

OpenMP Technical Report 5:
Memory Management Support

for OpenMP 5.0

This Technical Report augments the OpenMP TR 4 document with language

features for managing memory on systems with heterogeneous memories.

EDITORS

Alejandro Duran (alejandro.duran@intel.com)

Christian Terboven (terboven@itc.rwth-aachen.de)

OTHER AUTHORS

Jonathan Beard (ARM)

Bronis de Supinski (LLNL)

Deepak Eachempati (Cray)

Alexandre Eichenberger (IBM)

Ian Karlin (LLNL)

Kelvin Li (IBM)

Stephen Olivier (SNL)

Ravi Narayanaswamy (Intel)

John Pennycook (Intel)

Alejandro Rico (ARM)

Jeff Sandoval (Cray)

Tom Scogland (LLNL)

Jason Sewall (Intel)

Xinmin Tian (Intel)

and other members of the Affinity Subcommittee

January 5th, 2017

Expires January 4th, 2018

We actively solicit comments. Please provide feedback on this document either to the Editor

directly or in the OpenMP Forum at openmp.org

End of Public Comment Period: March 5th, 2017

OpenMP Architecture Review Board

www.openmp.org info@openmp.org

OpenMP ARB – Ravi S. Rao, c/o Intel Corporation, 1300 S MoPac Express Way, Austin, TX 78746, USA

This technical report describes possible future directions or extensions to the OpenMP

Specification.

The goal of this technical report is to build more widespread existing practice for an

expanded OpenMP. It gives advice on extensions or future directions to those vendors

who wish to provide them possibly for trial implementation, allows OpenMP to gather

early feedback, support timing and scheduling differences between official OpenMP

releases, and offers a preview to users of the future directions of OpenMP with the

provision stated in the next paragraph.

This technical report is non-normative. Some of the components in this technical report

may be considered for standardization in a future version of OpenMP, but they are not

currently part of any OpenMP Specification. Some of the components in this technical

report may never be standardized, others may be standardized in a substantially changed

form, or it may be standardized as is in its entirety.

Memory Management support for

OpenMP

The OpenMP A�nity Subcommittee

1 Motivation and Background

System performance is often dependent on memory performance. Over the past decades
the bandwidth of the standard memory technology (DRAM) has scaled slower than the
increase in CPU computational throughput. System builders traditionally addressed this
problem by adding more memory channels to maintain system balance. However, recently,
bandwidth and capacity are scaling slower than compute and vendors have not been able
to maintain system balance with DRAM-only solutions. To address this problem, emerging
systems feature multiple types of memories with di�erent optimization points. Examples
are systems that combine o�-package DRAM with higher bandwidth technologies integrated
on package to increase memory bandwidth, non-volatile high-density memories to increase
capacity, and on-chip scratchpad memories with low-latency access.
Compute systems with such a tiered memory solution present a unique challenge to pro-

grammers. With the fastest resources typically having limited capacity, placement choices
present performance tradeo�s in applications. Also, traditional �rst touch placement strate-
gies used in Linux do not allow users to di�erentiate among memories with di�erent proper-
ties. Vendors provide their own programming approaches to di�erentiate di�erent memories,
e.g., CUDA and Memkind, but these approaches and the alternative low-level program-
ming approaches are non-portable. In response, to enable portability across platforms, the
OpenMP committee is developing a more consistent and portable interface for memory
placement in tiered memory systems.
The proposal in this document is designed to abstract the myriad of choices from the user.

The goal is to enable portability, while providing the user with enough control to allow a
runtime to manage allocations for user-de�ned properties such as latency, bandwidth and
capacity. We aim to use properties and traits rather than the speci�c memory types of
today to help future proof the interface against emerging and changing technology trends.
This document represents current directions being discussed within the OpenMP A�nity

Subcommittee and is designed to engage the community, solicit feedback and re�ect the
current thoughts of the committee on this topic. The proposal is a start of a larger document
that will include controls to cover additional memory types and features, such as persistent

1 Motivation and Background 4

memory and constant memory. This document is not a promise that the interface will be
adopted into the speci�cation. Instead, it represents the subcommittee's best estimate of a
portion of an interface that will be adopted, assuming that the OpenMP community agrees
that the interface can be extended to fully support the range of architectures of interest.

5

2 High-level overview

A platform-agnostic integration of memory management support into OpenMP is necessary
to avoid the separation of code paths for di�erent platforms and also di�erent kinds of
memory within each platform. As a de-facto standard, OpenMP has to support all current
kinds of memory and has to be capable of supporting future memory kinds and platform
con�guration without signi�cant changes to both the speci�cation and any code using the
OpenMP memory management. This is achieved by introducing the following new concepts
into the OpenMP API:

• Memory spaces and allocators: A memory space refers to a memory resource available
in the system at the time the OpenMP program is executed. Each space has certain
characteristics depending on the kind of the physical memory and the current state
of the system. An allocator is an object that allocates (and frees) memory from an
associated memory space.

• Memory allocation API: The omp_alloc() and omp_free() API routines are provided
for C/C++ to allocate and deallocate memory using an allocator.

• allocate directive and clause: The new allocate directive and clause allow the
allocation of variables without the explicit use of the aforementioned API, and can be
used in both Fortran and C/C++. They support several modi�ers to in�uence their
behavior.

In order to work with memory spaces and allocators, an API is provided to manage (i.e.,
create and destroy) both types of objects. The programmer must explicitly use this API to
enable the use of memory types other than the default type with OpenMP.
The mixture of run-time and compile-time functionality is necessary to handle the dif-

ferent types of memory allocations, namely a malloc()-like interface for dynamic (heap)
allocations in C/C++ and directives for static and stack allocations in both Fortran and
C/C++. A mixture of runtime and compiler support is also necessary to support certain
kinds of memory that need special (machine) instructions to access or modify data.
With respect to future architectural developments, it must be assumed that hardware

will develop at a faster rate than the OpenMP speci�cation can match. In consequence, the
options to express certain memory properties are not tied to current systems. Instead, the
options aim to be broadly applicable by referring to certain characteristics of memory re-
sources, and they are intended to be extended by vendors with the introduction of additional
traits.

2.1 Memory spaces and allocators

A memory space represents a storage resource that is available in the system. For example,
almost all contemporary HPC systems contain a DDR-based main memory, which could be
the only available memory space. Additional new memory types include those with enhanced
performance (e.g., high-bandwidth memory) or functionality (e.g., non-volatile memory).

2 High-level overview 6

Both could be additional memory spaces in a single system, and numerous combinations are
possible.

A memory space is represented by the omp_memspace_t C/C++ dataype (omp_memspace_kind
in Fortran). Before �rst use, it has to be initialized via the corresponding initialization
function omp_init_memspace, which accepts a set of memory traits (see next paragraph) as
the argument. The instance of a memory space is itself passed as an argument in the
construction of an allocator. After last use, the memory space must be destroyed via
omp_destroy_memspace.

Memory traits describe the characteristics of memory spaces and as such allow for queries,
identi�cation and description of the di�erent memory spaces of a system. This proposal
contains a base set of memory traits described below, others may be added in the future or
as vendor-speci�c extensions. Memory traits can either be prescriptive, meaning an exact
match is required, or descriptive, meaning the runtime is requested to select the optimal
type of memory based on the requested properties.

Prescriptive traits include the location of memory (with possible values core, socket or
device), a certain optimization characteristic of the underlying memory technology (with
possible values bandwidth or latency or capacity), and support for certain page sizes or
read/write permission. Descriptive traits include the relative distance relative to the task
performing the request (with possible values near or far) and the relative bandwidth and
latency of the memory space with respect to other memories in the system (with possible
values highest and lowest).

A memory trait is represented by the omp_memtrait_t datatype and support for sets
of memory traits is represented by omp_memtrait_set_t in C/C++, with corresponding
Fortran types/kinds. The omp_init_memtrait_set API routine is available to construct a
memory trait set from a given list of memory traits. The trait set is used as an argument
to omp_init_memspace, with omp_default_memtraits representing the default memory as
selected by the runtime. Traits to request a minimum total capacity and available capacity
are also available. Associated routines include omp_destroy_memtrait_set, to destroy the
memtrait set, omp_add_memtraits, to add a memory trait to a memory traits set, and
omp_merge_memtraits, to merge two memory traits sets.

An allocator is an object performing allocations of contiguous memory chunks from a given
memory space. Allocator traits can be employed to customize the behavior of an allocator.
This includes the behavior in case the allocation is not successful � the standard behavior in
case of failure is to fall back to the default memory, based on the omp_default_memtraits
speci�ed at initialization of the memory space. On many systems that would be DDR main
memory. Further allocator traits specify the thread model (with possible values shared or
exclusive) and the options to specify alignment and the request for pinned memory.

An allocator is represented by the omp_allocator_t datatype (omp_allocator_kind in
Fortran). Before �rst use, it has to be initialized via the corresponding initialization function
omp_init_allocator, which accepts a memory space and a set of allocator traits as argu-
ments. API routines for the management of allocator traits are similar to those for memory
traits. After last use, the allocator has to be destroyed via omp_destroy_allocator.

7 2.2 Memory allocation API for C/C++

2.2 Memory allocation API for C/C++

Two new API routines are provided to allocate and deallocate memory using an allocator in
C/C++. Allocations are performed with the omp_alloc routine, which takes the requested
size as the �rst argument and an OpenMP allocator as the second argument and returns a
pointer to the allocated memory. The additional omp_alloc_safe_align routine requests
an aligned allocation. Similarly, the omp_free routine frees memory and also takes an
OpenMP allocator as the second argument. When memory of a given size is requested,
memory of at least that size is allocated, and it must be freed with the corresponding
function using the corresponding allocator.
The separation of the API and the allocators allows the programmer to write portable

code because only the allocator de�nition must be modi�ed when the code is changed to
target a di�erent kind of memory on a di�erent platform, while all the individual allocations
in the code can remain unmodi�ed.

2.3 Allocate directive and clause

The new allocate directive enables the programmer to in�uence the allocation of variables
without the explicit use of the aforementioned API. It also integrates the memory man-
agement concept with the other directives and constructs in the OpenMP API. The e�ect
of using the allocate directive is that for all variables in the list the storage location is
determined by the application of the given allocator object. The allocator can be speci-
�ed via the allocator clause. If no allocator is given, an implicit allocator is constructed
from the memory and allocator traits speci�ed with the directive via the memtraits and
alloctraits clauses, taking as arguments the corresponding trait sets as discussed above.
In Fortran, the allocate directive provides in addition to the semantics described above

the ability to use the allocator functionality with variables declared as ALLOCATABLE. That
means it ensures the following Fortran ALLOCATE statement is performed with the OpenMP
allocator speci�ed either explicitly or constructed implicitly from the provided trait sets.
For directives supporting the new allocate clause, it speci�es the allocation and memory

traits of the storage used for private variables of a directive.

2.4 Default allocator

The new def-allocator-var ICV determines the allocator to be used by allocation routines, di-
rectives and clauses when an allocator is not speci�ed by the user. The new corresponding
API routines omp_get_default_allocator and omp_set_default_allocator are intro-
duced, along with the new environment variable OMP_ALLOCATOR.

3 Changes to the OpenMP speci�cation 8

3 Changes to the OpenMP speci�cation

In this section we present the necessary changes to be enacted to OpenMP TR4 document
to enable our proposal. The new text that would be added is marked in blue and to simplify
the presentation of the changes pages where the only changes are cross-references are not
showed in this document.

A private variable in a task region that eventually generates an inner nested parallel region is1
permitted to be made shared by implicit tasks in the inner parallel region. A private variable in2
a task region can be shared by an explicit task region generated during its execution. However, it is3
the programmer’s responsibility to ensure through synchronization that the lifetime of the variable4
does not end before completion of the explicit task region sharing it. Any other access by one task5
to the private variables of another task results in unspecified behavior.6

1.4.2 Device Data Environments7

When an OpenMP program begins, an implicit target data region for each device surrounds8
the whole program. Each device has a device data environment that is defined by its implicit9
target data region. Any declare target directives and the directives that accept10
data-mapping attribute clauses determine how an original variable in a data environment is mapped11
to a corresponding variable in a device data environment.12

When an original variable is mapped to a device data environment and the associated13
corresponding variable is not present in the device data environment, a new corresponding variable14
(of the same type and size as the original variable) is created in the device data environment. The15
initial value of the new corresponding variable is determined from the clauses and the data16
environment of the encountering thread.17

The corresponding variable in the device data environment may share storage with the original18
variable. Writes to the corresponding variable may alter the value of the original variable. The19
impact of this on memory consistency is discussed in Section 1.4.5 on page 21. When a task20
executes in the context of a device data environment, references to the original variable refer to the21
corresponding variable in the device data environment.22

The relationship between the value of the original variable and the initial or final value of the23
corresponding variable depends on the map-type. Details of this issue, as well as other issues with24
mapping a variable, are provided in Section 2.17.6.1 on page 256.25

The original variable in a data environment and the corresponding variable(s) in one or more device26
data environments may share storage. Without intervening synchronization data races can occur.27

1.4.3 Memory management28

The host device, and target devices that an implementation may support, have attached29
storage resources where program variables are stored. These resources can be of30
different kinds and of different traits. A memory space in an OpenMP program represents31
one of these resources. Memory spaces have different traits that define them and a single32

CHAPTER 1. INTRODUCTION 19

9 3.1 Changes to Chapter 1

3.1 Changes to Chapter 1

resource may be exposed as multiple memory spaces with different traits. In any device at1
least one memory space is guaranteed to exist.2

An OpenMP program can use an allocator to allocate storage for its variables. Allocators3
are associated with a memory space when created and use storage in that memory space4
to allocate variables. Allocators are also used to deallocate variables and free the storage5
in the memory space. When an OpenMP allocator is not used variables can be allocated6
in any memory space. The behavior of a memory management construct, modifier or API7
is unspecified if the variable that is applied to was not allocated with an OpenMP allocator.8

1.4.4 The Flush Operation9

The memory model has relaxed-consistency because a thread’s temporary view of memory is not10
required to be consistent with memory at all times. A value written to a variable can remain in the11
thread’s temporary view until it is forced to memory at a later time. Likewise, a read from a variable12
may retrieve the value from the thread’s temporary view, unless it is forced to read from memory.13
The OpenMP flush operation enforces consistency between the temporary view and memory.14

The flush operation is applied to a set of variables called the flush-set. The flush operation restricts15
reordering of memory operations that an implementation might otherwise do. Implementations16
must not reorder the code for a memory operation for a given variable, or the code for a flush17
operation for the variable, with respect to a flush operation that refers to the same variable.18

If a thread has performed a write to its temporary view of a shared variable since its last flush of19
that variable, then when it executes another flush of the variable, the flush does not complete until20
the value of the variable has been written to the variable in memory. If a thread performs multiple21
writes to the same variable between two flushes of that variable, the flush ensures that the value of22
the last write is written to the variable in memory. A flush of a variable executed by a thread also23
causes its temporary view of the variable to be discarded, so that if its next memory operation for24
that variable is a read, then the thread will read from memory when it may again capture the value25
in the temporary view. When a thread executes a flush, no later memory operation by that thread for26
a variable involved in that flush is allowed to start until the flush completes. The completion of a27
flush of a set of variables executed by a thread is defined as the point at which all writes to those28
variables performed by the thread before the flush are visible in memory to all other threads and29
that thread’s temporary view of all variables involved is discarded.30

The flush operation provides a guarantee of consistency between a thread’s temporary view and31
memory. Therefore, the flush operation can be used to guarantee that a value written to a variable32
by one thread may be read by a second thread. To accomplish this, the programmer must ensure33
that the second thread has not written to the variable since its last flush of the variable, and that the34
following sequence of events happens in the specified order:35

1. The value is written to the variable by the first thread.36

20 OpenMP API – Version 5.0 rev 1, November 2016

3 Changes to the OpenMP speci�cation 10

Fortran

A list item is a variable, array section or common block name (enclosed in slashes). An extended1
list item is a list item or a procedure name. A locator list item is a list item.2

When a named common block appears in a list, it has the same meaning as if every explicit member3
of the common block appeared in the list. An explicit member of a common block is a variable that4
is named in a COMMON statement that specifies the common block name and is declared in the same5
scoping unit in which the clause appears.6

Although variables in common blocks can be accessed by use association or host association,7
common block names cannot. As a result, a common block name specified in a data-sharing8
attribute, a data copying or a data-mapping attribute clause must be declared to be a common block9
in the same scoping unit in which the clause appears.10

Fortran

For all base languages, a list item or an extended list item is subject to the restrictions specified in11
Section 2.4 on page 48 and in each of the sections describing clauses and directives for which the12
list or extended-list appears.13

The clauses of the allocate directive accept a key-value list. A key-value list is a14
comma-separated list of key-value pairs. A key-value pair has the form of key=value. The15
allowed keys and values depend on each clause.16

30 OpenMP API – Version 5.0 rev 1, November 2016

11 3.2 Changes to Chapter 2

3.2 Changes to Chapter 2

• bind-var - controls the binding of OpenMP threads to places. When binding is requested, the1
variable indicates that the execution environment is advised not to move threads between places.2
The variable can also provide default thread affinity policies. There is one copy of this ICV per3
data environment.4

The following ICVs store values that affect the operation of loop regions.5

• run-sched-var - controls the schedule that the runtime schedule clause uses for loop regions.6
There is one copy of this ICV per data environment.7

• def-sched-var - controls the implementation defined default scheduling of loop regions. There is8
one copy of this ICV per device.9

The following ICVs store values that affect program execution.10

• stacksize-var - controls the stack size for threads that the OpenMP implementation creates. There11
is one copy of this ICV per device.12

• wait-policy-var - controls the desired behavior of waiting threads. There is one copy of this ICV13
per device.14

• cancel-var - controls the desired behavior of the cancel construct and cancellation points.15
There is one copy of this ICV for the whole program.16

• default-device-var - controls the default target device. There is one copy of this ICV per data17
environment.18

• max-task-priority-var - controls the maximum priority value that can be specified in the19
priority clause of the task construct. There is one copy of this ICV for the whole program.20

The following ICVs store values that affect the operation of the tool interface.21

• tool-var - determines whether an OpenMP implementation will try to register a tool. There is22
one copy of this ICV for the whole program.23

• tool-libraries-var - specifies a list of absolute paths to tool libraries for OpenMP devices. There24
is one copy of this ICV for the whole program.25

The following ICVs store values that affect default memory allocation.26

• def-allocator-var - determines the allocator to be used by allocation routines, directives27
and clauses when an allocator is not specified by the user.28

2.3.2 ICV Initialization29

Table 2.1 shows the ICVs, associated environment variables, and initial values.30

40 OpenMP API – Version 5.0 rev 1, November 2016

3 Changes to the OpenMP speci�cation 12

3.2.1 Changes to ICVs descriptions

TABLE 2.1: ICV Initial Values

ICV Environment Variable Initial value

dyn-var OMP_DYNAMIC See description below

nest-var OMP_NESTED false

nthreads-var OMP_NUM_THREADS Implementation defined

run-sched-var OMP_SCHEDULE Implementation defined

def-sched-var (none) Implementation defined

bind-var OMP_PROC_BIND Implementation defined

stacksize-var OMP_STACKSIZE Implementation defined

wait-policy-var OMP_WAIT_POLICY Implementation defined

thread-limit-var OMP_THREAD_LIMIT Implementation defined

max-active-levels-var OMP_MAX_ACTIVE_LEVELS See description below

active-levels-var (none) zero

levels-var (none) zero

place-partition-var OMP_PLACES Implementation defined

cancel-var OMP_CANCELLATION false

default-device-var OMP_DEFAULT_DEVICE Implementation defined

max-task-priority-var OMP_MAX_TASK_PRIORITY zero

tool-var OMP_TOOL enabled

tool-libraries-var OMP_TOOL_LIBRARIES empty string

def-allocator-var
OMP_ALLOCATOR Implementation defined

1

Description2

• Each device has its own ICVs.3

• The value of the nthreads-var ICV is a list.4

• The value of the bind-var ICV is a list.5

• The initial value of dyn-var is implementation defined if the implementation supports dynamic6
adjustment of the number of threads; otherwise, the initial value is false.7

CHAPTER 2. DIRECTIVES 41

13 3.2 Changes to Chapter 2

TABLE 2.2: Ways to Modify and to Retrieve ICV Values

ICV Ways to modify value Ways to retrieve value

dyn-var omp_set_dynamic() omp_get_dynamic()

nest-var omp_set_nested() omp_get_nested()

nthreads-var omp_set_num_threads() omp_get_max_threads()

run-sched-var omp_set_schedule() omp_get_schedule()

def-sched-var (none) (none)

bind-var (none) omp_get_proc_bind()

stacksize-var (none) (none)

wait-policy-var (none) (none)

thread-limit-var thread_limit clause omp_get_thread_limit()

max-active-levels-var omp_set_max_active_levels() omp_get_max_active_levels()

active-levels-var (none) omp_get_active_level()

levels-var (none) omp_get_level()

place-partition-var (none) See description below

cancel-var (none) omp_get_cancellation()

default-device-var omp_set_default_device() omp_get_default_device()

max-task-priority-var (none) omp_get_max_task_priority()

tool-var (none) (none)

tool-libraries-var (none) (none)

def-allocator-var
omp_set_default_allocator() omp_get_default_allocator()

1

Description2

• The value of the nthreads-var ICV is a list. The runtime call omp_set_num_threads() sets3
the value of the first element of this list, and omp_get_max_threads() retrieves the value4
of the first element of this list.5

• The value of the bind-var ICV is a list. The runtime call omp_get_proc_bind() retrieves6
the value of the first element of this list.7

• Detailed values in the place-partition-var ICV are retrieved using the runtime calls8
omp_get_partition_num_places(), omp_get_partition_place_nums(),9
omp_get_place_num_procs(), and omp_get_place_proc_ids().10

CHAPTER 2. DIRECTIVES 43

3 Changes to the OpenMP speci�cation 14

TABLE 2.3: Scopes of ICVs1

ICV Scope

dyn-var data environment
nest-var data environment
nthreads-var data environment
run-sched-var data environment
def-sched-var device
bind-var data environment
stacksize-var device
wait-policy-var device
thread-limit-var data environment
max-active-levels-var device
active-levels-var data environment
levels-var data environment
place-partition-var implicit task
cancel-var global
default-device-var data environment
max-task-priority-var global
tool-var global
tool-libraries-var global
def-allocator-var

data environment

2

Description3

• There is one copy per device of each ICV with device scope4

• Each data environment has its own copies of ICVs with data environment scope5

• Each implicit task has its own copy of ICVs with implicit task scope6

Calls to OpenMP API routines retrieve or modify data environment scoped ICVs in the data7
environment of their binding tasks.8

CHAPTER 2. DIRECTIVES 45

15 3.2 Changes to Chapter 2

table continued from previous page

ICV construct clause, if used

def-sched-var schedule

bind-var proc_bind

stacksize-var (none)

wait-policy-var (none)

thread-limit-var (none)

max-active-levels-var (none)

active-levels-var (none)

levels-var (none)

place-partition-var (none)

cancel-var (none)

default-device-var (none)

max-task-priority-var (none)

tool-var (none)

tool-libraries-var (none)

def-allocator-var
(none)

1

Description2

• The num_threads clause overrides the value of the first element of the nthreads-var ICV.3

• If bind-var is not set to false then the proc_bind clause overrides the value of the first element4
of the bind-var ICV; otherwise, the proc_bind clause has no effect.5

Cross References6

• parallel construct, see Section 2.6 on page 54.7

• proc_bind clause, Section 2.6 on page 54.8

• num_threads clause, see Section 2.6.1 on page 59.9

• Loop construct, see Section 2.8.1 on page 66.10

• schedule clause, see Section 2.8.1.1 on page 74.11

CHAPTER 2. DIRECTIVES 47

3 Changes to the OpenMP speci�cation 16

2.5 Memory Spaces and Allocators1

2.5.1 Memory Spaces2

OpenMP memory spaces represent storage where variables are defined. A set of3
memory traits and the value that those traits have define the characteristics of each4
memory space. Table 2.5 shows the supported memory traits, the possible values each5
trait can take and their meaning. Trait values and their names are not case sensitive.6

TABLE 2.5: Memory traits and their values

Memory trait Matching
rule

Allowed values Description

distance ≈ near, far Specifies the relative
physical distance of
the memory space with
respect to the task the
request binds to.

bandwidth ≈ highest, lowest Specifies the relative
bandwidth of the
memory space with
respect to other
memories in the
system.

latency ≈ highest, lowest Specifies the relative
latency of the memory
space with respect to
other memories in the
system.

location = see Table 2.6 Specifies the physical
location of the memory
space.

table continued on next page

50 OpenMP API – Version 5.0 rev 1, November 2016

17 3.2 Changes to Chapter 2

3.2.2 Memory spaces and allocators

table continued from previous page

Memory trait Matching
rule

Allowed values Description

optimized = bandwidth,
latency,
capacity, none

Specifies if the memory
space underlying
technology is optimized
to maximize a certain
characteristic. The
exact mapping of
these values to
actual technologies is
implementation defined.

pagesize = positive integer
Specifies the size of
the pages used by the
memory space.

permission = r, w, rw Specifies if read
operations (r), write
operations (w) or both
(rw) are supported by
the memory space.

capacity ≥ positive integer
Specifies the physical
capacity in bytes of the
memory space.

available ≥ positive integer
Specifies the current
available capacity for
new allocations in the
memory space.

1

Table 2.6 shows the possible values for the location memory trait and their description.2
The values are not case sensitive. In addition, the location memory trait may accept3
other implementation specific values.4

TABLE 2.6: Allowed values for the location memory trait

CHAPTER 2. DIRECTIVES 51

3 Changes to the OpenMP speci�cation 18

Location Description

core The memory space corresponds to a memory that is
located within a core and might only accessible by the
hardware threads of that core.

socket The memory space corresponds to a memory that is
located within a socket and might only be accessible by
the hardware threads of that socket.

device The memory space corresponds to a memory that
is located within the device and is accessible by any
hardware thread of that device.

1

Certain constructs and API routines will try to find a memory space that matches a list of2
pairs of memory traits and values. A memory space matches a list if every trait in the list3
matches the corresponding trait in the memory spaces according to the following rules:4

• An empty list of memory traits matches any memory space.5

• Traits with the ≥ matching rule match if the value of the trait in the memory space is6
greater or equal than the value in the list.7

• Traits with the = matching rule match if the value of the trait in the memory space is the8
same as the one in the list. For the location trait, for the matching to succeed it9
requires in addition that the task that the matching process binds to can access the10
memory space.11

• Traits with the ≈ matching rule match if the value of the trait in the memory space12
compared to the value of the trait in other candidate memory spaces results in the value13
in the list.14

• The matching process selects first memory spaces that match the ≥ and = rules. From15
those selected in the previous step, it will select those that match the ≈ rules.16

If more than one memory space would match a memory trait specification it is unspecified17
which memory space will be returned by the matching process. If a list contains more than18
a pair with the same memory trait it is unspecified which memory space, if any, will be19
matched.20

2.5.2 How Allocation Works21

52 OpenMP API – Version 5.0 rev 1, November 2016

19 3.2 Changes to Chapter 2

Allocations are made through requests to an allocator. Allocators can be either explicit,1
those created with the API calls defined in Section 3.5, or implicit, those logically created2
because of a construct. When an allocator receives a request to allocate storage of a3
certain size, it will try to return an allocation of logically consecutive virtual memory in its4
associated memory space of at least the size being requested. The behavior of the5
allocation process can be affected by the allocator traits that the user specifies. Table 2.76
shows the allowed allocator traits, their possible values and the default value of each trait.7
Trait names and their values are not case sensitive.8

TABLE 2.7: Allocator traits and their values

Allocator trait Allowed values Default value

threadmodel shared, exclusive shared

alignment 0, power of two integer 0

pinned true, false false

fallback null_fb, abort_fb,
allocator_fb,
default_fb

default_fb

fb_data
an allocator handle -

9

When an allocator threadmodel trait is defined to be exclusive the implementation10
can assume that no operation will be performed on the allocator by more than one thread11
at a time.12

If either the allocator alignment trait or the allocation alignment of the request is greater13
than zero the allocated memory will be byte aligned to the maximum of the two values.14

When an allocator pinned trait is defined to be true then the allocated memory must be15
pinned to physical pages. If the pinned trait is defined to be false then the allocated16
memory needs not to be pinned to physical pages.17

The fallback trait specifies how the allocator behaves when it cannot fulfil the allocation18
request. If the fallback trait is set to null_fb the allocator returns the value zero if fails19
to allocate the memory. If the fallback trait is set to abort_fb the program execution20
will be terminated if the allocation fails. If the fallback trait is set to allocator_fb21
then when an allocation fails the request will be delegated to the allocator specified in the22
fb_data trait. If the fallback trait is set to default_fb then when an allocation fails23
another allocation will be tried in a memory space with the24
omp_default_memspace_traits memory traits assuming all allocator traits to be set25
to their default values except for fallback which will be set to null_fb.26

CHAPTER 2. DIRECTIVES 53

3 Changes to the OpenMP speci�cation 20

Fortran
If any operation of the base language causes a reallocation of an array that is allocated1
with an explicit or implicit OpenMP allocator then that allocator will be used to release the2
current memory and to allocate the new memory.3

Fortran

2.6 parallel Construct4

Summary5

This fundamental construct starts parallel execution. See Section 1.3 on page 15 for a general6
description of the OpenMP execution model.7

Syntax8

C / C++
The syntax of the parallel construct is as follows:9

#pragma omp parallel [clause[[,] clause] ...] new-line
structured-block

where clause is one of the following:10

if([parallel :] scalar-expression)11

num_threads(integer-expression)12

default(shared | none)13

private(list)14

firstprivate(list)15

shared(list)16

copyin(list)17

reduction(reduction-identifier : list)18

proc_bind(master | close | spread)19

allocate(modifiers:list)20

21

54 OpenMP API – Version 5.0 rev 1, November 2016

21 3.2 Changes to Chapter 2

3.2.3 Changes to existing directives

C / C++
Fortran

The syntax of the parallel construct is as follows:1

!$omp parallel [clause[[,] clause] ...]
structured-block

!$omp end parallel

where clause is one of the following:2

if([parallel :] scalar-logical-expression)3

num_threads(scalar-integer-expression)4

default(private | firstprivate | shared | none)5

private(list)6

firstprivate(list)7

shared(list)8

copyin(list)9

reduction(reduction-identifier : list)10

proc_bind(master | close | spread)11

allocate(modifiers:list)12

13

The end parallel directive denotes the end of the parallel construct.14

Fortran

Binding15

The binding thread set for a parallel region is the encountering thread. The encountering thread16
becomes the master thread of the new team.17

CHAPTER 2. DIRECTIVES 55

3 Changes to the OpenMP speci�cation 22

2.8.1 Loop Construct1

Summary2

The loop construct specifies that the iterations of one or more associated loops will be executed in3
parallel by threads in the team in the context of their implicit tasks. The iterations are distributed4
across threads that already exist in the team executing the parallel region to which the loop5
region binds.6

Syntax7

C / C++

The syntax of the loop construct is as follows:8

#pragma omp for [clause[[,] clause] ...] new-line
for-loops

where clause is one of the following:9

private(list)10

firstprivate(list)11

lastprivate([lastprivate-modifier:] list)12

linear(list[: linear-step])13

reduction(reduction-identifier : list)14

schedule([modifier [, modifier]:]kind[, chunk_size])15

collapse(n)16

ordered[(n)]17

nowait18

allocate(modifiers:list)19

20

The for directive places restrictions on the structure of all associated for-loops. Specifically, all21
associated for-loops must have canonical loop form (see Section 2.7 on page 62).22

C / C++

66 OpenMP API – Version 5.0 rev 1, November 2016

23 3.2 Changes to Chapter 2

Fortran

The syntax of the loop construct is as follows:1

!$omp do [clause[[,] clause] ...]
do-loops

[!$omp end do [nowait]]

where clause is one of the following:2

private(list)3

firstprivate(list)4

lastprivate([lastprivate-modifier:] list)5

linear(list[: linear-step])6

reduction(reduction-identifier : list)7

schedule([modifier [, modifier]:]kind[, chunk_size])8

collapse(n)9

ordered[(n)]10

allocate(modifiers:list)11

12

If an end do directive is not specified, an end do directive is assumed at the end of the do-loops.13

Any associated do-loop must be a do-construct or an inner-shared-do-construct as defined by the14
Fortran standard. If an end do directive follows a do-construct in which several loop statements15
share a DO termination statement, then the directive can only be specified for the outermost of these16
DO statements.17

If any of the loop iteration variables would otherwise be shared, they are implicitly made private on18
the loop construct.19

Fortran

Binding20

The binding thread set for a loop region is the current team. A loop region binds to the innermost21
enclosing parallel region. Only the threads of the team executing the binding parallel22
region participate in the execution of the loop iterations and the implied barrier of the loop region if23
the barrier is not eliminated by a nowait clause.24

CHAPTER 2. DIRECTIVES 67

3 Changes to the OpenMP speci�cation 24

2.8.2 sections Construct1

Summary2

The sections construct is a non-iterative worksharing construct that contains a set of structured3
blocks that are to be distributed among and executed by the threads in a team. Each structured4
block is executed once by one of the threads in the team in the context of its implicit task.5

Syntax6

C / C++

The syntax of the sections construct is as follows:7

#pragma omp sections [clause[[,] clause] ...] new-line
{
[#pragma omp section new-line]

structured-block
[#pragma omp section new-line

structured-block]
...
}

where clause is one of the following:8

private(list)9

firstprivate(list)10

lastprivate([lastprivate-modifier:] list)11

reduction(reduction-identifier : list)12

nowait13

allocate(modifiers:list)14

15

C / C++

CHAPTER 2. DIRECTIVES 75

25 3.2 Changes to Chapter 2

Fortran

The syntax of the sections construct is as follows:1

!$omp sections [clause[[,] clause] ...]
[!$omp section]

structured-block
[!$omp section

structured-block]
...

!$omp end sections [nowait]

where clause is one of the following:2

private(list)3

firstprivate(list)4

lastprivate([lastprivate-modifier:] list)5

reduction(reduction-identifier : list)6

allocate(modifiers:list)7

8

Fortran

Binding9

The binding thread set for a sections region is the current team. A sections region binds to10
the innermost enclosing parallel region. Only the threads of the team executing the binding11
parallel region participate in the execution of the structured blocks and the implied barrier of12
the sections region if the barrier is not eliminated by a nowait clause.13

Description14

Each structured block in the sections construct is preceded by a section directive except15
possibly the first block, for which a preceding section directive is optional.16

The method of scheduling the structured blocks among the threads in the team is implementation17
defined.18

There is an implicit barrier at the end of a sections construct unless a nowait clause is19
specified.20

76 OpenMP API – Version 5.0 rev 1, November 2016

3 Changes to the OpenMP speci�cation 26

2.8.3 single Construct1

Summary2

The single construct specifies that the associated structured block is executed by only one of the3
threads in the team (not necessarily the master thread), in the context of its implicit task. The other4
threads in the team, which do not execute the block, wait at an implicit barrier at the end of the5
single construct unless a nowait clause is specified.6

Syntax

C / C++
7

The syntax of the single construct is as follows:8

#pragma omp single [clause[[,] clause] ...] new-line
structured-block

where clause is one of the following:9

private(list)10

firstprivate(list)11

copyprivate(list)12

nowait13

allocate(modifiers:list)14

15

C / C++
Fortran

The syntax of the single construct is as follows:16

!$omp single [clause[[,] clause] ...]
structured-block

!$omp end single [end_clause[[,] end_clause] ...]

where clause is one of the following:17

78 OpenMP API – Version 5.0 rev 1, November 2016

27 3.2 Changes to Chapter 2

private(list)1

firstprivate(list)2

allocate(modifiers:list)3

4

and end_clause is one of the following:5

copyprivate(list)6

nowait7

Fortran

Binding8

The binding thread set for a single region is the current team. A single region binds to the9
innermost enclosing parallel region. Only the threads of the team executing the binding10
parallel region participate in the execution of the structured block and the implied barrier of the11
single region if the barrier is not eliminated by a nowait clause.12

Description13

The method of choosing a thread to execute the structured block is implementation defined. There14
is an implicit barrier at the end of the single construct unless a nowait clause is specified.15

Events16

The single-begin event occurs after an implicit task encounters a single construct but17
before the task starts the execution of the structured block of the single region.18

The single-end event occurs after a single region finishes execution of the structured block but19
before resuming execution of the encountering implicit task.20

Tool Callbacks21

A thread dispatches a registered ompt_callback_work callback for each occurrence of22
single-begin and single-end events in that thread. The callback has type signature23
ompt_callback_work_t. The callback receives ompt_scope_begin or24
ompt_scope_end as its endpoint argument, as appropriate, and25
ompt_work_single_executor or ompt_work_single_other as its wstype argument.26

CHAPTER 2. DIRECTIVES 79

3 Changes to the OpenMP speci�cation 28

2.10 Tasking Constructs1

2.10.1 task Construct2

Summary3

The task construct defines an explicit task.4

Syntax5

C / C++

The syntax of the task construct is as follows:6

#pragma omp task [clause[[,] clause] ...] new-line
structured-block

where clause is one of the following:7

if([task :] scalar-expression)8

final(scalar-expression)9

untied10

default(shared | none)11

mergeable12

private(list)13

firstprivate(list)14

shared(list)15

in_reduction(reduction-identifier : list)16

depend(dependence-type : locator-list)17

priority(priority-value)18

allocate(modifiers:list)19

20

C / C++

CHAPTER 2. DIRECTIVES 95

29 3.2 Changes to Chapter 2

Fortran

The syntax of the task construct is as follows:1

!$omp task [clause[[,] clause] ...]
structured-block

!$omp end task

where clause is one of the following:2

if([task :] scalar-logical-expression)3

final(scalar-logical-expression)4

untied5

default(private | firstprivate | shared | none)6

mergeable7

private(list)8

firstprivate(list)9

shared(list)10

in_reduction(reduction-identifier : list)11

depend(dependence-type : locator-list)12

priority(priority-value)13

allocate(modifiers:list)14

15

Fortran

Binding16

The binding thread set of the task region is the current team. A task region binds to the17
innermost enclosing parallel region.18

96 OpenMP API – Version 5.0 rev 1, November 2016

3 Changes to the OpenMP speci�cation 30

num_tasks(num-tasks)1

collapse(n)2

final(scalar-expr)3

priority(priority-value)4

untied5

mergeable6

nogroup7

allocate(modifiers:list)8

9

The taskloop directive places restrictions on the structure of all associated for-loops.10
Specifically, all associated for-loops must have canonical loop form (see Section 2.7 on page 62).11

C / C++
Fortran

The syntax of the taskloop construct is as follows:12

!$omp taskloop [clause[[,] clause] ...]
do-loops

[!$omp end taskloop]

where clause is one of the following:13

if([taskloop :] scalar-logical-expr)14

shared(list)15

private(list)16

firstprivate(list)17

lastprivate(list)18

reduction(reduction-identifier : list)19

in_reduction(reduction-identifier : list)20

default(private | firstprivate | shared | none)21

grainsize(grain-size)22

num_tasks(num-tasks)23

collapse(n)24

100 OpenMP API – Version 5.0 rev 1, November 2016

31 3.2 Changes to Chapter 2

final(scalar-logical-expr)1

priority(priority-value)2

untied3

mergeable4

nogroup5

allocate(modifiers:list)6

7

If an end taskloop directive is not specified, an end taskloop directive is assumed at the end8
of the do-loops.9

Any associated do-loop must be do-construct or an inner-shared-do-construct as defined by the10
Fortran standard. If an end taskloop directive follows a do-construct in which several loop11
statements share a DO termination statement, then the directive can only be specified for the12
outermost of these DO statements.13

If any of the loop iteration variables would otherwise be shared, they are implicitly made private for14
the loop-iteration tasks generated by the taskloop construct. Unless the loop iteration variables15
are specified in a lastprivate clause on the taskloop construct, their values after the loop16
are unspecified.17

Fortran

Binding18

The binding thread set of the taskloop region is the current team. A taskloop region binds to19
the innermost enclosing parallel region.20

Description21

The taskloop construct is a task generating construct. When a thread encounters a taskloop22
construct, the construct partitions the associated loops into explicit tasks for parallel execution of23
the loops’ iterations. The data environment of each generated task is created according to the24
data-sharing attribute clauses on the taskloop construct, per-data environment ICVs, and any25
defaults that apply. The order of the creation of the loop tasks is unspecified. Programs that rely on26
any execution order of the logical loop iterations are non-conforming.27

By default, the taskloop construct executes as if it was enclosed in a taskgroup construct28
with no statements or directives outside of the taskloop construct. Thus, the taskloop29
construct creates an implicit taskgroup region. If the nogroup clause is present, no implicit30
taskgroup region is created.31

CHAPTER 2. DIRECTIVES 101

3 Changes to the OpenMP speci�cation 32

As another example, if a lock acquire and release happen in different parts of a task region, no1
attempt should be made to acquire the same lock in any part of another task that the executing2
thread may schedule. Otherwise, a deadlock is possible. A similar situation can occur when a3
critical region spans multiple parts of a task and another schedulable task contains a4
critical region with the same name.5

The use of threadprivate variables and the use of locks or critical sections in an explicit task with an6
if clause must take into account that when the if clause evaluates to false, the task is executed7
immediately, without regard to Task Scheduling Constraint 2.8

Events9

The task-schedule event occurs in a thread when the thread switches tasks at a task scheduling10
point; no event occurs when switching to or from a merged task.11

Tool Callbacks12

A thread dispatches a registered ompt_callback_task_schedule callback for each13
occurrence of a task-schedule event in the context of the task that begins or resumes. This callback14
has the type signature ompt_callback_task_schedule_t. The argument prior_task_status15
is used to indicate the cause for suspending the prior task. This cause may be the completion of the16
prior task region, the encountering of a taskyield construct, or the encountering of an active17
cancellation point.18

Cross References19

• ompt_callback_task_schedule_t, see Section 4.6.2.10 on page 409.20

2.11 Memory Management Directives21

2.11.1 allocate Directive22

Summary23

The allocate directive specifies how a set of variables are allocated.24

C / C++

The allocate directive is a declarative directive.25

110 OpenMP API – Version 5.0 rev 1, November 2016

33 3.2 Changes to Chapter 2

3.2.4 Allocate directive and clause

C / C++
Fortran

The allocate directive is a declarative directive if it is not associated with an allocate1
statement.2

Fortran

Syntax3

C / C++

The syntax of the allocate directive is as follows:4

#pragma omp allocate(list) [clause[[[,] clause] ...]] new-line

where clause is one of the following:5

allocator(allocator)6

memspace(memspace)7

alloctraits(alloctrait-list)8

memtraits(memtrait-list)9

safe_align(alignment)10

where allocator is an expression of the omp_allocator_t type.11

where memspace is an expression of the omp_memspace_t type.12

where alloctrait-list is a key-value list where the allowed keys are the allocator traits keys13
and the allowed values are the accepted values for each key.14

where memtrait-list is a key-value list where the allowed keys are the memory traits keys15
and the allowed values are the accepted values for each key.16

where alignment is an integer expression that must evaluate to a power of two.17

C / C++

Fortran

The syntax of the allocate directive is as follows:18

!$omp allocate(list) [clause[[[,] clause] ...]]

or19

CHAPTER 2. DIRECTIVES 111

3 Changes to the OpenMP speci�cation 34

!$omp allocate[(list)] clause[[[,] clause] ...]
allocate statement

where clause is one of the following:1

allocator(allocator)2

memspace(memspace)3

alloctraits(alloctrait-list)4

memtraits(memtrait-list)5

safe_align(alignment)6

where allocator is an integer expression of the omp_allocator_kind kind.7

where memspace is an integer expression of the omp_memspace_kind kind.8

where alloctrait-list is a key-value list where the allowed keys are the allocator traits keys9
and the allowed values are the accepted values for each key.10

where memtrait-list is a key-value list where the allowed keys are the memory traits keys11
and the allowed values are the accepted values for each key.12

where alignment is an integer expression that must evaluate to a power of two.13

Fortran

Description14

If the directive is not associated with a Fortran allocate statement, the storage for each15
list item that appears in the directive will be provided by an allocation through an allocator.16
If no clause is specified then the allocator specified by the def-allocator-var ICV will be17
used. If the allocator clause is specified, the allocator specified in the clause will be used.18
Otherwise, the allocation will be provided as if using an allocator that had been built with19
the specified allocator traits, memory traits and/or the memspace memory space. If the20
safe_align clause is specified, then the allocation alignment of the request will the21
value of the safe_align clause.22

The scope of this allocation is that of the list item in the base language. When the23
allocation reaches the end of the scope it will be deallocated through the specified24
allocator or as if using an allocator that had been built with the specified allocator traits,25
memory traits and/or the memspace memory space. If the execution leaves the scope in a26
manner not supported by the base language it is unspecified whether the deallocation27
happens or not.28

112 OpenMP API – Version 5.0 rev 1, November 2016

35 3.2 Changes to Chapter 2

Fortran

If the directive is associated with a Fortran allocate statement, the allocation of the1
specified list items will be provided through an allocator. If no clause is specified then the2
allocator specified by the def-allocator-var ICV will be used. If the allocator clause is3
specified, the allocator specified in the clause will be used. Otherwise, the allocation will4
be provided as if using an allocator that had been built with the specified allocator traits,5
memory traits and/or the memspace memory space. If no list item is specified then all6
variables allocated by the allocate statement will be provided by the allocator.7

Fortran

For allocations that arise from this directive the null_fb value of the fallback allocator8
trait will behave as if the abort_fb had been specified.9

Restrictions10

• A variable that is part of another variable (as an array or structure element) cannot11
appear in an allocate directive.12

• The directive must appear in the same scope of the list item declaration and before its13
first use.14

• If the allocator clause is present, no other clause must be specified.15

• If the allocator clause is present, the allocator must be an allocator returned by the16
omp_init_allocator routine.17

• At most one allocator clause can appear on the allocate directive.18

• If the memspace clause is present, the memtraits clause must not be specified.19

• If the memspace clause is present, the memspace must be a memory space returned20
by the omp_init_memspace routine.21

• At most one memspace clause can appear on the allocate directive.22

• If the safe_align clause is present, its value must a power of two.23

C / C++

• If a list item has a static storage type, the allocator and the memspace clauses must24
not be specified.25

• If a list item has a static storage type, the fallback allocator trait must not have the26
allocator_fb value.27

C / C++

CHAPTER 2. DIRECTIVES 113

3 Changes to the OpenMP speci�cation 36

Fortran

• List items specified in the allocate directive must not have the ALLOCATABLE1
attribute unless the directive is associated with an allocate statement.2

• List items specified in an allocate directive that is associated with an allocate3
statement must be ALLOCATABLE variables allocated by the allocate statement.4

Fortran

Cross References5

• Memory spaces, allocators and their traits, see Section 2.5 on page 50.6

C / C++

• omp_memspace_t and omp_allocator_t, see Section 3.5.1 on page 328.7

C / C++
Fortran

• omp_memspace_kind and omp_allocator_kind, see Section 3.5.1 on page 328.8

Fortran

2.11.2 The allocate Clause9

Summary10

The allocate clause specifies the allocation and memory traits of the storage used for11
private variables of a directive.12

114 OpenMP API – Version 5.0 rev 1, November 2016

37 3.2 Changes to Chapter 2

Syntax1

The syntax of the allocate clause is as follows:2

allocate([modifiers:] list)

where modifiers is a comma separated list of one or more of the following:3

allocator(allocator)4

memspace(memspace)5

alloctraits(alloctrait-list)6

memtraits(memtrait-list)7

safe_align(alignment)8

C / C++

where allocator is an integer expression of the omp_allocator_t type.9

where memspace is an integer expression of the omp_memspace_t type.10

C / C++
Fortran

where allocator is an integer expression of the omp_allocator_kind kind.11

where memspace is an integer expression of the omp_memspace_kind kind.12

Fortran

where alloctrait-list is a key-value list where the allowed keys are the allocator traits keys13
and the allowed values are the accepted values for each key.14

where memtrait-list is a key-value list where the allowed keys are the memory traits keys15
and the allowed values are the accepted values for each key.16

where alignment is an integer expression that must evaluate to a power of two.17

CHAPTER 2. DIRECTIVES 115

3 Changes to the OpenMP speci�cation 38

Description1

The storage for new list items that arise from list item that appear in the directive will be2
provided by an allocation through an allocator. If no modifier is specified then the allocator3
specified by the def-allocator-var ICV will be used. If the allocator modifier is specified, the4
allocator specified in the clause will be used. Otherwise, the allocation will be provided as5
if using an allocator that had been built with the specified allocator traits, memory traits6
and/or the memspace memory space. For allocations that arise from this clause the7
null_fb value of the fallback allocator trait will behave as if the abort_fb had been8
specified. If the safe_align modifier is specified, then the allocation alignment of the9
request will be the value of the safe_align modifier.10

Restrictions11

• List items specified in the allocate clause must also be specified in a private,12
firstprivate, lastprivate, linear or reduction clause in the same directive.13

• If the allocator modifier is present, no other modifier must be specified.14

• If the allocator modifier is present, the allocator must be an allocator returned by the15
omp_init_allocator routine.16

• At most one allocator modifier can appear on the allocate clause.17

• If the memspace modifier is present, the memtraits modifier must not be specified.18

• If the memspace modifier is present, the memspace must be a memory space returned19
by the omp_init_memspace routine.20

• At most one memspace modifier can appear on the allocate modifier.21

Cross References22

• Memory spaces, allocators and their traits, see Section 2.5 on page 50.23

C / C++

• omp_memspace_t and omp_allocator_t, see Section 3.5.1 on page 328.24

C / C++
Fortran

• omp_memspace_kind and omp_allocator_kind, see Section 3.5.1 on page 328.25

Fortran

116 OpenMP API – Version 5.0 rev 1, November 2016

39 3.2 Changes to Chapter 2

C / C++

3.5 Memory Management Routines1

This section describes routines that support management of memory on the current2
device.3

Instances of OpenMP memory management types must be accessed only through the4
routines described in this section; programs that otherwise access OpenMP instances of5
these types are non-conforming.6

3.5.1 Memory Management Types7

The following type definitions are used by the memory management routines:8

C / C++

The type omp_uintptr_t must be defined as an unsigned integer that is capable of9
storing an address.10

typedef enum {11
OMP_MTK_DISTANCE,12
OMP_MTK_LOCATION,13
OMP_MTK_BANDWIDTH,14
OMP_MTK_LATENCY,15
OMP_MTK_OPTIMIZED16
OMP_MTK_PAGESIZE,17
OMP_MTK_PERMISSION,18
OMP_MTK_CAPACITY,19
OMP_MTK_AVAILABLE20

} omp_memtrait_key_t;21
22

typedef enum {23
OMP_MTV_FALSE = 0,24
OMP_MTV_TRUE = 1,25
OMP_MTV_NEAR,26
OMP_MTV_FAR,27
OMP_MTV_CORE,28
OMP_MTV_SOCKET,29
OMP_MTV_NODE,30
OMP_MTV_HIGHEST,31

328 OpenMP API – Version 5.0 rev 1, November 2016

3 Changes to the OpenMP speci�cation 40

3.3 Changes to Chapter 3

OMP_MTV_LOWEST,1
OMP_MTV_BANDWIDTH,2
OMP_MTV_LATENCY,3
OMP_MTV_CAPACITY,4
OMP_MTV_NONE,5
OMP_MTV_R,6
OMP_MTV_W,7
OMP_MTV_RW = OMP_MTV_R | OMP_MTV_W,8

} omp_memtrait_value_t;9
10
11

typedef struct {12
omp_memtrait_key_t key;13
omp_uintptr_t value;14

} omp_memtrait_t;15
16
17

typedef enum {18
OMP_ATK_THREADMODEL,19
OMP_ATK_ALIGNMENT,20
OMP_ATK_PIN,21
OMP_ATK_FALLBACK,22
OMP_ATK_FB_DATA23

} omp_alloctrait_key_t;24
25
26

typedef enum {27
OMP_ATV_FALSE = 0,28
OMP_ATV_TRUE = 1,29
OMP_ATV_SHARED,30
OMP_ATV_EXCLUSIVE,31
OMP_ATV_ABORT_FB,32
OMP_ATV_NULL_FB,33
OMP_ATV_ALLOCATOR_FB,34
OMP_ATV_DEFAULT_FB35

} omp_alloctrait_value_t;36
37
38

typedef struct {39
omp_alloctrait_key_t key;40
omp_uintptr_t value;41

} omp_alloctrait_t;42
43

CHAPTER 3. RUNTIME LIBRARY ROUTINES 329

41 3.3 Changes to Chapter 3

1
omp_memtrait_set_t;2
const omp_memtrait_set_t omp_default_memspace_traits;3
omp_memspace_t;4
enum { OMP_NULL_MEMSPACE = NULL };5

6
7

omp_alloctrait_set_t;8
const omp_alloctrait_set_t omp_default_allocator_traits;9
omp_allocator_t;10
enum { OMP_NULL_ALLOCATOR = NULL };11

C / C++
Fortran

integer parameter omp_memtrait_key_kind12
13

integer(kind=omp_memtrait_key_kind), &14
parameter :: omp_mtk_distance15

integer(kind=omp_memtrait_key_kind), &16
parameter :: omp_mtk_location17

integer(kind=omp_memtrait_key_kind), &18
parameter :: omp_mtk_bandwidth19

integer(kind=omp_memtrait_key_kind), &20
parameter :: omp_mtk_latency21

integer(kind=omp_memtrait_key_kind), &22
parameter :: omp_mtk_optimized23

integer(kind=omp_memtrait_key_kind), &24
parameter :: omp_mtk_pagesize25

integer(kind=omp_memtrait_key_kind), &26
parameter :: omp_mtk_permission27

integer(kind=omp_memtrait_key_kind), &28
parameter :: omp_mtk_capacity29

integer(kind=omp_memtrait_key_kind), &30
parameter :: omp_mtk_available31

32
33

integer parameter omp_memtrait_val_kind34
35
36

integer(kind=omp_memtrait_val_kind), &37
parameter :: omp_mtv_false = 038

integer(kind=omp_memtrait_val_kind), &39
parameter :: omp_mtv_true = 140

330 OpenMP API – Version 5.0 rev 1, November 2016

3 Changes to the OpenMP speci�cation 42

integer(kind=omp_memtrait_val_kind), &1
parameter :: omp_mtv_near2

integer(kind=omp_memtrait_val_kind), &3
parameter :: omp_mtv_far4

integer(kind=omp_memtrait_val_kind), &5
parameter :: omp_mtv_core6

integer(kind=omp_memtrait_val_kind), &7
parameter :: omp_mtv_socket8

integer(kind=omp_memtrait_val_kind), &9
parameter :: omp_mtv_node10

integer(kind=omp_memtrait_val_kind), &11
parameter :: omp_mtv_highest12

integer(kind=omp_memtrait_val_kind), &13
parameter :: omp_mtv_lowest14

integer(kind=omp_memtrait_val_kind), &15
parameter :: omp_mtv_bandwidth16

integer(kind=omp_memtrait_val_kind), &17
parameter :: omp_mtv_latency18

integer(kind=omp_memtrait_val_kind), &19
parameter :: omp_mtv_capacity20

integer(kind=omp_memtrait_val_kind), &21
parameter :: omp_mtv_none22

integer(kind=omp_memtrait_val_kind), &23
parameter :: omp_mtv_r24

integer(kind=omp_memtrait_val_kind), &25
parameter :: omp_mtv_w26

integer(kind=omp_memtrait_val_kind), &27
parameter :: omp_mtv_rw = IOR(omp_mtv_r,omp_mtv_w)28

29
30

type omp_memtrait31
integer(kind=omp_memtrait_key_kind) key32
integer(kind=omp_memtrait_val_kind) value33

end type omp_memtrait34
35
36

integer parameter omp_alloctrait_key_kind37
38
39

integer(kind=omp_alloctrait_key_kind), &40
parameter :: omp_atk_threadmodel41

integer(kind=omp_alloctrait_key_kind), &42
parameter :: omp_atk_alignment43

CHAPTER 3. RUNTIME LIBRARY ROUTINES 331

43 3.3 Changes to Chapter 3

integer(kind=omp_alloctrait_key_kind), &1
parameter :: omp_atk_pin2

integer(kind=omp_alloctrait_key_kind), &3
parameter :: omp_atk_fallback4

integer(kind=omp_alloctrait_key_kind), &5
parameter :: omp_atk_fb_data6

7
8

integer parameter omp_alloctrait_val_kind9
10
11

integer(kind=omp_alloctratit_val_kind), &12
parameter :: omp_atv_true = 013

integer(kind=omp_alloctratit_val_kind), &14
parameter :: omp_atv_false = 115

integer(kind=omp_alloctratit_val_kind), &16
parameter :: omp_atv_shared17

integer(kind=omp_alloctratit_val_kind), &18
parameter :: omp_atv_exclusive19

integer(kind=omp_alloctratit_val_kind), &20
parameter :: omp_atv_abort_fb21

integer(kind=omp_alloctratit_val_kind), &22
parameter :: omp_atv_null_fb23

integer(kind=omp_alloctratit_val_kind), &24
parameter :: omp_atv_allocator_fb25

integer(kind=omp_alloctratit_val_kind), &26
parameter :: omp_atv_default_fb27

28
29

type omp_alloctrait30
integer(kind=omp_alloctrait_key_kind) key31
integer(kind=omp_alloctrait_val_kind) value32

end type omp_alloctrait33
34
35

integer parameter omp_memtrait_set_kind36
integer(kind=omp_memtrait_set_kind), &37

parameter :: omp_default_memspace_traits38
integer parameter omp_memspace_kind39
integer(kind=omp_memspace_kind), &40

parameter :: omp_null_memspace = 041
42
43

332 OpenMP API – Version 5.0 rev 1, November 2016

3 Changes to the OpenMP speci�cation 44

integer parameter omp_alloctrait_set_kind1
integer(kind=omp_alloctrait_set_kind), &2

parameter :: omp_default_allocator_traits3
integer parameter omp_allocator_kind4
integer(kind=omp_allocator_kind), &5

parameter :: omp_null_allocator = 06

Fortran

3.5.2 omp_init_memtrait_set7

Summary8

The omp_init_memtrait_set routine initializes an OpenMP memory traits set.9

Format10

C / C++

void omp_init_memtrait_set (omp_memtrait_set_t *set,
size_t ntraits,
omp_memtrait_t *traits); (C)

void omp_init_memtrait_set (omp_memtrait_set_t *set,
size_t ntraits = 0,
omp_memtrait_t *traits = NULL); (C++)

C / C++
Fortran

subroutine omp_init_memtrait_set (set, ntraits, traits)
integer(kind=omp_memtrait_set_kind),intent(out) :: set
integer,intent(in) :: ntraits
type(omp_memtrait),intent(in) :: traits(*)

Fortran

Binding11

The binding thread set for an omp_init_memtrait_set region is all threads on a12
device. The effect of executing this routine is not related to any specific region13
corresponding to any construct or API routine.14

CHAPTER 3. RUNTIME LIBRARY ROUTINES 333

45 3.3 Changes to Chapter 3

3.3.1 Routines for de�ning memory traits

Constraints on Arguments1

If the ntraits argument is greater than zero, then there must be at least as many traits2
specified in the traits argument; otherwise, the behavior is unspecified.3

Effect4

The effect of the omp_init_memtrait_set routine is to initialize the memory trait set in5
the set argument to the memory traits specified in the traits argument. The number of6
traits to be included in the set is specified by the ntraits argument.7

3.5.3 omp_destroy_memtrait_set8

Summary9

The omp_destroy_memtrait_set routine ensures that an OpenMP memory traits set10
is uninitialized.11

Format12

C / C++

void omp_destroy_memtrait_set (omp_memtrait_set_t *set);

C / C++
Fortran

subroutine omp_destroy_memtrait_set (set)
integer(kind=omp_memtrait_set_kind),intent(inout) :: set

Fortran

Binding13

The binding thread set for an omp_destroy_memtrait_set region is all threads on a14
device. The effect of executing this routine is not related to any specific region15
corresponding to any construct or API routine.16

334 OpenMP API – Version 5.0 rev 1, November 2016

3 Changes to the OpenMP speci�cation 46

Effect1

The effect of the omp_destroy_memtrait_set routine is to uninitialize the memory2
traits set specified in the first argument.3

3.5.4 omp_add_memtraits4

Summary5

The omp_add_memtraits routine adds a memory trait to the memory traits set.6

Format7

C / C++

void omp_add_memtraits (omp_memtrait_set_t *set,
size_t ntraits,
omp_memtrait_t *traits);

C / C++
Fortran

subroutine omp_add_memtraits (set, ntraits, traits)
integer(kind=omp_memtrait_set_kind),intent(inout) :: set
integer,intent(in) :: ntraits
type(omp_memtrait),intent(in) :: traits(*)

Fortran

Constraints on Arguments8

If the ntraits argument is greater than zero, then there must be at least as many traits9
specified in the traits argument; otherwise, the behavior is unspecified.10

Binding11

The binding thread set for an omp_add_memtraits region is all threads on a device. The12
effect of executing this routine is not related to any specific region corresponding to any13
construct or API routine.14

CHAPTER 3. RUNTIME LIBRARY ROUTINES 335

47 3.3 Changes to Chapter 3

Effect1

The effect of the omp_add_memtraits routine is that the ntraits specified in traits are2
added to the set of memory traits.3

Cross References4

• Memory traits in Section 2.5.1 on page 505

3.5.5 omp_merge_memtraits6

Summary7

The omp_merge_memtraits routine merges two memory traits sets.8

Format9

C / C++

void omp_merge_memtraits (omp_memtrait_set_t *dst,
const omp_memtrait_set_t *src,
int dst_priority); (C)

void omp_merge_memtraits (omp_memtrait_set_t *dst,
const omp_memtrait_set_t *src,
bool dst_priority = true); (C++)

C / C++
Fortran

subroutine omp_merge_memtraits (dst, src, dst_priority)
integer(kind=omp_memtrait_set_kind),intent(inout) :: dst
integer(kind=omp_memtrait_set_kind),intent(in) :: src
logical :: dst_priority

Fortran

Binding10

The binding thread set for an omp_merge_memtraits region is all threads on a device.11
The effect of executing this routine is not related to any specific region corresponding to12
any construct or API routine.13

336 OpenMP API – Version 5.0 rev 1, November 2016

3 Changes to the OpenMP speci�cation 48

Effect1

The effect of the omp_merge_memtraits routine is that the two memory traits sets dst2
and src are merged into dst. If the available trait appears in both sets the merged3
valued for the trait will be the result of adding the values in each set. If the capacity trait4
appears in both sets the merged value for the trait will be the greater of the values in either5
set. For any other trait, if the same memory trait appears in both sets, if the dst_priority6
argument evaluates to true the merged value will be that of the dst set; otherwise, it will7
the value of the src set.8

3.5.6 omp_init_memspace9

Summary10

The omp_init_memspace routine returns handler to a memory space that matches the11
specified memory traits.12

Format13

C / C++

omp_memspace_t * omp_init_memspace(const omp_memtrait_set_t *traits);

C / C++
Fortran

integer(kind=omp_memspace_kind) function omp_init_memspace (traits)
integer(kind=omp_memtrait_set_kind),intent(in) :: traits

Fortran

Binding14

The binding thread set for an omp_init_memspace region is all threads on a device. The15
effect of executing this routine is not related to any specific region corresponding to any16
construct or API routine.17

Constraints on Arguments18

The traits argument must have been initialized with the omp_init_memtrait_set19
routine.20

CHAPTER 3. RUNTIME LIBRARY ROUTINES 337

49 3.3 Changes to Chapter 3

3.3.2 Routines for memory spaces

Effect1

The omp_init_memspace routine returns a handler to a memory space in the current2
device that matches the memory traits specified in the traits set. If no memory space is3
found that matches the specified memory traits then the special value4
OMP_NULL_MEMSPACE is returned.5

The traits in omp_default_memspace_traits must be defined in such a way that it6
guarantees that the omp_init_memspace routine will return a valid memory space that7
is always the same and that an allocation from that memory space is guaranteed to be8
accessible to all threads on that device without any special consideration.9

Cross References10

• Memory spaces in Section 2.5.1 on page 5011

3.5.7 omp_destroy_memspace12

Summary13

The omp_destroy_memspace releases all resources associated with a memory space14
handler.15

Format16

C / C++

void omp_destroy_memspace (omp_memspace_t *memspace);

C / C++
Fortran

subroutine omp_destroy_memspace (memspace)
integer(kind=omp_memspace_kind),intent(out) :: memspace

Fortran

338 OpenMP API – Version 5.0 rev 1, November 2016

3 Changes to the OpenMP speci�cation 50

Binding1

The binding thread set for an omp_destroy_memspace region is all threads on a device.2
The effect of executing this routine is not related to any specific region corresponding to3
any construct or API routine.4

Effect5

The omp_destroy_memspace routine releases resources associated with the6
memspace handler. Accessing allocators, or memory allocated by them, that have been7
associated through the memspace handler results in unspecified behavior.8

3.5.8 omp_init_alloctrait_set9

Summary10

The omp_init_alloctrait_set initializes an OpenMP allocator traits set.11

Format12

C / C++

void omp_init_alloctrait_set (omp_alloctrait_set_t *set
size_t ntraits,
omp_alloctrait_t *traits); (C)

void omp_init_alloctrait_set (omp_alloctrait_set_t *set
size_t ntraits = 0,
omp_alloctrait_t *traits = NULL); (C++)

C / C++
Fortran

subroutine omp_init_alloctrait_set (set, ntraits, traits)
integer(kind=omp_alloctrait_set_kind),intent(out) :: set
integer,intent(in) :: ntraits
type(omp_alloctrait),intent(in) :: traits(*)

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 339

51 3.3 Changes to Chapter 3

3.3.3 Routines for de�ning allocator traits

Binding1

The binding thread set for an omp_init_alloctrait_set region is all threads on a2
device. The effect of executing this routine is not related to any specific region3
corresponding to any construct or API routine.4

Constraints on Arguments5

If the ntraits argument is greater than zero, then there must be at least as many traits6
specified in the traits argument. If there are fewer than ntraits traits the behavior is7
unspecified.8

Effect9

The effect of the omp_init_alloctrait_set routine is to initialize the allocator trait set10
in the set argument to the allocator traits specified in the traits argument. The number of11
traits to be included in the set is specified by the ntraits argument.12

3.5.9 omp_destroy_alloctrait_set13

Summary14

The omp_destroy_alloctrait_set routine ensures that an OpenMP allocator traits15
set is uninitialized.16

Format17

C / C++

void omp_destroy_alloctrait_set (omp_alloctrait_set_t *set);

C / C++
Fortran

subroutine omp_destroy_alloctrait_set (set)
integer(kind=omp_alloctrait_set_kind),intent(inout) :: set

Fortran

340 OpenMP API – Version 5.0 rev 1, November 2016

3 Changes to the OpenMP speci�cation 52

Binding1

The binding thread set for an omp_destroy_alloctrait_set region is all threads on a2
device. The effect of executing this routine is not related to any specific region3
corresponding to any construct or API routine.4

Effect5

The effect of the omp_destroy_alloctrait_set routine is to uninitialize the allocator6
traits set specified in the first argument.7

3.5.10 omp_add_alloctraits8

Summary9

The omp_add_alloctraits routine adds an allocator trait to the allocator traits set.10

Format11

C / C++

void omp_add_alloctraits (omp_alloctrait_set_t *set,
size_t ntraits,
omp_alloctrait_t *traits);

C / C++
Fortran

subroutine omp_add_alloctraits (set, ntraits, traits)
integer(kind=omp_alloctrait_set_kind),intent(inout) :: set
integer,intent(in) :: ntraits
type(omp_alloctrait),intent(in) :: traits(*)

Fortran

Binding12

The binding thread set for an omp_add_alloctrait region is all threads on a device.13
The effect of executing this routine is not related to any specific region corresponding to14
any construct or API routine.15

CHAPTER 3. RUNTIME LIBRARY ROUTINES 341

53 3.3 Changes to Chapter 3

Constraints on Arguments1

If the ntraits argument is greater than zero, then there must be at least as many traits2
specified in the traits argument; otherwise, the behavior is unspecified.3

Effect4

The effect of the omp_add_alloctraits routine is that the ntraits specified in traits are5
added to the set of allocator traits.6

Cross References7

• Allocator traits in Section 2.5.2 on page 528

3.5.11 omp_merge_alloctraits9

Summary10

The omp_merge_alloctraits routine merges two allocator traits sets.11

Format12

C / C++

void omp_merge_alloctraits (omp_alloctrait_set_t *dst,
const omp_alloctrait_set_t *src,
int dst_priority); (C)

void omp_merge_alloctraits (omp_alloctrait_set_t *dst,
const omp_alloctrait_set_t *src,
bool dst_priority=true); (C++)

C / C++
Fortran

subroutine omp_merge_alloctraits (dst, src, dst_priority)
integer(kind=omp_alloctrait_set_kind),intent(inout) :: dst
integer(kind=omp_alloctrait_set_kind),intent(in) :: src
logical :: dst_priority

Fortran

342 OpenMP API – Version 5.0 rev 1, November 2016

3 Changes to the OpenMP speci�cation 54

Binding1

The binding thread set for an omp_merge_alloctraits region is all threads on a2
device. The effect of executing this routine is not related to any specific region3
corresponding to any construct or API routine.4

Effect5

The effect of the omp_merge_alloctraits routine is that the two allocator traits sets6
dst and src are merged into dst. If the same memory trait appears in both sets, and the7
dst_priority argument evaluates to true the merged value will be that of the dst set;8
otherwise, it will the value of the src set.9

3.5.12 omp_init_allocator10

Summary11

The omp_init_allocator initializes an allocator and associates it with a memory12
space.13

Format14

C / C++

omp_allocator_t * omp_init_allocator (omp_memspace_t *memspace,
const omp_alloctrait_set_t *traits);

C / C++
Fortran

integer(kind=omp_allocator_kind)
function omp_init_allocator (memspace, traits)
integer(kind=omp_memspace_kind),intent(in) :: memspace
integer(kind=omp_alloctrait_set_kind),intent(in) :: traits

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 343

55 3.3 Changes to Chapter 3

3.3.4 Routines for allocators

Binding1

The binding thread set for an omp_init_allocator region is all threads on a device.2
The effect of executing this routine is not related to any specific region corresponding to3
any construct or API routine.4

Constraints on Arguments5

The memspace argument must be a memory space returned by the6
omp_init_memspace routine. The traits argument must have been initialized with the7
omp_init_alloctrait_set routine.8

Effect9

The omp_init_allocator routine creates a new allocator that is associated with the10
memory space represented by the memspace handler. The allocations done through the11
created allocator will behave according to the allocator traits specified in the traits12
argument. Specifying the same allocator trait more than once results in unspecified13
behavior. The routine returns a handler for the created allocator. If the traits argument is14
an empty set this routine will always return a handler to an allocator. If the traits argument15
is not empty and an allocator that satisfies the requirements cannot be created then the16
special value OMP_NULL_ALLOCATOR is returned.17

The traits in omp_default_allocator_traits must be defined as an empty set of18
allocator traits.19

Cross References20

• Allocators in Section 2.5.2 on page 5221

3.5.13 omp_destroy_allocator22

Summary23

The omp_destroy_allocator releases all resources and memory allocations24
associated to an allocator.25

Format26

C / C++

344 OpenMP API – Version 5.0 rev 1, November 2016

3 Changes to the OpenMP speci�cation 56

void omp_destroy_allocator (omp_allocator_t *allocator);

C / C++
Fortran

subroutine omp_destroy_allocator (allocator)
integer(kind=omp_allocator_kind),intent(out) :: allocator

Fortran

Binding1

The binding thread set for an omp_destroy_allocator region is all threads on a2
device. The effect of executing this routine is not related to any specific region3
corresponding to any construct or API routine.4

Effect5

The omp_destroy_allocator routine releases resources that might be associated with6
the allocator handler. Also, any memory allocated by the allocator but not deallocated yet7
is deallocated by this routine.8

3.5.14 omp_set_default_allocator9

Summary10

The omp_set_default_allocator sets the default allocator to be used by allocation11
calls, directives and clauses that use default allocation.12

Format13

C / C++

void omp_set_default_allocator (omp_allocator_t *allocator);

C / C++
Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 345

57 3.3 Changes to Chapter 3

integer(kind=omp_allocator_kind)
function omp_get_default_allocator ()

Fortran

Binding1

The binding task set for an omp_get_default_allocator region is the generating2
task.3

Effect4

The effect of this routine is to return the value of the def-allocator-var ICV of the current5
task.6

Cross References7

• def-allocator-var ICV, see Section 2.3 on page 39.8

• omp_alloc routine, see Section 3.5.16 on page 347.9

C / C++

3.5.16 omp_alloc10

Summary11

The omp_alloc requests a memory allocation to an allocator.12

Format13

void * omp_alloc (size_t size, omp_allocator_t *allocator); (C)
void * omp_alloc (size_t size,

omp_allocator_t *allocator=OMP_NULL_ALLOCATOR); (C++)

CHAPTER 3. RUNTIME LIBRARY ROUTINES 347

3 Changes to the OpenMP speci�cation 58

3.3.5 Routines for allocation/free

Effect1

The omp_alloc routine requests a memory allocation of size bytes from the specified2
allocator without specifying an allocation alignment. If value of the allocator argument is3
OMP_NULL_ALLOCATOR the allocator used by the routine will be the one specified by the4
def-allocator-var ICV. Upon success it returns a pointer to the allocated memory.5
Otherwise, the behavior of the call depends on the fallback trait of the allocator.6

Cross References7

• How Allocations Works, see Section 2.5.2 on page 52.8

3.5.17 omp_alloc_safe_align9

Summary10

The omp_alloc_safe_align requests a memory allocation to an allocator with an11
allocation alignment.12

Format13

void * omp_alloc_safe_align (size_t size, size_t alignment,
omp_allocator_t *allocator); (C)

void * omp_alloc_safe_align (size_t size, size_t alignment,
omp_allocator_t *allocator=OMP_NULL_ALLOCATOR);(C++)

Constraints on Arguments14

The allocator must be an allocator returned by the omp_init_allocator routine.15
Specifying an alignment argument that is not a power of two results in unspecified16
behavior.17

Effect18

The omp_alloc_safe_align routine requests a memory allocation of size bytes from19
the specified allocator where the allocation alignment of the request is alignment. If value20
of the allocator argument is OMP_NULL_ALLOCATOR the allocator used by the routine will21
be the one specified by the def-allocator-var ICV. Upon success it returns a pointer to the22
allocated memory. Otherwise, the behavior of the call depends on the fallback trait of23
the allocator.24

348 OpenMP API – Version 5.0 rev 1, November 2016

59 3.3 Changes to Chapter 3

Cross References1

• How Allocations Works, see Section 2.5.2 on page 52.2

3.5.18 omp_free3

Summary4

The omp_free routine deallocates previously allocated memory.5

Format6

void omp_free (void * ptr, omp_allocator_t *allocator); (C)
void omp_free (void * ptr,

omp_allocator_t *allocator = OMP_NULL_ALLOCATOR); (C++)

Effect7

The omp_free routine deallocates the memory pointed by ptr. The ptr argument must8
point to memory previously allocated with an OpenMP allocator. If the allocator is9
specified it must be the allocator to which the allocation request was made. If the allocator10
argument is OMP_NULL_ALLOCATOR the implementation will find the allocator used to11
allocate the memory. Using omp_free on memory that was already deallocated results in12
unspecified behavior.13

C / C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 349

3 Changes to the OpenMP speci�cation 60

5.16 OMP_TOOL_LIBRARIES1

The OMP_TOOL_LIBRARIES environment variable sets the tool-libraries-var ICV to a list of tool2
libraries that will be considered for use on a device where an OpenMP implementation is being3
initialized. The value of this environment variable must be a comma-separated list of4
dynamically-linked libraries, each specified by an absolute path.5

If the tool-var ICV is not enabled, the value of tool-libraries-var will be ignored. Otherwise, if6
ompt_start_tool, a global function symbol for a tool initializer, isn’t visible in the address7
space on a device where OpenMP is being initialized or if ompt_start_tool returns NULL, an8
OpenMP implementation will consider libraries in the tool-libraries-var list in a left to right order.9
The OpenMP implementation will search the list for a library that meets two criteria: it can be10
dynamically loaded on the current device and it defines the symbol ompt_start_tool. If an11
OpenMP implementation finds a suitable library, no further libraries in the list will be considered.12

Cross References13

• tool-libraries-var ICV, see Section 2.3 on page 39.14

• Tool Interface, see Section 4 on page 364.15

• ompt_start_tool routine, see Section 4.5.1 on page 396.16

5.17 OMP_ALLOCATOR17

The OMP_ALLOCATOR environment variable defines the memory and allocator traits to be18
used to create the allocator to be set as the initial value of the def-allocator-var ICV.19

The value of this environment variable is a comma-separated list of key=value elements20
where each key is either a memory or allocator trait and value is one of the allowed values21
for the spceified trait.22

Cross References23

• memory and allocator traits, see Section 2.5 on page 50.24

• def-allocator-var ICV, see Section 2.3 on page 39.25

• omp_set_default_allocator routine, see Section 3.5.14 on page 345.26

• omp_get_default_allocator routine, see Section 3.5.15 on page 346.27

CHAPTER 5. ENVIRONMENT VARIABLES 479

61 3.4 Changes to Chapter 5

3.4 Changes to Chapter 5

4 Examples 62

4 Examples

The examples presented in the section are intended to demonstrate how the proposed mem-
ory management APIs may be used in an OpenMP program. For each example, a C and
Fortran version is presented. The example descriptions pertain to the C examples but apply
to the corresponding Fortran examples unless otherwise noted. The �rst set of examples
show how to use the APIs to perform dynamic memory allocation using default memory
and allocator traits. The next set of examples demonstrate the APIs for explicitly specify-
ing memory and allocator traits for dynamic memory allocation. The examples that follow
show how variable declarations can be annotated with the declarative allocate directive.
The �nal examples in this section show how allocation for private variables that arise from
data-sharing clauses can be managed with the allocate clause.

4.1 Basic Allocation

First, we start with examples demonstrating how to use the memory management APIs to
perform allocations with the default allocator. In the C example, OMP_NULL_ALLOCATOR is
passed in to the omp_alloc call at line 10 indicating that the default allocator internally
maintained by the implementation should be used. In the Fortran example, the same e�ect
is achieved by annotating the allocate statement with an allocate directive without an
allocator clause at line 8. Equivalently, the default allocator can be explicitly obtained
and used in the code by using the omp_get_default_allocator routine.
The memory and allocator traits for the default allocator may be speci�ed by using the

OMP_ALLOCATOR environment variable or the omp_set_default_allocator routine; other-
wise, its traits are implementation-de�ned. For example, suppose OMP_ALLOCATOR is set to
�optimized=bandwidth,fallback=abort_fb� in the environment from which the program
is executed and omp_set_default_allocator is not used. In this case, the allocation will
occur from a bandwidth-optimized memory if it is available or else the program will abort.

C / C++
Example basic.1.c

S-1 #include <stdio.h>

S-2 #include <omp.h>

S-3

S-4 int basic_default1(int n)

S-5 {

S-6 const int success=1, failure=0;

S-7 int retval;

S-8 double *buffer;

S-9

S-10 buffer = omp_alloc(n * sizeof(*buffer), OMP_NULL_ALLOCATOR);

S-11

S-12 if (buffer == NULL) {

S-13 fprintf("Could not allocate space using default allocator\n");

S-14 retval = failure;

63 4.1 Basic Allocation

S-15 } else {

S-16 do_work(buffer, n);

S-17 omp_free(buffer, OMP_NULL_ALLOCATOR);

S-18 retval = success:

S-19 }

S-20

S-21 return retval;

S-22 }

C / C++

Fortran

Example basic.1.f

S-1 function basic_default1(n) result(retval)

S-2 use omp_lib

S-3 integer :: n, retval

S-4 integer, parameter :: success=1, failure=0

S-5 double precision, allocatable :: buffer(:)

S-6 integer :: alloc_status

S-7

S-8 !$omp allocate

S-9 allocate(buffer(n), stat=alloc_status)

S-10

S-11 if (alloc_status /= 0) then

S-12 print *, "Could not allocate using default allocator"

S-13 retval = failure

S-14 else

S-15 call do_work(buffer, n)

S-16 deallocate(buffer)

S-17 retval = success

S-18 end if

S-19 end function basic_default1

Fortran

The following examples shows how the proposed API can be used to perform memory allo-
cation using default memory and allocator traits. The e�ect of using omp_default_memtraits
is to request that the implementation assumes an implementation-de�ned set of default traits
when selecting a memory for which a memory space object will be returned. The e�ect of
using omp_default_alloctraits is to request that the implementation assumes the spec-
i�ed default values for each allocator trait when returning an allocator object, and it is
therefore equivalent to setting up an allocator traits set object with zero added traits.
The call at line 12 is guaranteed to return a non-NULL value, and likewise the call at line

13 is guaranteed to return a non-NULL value. The resulting allocator may then be used for
default allocations without any traits speci�ed explicitly.

4 Examples 64

C / C++
Example basic.2.c

S-1 #include <stdio.h>

S-2 #include <omp.h>

S-3

S-4 int basic_default2(int n)

S-5 {

S-6 const int success=1, failure=0;

S-7 int retval;

S-8 omp_memspace_t *my_mspace;

S-9 omp_allocator_t *my_allocator;

S-10 double *buffer;

S-11

S-12 my_mspace = omp_init_memspace(&omp_default_memtraits);

S-13 my_allocator = omp_init_allocator(my_mspace, &omp_default_alloctraits);

S-14 buffer = omp_alloc(n * sizeof(*buffer), my_allocator);

S-15

S-16 if (buffer == NULL) {

S-17 fprintf("Could not allocate space using default traits\n");

S-18 retval = failure;

S-19 } else {

S-20 do_work(buffer, n);

S-21 omp_free(buffer, my_allocator);

S-22 retval = success:

S-23 }

S-24

S-25 omp_destroy_allocator(my_allocator);

S-26 omp_destroy_mspace(my_mspace);

S-27

S-28 return retval;

S-29 }

C / C++

Fortran
Example basic.2.f

S-1 function basic_default2(n) result(retval)

S-2 use omp_lib

S-3 integer :: n, retval

S-4 integer, parameter :: success=1, failure=0

S-5 integer (kind=omp_memspace_kind) :: my_mspace

S-6 integer (kind=omp_allocator_kind) :: my_allocator

S-7 double precision, allocatable :: buffer(:)

S-8 integer :: alloc_status

S-9

S-10 my_mspace = omp_init_memspace(omp_my_memtraits)

65 4.2 Allocation with Traits

S-11 my_allocator = omp_init_allocator(my_mspace, omp_my_alloctraits)

S-12

S-13 !$omp allocate allocator(my_allocator)

S-14 allocate(buffer(n), stat=alloc_status)

S-15

S-16 if (alloc_status /= 0) then

S-17 print *, "Could not allocate using default traits"

S-18 retval = failure

S-19 else

S-20 call do_work(buffer, n)

S-21 deallocate(buffer)

S-22 retval = success

S-23 end if

S-24

S-25 call omp_destroy_allocator(my_allocator)

S-26 call omp_destroy_memspace(my_mspace)

S-27 end function basic_default2

Fortran

4.2 Allocation with Traits

In the following examples, the program attempts to allocate out of the memory providing
the highest bandwidth while also supporting 2 megabyte pages. At lines 12 through 17, a
memory space object is requested with the bandwidth trait set to highest and the pagesize
trait set to 2 megabytes. Using the bandwidth trait rather than the optimized trait means
that the memory providing the highest bandwidth while supporting 2MB pages should
be used, regardless of whether it is actually designated as �bandwidth-optimized.� If the
implementation is unable to return such a memory space object since a memory with a 2MB
page size is unavailable, a memory space object with default traits is obtained. Next, the
program requests an allocator object using the memory space object (pointed to by mspace)
and default allocator traits.

The allocation is performed at line 19 using the obtained allocator. If the allocator is
unable to allocate the requested number of bytes, then the implementation invokes the de-
fault fallback behavior � allocating, with default allocator traits, from a memory space with
default memory traits. Even with this fallback behavior, it is possible that the allocation is
ultimately unsuccessful. In this event the program returns from the function with a failure
status.

4 Examples 66

C / C++

Example basic_traits.1.c

S-1 #include <stdio.h>

S-2 #include <omp.h>

S-3

S-4 int basic_traits1(int n)

S-5 {

S-6 const int success=1, failure=0;

S-7 const omp_memtrait_t mtrait_list[2] =

S-8 { {OMP_MTK_BANDWIDTH, OMP_MTV_HIGHEST},

S-9 {OMP_MTK_PAGESIZE, 2*1024*1024} };

S-10 int retval = success;

S-11

S-12 omp_memtrait_set_t mtraits;

S-13 omp_init_memtrait_set(&mtraits, 2, mtrait_list);

S-14 omp_memspace_t *my_mspace = omp_init_memspace(&mtraits);

S-15 if (my_mspace == OMP_NULL_MEMSPACE) {

S-16 my_mspace = omp_init_memspace(&omp_default_memtraits);

S-17 }

S-18

S-19 omp_allocator_t *my_allocator = omp_init_allocator(my_mspace,

S-20 &omp_default_alloctraits);

S-21

S-22 double *buffer = omp_alloc(N * sizeof(*buffer), my_allocator);

S-23 if (buffer == NULL) {

S-24 fprintf(stderr, "Could not allocate using memory allocator\n");

S-25 retval = failure;

S-26 } else {

S-27 do_work(buffer, n);

S-28 omp_free(buffer, my_allocator);

S-29 retval = success;

S-30 }

S-31

S-32 omp_destroy_allocator(my_allocator);

S-33 omp_destroy_mspace(my_mspace);

S-34

S-35 return retval;

S-36 }

S-37

C / C++

67 4.2 Allocation with Traits

Fortran
Example basic_traits.1.f

S-1 function basic_traits1(n) result(retval)

S-2 use omp_lib

S-3 integer :: n, retval

S-4 integer, parameter :: success=1, failure=0

S-5 type(omp_memtrait), parameter :: mtrait_list(2) = &

S-6 (/ omp_memtrait(omp_mtk_bandwidth, omp_mtv_highest), &

S-7 omp_memtrait(omp_mtk_pagesize, 2*1024*1024) /)

S-8 integer (kind=omp_memtrait_set_kind) :: mtraits

S-9 integer (kind=omp_memspace_kind) :: my_mspace

S-10 integer (kind=omp_allocator_kind) :: my_allocator

S-11 double precision, allocatable :: buffer(:)

S-12 integer :: alloc_status

S-13

S-14 call omp_init_memtrait_set(mtraits, 2, mtrait_list)

S-15 my_mspace = omp_init_memspace(mtraits)

S-16 if (my_mspace == omp_null_memspace) then

S-17 my_mspace = omp_init_memspace(omp_default_memtraits)

S-18 end if

S-19

S-20 my_allocator = omp_init_allocator(my_mspace, omp_default_alloctraits)

S-21

S-22 !$omp allocate allocator(my_allocator)

S-23 allocate(buffer(n), stat=alloc_status)

S-24 if (alloc_status /= 0) then

S-25 print *, "Could not allocate using memory allocator"

S-26 retval = failure

S-27 else

S-28 call do_work(buffer, n)

S-29 deallocate(buffer)

S-30 retval = success

S-31 end if

S-32

S-33 call omp_destroy_allocator(my_allocator)

S-34 call omp_destroy_memspace(my_mspace)

S-35 end function basic_traits1

Fortran
The next examples are similar to the previous ones, except here the program requires

that the bu�er is either allocated from a bandwidth-optimized (HBW) memory or returns
from the function call with a failure status. At lines 19 through 22 the program explicitly
requests an allocator having a fallback trait with the null_fb value. This means that if the
allocator is unable to allocate the requested number of bytes at line 29 then a NULL value
will be returned and the function will return with a failure status.

4 Examples 68

C / C++

Example basic_traits.2.c

S-1 #include <stdio.h>

S-2 #include <omp.h>

S-3

S-4 int basic_traits2(int n)

S-5 {

S-6 const int success=1, failure=0;

S-7 const omp_memtrait_t mtrait_list[1] =

S-8 { {OMP_MTK_OPTIMIZED, OMP_MTV_BANDWIDTH} };

S-9 omp_memtrait_set_t mtraits;

S-10 omp_init_memtrait_set(&mtraits, 1, mtrait_list);

S-11 omp_memspace_t *hbw_mspace = omp_init_memspace(&mtraits);

S-12 int retval;

S-13

S-14 if (hbw_mspace == OMP_NULL_MEMSPACE) {

S-15 fprintf(stderr, "Could not create memspace object for HBW memory\n");

S-16 retval = failure;

S-17 } else {

S-18 omp_alloctrait_set_t atraits;

S-19 const omp_alloctrait_t atrait_list[1] =

S-20 { {OMP_ATK_FALLBACK, OMP_ATV_NULL_FB} };

S-21 omp_init_alloctrait_set(&atraits, 1, atrait_list);

S-22 omp_allocator_t *hbw_allocator = omp_init_allocator(hbw_mspace, &atraits);

S-23

S-24 if (hbw_allocator == OMP_NULL_ALLOCATOR) {

S-25 fprintf(stderr, "Could not create allocator object for HBW memory\n");

S-26 retval = failure;

S-27 } else {

S-28

S-29 double *buffer = omp_alloc(N * sizeof(*buffer), hbw_allocator);

S-30 if (buffer == NULL) {

S-31 fprintf(stderr, "Could not allocate using HBW memory allocator\n");

S-32 retval = failure;

S-33 } else {

S-34 do_work(buffer, n);

S-35 omp_free(buffer, hbw_allocator);

S-36 retval = success;

S-37 }

S-38 omp_destroy_allocator(hbw_allocator);

S-39 }

S-40 omp_destroy_mspace(hbw_mspace);

S-41 }

S-42

S-43 return retval;

S-44 }

69 4.2 Allocation with Traits

S-45

S-46

C / C++

Fortran
Example basic_traits.2.f

S-1 function basic_traits2(n), result(retval)

S-2 use omp_lib

S-3 integer :: n, retval

S-4 integer, parameter :: success=1, failure=0

S-5 type(omp_memtrait), parameter :: mtrait_list(1) = &

S-6 (/ omp_memtrait(omp_mtk_optimized, omp_mtv_bandwidth) /)

S-7 integer (kind=omp_memtrait_set_kind) :: mtraits

S-8 integer (kind=omp_memspace_kind) :: hbw_mspace

S-9 type(omp_alloctrait), parameter :: atrait_list(1) = &

S-10 (/ omp_alloctrait(omp_atk_fallback, omp_atv_null_fb) /)

S-11 integer (kind=omp_alloctrait_set_kind) :: atraits

S-12 integer (kind=omp_allocator_kind) :: hbw_allocator

S-13 double precision, allocatable :: buffer(:)

S-14 integer :: alloc_status

S-15

S-16 call omp_init_memtrait_set(mtraits, 1, mtrait_list)

S-17 hbw_mspace = omp_init_memspace(mtraits)

S-18 if (hbw_mspace == omp_null_memspace) then

S-19 print *, "Could not create memspace object for HBW memory"

S-20 retval = failure

S-21 else

S-22 call omp_init_alloctrait_set(atraits, 1, atrait_list)

S-23 hbw_allocator = omp_init_allocator(hbw_mspace, atraits)

S-24

S-25 if (hbw_allocator == omp_null_allocator) then

S-26 print *, "Could not create allocator object for HBW memory"

S-27 retval = failure

S-28 else

S-29 !$omp allocate allocator(hbw_allocator)

S-30 allocate(buffer(n), stat=alloc_status)

S-31 if (alloc_status /= 0) then

S-32 print *, "Could not allocate using memory allocator"

S-33 retval = failure

S-34 else

S-35 call do_work(buffer, n)

S-36 deallocate(buffer)

S-37 retval = success

S-38 end if

S-39 call omp_destroy_allocator(hbw_allocator)

S-40 end if

4 Examples 70

S-41 call omp_destroy_memspace(hbw_mspace)

S-42 end if

S-43 end function basic_traits2

Fortran

4.3 Annotating Variable Declarations

In the following examples, a local array, scratch, is declared with length n and is used
to perform local processing. Memory and allocator traits are explicitly speci�ed on the
allocate directive for scratch. The lifetime of the array is the duration of the call to
process_data, as it would be if the allocate directive was not present. The implementation
will therefore take care of performing the implicit deallocation of the array just prior to
returning from the function.

C / C++

Example allocate_directive.1.c

S-1 #include <string.h>

S-2 #include <omp.h>

S-3

S-4 void process_data1(double *dat, size_t n)

S-5 {

S-6 double scratch[n];

S-7 #pragma omp allocate(scratch) memtraits(optimized=bandwidth) \

S-8 alloctraits(fallback=fb_abort)

S-9

S-10 memcpy(scratch, dat, n * sizeof(*dat));

S-11 do_local_work(scratch, n);

S-12 memcpy(dat, scratch, n * sizeof(*dat));

S-13 }

C / C++

71 4.3 Annotating Variable Declarations

Fortran

Example allocate_directive.1.f

S-1 subroutine process_data1(dat, n)

S-2 use omp_lib

S-3 double precision :: dat(*)

S-4 integer :: n

S-5 double precision :: scratch(n)

S-6 !$omp allocate(scratch) memtraits(optimized=bandwidth) &

S-7 !$omp& alloctraits(fallback=fb_abort)

S-8

S-9 scratch(1:n) = dat(1:n)

S-10 call do_local_work(scratch, n)

S-11 dat(1:n) = scratch(1:n)

S-12 end subroutine process_data2

Fortran

In the next examples, again there is a local scratch array that is followed by an allocate

directive. This time, an allocator object passed in as an argument is used to allocate
scratch. The program requires that the local array be allocated in a bandwidth-optimized
memory, and if it is unable to do so the program should abort.

C / C++

Example allocate_directive.2.c

S-1 #include <string.h>

S-2 #include <omp.h>

S-3

S-4 void process_data2(double *dat, size_t n, omp_allocator_t *my_allocator)

S-5 {

S-6 double scratch[n];

S-7 #pragma omp allocate(scratch) allocator(my_allocator)

S-8

S-9 memcpy(scratch, dat, n * sizeof(*dat));

S-10 do_local_work(scratch, n);

S-11 memcpy(dat, scratch, n * sizeof(*dat));

S-12 }

C / C++

4 Examples 72

Fortran
Example allocate_directive.2.f

S-1 subroutine process_data2(dat, n, my_allocator)

S-2 use omp_lib

S-3 double precision :: dat(*)

S-4 integer :: n

S-5 integer (kind=omp_allocator_kind) :: my_allocator

S-6 double precision :: scratch(n)

S-7 !$omp allocate(scratch) allocator(my_allocator)

S-8

S-9 scratch(1:n) = dat(1:n)

S-10 call do_local_work(scratch, n)

S-11 dat(1:n) = scratch(1:n)

S-12 end subroutine process_data1

Fortran
The next examples show how the allocator_fb fallback trait can be used. This time, a

pointer to a structure containing user-de�ned allocators is passed in as an arguments. The
allocate directive is used to allocate the local array in bandwidth-optimized memory, and
if that is not possible it says the array should be allocated as per the allocator pointed to by
allocators->lat_opt. The calling function, process_data, initializes the allocators with
a call to init_allocators (line 32), and subsequently destroys the allocators with a call
to destroy_allocators (line 34). It is also necessary to keep track of the memory space
objects corresponding to each allocator since the lifetime of an allocator must not extend
past the lifetime of its memory space.

C / C++
Example allocate_directive.3.c

S-1 #include <string.h>

S-2 #include <omp.h>

S-3

S-4 struct allocators_t {

S-5 omp_allocator_t *bw_opt;

S-6 omp_allocator_t *lat_opt;

S-7 omp_allocator_t *cap_opt;

S-8 omp_memspace_t *bw_opt_mspace;

S-9 omp_memspace_t *lat_opt_mspace;

S-10 omp_memspace_t *cap_opt_mspace;

S-11 };

S-12

S-13 void process_data3(double *dat, size_t n, struct allocators_t *allocators)

S-14 {

S-15 double scratch[n];

S-16 #pragma omp allocate(scratch) memtraits(optimized=bandwidth) \

S-17 alloctraits(fallback=allocator_fb) \

73 4.3 Annotating Variable Declarations

S-18 alloctraits(fb_data=allocators->lat_opt)

S-19

S-20

S-21 memcpy(scratch, dat, n * sizeof(*dat));

S-22 do_local_work(scratch, n);

S-23 memcpy(dat, scratch, n * sizeof(*dat));

S-24 }

S-25

S-26 void init_allocators(struct allocators_t *allocators);

S-27 void destroy_allocators(struct allocators_t *allocators);

S-28

S-29 void process_data(double *dat, size_t n)

S-30 {

S-31 struct allocators_t allocators;

S-32 init_allocators(&allocators);

S-33 process_data3(dat, n, &allocators);

S-34 destroy_allocators(&allocators);

S-35 }

S-36

S-37 void init_allocators(struct allocators_t *allocators)

S-38 {

S-39 omp_memtrait_set_t mtraits;

S-40 omp_memtrait_t mtrait_list[1];

S-41

S-42 mtrait_list[0].key = OMP_MTK_OPTIMIZED;

S-43

S-44 /* create bandwidth-optimized allocator */

S-45 mtrait_list[0].value = OMP_MTV_BANDWIDTH;

S-46 omp_init_memtrait_set(&mtraits, 1, mtrait_list);

S-47 const omp_memspace_t *bw_opt_mspace = omp_init_memspace(&mtraits);

S-48 omp_destroy_memtrait_set(&mtraits);

S-49 allocators->bw_opt_mspace = bw_opt_mspace;

S-50 allocators->bw_opt = omp_init_allocator(bw_opt_mspace,

S-51 &omp_default_alloctraits);

S-52

S-53 /* create latency-optimized allocator */

S-54 mtrait_list[0].value = OMP_MTV_LATENCY;

S-55 omp_init_memtrait_set(&mtraits, 1, mtrait_list);

S-56 const omp_memspace_t *lat_opt_mspace = omp_init_memspace(&mtraits);

S-57 omp_destroy_memtrait_set(&mtraits);

S-58 allocators->lat_opt_mspace = lat_opt_mspace;

S-59 allocators->lat_opt = omp_init_allocator(lat_opt_mspace,

S-60 &omp_default_alloctraits);

S-61

S-62 /* create capacity-optimized allocator */

S-63 mtrait_list[0].value = OMP_MTV_CAPACITY;

S-64 omp_init_memtrait_set(&mtraits, 1, mtrait_list);

4 Examples 74

S-65 const omp_memspace_t *cap_opt_mspace = omp_init_memspace(&mtraits);

S-66 omp_destroy_memtrait_set(&mtraits);

S-67 allocators->cap_opt_mspace = cap_opt_mspace;

S-68 allocators->cap_opt = omp_init_allocator(cap_opt_mspace,

S-69 &omp_default_alloctraits);

S-70 }

S-71

S-72 void destroy_allocators(struct allocators_t *allocators)

S-73 {

S-74 omp_destroy_allocator(allocators->bw_opt);

S-75 omp_destroy_memspace(allocators->bw_opt_mspace);

S-76 omp_destroy_allocator(allocators->lat_opt);

S-77 omp_destroy_memspace(allocators->lat_opt_mspace);

S-78 omp_destroy_allocator(allocators->cap_opt);

S-79 omp_destroy_memspace(allocators->cap_opt_mspace);

S-80 }

S-81

C / C++

Fortran
Example allocate_directive.3.f

S-1 module mo_allocators

S-2 use omp_lib

S-3 type allocators_type

S-4 integer (omp_allocator_kind) :: bw_opt

S-5 integer (omp_allocator_kind) :: lat_opt

S-6 integer (omp_allocator_kind) :: cap_opt

S-7 integer (omp_memspace_kind) :: bw_opt_mspace

S-8 integer (omp_memspace_kind) :: lat_opt_mspace

S-9 integer (omp_memspace_kind) :: cap_opt_mspace

S-10 end type

S-11 end module mo_allocators

S-12

S-13 subroutine process_data3(dat, n, allocators)

S-14 use mo_allocators

S-15 double precision :: dat(*)

S-16 integer :: n

S-17 type(allocators_type) :: allocators

S-18 double precision :: scratch(n)

S-19 !$omp allocate(scratch) memtraits(optimized=bandwidth) &

S-20 !$omp& alloctraits(fallback=allocator_fb) &

S-21 !$omp& alloctraits(fb_data=allocators%lat_opt)

S-22

S-23 scratch(1:n) = dat(1:n)

S-24 call do_local_work(scratch, n)

S-25 dat(1:n) = scratch(1:n)

75 4.3 Annotating Variable Declarations

S-26 end subroutine process_data3

S-27

S-28 subroutine init_allocators(allocators)

S-29 use omp_lib

S-30 use mo_allocators

S-31 type(allocators_type) :: allocators

S-32 integer (kind=omp_memtrait_set_kind) :: mtraits

S-33 type(omp_memtrait) :: mtrait_list(1)

S-34

S-35 mtrait_list(1)%key = omp_mtk_optimized

S-36

S-37 ! create bandwidth-optimized allocator

S-38 mtrait_list(1)%value = omp_mtv_bandwidth

S-39 call omp_init_memtrait_set(mtraits, 1, mtrait_list)

S-40 allocators%bw_opt_mspace = omp_init_memspace(mtraits)

S-41 call omp_destroy_memtrait_set(mtraits)

S-42 allocators%bw_opt = omp_init_allocator(allocators%bw_opt_mspace, &

S-43 omp_default_alloctraits)

S-44

S-45 ! create latency-optimized allocator

S-46 mtrait_list(1)%value = omp_mtv_latency

S-47 call omp_init_memtrait_set(mtraits, 1, mtrait_list)

S-48 allocators%lat_opt_mspace = omp_init_memspace(mtraits)

S-49 call omp_destroy_memtrait_set(mtraits)

S-50 allocators%lat_opt = omp_init_allocator(allocators%lat_opt_mspace, &

S-51 omp_default_alloctraits)

S-52

S-53 ! create capacity-optimized allocator

S-54 mtrait_list(1)%value = omp_mtv_capacity

S-55 call omp_init_memtrait_set(mtraits, 1, mtrait_list)

S-56 allocators%cap_opt_mspace = omp_init_memspace(mtraits)

S-57 call omp_destroy_memtrait_set(mtraits)

S-58 allocators%cap_opt = omp_init_allocator(allocators%cap_opt_mspace, &

S-59 omp_default_alloctraits)

S-60 end subroutine init_allocators

S-61

S-62 subroutine destroy_allocators(allocators)

S-63 use mo_allocators

S-64 type(allocators_type) :: allocators

S-65

S-66 call omp_destroy_allocator(allocators%bw_opt)

S-67 call omp_destroy_memspace(allocators%bw_opt_mspace)

S-68 call omp_destroy_allocator(allocators%lat_opt)

S-69 call omp_destroy_memspace(allocators%lat_opt_mspace)

S-70 call omp_destroy_allocator(allocators%cap_opt)

S-71 call omp_destroy_memspace(allocators%cap_opt_mspace)

S-72 end subroutine destroy_allocators

4 Examples 76

S-73

S-74 subroutine process_data(dat, n)

S-75 use mo_allocators

S-76 double precision :: dat(*)

S-77 integer :: n

S-78 type(allocators_type) :: allocators

S-79

S-80 call init_allocators(allocators)

S-81 call process_data3(dat, n, allocators)

S-82 call destroy_allocators(allocators)

S-83 end subroutine process_data

Fortran

4.4 Memory Management for Privatized Variables

The following examples illustrate the use of the allocate clause. A parallel loop is used to
perform an array reduction across rows of a 2-dimensional array, b, which has been allocated
in bandwidth-optimized memory. Each private copy of the 1-dimensional array, a, resulting
from the reduction clause is allocated according to the allocate clause. In this case, the
program requests that each thread's private array is also allocated in bandwidth-optimized
memory.

C / C++
Example allocate_clause.1.c

S-1 #include <stdio.h>

S-2

S-3 #define N 100

S-4 void init(int n, float (*b)[N]);

S-5

S-6 int main()

S-7 {

S-8 int i, j;

S-9 float a[N], b[N][N];

S-10 #pragma allocate(a, b) memtraits(optimized=bandwidth)

S-11

S-12 init(N, b);

S-13

S-14 for (i = 0; i < N; i++) a[i] = 0.0e0;

S-15

S-16 #pragma omp parallel for reduction(+:a) private(j) \

S-17 allocate(memtraits(optimized=bandwidth):a)

S-18 for (i = 0; i < N; i++) {

S-19 for (j = 0; j < N; j++) {

S-20 a[j] += b[i][j];

S-21 }

77 4.4 Memory Management for Privatized Variables

S-22 }

S-23

S-24 printf(" a[0] a[N-1]: %f %f \n", a[0], a[N-1]);

S-25

S-26 return 0;

S-27 }

S-28

C / C++
Fortran

Example allocate_clause.1.f

S-1 program array_red

S-2 integer, parameter :: n=100

S-3 integer :: j

S-4 real :: a(n), b(n,n)

S-5 !$omp allocate(a, b) memtraits(optimized=bandwidth)

S-6

S-7 call init(n,b)

S-8

S-9 a(:) = 0.0e0

S-10

S-11 !$omp parallel do reduction(+:a) allocate(memtraits(optimized=bandwidth):a)

S-12 do j = 1, n

S-13 a(:) = a(:) + b(:,j)

S-14 end do

S-15

S-16 print *, " a(1) a(n): ", a(1), a(n)

S-17 end program

Fortran

5 Next steps 78

5 Next steps

This document outlines multiple additions to the OpenMP speci�cation to augment it with
an initial modern memory management interface that is capable of supporting the new and
future memory technologies but we believe that more features are needed to fully cover all
programmer needs. The following are the areas, in no particular order, in which we expect
to continue to work targeting the future OpenMP 5.0 speci�cation:

• Host-device interaction. The presented mechanisms can be used from within a
target region to manage the device memory but do not allow to manage it from the
host device. We envision two extensions in this direction:

1. Allow the allocate clause to appear in target directives to a�ect the device
allocations that arise from the map clauses.

2. Extend the API to allow creation of device allocator and allocating memory using
these allocators in a similarly to the existing omp_target_alloc routine.

• Prede�ned trait sets. We plan to provide a set of standard de�ned trait sets
that encode requirements (e.g., high-bandwidth memory or scratchpad memories) and
simplify for common cases of the API usage.

• NUMA support. We are exploring mechanisms that allow to distribute memory
allocations across the di�erent NUMA domains that could exist in a memory space.

• Resource querying. To enable maximum �exibility in looking for the appropriate
memory spaces, we plan to develop an API that will allow to query which memory
spaces exist in a system (and its attached devices) and which are the traits of each
memory space.

• C++ support. We acknowledge that the current interface might not blend well with
the usages of many C++ programmers and we intend to study how to improve this
by providing either additional APIs that work with C++ types such as std::vector or
rede�ned C++ operators and allocators.

• Special code generation support. Some existing and future memories require
compilers to generate di�erent code than for regular memories. Additional directives
will be provided to guide the compiler in this process and to allow multiple versions
of the same code to exist to work with di�erent memories as necessary.

• Static allocators. In some cases in the current proposal we require users to provide
an explicit list of traits instead of an allocator. This can get cumbersome and it goes
against our principle of moving the decision away from the allocation place as the
traits need to be repeated in each allocate directive or clause. To help overcome this
problem we envision the ability to fully de�ne allocators at compile time which can
the be used in places where a dynamic decision is not possible.

	Motivation and Background
	High-level overview
	Memory spaces and allocators
	Memory allocation API for C/C++
	Allocate directive and clause
	Default allocator

	Changes to the OpenMP specification
	Changes to Chapter 1
	Changes to Chapter 2
	Changes to ICVs descriptions
	Memory spaces and allocators
	Changes to existing directives
	Allocate directive and clause

	Changes to Chapter 3
	Routines for defining memory traits
	Routines for memory spaces
	Routines for defining allocator traits
	Routines for allocators
	Routines for allocation/free

	Changes to Chapter 5

	Examples
	Basic Allocation
	Allocation with Traits
	Annotating Variable Declarations
	Memory Management for Privatized Variables

	Next steps

