

OpenMP Technical Report 12:
Version 6.0 Preview 2

EDITORS

Bronis R. de Supinski

Michael Klemm

November 9, 2023

Expires November 6, 2024

We actively solicit comments. Please provide feedback on this document either to the

editors directly or by emailing to info@openmp.org

OpenMP Architecture Review Board – www.openmp.org – info@openmp.org

OpenMP ARB, 9450 SW Gemini Dr., PMB 63140, Beaverton, OR 77008, USA

This Technical Report is the second preview for the OpenMP Application
Programming Specification Version 6.0. This version removes features that have been
deprecated in versions 5.0, 5.1, and 5.2. This preview extends the features of preview
1 with full support for C23, including C attribute syntax, and C++23. It introduces new
C/C++ attributes, extensions to data mapping clauses, and new loop transformations.
Support for free-agent threads, to extend support for OpenMP tasks, and the
coexecute directive, to enhance device support for Fortran, were added. This preview
also contains several clarifications, corrections, and refinements of the OpenMP API.
See Appendix B.2 for the complete list of changes relative to version 5.2.

This technical report describes possible future directions or extensions to the OpenMP

Specification.

The goal of this technical report is to build more widespread existing practice for an

expanded OpenMP. It gives advice on extensions or future directions to those vendors

who wish to provide them possibly for trial implementation, allows OpenMP to gather

early feedback, supports timing and scheduling differences between official OpenMP

releases, and offers a preview to users of the future directions of OpenMP with the

provisions stated previously.

This technical report is non-normative. Some of the components in this technical report

may be considered for standardization in a future version of OpenMP, but they are not

currently part of any OpenMP specification. Some of the components in this technical

report may never be standardized, others may be standardized in a substantially

changed form, or it may be standardized as is in its entirety.

OpenMP
Application Programming

Interface

Version 6.0 Preview 2 November 2023

Copyright ©1997-2023 OpenMP Architecture Review Board.
Permission to copy without fee all or part of this material is granted, provided the OpenMP
Architecture Review Board copyright notice and the title of this document appear. Notice is
given that copying is by permission of the OpenMP Architecture Review Board.

This page intentionally left blank in published version.

This draft version includes the following internal GitHub issues (corresponding Trac ticket numbers
in parentheses when they exist) applied to the 5.2 LaTeX sources: 1121 (189), 1479 (547), 1495
(563), 1584 (652), 1585 (653), 1843-1844 (911-912), 1935, 1946, 2019-2020, 2038, 2158,
2186-2187, 2653, 2691, 2721, 2734, 2736-2737, 2740, 2757, 2784, 2902, 3006-3007, 3027, 3058,
3151, 3161, 3164, 3168, 3171, 3180, 3184-3185, 3189-3190, 3193, 3199, 3201, 3206-3210, 3212,
3216-3217, 3220, 3222, 3229-3232, 3234, 3237-3238, 3240-3241, 3245, 3255, 3258-3259,
3267-3268, 3278-3279, 3281, 3285, 3290, 3293, 3296, 3301, 3303-3304, 3326-3327, 3331,
3335-3337, 3341, 3345, 3347, 3351, 3353, 3367, 3379, 3384, 3396, 3406, 3419, 3425, 3437-3441,
3449, 3452-3453, 3455, 3459-3460, 3467, 3475, 3488, 3490-3491, 3493, 3503, 3506-3509, 3512,
3514, 3516-3517, 3530, 3543, 3547, 3549-3550, 3555, 3558, 3560, 3574-3575, 3577, 3582, 3585,
3590, 3594-3595, 3601, 3609, 3612, 3615, 3640, 3645, 3647, 3654, 3657, 3662-3663, 3668, 3678,
3680, 3705, 3709

This is a draft; contents will change in official release.

Contents

I Definitions 1

1 Overview of the OpenMP API 2
1.1 Scope . 2
1.2 Glossary . 2
1.3 Execution Model . 42
1.4 Memory Model . 46

1.4.1 Structure of the OpenMP Memory Model 46
1.4.2 Device Data Environments . 47
1.4.3 Memory Management . 48
1.4.4 The Flush Operation . 48
1.4.5 Flush Synchronization and Happens-Before Order 50
1.4.6 OpenMP Memory Consistency . 52

1.5 Tool Interfaces . 53
1.5.1 OMPT . 53
1.5.2 OMPD . 53

1.6 OpenMP Compliance . 54
1.7 Normative References . 54
1.8 Organization of this Document . 56

2 Internal Control Variables 58
2.1 ICV Descriptions . 58
2.2 ICV Initialization . 60
2.3 Modifying and Retrieving ICV Values . 64
2.4 How the Per-Data Environment ICVs Work 66
2.5 ICV Override Relationships . 68

i

3 Environment Variables 69
3.1 Parallel Region Environment Variables . 70

3.1.1 OMP_DYNAMIC . 70
3.1.2 OMP_NUM_THREADS . 70
3.1.3 OMP_THREAD_LIMIT . 71
3.1.4 OMP_MAX_ACTIVE_LEVELS . 71
3.1.5 OMP_PLACES . 72
3.1.6 OMP_PROC_BIND . 74

3.2 Program Execution Environment Variables 75
3.2.1 OMP_SCHEDULE . 75
3.2.2 OMP_STACKSIZE . 76
3.2.3 OMP_WAIT_POLICY . 76
3.2.4 OMP_DISPLAY_AFFINITY . 77
3.2.5 OMP_AFFINITY_FORMAT . 78
3.2.6 OMP_CANCELLATION . 80
3.2.7 OMP_AVAILABLE_DEVICES . 80
3.2.8 OMP_DEFAULT_DEVICE . 81
3.2.9 OMP_TARGET_OFFLOAD . 81
3.2.10 OMP_THREADS_RESERVE . 82
3.2.11 OMP_MAX_TASK_PRIORITY . 84

3.3 OMPT Environment Variables . 84
3.3.1 OMP_TOOL . 84
3.3.2 OMP_TOOL_LIBRARIES . 84
3.3.3 OMP_TOOL_VERBOSE_INIT . 85

3.4 OMPD Environment Variables . 86
3.4.1 OMP_DEBUG . 86

3.5 Memory Allocation Environment Variables 87
3.5.1 OMP_ALLOCATOR . 87

3.6 Teams Environment Variables . 88
3.6.1 OMP_NUM_TEAMS . 88
3.6.2 OMP_TEAMS_THREAD_LIMIT . 88

3.7 OMP_DISPLAY_ENV . 88

ii OpenMP API – Version 6.0 Preview 2 November 2023

4 Directive and Construct Syntax 90
4.1 Directive Format . 91

4.1.1 Fixed Source Form Directives . 97
4.1.2 Free Source Form Directives . 98

4.2 Clause Format . 99
4.2.1 OpenMP Argument Lists . 103
4.2.2 Reserved Locators . 105
4.2.3 OpenMP Operations . 106
4.2.4 Array Shaping . 106
4.2.5 Array Sections . 107
4.2.6 iterator Modifier . 110

4.3 Conditional Compilation . 112
4.3.1 Fixed Source Form Conditional Compilation Sentinels 113
4.3.2 Free Source Form Conditional Compilation Sentinel 114

4.4 directive-name-modifier Modifier . 114
4.5 if Clause . 119
4.6 destroy Clause . 120

5 Base Language Formats and Restrictions 122
5.1 OpenMP Types and Identifiers . 122
5.2 OpenMP Stylized Expressions . 124
5.3 Structured Blocks . 124

5.3.1 OpenMP Allocator Structured Blocks . 125
5.3.2 OpenMP Function Dispatch Structured Blocks 126
5.3.3 OpenMP Atomic Structured Blocks . 127

5.4 Loop Concepts . 134
5.4.1 Canonical Loop Nest Form . 134
5.4.2 OpenMP Loop-Iteration Spaces and Vectors 140
5.4.3 collapse Clause . 142
5.4.4 ordered Clause . 143
5.4.5 Consistent Loop Schedules . 144
5.4.6 Canonical Loop Sequence Form . 145
5.4.7 looprange Clause . 146

Contents iii

II Directives and Clauses 147

6 Data Environment 148
6.1 Data-Sharing Attribute Rules . 148

6.1.1 Variables Referenced in a Construct . 148
6.1.2 Variables Referenced in a Region but not in a Construct 152

6.2 threadprivate Directive . 153
6.3 List Item Privatization . 158
6.4 Data-Sharing Attribute Clauses . 161

6.4.1 default Clause . 161
6.4.2 shared Clause . 162
6.4.3 private Clause . 163
6.4.4 firstprivate Clause . 164
6.4.5 lastprivate Clause . 167
6.4.6 linear Clause . 170
6.4.7 is_device_ptr Clause . 173
6.4.8 use_device_ptr Clause . 174
6.4.9 has_device_addr Clause . 175
6.4.10 use_device_addr Clause . 176

6.5 Reduction and Induction Clauses and Directives 177
6.5.1 OpenMP Reduction and Induction Identifiers 177
6.5.2 OpenMP Reduction and Induction Expressions 177
6.5.3 Implicitly Declared OpenMP Reduction Identifiers 182
6.5.4 Implicitly Declared OpenMP Induction Identifiers 183
6.5.5 Properties Common to Reduction and induction Clauses 184
6.5.6 Properties Common to All Reduction Clauses 186
6.5.7 Reduction Scoping Clauses . 188
6.5.8 Reduction Participating Clauses . 189
6.5.9 reduction Clause . 189
6.5.10 task_reduction Clause . 192
6.5.11 in_reduction Clause . 193
6.5.12 induction Clause . 194
6.5.13 declare reduction Directive . 196
6.5.14 combiner Clause . 198

iv OpenMP API – Version 6.0 Preview 2 November 2023

6.5.15 initializer Clause . 198
6.5.16 declare induction Directive . 199
6.5.17 inductor Clause . 201
6.5.18 collector Clause . 201

6.6 scan Directive . 202
6.6.1 inclusive Clause . 204
6.6.2 exclusive Clause . 205

6.7 Data Copying Clauses . 205
6.7.1 copyin Clause . 205
6.7.2 copyprivate Clause . 207

6.8 Data-Mapping Control . 209
6.8.1 Implicit Data-Mapping Attribute Rules . 209
6.8.2 Mapper Identifiers and mapper Modifiers 211
6.8.3 map Clause . 212
6.8.4 enter Clause . 221
6.8.5 link Clause . 222
6.8.6 defaultmap Clause . 222
6.8.7 declare mapper Directive . 224

6.9 Data-Motion Clauses . 227
6.9.1 to Clause . 229
6.9.2 from Clause . 230

6.10 uniform Clause . 231
6.11 aligned Clause . 231
6.12 groupprivate Directive . 232
6.13 local Clause . 235

7 Memory Management 236
7.1 Memory Spaces . 236
7.2 Memory Allocators . 237
7.3 align Clause . 240
7.4 allocator Clause . 241
7.5 allocate Directive . 242
7.6 allocate Clause . 244
7.7 allocators Construct . 246

Contents v

7.8 uses_allocators Clause . 246

8 Variant Directives 249
8.1 OpenMP Contexts . 249
8.2 Context Selectors . 251
8.3 Matching and Scoring Context Selectors . 254
8.4 Metadirectives . 255

8.4.1 when Clause . 256
8.4.2 otherwise Clause . 257
8.4.3 metadirective . 258
8.4.4 begin metadirective . 258

8.5 Declare Variant Directives . 259
8.5.1 match Clause . 260
8.5.2 adjust_args Clause . 261
8.5.3 append_args Clause . 262
8.5.4 declare variant Directive . 264
8.5.5 begin declare variant Directive . 265

8.6 dispatch Construct . 267
8.6.1 interop Clause . 268
8.6.2 novariants Clause . 269
8.6.3 nocontext Clause . 269

8.7 declare simd Directive . 270
8.7.1 branch Clauses . 272

8.8 Declare Target Directives . 273
8.8.1 declare target Directive . 275
8.8.2 begin declare target Directive . 278
8.8.3 indirect Clause . 279

9 Informational and Utility Directives 281
9.1 error Directive . 281
9.2 at Clause . 282
9.3 message Clause . 283
9.4 severity Clause . 283

vi OpenMP API – Version 6.0 Preview 2 November 2023

9.5 requires Directive . 284
9.5.1 requirement Clauses . 285

9.6 Assumption Directives . 291
9.6.1 assumption Clauses . 292
9.6.2 assumes Directive . 297
9.6.3 assume Directive . 298
9.6.4 begin assumes Directive . 298

9.7 nothing Directive . 298

10 Loop-Transforming Constructs 300
10.1 tile Construct . 301

10.1.1 sizes Clause . 302
10.2 unroll Construct . 302

10.2.1 full Clause . 303
10.2.2 partial Clause . 304

10.3 reverse Construct . 304
10.4 interchange Construct . 305

10.4.1 permutation Clause . 306
10.5 fuse Construct . 306
10.6 apply Clause . 307

11 Parallelism Generation and Control 309
11.1 omp_curr_progress_width Identifier 309
11.2 parallel Construct . 309

11.2.1 Determining the Number of Threads for a parallel Region 312
11.2.2 num_threads Clause . 314
11.2.3 Controlling OpenMP Thread Affinity . 315
11.2.4 proc_bind Clause . 317
11.2.5 safesync Clause . 318

11.3 teams Construct . 319
11.3.1 num_teams Clause . 322

11.4 order Clause . 322
11.5 simd Construct . 324

11.5.1 nontemporal Clause . 325

Contents vii

11.5.2 safelen Clause . 326
11.5.3 simdlen Clause . 326

11.6 masked Construct . 327
11.6.1 filter Clause . 328

12 Work-Distribution Constructs 329
12.1 single Construct . 330
12.2 scope Construct . 331
12.3 sections Construct . 332

12.3.1 section Directive . 334
12.4 workshare Construct . 334
12.5 coexecute Construct . 337
12.6 Worksharing-Loop Constructs . 339

12.6.1 for Construct . 341
12.6.2 do Construct . 342
12.6.3 schedule Clause . 343

12.7 distribute Construct . 345
12.7.1 dist_schedule Clause . 347

12.8 loop Construct . 348
12.8.1 bind Clause . 350

13 Tasking Constructs 352
13.1 untied Clause . 352
13.2 mergeable Clause . 353
13.3 final Clause . 353
13.4 threadset Clause . 354
13.5 priority Clause . 355
13.6 task Construct . 355

13.6.1 affinity Clause . 358
13.6.2 detach Clause . 359

13.7 taskloop Construct . 360
13.7.1 grainsize Clause . 363
13.7.2 num_tasks Clause . 364

13.8 taskyield Construct . 364

viii OpenMP API – Version 6.0 Preview 2 November 2023

13.9 Initial Task . 365
13.10 Task Scheduling . 366

14 Device Directives and Clauses 369
14.1 device_type Clause . 369
14.2 device Clause . 370
14.3 thread_limit Clause . 371
14.4 Device Initialization . 372
14.5 target data Construct . 373
14.6 target enter data Construct . 374
14.7 target exit data Construct . 376
14.8 target Construct . 378
14.9 target update Construct . 383

15 Interoperability 386
15.1 interop Construct . 386

15.1.1 OpenMP Foreign Runtime Identifiers . 388
15.1.2 init Clause . 388
15.1.3 use Clause . 389

15.2 Interoperability Requirement Set . 390

16 Synchronization Constructs and Clauses 391
16.1 Synchronization Hints . 391

16.1.1 Synchronization Hint Type . 391
16.1.2 hint Clause . 393

16.2 critical Construct . 394
16.3 Barriers . 396

16.3.1 barrier Construct . 396
16.3.2 Implicit Barriers . 397
16.3.3 Implementation-Specific Barriers . 399

16.4 taskgroup Construct . 399
16.5 taskwait Construct . 401
16.6 nowait Clause . 403
16.7 nogroup Clause . 404

Contents ix

16.8 OpenMP Memory Ordering . 405
16.8.1 memory-order Clauses . 405
16.8.2 atomic Clauses . 409
16.8.3 extended-atomic Clauses . 411
16.8.4 memscope Clause . 414
16.8.5 atomic Construct . 415
16.8.6 flush Construct . 419
16.8.7 Implicit Flushes . 421

16.9 OpenMP Dependences . 425
16.9.1 task-dependence-type Modifier . 425
16.9.2 Depend Objects . 426
16.9.3 update Clause . 426
16.9.4 depobj Construct . 427
16.9.5 depend Clause . 428
16.9.6 doacross Clause . 431

16.10 ordered Construct . 433
16.10.1 Stand-alone ordered Construct . 434
16.10.2 Block-associated ordered Construct . 435
16.10.3 parallelization-level Clauses . 437

17 Cancellation Constructs 439
17.1 cancel-directive-name Clauses . 439
17.2 cancel Construct . 440
17.3 cancellation point Construct . 444

18 Composition of Constructs 445
18.1 Nesting of Regions . 445
18.2 Clauses on Combined and Composite Constructs 446
18.3 Combined and Composite Directive Names 449
18.4 Combined Construct Semantics . 450
18.5 Composite Construct Semantics . 451

x OpenMP API – Version 6.0 Preview 2 November 2023

III Runtime Library Routines 452

19 Runtime Library Routines 453
19.1 Runtime Library Definitions . 454
19.2 Thread Team Routines . 457

19.2.1 omp_set_num_threads . 457
19.2.2 omp_get_num_threads . 457
19.2.3 omp_get_max_threads . 458
19.2.4 omp_get_thread_num . 459
19.2.5 omp_in_parallel . 459
19.2.6 omp_set_dynamic . 460
19.2.7 omp_get_dynamic . 461
19.2.8 omp_get_cancellation . 462
19.2.9 omp_set_schedule . 462
19.2.10 omp_get_schedule . 464
19.2.11 omp_get_thread_limit . 465
19.2.12 omp_get_supported_active_levels 465
19.2.13 omp_set_max_active_levels . 466
19.2.14 omp_get_max_active_levels . 467
19.2.15 omp_get_level . 467
19.2.16 omp_get_ancestor_thread_num 468
19.2.17 omp_get_team_size . 469
19.2.18 omp_get_active_level . 470

19.3 Thread Affinity Routines . 470
19.3.1 omp_get_proc_bind . 470
19.3.2 omp_get_num_places . 472
19.3.3 omp_get_place_num_procs . 472
19.3.4 omp_get_place_proc_ids . 473
19.3.5 omp_get_place_num . 474
19.3.6 omp_get_partition_num_places 474
19.3.7 omp_get_partition_place_nums 475
19.3.8 omp_set_affinity_format . 476
19.3.9 omp_get_affinity_format . 477
19.3.10 omp_display_affinity . 478

Contents xi

19.3.11 omp_capture_affinity . 478
19.4 Teams Region Routines . 480

19.4.1 omp_get_num_teams . 480
19.4.2 omp_get_team_num . 480
19.4.3 omp_set_num_teams . 481
19.4.4 omp_get_max_teams . 482
19.4.5 omp_set_teams_thread_limit . 483
19.4.6 omp_get_teams_thread_limit . 484

19.5 Tasking Routines . 484
19.5.1 omp_get_max_task_priority . 484
19.5.2 omp_in_explicit_task . 485
19.5.3 omp_in_final . 485
19.5.4 omp_is_free_agent . 486
19.5.5 omp_ancestor_is_free_agent . 487

19.6 Resource Relinquishing Routines . 488
19.6.1 omp_pause_resource . 488
19.6.2 omp_pause_resource_all . 490

19.7 Device Information Routines . 491
19.7.1 omp_get_num_procs . 491
19.7.2 omp_get_max_progress_width . 492
19.7.3 omp_set_default_device . 492
19.7.4 omp_get_default_device . 493
19.7.5 omp_get_num_devices . 493
19.7.6 omp_get_device_num . 494
19.7.7 omp_is_initial_device . 495
19.7.8 omp_get_initial_device . 495

19.8 Device Memory Routines . 496
19.8.1 omp_target_alloc . 496
19.8.2 omp_target_free . 498
19.8.3 omp_target_is_present . 499
19.8.4 omp_target_is_accessible . 500
19.8.5 omp_target_memcpy . 501
19.8.6 omp_target_memcpy_rect . 503

xii OpenMP API – Version 6.0 Preview 2 November 2023

19.8.7 omp_target_memcpy_async . 505
19.8.8 omp_target_memcpy_rect_async 507
19.8.9 omp_target_memset . 510
19.8.10 omp_target_memset_async . 512
19.8.11 omp_target_associate_ptr . 514
19.8.12 omp_target_disassociate_ptr 516
19.8.13 omp_get_mapped_ptr . 518

19.9 Lock Routines . 519
19.9.1 omp_init_lock and omp_init_nest_lock 521
19.9.2 omp_init_lock_with_hint and

omp_init_nest_lock_with_hint 522
19.9.3 omp_destroy_lock and omp_destroy_nest_lock 523
19.9.4 omp_set_lock and omp_set_nest_lock 524
19.9.5 omp_unset_lock and omp_unset_nest_lock 526
19.9.6 omp_test_lock and omp_test_nest_lock 527

19.10 Timing Routines . 529
19.10.1 omp_get_wtime . 529
19.10.2 omp_get_wtick . 530

19.11 Event Routine . 530
19.11.1 omp_fulfill_event . 530

19.12 Interoperability Routines . 531
19.12.1 omp_get_num_interop_properties 532
19.12.2 omp_get_interop_int . 533
19.12.3 omp_get_interop_ptr . 534
19.12.4 omp_get_interop_str . 535
19.12.5 omp_get_interop_name . 535
19.12.6 omp_get_interop_type_desc . 536
19.12.7 omp_get_interop_rc_desc . 537

19.13 Memory Management Routines . 538
19.13.1 Memory Management Types . 538
19.13.2 Memory Space Routines . 541
19.13.3 omp_init_allocator . 544
19.13.4 Memory Allocator Routines . 545

Contents xiii

19.13.5 omp_destroy_allocator . 548
19.13.6 omp_set_default_allocator . 549
19.13.7 omp_get_default_allocator . 550
19.13.8 omp_alloc and omp_aligned_alloc 550
19.13.9 omp_free . 552
19.13.10omp_calloc and omp_aligned_calloc 553
19.13.11omp_realloc . 555
19.13.12omp_get_memspace_num_resources 557
19.13.13omp_get_submemspace . 558

19.14 Tool Control Routine . 559
19.15 Environment Display Routine . 562

IV Tool Interfaces 564

20 OMPT Interface 565
20.1 OMPT Interfaces Definitions . 565
20.2 Activating a First-Party Tool . 565

20.2.1 ompt_start_tool . 565
20.2.2 Determining Whether a First-Party Tool Should be Initialized 567
20.2.3 Initializing a First-Party Tool . 568
20.2.4 Monitoring Activity on the Host with OMPT 571
20.2.5 Tracing Activity on Target Devices with OMPT 572

20.3 Finalizing a First-Party Tool . 576
20.4 OMPT Data Types . 576

20.4.1 Tool Initialization and Finalization . 576
20.4.2 Callbacks . 577
20.4.3 Tracing . 578
20.4.4 Miscellaneous Type Definitions . 580

20.5 OMPT Tool Callback Signatures and Trace Records 598
20.5.1 Initialization and Finalization Callback Signature 598
20.5.2 Event Callback Signatures and Trace Records 600

20.6 OMPT Runtime Entry Points for Tools . 637
20.6.1 Entry Points in the OMPT Callback Interface 637

xiv OpenMP API – Version 6.0 Preview 2 November 2023

20.6.2 Entry Points in the OMPT Device Tracing Interface 654
20.6.3 Lookup Entry Points: ompt_function_lookup_t 665

21 OMPD Interface 667
21.1 OMPD Interfaces Definitions . 668
21.2 Activating a Third-Party Tool . 668

21.2.1 Enabling Runtime Support for OMPD . 668
21.2.2 ompd_dll_locations . 668
21.2.3 ompd_dll_locations_valid . 669

21.3 OMPD Data Types . 670
21.3.1 Size Type . 670
21.3.2 Wait ID Type . 670
21.3.3 Basic Value Types . 671
21.3.4 Address Type . 671
21.3.5 Frame Information Type . 671
21.3.6 System Device Identifiers . 672
21.3.7 Native Thread Identifiers . 673
21.3.8 OMPD Handle Types . 673
21.3.9 OMPD Scope Types . 674
21.3.10 Team Generator Types . 675
21.3.11 ICV ID Type . 676
21.3.12 Tool Context Types . 676
21.3.13 Return Code Types . 676
21.3.14 Primitive Type Sizes . 678

21.4 OMPD Third-Party Tool Callback Interface 678
21.4.1 Memory Management of OMPD Library 679
21.4.2 Context Management and Navigation . 681
21.4.3 Accessing Memory in the OpenMP Program or Runtime 683
21.4.4 Data Format Conversion: ompd_callback_device_host_fn_t . . . 687
21.4.5 ompd_callback_print_string_fn_t 688
21.4.6 The Callback Interface . 689

21.5 OMPD Tool Interface Routines . 691
21.5.1 Per OMPD Library Initialization and Finalization 691
21.5.2 Per OpenMP Process Initialization and Finalization 695

Contents xv

21.5.3 Thread and Signal Safety . 698
21.5.4 Address Space Information . 698
21.5.5 Thread Handles . 700
21.5.6 Parallel Region Handles . 705
21.5.7 Task Handles . 709
21.5.8 Querying Thread States . 716
21.5.9 Display Control Variables . 718
21.5.10 Accessing Scope-Specific Information . 720

21.6 Breakpoint Symbol Names for OMPD . 724
21.6.1 Beginning Parallel Regions . 724
21.6.2 Ending Parallel Regions . 725
21.6.3 Beginning Teams Regions . 726
21.6.4 Ending Teams Regions . 726
21.6.5 Beginning Task Regions . 727
21.6.6 Ending Task Regions . 727
21.6.7 Beginning OpenMP Threads . 728
21.6.8 Ending OpenMP Threads . 728
21.6.9 Beginning Target Regions . 729
21.6.10 Ending Target Regions . 729
21.6.11 Initializing OpenMP Devices . 730
21.6.12 Finalizing OpenMP Devices . 730

V Appendices 732

A OpenMP Implementation-Defined Behaviors 733

B Features History 743
B.1 Deprecated Features . 743
B.2 Version 5.2 to 6.0 Differences . 743
B.3 Version 5.1 to 5.2 Differences . 747
B.4 Version 5.0 to 5.1 Differences . 750
B.5 Version 4.5 to 5.0 Differences . 752
B.6 Version 4.0 to 4.5 Differences . 756
B.7 Version 3.1 to 4.0 Differences . 758

xvi OpenMP API – Version 6.0 Preview 2 November 2023

B.8 Version 3.0 to 3.1 Differences . 758
B.9 Version 2.5 to 3.0 Differences . 759

Index 762

Contents xvii

List of Figures

20.1 First-Party Tool Activation Flow Chart . 567

xviii

List of Tables

2.1 ICV Scopes and Descriptions . 58
2.2 ICV Initial Values . 61
2.3 Ways to Modify and to Retrieve ICV Values . 64
2.4 ICV Override Relationships . 68

3.1 Predefined Abstract Names for OMP_PLACES . 72
3.2 Available Field Types for Formatting OpenMP Thread Affinity Information 78
3.3 Reservation Types for OMP_THREADS_RESERVE 82

4.1 Syntactic Properties for Clauses, Arguments and Modifiers 101

6.1 Implicitly Declared C/C++ Reduction Identifiers 182
6.2 Implicitly Declared Fortran Reduction Identifiers 183
6.3 Implicitly Declared C/C++ Induction Identifiers 184
6.4 Implicitly Declared Fortran Induction Identifiers 184
6.5 Map-Type Decay of Map Type Combinations . 225

7.1 Predefined Memory Spaces . 236
7.2 Allocator Traits . 237
7.3 Predefined Allocators . 239

12.1 ompt_callback_work Callback Work Types for Worksharing-Loop 340

13.1 ompt_callback_task_create Callback Flags Evaluation 357

19.1 Required Values of the omp_interop_property_t enum Type 532
19.2 Required Values for the omp_interop_rc_t enum Type 533
19.3 Standard Tool Control Commands . 560

20.1 OMPT Callback Interface Runtime Entry Point Names and Their Type Signatures . 570
20.2 Callbacks for which ompt_set_callback Must Return ompt_set_always 572
20.3 OMPT Tracing Interface Runtime Entry Point Names and Their Type Signatures . . 573
20.4 Association of dev1 and dev2 arguments for target data operations 628

21.1 Mapping of Scope Type and OMPD Handles . 675

xix

Part I1

Definitions2

1

1 Overview of the OpenMP API1

The collection of compiler directives, library routines, and environment variables that this2
document describes collectively define the specification of the OpenMP Application Program3
Interface (OpenMP API) in C, C++ and Fortran programs. This specification provides a model for4
parallel programming that is portable across architectures from different vendors. Compilers from5
numerous vendors support the OpenMP API. More information about the OpenMP API can be6
found at the following web site: https://www.openmp.org.7

The directives, library routines, environment variables, and tool support that this document defines8
allow users to create, to manage, to debug and to analyze parallel programs while permitting9
portability. The directives extend the C, C++ and Fortran base languages with single program10
multiple data (SPMD) constructs, tasking constructs, device constructs, work-distribution11
constructs, and synchronization constructs, and they provide support for sharing, mapping and12
privatizing data. The functionality to control the runtime environment is provided by library13
routines and environment variables. Compilers that support the OpenMP API often include14
command line options to enable or to disable interpretation of some or all OpenMP directives.15

1.1 Scope16

The OpenMP API covers only user-directed parallelization, wherein the programmer explicitly17
specifies the actions to be taken by the compiler and runtime system in order to execute the program18
in parallel. OpenMP-compliant implementations are not required to check for data dependences,19
data conflicts, race conditions, or deadlocks. Compliant implementations also are not required to20
check for any code sequences that cause a program to be classified as non-conforming. Application21
developers are responsible for correctly using the OpenMP API to produce a conforming program.22
The OpenMP API does not cover compiler-generated automatic parallelization.23

1.2 Glossary24

construct se-
lector set

A selector sets that may match the construct trait set. 249, 252–254, 260

device selector
set

A selector sets that may match the device trait set. 252–254

implementation
selector set

A selector sets that may match the implementation trait set. 252–254

2

target_device
selector set

A selector sets that may match the target device trait set. 252–254

user selector set A selector sets that may match traits in the dynamic trait set. 252, 254
accessible device The host device or any non-host device accessible for execution. 62, 80,

290
acquire flush A flush that has the acquire flush property. 32, 36, 49–51, 417, 420,

422–425
acquire flush
property

A flush with the acquire flush property orders memory operations that
follow the flush after memory operations performed by a different thread
that synchronizes with it. 3, 18, 420

active level An active parallel region that encloses a given region at some point in the
execution of an OpenMP program. The number of active levels is the
number of active parallel regions that encloses the given region. 3, 36,
465, 466, 734

active parallel
region

A parallel region comprised of implicit tasks that are being executed by a
team to which multiple threads are assigned. 3, 38, 58, 59, 74, 154, 155,
460, 466, 469, 733

active target re-
gion

A target region that is executed on a device other than the device that
encountered the target construct. 67

address range The addresses of a contiguous set of storage locations. 13, 18, 25, 29, 35,
501

address space A collection of logical, virtual, or physical memory address ranges that
contain code, stack, and/or data. Address ranges within an address space
need not be contiguous. An address space consists of one or more
segments. 3, 18, 28, 33, 40, 289, 501, 567, 568, 676, 681, 682, 684, 702

address space con-
text

A tool context that refers to an address space within an OpenMP process.
676

address space
handle

A handle that refers to an address space within an OpenMP process. 675,
705

affected loop nest The subset of canonical loop nests of an associated loop sequence that are
selected by the looprange clause. 146, 300, 307

aggregate variable A variable, such as an array or structure, composed of other variables. For
Fortran, a variable of character type is considered an aggregate variable.
3, 15, 19, 30, 34, 39, 41, 46, 105, 155, 223, 359, 733

all tasks All tasks participating in the OpenMP program. 8, 189, 233, 238
all threads All OpenMP threads participating in the OpenMP program. A specific

usage of the term may be explicitly limited to all threads on a given device
or OpenMP thread pool. 3, 8, 47, 52, 169, 415

allocator A memory allocator. 3, 237–243, 245–247, 287, 381
allocator trait A trait of an allocator. 237–239
ancestor thread For a given thread, its parent thread or one of the ancestor threads of its

parent thread. 3, 468, 469, 487, 747

CHAPTER 1. OVERVIEW OF THE OPENMP API 3

array element A single member of an array as defined by the base language. 4, 184, 204,
205

array item An array, an array section, or an array element. 448
array section A designated subset of the elements of an array that is specified using a

subscript notation that can select more than one element. 4, 6, 7, 12, 26,
34, 81, 104, 107–109, 174–176, 178, 179, 181, 184, 185, 190, 191, 195,
204, 205, 213, 214, 217, 218, 220, 225, 227, 429, 430

assigned list item A list item to which assignment is performed as the result of a
data-motion clause. 228–230

assigned thread A thread that has been assigned an implicit task of a parallel region. 30,
37, 38, 42, 43, 459

associated device The associated device of a memory allocator is the device that is specified
when the memory allocator is created; If the associated memory space is a
predefined memory space, the associated device is the current device. 4,
46

associated itera-
tion

A logical iteration of the associated loops of a loop-nest-associated
directive. 33, 303, 339

associated itera-
tion space

The logical iteration space of the associated loops of a
loop-nest-associated directive. 340, 347

associated loop A loop from a canonical loop nest or a DO CONCURRENT loop in Fortran
that is controlled by a given loop-nest-associated directive. 4, 10, 22–24,
33, 41, 96, 140–144, 149–151, 163, 168, 171, 190, 203, 299–301,
303–305, 349, 360, 363, 364, 434

associated loop
sequence

The associated canonical loop sequence of a loop-sequence-associated
directive. 3, 146, 300

associated mem-
ory space

The associated memory space of a memory allocator is the memory space
that is specified when the memory allocator is created. 4, 26, 237, 239

assumed-size ar-
ray

For C/C++, an array section for which the number of array elements is
assumed.
For Fortran, an assumed-size array in the base language. 4, 42, 107, 109,
150, 151, 160, 174, 176, 212, 213, 218, 219

assumption direc-
tive

A directive that provides invariants that specify additional information
about the expected properties of the program that can optionally be used
for optimization. An implementation may ignore this information without
altering the behavior of the program. 4, 291, 294

assumption scope The scope for which the invariants specified by an assumption directive
must hold. 291–298

async signal safe The guarantee that interruption by signal delivery will not interfere with a
set of operations. An async signal safe runtime entry point is safe to call
from a signal handler. 4, 600, 624, 642, 643, 645, 646, 649, 651–653

atomic captured
update

An atomic update operation that is specified by an atomic construct on
which the capture clause is present. 131, 412, 416

4 OpenMP API – Version 6.0 Preview 2 November 2023

atomic conditional
update

An atomic update operation that is specified by an atomic construct on
which the compare clause is present. 129, 412, 413, 416–419

atomic operation An operation that is specified by an atomic construct or is implicitly
performed by the OpenMP implementation and that atomically accesses
and/or modifies a specific storage location. 5, 31–33, 47, 49–52, 215, 216,
239, 391, 417–419, 423

atomic read An atomic operation that is specified by an atomic construct on which
the read clause is present. 128, 410, 416

atomic scope The set of threads that may concurrently access or modify a given storage
location with atomic operations, where at least one of the operations
modifies the storage location. 47, 51, 239, 415

atomic update An atomic operation that is specified by an atomic construct on which
the update clause is present. 4, 5, 129, 410, 412, 416, 417, 419

atomic write An atomic operation that is specified by an atomic construct on which
the write clause is present. 129, 411, 416

attach-ineligible A pointer variable for which pointer attachment may not be performed.
214

attached pointer A pointer variable in a device data environment that, as a result of a
mapping operation, becomes the base pointer of a given data entity that
also exists in the device data environment. 30, 216, 220, 227, 228, 381

barrier A point in the execution of a program encountered by a team, beyond
which no thread in the team may execute until all threads in the team have
reached the barrier and all explicit tasks generated for execution by the
team have executed to completion. If cancellation has been requested,
threads may proceed to the end of the canceled region even if some
threads in the team have not reached the barrier. 5, 18, 20, 43–45, 207,
310, 327, 329–335, 339, 346, 366, 367, 396, 398, 399, 403, 417, 421–423,
441, 595

base address If a data entity has a base pointer, the address of the first storage location
of the implicit array of its base pointer; otherwise, if the data entity has a
base variable, the address of the first storage location of its base variable;
otherwise, the address of the first storage location of the data entity. 18,
174, 176, 213

CHAPTER 1. OVERVIEW OF THE OPENMP API 5

base array For C/C++, a containing array of a given lvalue expression or array
section that does not appear in the expression of any of its other
containing arrays.
For Fortran, a containing array of a given variable or array section that
does not appear in the designator of any of its other containing arrays.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers
pi have a pointer type declaration and identifiers xi have an
array type declaration, the base array is:
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.

6, 448
base expression The base array of a given array section or array element, if it exists;

otherwise, the base pointer of the array section or array element.
COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers
pi have a pointer type declaration and identifiers xi have an
array type declaration, the base expression is:
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.
More examples for C/C++:

• The base expression for x[i] and for x[i:n] is x, if x is an
array or pointer.

• The base expression for x[5][i] and for x[5][i:n] is x, if x
is a pointer to an array or x is 2-dimensional array.

• The base expression for y[5][i] and for y[5][i:n] is y[5],
if y is an array of pointers or y is a pointer to a pointer.

Examples for Fortran:
• The base expression for x(i) and for x(i:j) is x.

6, 108, 109, 175, 176, 185, 210, 213, 214
base function A function that is declared and defined in the base language. 14, 32, 41,

252, 253, 259–266
base language A programming language that serves as the foundation of the OpenMP

specification.
Section 1.7 lists the current base languages for the OpenMP
API.

2, 4, 6–8, 16, 19, 28, 30, 31, 33, 35, 36, 42, 45, 46, 51, 54–56, 90, 93, 94,
97, 98, 105, 107, 108, 110, 122–124, 128, 134, 139, 140, 153, 159, 176,
177, 185, 186, 195, 197, 200, 211, 214, 225, 226, 240–242, 246, 247, 261,
264, 266, 291, 336, 388, 416, 436, 733

base language
thread

A thread of execution that defines a single flow of control within the
program and that may execute concurrently with other base language
threads, as specified by the base language. 6, 45

6 OpenMP API – Version 6.0 Preview 2 November 2023

base pointer For C/C++, an lvalue pointer expression that is used by a given lvalue
expression or array section to refer indirectly to its storage, where the
lvalue expression or array section is part of the implicit array for that
lvalue pointer expression.
For Fortran, a data pointer that appears last in the designator for a given
variable or array section, where the variable or array section is part of the
pointer target for that data pointer.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers
pi have a pointer type declaration and identifiers xi have an
array type declaration, the base pointer is:
(*p0).x0[k1].p1->p2.

5–7, 13, 26, 150, 176, 191, 195, 214–216, 218, 219, 379, 447, 448
base program A program written in a base language. 28, 122
base variable For a given data entity that is a variable or array section, a variable

denoted by a base language identifier that is either the data entity or is a
containing array or containing structure of the data entity.

COMMENT:
Examples for C/C++:

• The data entities x, x[i], x[:n], x[i].y[j] and x[i].y[:n],
where x and y have array type declarations, all have the
base variable x.

• The lvalue expressions and array sections p[i], p[:n],
p[i].y[j] and p[i].y[:n], where p has a pointer type and
p[i].y has an array type, has a base pointer p but does
not have a base variable.

Examples for Fortran:
• The data objects x, x(i), x(:n), x(i)%y(j) and x(i)%y(:n),

where x and y have array type declarations, all have the
base variable x.

• The data objects p(i), p(:n), p(i)%y(j) and p(i)%y(:n),
where p has a pointer type and p(i)%y has an array type,
has a base pointer p but does not have a base variable.

• For the associated pointer p, p is both its base variable
and base pointer.

5, 7, 155, 176, 209, 210, 219, 380, 447, 448
binding implicit
task

The implicit task of the current team assigned to the encountering thread.
8, 20, 66, 315

CHAPTER 1. OVERVIEW OF THE OPENMP API 7

binding region The enclosing region that determines the execution context and limits the
scope of the effects of the bound region is called the binding region. The
binding region is not defined for regions for which the binding thread set
is all threads or the encountering thread, nor is it defined for regions for
which the binding task set is all tasks. 8, 29, 44, 144, 337, 348–350, 396,
433, 436, 440, 444, 468, 476, 477

binding task set The set of tasks that are affected by, or provide the context for, the
execution of a region. The binding task set for a given region can be all
tasks, the current team tasks, all tasks in the contention group, all tasks of
the current team that are generated in the region, the binding implicit task,
or the generating task. 8, 64, 267, 373, 374, 376, 378, 383, 387, 399, 404,
466, 486, 487, 511, 513

binding thread set The set of threads that are affected by, or provide the context for, the
execution of a region. The binding thread set for a given region can be all
threads on a specified set of devices, all threads that are executing tasks in
a contention group, all primary threads that are executing the initial tasks
of an enclosing teams region, the current team, or the encountering
thread. 8, 29, 41, 44, 166, 169, 309, 319, 323, 324, 327, 329–332, 334,
337–339, 345, 348–350, 352, 356, 360, 361, 394, 396, 401, 404, 415–417,
420, 427, 434, 435, 440, 441, 444, 468, 469, 476, 477, 746

bounds-
independent loop

For a structured block sequence, an enclosed canonical loop nest where
none of its loops have loop bounds that depend on the execution of a
preceding executable statement in the sequence. 145

C pointer For C/C++, a base language pointer variable.
For Fortran, a variable of type C_PTR. 16, 174

callback A tool callback. 8, 32, 53, 54, 187, 218, 275, 281, 311, 320, 328, 330,
332–334, 336, 338, 340, 346, 357, 361, 362, 372, 373, 375, 377, 380, 384,
395, 397–400, 402, 418, 421, 430, 433, 435, 442, 512, 561, 562, 566, 571,
573, 576, 580, 581, 667, 681

callback dispatch Callback dispatch processes a registered callback when an associated
event occurs in a manner consistent with the return code provided when a
first-party tool registered the callback. 8, 581, 659

callback registra-
tion

Callback registration provides a tool callback to an OpenMP
implementation to enable callback dispatch. 8, 32, 569, 571

cancellable con-
struct

A construct that has the cancellable property. 8, 439, 440, 444

cancellable prop-
erty

The property that a construct is a cancellable construct. 8, 309, 332, 341,
342, 399, 439

cancellation An action that cancels (that is, aborts) a region and causes executing
implicit tasks or explicit tasks to proceed to the end of the canceled
region. 5, 9, 45, 329, 396–398, 422, 425, 439–444

8 OpenMP API – Version 6.0 Preview 2 November 2023

cancellation point A point at which implicit tasks and explicit tasks check if cancellation has
been requested. If cancellation has been observed, they perform the
cancellation. 40, 45, 59, 396, 398, 422, 425, 440–444

candidate A replacement candidate. 255, 259
canonical frame
address

An address associated with a procedure frame on a call stack that was the
value of the stack pointer immediately prior to calling the procedure for
which the frame represents the invocation. 597

canonical loop
nest

A loop nest that complies with the rules and restrictions defined in
Section 5.4.1. 3, 4, 8, 9, 17, 19, 22–24, 95, 134–136, 139, 140, 142, 145,
146, 168, 202, 299, 300, 303, 307, 344

canonical loop
sequence

A sequence of canonical loop nests that complies with the rules and
restrictions defined in Section 5.4.6. 4, 19, 23, 24, 95, 135, 145, 146, 300,
744, 746

child task A task is a child-task of its generating task region. The region of a child
task is not part of its generating task region. 9, 15, 18, 34, 37, 401, 423

chunk A contiguous non-empty subset of the collapsed iterations of a
loop-collapsing construct. 339, 343–346, 348, 360, 451

class type For C++, variables declared with one of the class, struct, or union
keywords. 155, 159, 160, 165, 166, 168, 169, 182, 186, 191, 206–208,
217, 219, 381

clause A mechanism to specify customized directive behavior. xix, 3–5, 9, 10,
12–15, 17, 24, 26, 27, 30–33, 43, 45, 46, 48, 59, 62, 65, 67–69, 90, 91, 93,
94, 99–106, 109–112, 120–122, 140–144, 146, 148–152, 154, 155,
158–166, 168, 169, 171–177, 181, 184–186, 188–233, 235, 236, 241–247,
250, 252, 253, 255–296, 299–309, 312–315, 318, 319, 321–324, 326–335,
339, 343–356, 359–361, 363, 364, 369–371, 373–384, 387–391, 393, 395,
401–423, 425–430, 432–439, 441–443, 446–448, 451, 470, 514, 744–746,
748, 749, 757

clause group A clause set for which restrictions or properties related to their use on all
directives are specified. 272, 285, 292, 405, 409, 411, 437, 439, 746

clause set A set of clauses for which restrictions on their use or other properites of
their use on a given directive are specified. 9, 148, 285, 292, 361

clause-list trait A trait that is defined with properties that match the clauses that may be
specified for a given directive. 249, 250, 252

closely nested con-
struct

A construct nested inside another construct with no other construct nested
between them. 336, 338, 350, 442–444

closely nested re-
gion

A region nested inside another region with no parallel region nested
between them. 29, 194, 329, 351, 442, 444

code block A contiguous region of memory that contains code of an OpenMP
program to be executed on a device. 372

collapsed iteration A logical iteration of the collapsed loops of a loop-collapsing construct. 9,
10, 22, 33, 41, 158, 171, 172, 182, 195, 202–204, 323, 324, 327, 339, 340,
343–346, 348, 349, 360, 423, 436, 451

CHAPTER 1. OVERVIEW OF THE OPENMP API 9

collapsed iteration
space

The logical iteration space of the collapsed loops of a loop-collapsing
construct. 142, 203, 326, 343, 348

collapsed logical
iteration

A collapsed iteration. 142, 158

collapsed loop For a loop-collapsing construct, the outermost associated loop or one that
is controlled by the collapse clause. 9, 10, 23, 142, 158, 171, 324, 325,
339, 344–346, 348, 349, 361

collective step ex-
pression

An expression in terms of a step expression and a collector that eliminates
recursive calculation in an induction operation. 10, 22, 182

collector A binary operator used to eliminate recursion in an induction operation.
10, 22, 202

collector expres-
sion

A OpenMP stylized expression that evaluates to the value of the collective
step expression of a collapsed iteration. 21, 182–184, 200, 202

combined con-
struct

A construct that corresponds to a combined directive. 10, 11, 22, 34, 120,
190, 249, 292, 319, 321, 323, 436, 446–448

combined direc-
tive

A directive that is a shortcut for specifying one directive immediately
nested inside another directive. A combined directive is semantically
identical to explicitly specifying the first directive containing one instance
of the second directive and no other statements. 10, 11, 101, 292, 447, 449

combined target
construct

A combined construct that is composed of a target construct along
with another construct. 209, 210, 448

combiner expres-
sion

An OpenMP stylized expression that specifies how a reduction combines
partial results into a single value. 31, 178, 179, 185, 186, 198, 203

compatible con-
text selector

The context selector that matches the OpenMP context in which a
directive is encountered. 254–256, 259

compatible map
type

A map type that is consistent with data-motion attribute of a given
data-motion clause. 227, 229, 230

compilation unit For C/C++, a translation unit.
For Fortran, a program unit. 15, 48, 95, 156, 157, 221, 234, 242, 243, 245,
284–286, 291, 297, 381

compile-time er-
ror termination

Error termination preformed during compilation. 45, 285, 314

compliant imple-
mentation

An implementation of the OpenMP specification that compiles and
executes any conforming program as defined by the specification. A
compliant implementation may exhibit unspecified behavior when
compiling or executing a non-conforming program. 2, 10, 14, 20, 40, 44,
54, 56, 76, 77, 90, 344, 417, 667

composite con-
struct

A construct that corresponds to a composite directive. 11, 22, 34, 120,
190, 202, 249, 292, 319, 321, 436, 446, 447, 451

10 OpenMP API – Version 6.0 Preview 2 November 2023

composite direc-
tive

A directive that is composed of two (or more) directives but does not have
identical semantics to specifying one of the directives immediately nested
inside the other. A composite directive either adds semantics not included
in the directives from which it is composed or provides an effective
nesting of the one directives inside the other that would otherwise be
non-conforming. 10, 11, 101, 292, 447, 449

conforming device
number

A device number that may be used in a conforming program. 46, 237, 370

conforming pro-
gram

An OpenMP program that follows all rules and restrictions of the
OpenMP specification. 2, 10, 11, 27, 28, 40, 42, 54, 255, 300, 344

constituent con-
struct

For a given combined construct or composite construct, a construct from
which it, or any one of its constituent constructs, is composed. 11, 22, 34,
120, 190, 191, 447

constituent direc-
tive

For a given combined directive or composite directive, a construct from
which it, or any one of its constituent directives, is composed. 11, 101

construct An executable directive and its paired end directive (if any) and the
associated structured block (if any) not including the code in any called
procedures. That is, the lexical extent of an executable directive. 2–5,
8–12, 14–30, 32–46, 54, 59, 60, 63, 65–68, 74, 91, 94, 96, 103–105, 111,
120–122, 130, 131, 141, 143, 144, 148–152, 154, 155, 158, 159, 161–163,
165, 166, 168, 169, 171, 173–177, 186, 188–191, 193–195, 202, 203, 207,
209, 210, 212–219, 223–225, 227, 241, 245–247, 249, 262, 263, 267–271,
286–288, 292, 293, 295, 296, 301, 303, 305, 307–312, 319–324, 327, 330,
331, 333–339, 341–343, 345–356, 359–362, 364, 369–384, 386, 387, 390,
391, 393–397, 399–418, 420–430, 432–437, 439–448, 451, 514, 566, 595,
598, 675, 710, 746, 748, 751, 757

construct trait set The trait set that consists of all enclosing constructs at a given point in an
OpenMP program up to a target construct. 2, 13, 249, 250, 252, 254,
270

CHAPTER 1. OVERVIEW OF THE OPENMP API 11

containing array For C/C++, a non-subscripted array (a containing array) to which a series
of zero or more array subscript operators and/or . (dot) operators are
applied to yield a given lvalue expression or array section for which
storage is contained by the array.
For Fortran, an array (a containing array) without the POINTER attribute
and without a subscript list to which a series of zero or more array
subscript operators and/or component selectors are applied to yield a
given variable or array section for which storage is contained by the array.

COMMENT: An array is a containing array of itself. For the
array section (*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n],
where identifiers pi have a pointer type declaration and
identifiers xi have an array type declaration, the containing
arrays are: (*p0).x0[k1].p1->p2[k2].x1 and
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.

6, 7, 12, 106, 215, 218, 219
containing struc-
ture

For C/C++, a structure to which a series of zero or more . (dot) operators
and/or array subscript operators are applied to yield a given lvalue
expression or array section for which storage is contained by the structure.
For Fortran, a structure to which a series of zero or more component
selectors and/or array subscript selectors are applied to yield a given
variable or array section for which storage is contained by the structure.

COMMENT: A structure is a containing structure of itself.
For C/C++, a structure pointer p to which the -> operator
applies is equivalent to the application of a . (dot) operator to
(*p) for the purposes of determining containing structures.
For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers
pi have a pointer type declaration and identifiers xi have an
array type declaration, the containing structures are:
*(*p0).x0[k1].p1, (*(*p0).x0[k1].p1).p2[k2] and
(*(*p0).x0[k1].p1).p2[k2].x1[k3]

7, 12, 215, 218, 219
contention group All implicit tasks and their descendent tasks that are generated in an

implicit parallel region, R, and in all nested regions for which R is the
innermost enclosing implicit parallel region. 8, 23, 28, 33, 35, 42–45, 59,
60, 71, 82, 233, 238, 289, 309, 313, 318, 371, 394, 415

context selector The specification of an OpenMP context in which a construct is
encountered for use in clauses and modifiers. 10, 17, 35, 251–256,
259–261, 265, 266, 284

context-matching
construct

A construct that has the context-matching property. 252

12 OpenMP API – Version 6.0 Preview 2 November 2023

context-matching
property

The property that a directive adds a trait of the same name to the construct
trait set of the current OpenMP context. 12, 267, 309, 319, 324, 341, 342,
378

corresponding
base pointer ini-
tialization

For a given data entity that has a base pointer, an assignment to the base
pointer such that any lexical reference to the data entity or a subobject of
the data entity in a target region refers to its corresponding data entity
or subobject in the device data environment. 216, 379

corresponding list
item

A list item in a device data environment that corresponds to an original
list item. 13, 24, 176, 212, 215–217, 219–221, 227–229, 274, 291, 378,
383, 745

corresponding
pointer

A corresponding list item for which the an original list item may be used
as a base pointer. 29, 215, 220

corresponding
storage

An address range in a device data environment that corresponds to, but
may be distinct from, an address range in the device data environments of
the encountering device. 13, 25, 30, 33, 174, 213, 214, 216, 217, 219, 228

corresponding
storage block

A storage block that is used as corresponding storage. 47, 48, 215, 216

current device The device on which the current task is executing. 20, 47, 49, 58, 370
current task For a given thread, the task corresponding to the task region that it is

executing. 13, 17, 20, 212, 262, 399, 401, 460, 466, 487
current task re-
gion

The region that corresponds to the current task. 44, 324, 396, 401, 440,
441

current team All threads in the team executing the innermost enclosing parallel
region. 8, 29, 33, 38, 60, 152, 324, 327, 328, 330–332, 334, 339, 354,
396, 399, 401, 434, 435, 440, 444, 469, 595

current team
tasks

All tasks encountered by the corresponding team. The implicit tasks
constituting the parallel region and any descendent tasks encountered
during the execution of these implicit tasks are included in this set of
tasks. 8, 238

data environment The variables associated with the execution of a given region. 13–15, 20,
25–27, 29, 37, 43, 45, 47, 48, 58, 64, 66, 67, 148, 193, 207, 208, 212, 227,
326, 356, 359, 360, 373, 374, 376, 378, 383

data-environment
attribute

A data-sharing attribute or a data-mapping attribute. 13, 148

data-environment
attribute clause

A clause that explicitly determines the data-environment attributes of the
list items in its list argument. 148, 224

data-mapping
attribute

The relationship of an entity in a given device data environment to the
version of that entity in the data environment of the enclosing context. 13,
18, 21, 148, 151, 209, 210, 223

data-mapping
attribute clause

A clause that explicitly determines the data-mapping attributes of the list
items in its list argument. 14, 18, 27, 47, 148, 209, 221, 373, 374, 376,
378

CHAPTER 1. OVERVIEW OF THE OPENMP API 13

data-mapping
construct

A construct that has the data-mapping property. 150

data-mapping
property

The property of a construct on which a data-mapping attribute clause may
be specified. 14, 373, 374, 376, 378

data-motion at-
tribute

The data-movement relationship between a given device data environment
and the version of that entity in the data environment of the enclosing
context. 10, 227

data-motion
clause

A clause that specifies data movement between a device set that is
specified by the construct on which it appears. 4, 10, 211, 225, 227–230,
383

data-sharing at-
tribute

The relationship of an entity in a given data environment to the version of
that entity in the enclosing context. 13, 14, 18, 21, 30, 148, 150–153, 161,
210, 223, 374, 376, 378, 383

data-sharing at-
tribute clause

A clause that explicitly determines the data-sharing attributes of the list
items in its list argument. 18, 148, 150, 151, 158–161, 163, 177, 349, 360,
378, 380

declarative direc-
tive

A directive that may only be placed in a declarative context and results in
one or more declarations only; it is not associated with the immediate
execution of any user code or implementation code. 14, 93, 94, 97, 103,
153, 196, 199, 224, 232, 242, 256, 264, 265, 270, 275, 278, 292

declare target di-
rective

A declarative directive that ensures that procedures and/or variables can
be executed or accessed on a device. 25, 27, 47, 178, 233, 249, 273–276,
278, 279, 285, 290, 291

declare variant
directive

A declarative directive that declare a function variant for a given base
function. 249, 259, 260, 265, 266

declare-target
property

The property that a directive applies to procedures and/or variables to
ensure that they can be executed or accessed on a device. 275, 278

defined For variables, the property of having a valid value.
For C, for the contents of variables, the property of having a valid value.
For C++, for the contents of variables of POD (plain old data) type, the
property of having a valid value. For variables of non-POD class type, the
property of having been constructed but not subsequently destructed.
For Fortran, for the contents of variables, the property of having a valid
value. For the allocation or association status of variables, the property of
having a valid status.

COMMENT: Programs that rely upon variables that are not
defined are non-conforming programs.

14, 40, 72, 73, 226
dependence An ordering relation between two instances of executable code that must

be enforced by a compliant implementation. 16, 17, 37, 425–428, 430,
432, 434, 513

14 OpenMP API – Version 6.0 Preview 2 November 2023

dependent task A task that because of a task dependence cannot be executed until its
predecessor tasks have completed. 30, 37, 367, 401, 402, 423–425,
428–430, 513

deprecated For a construct, clause, or other feature, the property that it is normative in
the current specification but is considered obsolescent and will be
removed in the future. Deprecated features may not be fully specified. In
general, a deprecated feature was fully specified in the version of the
specification immediately prior to the one in which it is first deprecated.
In most cases, a new feature replaces the deprecated feature. Unless
otherwise specified, whether any modifications provided by the
replacement feature apply to the deprecated feature is implementation
defined. 15, 196, 733, 743, 747–749, 751, 755

descendent task A task that is the child task of a task region or of a region that corresponds
to one of its descendent tasks. 12, 13, 15, 361, 367, 423, 441

detachable task An explicit task that only completes after an associated event variable that
represents an allow-completion event is fulfilled and execution of the
associated structured block has completed. 356, 359, 423, 424

device An implementation-defined logical execution engine.
COMMENT: A device could have one or more processors.

3, 4, 9, 13–18, 20, 21, 26–30, 36, 40, 42, 43, 46–48, 58, 59, 67, 80, 81,
175, 209, 212, 217, 221, 227, 235, 238–240, 249, 250, 252, 254, 262, 273,
274, 289, 290, 369, 372, 375, 377–379, 381, 384, 388, 389, 415, 460, 488,
496, 498, 501, 511, 513, 543, 547, 573, 627, 637, 684, 733, 743, 747

device address An address of an object that may be referenced on a target device. 16, 47,
173–175, 289, 290, 733

device construct A construct that has the device property. 2, 15, 16, 36, 217, 285, 288–291,
370

device data envi-
ronment

The initial data environment associated with a device. 5, 13, 14, 16, 24,
25, 30, 47, 48, 67, 148, 173–176, 193, 209, 212–217, 219–221, 227, 228,
274, 290, 373, 374, 376, 378, 381–383, 510–513, 747

device global re-
quirement prop-
erty

The property that a requirement clause indicates requirements for the
behavior of device constructs that a program requires the implementation
to support across all compilation units. 285

device local vari-
able

A variable with static storage duration that is replicated for each device by
the OpenMP implementation. Its name provides access to a different
block of storage for each device.
A variable that is part of an aggregate variable cannot be made a device
local variable independently of the other components, except for static
data members of C++ classes. If a variable is made a device local
variable, its components are also device local variables. 15, 47, 149, 218,
235, 273, 274, 290, 733

CHAPTER 1. OVERVIEW OF THE OPENMP API 15

device number A number that the OpenMP implementation assigns to a device or
otherwise may be used in an OpenMP program to refer to a device. 11,
46, 58, 59, 62, 63, 240, 370, 378, 511, 513, 627

device pointer An implementation defined handle that refers to a device address and is
represented by a C pointer. 47, 173, 174, 262, 289, 390, 733

device procedure A function (for C/C++ and Fortran) or subroutine (for Fortran) that can be
executed on a target device, as part of a target region. 36, 222, 274,
285, 288–291

device property The property of a construct that accepts the device clause. 15, 275, 278,
373, 374, 376, 378, 383, 386

device trait set The trait set that consists of traits that define the characteristics of the
device being targeted by the compiler at that point in the OpenMP
program. 2, 249, 250

device-affecting
construct

A construct that has the device-affecting property. 380

device-affecting
property

The property that a device construct can modify the state of the device
data environment of a specified target device. 16, 373, 374, 376, 378, 383

device-specific
environment vari-
able

An alternative OpenMP environment variable that controls of the behavior
of the program only with respect to a particular device or set of devices.
62, 63

directive A base language mechanism to specify OpenMP program behavior. 2, 4,
9–11, 13, 14, 16–18, 22, 24–26, 28, 31–33, 36, 40, 42, 45–48, 52, 54, 56,
59, 69, 90–103, 105–107, 109, 122, 125–130, 136, 139–144, 146, 148,
149, 151–153, 155–158, 161, 162, 168, 171, 172, 178, 185, 186, 190,
196–200, 202–205, 209, 211, 213, 215, 216, 221–226, 233, 234, 236, 238,
242–245, 247, 249, 250, 252, 253, 255–258, 264–268, 270, 271, 274,
276–286, 288–292, 297–300, 303, 308, 310, 312, 314, 315, 321, 323, 324,
334, 336, 349, 352, 359, 360, 370, 375, 377–381, 383, 387, 389–391, 395,
402, 403, 405, 409, 417, 421–424, 439, 443, 449, 745, 746, 748–751

directive variant A directive specification that can be used in a metadirective. 32, 255–258
divergent threads Two threads that have reached different points in user code or otherwise

have reached a common point via calls from different points in user code.
31, 45

doacross depen-
dence

A dependence between executable code corresponding to stand-alone
ordered regions from two doacross iterations: the sink iteration and the
source iteration, where the source iteration precedes the sink iteration in
the doacross iteration space. The doacross dependence is fulfilled when
the executable code from the source iteration has completed. 16, 34, 425,
432, 434

doacross iteration A logical iteration of a doacross loop nest. 16, 17, 34, 424, 425, 432, 434
doacross iteration
space

The logical iteration space of a doacross loop nest. 16, 432

16 OpenMP API – Version 6.0 Preview 2 November 2023

doacross logical
iteration

A doacross iteration. 432

doacross loop nest A canonical loop nest that has cross-iteration dependences between its
logical iterations as specified by the use of stand-alone ordered
constructs, such that executable code from a logical iteration is dependent
on the executable code of one or more earlier logical iterations.

COMMENT: The argument of the ordered clause on a
worksharing-loop construct identifies the loops associated
with the doacross loop nest.

16, 17, 432, 434, 757
dynamic context
selector

Any context selector that is not a static context selector. 266

dynamic replace-
ment candidate

A replacement candidate that may be selected at run time to replace a
given metadirective. 255, 256, 259

dynamic trait set The trait set that consists of traits that define the dynamic properties of an
OpenMP program at a given point in its execution. 3, 249, 250, 252

enclosing context For C/C++, the innermost scope enclosing a directive.
For Fortran, the innermost scoping unit enclosing a directive. 13, 14, 29,
151, 152, 195, 197, 200, 208, 255, 269, 270, 333, 336, 338, 346, 347

encountering de-
vice

For a given construct, the device on which the encountering task of the
construct executes. 13, 25, 29, 229, 230

encountering task For a given region, the current task of the encountering thread. 17, 37, 45,
227, 263, 281, 310, 319, 320, 340, 354, 359, 361, 373, 387, 397, 398, 402,
403, 440–442, 469

encountering
thread

For a given region, the thread that encounters the corresponding construct.
7, 8, 17, 21, 32, 43, 44, 309, 310, 315, 316, 318, 319, 349, 350, 356, 378,
387, 420, 427, 468, 469, 474, 476, 477, 486, 487, 747

ending address The address of the last storage location of a list item or, for a mapped
variable of its original list item. 18, 25, 213

environment vari-
able

Unless specifically stated otherwise, an OpenMP environment variable.
62

error termination A fatal action preformed in response to an error. 10, 33, 45, 314, 745
event A point of interest in the execution of a thread. 8, 15, 37, 39, 53, 54, 187,

217, 218, 274, 275, 281, 310, 311, 320, 327, 328, 330–334, 336, 338, 340,
346, 356, 359, 361, 372, 373, 375, 377, 379, 380, 384, 395–402, 417, 418,
421, 423, 424, 430, 433–435, 442, 511, 512, 514, 561, 565, 568, 569, 571,
581, 641, 667, 668

exception-
aborting directive

A directive that has the exception-aborting property. 295, 735

exception-
aborting property

For C++, the property of a directive to be implementation defined whether
an exceptions is caught or results in a runtime error termination. 17, 90,
378

CHAPTER 1. OVERVIEW OF THE OPENMP API 17

exclusive scan
computation

A scan computation for which the value read does not include the updates
performed in the same logical iteration. 203

executable direc-
tive

A directive that appears in an executable context and results in
implementation code and/or prescribes the manner in which associated
user code must execute. 11, 24, 36, 42, 90, 93, 94, 125, 136, 246, 255,
267, 281, 282, 301, 302, 304–306, 309, 319, 324, 327, 330–332, 334, 337,
341, 342, 345, 348, 355, 360, 364, 373, 374, 376, 378, 383, 386, 394, 396,
399, 401, 415, 419, 427, 434, 435, 440, 444

explicit barrier A barrier that is specified by a barrier construct. 396
explicit region A region that corresponds to either a construct of the same name or a

library routine call that explicitly appears in the program. 35, 42, 90, 338,
653

explicit task A task that is not an implicit task. 5, 8, 9, 15, 18, 19, 29, 33, 37, 44–46,
59, 190, 191, 310, 315, 352, 356, 360–362, 366, 396, 424, 444

explicit task re-
gion

A region that corresponds to an explicit task. 32, 47, 163, 356

explicitly de-
termined data-
mapping attribute

A data-mapping attribute that is determined due to the presence of a list
item on a data-mapping attribute clause. 209

explicitly de-
termined data-
sharing attribute

A data-sharing attribute that is determined due to the presence of a list
item on a data-sharing attribute clause. 148, 151, 162

extended address
range

The address range that starts from the minimum of the starting address
and the base address and ends with maximum of the ending address and
the base address of an original list item. 25, 213

extension trait A trait that is implementation defined. 249, 250
final task A task that forces all of its child tasks to become final tasks and included

tasks. 18, 59, 352, 354, 357, 359
first-party tool A tool that executes in the address space of the program that it is

monitoring. 8, 27, 28, 53, 562, 565, 567
flush An operation that a thread performs to enforce consistency between its

view and the view of any other threads of memory. 3, 18, 20, 32, 35, 39,
45, 48–52, 329, 391, 415, 420–422

flush property A property that determines the manner in which a flush enforces memory
consistency. Any flush has one or more of the following: the strong flush
property, the release flush property, and the acquire flush property. 50

flush-set The set of variables upon which a strong flush operates. 49
foreign execution
context

A context that is instantiated from a foreign runtime environment in order
to facilitate execution on a given device. 18, 387, 388, 751

foreign runtime
environment

A runtime environment that exists outside the OpenMP runtime with
which the OpenMP implementation may interoperate. 18, 386

foreign task An instance of executable code that is executed in a foreign execution
context. 387, 388

18 OpenMP API – Version 6.0 Preview 2 November 2023

frame A storage area on the stack of a thread that is associated with a procedure
invocation. A frame includes space for one or more saved registers and
often also includes space for saved arguments, local variables, and
padding for alignment. 9, 19, 596, 597, 649

free-agent thread An unassigned thread on which an explicit task is scheduled for execution
or a primary thread for an explicit parallel region that was a free-agent
thread when it encountered the parallel construct. 19, 32, 36, 59, 82,
83, 315, 367, 486, 487, 737, 744, 747

function variant A definition of a function that may be used as an alternative to the base
language definition. 14, 32, 41, 249, 259–265, 267–269

generated loop A loop that is generated by a loop-transforming construct and is one of the
resulting loops that replace the construct. 136, 140, 143, 300, 301, 303,
307, 308

generated loop
nest

A canonical loop nest that is generated by a loop-transforming construct.
300

generated loop
sequence

A canonical loop sequence that is generated by a loop-transforming
construct. 300

generating task For a given region, the task for which execution by a thread generated the
region. 8, 19, 66, 67, 267, 356, 373, 374, 376, 378, 383, 387, 424, 466,
486, 487, 511, 513, 710

generating task
region

For a given region, the region that corresponds to its generating task. 9,
21, 26, 40, 710, 711

global A program aspect such as a scope that covers the whole OpenMP
program. 20, 58, 62, 243

groupprivate vari-
able

A variable that is replicated, one instance per a specified group of tasks,
by the OpenMP implementation. Its name provides access to a different
block of storage for each specified group.
A variable that is part of an aggregate variable cannot be made a
groupprivate variable independently of the other components, except for
static data members of C++ classes. If a variable is made a groupprivate
variable, its components are also groupprivate variables with respect to
the same group. 19, 149, 218, 233, 234, 274, 276, 278, 339, 379

handle An opaque reference that uniquely identifies an abstraction. 3, 16, 26, 29,
37, 41, 219, 237, 388, 389, 646, 700, 702, 703

happens before For an event A to happen before an event B, A must precede B in
happens-before order. 51

happens-before
order

An asymmetric relation that is consistent with simply happens-before
order and, for C/C++, the “happens before” order defined by the base
language. 19, 239, 290

hardware thread An indivisible hardware execution unit on which only one OpenMP thread
can execute at a time. 31, 72, 73, 309

host address An address of an object that may be referenced on the host device. 20, 290

CHAPTER 1. OVERVIEW OF THE OPENMP API 19

host device The device on which the OpenMP program begins execution. 3, 19, 21,
27, 36, 43, 44, 46, 48, 63, 81, 216, 239, 250, 289, 319, 369, 373, 375–377,
380, 381, 384

host pointer A pointer that refers to a host address. 289, 290
ICV Acronym form for internal control variable. 20, 28, 33, 58, 60, 62–69, 71,

74, 76, 78, 80–83, 154, 241, 252, 267, 287, 312, 315, 316, 318, 319, 322,
340, 344, 355, 356, 360, 370, 371, 374, 376, 378, 383, 422, 425, 440, 441,
459, 466, 475, 567, 568

ICV scope A context that contains one copy of a given ICV and defines the extent in
which the ICV controls program behavior; the ICV scope may be the
OpenMP program (i.e., global), the current device, the binding implicit
task, or the data environment of the current task. 20, 58, 62, 64, 66, 67,
374, 376, 378, 383

idle thread An unassigned thread that is not currently executing any task. 366, 595
implementation
code

Implicit code that is introduced by the OpenMP implementation. 14, 18,
32, 34, 596

implementation
defined

Behavior that must be documented by the implementation, and is allowed
to vary among different compliant implementations. An implementation
is allowed to define it as unspecified behavior. 15–18, 36, 40, 45–47, 54,
62, 67, 71–73, 76, 77, 83, 90, 91, 97–99, 142, 153, 155, 173, 175, 232,
236, 237, 239, 240, 250, 253, 254, 256, 259, 260, 264, 270, 273, 281, 283,
284, 303, 304, 313–317, 319, 322, 324, 330, 333, 340, 344, 346, 361, 371,
386, 388, 389, 391, 393, 417, 466, 476, 477, 561, 571, 573, 627, 733–738

implementation
trait set

The trait set that consists of traits that describe the functionality supported
by the OpenMP implementation at that point in the OpenMP program. 2,
249, 250

implicit array For C/C++, the set of array elements of non-array type T that may be
accessed by applying a sequence of [] operators to a given pointer that is
either a pointer to type T or a pointer to a multidimensional array of
elements of type T.
For Fortran, the set of array elements for a given array pointer.

COMMENT: For C/C++, the implicit array for pointer p with
type T (*)[10] consists of all accessible elements p[i][j], for
all i and j=0,1,...,9.

5, 219
implicit barrier A barrier that is specified as part of the semantics of a construct other than

the barrier construct. 337, 397–399, 403, 441
implicit flush A flush that is specified as part of the semantics of a construct other than

the flush construct. 423
implicit parallel
region

An inactive parallel region that is not generated from a parallel
construct. Implicit parallel regions surround the whole OpenMP program,
all target regions, and all teams regions. 12, 21, 22, 33, 42–44, 233,
315, 321, 350, 675

20 OpenMP API – Version 6.0 Preview 2 November 2023

implicit task A task generated by an implicit parallel region or generated when a
parallel construct is encountered during execution. 3, 4, 7–9, 12, 13,
18, 21, 22, 28–30, 35, 37, 38, 42, 43, 47, 58, 60, 66, 67, 152, 165, 189,
190, 205, 207, 208, 310, 311, 315, 316, 318, 329–340, 346, 421, 422, 424,
444, 475

implicit task re-
gion

A region that corresponds to an implicit task. 42, 67

implicitly de-
termined data-
mapping attribute

A data-mapping attribute that applies to an entity for which no
data-mapping attribute is otherwise determined. 209, 216, 223

implicitly de-
termined data-
sharing attribute

A data-sharing attribute that applies to an entity for which no data-sharing
attribute is otherwise determined. 148, 151, 160, 161, 209, 211, 223

inactive parallel
region

A parallel region comprised of one implicit task and, thus, is being
executed by a team comprised of only its primary thread. 21, 469

inactive target
region

A target region that is executed on the same device that encountered
the target construct. 67, 216

included task A task for which execution is sequentially included in the generating task
region. That is, an included task is an undeferred task and executed by the
encountering thread. 18, 21, 26, 32, 46, 352, 356, 374, 376, 378, 383,
387, 401, 403, 511

inclusive scan
computation

A scan computation for which the value read includes the updates
performed in the same logical iteration. 202

indirect device
invocation

An indirect call to the device version of a procedure on a device other than
the host device, through a function pointer (C/C++), a pointer to a
member function (C++) or a procedure pointer (Fortran) that refers to the
host version of the procedure. 279

induction expres-
sion

A collector expression or a inductor expression. 177, 178

induction opera-
tion

A recurrence operation that expresses the value of a variable as a function,
the inductor, applied to its previous value and a step expression. For an
induction operation performed on a loop on the induction variable x and a
loop-invariant step expression s, xi = xi−1 ⊕ s, i > 0, where xi is the
value of x at the start of collapsed iteration i, x0 is the value of x before
any tasks enter the loop, and the binary operator ⊕ is the inductor. For
some inductors, the induction operation can be expressed in a
non-recursive closed form as xi = x0 ⊕ si = x0 ⊕ (s⊗ i) where
si = s⊗ i. The expression si is the collective step expression of iteration
i and the binary operator ⊗ is the collector. 10, 22, 35, 40, 177, 181, 195,
202

induction variable A variable for which an induction operation determines its values. 22,
181, 199, 200

inductor A binary operator used by an induction operation. 22, 181

CHAPTER 1. OVERVIEW OF THE OPENMP API 21

inductor expres-
sion

An OpenMP stylized expression that specifies how an induction operation
determines a new value of an induction variable from its previous value
and a step expression. 21, 181, 183–186, 195, 200, 201

informational di-
rective

A directive that is neither declarative nor executable, but otherwise
conveys user code properties to the compiler. 93, 281, 284, 292, 297, 298

initial task An implicit task associated with an implicit parallel region. 8, 22, 33, 43,
44, 67, 190, 315, 320, 338, 346, 371, 379, 424

initial task region A region that corresponds to an initial task. 42, 43, 58, 59, 422, 424, 460
initial team The team that comprises an initial thread executing an implicit parallel

region. 37, 43, 59, 319, 346, 348
initial thread The thread that executes an implicit parallel region. 22, 29, 30, 39, 42, 43,

74, 76, 154, 319, 320, 337, 345, 346, 350, 422, 424, 585, 734
initializer expres-
sion

An OpenMP stylized expression that determines the initializer for the
private copies of reduction list items. 31, 179–182, 185, 186, 199, 203

input phase The portion of a logical iteration that contains all computations that
update a list item for which a scan computation is performed. 40, 202, 203

internal control
variable

A conceptual variable that specifies runtime behavior of a set of threads or
tasks in an OpenMP program. 20, 58

interoperability
requirement set

A logical set of properties of each task to which directives add or remove
and that other constructs that have interoperability semantics can query.
262, 263, 267, 403, 404

intervening code For two consecutive associated loops in a canonical loop nest, user code
that appears inside the loop body of the outer associated loop but outside
the loop body of the inner associated loop. 30, 136, 142

iteration count The number of times that the loop body of a given loop is executed.
140–142, 360

leaf construct For a given combined construct or composite construct, a constituent
construct that is not itself a combined construct or composite construct.
292, 436, 446–448

league The set of teams formed by a teams construct, each of which is
associated with a different contention group. 37, 43, 59, 190, 319, 320,
347, 348

lexicographic or-
der

The total order of two logical iteration vectors ωa = (i1, . . . , in) and
ωb = (j1, . . . , jn), denoted by ωa ≤lex ωb, where either ωa = ωb or
∃m ∈ {1, . . . , n} such that im < jm and ik = jk for all
k ∈ {1, . . . ,m− 1}. 301

list A comma-separated set. 13, 14, 23, 30, 148, 156, 186, 196, 199, 227, 278
list item A member of a list. 4, 13, 14, 17, 18, 22, 25, 27, 29, 34, 148–150,

155–163, 165, 166, 168, 169, 171–176, 178, 179, 181–195, 202–210,
212–222, 225–228, 232–235, 262, 263, 267, 268, 274–278, 360, 373, 374,
376, 378–383, 420, 421, 426, 427, 441, 442

22 OpenMP API – Version 6.0 Preview 2 November 2023

logical iteration An instance of the executed loop body of a canonical loop nest, denoted
by a number in the logical iteration space of the loops that indicates the
order in which the logical iteration would be executed relative to the other
logical iterations in a sequential execution. 4, 9, 16–18, 21–23, 40, 142,
144, 190, 299, 300, 303, 305, 307, 360–364, 749

logical iteration
space

For a canonical loop nest, the sequence 0,. . . ,N − 1 where N is the
number of distinct logical iterations. 4, 10, 16, 23, 142

logical iteration
vector

An n-tuple (i1, . . . , in) that identifies a logical iteration of a canonical
loop nest, where n is the loop nest depth and ik is the logical iteration
number of the kth loop, from outermost to innermost. 23, 31, 301

logical iteration
vector space

The set of logical iteration vectors that each correspond to a logical
iteration of a canonical loop nest. 144, 301

loop body A structured block that encompasses the executable statements that are
iteratively executed by a loop statement. 22, 23, 136

loop iteration
variable

A variable that determines the iteration space of a loop. 23, 140, 141,
149–151, 168, 171, 300, 361, 432

loop nest depth For a canonical loop nest, the maximal number of loops, including the
outermost loop, that can be associated with a loop-nest-associated
directive. 23, 140

loop sequence
length

For a canonical loop sequence, the number of consecutive canonical loop
nests regardless of their nesting into blocks. 145, 146

loop-collapsing
construct

A loop-nest-associated construct for which some number of outer
associated loops may be collapsed loops. 9, 10, 158, 171, 323

loop-iteration vec-
tor

An n-tuple (i1, . . . , in) that identifies a logical iteration of the associated
loops of a loop-nest-associated directive, where n is the number of
associated loops and ik is the value of the loop iteration variable of the
kth associated loop, from outermost to innermost. 23, 140, 141, 432

loop-iteration vec-
tor space

The set of loop-iteration vectors that each correspond to a logical iteration
of the associated loops of a loop-nest-associated directive. 140, 141

loop-nest-
associated con-
struct

A loop-nest-associated directive and its associated loops. 23, 41, 96, 144,
432

loop-nest-
associated direc-
tive

An executable directive for which the associated user code must be a
canonical loop nest. 4, 23, 24, 33, 94–96, 136, 140, 150, 171, 195, 300,
301, 436

loop-sequence-
associated con-
struct

A loop-sequence-associated directive and its associated loops. 24, 146

loop-sequence-
associated direc-
tive

An executable directive for which the associated user code must be a
canonical loop sequence. 4, 24, 94, 95, 300

CHAPTER 1. OVERVIEW OF THE OPENMP API 23

loop-sequence-
transforming con-
struct

A loop-sequence-associated construct with the loop-transforming
property. 300

loop-transforming
construct

A loop-transforming directive and its associated loops. 19, 135, 136, 140,
145, 299, 300, 308

loop-transforming
directive

A directive with the loop-transforming property. 24, 300

loop-transforming
property

The property that a construct is replaced by the loops that result from
applying the transformation as defined by its directive to its associated
loops. 24, 298, 301, 302, 304–306

loosely structured
block

A block of zero or more executable constructs (including OpenMP
constructs), where the first executable construct (if any) is not a Fortran
BLOCK construct, with a single entry at the top and a single exit at the
bottom. 35, 95

map-entering
clause

A map clause that, if it appears on a map-entering construct, specifies that
the reference count of corresponding list items is increased and, as a
result, may enter the device data environment. 24, 213, 215, 217, 291, 375

map-entering con-
struct

A construct that has the map-entering property. 24, 213, 215, 217, 219

map-entering
property

A property of a construct that a map-entering clause may appear on it. 24,
213, 373, 374, 378

map-exiting
clause

A map clause that, if it appears on a map-exiting construct, specifies that
the reference count of corresponding list items is decreased and, as a
result, may exit the device data environment. 24, 213, 377

map-exiting con-
struct

A construct that has the map-exiting property. 24, 216

map-exiting prop-
erty

A property of a construct that a map-exiting clause may appear on it. 24,
213, 373, 376, 378

map-type decay The process that determines the final map-type of each mapping operation
that results from mapping a variable with a user-defined mapper. 214, 225

map-type modifier A modifier that has the map-type-modifying property. 214
map-type-
modifying prop-
erty

A modifier with the map-type-modifying property modifies the behavior
of the map-type of a mapping operation. 24, 25, 214

mappable storage
block

A contiguous address range in memory that contains a set of mapped list
items. 215, 216, 219, 228

24 OpenMP API – Version 6.0 Preview 2 November 2023

mappable type A type that is valid for a mapped variable. If a type is composed from
other types (such as the type of an array element or a structure element)
and any of the other types are not mappable types then the type is not a
mappable type.
For C, the type must be a complete type.
For C++, the type must be a complete type; in addition, for class types:

• All member functions accessed in any target region must appear
in a declare target directive.

For Fortran, no restrictions on the type except that for derived types:
• All type-bound procedures accessed in any target region must

appear in a declare target directive.
COMMENT: Pointer types are mappable types but the
memory block to which the pointer refers is not mapped.

25, 219, 221, 222, 228
mapped address
range

The address range that starts from the starting address and ends with the
ending address of an original list item. 25, 213

mapped variable An original variable in a data environment with a corresponding variable
in a device data environment. The original and corresponding variables
may share storage. 17, 25, 34, 381, 382

mapper An operation that defines how variables of given type are to be mapped or
updated with respect to a device data environment. 40, 122, 175, 209,
211, 214, 219, 220, 224–230

mapping opera-
tion

An operation that establishes or removes a correspondence between a
variable in one data environment and another variable in a device data
environment. 5, 24, 25, 33, 47, 215–217, 291, 745

mapping-only
construct

A construct that establishes correspondences between the data
environment of the encountering device but otherwise does not affect the
associated structured block (if any). 25, 216

mapping-only
property

The property that a construct is a mapping-only construct. 373, 374, 376

matchable candi-
date

A mapped variable for which corresponding storage was created in a
device data environment. 25, 213

matched candi-
date

A matchable candidate for which its mapped address range or its extended
address range corresponds to the address range of the original list item.
174, 213, 219

memory A storage resource to store and to retrieve variable accessible by threads.
3, 9, 18, 25, 26, 32, 35, 36, 38, 39, 46–49, 52, 59, 105, 106, 169, 235–240,
289, 290, 405–409, 415, 420, 429, 496, 510–513, 556, 686

memory allocator An OpenMP object that fulfills requests to allocate and to deallocate
memory for program variables from the storage resources of its associated
memory space. 3, 4, 48, 59, 219, 237–246, 287, 381, 556, 747

CHAPTER 1. OVERVIEW OF THE OPENMP API 25

memory space A representation of storage resources from which memory can be
allocated or deallocated. More than one memory space may exist. 4, 26,
36, 48, 219, 236, 239, 248, 543, 747

mergeable task A task that may be a merged task if it is an undeferred task or an included
task. 36, 353, 357, 387, 401

merged task A task for which the data environment, inclusive of ICVs, is the same as
that of its generating task region. 26, 357

metadirective A directive that conditionally resolves to another directive. 16, 17, 32, 93,
255–258, 292, 749

modifier A mechanism to specify customized clause behavior. xix, 12, 24, 25, 68,
100–103, 105, 110, 112, 168, 169, 171, 186, 203, 211, 213, 214, 218, 219,
227, 228, 232, 247, 248, 262, 308, 339, 344, 346, 387, 389, 426, 433, 448,
748, 749

mutually exclusive
tasks

Tasks that may be executed in any order, but not at the same time. 367,
429

name-list trait A trait that is defined with properties that match the names that identify a
particular instances of the trait that are effective at a given point in an
OpenMP program. 249–251, 253

named pointer For C/C++, the base pointer of a given lvalue expression or array section,
or the base pointer of one of its named pointers.
For Fortran, the base pointer of a given variable or array section, or the
base pointer of one of its named pointers.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers
pi have a pointer type declaration and identifiers xi have an
array type declaration, the named pointers are: p0,
(*p0).x0[k1].p1, and (*p0).x0[k1].p1->p2.

26, 106
native thread An execution entity upon which an OpenMP thread may be implemented.

26, 28, 31, 39, 42, 44, 60, 76, 77, 310, 311, 320, 323, 585, 595, 596, 600,
601, 637, 673, 676, 684, 698, 701–705

native thread con-
text

A tool context that refers to a native thread. 676, 681, 682, 684, 686, 687,
690

native thread han-
dle

A handle that refers to a native thread. 675, 700–705

native thread
identifier

An identifier for a native thread defined by a native thread
implementation. 79, 673, 681, 682, 690, 697, 698, 701, 702, 704

native trace
record

A trace record for an OpenMP device that is in a device-specific format.
574

nested construct A construct (lexically) enclosed by another construct. 449
nested region A region (dynamically) enclosed by another region. That is, a region

generated from the execution of another region or one of its nested
regions. 12, 27, 29, 42, 329

26 OpenMP API – Version 6.0 Preview 2 November 2023

new list item An instance of a list item created for the data environment of the construct
on which a privatization clause or a data-mapping attribute clause
specified. 30, 40, 158, 159, 163, 165, 166, 168, 171, 173, 174, 195, 203,
214, 215, 217

non-conforming
program

An OpenMP program that is not a conforming program. 10, 14, 40, 426,
498

non-host declare
target directive

A declare target directive that does not specify a device_type clause
with host. 274

non-host device A device that is not the host device. 3, 36, 46, 59, 62, 63, 289, 351, 369,
381

non-null pointer A pointer that is not NULL. 498, 533–535, 566, 568, 573, 598, 599
non-null value A value that is not NULL. 556, 576, 648, 650, 664, 669, 684–687, 717
non-property trait A trait that is specified without additional properties. 249, 250, 253
non-rectangular
loop

For a loop nest, a loop for which a loop bound references the iteration
variable of a surrounding loop in the loop nest. 139, 140, 143, 144, 301,
345, 348, 363, 364

non-sequentially
consistent atomic
construct

An atomic construct for which the seq_cst clause is not specified 52

NULL A null pointer. For C and C++, the value NULL or the value nullptr.
For Fortran, the value C_NULL_PTR. 27, 85, 262, 477–479, 496, 498,
500, 504, 509, 511, 513, 517, 518, 531, 534–536, 551, 553, 555, 556, 561,
566, 568, 573, 602, 604, 605, 608, 611–616, 618–622, 627, 629, 632, 635,
636, 640, 641, 646–650, 666, 669, 670, 684, 686, 687, 689, 718, 741

OMPD An interface that helps a third-party tool inspect the OpenMP state of a
program that has begun execution. 27, 39, 42, 53, 54, 59, 667, 676, 681,
682, 684, 690, 702

OMPD library A dynamically loadable library that implements the OMPD interface.
667, 698

OMPT An interface that helps a first-party tool monitor the execution of an
OpenMP program. 42, 53, 397, 565–568, 571, 598, 599

OMPT active An OMPT interface state in which the OpenMP implementation is
prepared to accept runtime calls from a first-party tool and will dispatch
any registered callbacks and in which a first-party tool can invoke runtime
entry points if not otherwise restricted. 561, 568

OMPT inactive An OMPT interface state in which the OpenMP implementation will not
make any callbacks and in which a first-party tool cannot invoke runtime
entry points. 561, 567, 568, 598

OMPT interface
state

A state that indicates the permitted interactions between a first-party tool
and the OpenMP implementation. 27, 28, 561, 567, 568, 598

OMPT pending An OMPT interface state in which the OpenMP implementation can only
call functions to initialize a first-party tool and in which a first-party tool
cannot invoke runtime entry points. 567, 568

CHAPTER 1. OVERVIEW OF THE OPENMP API 27

OpenMP Addi-
tional Definitions
document

A document that exists outside of the OpenMP specification and defines
additional values that may be used in a conforming program. The
OpenMP Additional Definitions document is available via
https://www.openmp.org/specifications/. 28, 80, 250,
386, 388, 454, 456

OpenMP API rou-
tine

A runtime library routine that is defined by the OpenMP implementation
and that can be called from user code via the OpenMP API. 32, 58, 289,
290, 296

OpenMP architec-
ture

The architecture on which a region executes. 28, 567

OpenMP context The execution context of an OpenMP program, including the active
constructs, the execution devices, OpenMP functionality supported by the
implementation and any available dynamic values as represented by a set
of traits. 10, 12, 13, 35, 249, 251, 252, 254–256, 259–261, 264, 266, 270,
284

OpenMP environ-
ment variable

A variable that is part of the runtime environment in which an OpenMP
program executes and that a user may set to control the behavior of the
program, typically through the initialization of an ICV. 16, 17, 58, 63

OpenMP process A collection of one or more native threads and address spaces. An
OpenMP process may contain native threads and address spaces for
multiple OpenMP architectures. At least one native thread in an OpenMP
process is mapped to an OpenMP thread. An OpenMP process may be
live or a core file. 3, 28, 671, 676, 684

OpenMP program A program that consists of a base program that is annotated with OpenMP
directives or that calls OpenMP API runtime library routines. 3, 9, 11, 16,
17, 19–22, 26–28, 32, 39, 40, 42, 44–48, 52, 53, 58, 60, 69, 122, 152, 155,
161, 171, 188, 221, 225, 226, 236, 237, 249, 250, 256, 290, 299, 321, 339,
346, 355, 381, 382, 391, 394, 418–420, 426, 498, 561, 562, 565, 567, 568,
596, 597, 667, 669, 733

OpenMP stylized
expression

A base language expression that is subject to restrictions that enable its
use within an OpenMP implementation. 10, 22, 177

OpenMP thread A logical execution entity with a stack and associated thread-specific
memory subject to the semantics and constraints of this specification and
may be implemented upon a native thread. 3, 19, 26, 28, 29, 31, 38,
44–46, 315, 700–702, 704, 705, 737

OpenMP thread
pool

The set of all threads that may execute a task of a contention group and,
thus, are ever available to be assigned to a team that executes implicit
tasks of the contention group, 3, 33, 39, 42, 44, 354, 367

original list item The instance of a list item in the data environment of the enclosing
context. 13, 17, 18, 25, 29, 34, 158, 159, 162, 165, 166, 168, 169, 171,
173–176, 179, 185, 186, 188–190, 192, 193, 195, 203, 206, 212, 215–217,
220, 221, 227, 228, 230, 274, 291, 346, 348, 383, 745

original pointer An original list item that corresponds to a corresponding pointer. 216

28 OpenMP API – Version 6.0 Preview 2 November 2023

https://www.openmp.org/specifications/

original storage An address range in a data environment of a encountering device. 29, 33,
47, 216–219

original storage
block

A storage block that is used as original storage. 47, 48, 215

orphaned con-
struct

A construct that gives rise to a region for which the binding thread set is
the current team, but is not nested within another construct that gives rise
to the binding region. 435

parallel handle A handle that refers to a parallel region. 675
parallel region A region that has a set of associated implicit tasks and an associated team

of threads that execute those tasks. 3, 19, 21, 29, 30, 35, 38, 41, 43, 44,
59, 67, 315, 329–332, 334, 339, 349, 350, 356, 360, 396–399, 423, 459

parallelism-
generating con-
struct

A construct that has the parallelism-generating property. 169, 300

parallelism-
generating prop-
erty

The property that a construct enables parallel execution by generating one
or more teams, explicit tasks, or SIMD instructions. 29, 309, 319, 324,
355, 360, 374, 376, 378, 383

parent device For a given target region, the device on which the corresponding
target construct was encountered. 193, 288, 370, 378

parent thread The thread that encountered the parallel construct and generated a
parallel region is the parent thread of each thread that executes a task
region that binds to that parallel region. The primary thread of a
parallel region is the same thread as its parent thread with respect to
any resources associated with an OpenMP thread. The thread that
encounters a target or teams construct is not the parent thread of the
initial thread of the corresponding target or teams region. 3, 29, 43

partitioned con-
struct

A construct that has the partitioned property. 29, 329

partitioned prop-
erty

The property of a construct that is a work-distribution construct for which
any encountered user code in the corresponding region, excluding code
from nested regions that are not closely nested regions, is executed by
only one thread from its binding thread set. 29, 330, 332, 334, 337, 341,
342, 345, 348

partitioned work-
sharing construct

A construct that is both a partitioned construct and a worksharing
construct. 29, 43

partitioned work-
sharing region

A region that corresponds to a partitioned worksharing construct. 445

perfectly nested
loop

A loop that has no intervening code between it and the body of its
surrounding loop. The outermost loop of a loop nest is always perfectly
nested. 136, 143, 203, 301, 305

persistent self
map

A self map for which the corresponding storage remains present in the
device data environment, as if it has an infinite reference count. 47, 290,
733

CHAPTER 1. OVERVIEW OF THE OPENMP API 29

place An unordered set of processors on a device. 30, 38, 43, 59, 60, 72–74,
315–318, 474, 475, 734, 737, 743

place list The ordered list that describes all OpenMP places available to the
execution environment. 30, 72, 319, 734, 743

place number A number that uniquely identifies a place in the place list, with zero
identifying the first place in the place list, and each consecutive whole
number identifying the next place in the place list. 474, 475

place partition An ordered list that corresponds to a contiguous interval in the place list.
It describes the places currently available to the execution environment for
a given parallel region. 38, 60, 315–318

pointer attach-
ment

The process of making a pointer variable an attached pointer. 5, 215, 217

predecessor task A task that must complete before its dependent tasks can be executed. 15,
37, 375, 377, 379, 384, 401, 424, 429, 430

predetermined
data-sharing at-
tribute

A data-sharing attribute that applies regardless of the clauses that are
specified on a given construct. 148–151, 160, 162, 209, 224

preprocessed code For C/C++, a sequence of preprocessing tokens that result from the first
six phases of translation, as defined by the base language. 266, 750

primary thread An assigned thread that has thread number 0. A primary thread may be an
initial thread or the thread that encounters a parallel construct, forms
a team, generates a set of implicit tasks, and then executes one of those
tasks as thread number 0. 8, 19, 21, 29, 30, 38, 43, 44, 154, 206, 309, 310,
316, 317, 328, 330, 424, 459

private variable With respect to a given set of task regions or SIMD lanes that bind to the
same parallel region, a variable for which the name provides access to
a different block of storage for each task region or SIMD lane.
A variable that is part of an aggregate variable cannot be made a private
variable independently of other components. If a variable is privatized, its
components are also private variables. 30, 46, 47, 159, 160, 205, 207,
343, 347, 348

privatization
clause

The clause that may result in private variables that are new list items. 27,
148, 160

procedure A function (for C/C++ and Fortran) or subroutine (for Fortran). 9, 11, 14,
19, 21, 33, 39, 54, 90, 123, 171, 172, 178, 226, 249, 253, 260, 264, 265,
270–274, 276–279, 323, 327, 337–339, 369, 379, 381, 446, 596, 597, 649,
684, 750

processor An implementation-defined hardware unit on which one or more threads
can execute. 15, 30, 59, 73, 77

product order The partial order of two logical iteration vectors ωa = (i1, . . . , in) and
ωb = (j1, . . . , jn), denoted by ωa ≤product ωb, where ik ≤ jk for all
k ∈ {1, . . . , n}. 301

30 OpenMP API – Version 6.0 Preview 2 November 2023

program order An ordering of operations performed by the same thread as determined by
the execution sequence of operations specified by the base language.

COMMENT: For versions of C and C++ that include base
language support for threading, program order corresponds to
the sequenced-before relation between operations performed
by the same thread.

31, 34, 50–52
progress unit An implementation-defined set of consecutive hardware threads on which

native threads may execute a common stream of instructions. If any two
OpenMP threads that execute on those native threads serially execute
diverging user code then they become divergent threads. 45, 309, 318

property A characteristic of an OpenMP feature. 8, 9, 13–17, 22, 24–27, 29, 31, 34,
38, 39, 41, 101, 250–252, 254, 257, 262, 263, 267, 403, 404

pure property The property that a directive has no observable side effects or state,
yielding the same result every time it is encountered. 90, 153, 196, 199,
202, 224, 232, 242, 258, 264, 270, 275, 281, 297, 298, 301, 302, 304–306,
324

read-modify-write An atomic operation that reads and writes to a given storage location.
COMMENT: Any atomic-update is a read-modify-write
operation.

31, 50
reduction clause A reduction scoping clause or a reduction participating clause. 158, 161,

177–179, 184–186, 188–190, 192, 194, 196, 197
reduction expres-
sion

A combiner expression or a initializer expression. 177, 178

reduction partici-
pating clause

A clause that defines the participants in a reduction. 31, 177, 189, 193

reduction scoping
clause

A clause that defines the region in which a reduction is computed. 31,
177, 188–190, 192, 193, 361, 442

CHAPTER 1. OVERVIEW OF THE OPENMP API 31

region All code encountered during a specific instance of the execution of a given
construct, structured block sequence or OpenMP library routine. A region
includes any code in called routines as well as any implementation code.
The generation of a task at the point where a task-generating construct is
encountered is a part of the region of the encountering thread. However,
an explicit task region that corresponds to a task-generating construct is
not part of the region of the encountering thread unless it is an included
task region. The point where a target or teams directive is
encountered is a part of the region of the encountering thread, but the
region that corresponds to the target or teams directive is not.
A region may also be thought of as the dynamic or runtime extent of a
construct or of an OpenMP library routine.
During the execution of an OpenMP program, a construct may give rise to
many regions. 3–5, 8, 9, 13, 15–19, 21, 22, 25, 27–47, 50–52, 58–60, 65,
67, 74, 90, 96, 132, 133, 144, 148, 152–155, 158, 159, 166, 169, 175, 177,
178, 186, 188–190, 192–194, 206–208, 213, 215–218, 220, 227, 228, 238,
239, 242, 245, 247, 267, 269, 273, 287–289, 295, 298, 309–312, 314, 316,
319–321, 323–325, 327, 329–339, 345–347, 349–352, 356, 359–361, 364,
366, 367, 370, 373, 374, 376, 378–384, 387, 391, 393–401, 415–418,
420–425, 427, 433–436, 439–445, 459, 460, 466, 468–470, 476, 477, 486,
487, 511–514, 561, 595, 598, 646, 648, 649, 700, 733, 735, 746

registered call-
back

A callback for which callback registration has been performed. 8, 53, 569,
571

release flush A flush that has the release flush property. 32, 36, 49–51, 417, 420,
422–425

release flush prop-
erty

A flush with the release flush property orders memory operations that
precede the flush before memory operations performed by a different
thread with which it synchronizes. 18, 32, 420

release sequence A set of modifying atomic operations that are associated with a release
flush that may establish a synchronizes-with relation between the release
flush and an acquire flush. 50, 51, 423

replacement can-
didate

A directive variant or function variant that may be selected to replace a
metadirective or base function. 9, 17, 255, 256, 259, 261, 264

reservation type A thread-reservation type. 82
reserved thread A thread that is restricted in the type of thread as which it can be used. A

thread can be a structured thread or free-agent thread. 39, 82
reverse-offload
region

A region that is associated with a target construct that specifies a
device clause with the ancestor device-modifier. 274

routine Unless specifically stated otherwise, an OpenMP API routine. 58, 63–65,
366, 380, 381, 459, 469, 486, 487, 510–513, 747

runtime entry
point

A function interface provided by an OpenMP runtime for use by a tool. A
runtime entry point is typically not associated with a global function
symbol. 4, 27, 28, 32, 571, 573, 574, 580, 596, 637, 641, 646, 647, 649

32 OpenMP API – Version 6.0 Preview 2 November 2023

runtime error
termination

Error termination preformed during execution. 17, 45, 90, 215, 217, 227,
314, 370, 488, 496, 735

scalar variable For C/C++, a scalar-variable, as defined by the base language.
For Fortran, a scalar variable with intrinsic type, as defined by the base
language, excluding character type. 138, 150, 153, 169, 210, 211, 736

scan computation The last generalized prefix sum, as defined in Section 6.6. 18, 21, 22, 33,
40, 190, 191, 202, 203

scan phase The portion of an associated iteration that includes all statements that read
the result of a scan computation. 202–204

schedulable task
set

If the thread is a structured thread, the set of tasks bound to the current
team. If the thread is an unassigned thread, any explicit task in the
contention group associated with the current OpenMP thread pool. 366,
367

schedule kind The manner in which the collapsed iterations of associated loops are to be
distributed among a set of threads that cooperatively execute the
associated loops, as specified by a loop-nest-associated directive or the
run-sched-var ICV. 60, 67, 339, 340, 344

segment A portion of an address space associated with a set of address ranges. 3,
671

selector set Unless specifically stated otherwise, a trait selector set. 2, 3, 253
self map A mapping operation for which the corresponding storage is the same as

its original storage. 30, 215–217, 291, 745
separated con-
struct

A construct for which its associated structured block is split into multiple
structured block sequences by a separating directive. 33, 96, 202, 203

separating direc-
tive

A directive that splits a structured block that is associated with a
construct, the separated construct into multiple structured block
sequences. 33, 96, 203–205

sequential part All code encountered during the execution of an initial task region that is
not part of a parallel region that corresponds to a parallel
construct or a task region corresponding to a task construct. Instead, it
is enclosed by an implicit parallel region.

COMMENT: Executable statements in called procedures may
be in both a sequential part and any number of explicit
parallel regions at different points in the program
execution.

33, 154, 476, 477
sequentially con-
sistent atomic op-
eration

An atomic operation that is specified by An atomic construct for which
the seq_cst clause is specified. 52

shape-operator For C/C++, an array shaping operator that reinterprets a pointer
expression as an array with one or more specified dimensions. 227

CHAPTER 1. OVERVIEW OF THE OPENMP API 33

shared variable With respect to a given set of task regions that bind to the same
parallel region, a variable for which the name provides access to the
same block of storage for each task region.
A variable that is part of an aggregate variable cannot be made a shared
variable independently of the other components, except for static
datamembers of C++ classes. 34, 46, 49–52, 410–412

sibling task Two tasks are each a sibling task of the other if they are child tasks of the
same task regions. 34, 37, 425, 428–430

signal A software interrupt delivered to a thread. 4, 34, 698
signal handler A function called asynchronously when a signal is delivered to a thread.

4, 596, 637, 698
SIMD Single Instruction, Multiple Data, a lock-step parallelization paradigm.

171, 249, 270, 271, 327
SIMD chunk A set of iterations executed concurrently, each by a SIMD lane, by a

single thread by means of SIMD instructions. 34, 271, 324, 326, 757
SIMD construct A simd construct or a combined construct or composite construct for

which the simd construct is a constituent construct. 344
SIMD instruction A single machine instruction that can operate on multiple data elements.

29, 34, 42, 232, 324
SIMD lane A software or hardware mechanism capable of processing one data

element from a SIMD instruction. 30, 34, 44, 46, 158, 159, 163, 171, 172,
188, 189, 195, 324

SIMD loop A loop that includes at least one SIMD chunk. 231, 270, 271
simdizable con-
struct

A construct that has the simdizable property. 324, 436

simdizable prop-
erty

The property that a construct may be encountered during execution of a
simd region. 34, 301, 302, 304–306, 324, 348, 415, 435

simply contiguous
array section

An array section that statically can be determined to have contiguous
storage or that, in Fortran, has the CONTIGUOUS attribute. 153, 736

simply happens
before

For an event A to simply happen before an event B, A must precede B in
simply happens-before order. 51

simply happens-
before order

An ordering relation that is consistent with program order and the
synchronizes-with relation. 19, 34, 51

sink iteration A doacross iteration for which executable code, because of a doacross
dependence, cannot execute until executable code from the source
iteration has completed. 16, 432

source iteration A doacross iteration for which executable code must complete execution
before executable code from another doacross iteration can execute due to
a doacross dependence. 16, 34, 432

stand-alone direc-
tive

A construct in which no user code is associated, but may produce
implementation code. 97

starting address The address of the first storage location of a list item or, for a mapped
variable of its original list item. 18, 25, 213

34 OpenMP API – Version 6.0 Preview 2 November 2023

static context se-
lector

The context selector for which the OpenMP context can be fully
determined at compile time. 17, 255, 257, 259

static storage du-
ration

For C/C++, the lifetime of an object with static storage duration, as
defined by the base language.
For Fortran, the lifetime of a variable with a SAVE attribute, implicit or
explicit, a common block object or a variable declared in a module. 15,
47, 150, 152, 156, 162, 180, 221, 222, 229, 234, 243, 274, 290, 379, 733

step expression A loop-invariant expression used by an induction operation. 10, 22, 181,
182, 185, 199, 200

storage block The physical storage that corresponds to an address range in memory. 13,
29, 35, 47, 48

storage location A storage block in memory. 3, 5, 17, 31, 34, 46–48, 127, 132, 133, 171,
174, 175, 190, 193, 195, 213, 326, 415–421, 428–430

strictly nested
region

A region nested inside another region with no other explicit region nested
between them. 347, 351

strictly structured
block

A single Fortran BLOCK construct, with a single entry at the top and a
single exit at the bottom. 35, 95, 336

string literal For C/C++, a string literal.
For Fortran, a character literal constant. 388

strong flush A flush that has the strong flush property. 18, 49, 50, 52, 417, 420
strong flush prop-
erty

A flush with the strong flush property flushes a set of variables from the
temporary view of the memory of the current thread to the memory. 18,
35, 420

structure A structure is a variable that contains one or more variables.
For C/C++, implemented using struct types.
For C++, implemented using class types.
For Fortran, implemented using derived types. 12, 35, 153, 213, 214, 219,
220, 229, 230, 380, 566, 568, 576, 598, 599, 736

structured block For C/C++, an executable statement, possibly compound, with a single
entry at the top and a single exit at the bottom, or an OpenMP construct.
For Fortran, a strictly structured block or a loosely structured block. 11,
15, 23, 25, 33, 40, 42, 46, 74, 96, 124–132, 136, 140, 168, 174–176,
204–208, 249, 267, 271, 300, 303, 310, 320, 327, 330, 331, 333, 335–338,
340, 346, 356, 366, 395, 401, 415–418, 423, 424, 433

structured block
sequence

For C/C++, a sequence of zero or more executable statements (including
constructs) that together have a single entry at the top and a single exit at
the bottom.
For Fortran, a block of zero or more executable constructs (including
OpenMP constructs) with a single entry at the top and a single exit at the
bottom. 8, 32, 33, 96, 125, 136, 145, 168, 169, 202–205, 332–334

structured paral-
lelism

Parallel execution through the implicit tasks of (possibly nested) parallel
regions by the set of structured threads in a contention group. 82, 83

CHAPTER 1. OVERVIEW OF THE OPENMP API 35

structured thread A thread that is assigned to a team and is not a free-agent thread. 32, 33,
35, 60, 82, 83, 313, 744

subsidiary direc-
tive

A directive that is not an executable directive and that appears only as part
of a construct. 93, 202, 333, 334

subtask A portion of a task region between two consecutive task scheduling points
in which a thread cannot switch from executing one task to executing
another task. 44

supported active
levels

An implementation defined maximum number of active levels of
parallelism. 733

supported device The host device or any non-host device supported by the implementation
for execution of target code for which the device-related requirements of
the requires directive are fulfilled. 62, 80

synchronization
construct

A construct that orders the completion of code executed by different
threads. 391

synchronization
hint

An indicator of the expected dynamic behavior or suggested
implementation of a synchronization mechanism. 391–393

synchronizes with For an event A to synchronize with an event B, a synchronizes-with
relation must exist from A to B. 3, 50, 51, 423–425

synchronizes-with
relation

An asymmetric relation that relates a release flush to an acquire flush, or,
for C/C++, any pair of events A and B such that A “synchronizes with” B
according to the base language, and establishes memory consistency
between their respective executing threads. 32, 34, 36, 50

target device A device with respect to which the current device performs an operation,
as specified by a device construct or an OpenMP device memory routine.
15, 16, 36, 42, 43, 53, 58, 59, 174–176, 193, 215, 217, 218, 227, 229, 230,
250, 290, 370, 372, 373, 375, 376, 379, 384, 565, 659

target device trait
set

The trait set that consists of traits that define the characteristics of a device
that the implementation supports. 3, 249, 250, 252, 254

target memory
space

A memory space that is associated with at least one device that is not the
current device when it is created. 239, 543, 545, 547

target task A mergeable task and untied task that is generated by a device construct or
a call to a device memory routine and that coordinates activity between
the current device and the target device. 43, 67, 193, 218, 374–380, 383,
384, 422, 424, 511–514

target variant A version of a device procedure that can only be executed as part of a
target region. 249

36 OpenMP API – Version 6.0 Preview 2 November 2023

task A specific instance of executable code and its data environment that the
OpenMP implementation can schedule for execution by a team. 3, 8, 9,
13, 15, 18–22, 26, 28–30, 32–34, 36, 37, 39, 40, 42–48, 58–60, 66, 67,
154, 158, 159, 162, 163, 165, 187–190, 192–195, 213, 214, 216, 217, 219,
233, 238, 296, 309–311, 313, 315, 318, 320, 328, 330, 331, 333, 334, 336,
338, 340, 346, 352–357, 359–361, 363, 364, 366, 367, 371, 387, 388, 390,
394–404, 415, 417, 418, 423–425, 428–430, 433, 434, 441, 442, 444, 451,
595, 596, 598, 649, 710

task completion A condition that is satisfied when a thread reaches the end of the
executable code that is associated with the task and any allow-completion
event that is created for the task has been fulfilled. 37, 356

task dependence A dependence between two sibling tasks: the dependent task and a
previously generated predecessor task. The task dependence is fulfilled
when the predecessor task has completed. 15, 37, 367, 425, 426, 428, 429,
513, 514

task handle A handle that refers to a task region. 675, 710
task region A region consisting of all code encountered during the execution of a task.

13, 15, 29, 30, 34, 36, 37, 39, 40, 43, 44, 47, 154, 165, 310, 319, 367, 374,
376, 378, 383, 421, 422, 441, 486, 596, 649

task scheduling
point

A point during the execution of the current task region at which it can be
suspended to be resumed later; or the point of task completion, after
which the executing thread may switch to a different task region. 36, 44,
154, 187, 310, 356, 366, 396, 397, 399, 401, 416, 421, 422, 511, 513

task synchroniza-
tion construct

A taskwait, taskgroup, or a barrier construct. 44, 356

task-generating
construct

A construct that has the task-generating property. 32, 44, 150–152, 429,
430, 445, 746

task-generating
property

The propoperty that a construct generates one or more explicit tasks that
are child tasks of the encountering task. 37, 355, 360, 374, 376, 378, 383

taskgroup set A set of tasks that are logically grouped by a taskgroup region, such
that a task is a member of the taskgroup set if and only if its task region
is nested in the taskgroup region and it binds to the same parallel
region as the taskgroup region. 37, 399, 441

team A set of one or more assigned threads assigned to execute the set of
implicit tasks of a parallel region. 3, 5, 7, 13, 21–23, 28–30, 36–45, 59,
67, 154, 172, 190, 191, 195, 205–207, 309, 310, 315–320, 322, 327,
329–335, 339, 340, 343–348, 350, 371, 394, 396, 397, 416, 424, 436, 443,
459, 648, 700, 735, 738

team number A number that the OpenMP implementation assigns to an initial team. If
the initial team is not part of a league formed by a teams construct then
the team number is zero; otherwise, the team number is a non-negative
integer less than the number of initial teams in the league. 37, 60, 348

CHAPTER 1. OVERVIEW OF THE OPENMP API 37

team-executed
construct

A construct that has the team-executed property. 44

team-executed
property

The property that a construct gives rise to a team-executed region. 38,
330–332, 334, 341, 342, 348, 396

team-executed
region

A region that is executed by all or none of the threads in the current team.
38, 44, 445

team-generating
construct

A construct that has the team-generating property. 445

team-generating
property

The property that a construct generates a parallel region. 38, 309, 319,
378

team-worker
thread

A thread that is assigned to a team but is not the primary thread. It
executes one of the implicit tasks that is generated when the team is
formed for an active parallel region. 41, 43

temporary view The state of memory that is accessible to a particular thread. 420
third-party tool A tool that executes as a separate process from the process that it is

monitoring and potentially controlling. 27, 53, 667, 668, 681, 682, 684
thread Unless specifically stated otherwise, an OpenMP thread. 3–5, 8, 13,

16–19, 22, 25, 28, 29, 31–54, 58–60, 62, 71, 74, 76, 82, 83, 90, 153–155,
165, 166, 172, 187, 188, 190, 191, 195, 205–208, 217, 218, 238, 239, 275,
281, 282, 289, 290, 295, 309–320, 327–340, 343–346, 349, 350, 352, 354,
356, 360, 361, 366, 367, 371, 372, 375, 377, 380, 384, 391, 392, 394–402,
404, 415–418, 420–425, 430, 433–436, 440–444, 459, 469, 474, 511, 512,
561, 565, 585, 595, 597, 598, 646, 648, 649, 653, 700, 710, 734, 735, 738,
751

thread affinity A binding of threads to places within the current place partition. 58, 59,
74, 78, 154, 315, 316, 470, 734, 737, 738

thread number For an assigned thread, a non-negative number assigned by the OpenMP
implementation. For threads within the same team, zero identifies the
primary thread and subsequent consecutive numbers identify any worker
threads of the team. For an unassigned thread, the value
omp_unassigned_thread. 30, 60, 154, 309, 310, 315, 318, 328,
343, 459, 468, 700

thread state The state associated with a thread. Also, an enumeration type that
describes the current OpenMP activity of a thread. Only one of the
enumeration values can apply to a thread at any time. 44, 53, 565, 646

thread-exclusive
construct

A construct that has the thread-exclusive property. 445

thread-exclusive
property

The property that a construct when encountered by multiple threads in the
current team is executed by only one thread at a time. 38, 394, 435

thread-limiting
construct

A construct that has the thread-limiting property. 90

38 OpenMP API – Version 6.0 Preview 2 November 2023

thread-limiting
property

For C++, the property that a construct limits the thread that can catch an
exception thrown in the corresponding region to the thread that threw the
exception. 38, 309, 319, 327, 330–332, 355, 378, 394, 435

thread-pool-
worker thread

A thread in an OpenMP thread pool that is not the initial thread. 585

thread-
reservation type

The type specified for a reserved thread. 32, 82

thread-safe proce-
dure

A procedure that performs the intended function even when executed
concurrently (by multiple native threads). 54

thread-set The set of threads for which a flush may enforce memory consistency. 48,
49, 51, 52, 415, 420, 422

threadprivate
memory

The set of threadprivate variables associated with each thread. 46

threadprivate
variable

A variable that is replicated, one instance per thread, by the OpenMP
implementation. Its name then provides access to a different block of
storage for each thread.
A variable that is part of an aggregate variable cannot be made a
threadprivate variable independently of the other components, except for
static data members of C++ classes. If a variable is made a threadprivate
variable, its components are also threadprivate variables. 39, 153–157,
205, 206, 323, 339, 380

tied task A task that, when its task region is suspended, can be resumed only by the
same thread that was executing it before suspension. That is, the task is
tied to that thread. 44, 352, 367

tool Code that can observe and/or modify the execution of an application. 2,
18, 32, 38, 39, 42, 53, 54, 59, 60, 372, 373, 561, 562, 565–568, 573, 580,
598, 599, 649, 698

tool callback A function that a tool provides to an OpenMP implementation to invoke
when an associated event occurs. 8, 53, 397, 433, 451, 641

tool context An opaque reference provided by a tool to an OMPD library. A tool
context uniquely identifies an abstraction. 3, 26, 39, 676, 681

trace record A data structure in which to store information associated with an
occurrence of an event. 26, 573, 574, 637

trait An aspect of an OpenMP implementation or the execution of an OpenMP
program. 3, 9, 13, 16–18, 20, 26–28, 36, 39, 236–242, 245, 247, 249, 250,
252–254, 266, 284, 737, 743

trait selector A member of a trait selector set. 249, 251–255, 257, 260, 266
trait selector set A set of traits that are specified to match the trait set at a given point in an

OpenMP program. 33, 39, 251
trait set A grouping of related traits. 11, 16, 17, 20, 36, 39, 249, 252, 254
unassigned thread A thread that is not currently assigned to any team. 19, 20, 33, 38, 42, 43,

354, 367, 459, 595

CHAPTER 1. OVERVIEW OF THE OPENMP API 39

undeferred task A task for which execution is not deferred with respect to its generating
task region. That is, its generating task region is suspended until execution
of the structured block associated with the undeferred task is completed.
21, 26, 40, 357, 361, 424

unde�ned For variables, the property of not being de�ned, that is, of not having a
valid value. 48, 442, 641

uni�ed address
space

An address space that is used by all devices.
289

unit of work In constructs that use units of work, a single or multiple executable
statements that will be executed by a single thread and are part of the
same structured block. A structured block can consist of one or more units
of work; the number of units of work into which a structured block is split
is allowed to vary among di�erent compliant implementations. 40, 334,
335, 337, 338, 605

unspeci�ed behav-
ior

A behavior or result that is not speci�ed by the OpenMP speci�cation or
not known prior to the compilation or execution of an OpenMP program.
Such unspeci�ed behavior may result from:

� Issues that this speci�cation documents as having unspeci�ed
behavior.

� A non-conforming program.
� A conforming program exhibiting an implementation de�ned

behavior.
10, 20, 40, 46�48, 55, 90, 175, 185, 238, 245, 289, 355, 379, 381, 398

untied task A task that, when its task region is suspended, can be resumed by any
thread in the team. That is, the task is not tied to any thread. 36, 44, 155,
352, 357, 367

update value The update value of a new list item used for a scan computation is, for a
given logical iteration, the value of the new list item on completion of its
input phase. 40, 203

user-de�ned can-
cellation point

A cancellation point that is speci�ed by acancellation point
construct. 444

user-de�ned in-
duction

An induction operation that is de�ned by adeclare induction
directive. 201, 202

user-de�ned map-
per

A mapper that is de�ned by adeclare mapper directive. 24, 122,
214, 224, 225, 227

user-de�ned re-
duction

An reduction operation that is de�ned by adeclare reduction
directive. 196, 198, 443

utility directive A directive that facilitates interactions with the compiler and/or supports
code readability; it may be either informational or executable. 93, 281,
282, 298

40 OpenMP API � Version 6.0 Preview 2 November 2023

variable A named data storage block, for which the value can be de�ned and
rede�ned during the execution of a program; for C/C++, this includes
const -quali�ed types when explicitly permitted.

COMMENT: An array element or structure element is a
variable that is part of an aggregate variable.

3, 6�9, 12�15, 18, 19, 22�26, 30, 34, 35, 39�41, 46�52, 54, 58, 94, 96,
103�105, 111, 121, 122, 126, 134, 137�141, 148�162, 165, 166, 168, 169,
172, 175, 178�182, 186, 191, 195�197, 200, 205�211, 214, 218�226, 233,
234, 236, 240�244, 246, 247, 253, 256, 259, 261, 263, 268�270, 273�278,
290, 300, 312, 319, 324, 328, 329, 335, 336, 338, 339, 343, 346, 348, 349,
354, 359, 361, 369, 373�376, 378�383, 420, 421, 432, 573, 598, 641, 647,
649, 733, 748

variant substitu-
tion

The replacement of a call to a base function by a call to a function variant.
259, 267, 268

wait identi�er A unique opaque handle associated with each data object (for example, a
lock) that the OpenMP runtime uses to enforce mutual exclusion and
potentially to cause a thread to wait actively or passively. 597, 598, 646

white space A non-empty sequence of space and/or horizontal tab characters. 69, 76,
78, 91, 92, 97�100, 113, 114

work distribution The manner in which execution of a region that corresponds to a
work-distribution construct is assigned to threads. 142

work-distribution
construct

A construct that has the work-distribution property. 2, 29, 41, 165, 166,
169, 329, 349

work-distribution
property

The property that a construct is cooperatively executed by threads in the
binding thread set of the corresponding region. 41, 330�332, 334, 337,
341, 342, 345, 348

work-distribution
region

A region that corresponds to a work-distribution construct. 166, 169, 329

worker thread Unless speci�cally stated otherwise, a team-worker thread. 38, 311
worksharing con-
struct

A construct that has the worksharing property. 29, 41, 43, 44, 166, 172,
189�191, 195, 329, 333, 339, 349, 398, 443, 447

worksharing
property

The property of a construct that is a work-distribution construct that is
executed by the team of the innermost enclosing parallel region and
includes, by default, an implicit barrier. 41, 330�332, 334, 341, 342, 348

worksharing re-
gion

A region that corresponds to a worksharing construct. 44, 166, 190, 329,
397, 422

worksharing-loop
construct

A construct that has the worksharing-loop property. 17, 41, 190, 195,
339�344, 434, 436, 441, 443

worksharing-loop
property

The property of a worksharing construct that is a loop-nest-associated
construct that distributes the collapsed iterations of the associated loops
among the threads in the team. 41, 341, 342

worksharing-loop
region

A region that corresponds to a worksharing-loop construct. 339, 340,
434�436

CHAPTER 1. OVERVIEW OF THE OPENMP API 41

