompt_get_num_devices_t) (void);24

C / C++

Semantics25
The ompt_get_num_devices runtime entry point, which has type signature26
ompt_get_num_devices_t, returns the number of devices available to an OpenMP program.27
This runtime entry point is async signal safe.28

20.6.1.18 ompt_get_unique_id_t29

Summary30
The ompt_get_unique_id_t type is the type signature of the ompt_get_unique_id31
runtime entry point, which returns a unique number.32

652 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C / C++

typedef uint64_t (*ompt_get_unique_id_t) (void);2

C / C++

Semantics3
The ompt_get_unique_id runtime entry point, which has type signature4
ompt_get_unique_id_t, returns a number that is unique for the duration of an OpenMP5
program. Successive invocations may not result in consecutive or even increasing numbers. This6
runtime entry point is async signal safe.7

20.6.1.19 ompt_finalize_tool_t8

Summary9
The ompt_finalize_tool_t type is the type signature of the ompt_finalize_tool10
runtime entry point, which enables a tool to finalize itself.11

Format12
C / C++

typedef void (*ompt_finalize_tool_t) (void);13

C / C++

Semantics14
A tool may detect that the execution of an OpenMP program is ending before the OpenMP15
implementation does. To facilitate clean termination of the tool, the tool may invoke the16
ompt_finalize_tool runtime entry point, which has type signature17
ompt_finalize_tool_t. Upon completion of ompt_finalize_tool, no OMPT18
callbacks are dispatched.19

Effect20
The ompt_finalize_tool routine detaches the tool from the runtime, unregisters all callbacks21
and invalidates all OMPT entry points passed to the tool in the lookup-function. Upon completion22
of ompt_finalize_tool, no further callbacks will be issued on any thread. Before the23
callbacks are unregistered, the OpenMP runtime will dispatch all callbacks as if the program were24
exiting.25

Restrictions26
Restrictions to the ompt_finalize_tool routine are as follows:27

• The ompt_finalize_tool routine must not be called from inside an explicit region.28

• As the ompt_finalize_tool routine should only be called when a tool detects that the29
execution of an OpenMP program is ending, a thread encountering an explicit region after30
the ompt_finalize_tool routine has completed results in unspecified behavior.31

CHAPTER 20. OMPT INTERFACE 653

20.6.2 Entry Points in the OMPT Device Tracing Interface1

The runtime entry points with type signatures of the types that are specified in this section enable a2
tool to trace activities on a device.3

20.6.2.1 ompt_get_device_num_procs_t4

Summary5
The ompt_get_device_num_procs_t type is the type signature of the6
ompt_get_device_num_procs runtime entry point, which returns the number of processors7
currently available to the execution environment on the specified device.8

Format9
C / C++

typedef int (*ompt_get_device_num_procs_t) (10
ompt_device_t *device11

);12

C / C++

Semantics13
The ompt_get_device_num_procs runtime entry point, which has type signature14
ompt_get_device_num_procs_t, returns the number of processors that are available on the15
device at the time the routine is called. This value may change between the time that it is16
determined and the time that it is read in the calling context due to system actions outside the17
control of the OpenMP implementation.18

Description of Arguments19
The device argument is a pointer to an opaque object that represents the target device instance. The20
pointer to the device instance object is used by functions in the device tracing interface to identify21
the device being addressed.22

Cross References23
• ompt_device_t, see Section 20.4.4.524

20.6.2.2 ompt_get_device_time_t25

Summary26
The ompt_get_device_time_t type is the type signature of the27
ompt_get_device_time runtime entry point, which returns the current time on the specified28
device.29

654 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C / C++

typedef ompt_device_time_t (*ompt_get_device_time_t) (2
ompt_device_t *device3

);4

C / C++

Semantics5
Host and target devices are typically distinct and run independently. If host and target devices are6
different hardware components, they may use different clock generators. For this reason, a common7
time base for ordering host-side and device-side events may not be available. The8
ompt_get_device_time runtime entry point, which has type signature9
ompt_get_device_time_t, returns the current time on the specified device. A tool can use10
this information to align time stamps from different devices.11

Description of Arguments12
The device argument is a pointer to an opaque object that represents the target device instance. The13
pointer to the device instance object is used by functions in the device tracing interface to identify14
the device being addressed.15

Cross References16
• ompt_device_t, see Section 20.4.4.517

• ompt_device_time_t, see Section 20.4.4.618

20.6.2.3 ompt_translate_time_t19

Summary20
The ompt_translate_time_t type is the type signature of the ompt_translate_time21
runtime entry point, which translates a time value that is obtained from the specified device to a22
corresponding time value on the host device.23

Format24
C / C++

typedef double (*ompt_translate_time_t) (25
ompt_device_t *device,26
ompt_device_time_t time27

);28

C / C++

Semantics29
The ompt_translate_time runtime entry point, which has type signature30
ompt_translate_time_t, translates a time value obtained from the specified device to a31
corresponding time value on the host device. The returned value for the host time has the same32
meaning as the value returned from omp_get_wtime.33

CHAPTER 20. OMPT INTERFACE 655

Description of Arguments1
The device argument is a pointer to an opaque object that represents the target device instance. The2
pointer to the device instance object is used by functions in the device tracing interface to identify3
the device being addressed.4

The time argument is a time from the specified device.5

Cross References6
• omp_get_wtime, see Section 19.10.17

• ompt_device_t, see Section 20.4.4.58

• ompt_device_time_t, see Section 20.4.4.69

20.6.2.4 ompt_set_trace_ompt_t10

Summary11
The ompt_set_trace_ompt_t type is the type signature of the ompt_set_trace_ompt12
runtime entry point, which enables or disables the recording of trace records for one or more types13
of OMPT events.14

Format15
C / C++

typedef ompt_set_result_t (*ompt_set_trace_ompt_t) (16
ompt_device_t *device,17
unsigned int enable,18
unsigned int etype19

);20

C / C++
Description of Arguments21
The device argument points to an opaque object that represents the target device instance. Functions22
in the device tracing interface use this pointer to identify the device that is being addressed.23

The etype argument indicates the events to which the invocation of ompt_set_trace_ompt24
applies. If the value of etype is 0 then the invocation applies to all events. If etype is positive then it25
applies to the event in ompt_callbacks_t that matches that value.26

The enable argument indicates whether tracing should be enabled or disabled for the event or events27
that the etype argument specifies. A positive value for enable indicates that recording should be28
enabled; a value of 0 for enable indicates that recording should be disabled.29

If any of the events that correspond to the ompt_callback_target_data_op,30
ompt_callback_data_op_emi, ompt_callback_target_submit or31
ompt_callback_target_submit_emi callbacks are specified by etype then tracing, if32
supported, is enabled or disabled for those events when they occur on the host device. If any other33
event corresponds to the callback specified by etype then tracing, if supported, is enabled or34
disabled for the specified events when they occur on a target device.35

656 OpenMP API – Version 6.0 Preview 2 November 2023

Restrictions1
Restrictions on the ompt_set_trace_ompt runtime entry point are as follows:2

• The entry point must not return ompt_set_sometimes_paired.3

Cross References4
• Callbacks, see Section 20.4.25

• Tracing Activity on Target Devices with OMPT, see Section 20.2.56

• ompt_device_t, see Section 20.4.4.57

• ompt_set_result_t, see Section 20.4.4.28

20.6.2.5 ompt_set_trace_native_t9

Summary10
The ompt_set_trace_native_t type is the type signature of the11
ompt_set_trace_native runtime entry point, which enables or disables the recording of12
native trace records for a device.13

Format14
C / C++

typedef ompt_set_result_t (*ompt_set_trace_native_t) (15
ompt_device_t *device,16
int enable,17
int flags18

);19

C / C++

Semantics20
This interface is designed for use by a tool that cannot directly use native control functions for the21
device. If a tool can directly use the native control functions then it can invoke native control22
functions directly using pointers that the lookup function associated with the device provides and23
that are described in the documentation string that is provided to the device initializer callback.24

Description of Arguments25
The device argument points to an opaque object that represents the target device instance. Functions26
in the device tracing interface use this pointer to identify the device that is being addressed.27

The enable argument indicates whether this invocation should enable or disable recording of events.28

The flags argument specifies the kinds of native device monitoring to enable or to disable. Each29
kind of monitoring is specified by a flag bit. Flags can be composed by using logical or to combine30
enumeration values from type ompt_native_mon_flag_t.31

CHAPTER 20. OMPT INTERFACE 657

Restrictions1
Restrictions on the ompt_set_trace_native runtime entry point are as follows:2

• The entry point must not return ompt_set_sometimes_paired.3

Cross References4
• Tracing Activity on Target Devices with OMPT, see Section 20.2.55

• ompt_device_t, see Section 20.4.4.56

• ompt_native_mon_flag_t, see Section 20.4.4.187

• ompt_set_result_t, see Section 20.4.4.28

20.6.2.6 ompt_get_buffer_limits_t9

Summary10
The ompt_get_buffer_limits_t type is the type signature of the11
ompt_get_buffer_limits runtime entry point, which returns the maximum number of12
concurrent buffer allocations and the recommended size of any buffer allocation that will be13
requested of the tool for a given device.14

Format15
C / C++

typedef void (*ompt_get_buffer_limits_t) (16
ompt_device_t *device,17
int *max_concurrent_allocs,18
size_t *recommended_bytes19

);20

C / C++

Semantics21
The ompt_get_buffer_limits runtime entry point, which has type signature22
ompt_get_buffer_limits_t, returns the maximum number of concurrent buffer allocations23
and the recommended size of any buffer allocation that will be requested of the tool for a given24
device. A first party tool may use this entry point prior to a call to the ompt_start_trace entry25
point to determine the total size of the buffers that the implementation would need for tracing26
activity on the device at any given time.27

The limits returned by this entry point remain the same on each successive call unless the28
ompt_stop_trace entry point is called for the same target device between the successive calls.29

658 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Arguments1
The device argument points to an opaque object that represents the target device instance. Functions2
in the device tracing interface use this pointer to identify the device that is being addressed.3

The *max_concurrent_allocs argument indicates the maximum number of buffer allocations that4
may be requested by an implementation for tracing activity on the target device without the5
implementation performing callback dispatch with the type signature6
ompt_callback_buffer_complete_t and the buffer_owned argument set to a non-zero7
value for any of the buffers.8

The *recommended_bytes argument indicates the recommended buffer size of the buffer to be9
returned by the first party tool when the implementation dispatches a callback with the type10
signature ompt_callback_buffer_request_t for the target device.11

Cross References12
• ompt_callback_buffer_complete_t, see Section 20.5.2.2413

• ompt_callback_buffer_request_t, see Section 20.5.2.2314

• ompt_device_t, see Section 20.4.4.515

• ompt_start_trace_t, see Section 20.6.2.716

• ompt_stop_trace_t, see Section 20.6.2.1017

20.6.2.7 ompt_start_trace_t18

Summary19
The ompt_start_trace_t type is the type signature of the ompt_start_trace runtime20
entry point, which starts tracing of activity on a specific device.21

Format22
C / C++

typedef int (*ompt_start_trace_t) (23
ompt_device_t *device,24
ompt_callback_buffer_request_t request,25
ompt_callback_buffer_complete_t complete26

);27

C / C++

Semantics28
A device’s ompt_start_trace runtime entry point, which has type signature29
ompt_start_trace_t, initiates tracing on the device. Under normal operating conditions,30
every event buffer provided to a device by a tool callback is returned to the tool before the OpenMP31
runtime shuts down. If an exceptional condition terminates execution of an OpenMP program, the32
OpenMP runtime may not return buffers provided to the device. An invocation of33
ompt_start_trace returns 1 if the command succeeds and 0 otherwise.34

CHAPTER 20. OMPT INTERFACE 659

Description of Arguments1
The device argument points to an opaque object that represents the target device instance. Functions2
in the device tracing interface use this pointer to identify the device that is being addressed.3

The request argument specifies a tool callback that supplies a buffer in which a device can deposit4
events.5

The complete argument specifies a tool callback that is invoked by the OpenMP implementation to6
empty a buffer that contains event records.7

Cross References8
• ompt_callback_buffer_complete_t, see Section 20.5.2.249

• ompt_callback_buffer_request_t, see Section 20.5.2.2310

• ompt_device_t, see Section 20.4.4.511

20.6.2.8 ompt_pause_trace_t12

Summary13
The ompt_pause_trace_t type is the type signature of the ompt_pause_trace runtime14
entry point, which pauses or restarts activity tracing on a specific device.15

Format16
C / C++

typedef int (*ompt_pause_trace_t) (17
ompt_device_t *device,18
int begin_pause19

);20

C / C++

Semantics21
A device’s ompt_pause_trace runtime entry point, which has type signature22
ompt_pause_trace_t, pauses or resumes tracing on a device. An invocation of23
ompt_pause_trace returns 1 if the command succeeds and 0 otherwise. Redundant pause or24
resume commands are idempotent and will return the same value as the prior command.25

Description of Arguments26
The device argument points to an opaque object that represents the target device instance. Functions27
in the device tracing interface use this pointer to identify the device that is being addressed.28

The begin_pause argument indicates whether to pause or to resume tracing. To resume tracing,29
zero should be supplied for begin_pause; to pause tracing, any other value should be supplied.30

Cross References31
• ompt_device_t, see Section 20.4.4.532

660 OpenMP API – Version 6.0 Preview 2 November 2023

20.6.2.9 ompt_flush_trace_t1

Summary2
The ompt_flush_trace_t type is the type signature of the ompt_flush_trace runtime3
entry point, which causes all pending trace records for the specified device to be delivered.4

Format5
C / C++

typedef int (*ompt_flush_trace_t) (6
ompt_device_t *device7

);8

C / C++

Semantics9
A device’s ompt_flush_trace runtime entry point, which has type signature10
ompt_flush_trace_t, causes the OpenMP implementation to issue a sequence of zero or more11
buffer completion callbacks to deliver all trace records that have been collected prior to the flush.12
An invocation of ompt_flush_trace returns 1 if the command succeeds and 0 otherwise.13

Description of Arguments14
The device argument points to an opaque object that represents the target device instance. Functions15
in the device tracing interface use this pointer to identify the device that is being addressed.16

Cross References17
• ompt_device_t, see Section 20.4.4.518

20.6.2.10 ompt_stop_trace_t19

Summary20
The ompt_stop_trace_t type is the type signature of the ompt_stop_trace runtime entry21
point, which stops tracing for a device.22

Format23
C / C++

typedef int (*ompt_stop_trace_t) (24
ompt_device_t *device25

);26

C / C++

Semantics27
A device’s ompt_stop_trace runtime entry point, which has type signature28
ompt_stop_trace_t, halts tracing on the device and requests that any pending trace records be29
flushed. An invocation of ompt_stop_trace returns 1 if the command succeeds and 030
otherwise.31

CHAPTER 20. OMPT INTERFACE 661

Description of Arguments1
The device argument points to an opaque object that represents the target device instance. Functions2
in the device tracing interface use this pointer to identify the device that is being addressed.3

Cross References4
• ompt_device_t, see Section 20.4.4.55

20.6.2.11 ompt_advance_buffer_cursor_t6

Summary7
The ompt_advance_buffer_cursor_t type is the type signature of the8
ompt_advance_buffer_cursor runtime entry point, which advances a trace buffer cursor to9
the next record.10

Format11
C / C++

typedef int (*ompt_advance_buffer_cursor_t) (12
ompt_device_t *device,13
ompt_buffer_t *buffer,14
size_t size,15
ompt_buffer_cursor_t current,16
ompt_buffer_cursor_t *next17

);18

C / C++

Semantics19
A device’s ompt_advance_buffer_cursor runtime entry point, which has type signature20
ompt_advance_buffer_cursor_t, advances a trace buffer pointer to the next trace record.21
An invocation of ompt_advance_buffer_cursor returns true if the advance is successful22
and the next position in the buffer is valid.23

Description of Arguments24
The device argument points to an opaque object that represents the target device instance. Functions25
in the device tracing interface use this pointer to identify the device that is being addressed.26

The buffer argument indicates a trace buffer that is associated with the cursors.27

The argument size indicates the size of buffer in bytes.28

The current argument is an opaque buffer cursor.29

The next argument returns the next value of an opaque buffer cursor.30

Cross References31
• ompt_buffer_cursor_t, see Section 20.4.4.832

• ompt_device_t, see Section 20.4.4.533

662 OpenMP API – Version 6.0 Preview 2 November 2023

20.6.2.12 ompt_get_record_type_t1

Summary2
The ompt_get_record_type_t type is the type signature of the3
ompt_get_record_type runtime entry point, which inspects the type of a trace record.4

Format5
C / C++

typedef ompt_record_t (*ompt_get_record_type_t) (6
ompt_buffer_t *buffer,7
ompt_buffer_cursor_t current8

);9

C / C++
Semantics10
Trace records for a device may be in one of two forms: native record format, which may be11
device-specific, or OMPT record format, in which each trace record corresponds to an OpenMP12
event and most fields in the record structure are the arguments that would be passed to the OMPT13
callback for the event. A device’s ompt_get_record_type runtime entry point, which has14
type signature ompt_get_record_type_t, inspects the type of a trace record and indicates15
whether the record at the current position in the trace buffer is an OMPT record, a native record, or16
an invalid record. An invalid record type is returned if the cursor is out of bounds.17

Description of Arguments18
The buffer argument indicates a trace buffer.19

The current argument is an opaque buffer cursor.20

Cross References21
• Record Type, see Section 20.4.3.122

• ompt_buffer_cursor_t, see Section 20.4.4.823

• ompt_buffer_t, see Section 20.4.4.724

20.6.2.13 ompt_get_record_ompt_t25

Summary26
The ompt_get_record_ompt_t type is the type signature of the27
ompt_get_record_ompt runtime entry point, which obtains a pointer to an OMPT trace28
record from a trace buffer associated with a device.29

Format30
C / C++

typedef ompt_record_ompt_t *(*ompt_get_record_ompt_t) (31
ompt_buffer_t *buffer,32
ompt_buffer_cursor_t current33

);34

C / C++

CHAPTER 20. OMPT INTERFACE 663

Semantics1
A device’s ompt_get_record_ompt runtime entry point, which has type signature2
ompt_get_record_ompt_t, returns a pointer that may point to a record in the trace buffer, or3
it may point to a record in thread-local storage in which the information extracted from a record was4
assembled. The information available for an event depends upon its type. The return value of the5
ompt_record_ompt_t type includes a field of a union type that can represent information for6
any OMPT event record type. Another call to the runtime entry point may overwrite the contents of7
the fields in a record returned by a prior invocation.8

Description of Arguments9
The buffer argument indicates a trace buffer.10

The current argument is an opaque buffer cursor.11

Cross References12
• Standard Trace Record Type, see Section 20.4.3.413

• ompt_buffer_cursor_t, see Section 20.4.4.814

• ompt_device_t, see Section 20.4.4.515

20.6.2.14 ompt_get_record_native_t16

Summary17
The ompt_get_record_native_t type is the type signature of the18
ompt_get_record_native runtime entry point, which obtains a pointer to a native trace19
record from a trace buffer associated with a device.20

Format21
C / C++

typedef void *(*ompt_get_record_native_t) (22
ompt_buffer_t *buffer,23
ompt_buffer_cursor_t current,24
ompt_id_t *host_op_id25

);26

C / C++

Semantics27
A device’s ompt_get_record_native runtime entry point, which has type signature28
ompt_get_record_native_t, returns a pointer that may point into the specified trace buffer,29
or into thread-local storage in which the information extracted from a trace record was assembled.30
The information available for a native event depends upon its type. If the function returns a non-null31
value result, it will also set the object to which host_op_id points to a host-side identifier for the32
operation that is associated with the record. A subsequent call to ompt_get_record_native33
may overwrite the contents of the fields in a record returned by a prior invocation.34

664 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Arguments1
The buffer argument indicates a trace buffer.2

The current argument is an opaque buffer cursor.3

The host_op_id argument is a pointer to an identifier that is returned by the function. The entry4
point sets the identifier to which host_op_id points to the value of a host-side identifier for an5
operation on a target device that was created when the operation was initiated by the host.6

Cross References7
• ompt_buffer_cursor_t, see Section 20.4.4.88

• ompt_buffer_t, see Section 20.4.4.79

• ompt_id_t, see Section 20.4.4.310

20.6.2.15 ompt_get_record_abstract_t11

Summary12
The ompt_get_record_abstract_t type is the type signature of the13
ompt_get_record_abstract runtime entry point, which summarizes the context of a native14
(device-specific) trace record.15

Format16
C / C++

typedef ompt_record_abstract_t *(*ompt_get_record_abstract_t) (17
void *native_record18

);19

C / C++
Semantics20
An OpenMP implementation may execute on a device that logs trace records in a native21
(device-specific) format that a tool cannot interpret directly. The22
ompt_get_record_abstract runtime entry point of a device, which has type signature23
ompt_get_record_abstract_t, translates a native trace record into a standard form.24

Description of Arguments25
The native_record argument is a pointer to a native trace record.26

Cross References27
• Native Record Abstract Type, see Section 20.4.3.328

20.6.3 Lookup Entry Points: ompt_function_lookup_t29

Summary30
The ompt_function_lookup_t type is the type signature of the lookup runtime entry points31
that provide pointers to runtime entry points that are part of the OMPT interface.32

CHAPTER 20. OMPT INTERFACE 665

Format1
C / C++

typedef void (*ompt_interface_fn_t) (void);2
3

typedef ompt_interface_fn_t (*ompt_function_lookup_t) (4
const char *interface_function_name5

);6

C / C++

Semantics7
An OpenMP implementation provides pointers to lookup routines that provide pointers to OMPT8
runtime entry points. When the implementation invokes a tool initializer to configure the OMPT9
callback interface, it provides a lookup function that provides pointers to runtime entry points that10
implement routines that are part of the OMPT callback interface. Alternatively, when it invokes a11
tool initializer to configure the OMPT tracing interface for a device, it provides a lookup function12
that provides pointers to runtime entry points that implement tracing control routines appropriate13
for that device.14

If the provided function name is unknown to the OpenMP implementation, the function returns15
NULL. In a compliant implementation, the lookup function provided by the tool initializer for the16
OMPT callback interface returns a valid function pointer for any OMPT runtime entry point name17
listed in Table 20.1.18

A compliant implementation of a lookup function passed to a tool’s19
ompt_device_initialize callback must provide non-NULL function pointers for all strings20
in Table 20.3, except for ompt_set_trace_ompt and ompt_get_record_ompt, as21
described in Section 20.2.5.22

Description of Arguments23
The interface_function_name argument is a C string that represents the name of a runtime entry24
point.25

Cross References26
• Entry Points in the OMPT Callback Interface, see Section 20.6.127

• Entry Points in the OMPT Device Tracing Interface, see Section 20.6.228

• Tracing Activity on Target Devices with OMPT, see Section 20.2.529

• ompt_initialize_t, see Section 20.5.1.130

666 OpenMP API – Version 6.0 Preview 2 November 2023

21 OMPD Interface1

This chapter describes OMPD, which is an interface for third-party tool. third-party tool exist in2
separate processes from the OpenMP program. To provide OMPD support, an OpenMP3
implementation must provide an OMPD library that the third-party tool can load. An OpenMP4
implementation does not need to maintain any extra information to support OMPD inquiries from5
third-party tools unless it is explicitly instructed to do so.6

OMPD allows third-party tools such as debuggers to inspect the OpenMP state of a live OpenMP7
program or core file in an implementation-agnostic manner. That is, a third-party tool that uses8
OMPD should work with any compliant implementation. An OpenMP implementer provides a9
library for OMPD that a third-party tool can dynamically load. The third-party tool can use the10
interface exported by the OMPD library to inspect the OpenMP state of a OpenMP program. In11
order to satisfy requests from the third-party tool, the OMPD library may need to read data from the12
OpenMP program, or to find the addresses of symbols in it. The OMPD library provides this13
functionality through a callback interface that the third-party tool must instantiate for the OMPD14
library.15

To use OMPD, the third-party tool loads the OMPD library. The OMPD library exports the API16
that is defined throughout this section, and the third-party tool uses the API to determine OpenMP17
information about the OpenMP program. The OMPD library must look up the symbols and read18
data out of the program. It does not perform these operations directly but instead directs the19
third-party tool to perform them by using the callback interface that the third-party tool exports.20

The OMPD design insulates third-party tools from the internal structure of the OpenMP runtime,21
while the OMPD library is insulated from the details of how to access the OpenMP program. This22
decoupled design allows for flexibility in how the OpenMP program and third-party tool are23
deployed, so that, for example, the third-party tool and the OpenMP program are not required to24
execute on the same machine.25

Generally, the third-party tool does not interact directly with the OpenMP runtime but instead26
interacts with the runtime through the OMPD library. However, a few cases require the third-party27
tool to access the OpenMP runtime directly. These cases fall into two broad categories. The first is28
during initialization where the third-party tool must look up symbols and read variables in the29
OpenMP runtime in order to identify the OMPD library that it should use, which is discussed in30
Section 21.2.2 and Section 21.2.3. The second category relates to arranging for the third-party tool31
to be notified when certain events occur during the execution of the OpenMP program. For this32
purpose, the OpenMP implementation must define certain symbols in the runtime code, as is33
discussed in Section 21.6. Each of these symbols corresponds to an event type. The OpenMP34
runtime must ensure that control passes through the appropriate named location when events occur.35

667

If the third-party tool requires notification of an event, it can plant a breakpoint at the matching1
location. The location can, but may not, be a function. It can, for example, simply be a label.2
However, the names of the locations must have external C linkage.3

21.1 OMPD Interfaces Definitions4

C / C++
A compliant implementation must supply a set of definitions for the OMPD runtime entry points,5
OMPD third-party tool callback signatures, third-party tool interface functions and the special data6
types of their parameters and return values. These definitions, which are listed throughout this7
chapter, and their associated declarations shall be provided in a header file named omp-tools.h.8
In addition, the set of definitions may specify other implementation-specific values.9

The ompd_dll_locations variable, all OMPD third-party tool interface functions, and all10
OMPD runtime entry points are external symbols with C linkage.11

C / C++

21.2 Activating a Third-Party Tool12

The third-party tool and the OpenMP program exist as separate processes. Thus, coordination is13
required between the OpenMP runtime and the third-party tool for OMPD.14

21.2.1 Enabling Runtime Support for OMPD15

In order to support third-party tools, the OpenMP runtime may need to collect and to store16
information that it may not otherwise maintain. The OpenMP runtime collects whatever17
information is necessary to support OMPD if the environment variable OMP_DEBUG is set to18
enabled.19

Cross References20
• OMP_DEBUG, see Section 3.4.121

21.2.2 ompd_dll_locations22

Summary23
The ompd_dll_locations global variable points to the locations of OMPD libraries that are24
compatible with the OpenMP implementation.25

Format26
C

extern const char **ompd_dll_locations;27

C

668 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
An OpenMP runtime may have more than one OMPD library. The third-party tool must be able to2
locate the right library to use for the OpenMP program that it is examining. The OpenMP runtime3
system must provide a public variable ompd_dll_locations, which is an argv-style vector of4
pathname string pointers that provides the names of any compatible OMPD libraries. This variable5
must have C linkage. The third-party tool uses the name of the variable verbatim and, in particular,6
does not apply any name mangling before performing the look up.7

The architecture on which the third-party tool and, thus, the OMPD library execute does not have to8
match the architecture on which the OpenMP program that is being examined executes. The9
third-party tool must interpret the contents of ompd_dll_locations to find a suitable OMPD10
library that matches its own architectural characteristics. On platforms that support different11
architectures (for example, 32-bit vs 64-bit), OpenMP implementations are encouraged to provide12
an OMPD library for each supported architecture that can handle OpenMP programs that run on13
any supported architecture. Thus, for example, a 32-bit debugger that uses OMPD should be able to14
debug a 64-bit OpenMP program by loading a 32-bit OMPD implementation that can manage a15
64-bit OpenMP runtime.16

The ompd_dll_locations variable points to a NULL-terminated vector of zero or more17
null-terminated pathname strings that do not have any filename conventions. This vector must be18
fully initialized before ompd_dll_locations is set to a non-null value. Thus, if a third-party19
tool, such as a debugger, stops execution of the OpenMP program at any point at which20
ompd_dll_locations is a non-null value, the vector of strings to which it points shall be valid21
and complete.22

Cross References23
• ompd_dll_locations_valid, see Section 21.2.324

21.2.3 ompd_dll_locations_valid25

Summary26
The OpenMP runtime notifies third-party tools that ompd_dll_locations is valid by allowing27
execution to pass through a location that the symbol ompd_dll_locations_valid identifies.28

Format29
C

void ompd_dll_locations_valid(void);30

C

CHAPTER 21. OMPD INTERFACE 669

Semantics1
Since ompd_dll_locations may not be a static variable, it may require runtime initialization.2
The OpenMP runtime notifies third-party tools that ompd_dll_locations is valid by having3
execution pass through a location that the symbol ompd_dll_locations_valid identifies. If4
ompd_dll_locations is NULL, a third-party tool can place a breakpoint at5
ompd_dll_locations_valid to be notified that ompd_dll_locations is initialized. In6
practice, the symbol ompd_dll_locations_valid may not be a function; instead, it may be a7
labeled machine instruction through which execution passes once the vector is valid.8

21.3 OMPD Data Types9

This section defines OMPD data types.10

21.3.1 Size Type11

Summary12
The ompd_size_t type specifies the number of bytes in opaque data objects that are passed13
across the OMPD API.14

Format15
C / C++

typedef uint64_t ompd_size_t;16

C / C++

21.3.2 Wait ID Type17

Summary18
A variable of ompd_wait_id_t type identifies the object on which a thread waits.19

Format20
C / C++

typedef uint64_t ompd_wait_id_t;21

C / C++

Semantics22
The values and meaning of ompd_wait_id_t are the same as those defined for the23
ompt_wait_id_t type.24

Cross References25
• ompt_wait_id_t, see Section 20.4.4.3126

670 OpenMP API – Version 6.0 Preview 2 November 2023

21.3.3 Basic Value Types1

Summary2
These definitions represent word, address, and segment value types.3

Format4
C / C++

typedef uint64_t ompd_addr_t;5
typedef int64_t ompd_word_t;6
typedef uint64_t ompd_seg_t;7

C / C++

Semantics8
The ompd_addr_t type represents an address in an OpenMP process with an unsigned integer type.9
The ompd_word_t type represents a data word from the OpenMP runtime with a signed integer10
type. The ompd_seg_t type represents a segment value with an unsigned integer type.11

21.3.4 Address Type12

Summary13
The ompd_address_t type is used to specify device addresses.14

Format15
C / C++

typedef struct ompd_address_t {16
ompd_seg_t segment;17
ompd_addr_t address;18

} ompd_address_t;19

C / C++

Semantics20
The ompd_address_t type is a structure that OMPD uses to specify device addresses, which21
may or may not be segmented. For non-segmented architectures, ompd_segment_none is used22
in the segment field of ompd_address_t; it is an instance of the ompd_seg_t type that has the23
value 0.24

Cross References25
• Basic Value Types, see Section 21.3.326

21.3.5 Frame Information Type27

Summary28
The ompd_frame_info_t type is used to specify frame information.29

CHAPTER 21. OMPD INTERFACE 671

Format1
C / C++

typedef struct ompd_frame_info_t {2
ompd_address_t frame_address;3
ompd_word_t frame_flag;4

} ompd_frame_info_t;5

C / C++

Semantics6
The ompd_frame_info_t type is a structure that OMPD uses to specify frame information.7
The frame_address field of ompd_frame_info_t identifies a frame. The frame_flag field of8
ompd_frame_info_t indicates what type of information is provided in frame_address. The9
values and meaning is the same as defined for the ompt_frame_flag_t enumeration type.10

Cross References11
• Address Type, see Section 21.3.412

• Basic Value Types, see Section 21.3.313

• ompt_frame_flag_t, see Section 20.4.4.3014

21.3.6 System Device Identifiers15

Summary16
The ompd_device_t type provides information about OpenMP devices.17

Format18
C / C++

typedef uint64_t ompd_device_t;19

C / C++

Semantics20
OpenMP runtimes may utilize different underlying devices, each represented by a device identifier.21
The device identifiers can vary in size and format and, thus, are not explicitly represented in the22
OMPD interface. Instead, a device identifier is passed across the interface via its23
ompd_device_t kind, its size in bytes and a pointer to where it is stored. The OMPD library and24
the third-party tool use the ompd_device_t kind to interpret the format of the device identifier25
that is referenced by the pointer argument. Each different device identifier kind is represented by a26
unique unsigned 64-bit integer value. Recommended values of ompd_device_t kinds are27
defined in the ompd-types.h header file, which is contained in the Supplementary Source Code28
package available via https://www.openmp.org/specifications/.29

672 OpenMP API – Version 6.0 Preview 2 November 2023

https://www.openmp.org/specifications/

21.3.7 Native Thread Identifiers1

Summary2
The ompd_thread_id_t type provides information about native threads.3

Format4
C / C++

typedef uint64_t ompd_thread_id_t;5

C / C++

Semantics6
OpenMP runtimes may use different native thread implementations. Native thread identifiers for7
these implementations can vary in size and format and, thus, are not explicitly represented in the8
OMPD interface. Instead, a native thread identifier is passed across the interface via its9
ompd_thread_id_t kind, its size in bytes and a pointer to where it is stored. The OMPD10
library and the third-party tool use the ompd_thread_id_t kind to interpret the format of the11
native thread identifier that is referenced by the pointer argument. Each different native thread12
identifier kind is represented by a unique unsigned 64-bit integer value. Recommended values of13
ompd_thread_id_t kinds, and formats for some corresponding native thread identifiers, are14
defined in the ompd-types.h header file, which is contained in the Supplementary Source Code15
package available via https://www.openmp.org/specifications/.16

21.3.8 OMPD Handle Types17

Summary18
The OMPD library defines handles for referring to address spaces, threads, parallel regions and19
tasks that are managed by the OpenMP runtime. The internal structures that these handles represent20
are opaque to the third-party tool.21

Format22
C / C++

typedef struct _ompd_aspace_handle ompd_address_space_handle_t;23
typedef struct _ompd_thread_handle ompd_thread_handle_t;24
typedef struct _ompd_parallel_handle ompd_parallel_handle_t;25
typedef struct _ompd_task_handle ompd_task_handle_t;26

C / C++

CHAPTER 21. OMPD INTERFACE 673

https://www.openmp.org/specifications/

Semantics1
OMPD uses handles for the following entities that are managed by the OpenMP runtime: address2
spaces (ompd_address_space_handle_t), threads (ompd_thread_handle_t), parallel3
regions (ompd_parallel_handle_t), and tasks (ompd_task_handle_t). Each operation4
of the OMPD interface that applies to a particular address space, thread, parallel region or task5
must explicitly specify a corresponding handle. Handles are defined by the OMPD library and are6
opaque to the third-party tool. A handle remains constant and valid while the associated entity is7
managed by the OpenMP runtime or until it is released with the corresponding third-party tool8
interface routine for releasing handles of that type. If a tool receives notification of the end of the9
lifetime of a managed entity (see Section 21.6) or it releases the handle, the handle may no longer10
be referenced.11

Defining externally visible type names in this way introduces type safety to the interface, and helps12
to catch instances where incorrect handles are passed by the third-party tool to the OMPD library.13
The structures do not need to be defined; instead, the OMPD library must cast incoming (pointers14
to) handles to the appropriate internal, private types.15

21.3.9 OMPD Scope Types16

Summary17
The ompd_scope_t type identifies OMPD scopes.18

Format19
C / C++

typedef enum ompd_scope_t {20
ompd_scope_global = 1,21
ompd_scope_address_space = 2,22
ompd_scope_thread = 3,23
ompd_scope_parallel = 4,24
ompd_scope_implicit_task = 5,25
ompd_scope_task = 6,26
ompd_scope_teams = 7,27
ompd_scope_target = 828

} ompd_scope_t;29

C / C++

Semantics30
The ompd_scope_t type identifies OpenMP scopes, including those related to parallel regions31
and tasks. When used in an OMPD interface function call, the scope type and the OMPD handle32
must match according to Table 21.1.33

674 OpenMP API – Version 6.0 Preview 2 November 2023

TABLE 21.1: Mapping of Scope Type and OMPD Handles

Scope types Handles
ompd_scope_global Address space handle for the host device
ompd_scope_address_space Any address space handle
ompd_scope_thread Any native thread handle
ompd_scope_parallel Any parallel handle
ompd_scope_implicit_task Task handle for an implicit task
ompd_scope_teams Parallel handle for an implicit parallel region gener-

ated from a teams construct
ompd_scope_target Parallel handle for an implicit parallel region gener-

ated from a target construct
ompd_scope_task Any task handle

21.3.10 Team Generator Types1

Summary2
The ompd_team_generator_t type identifies the generator of a given team.3

Format4
C / C++

typedef enum ompd_team_generator_t {5
ompd_generator_program = 0,6
ompd_generator_parallel = 1,7
ompd_generator_teams = 2,8
ompd_generator_target = 39

} ompd_team_generator_t;10

C / C++

Semantics11
The ompd_team_generator_t type represents the value of the team-generator-var ICV. The12
ompd_generator_program value indicates that the team is the initial team created at the start13
of the OpenMP program. The ompd_generator_parallel, ompd_generator_teams,14
and ompd_generator_target values indicate that the team was created by an encountered15
parallel construct, teams construct, or target construct, respectively.16

CHAPTER 21. OMPD INTERFACE 675

21.3.11 ICV ID Type1

Summary2
The ompd_icv_id_t type identifies an OpenMP implementation ICV.3

Format4
C / C++

typedef uint64_t ompd_icv_id_t;5

C / C++
Semantics6
The ompd_icv_id_t type identifies OpenMP implementation ICVs. ompd_icv_undefined7
is an instance of this type with the value 0.8

21.3.12 Tool Context Types9

Summary10
A third-party tool defines contexts to identify abstractions uniquely. The internal structures that11
these contexts represent are opaque to the OMPD library.12

Format13
C / C++

typedef struct _ompd_aspace_cont ompd_address_space_context_t;14
typedef struct _ompd_thread_cont ompd_thread_context_t;15

C / C++
Semantics16
A third-party tool uniquely defines an address space context to identify the address space for the17
OpenMP process that it is monitoring. Similarly, it uniquely defines a native thread context to18
identify a native thread of the OpenMP process that it is monitoring. These tool contexts are19
opaque to the OMPD library.20

21.3.13 Return Code Types21

Summary22
The ompd_rc_t type is the return code type of an OMPD operation.23

Format24
C / C++

typedef enum ompd_rc_t {25
ompd_rc_ok = 0,26
ompd_rc_unavailable = 1,27
ompd_rc_stale_handle = 2,28
ompd_rc_bad_input = 3,29
ompd_rc_error = 4,30
ompd_rc_unsupported = 5,31

676 OpenMP API – Version 6.0 Preview 2 November 2023

ompd_rc_needs_state_tracking = 6,1
ompd_rc_incompatible = 7,2
ompd_rc_device_read_error = 8,3
ompd_rc_device_write_error = 9,4
ompd_rc_nomem = 10,5
ompd_rc_incomplete = 11,6
ompd_rc_callback_error = 12,7
ompd_rc_incompatible_handle = 138
ompd_rc_t;9

C / C++

Semantics10
The ompd_rc_t type is used for the return codes of OMPD operations. The return code types and11
their semantics are defined as follows:12

• ompd_rc_ok is returned when the operation is successful;13

• ompd_rc_unavailable is returned when information is not available for the specified14
context;15

• ompd_rc_stale_handle is returned when the specified handle is no longer valid;16

• ompd_rc_incompatible_handle is returned when the specified handle is17
incompatible with the query function;18

• ompd_rc_bad_input is returned when the input parameters (other than handle) are19
invalid;20

• ompd_rc_error is returned when a fatal error occurred;21

• ompd_rc_unsupported is returned when the requested operation is not supported;22

• ompd_rc_needs_state_tracking is returned when the state tracking operation failed23
because state tracking is not currently enabled;24

• ompd_rc_device_read_error is returned when a read operation failed on the device;25

• ompd_rc_device_write_error is returned when a write operation failed on the26
device;27

• ompd_rc_incompatible is returned when this OMPD library is incompatible with the28
OpenMP program or is not capable of handling it;29

• ompd_rc_nomem is returned when a memory allocation fails;30

• ompd_rc_incomplete is returned when the information provided on return is31
incomplete, while the arguments are still set to valid values; and32

• ompd_rc_callback_error is returned when the callback interface or any one of the33
required callback routines provided by the third-party tool is invalid.34

CHAPTER 21. OMPD INTERFACE 677

21.3.14 Primitive Type Sizes1

Summary2
The ompd_device_type_sizes_t type provides the size of primitive types in the OpenMP3
architecture address space.4

Format5
C / C++

typedef struct ompd_device_type_sizes_t {6
uint8_t sizeof_char;7
uint8_t sizeof_short;8
uint8_t sizeof_int;9
uint8_t sizeof_long;10
uint8_t sizeof_long_long;11
uint8_t sizeof_pointer;12

} ompd_device_type_sizes_t;13

C / C++

Semantics14
The ompd_device_type_sizes_t type is used in operations through which the OMPD15
library can interrogate the third-party tool about the size of primitive types for the target16
architecture of the OpenMP runtime, as returned by the sizeof operator. The fields of17
ompd_device_type_sizes_t give the sizes of the eponymous basic types used by the18
OpenMP runtime. As the third-party tool and the OMPD library, by definition, execute on the same19
architecture, the size of the fields can be given as uint8_t.20

Cross References21
• ompd_callback_sizeof_fn_t, see Section 21.4.2.222

21.4 OMPD Third-Party Tool Callback Interface23

For the OMPD library to provide information about the internal state of the OpenMP runtime24
system in an OpenMP process or core file, it must have a means to extract information from the25
OpenMP process that the third-party tool is examining. The OpenMP process on which the26
third-party tool is operating may be either a “live” process or a core file, and a thread may be either27
a “live” thread in an OpenMP process or a thread in a core file. To enable the OMPD library to28
extract state information from an OpenMP process or core file, the third-party tool must supply the29
OMPD library with callback functions to inquire about the size of primitive types in the device of30
the OpenMP process, to look up the addresses of symbols, and to read and to write memory in the31
device. The OMPD library uses these callbacks to implement its interface operations. The OMPD32
library only invokes the callback functions in direct response to calls made by the third-party tool to33
the OMPD library.34

678 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Return Codes1
All of the OMPD callback functions must return the following return codes or function-specific2
return codes:3

• ompd_rc_ok on success; or4

• ompd_rc_stale_handle if an invalid context argument is provided.5

21.4.1 Memory Management of OMPD Library6

ompd_callback_memory_alloc_fn_t (see Section 21.4.1.1) and7
ompd_callback_memory_free_fn_t (see Section 21.4.1.2) are provided by the third-party8
tool to obtain and to release heap memory. This mechanism ensures that the library does not9
interfere with any custom memory management scheme that the third-party tool may use.10

If the OMPD library is implemented in C++ then memory management operators, like new and11
delete and their variants, must all be overloaded and implemented in terms of the callbacks that12
the third-party tool provides. The OMPD library must be implemented in a manner such that any of13
its definitions of new or delete do not interfere with any that the third-party tool defines.14

In some cases, the OMPD library must allocate memory to return results to the third-party tool.15
The third-party tool then owns this memory and has the responsibility to release it. Thus, the16
OMPD library and the third-party tool must use the same memory manager.17

The OMPD library creates OMPD handles, which are opaque to the third-party tool and may have a18
complex internal structure. The third-party tool cannot determine if the handle pointers that the19
API returns correspond to discrete heap allocations. Thus, the third-party tool must not simply20
deallocate a handle by passing an address that it receives from the OMPD library to its own21
memory manager. Instead, the OMPD API includes functions that the third-party tool must use22
when it no longer needs a handle.23

A third-party tool creates contexts and passes them to the OMPD library. The OMPD library does24
not release contexts; instead the third-party tool releases them after it releases any handles that may25
reference the contexts.26

21.4.1.1 ompd_callback_memory_alloc_fn_t27

Summary28
The ompd_callback_memory_alloc_fn_t type is the type signature of the callback routine29
that the third-party tool provides to the OMPD library to allocate memory.30

Format31
C

typedef ompd_rc_t (*ompd_callback_memory_alloc_fn_t) (32
ompd_size_t nbytes,33
void **ptr34

);35

C

CHAPTER 21. OMPD INTERFACE 679

Semantics1
The ompd_callback_memory_alloc_fn_t type is the type signature of the memory2
allocation callback routine that the third-party tool provides. The OMPD library may call the3
ompd_callback_memory_alloc_fn_t callback function to allocate memory.4

Description of Arguments5
The nbytes argument is the size in bytes of the block of memory to allocate.6

The address of the newly allocated block of memory is returned in the location to which the ptr7
argument points. The newly allocated block is suitably aligned for any type of variable and is not8
guaranteed to be set to zero.9

Description of Return Codes10
Routines that use the ompd_callback_memory_alloc_fn_t type may return the general11
return codes listed at the beginning of Section 21.4.12

Cross References13
• Return Code Types, see Section 21.3.1314

• Size Type, see Section 21.3.115

• The Callback Interface, see Section 21.4.616

21.4.1.2 ompd_callback_memory_free_fn_t17

Summary18
The ompd_callback_memory_free_fn_t type is the type signature of the callback routine19
that the third-party tool provides to the OMPD library to deallocate memory.20

Format21
C

typedef ompd_rc_t (*ompd_callback_memory_free_fn_t) (22
void *ptr23

);24

C

Semantics25
The ompd_callback_memory_free_fn_t type is the type signature of the memory26
deallocation callback routine that the third-party tool provides. The OMPD library may call the27
ompd_callback_memory_free_fn_t callback function to deallocate memory that was28
obtained from a prior call to the ompd_callback_memory_alloc_fn_t callback function.29

Description of Arguments30
The ptr argument is the address of the block to be deallocated.31

680 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Return Codes1
Routines that use the ompd_callback_memory_free_fn_t type may return the general2
return codes listed at the beginning of Section 21.4.3

Cross References4
• Return Code Types, see Section 21.3.135

• The Callback Interface, see Section 21.4.66

• ompd_callback_memory_alloc_fn_t, see Section 21.4.1.17

21.4.2 Context Management and Navigation8

Summary9
The third-party tool provides the OMPD library with callbacks to manage and to navigate context10
relationships.11

21.4.2.1 ompd_callback_get_thread_context_for_thread_id_fn_t12

Summary13
The ompd_callback_get_thread_context_for_thread_id_fn_t is the type14
signature of the callback routine that the third-party tool provides to the OMPD library to map a15
native thread identifier to a third-party tool native thread context.16

Format17
C

typedef ompd_rc_t18
(*ompd_callback_get_thread_context_for_thread_id_fn_t) (19

ompd_address_space_context_t *address_space_context,20
ompd_thread_id_t kind,21
ompd_size_t sizeof_thread_id,22
const void *thread_id,23
ompd_thread_context_t **thread_context24

);25

C

Semantics26
The ompd_callback_get_thread_context_for_thread_id_fn_t is the type27
signature of the tool context that maps a callback that the third-party tool provides. This callback28
maps a native thread identifier to a third-party tool native thread context. The native thread29
identifier is within the address space that address_space_context identifies. The OMPD library can30
use the native thread context, for example, to access thread local storage.31

CHAPTER 21. OMPD INTERFACE 681

Description of Arguments1
The address_space_context argument is an opaque handle that the third-party tool provides to2
reference an address space. The kind, sizeof_thread_id, and thread_id arguments represent a native3
thread identifier. On return, the thread_context argument provides an opaque handle that maps a4
native thread identifier to a third-party tool native thread context.5

Description of Return Codes6
In addition to the general return codes listed at the beginning of Section 21.4, routines that use the7
ompd_callback_get_thread_context_for_thread_id_fn_t type may also return8
the following return codes:9

• ompd_rc_bad_input if a different value in sizeof_thread_id is expected for the native10
thread identifier kind given by kind; or11

• ompd_rc_unsupported if the native thread identifier kind is not supported.12

Restrictions13
Restrictions on routines that use14
ompd_callback_get_thread_context_for_thread_id_fn_t are as follows:15

• The provided thread_context must be valid until the OMPD library returns from the OMPD16
third-party tool interface routine.17

Cross References18
• Native Thread Identifiers, see Section 21.3.719

• Return Code Types, see Section 21.3.1320

• Size Type, see Section 21.3.121

• The Callback Interface, see Section 21.4.622

• Tool Context Types, see Section 21.3.1223

21.4.2.2 ompd_callback_sizeof_fn_t24

Summary25
The ompd_callback_sizeof_fn_t type is the type signature of the callback routine that the26
third-party tool provides to the OMPD library to determine the sizes of the primitive types in an27
address space.28

Format29
C

typedef ompd_rc_t (*ompd_callback_sizeof_fn_t) (30
ompd_address_space_context_t *address_space_context,31
ompd_device_type_sizes_t *sizes32

);33

C

682 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
The ompd_callback_sizeof_fn_t is the type signature of the type-size query callback2
routine that the third-party tool provides. This callback provides the sizes of the basic primitive3
types for a given address space.4

Description of Arguments5
The callback returns the sizes of the basic primitive types used by the address space context that the6
address_space_context argument specifies in the location to which the sizes argument points.7

Description of Return Codes8
Routines that use the ompd_callback_sizeof_fn_t type may return the general return9
codes listed at the beginning of Section 21.4.10

Cross References11
• Primitive Type Sizes, see Section 21.3.1412

• Return Code Types, see Section 21.3.1313

• The Callback Interface, see Section 21.4.614

• Tool Context Types, see Section 21.3.1215

21.4.3 Accessing Memory in the OpenMP Program or16

Runtime17

The OMPD library cannot directly read from or write to memory of the OpenMP program. Instead18
the OMPD library must use callbacks that the third-party tool provides so that the third-party tool19
performs the operation.20

21.4.3.1 ompd_callback_symbol_addr_fn_t21

Summary22
The ompd_callback_symbol_addr_fn_t type is the type signature of the callback that the23
third-party tool provides to look up the addresses of symbols in an OpenMP program.24

Format25
C

typedef ompd_rc_t (*ompd_callback_symbol_addr_fn_t) (26
ompd_address_space_context_t *address_space_context,27
ompd_thread_context_t *thread_context,28
const char *symbol_name,29
ompd_address_t *symbol_addr,30
const char *file_name31

);32

C

CHAPTER 21. OMPD INTERFACE 683

Semantics1
The ompd_callback_symbol_addr_fn_t is the type signature of the symbol-address query2
callback routine that the third-party tool provides. This callback looks up addresses of symbols3
within a specified address space.4

Description of Arguments5
This callback looks up the symbol provided in the symbol_name argument.6

The address_space_context argument is the third-party tool’s representation of the address space of7
the process, core file, or device.8

The thread_context argument is NULL for global memory accesses. If thread_context is not9
NULL, thread_context gives the native thread context for the symbol lookup for the purpose of10
calculating thread local storage addresses. In this case, the native thread to which thread_context11
refers must be associated with either the OpenMP process or the device that corresponds to the12
address_space_context argument.13

The third-party tool uses the symbol_name argument that the OMPD library supplies verbatim. In14
particular, no name mangling, demangling or other transformations are performed prior to the15
lookup. The symbol_name parameter must correspond to a statically allocated symbol within the16
specified address space. The symbol can correspond to any type of object, such as a variable,17
thread local storage variable, function, or untyped label. The symbol can have local, global, or18
weak binding.19

The file_name argument is an optional input parameter that indicates the name of the shared library20
in which the symbol is defined, and it is intended to help the third-party tool disambiguate symbols21
that are defined multiple times across the executable or shared library files. The shared library22
name may not be an exact match for the name seen by the third-party tool. If file_name is NULL23
then the third-party tool first tries to find the symbol in the executable file, and, if the symbol is not24
found, the third-party tool tries to find the symbol in the shared libraries in the order in which the25
shared libraries are loaded into the address space. If file_name is a non-null value then the26
third-party tool first tries to find the symbol in the libraries that match the name in the file_name27
argument, and, if the symbol is not found, the third-party tool then uses the same procedure as28
when file_name is NULL.29

The callback does not support finding either symbols that are dynamically allocated on the call30
stack or statically allocated symbols that are defined within the scope of a function or subroutine.31

The callback returns the address of the symbol in the location to which symbol_addr points.32

Description of Return Codes33
In addition to the general return codes listed at the beginning of Section 21.4, routines that use the34
ompd_callback_symbol_addr_fn_t type may also return the following return codes:35

• ompd_rc_error if the requested symbol is not found; or36

• ompd_rc_bad_input if no symbol name is provided.37

684 OpenMP API – Version 6.0 Preview 2 November 2023

Restrictions1
Restrictions on routines that use the ompd_callback_symbol_addr_fn_t type are as2
follows:3

• The address_space_context argument must be a non-null value.4

• The symbol that the symbol_name argument specifies must be defined.5

Cross References6
• Address Type, see Section 21.3.47

• Return Code Types, see Section 21.3.138

• The Callback Interface, see Section 21.4.69

• Tool Context Types, see Section 21.3.1210

21.4.3.2 ompd_callback_memory_read_fn_t11

Summary12
The ompd_callback_memory_read_fn_t type is the type signature of the callback that the13
third-party tool provides to read data (read_memory) or a string (read_string) from an OpenMP14
program.15

Format16
C

typedef ompd_rc_t (*ompd_callback_memory_read_fn_t) (17
ompd_address_space_context_t *address_space_context,18
ompd_thread_context_t *thread_context,19
const ompd_address_t *addr,20
ompd_size_t nbytes,21
void *buffer22

);23

C

Semantics24
The ompd_callback_memory_read_fn_t is the type signature of the read callback routines25
that the third-party tool provides.26

The read_memory callback copies a block of data from addr within the address space given by27
address_space_context to the third-party tool buffer.28

The read_string callback copies a string to which addr points, including the terminating null byte29
(’\0’), to the third-party tool buffer. At most nbytes bytes are copied. If a null byte is not among30
the first nbytes bytes, the string placed in buffer is not null-terminated.31

CHAPTER 21. OMPD INTERFACE 685

Description of Arguments1
The address from which the data are to be read in the OpenMP program that2
address_space_context specifies is given by addr. The nbytes argument is the number of bytes to3
be transferred. The thread_context argument for global memory accesses should be NULL. If it is a4
non-null value, thread_context identifies the native thread context for the memory access for the5
purpose of accessing thread local storage.6

The data are returned through buffer, which is allocated and owned by the OMPD library. The7
contents of the buffer are unstructured, raw bytes. The OMPD library must arrange for any8
transformations such as byte-swapping that may be necessary (see Section 21.4.4) to interpret the9
data.10

Description of Return Codes11
In addition to the general return codes listed at the beginning of Section 21.4, routines that use the12
ompd_callback_memory_read_fn_t type may also return the following return codes:13

• ompd_rc_incomplete if no terminating null byte is found while reading nbytes using the14
read_string callback; or15

• ompd_rc_error if unallocated memory is reached while reading nbytes using either the16
read_memory or read_string callback.17

Cross References18
• Address Type, see Section 21.3.419

• Return Code Types, see Section 21.3.1320

• Size Type, see Section 21.3.121

• The Callback Interface, see Section 21.4.622

• Tool Context Types, see Section 21.3.1223

• Data Format Conversion: ompd_callback_device_host_fn_t, see Section 21.4.424

21.4.3.3 ompd_callback_memory_write_fn_t25

Summary26
The ompd_callback_memory_write_fn_t type is the type signature of the callback that27
the third-party tool provides to write data to an OpenMP program.28

Format29
C

typedef ompd_rc_t (*ompd_callback_memory_write_fn_t) (30
ompd_address_space_context_t *address_space_context,31
ompd_thread_context_t *thread_context,32
const ompd_address_t *addr,33
ompd_size_t nbytes,34
const void *buffer35

);36

C

686 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
The ompd_callback_memory_write_fn_t is the type signature of the write callback2
routine that the third-party tool provides. The OMPD library may call this callback to have the3
third-party tool write a block of data to a location within an address space from a provided buffer.4

Description of Arguments5
The address to which the data are to be written in the OpenMP program that address_space_context6
specifies is given by addr. The nbytes argument is the number of bytes to be transferred. The7
thread_context argument for global memory accesses should be NULL. If it is a non-null value,8
then thread_context identifies the native thread context for the memory access for the purpose of9
accessing thread local storage.10

The data to be written are passed through buffer, which is allocated and owned by the OMPD11
library. The contents of the buffer are unstructured, raw bytes. The OMPD library must arrange for12
any transformations such as byte-swapping that may be necessary (see Section 21.4.4) to render the13
data into a form that is compatible with the OpenMP runtime.14

Description of Return Codes15
Routines that use the ompd_callback_memory_write_fn_t type may return the general16
return codes listed at the beginning of Section 21.4.17

Cross References18
• Address Type, see Section 21.3.419

• Return Code Types, see Section 21.3.1320

• Size Type, see Section 21.3.121

• The Callback Interface, see Section 21.4.622

• Tool Context Types, see Section 21.3.1223

• Data Format Conversion: ompd_callback_device_host_fn_t, see Section 21.4.424

21.4.4 Data Format Conversion:25

ompd_callback_device_host_fn_t26

Summary27
The ompd_callback_device_host_fn_t type is the type signature of the callback that the28
third-party tool provides to convert data between the formats that the third-party tool and the29
OMPD library use and that the OpenMP program uses.30

CHAPTER 21. OMPD INTERFACE 687

Format1
C

typedef ompd_rc_t (*ompd_callback_device_host_fn_t) (2
ompd_address_space_context_t *address_space_context,3
const void *input,4
ompd_size_t unit_size,5
ompd_size_t count,6
void *output7

);8

C

Semantics9
The architecture on which the third-party tool and the OMPD library execute may be different from10
the architecture on which the OpenMP program that is being examined executes. Thus, the11
conventions for representing data may differ. The callback interface includes operations to convert12
between the conventions, such as the byte order (endianness), that the third-party tool and OMPD13
library use and the ones that the OpenMP program use. The callback with the14
ompd_callback_device_host_fn_t type signature converts data between the formats.15

Description of Arguments16
The address_space_context argument specifies the OpenMP address space that is associated with17
the data. The input argument is the source buffer and the output argument is the destination buffer.18
The unit_size argument is the size of each of the elements to be converted. The count argument is19
the number of elements to be transformed.20

The OMPD library allocates and owns the input and output buffers. It must ensure that the buffers21
have the correct size and are eventually deallocated when they are no longer needed.22

Description of Return Codes23
Routines that use the ompd_callback_device_host_fn_t type may return the general24
return codes listed at the beginning of Section 21.4.25

Cross References26
• Return Code Types, see Section 21.3.1327

• Size Type, see Section 21.3.128

• The Callback Interface, see Section 21.4.629

• Tool Context Types, see Section 21.3.1230

21.4.5 ompd_callback_print_string_fn_t31

Summary32
The ompd_callback_print_string_fn_t type is the type signature of the callback that33
the third-party tool provides so that the OMPD library can emit output.34

688 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C

typedef ompd_rc_t (*ompd_callback_print_string_fn_t) (2
const char *string,3
int category4

);5

C

Semantics6
The OMPD library may call the ompd_callback_print_string_fn_t callback function to7
emit output, such as logging or debug information. The third-party tool may set the8
ompd_callback_print_string_fn_t callback function to NULL to prevent the OMPD9
library from emitting output. The OMPD library may not write to file descriptors that it did not10
open.11

Description of Arguments12
The string argument is the null-terminated string to be printed. No conversion or formatting is13
performed on the string.14

The category argument is the implementation-defined category of the string to be printed.15

Description of Return Codes16
Routines that use the ompd_callback_print_string_fn_t type may return the general17
return codes listed at the beginning of Section 21.4.18

Cross References19
• Return Code Types, see Section 21.3.1320

• The Callback Interface, see Section 21.4.621

21.4.6 The Callback Interface22

Summary23
All OMPD library interactions with the OpenMP program must be through a set of callbacks that24
the third-party tool provides. These callbacks must also be used for allocating or releasing25
resources, such as memory, that the OMPD library needs.26

Format27
C

typedef struct ompd_callbacks_t {28
ompd_callback_memory_alloc_fn_t alloc_memory;29
ompd_callback_memory_free_fn_t free_memory;30
ompd_callback_print_string_fn_t print_string;31
ompd_callback_sizeof_fn_t sizeof_type;32
ompd_callback_symbol_addr_fn_t symbol_addr_lookup;33
ompd_callback_memory_read_fn_t read_memory;34

CHAPTER 21. OMPD INTERFACE 689

ompd_callback_memory_write_fn_t write_memory;1
ompd_callback_memory_read_fn_t read_string;2
ompd_callback_device_host_fn_t device_to_host;3
ompd_callback_device_host_fn_t host_to_device;4
ompd_callback_get_thread_context_for_thread_id_fn_t5

get_thread_context_for_thread_id;6
ompd_callbacks_t;7

C

Semantics8
The set of callbacks that the OMPD library must use is collected in the ompd_callbacks_t9
structure. An instance of this type is passed to the OMPD library as a parameter to10
ompd_initialize (see Section 21.5.1.1). Each field points to a function that the OMPD library11
must use either to interact with the OpenMP program or for memory operations.12

The alloc_memory and free_memory fields are pointers to functions the OMPD library uses to13
allocate and to release dynamic memory.14

The print_string field points to a function that prints a string.15

The architecture on which the OMPD library and third-party tool execute may be different from the16
architecture on which the OpenMP program that is being examined executes. The sizeof_type field17
points to a function that allows the OMPD library to determine the sizes of the basic integer and18
pointer types that the OpenMP program uses. Because of the potential differences in the targeted19
architectures, the conventions for representing data in the OMPD library and the OpenMP program20
may be different. The device_to_host field points to a function that translates data from the21
conventions that the OpenMP program uses to those that the third-party tool and OMPD library22
use. The reverse operation is performed by the function to which the host_to_device field points.23

The symbol_addr_lookup field points to a callback that the OMPD library can use to find the24
address of a global or thread local storage symbol. The read_memory, read_string and25
write_memory fields are pointers to functions for reading from and writing to global memory or26
thread local storage in the OpenMP program.27

The get_thread_context_for_thread_id field is a pointer to a function that the OMPD library can28
use to obtain a native thread context that corresponds to a native thread identifier.29

Cross References30
• Data Format Conversion: ompd_callback_device_host_fn_t, see Section 21.4.431

• ompd_callback_get_thread_context_for_thread_id_fn_t, see32
Section 21.4.2.133

• ompd_callback_memory_alloc_fn_t, see Section 21.4.1.134

• ompd_callback_memory_free_fn_t, see Section 21.4.1.235

• ompd_callback_memory_read_fn_t, see Section 21.4.3.236

690 OpenMP API – Version 6.0 Preview 2 November 2023

• ompd_callback_memory_write_fn_t, see Section 21.4.3.31

• ompd_callback_print_string_fn_t, see Section 21.4.52

• ompd_callback_sizeof_fn_t, see Section 21.4.2.23

• ompd_callback_symbol_addr_fn_t, see Section 21.4.3.14

21.5 OMPD Tool Interface Routines5

This section defines the interface provided by the OMPD library to be used by the third-party tool.6
Some interface routines require one or more specified threads to be stopped for the returned values7
to be meaningful. In this context, a stopped thread is a thread that is not modifying the observable8
OpenMP runtime state.9

Description of Return Codes10
All of the OMPD Tool Interface Routines must return function-specific return codes or any of the11
following return codes:12

• ompd_rc_stale_handle if a provided handle is stale;13

• ompd_rc_bad_input if an invalid value is provided for any input argument;14

• ompd_rc_callback if a callback returned an unexpected error, which leads to a failure of15
the query;16

• ompd_rc_needs_state_tracking if the information cannot be provided while the17
debug-var is disabled;18

• ompd_rc_ok on success; or19

• ompd_rc_error for any other error.20

21.5.1 Per OMPD Library Initialization and Finalization21

The OMPD library must be initialized exactly once after it is loaded, and finalized exactly once22
before it is unloaded. Per OpenMP process or core file initialization and finalization are also23
required. Once loaded, the tool can determine the version of the OMPD API that the library24
supports by calling ompd_get_api_version (see Section 21.5.1.2). If the tool supports the25
version that ompd_get_api_version returns, the tool starts the initialization by calling26
ompd_initialize (see Section 21.5.1.1) using the version of the OMPD API that the library27
supports. If the tool does not support the version that ompd_get_api_version returns, it may28
attempt to call ompd_initialize with a different version.29

CHAPTER 21. OMPD INTERFACE 691

21.5.1.1 ompd_initialize1

Summary2
The ompd_initialize function initializes the OMPD library.3

Format4
C

ompd_rc_t ompd_initialize(5
ompd_word_t api_version,6
const ompd_callbacks_t *callbacks7

);8

C

Semantics9
A tool that uses OMPD calls ompd_initialize to initialize each OMPD library that it loads.10
More than one library may be present in a third-party tool, such as a debugger, because the tool11
may control multiple devices, which may use different runtime systems that require different12
OMPD libraries. This initialization must be performed exactly once before the tool can begin to13
operate on an OpenMP process or core file.14

Description of Arguments15
The api_version argument is the OMPD API version that the tool requests to use. The tool may call16
ompd_get_api_version to obtain the latest OMPD API version that the OMPD library17
supports.18

The tool provides the OMPD library with a set of callback functions in the callbacks input19
argument which enables the OMPD library to allocate and to deallocate memory in the tool’s20
address space, to lookup the sizes of basic primitive types in the device, to lookup symbols in the21
device, and to read and to write memory in the device.22

Description of Return Codes23
This routine must return any of the general return codes listed at the beginning of Section 21.5 or24
any of the following return codes:25

• ompd_rc_bad_input if invalid callbacks are provided; or26

• ompd_rc_unsupported if the requested API version cannot be provided.27

Cross References28
• Return Code Types, see Section 21.3.1329

• The Callback Interface, see Section 21.4.630

• ompd_get_api_version, see Section 21.5.1.231

692 OpenMP API – Version 6.0 Preview 2 November 2023

21.5.1.2 ompd_get_api_version1

Summary2
The ompd_get_api_version function returns the OMPD API version.3

Format4
C

ompd_rc_t ompd_get_api_version(ompd_word_t *version);5

C

Semantics6
The tool may call the ompd_get_api_version function to obtain the latest OMPD API7
version number of the OMPD library. The OMPD API version number is equal to the value of the8
_OPENMP macro defined in the associated OpenMP implementation, if the C preprocessor is9
supported. If the associated OpenMP implementation compiles Fortran codes without the use of a10
C preprocessor, the OMPD API version number is equal to the value of the Fortran integer11
parameter openmp_version.12

Description of Arguments13
The latest version number is returned into the location to which the version argument points.14

Description of Return Codes15
This routine must return any of the general return codes listed at the beginning of Section 21.5.16

Cross References17
• Return Code Types, see Section 21.3.1318

21.5.1.3 ompd_get_version_string19

Summary20
The ompd_get_version_string function returns a descriptive string for the OMPD library21
version.22

Format23
C

ompd_rc_t ompd_get_version_string(const char **string);24

C

Semantics25
The tool may call this function to obtain a pointer to a descriptive version string of the OMPD26
library vendor, implementation, internal version, date, or any other information that may be useful27
to a tool user or vendor. An implementation should provide a different string for every change to its28
source code or build that could be visible to the interface user.29

CHAPTER 21. OMPD INTERFACE 693

Description of Arguments1
A pointer to a descriptive version string is placed into the location to which the string output2
argument points. The OMPD library owns the string that the OMPD library returns; the tool must3
not modify or release this string. The string remains valid for as long as the library is loaded. The4
ompd_get_version_string function may be called before ompd_initialize (see5
Section 21.5.1.1). Accordingly, the OMPD library must not use heap or stack memory for the string.6

The signatures of ompd_get_api_version (see Section 21.5.1.2) and7
ompd_get_version_string are guaranteed not to change in future versions of the API. In8
contrast, the type definitions and prototypes in the rest of the API do not carry the same guarantee.9
Therefore a tool that uses OMPD should check the version of the API of the loaded OMPD library10
before it calls any other function of the API.11

Description of Return Codes12
This routine must return any of the general return codes listed at the beginning of Section 21.5.13

Cross References14
• Return Code Types, see Section 21.3.1315

21.5.1.4 ompd_finalize16

Summary17
When the tool is finished with the OMPD library it should call ompd_finalize before it18
unloads the library.19

Format20
C

ompd_rc_t ompd_finalize(void);21

C

Semantics22
The call to ompd_finalize must be the last OMPD call that the tool makes before it unloads the23
library. This call allows the OMPD library to free any resources that it may be holding. The OMPD24
library may implement a finalizer section, which executes as the library is unloaded and therefore25
after the call to ompd_finalize. During finalization, the OMPD library may use the callbacks26
that the tool provided earlier during the call to ompd_initialize.27

Description of Return Codes28
This routine must return any of the general return codes listed at the beginning of Section 21.5 or29
the following return code:30

• ompd_rc_unsupported if the OMPD library is not initialized.31

Cross References32
• Return Code Types, see Section 21.3.1333

694 OpenMP API – Version 6.0 Preview 2 November 2023

21.5.2 Per OpenMP Process Initialization and Finalization1

21.5.2.1 ompd_process_initialize2

Summary3
A tool calls ompd_process_initialize to obtain an address space handle for the host device4
when it initializes a session on a live process or core file.5

Format6
C

ompd_rc_t ompd_process_initialize(7
ompd_address_space_context_t *context,8
ompd_address_space_handle_t **host_handle9

);10

C

Semantics11
A tool calls ompd_process_initialize to obtain an address space handle for the host device12
when it initializes a session on a live process or core file. On return from13
ompd_process_initialize, the tool owns the address space handle, which it must release14
with ompd_rel_address_space_handle. The initialization function must be called before15
any OMPD operations are performed on the OpenMP process or core file. This call allows the16
OMPD library to confirm that it can handle the OpenMP process or core file that context identifies.17

Description of Arguments18
The context argument is an opaque handle that the tool provides to address an address space from19
the host device. On return, the host_handle argument provides an opaque handle to the tool for this20
address space, which the tool must release when it is no longer needed.21

Description of Return Codes22
This routine must return any of the general return codes listed at the beginning of Section 21.5 or23
the following return code:24

• ompd_rc_incompatible if the OMPD library is incompatible with the runtime library25
loaded in the process.26

Cross References27
• OMPD Handle Types, see Section 21.3.828

• Return Code Types, see Section 21.3.1329

• Tool Context Types, see Section 21.3.1230

• ompd_rel_address_space_handle, see Section 21.5.2.331

CHAPTER 21. OMPD INTERFACE 695

21.5.2.2 ompd_device_initialize1

Summary2
A tool calls ompd_device_initialize to obtain an address space handle for a non-host3
device that has at least one active target region.4

Format5
C

ompd_rc_t ompd_device_initialize(6
ompd_address_space_handle_t *host_handle,7
ompd_address_space_context_t *device_context,8
ompd_device_t kind,9
ompd_size_t sizeof_id,10
void *id,11
ompd_address_space_handle_t **device_handle12

);13

C

Semantics14
A tool calls ompd_device_initialize to obtain an address space handle for a non-host15
device that has at least one active target region. On return from ompd_device_initialize,16
the tool owns the address space handle.17

Description of Arguments18
The host_handle argument is an opaque handle that the tool provides to reference the host device19
address space associated with an OpenMP process or core file. The device_context argument is an20
opaque handle that the tool provides to reference a non-host device address space. The kind,21
sizeof_id, and id arguments represent a device identifier. On return the device_handle argument22
provides an opaque handle to the tool for this address space.23

Description of Return Codes24
This routine must return any of the general return codes listed at the beginning of Section 21.5 or25
the following return code:26

• ompd_rc_unsupported if the OMPD library has no support for the specific device.27

Cross References28
• OMPD Handle Types, see Section 21.3.829

• Return Code Types, see Section 21.3.1330

• Size Type, see Section 21.3.131

• System Device Identifiers, see Section 21.3.632

• Tool Context Types, see Section 21.3.1233

696 OpenMP API – Version 6.0 Preview 2 November 2023

21.5.2.3 ompd_rel_address_space_handle1

Summary2
A tool calls ompd_rel_address_space_handle to release an address space handle.3

Format4
C

ompd_rc_t ompd_rel_address_space_handle(5
ompd_address_space_handle_t *handle6

);7

C
Semantics8
When the tool is finished with the OpenMP process address space handle it should call9
ompd_rel_address_space_handle to release the handle, which allows the OMPD library10
to release any resources that it has related to the address space.11

Description of Arguments12
The handle argument is an opaque handle for the address space to be released.13

Restrictions14
Restrictions to the ompd_rel_address_space_handle routine are as follows:15

• An address space context must not be used after the corresponding address space handle is16
released.17

Description of Return Codes18
This routine must return any of the general return codes listed at the beginning of Section 21.5.19

Cross References20
• OMPD Handle Types, see Section 21.3.821

• Return Code Types, see Section 21.3.1322

21.5.2.4 ompd_get_device_thread_id_kinds23

Summary24
The ompd_get_device_thread_id_kinds function returns a list of supported native25
thread identifier kinds and a corresponding list of their respective sizes.26

Format27
C

ompd_rc_t ompd_get_device_thread_id_kinds(28
ompd_address_space_handle_t *device_handle,29
ompd_thread_id_t **kinds,30
ompd_size_t **thread_id_sizes,31
int *count32

);33

C

CHAPTER 21. OMPD INTERFACE 697

Semantics1
The ompd_get_device_thread_id_kinds function returns an array of supported native2
thread identifier kinds and a corresponding array of their respective sizes for a given device. The3
OMPD library allocates storage for the arrays with the memory allocation callback that the tool4
provides. Each supported native thread identifier kind is guaranteed to be recognizable by the5
OMPD library and may be mapped to and from any OpenMP thread that executes on the device.6
The third-party tool owns the storage for the array of kinds and the array of sizes that is returned via7
the kinds and thread_id_sizes arguments, and it is responsible for freeing that storage.8

Description of Arguments9
The device_handle argument is a pointer to an opaque address space handle that represents a host10
device (returned by ompd_process_initialize) or a non-host device (returned by11
ompd_device_initialize). On return, the kinds argument is the address of a pointer to an12
array of native thread identifier kinds, the thread_id_sizes argument is the address of a pointer to an13
array of the corresponding native thread identifier sizes used by the OMPD library, and the count14
argument is the address of a variable that indicates the sizes of the returned arrays.15

Description of Return Codes16
This routine must return any of the general return codes listed at the beginning of Section 21.5.17

Cross References18
• Native Thread Identifiers, see Section 21.3.719

• OMPD Handle Types, see Section 21.3.820

• Return Code Types, see Section 21.3.1321

• Size Type, see Section 21.3.122

21.5.3 Thread and Signal Safety23

The OMPD library does not need to be reentrant. The tool must ensure that only one native thread24
enters the OMPD library at a time. The OMPD library must not install signal handlers or otherwise25
interfere with the signal configuration of the tool.26

21.5.4 Address Space Information27

21.5.4.1 ompd_get_omp_version28

Summary29
The tool may call the ompd_get_omp_version function to obtain the version of the OpenMP30
API that is associated with an address space.31

698 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C

ompd_rc_t ompd_get_omp_version(2
ompd_address_space_handle_t *address_space,3
ompd_word_t *omp_version4

);5

C

Semantics6
The tool may call the ompd_get_omp_version function to obtain the version of the OpenMP7
API that is associated with the address space.8

Description of Arguments9
The address_space argument is an opaque handle that the tool provides to reference the address10
space of the OpenMP process or device.11

Upon return, the omp_version argument contains the version of the OpenMP runtime in the12
_OPENMP version macro format.13

Description of Return Codes14
This routine must return any of the general return codes listed at the beginning of Section 21.5.15

Cross References16
• OMPD Handle Types, see Section 21.3.817

• Return Code Types, see Section 21.3.1318

21.5.4.2 ompd_get_omp_version_string19

Summary20
The ompd_get_omp_version_string function returns a descriptive string for the OpenMP21
API version that is associated with an address space.22

Format23
C

ompd_rc_t ompd_get_omp_version_string(24
ompd_address_space_handle_t *address_space,25
const char **string26

);27

C

Semantics28
After initialization, the tool may call the ompd_get_omp_version_string function to obtain29
the version of the OpenMP API that is associated with an address space.30

CHAPTER 21. OMPD INTERFACE 699

Description of Arguments1
The address_space argument is an opaque handle that the tool provides to reference the address2
space of the OpenMP process or device. A pointer to a descriptive version string is placed into the3
location to which the string output argument points. After returning from the call, the tool owns the4
string. The OMPD library must use the memory allocation callback that the tool provides to5
allocate the string storage. The tool is responsible for releasing the memory.6

Description of Return Codes7
This routine must return any of the general return codes listed at the beginning of Section 21.5.8

Cross References9
• OMPD Handle Types, see Section 21.3.810

• Return Code Types, see Section 21.3.1311

21.5.5 Thread Handles12

21.5.5.1 ompd_get_thread_in_parallel13

Summary14
The ompd_get_thread_in_parallel function enables a tool to obtain handles for OpenMP15
threads that are associated with a parallel region.16

Format17
C

ompd_rc_t ompd_get_thread_in_parallel(18
ompd_parallel_handle_t *parallel_handle,19
int thread_num,20
ompd_thread_handle_t **thread_handle21

);22

C

Semantics23
A successful invocation of ompd_get_thread_in_parallel returns a pointer to a native24
thread handle in the location to which thread_handle points. This call yields meaningful25
results only if all OpenMP threads in the team that is executing the parallel region are stopped.26

Description of Arguments27
The parallel_handle argument is an opaque handle for a parallel region and selects the parallel28
region on which to operate. The thread_num argument represents the thread number and selects the29
thread, the handle for which is to be returned. On return, the thread_handle argument is a handle30
for the selected thread.31

700 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 21.5 or2
the following return code:3

• ompd_rc_bad_input if the thread_num argument is greater than or equal to the4
team-size-var ICV or negative.5

Restrictions6
Restrictions on the ompd_get_thread_in_parallel function are as follows:7

• The value of thread_num must be a non-negative integer smaller than the team size that was8
provided as the team-size-var ICV from ompd_get_icv_from_scope.9

Cross References10
• OMPD Handle Types, see Section 21.3.811

• Return Code Types, see Section 21.3.1312

• ompd_get_icv_from_scope, see Section 21.5.10.213

21.5.5.2 ompd_get_thread_handle14

Summary15
The ompd_get_thread_handle function maps a native thread to a native thread handle.16

Format17
C

ompd_rc_t ompd_get_thread_handle(18
ompd_address_space_handle_t *handle,19
ompd_thread_id_t kind,20
ompd_size_t sizeof_thread_id,21
const void *thread_id,22
ompd_thread_handle_t **thread_handle23

);24

C

Semantics25
The ompd_get_thread_handle function determines if the native thread identifier to which26
thread_id points represents an OpenMP thread. If so, the function returns ompd_rc_ok and the27
location to which thread_handle points is set to the native thread handle for the native thread to28
which the OpenMP thread is mapped.29

CHAPTER 21. OMPD INTERFACE 701

Description of Arguments1
The handle argument is a handle that the tool provides to reference an address space. The kind,2
sizeof_thread_id, and thread_id arguments represent a native thread identifier. On return, the3
thread_handle argument provides a handle to the native thread within the provided address space.4

The native thread identifier to which thread_id points is guaranteed to be valid for the duration of5
the call. If the OMPD library must retain the native thread identifier, it must copy it.6

Description of Return Codes7
This routine must return any of the general return codes listed at the beginning of Section 21.5 or8
any of the following return codes:9

• ompd_rc_bad_input if a different value in sizeof_thread_id is expected for a thread kind10
of kind.11

• ompd_rc_unsupported if the kind of thread is not supported.12

• ompd_rc_unavailable if the native thread is not an OpenMP thread.13

Cross References14
• Native Thread Identifiers, see Section 21.3.715

• OMPD Handle Types, see Section 21.3.816

• Return Code Types, see Section 21.3.1317

• Size Type, see Section 21.3.118

21.5.5.3 ompd_rel_thread_handle19

Summary20
The ompd_rel_thread_handle function releases a native thread handle.21

Format22
C

ompd_rc_t ompd_rel_thread_handle(23
ompd_thread_handle_t *thread_handle24

);25

C

Semantics26
Thread handles are opaque to tools, which therefore cannot release them directly. Instead, when the27
tool is finished with a native thread handle it must pass it to ompd_rel_thread_handle for28
disposal.29

Description of Arguments30
The thread_handle argument is an opaque handle for a thread to be released.31

702 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 21.5.2

Cross References3
• OMPD Handle Types, see Section 21.3.84

• Return Code Types, see Section 21.3.135

21.5.5.4 ompd_thread_handle_compare6

Summary7
The ompd_thread_handle_compare function allows tools to compare two native thread8
handles.9

Format10
C

ompd_rc_t ompd_thread_handle_compare(11
ompd_thread_handle_t *thread_handle_1,12
ompd_thread_handle_t *thread_handle_2,13
int *cmp_value14

);15

C

Semantics16
The internal structure of native thread handles is opaque to a tool. While the tool can easily17
compare pointers to native thread handles, it cannot determine whether handles of two different18
addresses refer to the same underlying native thread. The ompd_thread_handle_compare19
function compares native thread handles.20

On success, ompd_thread_handle_compare returns in the location to which cmp_value21
points a signed integer value that indicates how the underlying native threads compare: a value less22
than, equal to, or greater than 0 indicates that the native thread corresponding to thread_handle_123
is, respectively, less than, equal to, or greater than that corresponding to thread_handle_2.24

Description of Arguments25
The thread_handle_1 and thread_handle_2 arguments are handles for native threads. On return the26
cmp_value argument is set to a signed integer value.27

Description of Return Codes28
This routine must return any of the general return codes listed at the beginning of Section 21.5.29

Cross References30
• OMPD Handle Types, see Section 21.3.831

• Return Code Types, see Section 21.3.1332

CHAPTER 21. OMPD INTERFACE 703

21.5.5.5 ompd_get_thread_id1

Summary2
The ompd_get_thread_id function maps a native thread handle to a native thread.3

Format4
C

ompd_rc_t ompd_get_thread_id(5
ompd_thread_handle_t *thread_handle,6
ompd_thread_id_t kind,7
ompd_size_t sizeof_thread_id,8
void *thread_id9

);10

C

Semantics11
The ompd_get_thread_id function maps a native thread handle to a native thread identifier.12
This call yields meaningful results only if the referenced OpenMP thread is stopped.13

Description of Arguments14
The thread_handle argument is a native thread handle. The kind argument represents the native15
thread identifier. The sizeof_thread_id argument represents the size of the native thread identifier.16
On return, the thread_id argument is a buffer that represents a native thread identifier.17

Description of Return Codes18
This routine must return any of the general return codes listed at the beginning of Section 21.5 or19
any of the following return codes:20

• ompd_rc_bad_input if a different value in sizeof_thread_id is expected for a thread kind21
of kind; or22

• ompd_rc_unsupported if the kind of native thread is not supported.23

Cross References24
• Native Thread Identifiers, see Section 21.3.725

• OMPD Handle Types, see Section 21.3.826

• Return Code Types, see Section 21.3.1327

• Size Type, see Section 21.3.128

21.5.5.6 ompd_get_device_from_thread29

Summary30
The ompd_get_device_from_thread function obtains a pointer to the address space handle31
for a device on which an OpenMP thread is executing.32

704 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C

ompd_rc_t ompd_get_device_from_thread(2
ompd_thread_handle_t *thread_handle,3
ompd_address_space_handle_t **device4

);5

C

Semantics6
The ompd_get_device_from_thread function obtains a pointer to the address space handle7
for a device on which an OpenMP thread is executing. The returned pointer will be the same as the8
address space handle pointer that was previously returned by a call to9
ompd_process_initialize (for a host device) or a call to ompd_device_initialize10
(for a non-host device). This call yields meaningful results only if the referenced OpenMP thread is11
stopped.12

Description of Arguments13
The thread_handle argument is a pointer to a native thread handle that represents a native thread to14
which an OpenMP thread is mapped. On return, the device argument is the address of a pointer to15
an address space handle.16

Description of Return Codes17
This routine must return any of the general return codes listed at the beginning of Section 21.5.18

Cross References19
• OMPD Handle Types, see Section 21.3.820

• Return Code Types, see Section 21.3.1321

21.5.6 Parallel Region Handles22

21.5.6.1 ompd_get_curr_parallel_handle23

Summary24
The ompd_get_curr_parallel_handle function obtains a pointer to the parallel handle for25
an OpenMP thread’s innermost parallel region.26

Format27
C

ompd_rc_t ompd_get_curr_parallel_handle(28
ompd_thread_handle_t *thread_handle,29
ompd_parallel_handle_t **parallel_handle30

);31

C

CHAPTER 21. OMPD INTERFACE 705

Semantics1
The ompd_get_curr_parallel_handle function enables the tool to obtain a pointer to the2
parallel handle for the innermost parallel region that is associated with an OpenMP thread. This3
call yields meaningful results only if the referenced OpenMP thread is stopped. The parallel handle4
is owned by the tool and it must be released by calling ompd_rel_parallel_handle.5

Description of Arguments6
The thread_handle argument is an opaque handle for a thread and selects the thread on which to7
operate. On return, the parallel_handle argument is set to a handle for the parallel region that the8
associated thread is currently executing, if any.9

Description of Return Codes10
This routine must return any of the general return codes listed at the beginning of Section 21.5 or11
the following return code:12

• ompd_rc_unavailable if the thread is not currently part of a team.13

Cross References14
• OMPD Handle Types, see Section 21.3.815

• Return Code Types, see Section 21.3.1316

• ompd_rel_parallel_handle, see Section 21.5.6.417

21.5.6.2 ompd_get_enclosing_parallel_handle18

Summary19
The ompd_get_enclosing_parallel_handle function obtains a pointer to the parallel20
handle for an enclosing parallel region.21

Format22
C

ompd_rc_t ompd_get_enclosing_parallel_handle(23
ompd_parallel_handle_t *parallel_handle,24
ompd_parallel_handle_t **enclosing_parallel_handle25

);26

C

Semantics27
The ompd_get_enclosing_parallel_handle function enables a tool to obtain a pointer28
to the parallel handle for the parallel region that encloses the parallel region that29
parallel_handle specifies. This call is meaningful only if at least one thread in the team that30
is executing the parallel region is stopped. A pointer to the parallel handle for the enclosing region31
is returned in the location to which enclosing_parallel_handle points. After the call, the tool owns32
the handle; the tool must release the handle with ompd_rel_parallel_handle when it is no33
longer required.34

706 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Arguments1
The parallel_handle argument is an opaque handle for a parallel region that selects the parallel2
region on which to operate. On return, the enclosing_parallel_handle argument is set to a handle3
for the parallel region that encloses the selected parallel region.4

Description of Return Codes5
This routine must return any of the general return codes listed at the beginning of Section 21.5 or6
the following return code:7

• ompd_rc_unavailable if no enclosing parallel region exists.8

Cross References9
• OMPD Handle Types, see Section 21.3.810

• Return Code Types, see Section 21.3.1311

• ompd_rel_parallel_handle, see Section 21.5.6.412

21.5.6.3 ompd_get_task_parallel_handle13

Summary14
The ompd_get_task_parallel_handle function obtains a pointer to the parallel handle for15
the parallel region that encloses a task region.16

Format17
C

ompd_rc_t ompd_get_task_parallel_handle(18
ompd_task_handle_t *task_handle,19
ompd_parallel_handle_t **task_parallel_handle20

);21

C

Semantics22
The ompd_get_task_parallel_handle function enables a tool to obtain a pointer to the23
parallel handle for the parallel region that encloses the task region that task_handle specifies. This24
call yields meaningful results only if at least one thread in the team that is executing the parallel25
region is stopped. A pointer to the parallel handle is returned in the location to which26
task_parallel_handle points. The tool owns that parallel handle, which it must release with27
ompd_rel_parallel_handle.28

Description of Arguments29
The task_handle argument is an opaque handle that selects the task on which to operate. On return,30
the parallel_handle argument is set to a handle for the parallel region that encloses the selected task.31

Description of Return Codes32
This routine must return any of the general return codes listed at the beginning of Section 21.5.33

CHAPTER 21. OMPD INTERFACE 707

Cross References1
• OMPD Handle Types, see Section 21.3.82

• Return Code Types, see Section 21.3.133

• ompd_rel_parallel_handle, see Section 21.5.6.44

21.5.6.4 ompd_rel_parallel_handle5

Summary6
The ompd_rel_parallel_handle function releases a parallel handle.7

Format8
C

ompd_rc_t ompd_rel_parallel_handle(9
ompd_parallel_handle_t *parallel_handle10

);11

C
Semantics12
Parallel handles are opaque so tools cannot release them directly. Instead, a tool must pass a parallel13
handle to the ompd_rel_parallel_handle function for disposal when finished with it.14

Description of Arguments15
The parallel_handle argument is an opaque handle to be released.16

Description of Return Codes17
This routine must return any of the general return codes listed at the beginning of Section 21.5.18

Cross References19
• OMPD Handle Types, see Section 21.3.820

• Return Code Types, see Section 21.3.1321

21.5.6.5 ompd_parallel_handle_compare22

Summary23
The ompd_parallel_handle_compare function compares two parallel handles.24

Format25
C

ompd_rc_t ompd_parallel_handle_compare(26
ompd_parallel_handle_t *parallel_handle_1,27
ompd_parallel_handle_t *parallel_handle_2,28
int *cmp_value29

);30

C

708 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
The internal structure of parallel handles is opaque to tools. While tools can easily compare2
pointers to parallel handles, they cannot determine whether handles at two different addresses refer3
to the same underlying parallel region and, instead must use the4
ompd_parallel_handle_compare function.5

On success, ompd_parallel_handle_compare returns a signed integer value in the location6
to which cmp_value points that indicates how the underlying parallel regions compare. A value less7
than, equal to, or greater than 0 indicates that the region corresponding to parallel_handle_1 is,8
respectively, less than, equal to, or greater than that corresponding to parallel_handle_2. This9
function is provided since the means by which parallel handles are ordered is implementation10
defined.11

Description of Arguments12
The parallel_handle_1 and parallel_handle_2 arguments are opaque handles that correspond to13
parallel regions. On return the cmp_value argument points to a signed integer value that indicates14
how the underlying parallel regions compare.15

Description of Return Codes16
This routine must return any of the general return codes listed at the beginning of Section 21.5.17

Cross References18
• OMPD Handle Types, see Section 21.3.819

• Return Code Types, see Section 21.3.1320

21.5.7 Task Handles21

21.5.7.1 ompd_get_curr_task_handle22

Summary23
The ompd_get_curr_task_handle function obtains a pointer to the task handle for the24
current task region that is associated with an OpenMP thread.25

Format26
C

ompd_rc_t ompd_get_curr_task_handle(27
ompd_thread_handle_t *thread_handle,28
ompd_task_handle_t **task_handle29

);30

C
Semantics31
The ompd_get_curr_task_handle function obtains a pointer to the task handle for the32
current task region that is associated with an OpenMP thread. This call yields meaningful results33
only if the thread for which the handle is provided is stopped. The task handle must be released34
with ompd_rel_task_handle.35

CHAPTER 21. OMPD INTERFACE 709

Description of Arguments1
The thread_handle argument is an opaque handle that selects the thread on which to operate. On2
return, the task_handle argument points to a location that points to a handle for the task that the3
thread is currently executing.4

Description of Return Codes5
This routine must return any of the general return codes listed at the beginning of Section 21.5 or6
the following return code:7

• ompd_rc_unavailable if the thread is currently not executing a task.8

Cross References9
• OMPD Handle Types, see Section 21.3.810

• Return Code Types, see Section 21.3.1311

• ompd_rel_task_handle, see Section 21.5.7.512

21.5.7.2 ompd_get_generating_task_handle13

Summary14
The ompd_get_generating_task_handle function obtains a pointer to the task handle of15
the generating task region.16

Format17
C

ompd_rc_t ompd_get_generating_task_handle(18
ompd_task_handle_t *task_handle,19
ompd_task_handle_t **generating_task_handle20

);21

C

Semantics22
The ompd_get_generating_task_handle function obtains a pointer to the task handle for23
the task that encountered the task construct that generated the task represented by task_handle.24
The generating task is the task that was active when the task specified by task_handle was created.25
This call yields meaningful results only if the thread that is executing the task that task_handle26
specifies is stopped while executing the task. The generating task handle must be released with27
ompd_rel_task_handle.28

Description of Arguments29
The task_handle argument is an opaque handle that selects the task on which to operate. On return,30
the generating_task_handle argument points to a location that points to a handle for the generating31
task.32

710 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 21.5 or2
the following return code:3

• ompd_rc_unavailable if no generating task region exists.4

Cross References5
• OMPD Handle Types, see Section 21.3.86

• Return Code Types, see Section 21.3.137

• ompd_rel_task_handle, see Section 21.5.7.58

21.5.7.3 ompd_get_scheduling_task_handle9

Summary10
The ompd_get_scheduling_task_handle function obtains a task handle for the task that11
was active at a task scheduling point.12

Format13
C

ompd_rc_t ompd_get_scheduling_task_handle(14
ompd_task_handle_t *task_handle,15
ompd_task_handle_t **scheduling_task_handle16

);17

C

Semantics18
The ompd_get_scheduling_task_handle function obtains a task handle for the task that19
was active when the task that task_handle represents was scheduled. An implicit task does not have20
a scheduling task. This call yields meaningful results only if the thread that is executing the task21
that task_handle specifies is stopped while executing the task. The scheduling task handle must be22
released with ompd_rel_task_handle.23

Description of Arguments24
The task_handle argument is an opaque handle for a task and selects the task on which to operate.25
On return, the scheduling_task_handle argument points to a location that points to a handle for the26
task that is still on the stack of execution on the same thread and was deferred in favor of executing27
the selected task.28

Description of Return Codes29
This routine must return any of the general return codes listed at the beginning of Section 21.5 or30
the following return code:31

• ompd_rc_unavailable if no scheduling task exists.32

CHAPTER 21. OMPD INTERFACE 711

Cross References1
• OMPD Handle Types, see Section 21.3.82

• Return Code Types, see Section 21.3.133

• ompd_rel_task_handle, see Section 21.5.7.54

21.5.7.4 ompd_get_task_in_parallel5

Summary6
The ompd_get_task_in_parallel function obtains handles for the implicit tasks that are7
associated with a parallel region.8

Format9
C

ompd_rc_t ompd_get_task_in_parallel(10
ompd_parallel_handle_t *parallel_handle,11
int thread_num,12
ompd_task_handle_t **task_handle13

);14

C
Semantics15
The ompd_get_task_in_parallel function obtains handles for the implicit tasks that are16
associated with a parallel region. A successful invocation of ompd_get_task_in_parallel17
returns a pointer to a task handle in the location to which task_handle points. This call yields18
meaningful results only if all OpenMP threads in the parallel region are stopped.19

Description of Arguments20
The parallel_handle argument is an opaque handle that selects the parallel region on which to21
operate. The thread_num argument selects the implicit task of the team to be returned. The22
thread_num argument is equal to the thread-num-var ICV value of the selected implicit task. On23
return, the task_handle argument points to a location that points to an opaque handle for the24
selected implicit task.25

Description of Return Codes26
This routine must return any of the general return codes listed at the beginning of Section 21.5 or27
the following return code:28

• ompd_rc_bad_input if the thread_num argument is greater than or equal to the29
team-size-var ICV or negative.30

Restrictions31
Restrictions on the ompd_get_task_in_parallel function are as follows:32

• The value of thread_num must be a non-negative integer that is smaller than the size of the33
team size that is the value of the team-size-var ICV that ompd_get_icv_from_scope34
returns.35

712 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• OMPD Handle Types, see Section 21.3.82

• Return Code Types, see Section 21.3.133

• ompd_get_icv_from_scope, see Section 21.5.10.24

21.5.7.5 ompd_rel_task_handle5

Summary6
This ompd_rel_task_handle function releases a task handle.7

Format8
C

ompd_rc_t ompd_rel_task_handle(9
ompd_task_handle_t *task_handle10

);11

C
Semantics12
Task handles are opaque to tools; thus tools cannot release them directly. Instead, when a tool is13
finished with a task handle it must use the ompd_rel_task_handle function to release it.14

Description of Arguments15
The task_handle argument is an opaque task handle to be released.16

Description of Return Codes17
This routine must return any of the general return codes listed at the beginning of Section 21.5.18

Cross References19
• OMPD Handle Types, see Section 21.3.820

• Return Code Types, see Section 21.3.1321

21.5.7.6 ompd_task_handle_compare22

Summary23
The ompd_task_handle_compare function compares task handles.24

Format25
C

ompd_rc_t ompd_task_handle_compare(26
ompd_task_handle_t *task_handle_1,27
ompd_task_handle_t *task_handle_2,28
int *cmp_value29

);30

C

CHAPTER 21. OMPD INTERFACE 713

Semantics1
The internal structure of task handles is opaque; so tools cannot directly determine if handles at two2
different addresses refer to the same underlying task. The ompd_task_handle_compare3
function compares task handles. After a successful call to ompd_task_handle_compare, the4
value of the location to which cmp_value points is a signed integer that indicates how the underlying5
tasks compare: a value less than, equal to, or greater than 0 indicates that the task that corresponds6
to task_handle_1 is, respectively, less than, equal to, or greater than the task that corresponds to7
task_handle_2. The means by which task handles are ordered is implementation defined.8

Description of Arguments9
The task_handle_1 and task_handle_2 arguments are opaque handles that correspond to tasks. On10
return, the cmp_value argument points to a location in which a signed integer value indicates how11
the underlying tasks compare.12

Description of Return Codes13
This routine must return any of the general return codes listed at the beginning of Section 21.5.14

Cross References15
• OMPD Handle Types, see Section 21.3.816

• Return Code Types, see Section 21.3.1317

21.5.7.7 ompd_get_task_function18

Summary19
This ompd_get_task_function function returns the entry point of the code that corresponds20
to the body of a task.21

Format22
C

ompd_rc_t ompd_get_task_function (23
ompd_task_handle_t *task_handle,24
ompd_address_t *entry_point25

);26

C

Semantics27
The ompd_get_task_function function returns the entry point of the code that corresponds28
to the body of code that the task executes. This call is meaningful only if the thread that is29
executing the task that task_handle specifies is stopped while executing the task.30

Description of Arguments31
The task_handle argument is an opaque handle that selects the task on which to operate. On return,32
the entry_point argument is set to an address that describes the beginning of application code that33
executes the task region.34

714 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 21.5.2

Cross References3
• Address Type, see Section 21.3.44

• OMPD Handle Types, see Section 21.3.85

• Return Code Types, see Section 21.3.136

21.5.7.8 ompd_get_task_frame7

Summary8
The ompd_get_task_frame function extracts the frame pointers of a task.9

Format10
C

ompd_rc_t ompd_get_task_frame (11
ompd_task_handle_t *task_handle,12
ompd_frame_info_t *exit_frame,13
ompd_frame_info_t *enter_frame14

);15

C

Semantics16
An OpenMP implementation maintains an ompt_frame_t object for every implicit or explicit17
task. The ompd_get_task_frame function extracts the enter_frame and exit_frame fields of18
the ompt_frame_t object of the task that task_handle identifies. This call yields meaningful19
results only if the thread that is executing the task that task_handle specifies is stopped while20
executing the task.21

Description of Arguments22
The task_handle argument specifies an OpenMP task. On return, the exit_frame argument points to23
an ompd_frame_info_t object that has the frame information with the same semantics as the24
exit_frame field in the ompt_frame_t object that is associated with the specified task. On return,25
the enter_frame argument points to an ompd_frame_info_t object that has the frame26
information with the same semantics as the enter_frame field in the ompt_frame_t object that is27
associated with the specified task.28

Description of Return Codes29
This routine must return any of the general return codes listed at the beginning of Section 21.5.30

CHAPTER 21. OMPD INTERFACE 715

Cross References1
• Address Type, see Section 21.3.42

• Frame Information Type, see Section 21.3.53

• OMPD Handle Types, see Section 21.3.84

• Return Code Types, see Section 21.3.135

• ompt_frame_t, see Section 20.4.4.296

21.5.8 Querying Thread States7

21.5.8.1 ompd_enumerate_states8

Summary9
The ompd_enumerate_states function enumerates thread states that an OpenMP10
implementation supports.11

Format12
C

ompd_rc_t ompd_enumerate_states (13
ompd_address_space_handle_t *address_space_handle,14
ompd_word_t current_state,15
ompd_word_t *next_state,16
const char **next_state_name,17
ompd_word_t *more_enums18

);19

C

Semantics20
An OpenMP implementation may support only a subset of the states that the ompt_state_t21
enumeration type defines. In addition, an OpenMP implementation may support22
implementation-specific states. The ompd_enumerate_states call enables a tool to23
enumerate the thread states that an OpenMP implementation supports.24

When the current_state argument is a thread state that an OpenMP implementation supports, the25
call assigns the value and string name of the next thread state in the enumeration to the locations to26
which the next_state and next_state_name arguments point.27

On return, the third-party tool owns the next_state_name string. The OMPD library allocates28
storage for the string with the memory allocation callback that the tool provides. The tool is29
responsible for releasing the memory.30

On return, the location to which the more_enums argument points has the value 1 whenever one or31
more states are left in the enumeration. On return, the location to which the more_enums argument32
points has the value 0 when current_state is the last state in the enumeration.33

716 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Arguments1
The address_space_handle argument identifies the address space. The current_state argument must2
be a thread state that the OpenMP implementation supports. To begin enumerating the supported3
states, a tool should pass ompt_state_undefined as the value of current_state. Subsequent4
calls to ompd_enumerate_states by the tool should pass the value that the call returned in5
the next_state argument. On return, the next_state argument points to an integer with the value of6
the next state in the enumeration. On return, the next_state_name argument points to a character7
string that describes the next state. On return, the more_enums argument points to an integer with a8
value of 1 when more states are left to enumerate and a value of 0 when no more states are left.9

Description of Return Codes10
This routine must return any of the general return codes listed at the beginning of Section 21.5 or11
the following return code:12

• ompd_rc_bad_input if an unknown value is provided in current_state.13

Cross References14
• OMPD Handle Types, see Section 21.3.815

• Return Code Types, see Section 21.3.1316

• ompt_state_t, see Section 20.4.4.2817

21.5.8.2 ompd_get_state18

Summary19
The ompd_get_state function obtains the state of a thread.20

Format21
C

ompd_rc_t ompd_get_state (22
ompd_thread_handle_t *thread_handle,23
ompd_word_t *state,24
ompd_wait_id_t *wait_id25

);26

C
Semantics27
The ompd_get_state function returns the state of an OpenMP thread. This call yields28
meaningful results only if the referenced OpenMP thread is stopped.29

Description of Arguments30
The thread_handle argument identifies the thread. The state argument represents the state of that31
thread as represented by a value that ompd_enumerate_states returns. On return, if the32
wait_id argument is a non-null value then it points to a handle that corresponds to the wait_id wait33
identifier of the thread. If the thread state is not one of the specified wait states, the value to which34
wait_id points is undefined.35

CHAPTER 21. OMPD INTERFACE 717

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 21.5.2

Cross References3
• OMPD Handle Types, see Section 21.3.84

• Return Code Types, see Section 21.3.135

• Wait ID Type, see Section 21.3.26

• ompd_enumerate_states, see Section 21.5.8.17

21.5.9 Display Control Variables8

21.5.9.1 ompd_get_display_control_vars9

Summary10
The ompd_get_display_control_vars function returns a list of name/value pairs for11
OpenMP control variables.12

Format13
C

ompd_rc_t ompd_get_display_control_vars (14
ompd_address_space_handle_t *address_space_handle,15
const char * const **control_vars16

);17

C

Semantics18
The ompd_get_display_control_vars function returns a NULL-terminated vector of19
null-terminated strings of name/value pairs of control variables that have user controllable settings20
and are important to the operation or performance of an OpenMP runtime system. The control21
variables that this interface exposes include all OpenMP environment variables, settings that may22
come from vendor or platform-specific environment variables, and other settings that affect the23
operation or functioning of an OpenMP runtime.24

The format of the strings is "icv-name=icv-value".25

On return, the third-party tool owns the vector and the strings. The OMPD library must satisfy the26
termination constraints; it may use static or dynamic memory for the vector and/or the strings and is27
unconstrained in how it arranges them in memory. If it uses dynamic memory then the OMPD28
library must use the allocate callback that the tool provides to ompd_initialize. The tool must29
use the ompd_rel_display_control_vars function to release the vector and the strings.30

Description of Arguments31
The address_space_handle argument identifies the address space. On return, the control_vars32
argument points to the vector of display control variables.33

718 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 21.5.2

Cross References3
• OMPD Handle Types, see Section 21.3.84

• Return Code Types, see Section 21.3.135

• ompd_initialize, see Section 21.5.1.16

• ompd_rel_display_control_vars, see Section 21.5.9.27

21.5.9.2 ompd_rel_display_control_vars8

Summary9
The ompd_rel_display_control_vars releases a list of name/value pairs of OpenMP10
control variables previously acquired with ompd_get_display_control_vars.11

Format12
C

ompd_rc_t ompd_rel_display_control_vars (13
const char * const **control_vars14

);15

C

Semantics16
The third-party tool owns the vector and strings that ompd_get_display_control_vars17
returns. The tool must call ompd_rel_display_control_vars to release the vector and the18
strings.19

Description of Arguments20
The control_vars argument is the vector of display control variables to be released.21

Description of Return Codes22
This routine must return any of the general return codes listed at the beginning of Section 21.5.23

Cross References24
• Return Code Types, see Section 21.3.1325

• ompd_get_display_control_vars, see Section 21.5.9.126

CHAPTER 21. OMPD INTERFACE 719

21.5.10 Accessing Scope-Specific Information1

21.5.10.1 ompd_enumerate_icvs2

Summary3
The ompd_enumerate_icvs function enumerates ICVs.4

Format5
C

ompd_rc_t ompd_enumerate_icvs (6
ompd_address_space_handle_t *handle,7
ompd_icv_id_t current,8
ompd_icv_id_t *next_id,9
const char **next_icv_name,10
ompd_scope_t *next_scope,11
int *more12

);13

C

Semantics14
An OpenMP implementation must support all ICVs listed in Section 2.1. An OpenMP15
implementation may support additional implementation-specific variables. An implementation may16
store ICVs in a different scope than Table 2.1 indicates. The ompd_enumerate_icvs function17
enables a tool to enumerate the ICVs that an OpenMP implementation supports and their related18
scopes.19

When the current argument is set to the identifier of a supported ICV, ompd_enumerate_icvs20
assigns the value, string name, and scope of the next ICV in the enumeration to the locations to21
which the next_id, next_icv_name, and next_scope arguments point. On return, the third-party tool22
owns the next_icv_name string. The OMPD library uses the memory allocation callback that the23
tool provides to allocate the string storage; the tool is responsible for releasing the memory.24

On return, the location to which the more argument points has the value of 1 whenever one or more25
ICV are left in the enumeration. On return, that location has the value 0 when current is the last26
ICV in the enumeration.27

Description of Arguments28
The address_space_handle argument identifies the address space. The current argument must be29
an ICV that the OpenMP implementation supports. To begin enumerating the ICVs, a tool should30
pass ompd_icv_undefined as the value of current. Subsequent calls to31
ompd_enumerate_icvs should pass the value returned by the call in the next_id output32
argument. On return, the next_id argument points to an integer with the value of the ID of the next33
ICV in the enumeration. On return, the next_icv_name argument points to a character string with34
the name of the next ICV. On return, the next_scope argument points to the scope enum value of the35
scope of the next ICV. On return, the more_enums argument points to an integer with the value of 136
when more ICVs are left to enumerate and the value of 0 when no more ICVs are left.37

720 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 21.5 or2
the following return code:3

• ompd_rc_bad_input if an unknown value is provided in current.4

Cross References5
• ICV ID Type, see Section 21.3.116

• OMPD Handle Types, see Section 21.3.87

• OMPD Scope Types, see Section 21.3.98

• Return Code Types, see Section 21.3.139

21.5.10.2 ompd_get_icv_from_scope10

Summary11
The ompd_get_icv_from_scope function returns the value of an ICV.12

Format13
C

ompd_rc_t ompd_get_icv_from_scope (14
void *handle,15
ompd_scope_t scope,16
ompd_icv_id_t icv_id,17
ompd_word_t *icv_value18

);19

C

Semantics20
The ompd_get_icv_from_scope function provides access to the ICVs that21
ompd_enumerate_icvs identifies.22

Description of Arguments23
The handle argument provides an OpenMP scope handle. The scope argument specifies the kind of24
scope provided in handle. The icv_id argument specifies the ID of the requested ICV. On return,25
the icv_value argument points to a location with the value of the requested ICV.26

Constraints on Arguments27
The provided handle must match the scope as defined in Section 21.3.11.28

The provided scope must match the scope for icv_id as requested by ompd_enumerate_icvs.29

CHAPTER 21. OMPD INTERFACE 721

Description of Return Codes1
This routine must return any of the general return codes listed at the beginning of Section 21.5 or2
any of the following return codes:3

• ompd_rc_incompatible_handle if the scope of the handle does not match the4
constraint;5

• ompd_rc_incompatible if the ICV cannot be represented as an integer;6

• ompd_rc_incomplete if only the first item of the ICV is returned in the integer (e.g., if7
nthreads-var is a list); or8

• ompd_rc_bad_input if an unknown value is provided in icv_id.9

Cross References10
• ICV ID Type, see Section 21.3.1111

• OMPD Handle Types, see Section 21.3.812

• OMPD Scope Types, see Section 21.3.913

• Return Code Types, see Section 21.3.1314

• ompd_enumerate_icvs, see Section 21.5.10.115

21.5.10.3 ompd_get_icv_string_from_scope16

Summary17
The ompd_get_icv_string_from_scope function returns the value of an ICV.18

Format19
C

ompd_rc_t ompd_get_icv_string_from_scope (20
void *handle,21
ompd_scope_t scope,22
ompd_icv_id_t icv_id,23
const char **icv_string24

);25

C

Semantics26
The ompd_get_icv_string_from_scope function provides access to the ICVs that27
ompd_enumerate_icvs identifies.28

722 OpenMP API – Version 6.0 Preview 2 November 2023

Description of Arguments1
The handle argument provides an OpenMP scope handle. The scope argument specifies the kind of2
scope provided in handle. The icv_id argument specifies the ID of the requested ICV. On return,3
the icv_string argument points to a string representation of the requested ICV.4

On return, the third-party tool owns the icv_string string. The OMPD library allocates the string5
storage with the memory allocation callback that the tool provides. The tool is responsible for6
releasing the memory.7

Constraints on Arguments8
The provided handle must match the scope as defined in Section 21.3.11.9

The provided scope must match the scope for icv_id as requested by ompd_enumerate_icvs.10

Description of Return Codes11
This routine must return any of the general return codes listed at the beginning of Section 21.5 or12
the following return code:13

• ompd_rc_incompatible_handle if the scope of the handle does not match the14
constraint;15

• ompd_rc_bad_input if an unknown value is provided in icv_id.16

Cross References17
• ICV ID Type, see Section 21.3.1118

• OMPD Handle Types, see Section 21.3.819

• OMPD Scope Types, see Section 21.3.920

• Return Code Types, see Section 21.3.1321

• ompd_enumerate_icvs, see Section 21.5.10.122

21.5.10.4 ompd_get_tool_data23

Summary24
The ompd_get_tool_data function provides access to the OMPT data variable stored for each25
OpenMP scope.26

Format27
C

ompd_rc_t ompd_get_tool_data(28
void* handle,29
ompd_scope_t scope,30
ompd_word_t *value,31
ompd_address_t *ptr32

);33

C

CHAPTER 21. OMPD INTERFACE 723

Semantics1
The ompd_get_tool_data function provides access to the OMPT tool data stored for each2
scope. If the runtime library does not support OMPT then the function returns3
ompd_rc_unsupported.4

Description of Arguments5
The handle argument provides an OpenMP scope handle. The scope argument specifies the kind of6
scope provided in handle. On return, the value argument points to the value field of the7
ompt_data_t union stored for the selected scope. On return, the ptr argument points to the ptr8
field of the ompt_data_t union stored for the selected scope.9

Description of Return Codes10
This routine must return any of the general return codes listed at the beginning of Section 21.5 or11
the following return code:12

• ompd_rc_unsupported if the runtime library does not support OMPT.13

Cross References14
• OMPD Handle Types, see Section 21.3.815

• OMPD Scope Types, see Section 21.3.916

• Return Code Types, see Section 21.3.1317

• ompt_data_t, see Section 20.4.4.418

21.6 Breakpoint Symbol Names for OMPD19

The OpenMP implementation must define several entry point symbols through which execution20
must pass when particular events occur and data collection for OMPD is enabled. A tool can enable21
notification of an event by setting a breakpoint at the address of the entry point symbol.22

Entry point symbols have external C linkage and do not require demangling or other23
transformations to look up their names to obtain the address in the OpenMP program. While each24
entry point symbol conceptually has a function type signature, it may not be a function. It may be a25
labeled location.26

21.6.1 Beginning Parallel Regions27

Summary28
Before starting the execution of an OpenMP parallel region, the implementation executes29
ompd_bp_parallel_begin.30

724 OpenMP API – Version 6.0 Preview 2 November 2023

Format1
C

void ompd_bp_parallel_begin(void);2

C

Semantics3
The OpenMP implementation must execute ompd_bp_parallel_begin at every4
parallel-begin event. At the point that the implementation reaches5
ompd_bp_parallel_begin, the binding for ompd_get_curr_parallel_handle is the6
parallel region that is beginning and the binding for ompd_get_curr_task_handle is the7
task that encountered the parallel construct.8

Cross References9
• parallel directive, see Section 11.210

• ompd_get_curr_parallel_handle, see Section 21.5.6.111

• ompd_get_curr_task_handle, see Section 21.5.7.112

21.6.2 Ending Parallel Regions13

Summary14
After finishing the execution of an OpenMP parallel region, the implementation executes15
ompd_bp_parallel_end.16

Format17
C

void ompd_bp_parallel_end(void);18

C

Semantics19
The OpenMP implementation must execute ompd_bp_parallel_end at every parallel-end20
event. At the point that the implementation reaches ompd_bp_parallel_end, the binding for21
ompd_get_curr_parallel_handle is the parallel region that is ending and the binding22
for ompd_get_curr_task_handle is the task that encountered the parallel construct.23
After execution of ompd_bp_parallel_end, any parallel_handle that was acquired for the24
parallel region is invalid and should be released.25

Cross References26
• parallel directive, see Section 11.227

• ompd_get_curr_parallel_handle, see Section 21.5.6.128

• ompd_get_curr_task_handle, see Section 21.5.7.129

• ompd_rel_parallel_handle, see Section 21.5.6.430

CHAPTER 21. OMPD INTERFACE 725

21.6.3 Beginning Teams Regions1

Summary2
Before starting the execution of an OpenMP teams region, the implementation executes3
ompd_bp_teams_begin.4

Format5
C

void ompd_bp_teams_begin(void);6

C

Semantics7
The OpenMP implementation must execute ompd_bp_teams_begin at every teams-begin8
event. At the point that the implementation reaches ompd_bp_teams_begin, the binding for9
ompd_get_curr_parallel_handle is the teams region that is beginning and the binding10
for ompd_get_curr_task_handle is the task that encountered the teams construct.11

Cross References12
• teams directive, see Section 11.313

• ompd_get_curr_parallel_handle, see Section 21.5.6.114

• ompd_get_curr_task_handle, see Section 21.5.7.115

21.6.4 Ending Teams Regions16

Summary17
After finishing the execution of an OpenMP teams region, the implementation executes18
ompd_bp_teams_end.19

Format20
C

void ompd_bp_teams_end(void);21

C

Semantics22
The OpenMP implementation must execute ompd_bp_teams_end at every teams-end event. At23
the point that the implementation reaches ompd_bp_teams_end, the binding for24
ompd_get_curr_parallel_handle is the teams region that is ending and the binding for25
ompd_get_curr_task_handle is the task that encountered the teams construct. After26
execution of ompd_bp_teams_end, any parallel_handle that was acquired for the teams27
region is invalid and should be released.28

726 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• teams directive, see Section 11.32

• ompd_get_curr_parallel_handle, see Section 21.5.6.13

• ompd_get_curr_task_handle, see Section 21.5.7.14

• ompd_rel_parallel_handle, see Section 21.5.6.45

21.6.5 Beginning Task Regions6

Summary7
Before starting the execution of an OpenMP task region, the implementation executes8
ompd_bp_task_begin.9

Format10
C

void ompd_bp_task_begin(void);11

C
Semantics12
The OpenMP implementation must execute ompd_bp_task_begin immediately before starting13
execution of a structured-block that is associated with a non-merged task. At the point that the14
implementation reaches ompd_bp_task_begin, the binding for15
ompd_get_curr_task_handle is the task that is scheduled to execute.16

Cross References17
• ompd_get_curr_task_handle, see Section 21.5.7.118

21.6.6 Ending Task Regions19

Summary20
After finishing the execution of an OpenMP task region, the implementation executes21
ompd_bp_task_end.22

Format23
C

void ompd_bp_task_end(void);24

C
Semantics25
The OpenMP implementation must execute ompd_bp_task_end immediately after completion26
of a structured-block that is associated with a non-merged task. At the point that the implementation27
reaches ompd_bp_task_end, the binding for ompd_get_curr_task_handle is the task28
that finished execution. After execution of ompd_bp_task_end, any task_handle that was29
acquired for the task region is invalid and should be released.30

CHAPTER 21. OMPD INTERFACE 727

Cross References1
• ompd_get_curr_task_handle, see Section 21.5.7.12

• ompd_rel_task_handle, see Section 21.5.7.53

21.6.7 Beginning OpenMP Threads4

Summary5
When starting an OpenMP thread, the implementation executes ompd_bp_thread_begin.6

Format7
C

void ompd_bp_thread_begin(void);8

C

Semantics9
The OpenMP implementation must execute ompd_bp_thread_begin at every10
native-thread-begin and initial-thread-begin event. This execution occurs before the thread starts11
the execution of any OpenMP region.12

Cross References13
• parallel directive, see Section 11.214

• Initial Task, see Section 13.915

21.6.8 Ending OpenMP Threads16

Summary17
When terminating an OpenMP thread, the implementation executes ompd_bp_thread_end.18

Format19
C

void ompd_bp_thread_end(void);20

C

Semantics21
The OpenMP implementation must execute ompd_bp_thread_end at every native-thread-end22
and initial-thread-end event. This execution occurs after the thread completes the execution of all23
OpenMP regions. After executing ompd_bp_thread_end, any thread_handle that was acquired24
for this thread is invalid and should be released.25

728 OpenMP API – Version 6.0 Preview 2 November 2023

Cross References1
• parallel directive, see Section 11.22

• Initial Task, see Section 13.93

• ompd_rel_thread_handle, see Section 21.5.5.34

21.6.9 Beginning Target Regions5

Summary6
Before starting the execution of an OpenMP target region, the implementation executes7
ompd_bp_target_begin.8

Format9
C

void ompd_bp_target_begin(void);10

C

Semantics11
The OpenMP implementation must execute ompd_bp_target_begin at every12
initial-task-begin event that results from the execution of an initial task enclosing a target13
region. At the point that the implementation reaches ompd_bp_target_begin, the binding for14
ompd_get_curr_parallel_handle is the target region that is beginning and the binding15
for ompd_get_curr_task_handle is the initial task on the device.16

Cross References17
• target directive, see Section 14.818

• ompd_get_curr_parallel_handle, see Section 21.5.6.119

• ompd_get_curr_task_handle, see Section 21.5.7.120

21.6.10 Ending Target Regions21

Summary22
After finishing the execution of an OpenMP target region, the implementation executes23
ompd_bp_target_end.24

Format25
C

void ompd_bp_target_end(void);26

C

CHAPTER 21. OMPD INTERFACE 729

Semantics1
The OpenMP implementation must execute ompd_bp_target_end at every initial-task-end2
event that results from the execution of an initial task enclosing a target region. At the point that3
the implementation reaches ompd_bp_target_end, the binding for4
ompd_get_curr_parallel_handle is the target region that is ending and the binding5
for ompd_get_curr_task_handle is the initial task on the device. After execution of6
ompd_bp_target_end, any parallel_handle that was acquired for the target region is7
invalid and should be released.8

Cross References9
• target directive, see Section 14.810

• ompd_get_curr_parallel_handle, see Section 21.5.6.111

• ompd_get_curr_task_handle, see Section 21.5.7.112

• ompd_rel_parallel_handle, see Section 21.5.6.413

21.6.11 Initializing OpenMP Devices14

Summary15
The OpenMP implementation must execute ompd_bp_device_begin at every device-initialize16
event.17

Format18
C

void ompd_bp_device_begin(void);19

C
Semantics20
When initializing a device for execution of a target region, the implementation must execute21
ompd_bp_device_begin. This execution occurs before the work associated with any OpenMP22
region executes on the device.23

Cross References24
• Device Initialization, see Section 14.425

21.6.12 Finalizing OpenMP Devices26

Summary27
When terminating an OpenMP thread, the implementation executes ompd_bp_device_end.28

Format29
C

void ompd_bp_device_end(void);30

C

730 OpenMP API – Version 6.0 Preview 2 November 2023

Semantics1
The OpenMP implementation must execute ompd_bp_device_end at every device-finalize2
event. This execution occurs after the thread executes all OpenMP regions. After execution of3
ompd_bp_device_end, any address_space_handle that was acquired for this device is invalid4
and should be released.5

Cross References6
• Device Initialization, see Section 14.47

• ompd_rel_address_space_handle, see Section 21.5.2.38

CHAPTER 21. OMPD INTERFACE 731

Part V1

Appendices2

732

A OpenMP Implementation-Defined1

Behaviors2

This appendix summarizes the behaviors that are described as implementation defined in the3
OpenMP API. Each behavior is cross-referenced back to its description in the main specification.4
An implementation is required to define and to document its behavior in these cases.5

Chapter 1:6
• Processor: A hardware unit that is implementation defined (see Section 1.2).7

• Device: An implementation-defined logical execution engine (see Section 1.2).8

• Device pointer: An implementation-defined handle that refers to a device address (see9
Section 1.2).10

• Supported active levels of parallelism: The maximum number of active parallel regions11
that may enclose any region of code in an OpenMP program is implementation defined (see12
Section 1.2).13

• Deprecated features: For any deprecated feature, whether any modifications provided by its14
replacement feature (if any) apply to the deprecated feature is implementation defined (see15
Section 1.2).16

• Memory model: The minimum size at which a memory update may also read and write back17
adjacent variables that are part of an aggregate variable is implementation defined but is no18
larger than the base language requires. The manner in which a program can obtain the19
referenced device address from a device pointer, outside the mechanisms specified by20
OpenMP, is implementation defined (see Section 1.4.1).21

• Device Data Environments: Whether a variable with static storage duration that is22
accessible on a device and is not a device local variable is mapped with a persistent self map23
at the beginning of the program is implementation defined (see Section 1.4.2).24

Chapter 2:25
• Internal control variables: The initial values of dyn-var, nthreads-var, run-sched-var,26

bind-var, stacksize-var, wait-policy-var, thread-limit-var, max-active-levels-var,27
place-partition-var, affinity-format-var, default-device-var, num-procs-var and28
def-allocator-var are implementation defined (see Section 2.2).29

733

Chapter 3:1
• OMP_DYNAMIC environment variable: If the value is neither true nor false, the2

behavior of the program is implementation defined (see Section 3.1.1).3

• OMP_NUM_THREADS environment variable: If any value of the list specified leads to a4
number of threads that is greater than the implementation can support, or if any value is not a5
positive integer, then the behavior of the program is implementation defined (see6
Section 3.1.2).7

• OMP_THREAD_LIMIT environment variable: If the requested value is greater than the8
number of threads that an implementation can support, or if the value is not a positive integer,9
the behavior of the program is implementation defined (see Section 3.1.3).10

• OMP_MAX_ACTIVE_LEVELS environment variable: If the value is a negative integer or is11
greater than the maximum number of nested active levels that an implementation can support12
then the behavior of the program is implementation defined (see Section 3.1.4).13

• OMP_PLACES environment variable: The meaning of the numbers specified in the14
environment variable and how the numbering is done are implementation defined. The15
precise definitions of the abstract names are implementation defined. An implementation16
may add implementation defined abstract names as appropriate for the target platform. When17
creating a place list of n elements by appending the number n to an abstract name, the18
determination of which resources to include in the place list is implementation defined. When19
requesting more resources than available, the length of the place list is also implementation20
defined. The behavior of the program is implementation defined when the execution21
environment cannot map a numerical value (either explicitly defined or implicitly derived22
from an interval) within the OMP_PLACES list to a processor on the target platform, or if it23
maps to an unavailable processor. The behavior is also implementation defined when the24
OMP_PLACES environment variable is defined using an abstract name (see Section 3.1.5).25

• OMP_PROC_BIND environment variable: If the value is not true, false, or a comma26
separated list of primary, close, or spread, the behavior is implementation defined.27
The behavior is also implementation defined if an initial thread cannot be bound to the first28
place in the OpenMP place list. The thread affinity policy is implementation defined if the29
value is true (see Section 3.1.6).30

• OMP_SCHEDULE environment variable: If the value does not conform to the specified31
format then the behavior of the program is implementation defined (see Section 3.2.1).32

• OMP_STACKSIZE environment variable: If the value does not conform to the specified33
format or the implementation cannot provide a stack of the specified size then the behavior is34
implementation defined (see Section 3.2.2).35

• OMP_WAIT_POLICY environment variable: The details of the active and passive36
behaviors are implementation defined (see Section 3.2.3).37

• OMP_DISPLAY_AFFINITY environment variable: For all values of the environment38
variables other than true or false, the display action is implementation defined (see39

734 OpenMP API – Version 6.0 Preview 2 November 2023

Section 3.2.4).1

• OMP_AFFINITY_FORMAT environment variable: Additional implementation defined2
field types can be added (see Section 3.2.5).3

• OMP_CANCELLATION environment variable: If the value is set to neither true nor4
false, the behavior of the program is implementation defined (see Section 3.2.6).5

• OMP_TARGET_OFFLOAD environment variable: The support of disabled is6
implementation defined (see Section 3.2.9).7

• OMP_THREADS_RESERVE environment variable: If the requested values are greater than8
OMP_THREAD_LIMIT, the behavior of the program is implementation defined (see9
Section 3.2.10).10

• OMP_TOOL_LIBRARIES environment variable: Whether the value of the environment11
variable is case sensitive is implementation defined (see Section 3.3.2).12

• OMP_TOOL_VERBOSE_INIT environment variable: Support for logging to stdout or13
stderr is implementation defined. Whether the value of the environment variable is case14
sensitive when it is treated as a filename is implementation defined. The format and detail of15
the log is implementation defined (see Section 3.3.3).16

• OMP_DEBUG environment variable: If the value is neither disabled nor enabled, the17
behavior is implementation defined (see Section 3.4.1).18

• OMP_NUM_TEAMS environment variable: If the value is not a positive integer or is greater19
than the number of teams that an implementation can support, the behavior of the program is20
implementation defined (see Section 3.6.1).21

• OMP_TEAMS_THREAD_LIMIT environment variable: If the value is not a positive integer22
or is greater than the number of threads that an implementation can support, the behavior of23
the program is implementation defined (see Section 3.6.2).24

Chapter 4:25
C / C++

• A pragma directive that uses ompx as the first processing token is implementation defined26
(see Section 4.1).27

• The attribute namespace of an attribute specifier or the optional namespace qualifier within a28
sequence attribute that uses ompx is implementation defined (see Section 4.1).29

C / C++
C++

• Whether a throw executed inside a region that arises from an exception-aborting directive30
results in runtime error termination is implementation defined (see Section 4.1).31

C++

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 735

Fortran
• Any directive that uses omx or ompx in the sentinel is implementation defined (see1

Section 4.1).2

Fortran
Chapter 5:3

• Loop-iteration spaces and vectors: The particular integer type used to compute the4
iteration count for the collapsed loop is implementation defined (see Section 5.4.2).5

Chapter 6:6
Fortran

• Data-sharing attributes: The data-sharing attributes of dummy arguments that do not have7
the VALUE attribute are implementation defined if the associated actual argument is shared8
unless the actual argument is a scalar variable, structure, an array that is not a pointer or9
assumed-shape array, or a simply contiguous array section (see Section 6.1.2).10

• threadprivate directive: If the conditions for values of data in the threadprivate objects11
of threads (other than an initial thread) to persist between two consecutive active parallel12
regions do not all hold, the allocation status of an allocatable variable in the second region is13
implementation defined (see Section 6.2).14

Fortran
• is_device_ptr clause: Support for pointers created outside of the OpenMP device data15

management routines is implementation defined (see Section 6.4.7).16

Fortran
• has_device_addr and use_device_addr clauses: The result of inquiring about list17

item properties other than the CONTIGUOUS attribute, storage location, storage size, array18
bounds, character length, association status and allocation status is implementation defined19
(see Section 6.4.9 and Section 6.4.10).20

Fortran
• aligned clause: If the alignment modifier is not specified, the default alignments for21

SIMD instructions on the target platforms are implementation defined (see Section 6.11).22

Chapter 7:23
• Memory spaces: The actual storage resources that each memory space defined in Table 7.124

represents are implementation defined. The mechanism that provides the constant value of25
the variables allocated in the omp_const_mem_space memory space is implementation26
defined (see Section 7.1).27

• Memory allocators: The minimum size for partitioning allocated memory over storage28
resources is implementation defined. The default value for the pool_size allocator trait29
(see Table 7.2) is implementation defined. The memory spaces associated with the30
predefined omp_cgroup_mem_alloc, omp_pteam_mem_alloc and31
omp_thread_mem_alloc allocators (see Table 7.3) are implementation defined (see32
Section 7.2).33

736 OpenMP API – Version 6.0 Preview 2 November 2023

Chapter 8:1
• OpenMP context: The accepted isa-name values for the isa trait, the accepted arch-name2

values for the arch trait and the accepted extension-name values for the extension trait are3
implementation defined (see Section 8.1).4

• Metadirectives: The number of times that each expression of the context selector of a when5
clause is evaluated is implementation defined (see Section 8.4.1).6

• Declare variant directives: If two replacement candidates have the same score then their7
order is implementation defined. The number of times each expression of the context selector8
of a match clause is evaluated is implementation defined. For calls to constexpr base9
functions that are evaluated in constant expressions, whether any variant replacement occurs10
is implementation defined. Any differences that the specific OpenMP context requires in the11
prototype of the variant from the base function prototype are implementation defined (see12
Section 8.5).13

• declare simd directive: If a SIMD version is created and the simdlen clause is not14
specified, the number of concurrent arguments for the function is implementation defined15
(see Section 8.7).16

• Declare target directives: Whether the same version is generated for different devices, or17
whether a version that is called in a target region differs from the version that is called18
outside a target region, is implementation defined (see Section 8.8).19

Chapter 9:20
• requires directive: Support for any feature specified by a requirement clause on a21
requires directive is implementation defined (see Section 9.5).22

Chapter 10:23
• unroll construct: If no clauses are specified, if and how the loop is unrolled is24

implementation defined. If the partial clause is specified without an unroll-factor25
argument then the unroll factor is a positive integer that is implementation defined (see26
Section 10.2).27

Chapter 11:28
• Dynamic adjustment of threads: Providing the ability to adjust the number of threads29

dynamically is implementation defined (see Section 11.2.1).30

• Compile-time message: If the implementation determines that the requested number of31
threads can never be provided and therefore performs compile-time error termination, the32
effect of any message clause associated with the directive is implementation defined (see33
Section 11.2.2).34

• Thread affinity: If another OpenMP thread is bound to the place associated with its position,35
the place to which a free-agent thread is bound is implementation defined. For the spread36
thread affinity, if T ≤ P and T does not divide P evenly, which subpartitions contain ⌈⌈P/T⌉⌉37
places is implementation defined. For the close and spread thread affinity policies, if38

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 737

ET is not zero, which sets have AT positions and which sets have BT positions is1
implementation defined. Further, the positions assigned to the groups that are assigned sets2
with BT positions to make the number of positions assigned to each group AT is3
implementation defined. The determination of whether the thread affinity request can be4
fulfilled is implementation defined. If the thread affinity request cannot be fulfilled, then the5
thread affinity of threads in the team is implementation defined (see Section 11.2.3).6

• teams construct: The number of teams that are created is implementation defined, but it is7
greater than or equal to the lower bound and less than or equal to the upper bound values of8
the num_teams clause if specified. If the num_teams clause is not specified, the number9
of teams is less than or equal to the value of the nteams-var ICV if its value is greater than10
zero. Otherwise it is an implementation defined value greater than or equal to one (see11
Section 11.3).12

• simd construct: The number of iterations that are executed concurrently at any given time13
is implementation defined (see Section 11.5).14

Chapter 12:15
• single construct: The method of choosing a thread to execute the structured block each16

time the team encounters the construct is implementation defined (see Section 12.1).17

• sections construct: The method of scheduling the structured block sequences among18
threads in the team is implementation defined (see Section 12.3).19

• Worksharing-loop directive: The schedule that is used is implementation defined if the20
schedule clause is not specified or if the specified schedule has the kind auto. The value21
of simd_width for the simd schedule modifier is implementation defined (see Section 12.6).22

• distribute construct: If no dist_schedule clause is specified then the schedule for23
the distribute construct is implementation defined (see Section 12.7).24

Chapter 13:25
• taskloop construct: The number of loop iterations assigned to a task created from a26
taskloop construct is implementation defined, unless the grainsize or num_tasks27
clause is specified (see Section 13.7).28

C++
• taskloop construct: For firstprivate variables of class type, the number of29

invocations of copy constructors to perform the initialization is implementation defined (see30
Section 13.7).31

C++
Chapter 14:32

• thread_limit clause: The maximum number of threads that participate in executing33
tasks in the contention group that each team initiates is implementation defined if no34
thread_limit clause is specified on the construct. Otherwise, it has the implementation35
defined upper bound of the teams-thread-limit-var ICV, if the value of this ICV is greater36
than zero (see Section 14.3).37

738 OpenMP API – Version 6.0 Preview 2 November 2023

Chapter 15:1
• interop Construct: The foreign-runtime-id values for the prefer_type clause that the2

implementation supports, including non-standard names compatible with this clause, and the3
default choice when the implementation supports multiple values are implementation defined4
(see Section 15.1).5

Chapter 16:6
• atomic construct: A compliant implementation may enforce exclusive access between7
atomic regions that update different storage locations. The circumstances under which this8
occurs are implementation defined. If the storage location designated by x is not size-aligned9
(that is, if the byte alignment of x is not a multiple of the size of x), then the behavior of the10
atomic region is implementation defined (see Section 16.8.5).11

Chapter 17:12
• None.13

Chapter 18:14
• None.15

Chapter 19:16
• Runtime Routine names that begin with the ompx_ prefix are implementation-defined17

extensions to the OpenMP Runtime API (see Chapter 19).18

C / C++
• Runtime library definitions: The enum types for omp_allocator_handle_t,19
omp_event_handle_t, omp_interop_fr_t and omp_memspace_handle_t are20
implementation defined. The integral or pointer type for omp_interop_t is21
implementation defined. The value of the omp_invalid_device enumerator is22
implementation defined. The value of the omp_unknown_thread enumerator is23
implementation defined (see Section 19.1).24

C / C++
Fortran

• Runtime library definitions: Whether the include file omp_lib.h or the module25
omp_lib (or both) is provided is implementation defined. Whether the omp_lib.h file26
provides derived-type definitions or those routines that require an explicit interface is27
implementation defined. Whether any of the OpenMP runtime library routines that take an28
argument are extended with a generic interface so arguments of different KIND type can be29
accommodated is implementation defined. The value of the omp_invalid_device30
named constant is implementation defined (see Section 19.1).31

Fortran

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 739

• omp_set_num_threads routine: If the argument is not a positive integer, the behavior is1
implementation defined (see Section 19.2.1).2

• omp_set_schedule routine: For implementation-specific schedule kinds, the values and3
associated meanings of the second argument are implementation defined (see Section 19.2.9).4

• omp_get_schedule routine: The value returned by the second argument is5
implementation defined for any schedule kinds other than static, dynamic and guided6
(see Section 19.2.10).7

• omp_get_supported_active_levels routine: The number of active levels of8
parallelism supported by the implementation is implementation defined, but must be positive9
(see Section 19.2.12).10

• omp_set_max_active_levels routine: If the argument is a negative integer then the11
behavior is implementation defined. If the argument is less than the active-levels-var ICV, the12
max-active-levels-var ICV is set to an implementation-defined value between the value of the13
argument and the value of active-levels-var, inclusive (see Section 19.2.13).14

• omp_get_place_proc_ids routine: The meaning of the non-negative numerical15
identifiers returned by the omp_get_place_proc_ids routine is implementation16
defined. The order of the numerical identifiers returned in the array ids is implementation17
defined (see Section 19.3.4).18

• omp_set_affinity_format routine: When called from within any parallel or19
teams region, the binding thread set (and binding region, if required) for the20
omp_set_affinity_format region and the effect of this routine are implementation21
defined (see Section 19.3.8).22

• omp_get_affinity_format routine: When called from within any parallel or23
teams region, the binding thread set (and binding region, if required) for the24
omp_get_affinity_format region is implementation defined (see Section 19.3.9).25

• omp_display_affinity routine: If the format argument does not conform to the26
specified format then the result is implementation defined (see Section 19.3.10).27

• omp_capture_affinity routine: If the format argument does not conform to the28
specified format then the result is implementation defined (see Section 19.3.11).29

• omp_set_num_teams routine: If the argument does not evaluate to a positive integer, the30
behavior of this routine is implementation defined (see Section 19.4.3).31

• omp_set_teams_thread_limit routine: If the argument is not a positive integer, the32
behavior is implementation defined (see Section 19.4.5).33

• omp_pause_resource_all routine: The behavior of this routine is implementation34
defined if the argument kind is not listed in Section 19.6.1 (see Section 19.6.2).35

• omp_target_memcpy_rect and omp_target_memcpy_rect_async routines:36
The maximum number of dimensions supported is implementation defined, but must be at37

740 OpenMP API – Version 6.0 Preview 2 November 2023

least three (see Section 19.8.6 and Section 19.8.8).1

• Lock routines: If a lock contains a synchronization hint, the effect of the hint is2
implementation defined (see Section 19.9).3

• Interoperability routines: Implementation-defined properties may use zero and positive4
values for properties associated with an omp_interop_t object (see Section 19.12).5

Chapter 20:6
• Tool callbacks: If a tool attempts to register a callback not listed in Table 20.2, whether the7

registered callback may never, sometimes or always invoke this callback for the associated8
events is implementation defined (see Section 20.2.4).9

• Device tracing: Whether a target device supports tracing or not is implementation defined; if10
a target device does not support tracing, a NULL may be supplied for the lookup function to11
the device initializer of a tool (see Section 20.2.5).12

• ompt_set_trace_ompt and ompt_get_record_ompt runtime entry points:13
Whether a device-specific tracing interface defines this runtime entry point, indicating that it14
can collect traces in OMPT format, is implementation defined. The kinds of trace records15
available for a device is implementation defined (see Section 20.2.5).16

• Native record abstract type: The meaning of a hwid value for a device is implementation17
defined (see Section 20.4.3.3).18

• ompt_dispatch_chunk_t type: Whether the chunk of a taskloop is contiguous is19
implementation defined (see Section 20.4.4.13).20

• ompt_record_abstract_t type: The set of OMPT thread states supported is21
implementation defined (see Section 20.4.4.28).22

• ompt_callback_sync_region_t callback type: For the implicit-barrier-wait-begin23
and implicit-barrier-wait-end events at the end of a parallel region, whether the24
parallel_data argument is NULL or points to the parallel data of the current parallel25
region is implementation defined (see Section 20.5.2.13).26

• ompt_callback_target_data_op_emi_t and27
ompt_callback_target_data_op_t callback types: Whether in some operations28
src_addr or dest_addr might point to an intermediate buffer is implementation defined (see29
Section 20.5.2.25).30

• ompt_get_place_proc_ids_t entry point type: The meaning of the numerical31
identifiers returned is implementation defined. The order of ids returned in the array is32
implementation defined (see Section 20.6.1.8).33

• ompt_get_partition_place_nums_t entry point type: The order of the identifiers34
returned in the array place_nums is implementation defined (see Section 20.6.1.10).35

• ompt_get_proc_id_t entry point type: The meaning of the numerical identifier36
returned is implementation defined (see Section 20.6.1.11).37

APPENDIX A. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 741

Chapter 21:1
• ompd_callback_print_string_fn_t callback type: The value of category is2

implementation defined (see Section 21.4.5).3

• ompd_parallel_handle_compare operation: The means by which parallel region4
handles are ordered is implementation defined (see Section 21.5.6.5).5

• ompd_task_handle_compare operation: The means by which task handles are6
ordered is implementation defined (see Section 21.5.7.6).7

742 OpenMP API – Version 6.0 Preview 2 November 2023

B Features History1

This appendix summarizes the major changes between OpenMP API versions since version 2.5.2

B.1 Deprecated Features3

The following features were deprecated in Version 6.0:4

• The syntax of the declare reduction directive that specifies the combiner expression in5
the directive argument was deprecated.6

• The ompt_target_data_transfer_to_device,7
ompt_target_data_transfer_from_device,8
ompt_target_data_transfer_to_device_async, and9
ompt_target_data_transfer_from_device_async values in10
ompt_target_data_op_t enum were deprecated (see Section 20.4.4.15).11

B.2 Version 5.2 to 6.0 Differences12

• All features deprecated in versions 5.2, 5.1 and 5.0 were removed.13

• Full support for C23 was added (see Section 1.7).14

• Full support for C++23 was added (see Section 1.7).15

• The environment variable syntax was extended to support initializing ICVs for host and16
non-host devices with a single environment variable (see Section 2.2 and Chapter 3).17

• The handling of the nthreads-var ICV was updated (see Section 2.4) and the nthreads18
argument of the num_threads clause was changed to a list (see Section 11.2.2) to support19
context-specific reservation of inner parallelism.20

• The environment variable OMP_PLACES was extended to support an increment between21
consecutive places when creating a place list from an abstract name (see Section 3.1.5).22

• The environment variable OMP_AVAILABLE_DEVICES was added and the environment23
variable OMP_DEFAULT_DEVICE was extended to support device selection by traits (see24
Section 3.2.7 and Section 3.2.8).25

743

• The environment variable OMP_THREADS_RESERVE was added to reserve a number of1
structured threads and free-agent threads (see Section 3.2.10).2

C++
• The decl attribute was added to improve the attribute syntax for declarative directives (see3

Section 4.1).4

C++
C

• The OpenMP directive syntax was extended to include C attribute specifiers (see5
Section 4.1).6

C
• To improve consistency in clause format, all inarguable clauses were extended to take an7

optional argument for which the default value yields equivalent semantics to the existing8
inarguable semantics (see Section 4.2).9

Fortran
• The definitions of locator list items and assignable OpenMP types were extended to include10

function references that have data pointer results (see Section 4.2.1).11

Fortran
C / C++

• Array section definition was extended to permit, where explicitly allowed, omission of length12
when the size of the array dimension is not known (see Section 4.2.5).13

C / C++
• To support greater specificity on combined and composite constructs, all clauses were14

extended to accept the directive-name-modifier, which identifies the constituent directives to15
which the clause applies (see Section 4.4).16

Fortran
• OpenMP atomic structured blocks were extended to allow BLOCK constructs (see17

Section 5.3.3).18

• conditional-update-statement was extended to allow more forms and comparisons (see19
Section 5.3.3).20

Fortran
• The concept of canonical loop sequences and the looprange clause were defined (see21

Section 5.4.6 and Section 5.4.7).22

• The semantics of the use_device_ptr and use_device_addr clauses on a23
target data construct were altered to imply a reference count update on entry and exit24
from the region for the corresponding objects that they reference in the device data25
environment (see Section 6.4.8 and Section 6.4.10).26

744 OpenMP API – Version 6.0 Preview 2 November 2023

• Support for induction operations was added (see Section 6.5) through the induction1
clause (see Section 6.5.12) and the declare induction directive (see Section 6.5.16),2
which supports user-defined induction operators.3

C++
• The circumstances under which implicitly declared reduction identifiers are supported for4

variables of class type were clarified (see Section 6.5.3 and Section 6.5.6).5

C++
• The property of the map-type modifier was changed to “default” such that it can be freely6

placed and omitted even if other modifiers are used (see Section 6.8.3).7

• The self map-type-modifier was added to the map clause and the self implicit-behavior8
was added to the defaultmap clause to explicitly request that the corresponding list item9
refer to the same object as the original list item (see Section 6.8.3 and Section 6.8.6).10

• The map clause was extended to permit mapping of assumed-size arrays (see Section 6.8.3).11

• The groupprivate directive was added to specify that variables should be privatized with12
respect to a contention group (see Section 6.12).13

• The local clause was added to the declare target directive to specify that variables should14
be replicated locally for each device (see Section 6.13).15

• The allocator trait part_size was added to specify the size of the interleaved16
allocator partitions (see Section 7.2).17

• The pin_device, preferred_device and target_access memory allocator traits18
were defined to provide greater control of memory allocations that may be accessible from19
multiple devices (see Section 7.2).20

• The device value of the access allocator trait was defined as the default access21
allocator trait and to provide the semantics that an allocator with the trait corresponds to22
memory that all threads on a specific device can access. The semantics of an allocator with23
the all value were updated to correspond to memory that all threads in the system can24
access (see Section 7.2).25

• The interop operation of the append_args clause was extended to allow specification26
of all modifiers of the init clause (see Section 8.5.3 and Section 15.1.2).27

• The dispatch construct was extended with the interop clause to support appending28
arguments specific to a call site (see Section 8.6 and Section 8.6.1).29

• The message and severity clauses were added to the parallel directive to support30
customization of any error termination associated with the directive (see Section 9.3,31
Section 9.4, and Section 11.2).32

• The self_maps requirement clause was added to require that all mapping operations are33
self maps (see Section 9.5.1.6).34

APPENDIX B. FEATURES HISTORY 745

• The assumption clause group was extended with the no_openmp_constructs clause to1
support identification of regions in which no constructs will be encountered (see2
Section 9.6.1 and Section 9.6.1.5).3

• The reverse construct was added to reverse the iteration order of a loop (see Section 10.3).4

• The interchange construct was added to permute the order of loops in a loop nest (see5
Section 10.4).6

• The fuse construct was added to fuse two or more loops in a canonical loop sequences (see7
Section 10.5).8

• The apply clause was added to enable more flexible composition of loop-transforming9
constructs (see Section 10.6).10

• The omp_curr_progress_width identifier (see Section 11.1), safesync clause on11
the parallel construct (see Section 11.2.5) and the12
omp_get_max_progress_width runtime routine (see Section 19.7.2) were added to13
control which synchronizing threads are guaranteed to make progress eventually.14

• The prescriptiveness modifier was added to the num_threads clause and strict15
semantics were defined for the clause (see Section 11.2.2).16

• To support a wider range of synchronization choices, the atomic construct was added to the17
constructs that may be encountered inside a region that corresponds to a construct with an18
order clause that specifies concurrent (see Section 11.4).19

• The coexecute directive was added to support Fortran array expressions in teams20
constructs (see Section 12.5).21

Fortran
• The loop construct was extended to allow DO CONCURRENT loops as the associated loops22

(see Section 12.8).23

Fortran
• The threadset clause was added to task-generating constructs to specify the binding24

thread set of the generated task (see Section 13.4).25

• The nowait clause was added to the clauses that may appear on the target construct26
when the device clause is specified with the ancestor device-modifier (see27
Section 14.8).28

• The do_not_synchronize argument for the nowait clause (see Section 16.6) and nogroup29
clause (see Section 16.7) was updated to permit non-constant expressions.30

• The memscope clause was added to the atomic and flush constructs to allow the31
binding thread set to span multiple devices (see Section 16.8.4).32

746 OpenMP API – Version 6.0 Preview 2 November 2023

• The omp_is_free_agent and omp_ancestor_is_free_agent routines were1
added to test whether the encountering thread, or the ancestor thread, is a free-agent thread2
(see Section 19.5.4 and Section 19.5.5).3

• The omp_target_memset and omp_target_memset_rect_async routine were4
added to fill memory in a device data environment of a device (see Section 19.8.9 and5
Section 19.8.10).6

• New routines were added to obtain memory spaces and memory allocators to allocate remote7
and shared memory (see Section 19.13).8

• The omp_get_memspace_num_resources routine was added to be able to query the9
number of available resources of a memory space (see Section 19.13.12).10

• The omp_get_submemspace routine was added to obtain a memory space with a subset11
of the original memory space resources (see Section 19.13.13).12

• The more general values ompt_target_data_transfer and13
ompt_target_data_transfer_async were added to the14
ompt_target_data_op_t enum and supersede the values15
ompt_target_data_transfer_to_device,16
ompt_target_data_transfer_from_device,17
ompt_target_data_transfer_to_device_async, and18
ompt_target_data_transfer_from_device_async (see Section 20.4.4.15).19
The superseded values were deprecated.20

• The ompt_get_buffer_limits runtime entry point was added to the OMPT device21
tracing interface so that a first party tool can obtain an upper limit on the sizes of the trace22
buffers that it should make available to the implementation (see Section 20.5.2.23 and23
Section 20.6.2.6).24

B.3 Version 5.1 to 5.2 Differences25

• The explicit-task-var ICV has replaced the implicit-task-var ICV and has the opposite26
meaning and semantics (see Chapter 2). The omp_in_explicit_task routine was27
added to query if a code region is executed from an explicit task region (see Section 19.5.2).28

• Major reorganization and numerous changes were made to improve the quality of the29
specification of OpenMP syntax and to increase consistency of restrictions and their wording.30
These changes frequently result in the possible perception of differences to preceding versions31
of the OpenMP specification. However, those differences almost always resolve ambiguities,32
which may nonetheless have implications for existing implementations and programs.33

• For OpenMP directives, reserved the omp sentinel (see Section 4.1, Section 4.1.1 and34
Section 4.1.2) and, for implementation-defined directives that extend the OpenMP directives35
reserved the ompx sentinel for C/C++ and free source form Fortran (see Section 4.1 and36

APPENDIX B. FEATURES HISTORY 747

Section 4.1.2) and the omx sentinel for fixed source form Fortran to accommodate character1
position requirements (see Section 4.1.1). Reserved clause names that begin with the ompx_2
prefix for implementation-defined clauses on OpenMP directives (see Section 4.2). Reserved3
names in the base language that start with the omp_ and ompx_ prefix and reserved the omp4
and ompx namespaces (see Chapter 5) for the OpenMP runtime API and for5
implementation-defined extensions to that API (see Chapter 19).6

• Allowed any clause that can be specified on a paired end directive to be specified on the7
directive (see Section 4.1), including the copyprivate clause (see Section 6.7.2) and the8
nowait clause in Fortran (see Section 16.6).9

• Allowed if clause on teams construct (see Section 4.5 and Section 11.3).10

• For consistency with the syntax of other definitions of the clause, the syntax of the destroy11
clause on the depobj construct with no argument was deprecated (see Section 4.6).12

• For consistency with the syntax of other clauses, the syntax of the linear clause that13
specifies its argument and linear-modifier as linear-modifier(list) was deprecated and the14
step modifier was added for specifying the linear step (see Section 6.4.6).15

• The minus (-) operator for reductions was deprecated (see Section 6.5.6).16

• The syntax of modifiers without comma separators in the map clause was deprecated (see17
Section 6.8.3).18

• To support the complete range of user-defined mappers and to improve consistency of map19
clause usage, the declare mapper directive was extended to accept iterator-modifier and20
the present map-type-modifier (see Section 6.8.3 and Section 6.8.7).21

• Mapping of a pointer list item was updated such that if a matched candidate is not found in22
the data environment, firstprivate semantics apply and the pointer retains its original value23
(see Section 6.8.3).24

• The enter clause was added as a synonym for the to clause on the declare target directive,25
and the corresponding to clause was deprecated to reduce parsing ambiguity (see26
Section 6.8.4 and Section 8.8).27

Fortran
• Metadirectives (see Section 8.4), assumption directives (see Section 9.6), nothing28

directives (see Section 9.7), error directives (see Section 9.1) and loop transformation29
constructs (see Chapter 10) were added to the list of directives that are allowed in a pure30
procedure (see Chapter 4).31

• The allocators construct was added to support the use of OpenMP allocators for32
variables that are allocated by a Fortran ALLOCATE statement, and the application of33
allocate directives to an ALLOCATE statement was deprecated (see Section 7.7).34

748 OpenMP API – Version 6.0 Preview 2 November 2023

• For consistency with other constructs with associated base language code, the dispatch1
construct was extended to allow an optional paired end directive to be specified (see2
Section 8.6).3

Fortran
• To support the full range of allocators and to improve consistency with the syntax of other4

clauses, the argument that specified the arguments of the uses_allocators clause as a5
comma-separated list in which each list item is a clause-argument-specification of the form6
allocator[(traits)] was deprecated (see Section 7.8).7

• To improve code clarity and to reduce ambiguity in this specification, the otherwise8
clause was added as a synonym for the default clause on metadirectives and the9
corresponding default clause syntax was deprecated (see Section 8.4.2).10

C / C++
• To improve overall syntax consistency and to reduce redundancy, the delimited form of the11
declare target directive was deprecated (see Section 8.8.2).12

C / C++
• The behavior of the order clause with the concurrent parameter was changed so that it13

only affects whether a loop schedule is reproducible if a modifier is explicitly specified (see14
Section 11.4).15

• Support for the allocate and firstprivate clauses on the scope directive was16
added (see Section 12.2).17

• The ompt_callback_work callback work types for worksharing loop were added (see18
Section 12.6).19

• To simplify usage, the map clause on a target enter data or target exit data20
construct now has a default map type that provides the same behavior as the to or from map21
types, respectively (see Section 14.6 and Section 14.7).22

• The interop construct was updated to allow the init clause to accept an interop_type in23
any position of the modifier list (see Section 15.1).24

• The doacross clause was added as a synonym for the depend clause with the keywords25
source and sink as dependence-type modifiers and the corresponding depend clause26
syntax was deprecated to improve code clarity and to reduce parsing ambiguity. Also, the27
omp_cur_iteration keyword was added to represent an iteration vector that refers to28
the current logical iteration (see Section 16.9.6).29

APPENDIX B. FEATURES HISTORY 749

B.4 Version 5.0 to 5.1 Differences1

• Full support of C11, C++11, C++14, C++17, C++20 and Fortran 2008 was completed (see2
Section 1.7).3

• Various changes throughout the specification were made to provide initial support of Fortran4
2018 (see Section 1.7).5

• To support device-specific ICV settings the environment variable syntax was extended to6
support device-specific variables (see Section 2.2 and Chapter 3).7

• The OpenMP directive syntax was extended to include C++ attribute specifiers (see8
Section 4.1).9

• The omp_all_memory reserved locator was added (see Section 4.1), and the depend10
clause was extended to allow its use (see Section 16.9.5).11

• Support for private and firstprivate as an argument to the default clause in C12
and C++ was added (see Section 6.4.1).13

• Support was added so that iterators may be defined and used in a map clause (see14
Section 6.8.3) or in data-motion clause on a target update directive (see Section 14.9).15

• The present argument was added to the defaultmap clause (see Section 6.8.6).16

• Support for the align clause on the allocate directive and allocator and align17
modifiers on the allocate clause was added (see Chapter 7).18

• The target_device trait set was added to the OpenMP context (see Section 8.1), and the19
target_device selector set was added to context selectors (see Section 8.2).20

• For C/C++, the declare variant directive was extended to support elision of preprocessed21
code and to allow enclosed function definitions to be interpreted as variant functions (see22
Section 8.5).23

• The declare variant directive was extended with new clauses (adjust_args and24
append_args) that support adjustment of the interface between the original function and25
its variants (see Section 8.5).26

• The dispatch construct was added to allow users to control when variant substitution27
happens and to define additional information that can be passed as arguments to the function28
variants (see Section 8.6).29

• Support was added for indirect calls to the device version of a procedure in target regions30
(see Section 8.8).31

• Assumption directives were added to allow users to specify invariants (see Section 9.6).32

• To support clarity in metadirectives, the nothing directive was added (see Section 9.7).33

750 OpenMP API – Version 6.0 Preview 2 November 2023

• To allow users to control the compilation process and runtime error actions, the error1
directive was added (see Section 9.1).2

• Loop transformation constructs were added (see Chapter 8).3

• The masked construct was added to support restricting execution to a specific thread to4
replace the deprecated master construct (see Section 11.6).5

• The scope directive was added to support reductions without requiring a parallel or6
worksharing region (see Section 12.2).7

• The grainsize and num_tasks clauses for the taskloop construct were extended8
with a strict modifier to ensure a deterministic distribution of logical iterations to tasks9
(see Section 13.7).10

• The thread_limit clause was added to the target construct to control the upper bound11
on the number of threads in the created contention group (see Section 14.8).12

• The has_device_addr clause was added to the target construct to allow access to13
variables or array sections that already have a device address (see Section 14.8).14

• The interop directive was added to enable portable interoperability with foreign execution15
contexts used to implement OpenMP (see Section 15.1). Runtime routines that facilitate use16
of omp_interop_t objects were also added (see Section 19.12).17

• The nowait clause was added to the taskwait directive to support insertion of18
non-blocking join operations in a task dependence graph (see Section 16.5).19

• Support was added for compare-and-swap and (for C and C++) minimum and maximum20
atomic operations through the compare clause. Support was also added for the specification21
of the memory order to apply to a failed comparing atomic operation with the fail clause22
(see Section 16.8.5).23

• Specification of the seq_cst clause on a flush construct was allowed, with the same24
meaning as a flush construct without a list and without a clause (see Section 16.8.6).25

• To support inout sets, the inoutset argument was added to the depend clause (see26
Section 16.9.5).27

• The omp_set_num_teams and omp_set_teams_thread_limit runtime routines28
were added to control the number of teams and the size of those teams on the teams29
construct (see Section 19.4.3 and Section 19.4.5). Additionally, the omp_get_max_teams30
and omp_get_teams_thread_limit runtime routines were added to retrieve the31
values that will be used in the next teams construct (see Section 19.4.4 and Section 19.4.6).32

• The omp_target_is_accessible runtime routine was added to test whether host33
memory is accessible from a given device (see Section 19.8.4).34

• To support asynchronous device memory management, omp_target_memcpy_async35
and omp_target_memcpy_rect_async runtime routines were added (see36

APPENDIX B. FEATURES HISTORY 751

Section 19.8.7 and Section 19.8.8).1

• The omp_get_mapped_ptr runtime routine was added to support obtaining the device2
pointer that is associated with a host pointer for a given device (see Section 19.8.13).3

• The omp_calloc, omp_realloc, omp_aligned_alloc and4
omp_aligned_calloc API routines were added (see Section 19.13).5

• For the omp_alloctrait_key_t enum, the omp_atv_serialized value was added6
and the omp_atv_default value was changed (see Section 19.13.1).7

• The omp_display_env runtime routine was added to provide information about ICVs8
and settings of environment variables (see Section 19.15).9

• The ompt_scope_beginend value was added to the ompt_scope_endpoint_t10
enum to indicate the coincident beginning and end of a scope (see Section 20.4.4.11).11

• The ompt_sync_region_barrier_implicit_workshare,12
ompt_sync_region_barrier_implicit_parallel, and13
ompt_sync_region_barrier_teams values were added to the14
ompt_sync_region_t enum (see Section 20.4.4.14).15

• Values for asynchronous data transfers were added to the ompt_target_data_op_t16
enum (see Section 20.4.4.15).17

• The ompt_state_wait_barrier_implementation and18
ompt_state_wait_barrier_teams values were added to the ompt_state_t19
enum (see Section 20.4.4.28).20

• The ompt_callback_target_data_op_emi_t,21
ompt_callback_target_emi_t, ompt_callback_target_map_emi_t, and22
ompt_callback_target_submit_emi_t callbacks were added to support external23
monitoring interfaces (see Section 20.5.2.25, Section 20.5.2.26, Section 20.5.2.27 and24
Section 20.5.2.28).25

• The ompt_callback_error_t type was added (see Section 20.5.2.30).26

• The OMP_PLACES syntax was extended (see Section 3.1.5).27

• The OMP_NUM_TEAMS and OMP_TEAMS_THREAD_LIMIT environment variables were28
added to control the number and size of teams on the teams construct (see Section 3.6.1 and29
Section 3.6.2).30

B.5 Version 4.5 to 5.0 Differences31

• The memory model was extended to distinguish different types of flush operations according32
to specified flush properties (see Section 1.4.4) and to define a happens before order based on33
synchronizing flush operations (see Section 1.4.5).34

752 OpenMP API – Version 6.0 Preview 2 November 2023

• Various changes throughout the specification were made to provide initial support of C11,1
C++11, C++14, C++17 and Fortran 2008 (see Section 1.7).2

• Full support of Fortran 2003 was completed (see Section 1.7).3

• The target-offload-var internal control variable (see Chapter 2) and the4
OMP_TARGET_OFFLOAD environment variable (see Section 3.2.9) were added to support5
runtime control of the execution of device constructs.6

• Control over whether nested parallelism is enabled or disabled was integrated into the7
max-active-levels-var internal control variable (see Section 2.2), the default value of which is8
now implementation defined, unless determined according to the values of the9
OMP_NUM_THREADS (see Section 3.1.2) or OMP_PROC_BIND (see Section 3.1.6)10
environment variables.11

• Support for array shaping (see Section 4.2.4) and for array sections with non-unit strides in C12
and C++ (see Section 4.2.5) was added to facilitate specification of discontiguous storage,13
and the target update construct (see Section 14.9) and the depend clause (see14
Section 16.9.5) were extended to allow the use of shape-operators (see Section 4.2.4).15

• Iterators (see Section 4.2.6) were added to support expressions in a list that expand to16
multiple expressions.17

• The canonical loop form was defined for Fortran and, for all base languages, extended to18
permit non-rectangular loop nests (see Section 5.4.1).19

• The relational-op in the canonical loop form for C/C++ was extended to include != (see20
Section 5.4.1).21

• To support conditional assignment to lastprivate variables, the conditional modifier was22
added to the lastprivate clause (see Section 6.4.5).23

• The inscan modifier for the reduction clause (see Section 6.5.9) and the scan24
directive (see Section 6.6) were added to support inclusive and exclusive scan computations.25

• To support task reductions, the task modifier was added to the reduction clause (see26
Section 6.5.9), the task_reduction clause (see Section 6.5.10) was added to the27
taskgroup construct (see Section 16.4), and the in_reduction clause (see28
Section 6.5.11) was added to the task (see Section 13.6) and target (see Section 14.8)29
constructs.30

• To support taskloop reductions, the reduction (see Section 6.5.9) and in_reduction31
(see Section 6.5.11) clauses were added to the taskloop construct (see Section 13.7).32

• The description of the map clause was modified to clarify the mapping order when multiple33
map-types are specified for a variable or structure members of a variable on the same34
construct. The close map-type-modifier was added as a hint for the runtime to allocate35
memory close to the target device (see Section 6.8.3).36

APPENDIX B. FEATURES HISTORY 753

• The capability to map C/C++ pointer variables and to assign the address of device memory1
that is mapped by an array section to them was added. Support for mapping of Fortran2
pointer and allocatable variables, including pointer and allocatable components of variables,3
was added (see Section 6.8.3).4

• The defaultmap clause (see Section 6.8.6) was extended to allow selecting the5
data-mapping or data-sharing attributes for any of the scalar, aggregate, pointer, or6
allocatable classes on a per-region basis. Additionally it accepts the none parameter to7
support the requirement that all variables referenced in the construct must be explicitly8
mapped or privatized.9

• The declare mapper directive was added to support mapping of data types with direct10
and indirect members (see Section 6.8.7).11

• Predefined memory spaces (see Section 7.1), predefined memory allocators and allocator12
traits (see Section 7.2) and directives, clauses and API routines (see Chapter 7 and13
Section 19.13) to use them were added to support different kinds of memories.14

• Metadirectives (see Section 8.4) and declare variant directives (see Section 8.5) were added15
to support selection of directive variants and declared function variants at a call site,16
respectively, based on compile-time traits of the enclosing context.17

• Support for nested declare target directives was added (see Section 8.8).18

• The requires directive (see Section 9.5) was added to support applications that require19
implementation-specific features.20

• The teams construct (see Section 11.3) was extended to support execution on the host21
device without an enclosing target construct (see Section 14.8).22

• The loop construct and the order(concurrent) clause were added to support23
compiler optimization and parallelization of loops for which iterations may execute in any24
order, including concurrently (see Section 11.4 and Section 12.8).25

• The collapse of associated loops that are imperfectly nested loops was defined for the simd26
(see Section 11.5), worksharing-loop (see Section 12.6), distribute (see Section 12.7)27
and taskloop (see Section 13.7) constructs.28

• The simd construct (see Section 11.5) was extended to accept the if, nontemporal, and29
order(concurrent) clauses and to allow the use of atomic constructs within it.30

• The default loop schedule modifier for worksharing-loop constructs without the static31
schedule and the ordered clause was changed to nonmonotonic (see Section 12.6).32

• The affinity clause was added to the task construct (see Section 13.6) to support hints33
that indicate data affinity of explicit tasks.34

• The detach clause for the task construct (see Section 13.6) and the35
omp_fulfill_event runtime routine (see Section 19.11.1) were added to support36
execution of detachable tasks.37

754 OpenMP API – Version 6.0 Preview 2 November 2023

• The taskloop construct (see Section 13.7) was added to the list of constructs that can be1
canceled by the cancel construct (see Section 17.2)).2

• To support mutually exclusive inout sets, a mutexinoutset dependence-type was added3
to the depend clause (see Section 13.10 and Section 16.9.5).4

• The semantics of the use_device_ptr clause for pointer variables was clarified and the5
use_device_addr clause for using the device address of non-pointer variables inside the6
target data construct was added (see Section 14.5).7

• To support reverse offload, the ancestor modifier was added to the device clause for the8
target construct (see Section 14.8).9

• To reduce programmer effort, implicit declare target directives for some functions (C, C++,10
Fortran) and subroutines (Fortran) were added (see Section 14.8 and Section 8.8).11

• The target update construct (see Section 14.9) was modified to allow array sections that12
specify discontiguous storage.13

• The to and from clauses on the target update construct (see Section 14.9), the14
depend clause on task generating constructs (see Section 16.9.5), and the map clause (see15
Section 6.8.3) were extended to allow any lvalue expression as a list item for C/C++.16

• Lock hints were renamed to synchronization hints, and the old names were deprecated (see17
Section 16.1).18

• The depend clause was added to the taskwait construct (see Section 16.5).19

• To support acquire and release semantics with weak memory ordering, the acq_rel,20
acquire, and release clauses were added to the atomic construct (see Section 16.8.5)21
and flush construct (see Section 16.8.6), and the memory ordering semantics of implicit22
flushes on various constructs and runtime routines were clarified (see Section 16.8.7).23

• The atomic construct was extended with the hint clause (see Section 16.8.5).24

• The depend clause (see Section 16.9.5) was extended to support iterators and to support25
depend objects that can be created with the new depobj construct.26

• New combined constructs master taskloop, parallel master,27
parallel master taskloop, master taskloop simd28
parallel master taskloop simd (see Section 18.3) were added.29

• The omp_set_nested and omp_get_nested routines and the OMP_NESTED30
environment variable were deprecated.31

• The omp_get_supported_active_levels routine was added to query the number of32
active levels of parallelism supported by the implementation (see Section 19.2.12).33

• Runtime routines omp_set_affinity_format (see Section 19.3.8),34
omp_get_affinity_format (see Section 19.3.9), omp_set_affinity (see35
Section 19.3.10), and omp_capture_affinity (see Section 19.3.11) and environment36

APPENDIX B. FEATURES HISTORY 755

variables OMP_DISPLAY_AFFINITY (see Section 3.2.4) and OMP_AFFINITY_FORMAT1
(see Section 3.2.5) were added to provide OpenMP runtime thread affinity information.2

• The omp_pause_resource and omp_pause_resource_all runtime routines were3
added to allow the runtime to relinquish resources used by OpenMP (see Section 19.6.1 and4
Section 19.6.2).5

• The omp_get_device_num runtime routine (see Section 19.7.6) was added to support6
determination of the device on which a thread is executing.7

• Support for a first-party tool interface (see Chapter 20) was added.8

• Support for a third-party tool interface (see Chapter 21) was added.9

• Support for controlling offloading behavior with the OMP_TARGET_OFFLOAD environment10
variable was added (see Section 3.2.9).11

• Stubs for Runtime Library Routines (previously Appendix A) were moved to a separate12
document.13

• Interface Declarations (previously Appendix B) were moved to a separate document.14

B.6 Version 4.0 to 4.5 Differences15

• Support for several features of Fortran 2003 was added (see Section 1.7).16

• The if clause was extended to take a directive-name-modifier that allows it to apply to17
combined constructs (see Section 4.5).18

• The implicit data-sharing attribute for scalar variables in target regions was changed to19
firstprivate (see Section 6.1.1).20

• Use of some C++ reference types was allowed in some data sharing attribute clauses (see21
Section 6.4).22

• The ref, val, and uval modifiers were added to the linear clause (see Section 6.4.6).23

• Semantics for reductions on C/C++ array sections were added and restrictions on the use of24
arrays and pointers in reductions were removed (see Section 6.5.9).25

• Support was added to the map clauses to handle structure elements (see Section 6.8.3).26

• To support unstructured data mapping for devices, the map clause (see Section 6.8.3) was27
updated and the target enter data (see Section 14.6) and target exit data (see28
Section 14.7) constructs were added.29

• The declare target directive was extended to allow mapping of global variables to be30
deferred to specific device executions and to allow an extended-list to be specified in C/C++31
(see Section 8.8).32

756 OpenMP API – Version 6.0 Preview 2 November 2023

• The simdlen clause was added to the simd construct (see Section 11.5) to support1
specification of the exact number of iterations desired per SIMD chunk.2

• A parameter was added to the ordered clause of the worksharing-loop construct (see3
Section 12.6) and clauses were added to the ordered construct (see Section 16.10) to4
support doacross loop nests and use of the simd construct on loops with loop-carried5
backward dependences.6

• The linear clause was added to the worksharing-loop construct (see Section 12.6).7

• The priority clause was added to the task construct (see Section 13.6) to support hints8
that specify the relative execution priority of explicit tasks. The9
omp_get_max_task_priority routine was added to return the maximum supported10
priority value (see Section 19.5.1) and the OMP_MAX_TASK_PRIORITY environment11
variable was added to control the maximum priority value allowed (see Section 3.2.11).12

• The taskloop construct (see Section 13.7) was added to support nestable parallel loops13
that create OpenMP tasks.14

• To support interaction with native device implementations, the use_device_ptr clause15
was added to the target data construct (see Section 14.5) and the is_device_ptr16
clause was added to the target construct (see Section 14.8).17

• The nowait and depend clauses were added to the target construct (see Section 14.8)18
to improve support for asynchronous execution of target regions.19

• The private, firstprivate and defaultmap clauses were added to the target20
construct (see Section 14.8).21

• The hint clause was added to the critical construct (see Section 16.2).22

• The source and sink dependence types were added to the depend clause (see23
Section 16.9.5) to support doacross loop nests.24

• To support a more complete set of device construct shortcuts, the target parallel,25
target parallel worksharing-loop, target parallel worksharing-loop SIMD, and26
target simd (see Section 18.3) combined constructs were added.27

• Query functions for OpenMP thread affinity were added (see Section 19.3.2 to28
Section 19.3.7).29

• Device memory routines were added to allow explicit allocation, deallocation, memory30
transfers, and memory associations (see Section 19.8).31

• The lock API was extended with lock routines that support storing a hint with a lock to select32
a desired lock implementation for a lock’s intended usage by the application code (see33
Section 19.9.2).34

• C/C++ Grammar (previously Appendix B) was moved to a separate document.35

APPENDIX B. FEATURES HISTORY 757

B.7 Version 3.1 to 4.0 Differences1

• Various changes throughout the specification were made to provide initial support of Fortran2
2003 (see Section 1.7).3

• C/C++ array syntax was extended to support array sections (see Section 4.2.5).4

• The reduction clause (see Section 6.5.9) was extended and the declare reduction5
construct (see Section 6.5.13) was added to support user defined reductions.6

• The proc_bind clause (see Section 11.2.3), the OMP_PLACES environment variable (see7
Section 3.1.5), and the omp_get_proc_bind runtime routine (see Section 19.3.1) were8
added to support thread affinity policies.9

• SIMD directives were added to support SIMD parallelism (see Section 11.5).10

• Implementation defined task scheduling points for untied tasks were removed (see11
Section 13.10).12

• Device directives (see Chapter 14), the OMP_DEFAULT_DEVICE environment variable (see13
Section 3.2.8), and the omp_set_default_device, omp_get_default_device,14
omp_get_num_devices, omp_get_num_teams, omp_get_team_num, and15
omp_is_initial_device routines were added to support execution on devices.16

• The taskgroup construct (see Section 16.4) was added to support deep task17
synchronization.18

• The atomic construct (see Section 16.8.5) was extended to support atomic swap with the19
capture clause, to allow new atomic update and capture forms, and to support sequentially20
consistent atomic operations with a new seq_cst clause.21

• The depend clause (see Section 16.9.5) was added to support task dependences.22

• The cancel construct (see Section 17.2), the cancellation point construct (see23
Section 17.3), the omp_get_cancellation runtime routine (see Section 19.2.8), and24
the OMP_CANCELLATION environment variable (see Section 3.2.6) were added to support25
the concept of cancellation.26

• The OMP_DISPLAY_ENV environment variable (see Section 3.7) was added to display the27
value of ICVs associated with the OpenMP environment variables.28

• Examples (previously Appendix A) were moved to a separate document.29

B.8 Version 3.0 to 3.1 Differences30

• The bind-var ICV (see Section 2.1) and the OMP_PROC_BIND environment variable (see31
Section 3.1.6) were added to support control of whether threads are bound to processors.32

758 OpenMP API – Version 6.0 Preview 2 November 2023

• Data environment restrictions were changed to allow intent(in) and const-qualified1
types for the firstprivate clause (see Section 6.4.4).2

• Data environment restrictions were changed to allow Fortran pointers in firstprivate3
(see Section 6.4.4) and lastprivate (see Section 6.4.5) clauses.4

• New reduction operators min and max were added for C and C++ (see Section 6.5).5

• The nthreads-var ICV was modified to be a list of the number of threads to use at each nested6
parallel region level, and the algorithm for determining the number of threads used in a7
parallel region was modified to handle a list (see Section 11.2.1).8

• The final and mergeable clauses (see Section 13.6) were added to the task construct9
to support optimization of task data environments.10

• The taskyield construct (see Section 13.8) was added to allow user-defined task11
scheduling points.12

• The atomic construct (see Section 16.8.5) was extended to include read, write, and13
capture forms, and an update clause was added to apply the already existing form of the14
atomic construct.15

• The nesting restrictions in Section 18.1 were clarified to disallow closely-nested OpenMP16
regions within an atomic region so that an atomic region can be consistently defined with17
other OpenMP regions to include all code in the atomic construct.18

• The omp_in_final runtime library routine (see Section 19.5.3) was added to support19
specialization of final task regions.20

• Descriptions of examples (previously Appendix A) were expanded and clarified.21

• Incorrect use of omp_integer_kind in Fortran interfaces was replaced with22
selected_int_kind(8).23

B.9 Version 2.5 to 3.0 Differences24

• The definition of active parallel region was changed so that a parallel region is25
active if it is executed by a team that consists of more than one thread (see Section 1.2).26

• The concept of tasks was added to the execution model (see Section 1.2 and Section 1.3).27

• The OpenMP memory model was extended to cover atomicity of memory accesses (see28
Section 1.4.1). The description of the behavior of volatile in terms of flush was29
removed.30

• The definition of the nest-var, dyn-var, nthreads-var and run-sched-var internal control31
variables (ICVs) were modified to provide one copy of these ICVs per task instead of one32
copy for the whole program (see Chapter 2). The omp_set_num_threads and33

APPENDIX B. FEATURES HISTORY 759

omp_set_dynamic runtime library routines were specified to support their use from1
inside a parallel region (see Section 19.2.1 and Section 19.2.6).2

• The thread-limit-var ICV, the omp_get_thread_limit runtime library routine and the3
OMP_THREAD_LIMIT environment variable were added to support control of the maximum4
number of threads (see Section 2.1, Section 19.2.11 and Section 3.1.3).5

• The max-active-levels-var ICV, omp_set_max_active_levels and6
omp_get_max_active_levels runtime library routines, and7
OMP_MAX_ACTIVE_LEVELS environment variable were added to support control of the8
number of nested active parallel regions (see Section 2.1, Section 19.2.13,9
Section 19.2.14 and Section 3.1.4).10

• The stacksize-var ICV and the OMP_STACKSIZE environment variable were added to11
support control of thread stack sizes (see Section 2.1 and Section 3.2.2).12

• The wait-policy-var ICV and the OMP_WAIT_POLICY environment variable were added to13
control the desired behavior of waiting threads (see Section 2.1 and Section 3.2.3).14

• Predetermined data-sharing attributes were defined for Fortran assumed-size arrays (see15
Section 6.1.1).16

• Static class members variables were allowed in threadprivate directives (see17
Section 6.2).18

• Invocations of constructors and destructors for private and threadprivate class type variables19
was clarified (see Section 6.2, Section 6.4.3, Section 6.4.4, Section 6.7.1 and Section 6.7.2).20

• The use of Fortran allocatable arrays was allowed in private, firstprivate,21
lastprivate, reduction, copyin and copyprivate clauses (see Section 6.2,22
Section 6.4.3, Section 6.4.4, Section 6.4.5, Section 6.5.9, Section 6.7.1 and Section 6.7.2).23

• Support for firstprivate was added to the default clause in Fortran (see24
Section 6.4.1).25

• Implementations were precluded from using the storage of the original list item to hold the26
new list item on the primary thread for list items in the private clause, and the value was27
made well defined on exit from the parallel region if no attempt is made to reference the28
original list item inside the parallel region (see Section 6.4.3).29

• Data environment restrictions were changed to allow intent(in) and const-qualified30
types for the firstprivate clause (see Section 6.4.4).31

• Data environment restrictions were changed to allow Fortran pointers in firstprivate32
(see Section 6.4.4) and lastprivate (see Section 6.4.5).33

• Determination of the number of threads in parallel regions was updated (see34
Section 11.2.1).35

760 OpenMP API – Version 6.0 Preview 2 November 2023

• The assignment of iterations to threads in a loop construct with a static schedule kind was1
made deterministic (see Section 12.6).2

• The worksharing-loop construct was extended to support association with more than one3
perfectly nested loop through the collapse clause (see Section 12.6).4

• Iteration variables for worksharing-loops were allowed to be random access iterators or of5
unsigned integer type (see Section 12.6).6

• The schedule kind auto was added to allow the implementation to choose any possible7
mapping of iterations in a loop construct to threads in the team (see Section 12.6).8

• The task construct (see Chapter 13) was added to support explicit tasks.9

• The taskwait construct (see Section 16.5) was added to support task synchronization.10

• The runtime library routines omp_set_schedule and omp_get_schedule were11
added to set and to retrieve the value of the run-sched-var ICV (see Section 19.2.9 and12
Section 19.2.10).13

• The omp_get_level runtime library routine was added to return the number of nested14
parallel regions that enclose the task that contains the call (see Section 19.2.15).15

• The omp_get_ancestor_thread_num runtime library routine was added to return the16
thread number of the ancestor of the current thread (see Section 19.2.16).17

• The omp_get_team_size runtime library routine was added to return the size of the18
thread team to which the ancestor of the current thread belongs (see Section 19.2.17).19

• The omp_get_active_level runtime library routine was added to return the number of20
active parallel regions that enclose the task that contains the call (see Section 19.2.18).21

• Lock ownership was defined in terms of tasks instead of threads (see Section 19.9).22

APPENDIX B. FEATURES HISTORY 761

Index

Symbols
_OPENMP macro, 38, 39, 49, 73

A
absent, 253
acq_rel, 366
acquire, 366
acquire flush, 11
adjust_args, 222
affinity, 276
affinity, 319
align, 201
aligned, 192
allocate, 203, 205
allocator, 202
allocators, 207
append_args, 223
apply Clause, 268
array sections, 68
array shaping, 67
assumes, 258, 259
assumption clauses, 253
assumption directives, 252
at, 243
atomic, 375
atomic, 369
atomic construct, 699
atomic_default_mem_order, 247
attribute clauses, 122
attributes, data-mapping, 170
attributes, data-sharing, 109
auto, 305

B
barrier, 356
barrier, implicit, 357

base language format, 83
begin declare target, 239
begin declare variant, 226
begin metadirective, 219
begin assumes, 259
bind, 311
branch, 233

C
cancel, 400
cancel-directive-name, 399
cancellation constructs, 399

cancel, 400
cancellation point, 404

cancellation point, 404
canonical loop nest form, 95
canonical loop sequence form, 106
capture, 372
capture, atomic, 375
clause format, 60
clauses

absent, 253
acq_rel, 366
acquire, 366
adjust_args, 222
affinity, 319
align, 201
aligned, 192
allocate, 205
allocator, 202
append_args, 223
apply Clause, 268
assumption, 253
at, 243
atomic, 369

762

atomic_default_mem_order,
247

attribute data-sharing, 122
bind, 311
branch, 233
cancel-directive-name, 399
capture, 372
collapse, 103
collector, 162
combiner, 159
compare, 372
contains, 254
copyin, 166
copyprivate, 168
data copying, 166
data-sharing, 122
default, 122
defaultmap, 183
depend, 388
destroy, 81
detach, 320
device, 331
device_type, 330
dist_schedule, 308
doacross, 391
dynamic_allocators, 247
enter, 182
exclusive, 166
extended-atomic, 371
fail, 373
filter, 289
final, 314
firstprivate, 125
from, 191
full, 264
grainsize, 324
has_device_addr, 136
hint, 351, 353
holds, 255
if Clause, 80
in_reduction, 153
inbranch, 233
inclusive, 165

indirect, 240
induction, 155
inductor, 162
init, 348
initializer, 159
interop, 229
is_device_ptr, 134
lastprivate, 128
linear, 131
link, 183
local, 196
map, 173
match, 221
memory-order, 365
memscope, 374
mergeable, 314
message, 244
no_openmp, 255
no_openmp_constructs, 256
no_openmp_routines, 257
no_parallelism, 257
nocontext, 230
nogroup, 364
nontemporal, 286
notinbranch, 234
novariants, 230
nowait, 363
num_tasks, 325
num_teams, 282
num_threads, 275
order, 283
ordered, 104
otherwise, 218
parallelization-level, 397
partial, 265
permutation, 267
priority, 316
private, 124
proc_bind, 278
read, 369
reduction, 150
relaxed, 367
release, 368

Index 763

requirement, 246
reverse_offload, 248
safelen, 287
safesync, 279
schedule, 304
self_maps, 252
seq_cst, 368
severity, 244
shared, 123
simd, 398
simdlen, 287
sizes, 263
looprange, 107
task_reduction, 153
thread_limit, 332
threads, 397
threadset, 315
to, 190
unified_address, 249
unified_shared_memory, 250
uniform, 192
untied, 313
update, 370, 386
use, 349
use_device_addr, 137
use_device_ptr, 135
uses_allocators, 207
weak, 374
when, 217
write, 370

coexecute, 298
collapse, 103
combined and composite directive

names, 409
combined construct semantics, 410
compare, 372
compare, atomic, 375
compilation sentinels, 74, 75
compliance, 15
composite constructs, 411
composition of constructs, 405
conditional compilation, 73
consistent loop schedules, 105

construct syntax, 51
constructs

allocators, 207
atomic, 375
barrier, 356
cancel, 400
cancellation constructs, 399
cancellation point, 404
coexecute, 298
combined constructs, 410
composite constructs, 411
critical, 354
depobj, 387
device constructs, 330
dispatch, 228
distribute, 306
do, 303
flush, 379
for, 302
fuse, 267
interop, 346
loop, 309
masked, 288
ordered, 393–395
parallel, 270
reverse, 265
scope, 292
sections, 293
simd, 284
single, 291
target, 338
target data, 334
target enter data, 335
target exit data, 337
target update, 343
task, 316
taskgroup, 359
tasking constructs, 313
taskloop, 321
taskwait, 361
taskyield, 325
teams, 279
interchange, 266

764 OpenMP API – Version 6.0 Preview 2 November 2023

tile, 262
unroll, 263
work-distribution, 290
workshare, 295
worksharing, 290
worksharing-loop construct, 300

contains, 254
controlling OpenMP thread affinity, 276
copyin, 166
copyprivate, 168
critical, 354

D
data copying clauses, 166
data environment, 109
data-mapping control, 170
data-motion clauses, 188
data-sharing attribute clauses, 122
data-sharing attribute rules, 109
declare induction, 160
declare mapper, 185
declare reduction, 157
declare simd, 231
Declare Target, 234
declare target, 236
declare variant, 225
declare variant, 220
default, 122
defaultmap, 183
depend, 388
depend object, 386
dependences, 385
depobj, 387
deprecated features, 703
destroy, 81
detach, 320
device, 331
device constructs

device constructs, 330
target, 338
target update, 343

device data environments, 9, 335, 337
device directives, 330
device information routines, 451

device memory routines, 456
device_type, 330
directive format, 52
directive syntax, 51
directive-name-modifier, 75
directives

allocate, 203
assumes, 258, 259
assumptions, 252
begin assumes, 259
begin declare target, 239
begin declare variant, 226
begin metadirective, 219
declare induction, 160
declare mapper, 185
declare reduction, 157
declare simd, 231
Declare Target, 234
declare target, 236
declare variant, 225
declare variant, 220
error, 242
groupprivate, 193
memory management directives, 197
metadirective, 216, 219
nothing, 259
requires, 245
scan Directive, 163
section, 295
threadprivate, 114
variant directives, 210

dispatch, 228
dist_schedule, 308
distribute, 306
do, 303
doacross, 391
dynamic, 305
dynamic thread adjustment, 697
dynamic_allocators, 247

E
enter, 182
environment display routine, 522
environment variables, 30

Index 765

OMP_AFFINITY_FORMAT, 39
OMP_ALLOCATOR, 48
OMP_AVAILABLE_DEVICES, 41
OMP_CANCELLATION, 41
OMP_DEBUG, 47
OMP_DEFAULT_DEVICE, 42
OMP_DISPLAY_AFFINITY, 38
OMP_DISPLAY_ENV, 49
OMP_DYNAMIC, 31
OMP_MAX_ACTIVE_LEVELS, 32
OMP_MAX_TASK_PRIORITY, 45
OMP_NUM_TEAMS, 49
OMP_NUM_THREADS, 31
OMP_PLACES, 33
OMP_PROC_BIND, 35
OMP_SCHEDULE, 36
OMP_STACKSIZE, 37
OMP_TARGET_OFFLOAD, 42
OMP_TEAMS_THREAD_LIMIT, 49
OMP_THREAD_LIMIT, 32
OMP_THREADS_RESERVE, 43
OMP_TOOL, 45
OMP_TOOL_LIBRARIES, 45
OMP_TOOL_VERBOSE_INIT, 46
OMP_WAIT_POLICY, 37

event, 490
event callback registration, 531
event callback signatures, 560
event routines, 490
exclusive, 166
execution model, 3
extended-atomic, 371

F
fail, 373
features history, 703
filter, 289
final, 314
firstprivate, 125
fixed source form conditional compilation

sentinels, 74
fixed source form directives, 58
flush, 379
flush operation, 10

flush synchronization, 11
flush-set, 10
for, 302
frames, 556
free source form conditional compilation

sentinel, 75
free source form directives, 59
from, 191
full, 264
fuse, 267

G
glossary, 2
grainsize, 324
groupprivate, 193
guided, 305

H
happens before, 11
has_device_addr, 136
header files, 414
hint, 353
history of features, 703
holds, 255

I
ICVs (internal control variables), 19
if Clause, 80
implementation, 693
implicit barrier, 357
implicit data-mapping attribute rules, 170
implicit flushes, 381
in_reduction, 153
inbranch, 233
include files, 414
inclusive, 165
indirect, 240
induction, 155
inductor, 162
informational and utility directives, 242
init, 348
internal control variables, 693
internal control variables (ICVs), 19
interop, 229

766 OpenMP API – Version 6.0 Preview 2 November 2023

interoperability, 346
Interoperability routines, 491
introduction, 2
is_device_ptr, 134
iterators, 71

L
lastprivate, 128
linear, 131
link, 183
list item privatization, 119
local, 196
lock routines, 479
loop, 309
loop concepts, 95
loop iteration spaces, 101
loop iteration vectors, 101
loop-transforming constructs, 261

M
map, 173
mapper, 172
mapper identifiers, 172
masked, 288
match, 221
memory allocators, 198
memory management, 197
memory management directives

memory management directives, 197
memory management routines, 498
memory model, 7
memory spaces, 197
memory-order, 365
memscope, 374
mergeable, 314
message, 244
metadirective, 216
metadirective, 219
modifier

directive-name-modifierdirective-name-
modifier, 75

task-dependence-typetask-dependence-
type, 385

modifying and retrieving ICV values, 25

modifying ICVs, 21

N
nesting of regions, 405
no_openmp, 255
no_openmp_constructs, 256
no_openmp_routines, 257
no_parallelism, 257
nocontext, 230
nogroup, 364
nontemporal, 286
normative references, 16
nothing, 259
notinbranch, 234
novariants, 230
nowait, 363
num_tasks, 325
num_teams, 282
num_threads, 275

O
OMP_AFFINITY_FORMAT, 39
omp_aligned_alloc, 510
omp_aligned_calloc, 513
omp_alloc, 510
OMP_ALLOCATOR, 48
omp_ancestor_is_free_agent, 447
OMP_AVAILABLE_DEVICES, 41
omp_calloc, 513
OMP_CANCELLATION, 41
omp_capture_affinity, 438
omp_curr_progress_width, 270
OMP_DEBUG, 47
OMP_DEFAULT_DEVICE, 42
omp_destroy_allocator, 508
omp_destroy_lock, 483
omp_destroy_nest_lock, 483
OMP_DISPLAY_AFFINITY, 38
omp_display_affinity, 438
OMP_DISPLAY_ENV, 49
omp_display_env, 522
OMP_DYNAMIC, 31
omp_free, 512
omp_fulfill_event, 490

Index 767

omp_get_active_level, 430
omp_get_affinity_format, 437
omp_get_ancestor_thread_num, 428
omp_get_cancellation, 422
omp_get_default_allocator, 510
omp_get_default_device, 453
omp_get_device_allocator, 505
omp_get_device_and_host_allocator,

505
omp_get_device_and_host_memspace,

501
omp_get_device_memspace, 501
omp_get_device_num, 454
omp_get_devices_all_allocator,

505
omp_get_devices_all_memspace,

501
omp_get_devices_allocator, 505
omp_get_devices_and_host_allocator,

505
omp_get_devices_and_host_memspace,

501
omp_get_devices_memspace, 501
omp_get_dynamic, 421
omp_get_initial_device, 455
omp_get_interop_int, 493
omp_get_interop_name, 495
omp_get_interop_ptr, 494
omp_get_interop_rc_desc, 497
omp_get_interop_str, 495
omp_get_interop_type_desc, 496
omp_get_level, 427
omp_get_mapped_ptr, 478
omp_get_max_active_levels, 427
omp_get_max_progress_width, 452
omp_get_max_task_priority, 444
omp_get_max_teams, 442
omp_get_max_threads, 418
omp_get_memspaces_num_resources,

517
omp_get_num_devices, 453
omp_get_num_interop_properties,

492

omp_get_num_places, 432
omp_get_num_procs, 451
omp_get_num_teams, 440
omp_get_num_threads, 417
omp_get_partition_num_places,

434
omp_get_partition_place_nums,

435
omp_get_place_num, 434
omp_get_place_num_procs, 432
omp_get_place_proc_ids, 433
omp_get_proc_bind, 430
omp_get_schedule, 424
omp_get_submemspace, 518
omp_get_supported_active

_levels, 425
omp_get_team_num, 440
omp_get_team_size, 429
omp_get_teams_thread_limit, 444
omp_get_thread_limit, 425
omp_get_thread_num, 419
omp_get_wtick, 490
omp_get_wtime, 489
omp_in_explicit_task, 445
omp_in_final, 445
omp_in_parallel, 419
omp_init_allocator, 504
omp_init_lock, 481, 482
omp_init_nest_lock, 481, 482
omp_is_free_agent, 446
omp_is_initial_device, 455
OMP_MAX_ACTIVE_LEVELS, 32
OMP_MAX_TASK_PRIORITY, 45
OMP_NUM_TEAMS, 49
OMP_NUM_THREADS, 31
omp_pause_resource, 448
omp_pause_resource_all, 450
OMP_PLACES, 33
omp_pool, 315
OMP_PROC_BIND, 35
omp_realloc, 515
OMP_SCHEDULE, 36
omp_set_affinity_format, 436

768 OpenMP API – Version 6.0 Preview 2 November 2023

omp_set_default_allocator, 509
omp_set_default_device, 452
omp_set_dynamic, 420
omp_set_lock, 484
omp_set_max_active_levels, 426
omp_set_nest_lock, 484
omp_set_num_teams, 441
omp_set_num_threads, 417
omp_set_schedule, 422
omp_set_teams_thread_limit, 443
OMP_STACKSIZE, 37
omp_target_alloc, 456
omp_target_associate_ptr, 474
omp_target_disassociate_ptr, 476
omp_target_free, 458
omp_target_is_accessible, 460
omp_target_is_present, 459
omp_target_memcpy, 461
omp_target_memcpy_async, 465
omp_target_memcpy_rect, 463
omp_target_memcpy_rect_async,

467
omp_target_memset, 470
omp_target_memset_async, 472
OMP_TARGET_OFFLOAD, 42
omp_team, 315
OMP_TEAMS_THREAD_LIMIT, 49
omp_test_lock, 487
omp_test_nest_lock, 487
OMP_THREAD_LIMIT, 32
OMP_THREADS_RESERVE, 43
OMP_TOOL, 45
OMP_TOOL_LIBRARIES, 45
OMP_TOOL_VERBOSE_INIT, 46
omp_unset_lock, 486
omp_unset_nest_lock, 486
OMP_WAIT_POLICY, 37
ompd_bp_device_begin, 690
ompd_bp_device_end, 690
ompd_bp_parallel_begin, 684
ompd_bp_parallel_end, 685
ompd_bp_target_begin, 689
ompd_bp_target_end, 689

ompd_bp_task_begin, 687
ompd_bp_task_end, 687
ompd_bp_teams_begin, 686
ompd_bp_teams_end, 686
ompd_bp_thread_begin, 688
ompd_bp_thread_end, 688
ompd_callback_device_host

_fn_t, 647
ompd_callback_get_thread

_context_for_thread_id
_fn_t, 641

ompd_callback_memory_alloc
_fn_t, 639

ompd_callback_memory_free
_fn_t, 640

ompd_callback_memory_read
_fn_t, 645

ompd_callback_memory_write
_fn_t, 646

ompd_callback_print_string
_fn_t, 648

ompd_callback_sizeof_fn_t, 642
ompd_callback_symbol_addr

_fn_t, 643
ompd_callbacks_t, 649
ompd_dll_locations_valid, 629
ompd_dll_locations, 628
ompt_callback_buffer

_complete_t, 584
ompt_callback_buffer

_request_t, 583
ompt_callback_cancel_t, 579
ompt_callback_control

_tool_t, 594
ompt_callback_dependences_t, 568
ompt_callback_dispatch_t, 565
ompt_callback_error_t, 595
ompt_callback_device

_finalize_t, 581
ompt_callback_device

_initialize_t, 580
ompt_callback_flush_t, 578
ompt_callback_implicit

Index 769

_task_t, 571
ompt_callback_masked_t, 572
ompt_callback_mutex

_acquire_t, 575
ompt_callback_mutex_t, 576
ompt_callback_nest_lock_t, 577
ompt_callback_parallel

_begin_t, 561
ompt_callback_parallel

_end_t, 563
ompt_callback_sync

_region_t, 573
ompt_callback_device

_load_t, 582
ompt_callback_device

_unload_t, 583
ompt_callback_target_data

_emi_op_t, 585
ompt_callback_target_data

_op_t, 585
ompt_callback_target_emi_t, 588
ompt_callback_target

_map_emi_t, 590
ompt_callback_target_map_t, 590
ompt_callback_target

_submit_emi_t, 592
ompt_callback_target

_submit_t, 592
ompt_callback_target_t, 588
ompt_callback_task

_create_t, 567
ompt_callback_task

_dependence_t, 569
ompt_callback_task

_schedule_t, 570
ompt_callback_thread

_begin_t, 560
ompt_callback_thread_end_t, 561
ompt_callback_work_t, 564
OpenMP allocator structured blocks, 86
OpenMP argument lists, 64
OpenMP atomic structured blocks, 88
OpenMP compliance, 15

OpenMP context-specific structured
blocks, 85

OpenMP function dispatch structured
blocks, 87

OpenMP operations, 67
OpenMP stylized expressions, 85
OpenMP types, 83
order, 283
ordered, 104, 393–395
otherwise, 218

P
parallel, 270
parallelism generating constructs, 270
parallelization-level, 397
partial, 265
permutation, 267
priority, 316
private, 124
proc_bind, 278

R
read, 369
read, atomic, 375
collector, 162
combiner, 159
initializer, 159
reduction, 150
reduction clauses, 138
relaxed, 367
release, 368
release flush, 11
requirement, 246
requires, 245
reserved locators, 66
resource relinquishing routines, 448
reverse, 265
reverse_offload, 248
runtime, 305
runtime library definitions, 414
runtime library routines, 413

S
safelen, 287

770 OpenMP API – Version 6.0 Preview 2 November 2023

safesync, 279
scan Directive, 163
schedule, 304
scheduling, 327
scope, 292
section, 295
sections, 293
self_maps, 252
seq_cst, 368
severity, 244
shared, 123
simd, 284, 398
simdlen, 287
Simple Lock Routines, 480
single, 291
sizes, 263
looprange, 107
stand-alone directives, 57
static, 304
strong flush, 10
structured blocks, 85
synchronization constructs, 351
synchronization constructs and clauses, 351
synchronization hint type, 351
synchronization hints, 351

T
target, 338
target data, 334
target memory routines, 456
target update, 343
task, 316
task scheduling, 327
task-dependence-type, 385
task_reduction, 153
taskgroup, 359
tasking constructs, 313
tasking routines, 444
taskloop, 321
taskwait, 361
taskyield, 325
teams, 279
teams region routines, 440
thread affinity, 276

thread affinity routines, 430
thread team routines, 417
thread_limit, 332
threadprivate, 114
threads, 397
threadset, 315
interchange, 266
tile, 262
timer, 489
timing routines, 489
to, 190
tool control, 519
tool initialization, 528
tool interfaces definitions, 525, 628
tools header files, 525, 628
tracing device activity, 532
types

sync_hint, 351

U
unified_address, 249
unified_shared_memory, 250
uniform, 192
unroll, 263
untied, 313
update, 370, 386
update, atomic, 375
use, 349
use_device_addr, 137
use_device_ptr, 135
uses_allocators, 207

V
variables, environment, 30
variant directives, 210

W
wait identifier, 557
wall clock timer, 489
error, 242
weak, 374
when, 217
work-distribution

constructs, 290

Index 771

work-distribution constructs, 290
workshare, 295
worksharing

constructs, 290
worksharing constructs, 290
worksharing-loop construct, 300
write, 370
write, atomic, 375

772 OpenMP API – Version 6.0 Preview 2 November 2023

	openmp.pdf
	I Definitions
	1 Overview of the OpenMP API
	1.1 Scope
	1.2 Glossary
	1.3 Execution Model
	1.4 Memory Model
	1.4.1 Structure of the OpenMP Memory Model
	1.4.2 Device Data Environments
	1.4.3 Memory Management
	1.4.4 The Flush Operation
	1.4.5 Flush Synchronization and Happens-Before Order
	1.4.6 OpenMP Memory Consistency

	1.5 Tool Interfaces
	1.5.1 OMPT
	1.5.2 OMPD

	1.6 OpenMP Compliance
	1.7 Normative References
	1.8 Organization of this Document

	2 Internal Control Variables
	2.1 ICV Descriptions
	2.2 ICV Initialization
	2.3 Modifying and Retrieving ICV Values
	2.4 How the Per-Data Environment ICVs Work
	2.5 ICV Override Relationships

	3 Environment Variables
	3.1 Parallel Region Environment Variables
	3.1.1 OMP_DYNAMIC
	3.1.2 OMP_NUM_THREADS
	3.1.3 OMP_THREAD_LIMIT
	3.1.4 OMP_MAX_ACTIVE_LEVELS
	3.1.5 OMP_PLACES
	3.1.6 OMP_PROC_BIND

	3.2 Program Execution Environment Variables
	3.2.1 OMP_SCHEDULE
	3.2.2 OMP_STACKSIZE
	3.2.3 OMP_WAIT_POLICY
	3.2.4 OMP_DISPLAY_AFFINITY
	3.2.5 OMP_AFFINITY_FORMAT
	3.2.6 OMP_CANCELLATION
	3.2.7 OMP_AVAILABLE_DEVICES
	3.2.8 OMP_DEFAULT_DEVICE
	3.2.9 OMP_TARGET_OFFLOAD
	3.2.10 OMP_THREADS_RESERVE
	3.2.11 OMP_MAX_TASK_PRIORITY

	3.3 OMPT Environment Variables
	3.3.1 OMP_TOOL
	3.3.2 OMP_TOOL_LIBRARIES
	3.3.3 OMP_TOOL_VERBOSE_INIT

	3.4 OMPD Environment Variables
	3.4.1 OMP_DEBUG

	3.5 Memory Allocation Environment Variables
	3.5.1 OMP_ALLOCATOR

	3.6 Teams Environment Variables
	3.6.1 OMP_NUM_TEAMS
	3.6.2 OMP_TEAMS_THREAD_LIMIT

	3.7 OMP_DISPLAY_ENV

	4 Directive and Construct Syntax
	4.1 Directive Format
	4.1.1 Fixed Source Form Directives
	4.1.2 Free Source Form Directives

	4.2 Clause Format
	4.2.1 OpenMP Argument Lists
	4.2.2 Reserved Locators
	4.2.3 OpenMP Operations
	4.2.4 Array Shaping
	4.2.5 Array Sections
	4.2.6 iterator Modifier

	4.3 Conditional Compilation
	4.3.1 Fixed Source Form Conditional Compilation Sentinels
	4.3.2 Free Source Form Conditional Compilation Sentinel

	4.4 directive-name-modifier Modifier
	4.5 if Clause
	4.6 destroy Clause

	5 Base Language Formats and Restrictions
	5.1 OpenMP Types and Identifiers
	5.2 OpenMP Stylized Expressions
	5.3 Structured Blocks
	5.3.1 OpenMP Allocator Structured Blocks
	5.3.2 OpenMP Function Dispatch Structured Blocks
	5.3.3 OpenMP Atomic Structured Blocks

	5.4 Loop Concepts
	5.4.1 Canonical Loop Nest Form
	5.4.2 OpenMP Loop-Iteration Spaces and Vectors
	5.4.3 collapse Clause
	5.4.4 ordered Clause
	5.4.5 Consistent Loop Schedules
	5.4.6 Canonical Loop Sequence Form
	5.4.7 looprange Clause

	II Directives and Clauses
	6 Data Environment
	6.1 Data-Sharing Attribute Rules
	6.1.1 Variables Referenced in a Construct
	6.1.2 Variables Referenced in a Region but not in a Construct

	6.2 threadprivate Directive
	6.3 List Item Privatization
	6.4 Data-Sharing Attribute Clauses
	6.4.1 default Clause
	6.4.2 shared Clause
	6.4.3 private Clause
	6.4.4 firstprivate Clause
	6.4.5 lastprivate Clause
	6.4.6 linear Clause
	6.4.7 is_device_ptr Clause
	6.4.8 use_device_ptr Clause
	6.4.9 has_device_addr Clause
	6.4.10 use_device_addr Clause

	6.5 Reduction and Induction Clauses and Directives
	6.5.1 OpenMP Reduction and Induction Identifiers
	6.5.2 OpenMP Reduction and Induction Expressions
	6.5.2.1 OpenMP Combiner Expressions
	6.5.2.2 OpenMP Initializer Expressions
	6.5.2.3 OpenMP Inductor Expressions
	6.5.2.4 OpenMP Collector Expressions

	6.5.3 Implicitly Declared OpenMP Reduction Identifiers
	6.5.4 Implicitly Declared OpenMP Induction Identifiers
	6.5.5 Properties Common to Reduction and induction Clauses
	6.5.6 Properties Common to All Reduction Clauses
	6.5.7 Reduction Scoping Clauses
	6.5.8 Reduction Participating Clauses
	6.5.9 reduction Clause
	6.5.10 task_reduction Clause
	6.5.11 in_reduction Clause
	6.5.12 induction Clause
	6.5.13 declare reduction Directive
	6.5.14 combiner Clause
	6.5.15 initializer Clause
	6.5.16 declare induction Directive
	6.5.17 inductor Clause
	6.5.18 collector Clause

	6.6 scan Directive
	6.6.1 inclusive Clause
	6.6.2 exclusive Clause

	6.7 Data Copying Clauses
	6.7.1 copyin Clause
	6.7.2 copyprivate Clause

	6.8 Data-Mapping Control
	6.8.1 Implicit Data-Mapping Attribute Rules
	6.8.2 Mapper Identifiers and mapper Modifiers
	6.8.3 map Clause
	6.8.4 enter Clause
	6.8.5 link Clause
	6.8.6 defaultmap Clause
	6.8.7 declare mapper Directive

	6.9 Data-Motion Clauses
	6.9.1 to Clause
	6.9.2 from Clause

	6.10 uniform Clause
	6.11 aligned Clause
	6.12 groupprivate Directive
	6.13 local Clause

	7 Memory Management
	7.1 Memory Spaces
	7.2 Memory Allocators
	7.3 align Clause
	7.4 allocator Clause
	7.5 allocate Directive
	7.6 allocate Clause
	7.7 allocators Construct
	7.8 uses_allocators Clause

	8 Variant Directives
	8.1 OpenMP Contexts
	8.2 Context Selectors
	8.3 Matching and Scoring Context Selectors
	8.4 Metadirectives
	8.4.1 when Clause
	8.4.2 otherwise Clause
	8.4.3 metadirective
	8.4.4 begin metadirective

	8.5 Declare Variant Directives
	8.5.1 match Clause
	8.5.2 adjust_args Clause
	8.5.3 append_args Clause
	8.5.4 declare variant Directive
	8.5.5 begin declare variant Directive

	8.6 dispatch Construct
	8.6.1 interop Clause
	8.6.2 novariants Clause
	8.6.3 nocontext Clause

	8.7 declare simd Directive
	8.7.1 branch Clauses
	8.7.1.1 inbranch Clause
	8.7.1.2 notinbranch Clause

	8.8 Declare Target Directives
	8.8.1 declare target Directive
	8.8.2 begin declare target Directive
	8.8.3 indirect Clause

	9 Informational and Utility Directives
	9.1 error Directive
	9.2 at Clause
	9.3 message Clause
	9.4 severity Clause
	9.5 requires Directive
	9.5.1 requirement Clauses
	9.5.1.1 atomic_default_mem_order Clause
	9.5.1.2 dynamic_allocators Clause
	9.5.1.3 reverse_offload Clause
	9.5.1.4 unified_address Clause
	9.5.1.5 unified_shared_memory Clause
	9.5.1.6 self_maps Clause

	9.6 Assumption Directives
	9.6.1 assumption Clauses
	9.6.1.1 absent Clause
	9.6.1.2 contains Clause
	9.6.1.3 holds Clause
	9.6.1.4 no_openmp Clause
	9.6.1.5 no_openmp_constructs Clause
	9.6.1.6 no_openmp_routines Clause
	9.6.1.7 no_parallelism Clause

	9.6.2 assumes Directive
	9.6.3 assume Directive
	9.6.4 begin assumes Directive

	9.7 nothing Directive

	10 Loop-Transforming Constructs
	10.1 tile Construct
	10.1.1 sizes Clause

	10.2 unroll Construct
	10.2.1 full Clause
	10.2.2 partial Clause

	10.3 reverse Construct
	10.4 interchange Construct
	10.4.1 permutation Clause

	10.5 fuse Construct
	10.6 apply Clause

	11 Parallelism Generation and Control
	11.1 omp_curr_progress_width Identifier
	11.2 parallel Construct
	11.2.1 Determining the Number of Threads for a parallel Region
	11.2.2 num_threads Clause
	11.2.3 Controlling OpenMP Thread Affinity
	11.2.4 proc_bind Clause
	11.2.5 safesync Clause

	11.3 teams Construct
	11.3.1 num_teams Clause

	11.4 order Clause
	11.5 simd Construct
	11.5.1 nontemporal Clause
	11.5.2 safelen Clause
	11.5.3 simdlen Clause

	11.6 masked Construct
	11.6.1 filter Clause

	12 Work-Distribution Constructs
	12.1 single Construct
	12.2 scope Construct
	12.3 sections Construct
	12.3.1 section Directive

	12.4 workshare Construct
	12.5 coexecute Construct
	12.6 Worksharing-Loop Constructs
	12.6.1 for Construct
	12.6.2 do Construct
	12.6.3 schedule Clause

	12.7 distribute Construct
	12.7.1 dist_schedule Clause

	12.8 loop Construct
	12.8.1 bind Clause

	13 Tasking Constructs
	13.1 untied Clause
	13.2 mergeable Clause
	13.3 final Clause
	13.4 threadset Clause
	13.5 priority Clause
	13.6 task Construct
	13.6.1 affinity Clause
	13.6.2 detach Clause

	13.7 taskloop Construct
	13.7.1 grainsize Clause
	13.7.2 num_tasks Clause

	13.8 taskyield Construct
	13.9 Initial Task
	13.10 Task Scheduling

	14 Device Directives and Clauses
	14.1 device_type Clause
	14.2 device Clause
	14.3 thread_limit Clause
	14.4 Device Initialization
	14.5 target data Construct
	14.6 target enter data Construct
	14.7 target exit data Construct
	14.8 target Construct
	14.9 target update Construct

	15 Interoperability
	15.1 interop Construct
	15.1.1 OpenMP Foreign Runtime Identifiers
	15.1.2 init Clause
	15.1.3 use Clause

	15.2 Interoperability Requirement Set

	16 Synchronization Constructs and Clauses
	16.1 Synchronization Hints
	16.1.1 Synchronization Hint Type
	16.1.2 hint Clause

	16.2 critical Construct
	16.3 Barriers
	16.3.1 barrier Construct
	16.3.2 Implicit Barriers
	16.3.3 Implementation-Specific Barriers

	16.4 taskgroup Construct
	16.5 taskwait Construct
	16.6 nowait Clause
	16.7 nogroup Clause
	16.8 OpenMP Memory Ordering
	16.8.1 memory-order Clauses
	16.8.1.1 acq_rel Clause
	16.8.1.2 acquire Clause
	16.8.1.3 relaxed Clause
	16.8.1.4 release Clause
	16.8.1.5 seq_cst Clause

	16.8.2 atomic Clauses
	16.8.2.1 read Clause
	16.8.2.2 update Clause
	16.8.2.3 write Clause

	16.8.3 extended-atomic Clauses
	16.8.3.1 capture Clause
	16.8.3.2 compare Clause
	16.8.3.3 fail Clause
	16.8.3.4 weak Clause

	16.8.4 memscope Clause
	16.8.5 atomic Construct
	16.8.6 flush Construct
	16.8.7 Implicit Flushes

	16.9 OpenMP Dependences
	16.9.1 task-dependence-type Modifier
	16.9.2 Depend Objects
	16.9.3 update Clause
	16.9.4 depobj Construct
	16.9.5 depend Clause
	16.9.6 doacross Clause

	16.10 ordered Construct
	16.10.1 Stand-alone ordered Construct
	16.10.2 Block-associated ordered Construct
	16.10.3 parallelization-level Clauses
	16.10.3.1 threads Clause
	16.10.3.2 simd Clause

	17 Cancellation Constructs
	17.1 cancel-directive-name Clauses
	17.2 cancel Construct
	17.3 cancellation point Construct

	18 Composition of Constructs
	18.1 Nesting of Regions
	18.2 Clauses on Combined and Composite Constructs
	18.3 Combined and Composite Directive Names
	18.4 Combined Construct Semantics
	18.5 Composite Construct Semantics

	III Runtime Library Routines
	19 Runtime Library Routines
	19.1 Runtime Library Definitions
	19.2 Thread Team Routines
	19.2.1 omp_set_num_threads
	19.2.2 omp_get_num_threads
	19.2.3 omp_get_max_threads
	19.2.4 omp_get_thread_num
	19.2.5 omp_in_parallel
	19.2.6 omp_set_dynamic
	19.2.7 omp_get_dynamic
	19.2.8 omp_get_cancellation
	19.2.9 omp_set_schedule
	19.2.10 omp_get_schedule
	19.2.11 omp_get_thread_limit
	19.2.12 omp_get_supported_active_levels
	19.2.13 omp_set_max_active_levels
	19.2.14 omp_get_max_active_levels
	19.2.15 omp_get_level
	19.2.16 omp_get_ancestor_thread_num
	19.2.17 omp_get_team_size
	19.2.18 omp_get_active_level

	19.3 Thread Affinity Routines
	19.3.1 omp_get_proc_bind
	19.3.2 omp_get_num_places
	19.3.3 omp_get_place_num_procs
	19.3.4 omp_get_place_proc_ids
	19.3.5 omp_get_place_num
	19.3.6 omp_get_partition_num_places
	19.3.7 omp_get_partition_place_nums
	19.3.8 omp_set_affinity_format
	19.3.9 omp_get_affinity_format
	19.3.10 omp_display_affinity
	19.3.11 omp_capture_affinity

	19.4 Teams Region Routines
	19.4.1 omp_get_num_teams
	19.4.2 omp_get_team_num
	19.4.3 omp_set_num_teams
	19.4.4 omp_get_max_teams
	19.4.5 omp_set_teams_thread_limit
	19.4.6 omp_get_teams_thread_limit

	19.5 Tasking Routines
	19.5.1 omp_get_max_task_priority
	19.5.2 omp_in_explicit_task
	19.5.3 omp_in_final
	19.5.4 omp_is_free_agent
	19.5.5 omp_ancestor_is_free_agent

	19.6 Resource Relinquishing Routines
	19.6.1 omp_pause_resource
	19.6.2 omp_pause_resource_all

	19.7 Device Information Routines
	19.7.1 omp_get_num_procs
	19.7.2 omp_get_max_progress_width
	19.7.3 omp_set_default_device
	19.7.4 omp_get_default_device
	19.7.5 omp_get_num_devices
	19.7.6 omp_get_device_num
	19.7.7 omp_is_initial_device
	19.7.8 omp_get_initial_device

	19.8 Device Memory Routines
	19.8.1 omp_target_alloc
	19.8.2 omp_target_free
	19.8.3 omp_target_is_present
	19.8.4 omp_target_is_accessible
	19.8.5 omp_target_memcpy
	19.8.6 omp_target_memcpy_rect
	19.8.7 omp_target_memcpy_async
	19.8.8 omp_target_memcpy_rect_async
	19.8.9 omp_target_memset
	19.8.10 omp_target_memset_async
	19.8.11 omp_target_associate_ptr
	19.8.12 omp_target_disassociate_ptr
	19.8.13 omp_get_mapped_ptr

	19.9 Lock Routines
	19.9.1 omp_init_lock and omp_init_nest_lock
	19.9.2 omp_init_lock_with_hint and omp_init_nest_lock_with_hint
	19.9.3 omp_destroy_lock and omp_destroy_nest_lock
	19.9.4 omp_set_lock and omp_set_nest_lock
	19.9.5 omp_unset_lock and omp_unset_nest_lock
	19.9.6 omp_test_lock and omp_test_nest_lock

	19.10 Timing Routines
	19.10.1 omp_get_wtime
	19.10.2 omp_get_wtick

	19.11 Event Routine
	19.11.1 omp_fulfill_event

	19.12 Interoperability Routines
	19.12.1 omp_get_num_interop_properties
	19.12.2 omp_get_interop_int
	19.12.3 omp_get_interop_ptr
	19.12.4 omp_get_interop_str
	19.12.5 omp_get_interop_name
	19.12.6 omp_get_interop_type_desc
	19.12.7 omp_get_interop_rc_desc

	19.13 Memory Management Routines
	19.13.1 Memory Management Types
	19.13.2 Memory Space Routines
	19.13.3 omp_init_allocator
	19.13.4 Memory Allocator Routines
	19.13.5 omp_destroy_allocator
	19.13.6 omp_set_default_allocator
	19.13.7 omp_get_default_allocator
	19.13.8 omp_alloc and omp_aligned_alloc
	19.13.9 omp_free
	19.13.10 omp_calloc and omp_aligned_calloc
	19.13.11 omp_realloc
	19.13.12 omp_get_memspace_num_resources
	19.13.13 omp_get_submemspace

	19.14 Tool Control Routine
	19.15 Environment Display Routine

	IV Tool Interfaces
	20 OMPT Interface
	20.1 OMPT Interfaces Definitions
	20.2 Activating a First-Party Tool
	20.2.1 ompt_start_tool
	20.2.2 Determining Whether a First-Party Tool Should be Initialized
	20.2.3 Initializing a First-Party Tool
	20.2.3.1 Binding Entry Points in the OMPT Callback Interface

	20.2.4 Monitoring Activity on the Host with OMPT
	20.2.5 Tracing Activity on Target Devices with OMPT

	20.3 Finalizing a First-Party Tool
	20.4 OMPT Data Types
	20.4.1 Tool Initialization and Finalization
	20.4.2 Callbacks
	20.4.3 Tracing
	20.4.3.1 Record Type
	20.4.3.2 Native Record Kind
	20.4.3.3 Native Record Abstract Type
	20.4.3.4 Standard Trace Record Type

	20.4.4 Miscellaneous Type Definitions
	20.4.4.1 ompt_callback_t
	20.4.4.2 ompt_set_result_t
	20.4.4.3 ompt_id_t
	20.4.4.4 ompt_data_t
	20.4.4.5 ompt_device_t
	20.4.4.6 ompt_device_time_t
	20.4.4.7 ompt_buffer_t
	20.4.4.8 ompt_buffer_cursor_t
	20.4.4.9 ompt_dependence_t
	20.4.4.10 ompt_thread_t
	20.4.4.11 ompt_scope_endpoint_t
	20.4.4.12 ompt_dispatch_t
	20.4.4.13 ompt_dispatch_chunk_t
	20.4.4.14 ompt_sync_region_t
	20.4.4.15 ompt_target_data_op_t
	20.4.4.16 ompt_work_t
	20.4.4.17 ompt_mutex_t
	20.4.4.18 ompt_native_mon_flag_t
	20.4.4.19 ompt_task_flag_t
	20.4.4.20 ompt_task_status_t
	20.4.4.21 ompt_target_t
	20.4.4.22 ompt_parallel_flag_t
	20.4.4.23 ompt_target_map_flag_t
	20.4.4.24 ompt_dependence_type_t
	20.4.4.25 ompt_severity_t
	20.4.4.26 ompt_cancel_flag_t
	20.4.4.27 ompt_hwid_t
	20.4.4.28 ompt_state_t
	20.4.4.29 ompt_frame_t
	20.4.4.30 ompt_frame_flag_t
	20.4.4.31 ompt_wait_id_t

	20.5 OMPT Tool Callback Signatures and Trace Records
	20.5.1 Initialization and Finalization Callback Signature
	20.5.1.1 ompt_initialize_t
	20.5.1.2 ompt_finalize_t

	20.5.2 Event Callback Signatures and Trace Records
	20.5.2.1 ompt_callback_thread_begin_t
	20.5.2.2 ompt_callback_thread_end_t
	20.5.2.3 ompt_callback_parallel_begin_t
	20.5.2.4 ompt_callback_parallel_end_t
	20.5.2.5 ompt_callback_work_t
	20.5.2.6 ompt_callback_dispatch_t
	20.5.2.7 ompt_callback_task_create_t
	20.5.2.8 ompt_callback_dependences_t
	20.5.2.9 ompt_callback_task_dependence_t
	20.5.2.10 ompt_callback_task_schedule_t
	20.5.2.11 ompt_callback_implicit_task_t
	20.5.2.12 ompt_callback_masked_t
	20.5.2.13 ompt_callback_sync_region_t
	20.5.2.14 ompt_callback_mutex_acquire_t
	20.5.2.15 ompt_callback_mutex_t
	20.5.2.16 ompt_callback_nest_lock_t
	20.5.2.17 ompt_callback_flush_t
	20.5.2.18 ompt_callback_cancel_t
	20.5.2.19 ompt_callback_device_initialize_t
	20.5.2.20 ompt_callback_device_finalize_t
	20.5.2.21 ompt_callback_device_load_t
	20.5.2.22 ompt_callback_device_unload_t
	20.5.2.23 ompt_callback_buffer_request_t
	20.5.2.24 ompt_callback_buffer_complete_t
	20.5.2.25 ompt_callback_target_data_op_emi_t and ompt_callback_target_data_op_t
	20.5.2.26 ompt_callback_target_emi_t and ompt_callback_target_t
	20.5.2.27 ompt_callback_target_map_emi_t and ompt_callback_target_map_t
	20.5.2.28 ompt_callback_target_submit_emi_t and ompt_callback_target_submit_t
	20.5.2.29 ompt_callback_control_tool_t
	20.5.2.30 ompt_callback_error_t

	20.6 OMPT Runtime Entry Points for Tools
	20.6.1 Entry Points in the OMPT Callback Interface
	20.6.1.1 ompt_enumerate_states_t
	20.6.1.2 ompt_enumerate_mutex_impls_t
	20.6.1.3 ompt_set_callback_t
	20.6.1.4 ompt_get_callback_t
	20.6.1.5 ompt_get_thread_data_t
	20.6.1.6 ompt_get_num_procs_t
	20.6.1.7 ompt_get_num_places_t
	20.6.1.8 ompt_get_place_proc_ids_t
	20.6.1.9 ompt_get_place_num_t
	20.6.1.10 ompt_get_partition_place_nums_t
	20.6.1.11 ompt_get_proc_id_t
	20.6.1.12 ompt_get_state_t
	20.6.1.13 ompt_get_parallel_info_t
	20.6.1.14 ompt_get_task_info_t
	20.6.1.15 ompt_get_task_memory_t
	20.6.1.16 ompt_get_target_info_t
	20.6.1.17 ompt_get_num_devices_t
	20.6.1.18 ompt_get_unique_id_t
	20.6.1.19 ompt_finalize_tool_t

	20.6.2 Entry Points in the OMPT Device Tracing Interface
	20.6.2.1 ompt_get_device_num_procs_t
	20.6.2.2 ompt_get_device_time_t
	20.6.2.3 ompt_translate_time_t
	20.6.2.4 ompt_set_trace_ompt_t
	20.6.2.5 ompt_set_trace_native_t
	20.6.2.6 ompt_get_buffer_limits_t
	20.6.2.7 ompt_start_trace_t
	20.6.2.8 ompt_pause_trace_t
	20.6.2.9 ompt_flush_trace_t
	20.6.2.10 ompt_stop_trace_t
	20.6.2.11 ompt_advance_buffer_cursor_t
	20.6.2.12 ompt_get_record_type_t
	20.6.2.13 ompt_get_record_ompt_t
	20.6.2.14 ompt_get_record_native_t
	20.6.2.15 ompt_get_record_abstract_t

	20.6.3 Lookup Entry Points: ompt_function_lookup_t

	21 OMPD Interface
	21.1 OMPD Interfaces Definitions
	21.2 Activating a Third-Party Tool
	21.2.1 Enabling Runtime Support for OMPD
	21.2.2 ompd_dll_locations
	21.2.3 ompd_dll_locations_valid

	21.3 OMPD Data Types
	21.3.1 Size Type
	21.3.2 Wait ID Type
	21.3.3 Basic Value Types
	21.3.4 Address Type
	21.3.5 Frame Information Type
	21.3.6 System Device Identifiers
	21.3.7 Native Thread Identifiers
	21.3.8 OMPD Handle Types
	21.3.9 OMPD Scope Types
	21.3.10 Team Generator Types
	21.3.11 ICV ID Type
	21.3.12 Tool Context Types
	21.3.13 Return Code Types
	21.3.14 Primitive Type Sizes

	21.4 OMPD Third-Party Tool Callback Interface
	21.4.1 Memory Management of OMPD Library
	21.4.1.1 ompd_callback_memory_alloc_fn_t
	21.4.1.2 ompd_callback_memory_free_fn_t

	21.4.2 Context Management and Navigation
	21.4.2.1 ompd_callback_get_thread_context_for_thread_id_fn_t
	21.4.2.2 ompd_callback_sizeof_fn_t

	21.4.3 Accessing Memory in the OpenMP Program or Runtime
	21.4.3.1 ompd_callback_symbol_addr_fn_t
	21.4.3.2 ompd_callback_memory_read_fn_t
	21.4.3.3 ompd_callback_memory_write_fn_t

	21.4.4 Data Format Conversion: ompd_callback_device_host_fn_t
	21.4.5 ompd_callback_print_string_fn_t
	21.4.6 The Callback Interface

	21.5 OMPD Tool Interface Routines
	21.5.1 Per OMPD Library Initialization and Finalization
	21.5.1.1 ompd_initialize
	21.5.1.2 ompd_get_api_version
	21.5.1.3 ompd_get_version_string
	21.5.1.4 ompd_finalize

	21.5.2 Per OpenMP Process Initialization and Finalization
	21.5.2.1 ompd_process_initialize
	21.5.2.2 ompd_device_initialize
	21.5.2.3 ompd_rel_address_space_handle
	21.5.2.4 ompd_get_device_thread_id_kinds

	21.5.3 Thread and Signal Safety
	21.5.4 Address Space Information
	21.5.4.1 ompd_get_omp_version
	21.5.4.2 ompd_get_omp_version_string

	21.5.5 Thread Handles
	21.5.5.1 ompd_get_thread_in_parallel
	21.5.5.2 ompd_get_thread_handle
	21.5.5.3 ompd_rel_thread_handle
	21.5.5.4 ompd_thread_handle_compare
	21.5.5.5 ompd_get_thread_id
	21.5.5.6 ompd_get_device_from_thread

	21.5.6 Parallel Region Handles
	21.5.6.1 ompd_get_curr_parallel_handle
	21.5.6.2 ompd_get_enclosing_parallel_handle
	21.5.6.3 ompd_get_task_parallel_handle
	21.5.6.4 ompd_rel_parallel_handle
	21.5.6.5 ompd_parallel_handle_compare

	21.5.7 Task Handles
	21.5.7.1 ompd_get_curr_task_handle
	21.5.7.2 ompd_get_generating_task_handle
	21.5.7.3 ompd_get_scheduling_task_handle
	21.5.7.4 ompd_get_task_in_parallel
	21.5.7.5 ompd_rel_task_handle
	21.5.7.6 ompd_task_handle_compare
	21.5.7.7 ompd_get_task_function
	21.5.7.8 ompd_get_task_frame

	21.5.8 Querying Thread States
	21.5.8.1 ompd_enumerate_states
	21.5.8.2 ompd_get_state

	21.5.9 Display Control Variables
	21.5.9.1 ompd_get_display_control_vars
	21.5.9.2 ompd_rel_display_control_vars

	21.5.10 Accessing Scope-Specific Information
	21.5.10.1 ompd_enumerate_icvs
	21.5.10.2 ompd_get_icv_from_scope
	21.5.10.3 ompd_get_icv_string_from_scope
	21.5.10.4 ompd_get_tool_data

	21.6 Breakpoint Symbol Names for OMPD
	21.6.1 Beginning Parallel Regions
	21.6.2 Ending Parallel Regions
	21.6.3 Beginning Teams Regions
	21.6.4 Ending Teams Regions
	21.6.5 Beginning Task Regions
	21.6.6 Ending Task Regions
	21.6.7 Beginning OpenMP Threads
	21.6.8 Ending OpenMP Threads
	21.6.9 Beginning Target Regions
	21.6.10 Ending Target Regions
	21.6.11 Initializing OpenMP Devices
	21.6.12 Finalizing OpenMP Devices

	V Appendices
	A OpenMP Implementation-Defined Behaviors
	B Features History
	B.1 Deprecated Features
	B.2 Version 5.2 to 6.0 Differences
	B.3 Version 5.1 to 5.2 Differences
	B.4 Version 5.0 to 5.1 Differences
	B.5 Version 4.5 to 5.0 Differences
	B.6 Version 4.0 to 4.5 Differences
	B.7 Version 3.1 to 4.0 Differences
	B.8 Version 3.0 to 3.1 Differences
	B.9 Version 2.5 to 3.0 Differences

	Index

