OpenMIP

OpenMP
Application Programming
Interface

Examples

Version 4.5.0 — November 2016

Source codes for OpenMP 4.5.0 Examples can be downloaded from github.

Copyright (© 1997-2016 OpenMP Architecture Review Board.

Permission to copy without fee all or part of this material is granted, provided the OpenMP
Architecture Review Board copyright notice and the title of this document appear. Notice is
given that copying is by permission of OpenMP Architecture Review Board.

https://github.com/OpenMP/Examples/tree/v4.5.0

This page intentionally left blank

Contents

Introduction 1
Examples 2
1. Parallel Execution 3
1.1. ASimple Parallel Loop 5
1.2. Theparallel Construct v v v v i it 6
1.3. Controlling the Number of Threads on Multiple Nesting Levels 8
1.4. Interaction Between the num_threads Clause and omp_set_dynamic 11
1.5. Fortran Restrictions onthe do Construct 13
1.6. Thenowait Clause 15
1.7. ThecollapseClause v ittt 18
1.8. linear Clause in Loop Constructs 22
1.9. The parallel sections Construct 24
1.10. The firstprivate Clause and the sections Construct 25
1.11. The single Construct vt i ittt e 27
1.12. The workshare Construct i i i, 29
1.13. Themaster Construct vttt 33
1.14. Parallel Random Access Iterator Loop 35
1.15. The omp_set_dynamic and
omp_set_num_threadsRoutines 36
1.16. The omp_get_num_threadsRoutine 38
2. OpenMP Affinity 40
2.1. Theproc_bindClause it 42
2.1.1. Spread Affinity Policy 42
2.1.2. Close Affinity Policy 44

2.1.3. Master Affinity Policy 47

ii

2.2. Affinity Query Functions oL 48
. Tasking 51
3.1. The task and taskwait Constructs 52
3.2, Task Priority e e e 71
3.3. TaskDependences e 73
33.1. FlowDependence. 73
3.3.2. Anti-dependence e 74
3.33. OutputDependence 75
3.3.4. Concurrent Execution with Dependences 76
3.3.5. Matrix multiplication L oL 78

34. The taskgroup Construct v i v v i it ee.. 80
3.5. The taskyield Construct v v i v v it 83
3.6. The taskloop Construct o v v v it vttt 85
. Devices 87
4.1. target Construct L e e 88
4.1.1. target Construct on parallel Construct 88
4.1.2. target Construct withmap Clause 89
4.1.3. map Clause with to/frommap-types 90
4.1.4. map Clause with Array Sections 91
4.1.5. target Construct withif Clause 93

42. targetdataConstruct. 96
4.2.1. Simple target data Construct 96
4.2.2. target data Region Enclosing Multiple target Regions 97
4.2.3. target data Construct with Orphaned Call 101
42.4. target data ConstructwithifClause 104

4.3. target enter data and target exit data Constructs 108
4.4. target update Construct 111
44.1. Simple target data and target update Constructs 111
442. target update Construct with if Clause 113

4.5. declaretarget Construct i it i 115
4.5.1. declare target and end declare target for a Function. 115
4.5.2. declare target Construct forClass Type 117

OpenMP Examples Version 4.5.0 - November 2016

4.5.3. declare target and end declare target for Variables 117
4.54. declare target and end declare target with declare simd . 120
4.5.5. declare target Directive with 1ink Clause 123
4.6. teams Constructso e e e 126

4.6.1. target and teams Constructs with omp_get_num_teams

and omp_get_team_numRoutines 126

4.6.2. target, teams, and distribute Constructs 128

4.6.3. target teams, and Distribute Parallel Loop Constructs 129
4.6.4. target teams and Distribute Parallel Loop Constructs with Scheduling

Clauses o v vt e 131

4.6.5. target teams and distribute simd Constructs 132

4.6.6. target teams and Distribute Parallel Loop SIMD Constructs 134

4.7. Asynchronous target Execution and Dependences 135

4.7.1. Asynchronous target withTasks 135

4.7.2. nowait Clause on target Construct 139

4.7.3. Asynchronous target with nowait and depend Clauses 141

4.8. Array Sections in Device Constructs oo 144

49. DeviceRoutines 148

49.1. omp_is_initial_deviceRoutine 148

49.2. omp_get_num _devicesRoutine 150

49.3. omp_set_default_device and

omp_get_default_deviceRoutines. 151

4.9.4. Target Memory and Device Pointers Routines 152

. SIMD 154
5.1. simd and declare simd Constructs 155
5.2. inbranch and notinbranchClauses 161
5.3. Loop-Carried Lexical Forward Dependence 165

. Synchronization 169
6.1. The critical Construct it 171
6.2. Worksharing Constructs Inside a critical Construct 174
6.3. Binding of barrierRegions oL 176
6.4. Theatomic Construct o i 178

Contents iii

6.5. Restrictions on the atomic Construct 184

6.6. The flush Construct withoutaList 187
6.7. The ordered Clause and the ordered Construct 190
6.8. Doacross Loop Nest 194
6.9. LockRoutines 200
6.9.1. Theomp_init_lockRoutine 200
6.9.2. The omp_init_lock_with_hint Routine 201
6.9.3. OwnershipofLocks 202
6.9.4. Simple LockRoutines 203
6.9.5. Nestable Lock Routines 206

7. Data Environment 209
7.1. The threadprivate Directive 211
7.2. Thedefault(none) Clause v v 217
7.3. TheprivateClause 219
7.4. Fortran Private Loop Iteration Variables 223
7.5. Fortran Restrictions on shared and private Clauses with Common Blocks . . 225
7.6. Fortran Restrictions on Storage Association with the private Clause 227
7.7. C/C++ Arraysina firstprivateClause 230
7.8. The lastprivateClause, 232
7.9. The reductionClause 233
7.10. The copyin Clause i i ittt e 240
7.11. The copyprivate Clause 242
7.12. C++ Reference in Data-Sharing Clauses 246
7.13. Fortran ASSOCIATE Construct v v v v v v v i it e e e e 247
8. Memory Model 249
8.1. The OpenMP Memory Model 250
8.2. Race Conditions Caused by Implied Copies of Shared Variables in Fortran 256
9. Program Control 257
9.1. Conditional Compilation 259
9.2. Internal Control Variables (ICVs) 260
9.3. Placement of £lush, barrier, taskwait and taskyield Directives 263
9.4. Cancellation Constructs ot v vt 267

iv OpenMP Examples Version 4.5.0 - November 2016

9.5. Nested Loop Constructs oot i it 272
9.6. Restrictions on Nestingof Regions 275
. Document Revision History 281
A.1. Changes from4.0.2t04.5.0. e 281
A.2. Changes from4.0.1t04.0.2. 282
A.3. Changes from4.0t04.0.1 282
A4. Changesfrom3.1t04.0. 282

Contents v

10
11
12
13
14
15
16
17

18
19
20

21
22

23

Introduction

This collection of programming examples supplements the OpenMP API for Shared Memory
Parallelization specifications, and is not part of the formal specifications. It assumes familiarity
with the OpenMP specifications, and shares the typographical conventions used in that document.

v v

Note — This first release of the OpenMP Examples reflects the OpenMP Version 4.5 specifications.
Additional examples are being developed and will be published in future releases of this document.
A A

The OpenMP API specification provides a model for parallel programming that is portable across
shared memory architectures from different vendors. Compilers from numerous vendors support
the OpenMP APL

The directives, library routines, and environment variables demonstrated in this document allow
users to create and manage parallel programs while permitting portability. The directives extend the
C, C++ and Fortran base languages with single program multiple data (SPMD) constructs, tasking
constructs, device constructs, worksharing constructs, and synchronization constructs, and they
provide support for sharing and privatizing data. The functionality to control the runtime
environment is provided by library routines and environment variables. Compilers that support the
OpenMP API often include a command line option to the compiler that activates and allows
interpretation of all OpenMP directives.

The latest source codes for OpenMP Examples can be downloaded from the sources directory at
https://github.com/OpenMP/Examples. The codes for this OpenMP 4.5.0 Examples document have
the tag v4.5.0.

Complete information about the OpenMP API and a list of the compilers that support the OpenMP
API can be found at the OpenMP.org web site

http://www.openmp.org

https://github.com/OpenMP/Examples

A~ W

- O © 0 NO O,

—_

Examples

The following are examples of the OpenMP API directives, constructs, and routines.

C/C++

A statement following a directive is compound only when necessary, and a non-compound
statement is indented with respect to a directive preceding it.

C/C++

Each example is labeled as ename.seqno.ext, where ename is the example name, segno is the
sequence number in a section, and ext is the source file extension to indicate the code type and
source form. ext is one of the following:

e ¢ —Ccode,

e cpp — C++ code,

e f —Fortran code in fixed form, and
e f90 — Fortran code in free form.

0 N O o b~ W

11
12
13
14

15
16
17
18
19

20
21
22
23
24
25
26
27

CHAPTER 1

Parallel Execution

A single thread, the initial thread, begins sequential execution of an OpenMP enabled program, as
if the whole program is in an implicit parallel region consisting of an implicit task executed by the
initial thread.

A parallel construct encloses code, forming a parallel region. An initial thread encountering a

parallel region forks (creates) a team of threads at the beginning of the parallel region, and
joins them (removes from execution) at the end of the region. The initial thread becomes the master
thread of the team in a parallel region with a thread number equal to zero, the other threads are
numbered from 1 to number of threads minus 1. A team may be comprised of just a single thread.

Each thread of a team is assigned an implicit task consisting of code within the parallel region. The
task that creates a parallel region is suspended while the tasks of the team are executed. A thread is
tied to its task; that is, only the thread assigned to the task can execute that task. After completion
of the parallel region, the master thread resumes execution of the generating task.

Any task within a parallel region is allowed to encounter another parallel region to form a
nested parallel region. The parallelism of a nested parallel region (whether it forks
additional threads, or is executed serially by the encountering task) can be controlled by the

OMP_ NESTED environment variable or the omp_set_nested () API routine with arguments
indicating true or false.

The number of threads of a parallel region can be set by the OMP_NUM_THREADS
environment variable, the omp_set_num_threads () routine, or on the parallel directive
with the num_threads clause. The routine overrides the environment variable, and the clause
overrides all. Use the OMP_DYNAMIC or the omp_set_dynamic () function to specify that the
OpenMP implementation dynamically adjust the number of threads for parallel regions. The
default setting for dynamic adjustment is implementation defined. When dynamic adjustment is on
and the number of threads is specified, the number of threads becomes an upper limit for the
number of threads to be provided by the OpenMP runtime.

—_

0N O WD

11
12
13

14
15
16
17

18
19
20

21
22
23
24
25

26
27
28

29

30
31
32

4

WORKSHARING CONSTRUCTS

A worksharing construct distributes the execution of the associated region among the members of
the team that encounter it. There is an implied barrier at the end of the worksharing region (there is
no barrier at the beginning). The worksharing constructs are:

e loop constructs: for and do
e sections
e single

e workshare

The for and do constructs (loop constructs) create a region consisting of a loop. A loop controlled
by a loop construct is called an associated loop. Nested loops can form a single region when the
collapse clause (with an integer argument) designates the number of associated loops to be
executed in parallel, by forming a "single iteration space" for the specified number of nested loops.
The ordered clause can also control multiple associated loops.

An associated loop must adhere to a "canonical form" (specified in the Canonical Loop Form of the
OpenMP Specifications document) which allows the iteration count (of all associated loops) to be
computed before the (outermost) loop is executed. Most common loops comply with the canonical
form, including C++ iterators.

A single construct forms a region in which only one thread (any one of the team) executes the
region. The other threads wait at the implied barrier at the end, unless the nowait clause is
specified.

The sections construct forms a region that contains one or more structured blocks. Each block
of a sections directive is constructed with a section construct, and executed once by one of
the threads (any one) in the team. (If only one block is formed in the region, the section
construct, which is used to separate blocks, is not required.) The other threads wait at the implied
barrier at the end, unless the nowait clause is specified.

The workshare construct is a Fortran feature that consists of a region with a single structure
block (section of code). Statements in the workshare region are divided into units of work, and
executed (once) by threads of the team.

MASTER CONSTRUCT

The master construct is not a worksharing construct. The master region is is executed only by the
master thread. There is no implicit barrier (and flush) at the end of the master region; hence the
other threads of the team continue execution beyond code statements beyond the master region.

OpenMP Examples Version 4.5.0 - November 2016

w N

1.1

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12

A Simple Parallel Loop

The following example demonstrates how to parallelize a simple loop using the parallel loop
construct. The loop iteration variable is private by default, so it is not necessary to specify it
explicitly in a private clause.

C/C++
Example ploop.1.c

void simple(int n, float xa, float =xb)

{

int i;

#pragma omp parallel for
for (i=1; i<n; i++) /* i is private by default =/
b[i] = (a[i] + a[i-1]) / 2.0;

C/C++
Fortran

Example ploop. 1.f
SUBROUTINE SIMPLE (N, A, B)

INTEGER I, N
REAL B(N), A(N)

!$OMP PARALLEL DO !I is private by default
DO I=2,N
B(I) = (A(I) + A(I-1)) / 2.0
ENDDO
!$OMP END PARALLEL DO

END SUBROUTINE SIMPLE
Fortran

CHAPTER 1. PARALLEL EXECUTION

1 1.2 The parallel Construct

2 The parallel construct can be used in coarse-grain parallel programs. In the following example,
3 each thread in the parallel region decides what part of the global array x to work on, based on
4 the thread number:
C/C++

5 Example parallel.l.c

S-1 #include <omp.h>

S-2

S-3 void subdomain (float *x, int istart, int ipoints)

S4 {

S-5 int i;

S-6

S-7 for (1 = 0; i < ipoints; i++)

S-8 x[istart+i] = 123.456;

S-9 }

S-10

S-11 void sub(float *x, int npoints)

S-12 {

S-13 int iam, nt, ipoints, istart;

S-14

S-15 #pragma omp parallel default (shared) private(iam,nt,ipoints,istart)

S-16 {

S-17 iam = omp_get_thread num();

S-18 nt = omp_get_num_threads();

S-19 ipoints = npoints / nt; /* size of partition =*/

S-20 istart = iam * ipoints; /x starting array index x/

S-21 if (iam == nt-1) /* last thread may do more x*/

S-22 ipoints = npoints - istart;

S-23 subdomain (x, istart, ipoints);

S-24 }

S-25 }

S-26

S-27 int main ()

S-28 {

S-29 float array[10000];

S-30

S-31 sub (array, 10000);

S-32

S-33 return 0;

S-34 }

C/C++

6 OpenMP Examples Version 4.5.0 - November 2016

S-1

S-2

S-3

S-4

S-5

S-6

S-7

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23
S-24
S-25
S-26
S-27
S-28
S-29
S-30
S-31
S-32
S-33
S-34
S-35
S-36
S-37

Fortran

Example parallel.1.f

SUBROUTINE SUBDOMAIN (X, ISTART, IPOINTS)
INTEGER ISTART, IPOINTS
REAL X (*)

INTEGER I

DO 100 I=1,IPOINTS
X (ISTART+I) = 123.456
100 CONTINUE

END SUBROUTINE SUBDOMAIN

SUBROUTINE SUB (X, NPOINTS)
INCLUDE "omp_lib.h" ! or USE OMP_LIB

REAL X (x)
INTEGER NPOINTS
INTEGER IAM, NT, IPOINTS, ISTART

!SOMP PARALLEL DEFAULT (PRIVATE) SHARED (X, NPOINTS)

IAM = OMP_GET_THREAD_NUM()
NT = OMP_GET_NUM_THREADS ()
IPOINTS = NPOINTS/NT
ISTART = IAM * IPOINTS
IF (IAM .EQ. NT-1) THEN
IPOINTS = NPOINTS — ISTART
ENDIF
CALL SUBDOMAIN (X, ISTART, IPOINTS)

!SOMP END PARALLEL
END SUBROUTINE SUB

PROGRAM PAREXAMPLE

REAL ARRAY (10000)

CALL SUB (ARRAY, 10000)
END PROGRAM PAREXAMPLE

Fortran

CHAPTER 1. PARALLEL EXECUTION

1.3

S-1

S-2

S-3

S-4

S-5

S-6

S-7

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23
S-24
S-25
S-26
S-27
S-28
S-29
S-30
S-31
S-32
S-33
S-34
S-35
S-36
S-37

8

Controlling the Number of Threads on Multiple
Nesting Levels

The following examples demonstrate how to use the OMP_ NUM_THREADS environment variable to
control the number of threads on multiple nesting levels:

C/C++

Example nthrs_nesting.1.c

#include <stdio.h>
#include <omp.h>
int main (void)
{
omp_set_nested(1l);
omp_set_dynamic (0);
#fpragma omp parallel
{
#fpragma omp parallel
{
#pragma omp single
{
/*
* If OMP_NUM _THREADS=2,3 was set, the following should print:
Inner: num_ thds=3
Inner: num_thds=3

If nesting is not supported, the following should print:
Inner: num_thds=1
Inner: num_thds=1

* % F * * *

*/
printf ("Inner: num_thds=%d\n", omp_get_num threads());
}
}
#pragma omp barrier
omp_set_nested(0);
#pragma omp parallel
{
#pragma omp single
{
/*
* Even if OMP_NUM THREADS=2,3 was set, the following should
* print, because nesting is disabled:
* Inner: num_thds=1
* Inner: num_ thds=1
*/
printf ("Inner: num_thds=%d\n", omp_get_num threads());

OpenMP Examples Version 4.5.0 - November 2016

S-38
S-39
S-40
S-41
S-42
S-43
S-44
S-45
S-46
S-47
S-48
S-49
S-50
S-51

S-2

S-6
S-7
S-8

S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23
S-24
S-25
S-26
S-27
S-28

}

}
#pragma omp barrier
#fpragma omp single
{
/ *
* If OMP_NUM_THREADS=2,3 was set, the following should print:
* Outer: num_thds=2
*/
printf ("Outer: num_thds=%d\n", omp_get_num threads());

return O;

C/C++
Fortran

Example nthrs_nesting. 1.f

! Somp
! Somp
! Somp

! Somp
! Somp
! Somp

! Somp
! Somp

! Somp
! Somp
! Somp

program icv

use omp_lib

call omp_set_nested(.true.)
call omp_set_dynamic(.false.)

parallel
parallel
single
! If OMP_NUM THREADS=2,3 was set, the following should print:
! Inner: num thds= 3
! Inner: num_thds= 3
! If nesting is not supported, the following should print:
! Inner: num thds= 1
! Inner: num _thds= 1
print *, "Inner: num thds=", omp_get_num_threads ()
end single
end parallel
barrier
call omp_set_nested(.false.)
parallel
single
! Even if OMP_NUM THREADS=2,3 was set, the following should print,
! because nesting is disabled:
! Inner: num thds= 1
! Inner: num thds= 1
print %, "Inner: num thds=", omp_get_num_ threads ()
end single
end parallel
barrier

CHAPTER 1. PARALLEL EXECUTION 9

S-29 !Somp single

S-30 ! If OMP_NUM THREADS=2,3 was set, the following should print:
S-31 ! OQuter: num thds= 2
S-32 print *, "Outer: num_thds=", omp_get_num_threads()
S-33 !Somp end single
S-34 '$omp end parallel
S-35 end
Fortran

10 OpenMP Examples Version 4.5.0 - November 2016

1

N

0 N O O H @

10

11
12

1.4

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10

S-1
S-2
S-3
S-4
S-5
S-6
S-7

Interaction Between the num_threads Clause
and omp_set_dynamic

The following example demonstrates the num_threads clause and the effect of the
omp_set_dynamic routine on it.

The call to the omp_set_dynamic routine with argument 0 in C/C++, or . FALSE. in Fortran,
disables the dynamic adjustment of the number of threads in OpenMP implementations that support
it. In this case, 10 threads are provided. Note that in case of an error the OpenMP implementation
is free to abort the program or to supply any number of threads available.

C/C++

Example nthrs_dynamic.l.c

#include <omp.h>
int main()
{
omp_set_dynamic (0) ;
#{pragma omp parallel num_threads(10)
{
/* do work here =*/

}

return O;

C/C++
Fortran
Example nthrs_dynamic. l.f
PROGRAM EXAMPLE
INCLUDE "omp_lib.h" ! or USE OMP_LIB
CALL OMP_SET_DYNAMIC (.FALSE.)
! SOMP PARALLEL NUM_THREADS (10)
! do work here
1 $OMP END PARALLEL
END PROGRAM EXAMPLE
Fortran

The call to the omp_set_dynamic routine with a non-zero argument in C/C++, or . TRUE. in
Fortran, allows the OpenMP implementation to choose any number of threads between 1 and 10.

CHAPTER 1. PARALLEL EXECUTION 11

C/C++

Example nthrs_dynamic.2.c

S-1 #include <omp.h>
S-2 int main()
S-3 {
S-4 omp_set_dynamic(1l);
S-5 #pragma omp parallel num_threads (10)
S-6 {
S-7 /* do work here x/
S-8 }
S-9 return O;
S-10 }
C/C++
Fortran
Example nthrs_dynamic.2.f
S-1 PROGRAM EXAMPLE
S-2 INCLUDE "omp_lib.h" ! or USE OMP_LIB
S-3 CALL OMP_SET DYNAMIC(.TRUE.)
S-4 ! $OMP PARALLEL NUM_THREADS (10)
S-5 ! do work here
S-6 ! SOMP END PARALLEL
S-7 END PROGRAM EXAMPLE
Fortran

It is good practice to set the dyn-var ICV explicitly by calling the omp_set_dynamic routine, as
its default setting is implementation defined.

12 OpenMP Examples Version 4.5.0 - November 2016

1

a h~hwND

1.5 Fortran Restrictions on the do Construct

S4

S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23
S-24
S-25
S-26

S-1
S-2
S-3

S-5
S-6

Fortran

If an end do directive follows a do-construct in which several DO statements share a DO
termination statement, then a do directive can only be specified for the outermost of these DO
statements. The following example contains correct usages of loop constructs:

Example fort_do.l.f

SUBROUTINE WORK (I, J)
INTEGER I, J
END SUBROUTINE WORK

SUBROUTINE DO_GOOD ()
INTEGER I, J
REAL A(1000)

DO 100 I = 1,10
1$0MP DO
DO 100 J = 1,10
CALL WORK (I, J)

100 CONTINUE !
1SOMP DO

DO 200 J = 1,10
200 A(I) =TI +1

! SOMP ENDDO

1SOMP DO
DO 300 I = 1,10
DO 300 J = 1,10
CALL WORK (I, J)
300 CONTINUE
1SOMP ENDDO

END SUBROUTINE DO_GOOD

!SOMP ENDDO implied here

The following example is non-conforming because the matching do directive for the end do does

not precede the outermost loop:
Example fort_do.2.f

SUBROUTINE WORK (I, J)
INTEGER I,J
END SUBROUTINE WORK

SUBROUTINE DO_WRONG
INTEGER I, J

CHAPTER 1. PARALLEL EXECUTION 13

S-7

S-8 DO 100 I = 1,10

S-9 1 $OMP DO

S-10 DO 100 J = 1,10

S-11 CALL WORK (I, J)
S-12 100 CONTINUE

S-13 1$OMP ENDDO

S-14 END SUBROUTINE DO_WRONG

Fortran

14 OpenMP Examples Version 4.5.0 - November 2016

1

N

1.6 The nowait Clause

If there are multiple independent loops within a parallel region, you can use the nowait

clause to avoid the implied barrier at the end of the loop construct, as follows:

C/C++
Example nowait.l.c
S-1 #include <math.h>
S-2
S-3 void nowait_example (int n, int m, float xa, float xb, float =xy,
S-4 {
S-5 int i;
S-6 #fpragma omp parallel
S-7 {
S-8 #pragma omp for nowait
S-9 for (i=1; i<n; i++)
S-10 b[i] = (a[i] + a[i-1]) / 2.0;
S-11
S-12 #pragma omp for nowait
S-13 for (i=0; i<m; i++)
S-14 yl[il = sqrt(z[i]);
S-15 }
S-16 }
C/C++
Fortran
Example nowait. 1.f
S-1 SUBROUTINE NOWAIT EXAMPLE(N, M, A, B, Y, Z)
S-2
S-3 INTEGER N, M
S-4 REAL A(x), B(*), Y(*), Z(x)
S-5
S-6 INTEGER I
S-7
S-8 !SOMP PARALLEL
S-9
S-10 1SOMP DO
S-11 DO I=2,N
S-12 B(I) = (A(I) + A(I-1)) / 2.0
S-13 ENDDO
S-14 1SOMP END DO NOWAIT
S-15
S-16 1$SOMP DO
S-17 DO I=1,M
S-18 Y(I) = SQRT(Z(I))

CHAPTER 1. PARALLEL EXECUTION

float =*z)

15

No o AW =

S-19
S-20
S-21
S-22
S-23
S-24

S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19

16

ENDDO
!SOMP END DO NOWAIT

!SOMP END PARALLEL

END SUBROUTINE NOWAIT_ EXAMPLE
Fortran

In the following example, static scheduling distributes the same logical iteration numbers to the
threads that execute the three loop regions. This allows the nowait clause to be used, even though
there is a data dependence between the loops. The dependence is satisfied as long the same thread
executes the same logical iteration numbers in each loop.

Note that the iteration count of the loops must be the same. The example satisfies this requirement,
since the iteration space of the first two loops is from 0 to n—1 (from 1 to N in the Fortran version),
while the iteration space of the last loop is from 1 to n (2 to N+1 in the Fortran version).

C/C++

Example nowait.2.c

#include <math.h>
void nowait_example2 (int n, float *a, float *b, float *c, float *y, float
*Z)
{
int i;
#pragma omp parallel
{
#pragma omp for schedule(static) nowait
for (i=0; i<n; i++)
c[i] = (ali]l + b[i]) / 2.0f;
#pragma omp for schedule(static) nowait
for (i=0; i<n; i++)
z[i] = sqrtf(c[i]);
#pragma omp for schedule(static) nowait
for (i=1; i<=n; i++)
y[il = z[i-1] + a[i];

C/C++

OpenMP Examples Version 4.5.0 - November 2016

S-1
S-2
S-3

S-5

S-6

S-7

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22

Example nowait.2.f90

Fortran

SUBROUTINE NOWAIT EXAMPLE2(N, A, B, C, Y, 2)

INTEGER N
REAL A(x), B(x), C(*), Y(x), 2
INTEGER I
!$SOMP PARALLEL
!$OMP DO SCHEDULE (STATIC)
DO I=1,N
C(I) = (A(I) + B(I)) / 2.0
ENDDO
!SOMP END DO NOWAIT
1$OMP DO SCHEDULE (STATIC)
DO I=1,N
Z(I) = SQRT(C(I))
ENDDO
!$OMP END DO NOWAIT
!SOMP DO SCHEDULE (STATIC)
DO I=2,N+1
Y(I) = Z2(I-1) + A(I)
ENDDO
!SOMP END DO NOWAIT
!SOMP END PARALLEL
END SUBROUTINE NOWAIT_EXAMPLE2

(*)

Fortran

CHAPTER 1. PARALLEL EXECUTION

17

1 1.7 The collapse Clause

O OWoo~N OO0~ wWN

—_

11

12

S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8

S-10
S-11
S-12
S-13
S-14
S-15

18

In the following example, the k and j loops are associated with the loop construct. So the iterations
of the k and j loops are collapsed into one loop with a larger iteration space, and that loop is then
divided among the threads in the current team. Since the i loop is not associated with the loop
construct, it is not collapsed, and the i loop is executed sequentially in its entirety in every iteration
of the collapsed k and 3 loop.

The variable j can be omitted from the private clause when the collapse clause is used since
it is implicitly private. However, if the collapse clause is omitted then j will be shared if it is
omitted from the private clause. In either case, k is implicitly private and could be omitted from
the private clause.

C/C++
Example collapse.l.c

void bar (float *a, int i, int j, int k);
int k1, ku, ks, jl, ju, js, il, iu,is;
void sub (float =*a)

{
int i, 3, k;
#pragma omp for collapse(2) private(i, k, jJj)
for (k=kl; k<=ku; k+=ks)
for (j=3l; j<=ju; j+=js)
for (i=il; i<=iu; i+=is)
bar(a,i, j, k);
}
C/C++
Fortran

Example collapse. 1.f

subroutine sub(a)
real a(x)
integer k1, ku, ks, jl, Jju, js, il, iu, is
common /csub/ k1, ku, ks, jl, ju, js, il, iu, is
integer i, j, k
!Somp do collapse(2) private(i, j, k)
do k = k1, ku, ks
do j = jl, ju, Js
do i = il, iu, is
call bar(a,i, j, k)
enddo
enddo
enddo
!$Somp end do
end subroutine

OpenMP Examples Version 4.5.0 - November 2016

O NO O~ WON =

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17

Fortran

In the next example, the k and 3 loops are associated with the loop construct. So the iterations of

the k and j loops are collapsed into one loop with a larger iteration space, and that loop is then

divided among the threads in the current team.

The sequential execution of the iterations in the k and j loops determines the order of the iterations
in the collapsed iteration space. This implies that in the sequentially last iteration of the collapsed
iteration space, k will have the value 2 and j will have the value 3. Since klast and jlast are
lastprivate, their values are assigned by the sequentially last iteration of the collapsed k and j

loop. This example prints: 2 3.
C/C++

Example collapse.2.c

#include <stdio.h>
void test ()

{
int j, k, jlast, klast;
#pragma omp parallel
{
#pragma omp for collapse(2) lastprivate(jlast, klast)
for (k=1; k<=2; k++)
for (3j=1; j<=3; j++)
{
jlast=3j;
klast=k;
}
#pragma omp single
printf("%d %d\n", klast, jlast);
}
}

C/C++

CHAPTER 1. PARALLEL EXECUTION

19

0o NOoO O~ W N

11
12
13
14

15

16
17
18
19
20
21

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15

20

Fortran

Example collapse.2.f

program test
!Somp parallel
!Somp do private(j, k) collapse(2) lastprivate(jlast, klast)
do k =1,2
do j=1,3
jlast=3j
klast=k
enddo
enddo
!Somp end do
!Somp single
print *, klast, jlast
!Somp end single
!Somp end parallel
end program test

Fortran
The next example illustrates the interaction of the collapse and ordered clauses.

In the example, the loop construct has both a collapse clause and an ordered clause. The
collapse clause causes the iterations of the k and j loops to be collapsed into one loop with a
larger iteration space, and that loop is divided among the threads in the current team. An ordered
clause is added to the loop construct, because an ordered region binds to the loop region arising
from the loop construct.

According to Section 2.12.8 of the OpenMP 4.0 specification, a thread must not execute more than
one ordered region that binds to the same loop region. So the collapse clause is required for the
example to be conforming. With the collapse clause, the iterations of the k and j loops are
collapsed into one loop, and therefore only one ordered region will bind to the collapsed k and j
loop. Without the collapse clause, there would be two ordered regions that bind to each
iteration of the k loop (one arising from the first iteration of the j loop, and the other arising from
the second iteration of the j loop).

The code prints
11

PP PR OOO
wWwbdhdhR
NEFEDNMNEREDN

OpenMP Examples Version 4.5.0 - November 2016

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19

S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15

C/C++

Example collapse.3.c

#include <omp.h>

#include <stdio.h>

void work(int a, int j, int k);
void sub()

{

int j, k, a;
#pragma omp parallel num threads(2)

{

#pragma omp for collapse(2) ordered private(j,k) schedule (static, 3)

for (k=1; k<=3; k++)
for (j=1; j<=2; j++)
{
#pragma omp ordered
printf("%d %d %d\n", omp_get_thread num(), k, j);
/* end ordered =*/
work(a, j, k) ;

C/C++
Fortran

Example collapse.3.f

! Somp
! Somp

! Somp

! Somp

! Somp
! Somp

program test
include 'omp_lib.h’
parallel num_threads (2)
do collapse(2) ordered private(j,k) schedule (static, 3)
do k = 1,3
do j=1,2
ordered
print *, omp_get_thread num(), k, j
end ordered
call work(a, j, k)
enddo
enddo
end do
end parallel
end program test

Fortran

CHAPTER 1. PARALLEL EXECUTION

21

1 1.8 linear Clause in Loop Constructs

a b~ owN

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23
S-24

22

The following example shows the use of the 1inear clause in a loop construct to allow the proper
parallelization of a loop that contains an induction variable (j). At the end of the execution of the
loop construct, the original variable j is updated with the value N/2 from the last iteration of the
loop.

C/C++

Example linear_in_loop.1.c

#include <stdio.h>

#define N 100
int main (void)

{
float a[N], b[N/2];
int i, j;
for (i =0; i < N; i++)
a[i]l] =i + 1;
j=0;
#fpragma omp parallel
#pragma omp for linear(j:1)
for (1 =0; 1 <N; i+4+=2) {
b[j] = a[i] * 2.0f;
J++;
}
printf("%d %f %f\n", j, b[0], b[j-1]);
/* print out: 50 2.0 198.0 =/
return O0;
}

C/C++

OpenMP Examples Version 4.5.0 - November 2016

S-1
S-2
S-3

S-5

S-6

S-7

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23

Example linear_in_loop.1.f90

program linear_loop
implicit none

integer, parameter :: N =

real :: a(N), b(N/2)
integer :: i, j

doi=1, N
a(i) = i

end do
j=20

!Somp parallel
!$omp do linear(j:1)
doi=1, N, 2
j=3+1
b(j) = a(i) = 2.0
end do
!Somp end parallel

print x, j, b(1), b(3j)
! print out: 50 2.0 198.0

end program

100

Fortran

Fortran

CHAPTER 1. PARALLEL EXECUTION

23

1 1.9 The parallel sections Construct

2 In the following example routines XAXIS, YAXIS, and ZAXIS can be executed concurrently. The
3 first section directive is optional. Note that all section directives need to appear in the
4 parallel sections construct.
C/C++
5 Example psections.1.c
S-1 void XAXIS();
S-2 void YAXIS();
S-3 void ZAXIS();
S-4
S-5 void sect_example ()
S-6 {
S-7 #pragma omp parallel sections
S-8 {
S-9 #pragma omp section
S-10 XAXTIS();
S-11
S-12 #pragma omp section
S-13 YAXIS();
S-14
S-15 #pragma omp section
S-16 ZAXIS () ;
S-17 }
S-18 }
C/C++
Fortran
6 Example psections.1.f
S-1 SUBROUTINE SECT_EXAMPLE ()
S-2 !$OMP PARALLEL SECTIONS
S-3 !SOMP SECTION
S-4 CALL XAXIS()
S-5 1$OMP SECTION
S-6 CALL YAXIS()
S-7
S-8 1$OMP SECTION
S-9 CALL ZAXIS()
S-10
S-11 !$OMP END PARALLEL SECTIONS
S-12 END SUBROUTINE SECT_EXAMPLE
Fortran

24 OpenMP Examples Version 4.5.0 - November 2016

1

© O NO O~ W

10

1.10

S-1
S-2
S-3

S-5

S-6

S-7

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23
S-24
S-25

The firstprivate Clause and the sections
Construct

In the following example of the sections construct the firstprivate clause is used to
initialize the private copy of section_count of each thread. The problem is that the section
constructs modify section_count, which breaks the independence of the sect ion constructs.
When different threads execute each section, both sections will print the value 1. When the same
thread executes the two sections, one section will print the value 1 and the other will print the value
2. Since the order of execution of the two sections in this case is unspecified, it is unspecified which
section prints which value.

C/C++

Example fpriv_sections.l.c

#include <omp.h>
#include <stdio.h>
#define NT 4
int main() {
int section_count = 0;
omp_set_dynamic (0);
omp_set_num_ threads (NT) ;
#pragma omp parallel
#pragma omp sections firstprivate(section_count)
{
#pragma omp section
{
section_count++;
/* may print the number one or two */
printf("section_count %d\n", section_count);

#fpragma omp section
section_count++;
/* may print the number one or two */
printf("section_count %d\n", section_count);

}

return O;

C/C++

CHAPTER 1. PARALLEL EXECUTION 25

Fortran

Example fpriv_sections.1.f90

S-1 program section

S-2 use omp_lib

S-3 integer :: section_count = 0

S-4 integer, parameter :: NT = 4

S-5 call omp_set_dynamic(.false.)

S-6 call omp_set_num_threads (NT)

S-7 !Somp parallel

S-8 !Somp sections firstprivate (section_count)
S-9 !Somp section

S-10 section_count = section_count + 1

S-11 ! may print the number one or two

S-12 print *, ’‘section_count’, section_count
S-13 !$Somp section

S-14 section_count = section_count + 1

S-15 ! may print the number one or two

S-16 print x, ’‘section_count’, section_count
S-17 !Somp end sections

S-18 !Somp end parallel

S-19 end program section

Fortran

26 OpenMP Examples Version 4.5.0 - November 2016

1 1.11 The single Construct

NOoO Ok WD

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23

The following example demonstrates the single construct. In the example, only one thread prints
each of the progress messages. All other threads will skip the single region and stop at the
barrier at the end of the single construct until all threads in the team have reached the barrier. If
other threads can proceed without waiting for the thread executing the single region, a nowait
clause can be specified, as is done in the third single construct in this example. The user must
not make any assumptions as to which thread will execute a single region.

C/C++
Example single.l.c

#include <stdio.h>

void workl () {}
void work2 () {}

void single_example ()

{
#{pragma omp parallel

{
#pragma omp single
printf ("Beginning workl.\n");
workl () ;

#pragma omp single
printf ("Finishing workl.\n");

#pragma omp single nowait
printf ("Finished workl and beginning work2.\n");

work2 () ;

C/C++

CHAPTER 1. PARALLEL EXECUTION 27

Fortran

Example single.1.f

S-1 SUBROUTINE WORK1 ()

S-2 END SUBROUTINE WORK1

S-3

S-4 SUBROUTINE WORK2 ()

S-5 END SUBROUTINE WORK2

S-6

S-7 PROGRAM SINGLE_EXAMPLE

S-8 !SOMP PARALLEL

S-9

S-10 !$OMP SINGLE

S-11 print *, "Beginning workl."
S-12 !SOMP END SINGLE

S-13

S-14 CALL WORKI1 ()

S-15

S-16 !SOMP SINGLE

S-17 print *, "Finishing workl."
S-18 !SOMP END SINGLE

S-19

S-20 !SOMP SINGLE

S-21 print *, "Finished workl and beginning work2."
S-22 !$OMP END SINGLE NOWAIT

S-23

S-24 CALL WORK2 ()

S-25

S-26 !SOMP END PARALLEL

S-27

S-28 END PROGRAM SINGLE_EXAMPLE

Fortran

28 OpenMP Examples Version 4.5.0 - November 2016

1

(o2) INF - ¢ R\

o © 00

1.12 The workshare Construct

S-1
S-2
S-3
S-4

S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13

S-1

S-3
S-4
S-5
S-6

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15

Fortran
The following are examples of the workshare construct.

In the following example, workshare spreads work across the threads executing the parallel
region, and there is a barrier after the last statement. Implementations must enforce Fortran
execution rules inside of the workshare block.

Example workshare.1.f

SUBROUTINE WSHARE1l (AA, BB, CC, DD, EE, FF, N)
INTEGER N
REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N), EE(N,N), FF(N,6N)

! SOMP PARALLEL
! SOMP WORKSHARE
AA = BB
CC = DD
EE = FF
! SOMP END WORKSHARE

! SOMP END PARALLEL

END SUBROUTINE WSHARE1

In the following example, the barrier at the end of the first workshare region is eliminated with a
nowait clause. Threads doing CC = DD immediately begin work on EE = FF when they are
done with CC = DD.

Example workshare.2.f

SUBROUTINE WSHARE2 (AA, BB, CC, DD, EE, FF, N)
INTEGER N

REAL AA(N,N), BB(N,N), CC(N,N)

REAL DD(N,N), EE(N,N), FF(N,N)

! SOMP PARALLEL

! SOMP WORKSHARE
AA = BB
CC = DD
! SOMP END WORKSHARE NOWAIT
! SOMP WORKSHARE
EE = FF
! SOMP END WORKSHARE

! SOMP END PARALLEL
END SUBROUTINE WSHARE2

CHAPTER 1. PARALLEL EXECUTION 29

o NOoO oM~

11
12
13

14

S4

S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8

S-10
S-11

30

Fortran (cont.)

The following example shows the use of an atomic directive inside a workshare construct. The
computation of SUM (AA) is workshared, but the update to R is atomic.

Example workshare.3.f

SUBROUTINE WSHARE3 (AA, BB, CC, DD, N)

INTEGER N
REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)
REAL R
R=0
1$OMP PARALLEL
1 $OMP WORKSHARE
AA = BB
1 $OMP ATOMIC UPDATE
R = R + SUM(AA)
cc = DD
1 $OMP END WORKSHARE

1 SomMP END PARALLEL
END SUBROUTINE WSHARE3

Fortran WHERE and FORALL statements are compound statements, made up of a control part and a
statement part. When workshare is applied to one of these compound statements, both the
control and the statement parts are workshared. The following example shows the use of a WHERE
statement in a workshare construct.

Each task gets worked on in order by the threads:

AA BB then

cc DD then

EE .ne. O then
FF = 1 / EEthen
GG = HH

Example workshare.4.f

SUBROUTINE WSHARE4 (AA, BB, CC, DD, EE, FF, GG, HH, N)
INTEGER N

REAL AA(N,N), BB(N,N), CC(N,N)

REAL DD (N,N), EE(N,N), FF(N,N)

REAL GG (N,N), HH(N,N)

! SOMP PARALLEL

! SOMP WORKSHARE
AA = BB
CC = DD

WHERE (EE .ne. 0) FF = 1 / EE

OpenMP Examples Version 4.5.0 - November 2016

'y

N O o s

S-12
S-13
S-14
S-15
S-16

S-1
S-2
S-3
S-4
S-5
S-6

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15

S-1
S-2
S-3
S-4
S-5
S-6

S-8
S-9
S-10
S-11
S-12
S-13

Fortran (cont.)

GG = HH
! SOMP END WORKSHARE
! SOMP END PARALLEL

END SUBROUTINE WSHARE4

In the following example, an assignment to a shared scalar variable is performed by one thread in a
workshare while all other threads in the team wait.

Example workshare.5.f

SUBROUTINE WSHARES5 (AA, BB, CC, DD, N)

INTEGER N

REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)
INTEGER SHR

! SOMP PARALLEL SHARED (SHR)

! SOMP WORKSHARE

AA = BB

SHR = 1

CC = DD * SHR
! SOMP END WORKSHARE

! SOMP END PARALLEL

END SUBROUTINE WSHARES5

The following example contains an assignment to a private scalar variable, which is performed by
one thread in a workshare while all other threads wait. It is non-conforming because the private
scalar variable is undefined after the assignment statement.

Example workshare.6.f

SUBROUTINE WSHARE6_WRONG (AA, BB, CC, DD, N)

INTEGER N

REAL AA(N,N), BB(N,N), CC(N,N), DD(N,N)
INTEGER PRI

! SOMP PARALLEL PRIVATE (PRI)

! SOMP WORKSHARE

AA = BB

PRI =1

CC = DD * PRI
! SOMP END WORKSHARE

! SOMP END PARALLEL

CHAPTER 1. PARALLEL EXECUTION 31

A WM =

S-14
S-15

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12

32

END SUBROUTINE WSHARE6_WRONG

Fortran execution rules must be enforced inside a workshare construct. In the following
example, the same result is produced in the following program fragment regardless of whether the
code is executed sequentially or inside an OpenMP program with multiple threads:

Example workshare.7.f

SUBROUTINE WSHARE7 (AA, BB, CC, N)
INTEGER N
REAL AA(N), BB(N), CC(N)

! SOMP PARALLEL

! SOMP WORKSHARE
AA(1:50) = BB(11:60)
CC(11:20) = AA(1:10)
! SOMP END WORKSHARE

! SOMP END PARALLEL

END SUBROUTINE WSHARE7
Fortran

OpenMP Examples Version 4.5.0 - November 2016

1

w N

1.13 The master Construct

S-1

S-2

S-3

S-4

S-5

S-6

S-7

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23
S-24
S-25
S-26
S-27
S-28
S-29
S-30
S-31
S-32
S-33
S-34
S-35

The following example demonstrates the master construct . In the example, the master keeps track
of how many iterations have been executed and prints out a progress report. The other threads skip

the master region without waiting.

C/C++

Example master.1.c

#include <stdio.h>
extern float average (float, float, float);

void master_example(floatx x, floatx* xold, int n, float tol)
{
int ¢, i, toobig;
float error, y;
c =0;
#pragma omp parallel
{
do{
#pragma omp for private (i)
for(i =1; i < n-1; ++i){
xold[i] = x[i];
}
#pragma omp single
{
toobig = 0;
}
#pragma omp for private(i,y,error) reduction (+:toobig)
for(i =1; i < n-1; ++i){
y = x[i];
x[i] = average(xold[i-1], x[i], =xold[i+l1l]);
error =y - x[i];
if(error > tol || error < -tol) ++toobig;
}
#pragma omp master
{
++c;
printf("iteration %d, toobig=%d\n", c, toobig);
}
}while(toobig > 0);

C/C++

CHAPTER 1. PARALLEL EXECUTION

33

Fortran

Example master.1.f

S-1 SUBROUTINE MASTER_EXAMPLE (X, XOLD, N, TOL)
S-2 REAL X (%), XOLD (%), TOL
S-3 INTEGER N
S-4 INTEGER C, I, TOOBIG
S-5 REAL ERROR, Y, AVERAGE
S-6 EXTERNAL AVERAGE
S-7 cC=0
S-8 TOOBRIG =1
S-9 !SOMP PARALLEL
S-10 DO WHILE(TOOBIG > 0)
S-11 ! SOMP DO PRIVATE (I)
S-12 DO I = 2, N-1
S-13 XOLD (I) = X(I)
S-14 ENDDO
S-15 ! SOMP SINGLE
S-16 TOOBIG = 0
S-17 ! SOMP END SINGLE
S-18 ! SOMP DO PRIVATE (I, Y,ERROR), REDUCTION (+:TOOBIG)
3-19 DO I = 2, N-1
S-20 Y = X(I)
S-21 X(I) = AVERAGE (XOLD(I-1), X(I), XOLD(I+1l))
S-22 ERROR = Y-X(I)
S-23 IF(ERROR > TOL .OR. ERROR < -TOL) TOOBIG = TOOBIG+1l
S-24 ENDDO
S-25 ! SOMP MASTER
S-26 cC=C+1
S-27 PRINT x, ’'Iteration ', C, 'TOOBIG=’, TOOBIG
S-28 ! SOMP END MASTER
S-29 ENDDO
S-30 'SOMP END PARALLEL
S-31 END SUBROUTINE MASTER EXAMPLE
Fortran

34 OpenMP Examples Version 4.5.0 - November 2016

1

1.14

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11

Parallel Random Access Iterator Loop

C++
The following example shows a parallel random access iterator loop.

Example pra_iterator.1.cpp

#include <vector>
void iterator_ example ()
{
std: :vector<int> vec(23);
std: :vector<int>::iterator it;
#ipragma omp parallel for default (none) shared(vec)
for (it = vec.begin(); it < vec.end(); it++)
{
// do work with =*it //
}

C++

CHAPTER 1. PARALLEL EXECUTION

35

1 1.15 The omp_set_dynamic and

14

S-1

S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22

36

omp_set_num_threads Routines

Some programs rely on a fixed, prespecified number of threads to execute correctly. Because the
default setting for the dynamic adjustment of the number of threads is implementation defined, such
programs can choose to turn off the dynamic threads capability and set the number of threads
explicitly to ensure portability. The following example shows how to do this using
omp_set_dynamic, and omp_set_num_threads.

In this example, the program executes correctly only if it is executed by 16 threads. If the
implementation is not capable of supporting 16 threads, the behavior of this example is
implementation defined. Note that the number of threads executing a parallel region remains
constant during the region, regardless of the dynamic threads setting. The dynamic threads
mechanism determines the number of threads to use at the start of the parallel region and keeps
it constant for the duration of the region.

C/C++

Example set_dynamic_nthrs.1.c

#include <omp.h>
#include <stdlib.h>

void do_by 16 (float *x, int iam, int ipoints) {}

void dynthreads (float *x, int npoints)

{

int iam, ipoints;

omp_set_dynamic(0);
omp_set_num_threads (16);

#pragma omp parallel shared(x, npoints) private(iam, ipoints)
{
if (omp_get_num_threads() != 16)
abort () ;

iam = omp_get_thread num();

ipoints = npoints/16;

do_by 16(x, iam, ipoints);
}

C/C++

OpenMP Examples Version 4.5.0 - November 2016

S-1

S-2

S-3

S-4

S-5

S-6

S-7

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23
S-24
S-25
S-26
S-27
S-28
S-29
S-30

Fortran

Example set_dynamic_nthrs.1.f

SUBROUTINE DO_BY 16(X, IAM, IPOINTS)
REAL X (%)
INTEGER IAM, IPOINTS
END SUBROUTINE DO_BY 16
SUBROUTINE DYNTHREADS (X, NPOINTS)
INCLUDE "omp_lib.h" ! or USE OMP_LIB

INTEGER NPOINTS
REAL X (NPOINTS)

INTEGER IAM, IPOINTS

CALL OMP_SET_DYNAMIC (.FALSE.)
CALL OMP_SET_NUM_THREADS (16)

1SOMP PARALLEL SHARED (X,NPOINTS) PRIVATE (IAM, IPOINTS)
IF (OMP_GET NUM_THREADS() .NE. 16) THEN
STOP
ENDIF
IAM = OMP_GET_ THREAD_NUM/()
IPOINTS = NPOINTS/16
CALL DO_BY_16 (X, IAM, IPOINTS)

! SOMP END PARALLEL

END SUBROUTINE DYNTHREADS
Fortran

CHAPTER 1. PARALLEL EXECUTION 37

1

w N

1.16

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16

38

The omp_get_num_threads Routine

In the following example, the omp_get_num_threads call returns 1 in the sequential part of
the code, so np will always be equal to 1. To determine the number of threads that will be deployed

for the parallel region, the call should be inside the parallel region.

C/C++

Example get_nthrs.1.c

#include <omp.h>
void work (int i);

void incorrect ()

{

int np, i;

np = omp_get_num_threads(); /* misplaced */

#pragma omp parallel for schedule(static)

for (i=0; i < np; i++)
work (i) ;

C/C++
Fortran

Example get_nthrs.1.f

SUBROUTINE WORK(I)
INTEGER I

I=I+1
END SUBROUTINE WORK

SUBROUTINE INCORRECT ()

INCLUDE "omp_lib.h" ! or USE OMP_LIB

INTEGER I, NP

NP = OMP_GET_NUM_THREADS ()
1$OMP PARALLEL DO SCHEDULE (STATIC)
DO I = 0, NP-1
CALL WORK (I)
ENDDO
1$OMP END PARALLEL DO
END SUBROUTINE INCORRECT

OpenMP Examples Version 4.5.0 - November 2016

'misplaced: will return 1

S-1
S-2
S-3
S-4
S5
S-6
S-7
S8
S9
S-10
S-11
S-12
S-13

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17

Fortran

The following example shows how to rewrite this program without including a query for the
number of threads:

C/C++

Example get_nthrs.2.c

#include <omp.h>
void work (int i);

void correct ()

{

int i;

#{pragma omp parallel private (i)
{
i = omp_get_thread num();
work (i) ;

}

C/C++
Fortran

Example get_nthrs.2.f
SUBROUTINE WORK (I)

INTEGER I

I=I+1

END SUBROUTINE WORK

SUBROUTINE CORRECT ()
INCLUDE "omp_lib.h" ! or USE OMP_LIB
INTEGER I

1$0MP PARALLEL PRIVATE (I)
I = OMP_GET_THREAD_NUM()
CALL WORK (I)

1$OMP END PARALLEL

END SUBROUTINE CORRECT
Fortran

CHAPTER 1. PARALLEL EXECUTION

39

o NOO O~ W

11
12
13
14

15
16
17
18
19
20
21

22
23
24
25
26
27

28
29

CHAPTER 2

OpenMP Affinity

OpenMP Affinity consists of a proc_bind policy (thread affinity policy) and a specification of
places ("location units" or processors that may be cores, hardware threads, sockets, etc.). OpenMP
Affinity enables users to bind computations on specific places. The placement will hold for the
duration of the parallel region. However, the runtime is free to migrate the OpenMP threads to
different cores (hardware threads, sockets, etc.) prescribed within a given place, if two or more
cores (hardware threads, sockets, etc.) have been assigned to a given place.

Often the binding can be managed without resorting to explicitly setting places. Without the
specification of places in the OMP_PLACES variable, the OpenMP runtime will distribute and bind
threads using the entire range of processors for the OpenMP program, according to the
OMP_PROC_BIND environment variable or the proc_bind clause. When places are specified,
the OMP runtime binds threads to the places according to a default distribution policy, or those
specified in the OMP_PROC_BIND environment variable or the proc_bind clause.

In the OpenMP Specifications document a processor refers to an execution unit that is enabled for
an OpenMP thread to use. A processor is a core when there is no SMT (Simultaneous
Multi-Threading) support or SMT is disabled. When SMT is enabled, a processor is a hardware
thread (HW-thread). (This is the usual case; but actually, the execution unit is implementation
defined.) Processor numbers are numbered sequentially from O to the number of cores less one
(without SMT), or O to the number HW-threads less one (with SMT). OpenMP places use the
processor number to designate binding locations (unless an "abstract name" is used.)

The processors available to a process may be a subset of the system’s processors. This restriction
may be the result of a wrapper process controlling the execution (such as numact1 on Linux
systems), compiler options, library-specific environment variables, or default kernel settings. For
instance, the execution of multiple MPI processes, launched on a single compute node, will each
have a subset of processors as determined by the MPI launcher or set by MPI affinity environment
variables for the MPI library.

Threads of a team are positioned onto places in a compact manner, a scattered distribution, or onto
the master’s place, by setting the OMP_PROC_BIND environment variable or the proc_bind

40

© 0N O A ODND =

clause to close, spread, or master, respectively. When OMP_PROC_BIND is set to FALSE no
binding is enforced; and when the value is TRUE, the binding is implementation defined to a set of
places in the OMP_ PLACES variable or to places defined by the implementation if the
OMP_PLACES variable is not set.

The OMP_PLACES variable can also be set to an abstract name (threads, cores, sockets) to specify
that a place is either a single hardware thread, a core, or a socket, respectively. This description of
the OMP_PLACES is most useful when the number of threads is equal to the number of hardware
thread, cores or sockets. It can also be used with a close or spread distribution policy when the
equality doesn’t hold.

CHAPTER 2. OPENMP AFFINITY 41

1

o O~ WD

o © o N

12

13
14
15
16

17

2.1

211

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9

42

The proc_bind Clause

The following examples demonstrate how to use the proc_bind clause to control the thread
binding for a team of threads in a parallel region. The machine architecture is depicted in the
figure below. It consists of two sockets, each equipped with a quad-core processor and configured
to execute two hardware threads simultaneously on each core. These examples assume a contiguous
core numbering starting from 0, such that the hardware threads 0,1 form the first physical core.

socket w/ physical core w/ 2
4 physical cores hardware threads

A
, ‘ 4

pOgHDZ p3 p48gp6 p7
() 0010011100 00100

The following equivalent place list declarations consist of eight places (which we designate as p0 to
p7):

OoMP_PLACES="{0,1},{2,3}, {4,5},{6,7},{8,9},{10,11}, (12,13}, {14,15}"

or

OMP_PLACES="{0:2}:8:2"

Spread Affinity Policy

The following example shows the result of the spread affinity policy on the partition list when the
number of threads is less than or equal to the number of places in the parent’s place partition, for
the machine architecture depicted above. Note that the threads are bound to the first place of each
subpartition.

C/C++
Example affinity.l.c

void work();
int main()
{
#pragma omp parallel proc_bind(spread) num_threads (4)
{
work () ;

}

return O;

OpenMP Examples Version 4.5.0 - November 2016

0 N o o s w N

11
12
13

14
15

16
17
18
19

20

S-1
S-2
S-3
S-4
S-5

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8

C/C++
Fortran

Example affinity. 1.f

PROGRAM EXAMPLE

1$SOMP PARALLEL PROC_BIND (SPREAD) NUM_THREADS (4)
CALL WORK ()

1$SOMP END PARALLEL
END PROGRAM EXAMPLE

Fortran

It is unspecified on which place the master thread is initially started. If the master thread is initially
started on p0, the following placement of threads will be applied in the parallel region:

o thread 0 executes on p0 with the place partition pO,pl
o thread 1 executes on p2 with the place partition p2,p3
o thread 2 executes on p4 with the place partition p4,p5
e thread 3 executes on p6 with the place partition p6,p7

If the master thread would initially be started on p2, the placement of threads and distribution of the
place partition would be as follows:

thread 0 executes on p2 with the place partition p2,p3
thread 1 executes on p4 with the place partition p4,p5
thread 2 executes on p6 with the place partition p6,p7
thread 3 executes on p0 with the place partition p0O,p1

The following example illustrates the spread thread affinity policy when the number of threads is
greater than the number of places in the parent’s place partition.

Let T be the number of threads in the team, and P be the number of places in the parent’s place
partition. The first 7/P threads of the team (including the master thread) execute on the parent’s
place. The next T/P threads execute on the next place in the place partition, and so on, with wrap
around.

C/C++
Example affinity.2.c
void work();
void foo()
{
#fpragma omp parallel num_threads(16) proc_bind(spread)
{
work () ;
}
}
C/C++

CHAPTER 2. OPENMP AFFINITY 43

- O ©W 0O N OB~ WD

_ a4 a4
w N

- a4
© 00N O O BN

NN
- O

22

23
24
25

S-1
S-2
S-3
S-4
S5

Fortran
Example affinity.2.f90

subroutine foo

!$Somp parallel num threads(16) proc_bind(spread)
call work()

!Somp end parallel

end subroutine

Fortran

It is unspecified on which place the master thread is initially started. If the master thread is initially
started on p0, the following placement of threads will be applied in the parallel region:

threads 0,1 execute on p0 with the place partition p0
threads 2,3 execute on p1 with the place partition p1
threads 4,5 execute on p2 with the place partition p2
threads 6,7 execute on p3 with the place partition p3
threads 8,9 execute on p4 with the place partition p4
threads 10,11 execute on p5 with the place partition p5
threads 12,13 execute on p6 with the place partition p6
threads 14,15 execute on p7 with the place partition p7

If the master thread would initially be started on p2, the placement of threads and distribution of the
place partition would be as follows:

threads 0,1 execute on p2 with the place partition p2
threads 2,3 execute on p3 with the place partition p3
threads 4,5 execute on p4 with the place partition p4
threads 6,7 execute on p5 with the place partition p5
threads 8,9 execute on p6 with the place partition p6
threads 10,11 execute on p7 with the place partition p7
threads 12,13 execute on p0 with the place partition p0
threads 14,15 execute on pl with the place partition p1

2.1.2 Close Affinity Policy

44

The following example shows the result of the close affinity policy on the partition list when the
number of threads is less than or equal to the number of places in parent’s place partition, for the
machine architecture depicted above. The place partition is not changed by the close policy.

OpenMP Examples Version 4.5.0 - November 2016

0 N o O A~ W

11
12
13
14

15
16

17
18
19
20

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9

S-1
S-2
S-3
S-4
S-5

C/C++
Example affinity.3.c

void work();

int main()

{

#ipragma omp parallel proc_bind(close) num_threads (4)
{

work () ;
}
return O;
}
C/C++
Fortran
Example affinity.3.f

PROGRAM EXAMPLE

!SOMP PARALLEL PROC_BIND (CLOSE) NUM_THREADS (4)
CALL WORK()

!$OMP END PARALLEL
END PROGRAM EXAMPLE

Fortran

It is unspecified on which place the master thread is initially started. If the master thread is initially
started on p0, the following placement of threads will be applied in the parallel region:

thread 0 executes on p0 with the place partition pO-p7
thread 1 executes on pl with the place partition pO-p7
thread 2 executes on p2 with the place partition pO-p7
thread 3 executes on p3 with the place partition pO-p7

If the master thread would initially be started on p2, the placement of threads and distribution of the

place partition would be as follows:

thread 0 executes on p2 with the place partition pO-p7
thread 1 executes on p3 with the place partition pO-p7
thread 2 executes on p4 with the place partition pO-p7
thread 3 executes on p5 with the place partition pO-p7

The following example illustrates the close thread affinity policy when the number of threads is

greater than the number of places in the parent’s place partition.

Let T be the number of threads in the team, and P be the number of places in the parent’s place
partition. The first 7/P threads of the team (including the master thread) execute on the parent’s
place. The next 7/P threads execute on the next place in the place partition, and so on, with wrap

around. The place partition is not changed by the close policy.

CHAPTER 2. OPENMP AFFINITY

0N O AW

11
12

13
14

15
16
17
18
19
20
21
22

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8

S-1
S-2
S-3
S-4
S-5

46

C/C++
Example affinity.4.c

void work();
void foo()

{
#pragma omp parallel num_threads (16) proc_bind(close)
{
work () ;
}
}
C/C++
Fortran
Example affinity.4.f90

subroutine foo

!Somp parallel num threads(16) proc_bind(close)
call work()

!Somp end parallel

end subroutine

Fortran

It is unspecified on which place the master thread is initially started. If the master thread is initially
running on p0, the following placement of threads will be applied in the parallel region:

threads 0,1 execute on p0 with the place partition p0-p7
threads 2,3 execute on pl with the place partition p0-p7
threads 4,5 execute on p2 with the place partition pO-p7
threads 6,7 execute on p3 with the place partition pO-p7
threads 8,9 execute on p4 with the place partition pO-p7
threads 10,11 execute on p5 with the place partition p0-p7
threads 12,13 execute on p6 with the place partition pO-p7
threads 14,15 execute on p7 with the place partition pO-p7

If the master thread would initially be started on p2, the placement of threads and distribution of the
place partition would be as follows:

threads 0,1 execute on p2 with the place partition p0-p7
threads 2,3 execute on p3 with the place partition p0-p7
threads 4,5 execute on p4 with the place partition p0-p7
threads 6,7 execute on p5 with the place partition p0-p7
threads 8,9 execute on p6 with the place partition pO-p7
threads 10,11 execute on p7 with the place partition pO-p7
threads 12,13 execute on p0 with the place partition pO-p7
threads 14,15 execute on pl with the place partition pO-p7

OpenMP Examples Version 4.5.0 - November 2016

1 2.1.3 Master Affinity Policy

o © (oo} ~N O

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9

S-1
S-2
S-3
S-4
S5

The following example shows the result of the master affinity policy on the partition list for the
machine architecture depicted above. The place partition is not changed by the master policy.

C/C++
Example affinity.5.c

void work();

int main()

{

#fpragma omp parallel proc_bind(master) num_threads (4)

{

work () ;

}

return 0;

C/C++
Fortran

Example affinity.5.f

PROGRAM EXAMPLE

1$OMP PARALLEL PROC_BIND (MASTER) NUM_THREADS (4)
CALL WORK ()

1SOMP END PARALLEL
END PROGRAM EXAMPLE

Fortran

It is unspecified on which place the master thread is initially started. If the master thread is initially
running on p0, the following placement of threads will be applied in the parallel region:

e threads 0-3 execute on p0 with the place partition pO-p7

If the master thread would initially be started on p2, the placement of threads and distribution of the
place partition would be as follows:

o threads 0-3 execute on p2 with the place partition pO-p7

CHAPTER 2. OPENMP AFFINITY 47

1 2.2 Affinity Query Functions

oNO O MWN

©

11
12

13
14
15
16
17
18
19
20

21
22
23
24
25

26

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8

S-10

S-11
S-12

48

In the example below a team of threads is generated on each socket of the system, using nested
parallelism. Several query functions are used to gather information to support the creation of the
teams and to obtain socket and thread numbers.

For proper execution of the code, the user must create a place partition, such that each place is a
listing of the core numbers for a socket. For example, in a 2 socket system with 8 cores in each
socket, and sequential numbering in the socket for the core numbers, the OMP_PLACES variable
would be set to "{0:8},{8:8}", using the place syntax {lower_bound:length:stride}, and the default
stride of 1.

The code determines the number of sockets (n_sockets) using the omp_get_num_places ()
query function. In this example each place is constructed with a list of each socket’s core numbers,
hence the number of places is equal to the number of sockets.

The outer parallel region forms a team of threads, and each thread executes on a socket (place)
because the proc_bind clause uses spread in the outer parallel construct. Next, in the
socket_init function, an inner parallel region creates a team of threads equal to the number of
elements (core numbers) from the place of the parent thread. Because the outer parallel
construct uses a spread affinity policy, each of its threads inherits a subpartition of the original
partition. Hence, the omp_get_place_num_procs query function returns the number of
elements (here procs = cores) in the subpartition of the thread. After each parent thread creates its
nested parallel region on the section, the socket number and thread number are reported.

Note: Portable tools like hwloc (Portable HardWare LOCality package), which support many
common operating systems, can be used to determine the configuration of a system. On some
systems there are utilities, files or user guides that provide configuration information. For instance,
the socket number and proc_id’s for a socket can be found in the /proc/cpuinfo text file on Linux
systems.

C/C++
Example affinity.6.c

#include <stdio.h>
#include <omp.h>

void socket_init (int socket_num)

{

int n_procs;

n_procs = omp_get_place_num_procs (socket_num) ;
#ipragma omp parallel num_threads (n_procs) proc_bind(close)

{

printf ("Reporting in from socket num, thread num: %d %d\n",

OpenMP Examples Version 4.5.0 - November 2016

S-13 socket_num,omp_get_thread num());
S-14 }

S-15 }
S-16
S-17 int main ()
S-18 {
S-19 int n_sockets, socket_num;
S-20
S-21 omp_set_nested(1l); // or export OMP_NESTED=true
S-22 omp_set_max_active_levels(2); // or export OMP_MAX ACTIVE_LEVELS=2
S-23
S-24 n_sockets = omp_get_num places();
S-25 #pragma omp parallel num threads (n_sockets) private(socket_num) \
S-26 proc_bind (spread)
S-27 {
S-28 socket_num = omp_get_place_num();
S-29 socket_init (socket_num);
S-30 }
S-31 }
C/C++
Fortran
Example affinity.6.f90
S-1
S-2 subroutine socket_init (socket_num)
S-3 use omp_lib
S-4 integer :: socket_num, n_procs
S-5
S-6 n_procs = omp_get_place_num_procs (socket_num)
S-7 !$omp parallel num_threads (n_procs) proc_bind(close)
S-8
S-9 printx, "Reporting in from socket num, thread num: ", &
S-10 socket_num, omp_get_thread num()
S-11 !Somp end parallel
S-12 end subroutine
S-13
S-14 program numa_teams
S-15 use omp_1lib
S-16 integer :: n_sockets, socket_num
S-17
S-18 call omp_set_nested(.true.) ! or export OMP_NESTED=true
S-19 call omp_set_max_active_levels(2) ! or export OMP_MAX ACTIVE_LEVELS=2
S-20
S-21 n_sockets = omp_get_num_ places()
S-22 !$omp parallel num_threads (n_sockets) private (socket_num) &
S-23 ! $Sompé& proc_bind (spread)

CHAPTER 2. OPENMP AFFINITY 49

S-24

S-25 socket_num = omp_get_place_num()
S-26 call socket_init (socket_num)
S-27

S-28 !Somp end parallel

S-29 end program
Fortran

50 OpenMP Examples Version 4.5.0 - November 2016

o NO o~ W

11
12
13
14

15
16
17
18

19
20

21
22
23
24
25
26
27

28
29
30

CHAPTER 3

Tasking

Tasking constructs provide units of work to a thread for execution. Worksharing constructs do this,
too (e.g. for, do, sections, and singles constructs); but the work units are tightly controlled
by an iteration limit and limited scheduling, or a limited number of sections or single
regions. Worksharing was designed with "data parallel" computing in mind. Tasking was designed
for "task parallel" computing and often involves non-locality or irregularity in memory access.

The task construct can be used to execute work chunks: in a while loop; while traversing nodes in
a list; at nodes in a tree graph; or in a normal loop (with a taskloop construct). Unlike the
statically scheduled loop iterations of worksharing, a task is often enqueued, and then dequeued for
execution by any of the threads of the team within a parallel region. The generation of tasks can be
from a single generating thread (creating sibling tasks), or from multiple generators in a recursive
graph tree traversals. A taskloop construct bundles iterations of an associated loop into tasks,
and provides similar controls found in the task construct.

Sibling tasks are synchronized by the taskwait construct, and tasks and their descendent tasks
can be synchronized by containing them in a taskgroup region. Ordered execution is
accomplished by specifying dependences with a depend clause. Also, priorities can be specified
as hints to the scheduler through a priority clause.

Various clauses can be used to manage and optimize task generation, as well as reduce the overhead
of execution and to relinquish control of threads for work balance and forward progress.

Once a thread starts executing a task, it is the designated thread for executing the task to
completion, even though it may leave the execution at a scheduling point and return later. The
thread is tied to the task. Scheduling points can be introduced with the taskyield construct.
With an untied clause any other thread is allowed to continue the task. An if clause with a true
expression allows the generating thread to immediately execute the task as an undeferred task. By
including the data environment of the generating task into the generated task with the mergeable
and £inal clauses, task generation overhead can be reduced.

A complete list of the tasking constructs and details of their clauses can be found in the Tasking
Constructs chapter of the OpenMP Specifications, in the OpenMP Application Programming
Interface section.

51

o O~ WD

3.1

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17

52

The task and taskwait Constructs

The following example shows how to traverse a tree-like structure using explicit tasks. Note that the
traverse function should be called from within a parallel region for the different specified tasks
to be executed in parallel. Also note that the tasks will be executed in no specified order because
there are no synchronization directives. Thus, assuming that the traversal will be done in post order,
as in the sequential code, is wrong.

C/C++

Example tasking.1.c

struct node {
struct node =xleft;
struct node *right;
};
extern void process (struct node *);
void traverse(struct node *p) {
if (p—>left)
#pragma omp task // p is firstprivate by default
traverse (p—>left);
if (p—->right)
#pragma omp task // p is firstprivate by default
traverse (p—>right);
process (p);

}
C/C++
Fortran

Example tasking.1.f90

RECURSIVE SUBROUTINE traverse (P)
TYPE Node
TYPE (Node) , POINTER :: left, right
END TYPE Node

TYPE (Node) :: P
IF (associated(P%left)) THEN
!SOMP TASK ! P is firstprivate by default

CALL traverse (P%left)
!1SOMP END TASK

ENDIF
IF (associated(P%$right)) THEN
!$OMP TASK ! P is firstprivate by default

CALL traverse (P%$right)
!$SOMP END TASK
ENDIF
CALL process (P)
END SUBROUTINE

OpenMP Examples Version 4.5.0 - November 2016

Fortran

In the next example, we force a postorder traversal of the tree by adding a taskwait directive.
Now, we can safely assume that the left and right sons have been executed before we process the
current node.

C/C++
Example tasking.2.c
S-1 struct node {
S-2 struct node *left;
S-3 struct node xright;
S-4 }i
S-5 extern void process(struct node x);
S-6 void postorder_ traverse(struct node *p) {
S-7 if (p->left)
S-8 #pragma omp task // p is firstprivate by default
S-9 postorder_traverse (p—>left);
S-10 if (p—>right)
S-11 #pragma omp task // p is firstprivate by default
S-12 postorder_traverse (p—->right);
S-13 #fpragma omp taskwait
S-14 process (p) ;
S-15 }
C/C++
Fortran
Example tasking.2.f90
S-1 RECURSIVE SUBROUTINE traverse (P)
S-2 TYPE Node
S-3 TYPE (Node) , POINTER :: left, right
S-4 END TYPE Node
S-5 TYPE (Node) :: P
S-6 IF (associated(P%left)) THEN
S-7 !SOMP TASK ! P is firstprivate by default
S-8 CALL traverse (P%left)
S-9 'SOMP END TASK
S-10 ENDIF
S-11 IF (associated(P%right)) THEN
S-12 1SOMP TASK ! P is firstprivate by default
S-13 CALL traverse (P%right)
S-14 'SOMP END TASK
S-15 ENDIF
S-16 !SOMP TASKWAIT
S-17 CALL process (P)
S-18 END SUBROUTINE

CHAPTER 3. TASKING

AWN =

S-1
S-2
S-3
S-4

S-6

S-7

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23
S-24
S-25
S-26

54

Fortran

The following example demonstrates how to use the task construct to process elements of a linked
list in parallel. The thread executing the single region generates all of the explicit tasks, which
are then executed by the threads in the current team. The pointer p is firstprivate by default
on the task construct so it is not necessary to specify it in a firstprivate clause.

C/C++
Example tasking.3.c
typedef struct node node;
struct node {
int data;
node * next;
};
void process(node * p)
{
/* do work here */
}
void increment_list_items (node * head)
{
#pragma omp parallel
{
#pragma omp single
{
node * p = head;
while (p) {
#pragma omp task
// p is firstprivate by default
process (p) ;
P = p—>next;
}
}
}
}

C/C++

OpenMP Examples Version 4.5.0 - November 2016

w

S-1
S-2
S-3

S-5

S-6

S-7

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23
S-24
S-25
S-26
S-27
S-28

Fortran
Example tasking.3.f90

MODULE LIST
TYPE NODE
INTEGER :: PAYLOAD
TYPE (NODE), POINTER :: NEXT
END TYPE NODE

CONTAINS
SUBROUTINE PROCESS (p)
TYPE (NODE), POINTER :: P

! do work here
END SUBROUTINE
SUBROUTINE INCREMENT_LIST ITEMS (HEAD)
TYPE (NODE), POINTER :: HEAD
TYPE (NODE), POINTER :: P
!'$OMP PARALLEL PRIVATE (P)
1$SOMP SINGLE
P => HEAD
DO
1SOMP TASK
! P is firstprivate by default
CALL PROCESS (P)
!$SOMP END TASK
P => PS%NEXT
IF (.NOT. ASSOCIATED (P)) EXIT
END DO
!$SOMP END SINGLE
'$OMP END PARALLEL
END SUBROUTINE
END MODULE

Fortran

The £ib () function should be called from within a parallel region for the different specified
tasks to be executed in parallel. Also, only one thread of the parallel region should call £ib ()

unless multiple concurrent Fibonacci computations are desired.

CHAPTER 3. TASKING

55

—_

O W oo~NOOOT MW

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13

S-1
S-2
S-3
S-4
S-5
S-6
S-7

S-9
S-10
S-11
S-12
S-13
S-14
S-15

56

C/C++

Example tasking.4.c

int fib(int n) {
int i, j;

if (n<2)
return n;
else {
#fpragma omp task shared (i)
i=fib(n-1);
#fpragma omp task shared(j)
j=fib (n-2) ;

#fpragma omp taskwait
return i+j;

C/C++
Fortran

Example tasking.4.f

RECURSIVE INTEGER FUNCTION fib(n) RESULT (res)
INTEGER n, i, jJ
IF (n .LT. 2) THEN
res = n
ELSE
'SOMP TASK SHARED (i)
i = fib(n-1)
'$OMP END TASK
!$OMP TASK SHARED (j)
j = fib(n-2)
'$OMP END TASK
!SOMP TASKWAIT
res = i+j
END IF
END FUNCTION

Fortran

Note: There are more efficient algorithms for computing Fibonacci numbers. This classic recursion
algorithm is for illustrative purposes.

The following example demonstrates a way to generate a large number of tasks with one thread and
execute them with the threads in the team. While generating these tasks, the implementation may
reach its limit on unassigned tasks. If it does, the implementation is allowed to cause the thread
executing the task generating loop to suspend its task at the task scheduling point in the task
directive, and start executing unassigned tasks. Once the number of unassigned tasks is sufficiently
low, the thread may resume execution of the task generating loop.

OpenMP Examples Version 4.5.0 - November 2016

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16

C/C++

Example tasking.5.c

#define LARGE_NUMBER 10000000
double item[LARGE_NUMBER];
extern void process (double);

int main() {
#fpragma omp parallel

{

#fpragma omp single

{

int i;
for (i=0; i<LARGE_NUMBER; i++)

#pragma omp task // i is firstprivate, item is shared

process (item[i]);

C/C++

CHAPTER 3. TASKING

57

O W NOOA~WNMN

—_

11

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14

58

Fortran

Example tasking.5.f

realx8 item(10000000)
integer i

!Somp parallel
!Somp single ! loop iteration variable i is private
do i=1,10000000
!Somp task
! i is firstprivate, item is shared
call process(item(i))
!Somp end task
end do
!Somp end single
!Somp end parallel
end

Fortran

The following example is the same as the previous one, except that the tasks are generated in an
untied task. While generating the tasks, the implementation may reach its limit on unassigned tasks.
If it does, the implementation is allowed to cause the thread executing the task generating loop to
suspend its task at the task scheduling point in the task directive, and start executing unassigned
tasks. If that thread begins execution of a task that takes a long time to complete, the other threads
may complete all the other tasks before it is finished.

In this case, since the loop is in an untied task, any other thread is eligible to resume the task
generating loop. In the previous examples, the other threads would be forced to idle until the
generating thread finishes its long task, since the task generating loop was in a tied task.

C/C++

Example tasking.6.c

##define LARGE_NUMBER 10000000
double item[LARGE_NUMBER];
extern void process (double);
int main() {
#pragma omp parallel
{
#pragma omp single
{
int i;
#pragma omp task untied
// i is firstprivate, item is shared
{
for (i=0; i<LARGE_NUMBER; i++)
#pragma omp task

OpenMP Examples Version 4.5.0 - November 2016

—_

o © NOoO Ok~ WD

S-15
S-16
S-17
S-18
S-19
S-20

S-1

S-3
S-4
S-5
S-6

S-8

S-9
S-10
S-11
S-12
S-13
S-14

}
}

process (item[i]);

return 0;

}

C/C++
Fortran

Example tasking.6.f

! Somp
! Somp
! Somp

! Somp
! Somp
! Somp

! Somp
! Somp

real*8 item(10000000)
parallel
single
task untied
! loop iteration variable i is private
do i=1,10000000
task ! i is firstprivate, item is shared
call process(item(i))
end task
end do
end task
end single
end parallel
end

Fortran

The following two examples demonstrate how the scheduling rules illustrated in Section 2.11.3 of
the OpenMP 4.0 specification affect the usage of threadprivate variables in tasks. A
threadprivate variable can be modified by another task that is executed by the same thread.
Thus, the value of a threadprivate variable cannot be assumed to be unchanged across a task
scheduling point. In untied tasks, task scheduling points may be added in any place by the
implementation.

A task switch may occur at a task scheduling point. A single thread may execute both of the task
regions that modify tp. The parts of these task regions in which tp is modified may be executed in
any order so the resulting value of var can be either 1 or 2.

CHAPTER 3. TASKING 59

S-1
S-2
S-3

S-5

S-6

S-7

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17

60

C/C++

Example tasking.7.c

int tp;

#pragma omp threadprivate (tp)
int var;

void work ()

{

#pragma omp task

{

/* do work here x/

#pragma omp task

{
tp = 1;
/* do work here x/

#pragma omp task

{

/* no modification of tp */

var = tp; //value of tp can be 1 or 2

C/C++
Fortran

Example tasking.7.f

! Somp

! Somp

! Somp

! Somp
! Somp

! Somp

module example
integer tp
threadprivate (tp)
integer var
contains
subroutine work
task
! do work here
task
tp =1
! do work here
task
! no modification of tp
end task
var = tp ! value of var can be 1 or 2
end task
tp = 2

OpenMP Examples Version 4.5.0 - November 2016

S-18
S-19
S-20

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8

S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21

!$omp end task
end subroutine
end module

Fortran

In this example, scheduling constraints prohibit a thread in the team from executing a new task that
modifies tp while another such task region tied to the same thread is suspended. Therefore, the
value written will persist across the task scheduling point.

C/C++

Example tasking.8.c

int tp;
#pragma omp threadprivate (tp)
int var;
void work ()
{
#fpragma omp parallel
{
/* do work here x/
#fpragma omp task
{
tpt++;
/* do work here =*/
f#fpragma omp task
{
/* do work here but don’t modify tp */
}

var = tp; //Value does not change after write above

C/C++

CHAPTER 3. TASKING 61

oO~NOO O~ WM

Fortran

Example tasking.8.f

S-1 module example

S-2 integer tp

S-3 !Somp threadprivate (tp)

S-4 integer var

S-5 contains

S-6 subroutine work

S-7 !Somp parallel

S-8 ! do work here

S-9 !Somp task

S-10 tp=tp +1

S-11 ! do work here

S-12 !Somp task

S-13 ! do work here but don’t modify tp
S-14 !Somp end task

S-15 var = tp ! value does not change after write above
S-16 !Somp end task

S-17 !Somp end parallel

S-18 end subroutine

S-19 end module

Fortran

The following two examples demonstrate how the scheduling rules illustrated in Section 2.11.3 of
the OpenMP 4.0 specification affect the usage of locks and critical sections in tasks. If a lock is
held across a task scheduling point, no attempt should be made to acquire the same lock in any code
that may be interleaved. Otherwise, a deadlock is possible.

In the example below, suppose the thread executing task 1 defers task 2. When it encounters the
task scheduling point at task 3, it could suspend task 1 and begin task 2 which will result in a
deadlock when it tries to enter critical region 1.

C/C++
Example tasking.9.c
S-1 void work ()
S-2 {
S-3 #pragma omp task
S-4 { //Task 1
S-5 #pragma omp task
S-6 { //Task 2
S-7 #pragma omp critical //Critical region 1
S-8 {/*do work here */ }
S-9 }
S-10 #pragma omp critical //Critical Region 2
S-11 {

62 OpenMP Examples Version 4.5.0 - November 2016

w

S-12
S-13
S-14
S-15
S-16
S-17

S-1
S-2
S-3
S-4
S-5
S-6
S-7

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23

//Capture data for the following task

#pragma omp task

{ /* do work here */ } //Task 3

C/C++
Fortran

Example tasking.9.f

! Somp
! Somp
! Somp
! Somp

! Somp
! Somp

! Somp

! Somp
! Somp
! Somp

module example
contains
subroutine work
task
! Task 1
task
! Task 2
critical
! Critical region 1
! do work here
end critical
end task
critical
! Critical region 2

! Capture data for the following task

task

!Task 3

! do work here
end task
end critical
end task
end subroutine
end module

Fortran

In the following example, lock is held across a task scheduling point. However, according to the
scheduling restrictions, the executing thread can’t begin executing one of the non-descendant tasks

that also acquires 1ock before the task region is complete. Therefore, no deadlock is possible.

CHAPTER 3. TASKING

63

S-1
S-2
S-3

S-5

S-6

S-7

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23

S-1
S-2

S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16

64

C/C++
Example tasking.10.c

#include <omp.h>
void work () {
omp_lock t lock;
omp_init_lock (&lock);
#pragma omp parallel
{
int i;
#pragma omp for
for (i = 0; i < 100; i++) {
#pragma omp task
{
// lock is shared by default in the task
omp_set_lock (&lock);
// Capture data for the following task
#pragma omp task
// Task Scheduling Point 1
{ /* do work here */ }
omp_unset_lock (&lock);

}

}
omp_destroy_ lock (&lock);

C/C++
Fortran

Example tasking.10.f90

module example

include ’'omp_lib.h’

integer (kind=omp_lock_kind) lock
integer i

contains
subroutine work

call omp_init_lock (lock)
!Somp parallel

!$Somp do
do i=1,100
!$omp task
! Outer task
call omp_set_lock (lock) ! lock is shared by

! default in the task

OpenMP Examples Version 4.5.0 - November 2016

O NO O~ WN =

S-17
S-18
S-19
S-20
S-21
S-22
S-23
S-24
S-25
S-26
S-27
S-28

S-1
S-2
S-3

S-5
S-6
S-7

S9
S-10
S-11

! Somp

! Capture data for the following task
!Somp task ! Task Scheduling Point 1

! do work here
!Somp end task
call omp_unset_lock (lock)
!Somp end task
end do
end parallel
call omp_destroy_lock (lock)
end subroutine

end module

Fortran

The following examples illustrate the use of the mergeable clause in the task construct. In this
first example, the task construct has been annotated with the mergeable clause. The addition
of this clause allows the implementation to reuse the data environment (including the ICVs) of the
parent task for the task inside foo if the task is included or undeferred. Thus, the result of the
execution may differ depending on whether the task is merged or not. Therefore the mergeable
clause needs to be used with caution. In this example, the use of the mergeable clause is safe. As x
is a shared variable the outcome does not depend on whether or not the task is merged (that is, the
task will always increment the same variable and will always compute the same value for x).

C/C++

Example tasking.11.c

#include <stdio.h>
void foo ()

{

int x = 2;
#pragma omp task shared(x) mergeable

{

}

xX++;

#pragma omp taskwait
printf("%d\n",x); // prints 3

C/C++

CHAPTER 3. TASKING 65

o O~ WD

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11

66

Fortran
Example tasking.11.f90

subroutine foo ()

integer :: x
x =2

!Somp task shared(x) mergeable
x=x+1

!Somp end task
!Somp taskwait

print *, x ! prints 3
end subroutine

Fortran

This second example shows an incorrect use of the mergeable clause. In this example, the
created task will access different instances of the variable x if the task is not merged, as x is
firstprivate, but it will access the same variable x if the task is merged. As a result, the
behavior of the program is unspecified and it can print two different values for x depending on the
decisions taken by the implementation.

C/C++
Example tasking.12.c

#include <stdio.h>
void foo ()

{

int x = 2;

#{pragma omp task mergeable

{

x++;

}

#pragma omp taskwait

printf("%d\n",x); // prints 2 or 3
}

C/C++

OpenMP Examples Version 4.5.0 - November 2016

ONO OO

11
12
13

14

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15

Fortran
Example tasking.12.f90

subroutine foo ()

integer :: x
x =2

!$omp task mergeable
x=x+1

!$omp end task
!$Somp taskwait

print *, x ! prints 2 or 3
end subroutine

Fortran

The following example shows the use of the £inal clause and the omp_in_final APIcall in a
recursive binary search program. To reduce overhead, once a certain depth of recursion is reached
the program uses the £inal clause to create only included tasks, which allow additional
optimizations.

The use of the omp_in_final API call allows programmers to optimize their code by specifying
which parts of the program are not necessary when a task can create only included tasks (that is, the
code is inside a £inal task). In this example, the use of a different state variable is not necessary
so once the program reaches the part of the computation that is finalized and copying from the
parent state to the new state is eliminated. The allocation of new_state in the stack could also be
avoided but it would make this example less clear. The £inal clause is most effective when used
in conjunction with the mergeable clause since all tasks created in a £inal task region are
included tasks that can be merged if the mergeable clause is present.

C/C++
Example tasking.13.c

#include <string.h>
#include <omp.h>
#define LIMIT 3 /% arbitrary limit on recursion depth */
void check_solution(char x);
void bin_search (int pos, int n, char =*state)
{
if (pos == n) {
check_solution(state);
return;
}
#pragma omp task final(pos > LIMIT) mergeable
{
char new_state[n];
if (!'omp_in_final()) {
memcpy (new_state, state, pos);

CHAPTER 3. TASKING 67

S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23
S-24
S-25
S-26
S-27
S-28
S-29
S-30
S-31
S-32

S-1

S-3
S-4

S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23
S-24
S-25

68

state = new_state;
}
state[pos] = 0;
bin_search(pos+l, n, state);

}

#fpragma omp task final(pos > LIMIT) mergeable

{
char new_state[n];
if (! omp_in_final()) {
memcpy (new_state, state, pos);
state = new_state;
}
state[pos] = 1;
bin_search(pos+l, n, state);
}
#fpragma omp taskwait

C/C++
Fortran

Example tasking.13.f90

recursive subroutine bin_search(pos, n, state)
use omp_lib

integer :: pos, n

character, pointer :: state(:)

character, target, dimension(n) :: new_statel,
integer, parameter :: LIMIT = 3

if (pos .eq. n) then
call check_solution(state)
return
endif
!$Somp task final (pos > LIMIT) mergeable
if (.not. omp_in final()) then
new_statel (1:pos) = state(l:pos)
state => new_statel
endif
state (pos+l) = 'z’
call bin_search(pos+l, n, state)
!Somp end task
!Somp task final (pos > LIMIT) mergeable
if (.not. omp_in_ final()) then
new_state2 (l:pos) = state(l:pos)
state => new_state2
endif
state(pos+l) = 'y’
call bin_search(pos+l, n, state)

OpenMP Examples Version 4.5.0 - November 2016

new_state2

OO0k WD =

S-26
S-27
S-28

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22

!$omp end task
!$omp taskwait
end subroutine

The following example illustrates the difference between the 1 £ and the £inal clauses. The i £

Fortran

clause has a local effect. In the first nest of tasks, the one that has the i £ clause will be undeferred
but the task nested inside that task will not be affected by the i £ clause and will be created as usual.
Alternatively, the £inal clause affects all task constructs in the £inal task region but not the

final task itself. In the second nest of tasks, the nested tasks will be created as included tasks.

Note also that the conditions for the 1 £ and £inal clauses are usually the opposite.

C/C++

Example tasking.14.c

void bar (void);

void foo ()

{

int i;
#pragma omp task if(0) // This task is undeferred
{

#pragma omp task // This task is a regular task
for (i = 0; i < 3; i++) {
#ipragma omp task // This task is a regular task
bar();

}
}
#pragma omp task final(l) // This task is a regular task
{
#pragma omp task // This task is included
for (1 = 0; i < 3; i++) {
#pragma omp task // This task is also included
bar();

C/C++

CHAPTER 3. TASKING

69

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21

70

Fortran
Example tasking. 14.f90

subroutine foo ()

integer i

!Somp task if (.FALSE.) ! This task is undeferred

!Somp task ! This task is a regular task
doi=1, 3

!Somp task ! This task is a regular task

call bar()
!$omp end task

enddo
!Somp end task
!Somp end task
!Somp task final(.TRUE.) ! This task is a regular task
!Somp task ! This task is included

doi=1, 3

!$omp task ! This task is also included

call bar()
!$omp end task
enddo
!Somp end task
!Somp end task
end subroutine

Fortran

OpenMP Examples Version 4.5.0 - November 2016

1 3.2 Task Priority

2 In this example we compute arrays in a matrix through a compute_array routine. Each task has a
3 priority value equal to the value of the loop variable i at the moment of its creation. A higher
4 priority on a task means that a task is a candidate to run sooner.
5 The creation of tasks occurs in ascending order (according to the iteration space of the loop) but a
6 hint, by means of the priority clause, is provided to reverse the execution order.
C/C++
7 Example task_priority.l.c
S-1 void compute_array (float *node, int M);
S-2
S-3 void compute_matrix (float *array, int N, int M)
S-4 {
S-5 int i;
S-6 #pragma omp parallel private (i)
S-7 #pragma omp single
S-8 {
S-9 for (i=0;i<N; i++) {
S-10 #ipragma omp task priority (i)
S-11 compute_array (&array[ixM], M);
S-12 }
S-13 }
S-14 }
C/C++
Fortran
8 Example task_priority.1.f90
S-1 subroutine compute_matrix(matrix, M, N)
S-2 implicit none
S-3 integer :: M, N
S-4 real :: matrix(M, N)
S-5 integer :: i
S-6 interface
S-7 subroutine compute_array (node, M)
S-8 implicit none
S-9 integer :: M
S-10 real node (M)
S-11 end subroutine
S-12 end interface
S-13 !Somp parallel private(i)
S-14 !$omp single
S-15 do i=1,N
S-16 !Somp task priority (i)

CHAPTER 3. TASKING

71

S-17 call compute_array(matrix(:, i), M)

S-18 !$omp end task

S-19 enddo

S-20 !Somp end single

S-21 !Somp end parallel

S-22 end subroutine compute_matrix

Fortran

72 OpenMP Examples Version 4.5.0 - November 2016

1 3.3 Task Dependences

2 3.3.1 Flow Dependence

3 In this example we show a simple flow dependence expressed using the depend clause on the
4 task construct.
C/C++
5 Example task_dep.1.c
S-1 #include <stdio.h>
S-2 int main()
S-3 {
S-4 int x = 1;
S-5 #pragma omp parallel
S-6 #pragma omp single
S-7 {
S-8 #pragma omp task shared(x) depend(out: x)
S-9 x = 2;
S-10 #pragma omp task shared(x) depend(in: x)
S-11 printf("x = %d\n", x);
S-12 }
S-13 return 0;
S-14 }
C/C++
Fortran
6 Example task_dep.1.f90
S-1 program example
S-2 integer :: x
S-3 x =1
S-4 !$omp parallel
S-5 !Somp single
S-6 !Somp task shared(x) depend(out: x)
S-7 x = 2
S-8 !'Somp end task
S-9 !$Somp task shared(x) depend(in: x)
S-10 printx, "x = ", x
S-11 !Somp end task
S-12 !$omp end single
S-13 !$omp end parallel

S-14 end program

CHAPTER 3. TASKING

—_

Fortran

The program will always print "x = 2", because the depend clauses enforce the ordering of the
tasks. If the depend clauses had been omitted, then the tasks could execute in any order and the
program and the program would have a race condition.

3.3.2 Anti-dependence

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14

74

In this example we show an anti-dependence expressed using the depend clause on the task
construct.

C/C++
Example task_dep.2.c

#include <stdio.h>
int main()
{
int x = 1;
#fpragma omp parallel
#pragma omp single
{
#pragma omp task shared(x) depend(in: x)
printf("x = %d\n", x);
#pragma omp task shared(x) depend(out: x)
X = 2;
}

return 0O;

C/C++

OpenMP Examples Version 4.5.0 - November 2016

w

(6]

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14

Fortran
Example task_dep.2.f90

program example
integer :: x
x =1
!$omp parallel
!$Somp single
!$Somp task shared(x) depend(in: x)
printx, "x = ", x
!Somp end task
!Somp task shared(x) depend(out: x)
x =2
!Somp end task
!$omp end single
!$omp end parallel
end program

Fortran

The program will always print "x = 1", because the depend clauses enforce the ordering of the
tasks. If the depend clauses had been omitted, then the tasks could execute in any order and the

program would have a race condition.

3.3.3 Output Dependence

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12

In this example we show an output dependence expressed using the depend clause on the task

construct.

C/C++
Example task_dep.3.c

#include <stdio.h>
int main()
{
int x;
#pragma omp parallel
#pragma omp single
{

#pragma omp task shared(x) depend(out:

x =1;

#pragma omp task shared(x) depend (out:

X = 2;
#pragma omp taskwait

x)

X)

CHAPTER 3. TASKING

75

w

(o]

S-13
S-14
S-15
S-16

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15

3.3.4 Concurrent Execution with Dependences

76

printf("x = %d\n", x);
}

return O;

C/C++
Fortran

Example task_dep.3.f90

program example
integer :: x
!'$omp parallel
!Somp single
!$omp task shared(x) depend(out: x)
x =1
!$Somp end task
!$omp task shared(x) depend(out: x)
x =2
!$omp end task
!$omp taskwait
printx, "x = ", x
!$Somp end single
!Somp end parallel
end program

Fortran

The program will always print "x = 2", because the depend clauses enforce the ordering of the
tasks. If the depend clauses had been omitted, then the tasks could execute in any order and the

program would have a race condition.

In this example we show potentially concurrent execution of tasks using multiple flow dependences
expressed using the depend clause on the task construct.

OpenMP Examples Version 4.5.0 - November 2016

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17

C/C++

Example task_dep.4.c

#include <stdio.h>
int main()

{

int x = 1;
#pragma omp parallel
#pragma omp single

{

}

#ipragma omp task shared(x) depend(out: x)

X = 2;
#pragma omp task shared(x) depend(in: x)
printf("x + 1 = %d. ", x+1);

#pragma omp task shared(x) depend(in: x)
printf("x + 2 = %d\n", x+2);

return 0;

C/C++
Fortran

Example task_dep.4.f90

program example
integer :: x

X

=1

!$omp parallel
!$omp single

!Somp task shared(x) depend(out: x)
x =2

!Somp end task

!Somp task shared(x) depend(in: x)
printx, "x + 1 =", x+1, "."

!Somp end task

!Somp task shared(x) depend(in: x)
printx, "x + 2 =", x+2, "."

!Somp end task

!$omp end single
!$omp end parallel
end program

CHAPTER 3. TASKING

77

O~ OND =

Fortran

The last two tasks are dependent on the first task. However there is no dependence between the last
two tasks, which may execute in any order (or concurrently if more than one thread is available).
Thus, the possible outputs are "x +1=3. x+2=4. "and "x+2=4. x+ 1 =3. ". If the depend
clauses had been omitted, then all of the tasks could execute in any order and the program would
have a race condition.

3.3.5 Matrix multiplication

This example shows a task-based blocked matrix multiplication. Matrices are of NxN elements, and
the multiplication is implemented using blocks of BSxBS elements.

C/C++
Example task_dep.5.c
S-1 // Assume BS divides N perfectly
S-2 void matmul_depend(int N, int BS, float A[N][N], float B[N][N], float
S-3 C[N] [N])
S-4 {
S-5 int i, j, k, ii, jj, kk;
S-6 for (i = 0; i < N; i+=BS) {
S-7 for (j = 0; j < N; j+=BS) {
S-8 for (k = 0; k < N; k+=BS) {
S-9 // Note 1: i, j, k, A, B, C are firstprivate by default
S-10 // Note 2: A, B and C are just pointers
S-11 #pragma omp task private(ii, 3jj, kk) \
S-12 depend (in: A[i:BS][k:BS], B[k:BS][j:BS]) \
S-13 depend (inout: C[i:BS][j:BS])
S-14 for (ii = i; ii < i+BS; ii++)
S-15 for (33 = 3; 3j < J3+BS; jj++)
S-16 for (kk = k; kk < k+BS; kk++)
S-17 C[ii][33j] = C[ii]1[3j3j] + A[ii] [kk] ~ B[kk][3j]l;
S-18 }
S-19 }
S-20 }
S-21 }
C/C++

78 OpenMP Examples Version 4.5.0 - November 2016

Fortran
Example task_dep.5.f90

S-1 ! Assume BS divides N perfectly

S-2 subroutine matmul_depend (N, BS, A, B, C)

S-3 implicit none

S-4 integer :: N, BS, BM

S-5 real, dimension(N, N) :: A, B, C

S-6 integer :: i, j, k, ii, jj, kk

S-7 BM = BS - 1

S-8 do i =1, N, BS

S-9 do j =1, N, BS

S-10 do k =1, N, BS

S-11 !$omp task shared(A,B,C) private(ii,jj,kk) & ! I,J, K are firstprivate by default
S-12 !$omp depend (in: A(i:i+BM, k:k+BM), B(k:k+BM, j:j+BM)) &
S-13 !Somp depend (inout: C(i:i+BM, j:j+BM))

S-14 do ii = i, i+BM

S-15 do jj = j, j+BM

S-16 do kk = k, k+BM

S-17 C(3jj,ii) = C(jj,ii) + A(kk,ii) * B(jj, kk)
S-18 end do

S-19 end do

S-20 end do

S-21 !Somp end task

S-22 end do

S-23 end do

S-24 end do

S-25 end subroutine

Fortran

CHAPTER 3. TASKING 79

1 3.4 The taskgroup Construct

© oo ~NO O~ W N

10

S-7

S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21
S-22
S-23
S-24
S-25
S-26
S-27
S-28
S-29
S-30
S-31
S-32

80

In this example, tasks are grouped and synchronized using the taskgroup construct.

Initially, one task (the task executing the start_background_work () call) is created in the
parallel region, and later a parallel tree traversal is started (the task executing the root of the
recursive compute_tree () calls). While synchronizing tasks at the end of each tree traversal,
using the taskgroup construct ensures that the formerly started background task does not
participate in the synchronization, and is left free to execute in parallel. This is opposed to the
behaviour of the taskwait construct, which would include the background tasks in the
synchronization.

C/C++

Example taskgroup.l.c

extern void start_background_work (void) ;
extern void check_step(void);
extern void print_results(void);
struct tree_node
{
struct tree_node xleft;
struct tree_node xright;
};
typedef struct tree_node* tree_type;
extern void init_tree(tree_type);
#define max_steps 100
void compute_something(tree_type tree)
{
// some computation
}
void compute_tree (tree_type tree)
{
if (tree->left)
{
#pragma omp task
compute_tree (tree->left);
}
if (tree->right)
{
#pragma omp task
compute_tree (tree->right);
}
#pragma omp task
compute_something (tree);
}
int main()

{

OpenMP Examples Version 4.5.0 - November 2016

S-33
S-34
S-35
S-36
S-37
S-38
S-39
S-40
S-41
S-42
S-43
S-44
S-45
S-46
S-47
S-48
S-49
S-50
S-51
S-52
S-53

S-1

S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21

int i;
tree_type tree;
init_tree (tree);
#fpragma omp parallel
#fpragma omp single
{
#pragma omp task
start_background work();
for (i = 0; i < max_steps; i++)
{
#pragma omp taskgroup
{
#fpragma omp task
compute_tree (tree);
} // wait on tree traversal in this step
check_step();
}
} // only now is background work required to be complete
print_results();
return O;

C/C++
Fortran
Example taskgroup.1.f90
module tree_type_mod
integer, parameter :: max_steps=100
type tree_type
type (tree_type), pointer :: left, right
end type
contains

subroutine compute_something (tree)
type (tree_type), pointer :: tree
! some computation
end subroutine
recursive subroutine compute_tree (tree)
type (tree_type), pointer :: tree
if (associated(tree%left)) then
!$omp task
call compute_tree (tree%$left)
!Somp end task
endif
if (associated(tree%right)) then
!$Somp task
call compute_tree (tree%$right)
!$omp end task

CHAPTER 3. TASKING

81

S-22 endif

S-23 !Somp task

S-24 call compute_something (tree)
S-25 !Somp end task

S-26 end subroutine

S-27 end module

S-28 program main

S-29 use tree_type_mod

S-30 type (tree_type), pointer :: tree
S-31 call init_tree(tree);

S-32 !Somp parallel

S-33 !'$omp single

S-34 !Somp task

S-35 call start_background_work ()

S-36 !Somp end task

S-37 do i=1, max_steps

S-38 !Somp taskgroup

S-39 !$Somp task

S-40 call compute_tree (tree)

S-41 !Somp end task

S-42 !Somp end taskgroup ! wait on tree traversal in this step
S-43 call check_step()

S-44 enddo

S-45 !Somp end single

S-46 !Somp end parallel ! only now is background work required to be complete
S-47 call print_results()

S-48 end program
Fortran

82 OpenMP Examples Version 4.5.0 - November 2016

1 3.5 The taskyield Construct

2 The following example illustrates the use of the taskyield directive. The tasks in the example
3 compute something useful and then do some computation that must be done in a critical region. By
4 using taskyield when a task cannot get access to the critical region the implementation
5 can suspend the current task and schedule some other task that can do something useful.
C/C++
6 Example taskyield.l.c
S-1 #include <omp.h>
S-2
S-3 void something useful (wvoid);
S-4 void something critical (void);
S-5 void foo (omp_lock t * lock, int n)
S-6 {
S-7 int i;
S-8
S-9 for (i =0; i < n; i++)
S-10 #fpragma omp task
S-11 {
S-12 something_useful () ;
S-13 while ('omp_test_lock(lock)) {
S-14 #pragma omp taskyield
S-15 }
S-16 something_critical();
S-17 omp_unset_lock (lock);
S-18 }
S-19 }
C/C++
Fortran
7 Example taskyield. 1.f90
S-1 subroutine foo (lock, n)
S-2 use omp_1lib
S-3 integer (kind=omp_lock_kind) :: lock
S-4 integer n
S-5 integer i
S-6
S-7 doi=1, n
S-8 !$omp task
S-9 call something useful ()
S-10 do while (.not. omp_test_lock(lock))
S-11 !$omp taskyield
S-12 end do

CHAPTER 3. TASKING 83

S-13 call something critical()

S-14 call omp_unset_lock (lock)
S-15 !Somp end task
S-16 end do
S-17
S-18 end subroutine
Fortran

84 OpenMP Examples Version 4.5.0 - November 2016

1 3.6 The taskloop Construct

NOoO o b~ WD

S-1
S-2
S-3
S-4
S-5
S-6
S-7

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18

The following example illustrates how to execute a long running task concurrently with tasks

created with a taskloop directive for a loop having unbalanced amounts of work for its iterations.

The grainsize clause specifies that each task is to execute at least 500 iterations of the loop.

The nogroup clause removes the implicit taskgroup of the taskloop construct; the explicit

taskgroup construct in the example ensures that the function is not exited before the
long-running task and the loops have finished execution.

Example taskloop.1.c

void long_ running task (void);
void loop_body(int i, int j);

void parallel_work (void) ({
int i, 3j;

#fpragma omp taskgroup
{

#pragma omp task

C/C++

long_running task(); // can execute concurrently

#pragma omp taskloop private(j) grainsize (500) nogroup
for (i = 0; i < 10000; i++) { // can execute concurrently
for (j =0; j < i; j++) {

loop_body (i, j);
}

C/C++

CHAPTER 3. TASKING

85

Fortran

Example taskloop. 1.f90

S-1 subroutine parallel_work

S-2 integer i

S-3 integer j

S-4 !$omp taskgroup

S-5

S-6 !Somp task

S-7 call long_ running_task()
S-8 !Somp end task

S-9

S-10 !Somp taskloop private(j) grainsize(500) nogroup
S-11 do i=1,10000

S-12 do j=1,1i

S-13 call loop_body (i, 3j)
S-14 end do

S-15 end do

S-16 !Somp end taskloop

S-17

S-18 !$Somp end taskgroup

S-19 end subroutine

Fortran

86 OpenMP Examples Version 4.5.0 - November 2016

0 N O A~ W

11
12
13
14

15
16
17

18
19
20
21
22
23

24
25
26

27
28
29

CHAPTER 4

Devices

The target construct consists of a target directive and an execution region. The target
region is executed on the default device or the device specified in the device clause.

In OpenMP version 4.0, by default, all variables within the lexical scope of the construct are copied
to and from the device, unless the device is the host, or the data exists on the device from a
previously executed data-type construct that has created space on the device and possibly copied
host data to the device storage.

The constructs that explicitly create storage, transfer data, and free storage on the device are
catagorized as structured and unstructured. The target data construct is structured. It creates a
data region around target constructs, and is convenient for providing persistent data throughout
multiple target regions. The target enter data and target exit data constructs are
unstructured, because they can occur anywhere and do not support a "structure” (a region) for
enclosing target constructs, as does the target data construct.

The map clause is used on target constructs and the data-type constructs to map host data. It
specifies the device storage and data movement to and £rom the device, and controls on the
storage duration.

There is an important change in the OpenMP 4.5 specification that alters the data model for scalar
variables and C/C++ pointer variables. The default behavior for scalar variables and C/C++ pointer
variables in an 4.5 compliant code is firstprivate. Example codes that have been updated to
reflect this new behavior are annotated with a description that describes changes required for
correct execution. Often it is a simple matter of mapping the variable as tofrom to obtain the
intended 4.0 behavior.

In OpenMP version 4.5 the mechanism for target execution is specified as occuring through a farget
task. When the target construct is encountered a new farget task is generated. The target task
completes after the target region has executed and all data transfers have finished.

This new specification does not affect the execution of pre-4.5 code; it is a necessary element for
asynchronous execution of the target region when using the new nowait clause introduced in
OpenMP 4.5.

87

1 41 target Construct

2 41.1 target Construct on parallel Construct

3 This following example shows how the target construct offloads a code region to a target device.
4 The variables p, vI, v2, and N are implicitly mapped to the target device.
C/C++
5 Example target.1.c
S-1 extern void init (floatx, floatx, int);
S-2 extern void output (floatx*, int);
S-3 void vec_mult (int N)
S-4 {
S-5 int i;
S-6 float p[N], v1[N], v2[N];
S-7 init(vl, v2, N);
S-8 #fpragma omp target
S-9 #ipragma omp parallel for private (i)
S-10 for (i=0; i<N; i++)
S-11 pli] = v1[i] = v2[i];
S-12 output (p, N);
S-13 }
C/C++
Fortran
6 Example target.1.f90
S-1 subroutine vec_mult (N)
S-2 integer :: i,N
S-3 real :: p(N), v1(N), v2(N)
S-4 call init(vl, v2, N)
S-5 !$Somp target
S-6 !Somp parallel do
S-7 do i=1,N
S-8 p(i) = vi(i) * v2(i)
S-9 end do
S-10 !$Somp end target
S-11 call output (p, N)
S-12 end subroutine
Fortran

88 OpenMP Examples Version 4.5.0 - November 2016

1 4.1.2 target Construct with map Clause

2 This following example shows how the target construct offloads a code region to a target device.
3 The variables p, v/ and v2 are explicitly mapped to the target device using the map clause. The
4 variable N is implicitly mapped to the target device.
C/C++
5 Example target.2.c
S-1 extern void init (floatx, floatx, int);
S-2 extern void output (float*, int);
S-3 void vec_mult (int N)
S-4 {
S-5 int i;
S-6 float p[N], v1[N], v2[N];
S-7 init(vl, v2, N);
S-8 #pragma omp target map(vl, v2, p)
S-9 #pragma omp parallel for
S-10 for (i=0; i<N; i++)
S-11 pli]l = v1[i] *» v2[i];
S-12 output (p, N);
S-13 }
C/C++
Fortran
6 Example target.2.f90
S-1 subroutine vec_mult (N)
S-2 integer :: i,N
S-3 real :: p(N), v1(N), v2(N)
S-4 call init(vl, v2, N)
S-5 !$omp target map(vl,v2,p)
S-6 !$omp parallel do
S-7 do i=1,N
S-8 p(i) = vi(i) * v2(i)
S-9 end do
S-10 !Somp end target
S-11 call output(p, N)
S-12 end subroutine
Fortran

CHAPTER 4. DEVICES 89

1 4.1.3 map Clause with to/from map-types

2 The following example shows how the target construct offloads a code region to a target device.
3 In the map clause, the to and £rom map-types define the mapping between the original (host) data
4 and the target (device) data. The to map-type specifies that the data will only be read on the
5 device, and the £rom map-type specifies that the data will only be written to on the device. By
6 specifying a guaranteed access on the device, data transfers can be reduced for the target region.
7 The to map-type indicates that at the start of the target region the variables v/ and v2 are
8 initialized with the values of the corresponding variables on the host device, and at the end of the
9 target region the variables v/ and v2 are not assigned to their corresponding variables on the
10 host device.
11 The £rom map-type indicates that at the start of the target region the variable p is not initialized
12 with the value of the corresponding variable on the host device, and at the end of the target
13 region the variable p is assigned to the corresponding variable on the host device.
C/C++
14 Example target.3.c
S-1 extern void init (floatx, floatx*, int);
S-2 extern void output (floatx*, int);
S-3 void vec_mult (int N)
S-4 {
S-5 int i;
S-6 float p[N], v1[N], v2[N];
S-7 init(vl, v2, N);
S-8 #pragma omp target map(to: vl, v2) map(from: p)
S-9 #fpragma omp parallel for
S-10 for (i=0; i<N; i++)
S-11 plil = v1[i] * v2[i];
S-12 output (p, N);
S-13 }
C/C++
15 The to and £rom map-types allow programmers to optimize data motion. Since data for the v
16 arrays are not returned, and data for the p array are not transferred to the device, only one-half of
17 the data is moved, compared to the default behavior of an implicit mapping.

90 OpenMP Examples Version 4.5.0 - November 2016

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12

Fortran

Example target.3.f90

subroutine vec_mult (N)

integer :: i,N
real :: p(N), v1(N), v2(N)
call init(vl, v2, N)
!$omp target map(to: vl,v2) map(from: p)
!$omp parallel do
do i=1,N
p(i) = v1(i) * v2(i)
end do
!$Somp end target
call output (p, N)

end subroutine

Fortran

2 4.1.4 map Clause with Array Sections

o Ok~ W

S-1
S-2
S-3
S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12

The following example shows how the target construct offloads a code region to a target device.

In the map clause, map-types are used to optimize the mapping of variables to the target device.

Because variables p, vI and v2 are pointers, array section notation must be used to map the arrays.
The notation :N is equivalent to 0 : N.

C/C++

Example target.4.c

extern void init (floatx, float*, int);
extern void output (float*, int);
void vec_mult (float *p, float *vl, float *v2, int N)

{

int i;
init(vl, v2, N);
#pragma omp target map(to: v1[0:N], v2[:N]) map(from: p[0:N])
#pragma omp parallel for
for (i=0; i<N; i++)
plil = v1[i] * v2[i];
output (p, N);

CHAPTER 4. DEVICES

91

AWN =

© 0N

S-1
S-2
S-3
S-4

S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15

92

C/C++

In C, the length of the pointed-to array must be specified. In Fortran the extent of the array is
known and the length need not be specified. A section of the array can be specified with the usual
Fortran syntax, as shown in the following example. The value 1 is assumed for the lower bound for
array section v2(:N).

Fortran
Example target.4.f90

module mults
contains
subroutine vec_mult (p,vl,v2,N)
real,pointer,dimension(:) :: p, vl, v2
integer :: N, i
call init(vl, v2, N)
!$Somp target map(to: v1(1:N), v2(:N)) map(from: p(1l:N))
!Somp parallel do
do i=1,N
p(i) = v1(i) * v2(i)
end do
!$Somp end target
call output (p, N)
end subroutine
end module

Fortran

A more realistic situation in which an assumed-size array is passed to vec_mult requires that the
length of the arrays be specified, because the compiler does not know the size of the storage. A
section of the array must be specified with the usual Fortran syntax, as shown in the following
example. The value 1 is assumed for the lower bound for array section v2(:N).

OpenMP Examples Version 4.5.0 - November 2016

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15

Fortran
Example target.4b.f90

module mults
contains
subroutine vec_mult (p,vl,v2,N)
real,dimension(*) :: p, vl, v2
integer :: N, i
call init(vl, v2, N)
!$omp target map(to: v1(1:N), v2(:N)) map(from: p(1l:N))
!$omp parallel do
do i=1,N
p(i) = v1(i) » v2(i)
end do
!$omp end target
call output (p, N)
end subroutine
end module

Fortran

2 41.5 target Construct with if Clause

No o~ W

S-1
S-2

S-4
S-5
S-6
S-7
S-8
S-9
S-10
S-11

The following example shows how the target construct offloads a code region to a target device.

The if clause on the target construct indicates that if the variable N is smaller than a given

threshold, then the target region will be executed by the host device.

The if clause on the parallel construct indicates that if the variable N is smaller than a second

threshold then the parallel region is inactive.
C/C++

Example target.5.c

#define THRESHOLD1 1000000
#define THRESHOLD2 1000
extern void init (floatx, float*, int);
extern void output (float*, int);
void vec_mult (float *p, float xvl, float xv2, int N)
{
int i;
init (vl, v2, N);
#pragma omp target if (N>THRESHOLD1l) map(to: v1[0:N], v2[:N])\
map (from: p[0:N])
#pragma omp parallel for if (N>THRESHOLD2)

CHAPTER 4. DEVICES

93

NOoO o WO

S-12
S-13
S-14
S-15

S-2
S-3
S-4
S-5

S-7

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16

94

for (i=0; i<N; i++)
pli] = v1[i] *» v2[i];
output (p, N);

C/C++
Fortran

Example target.5.f90

module params
integer,parameter :: THRESHOLD1=1000000, THRESHHOLD2=1000
end module
subroutine vec_mult (p, vl, v2, N)
use params
real :: p(N), v1(N), v2(N)
integer :: i
call init(vl, v2, N)
!$Somp target if (N>THRESHHOLD1l) map (to: vl, v2) map(from: p)
!$omp parallel do if (N>THRESHOLD2)
do i=1,N
p(i) = v1(i) *» v2(i)
end do
!$Somp end target
call output (p, N)
end subroutine

Fortran

The following example is a modification of the above target.5 code to show the combined target
and parallel loop directives. It uses the directive-name modifier in multiple i £ clauses to specify
the component directive to which it applies.

The if clause with the target modifier applies to the target component of the combined
directive, and the if clause with the parallel modifier applies to the parallel component of
the combined directive.

OpenMP Examples Version 4.5.0 - November 2016

S-1
S-2
S-3

S-5
S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15

S-2

S-6
S-7
S-8
S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17

C/C++

Example target.6.c

#define THRESHOLD1 1000000
#define THRESHOLD2 1000
extern void init (floatx, floatx, int);
extern void output (floatx, int);
void vec_mult (float *p, float *vl, float *v2, int N)
{
int i;
init(vl, v2, N);
#pragma omp target parallel for \
if (target: N>THRESHOLD1l) if (parallel: N>THRESHOLD2) \
map (to: v1[0:N], v2[:N]) map(from: p[0:N])
for (i=0; i<N; i++)
plil = v1[i] * v2[i];
output (p, N);

C/C++
Fortran

Example target.6.f90

module params
integer,parameter :: THRESHOLD1=1000000, THRESHHOLD2=1000
end module
subroutine vec_mult (p, vl, v2, N)
use params
real :: p(N), v1(N), v2(N)
integer :: i
call init(vl, v2, N)
!$omp target parallel do &
! $Sompé& if (target: N>THRESHHOLD1l) if (parallel: N>THRESHOLD2) &
! Sompé& map (to: vl, v2) map(from: p)
do i=1,N
p(i) = v1(i) » v2(i)
end do
!$omp end target parallel do
call output (p, N)
end subroutine

Fortran

CHAPTER 4. DEVICES

95

1 4.2 target data Construct

2 421 Simple target data Construct

3 This example shows how the target data construct maps variables to a device data
4 environment. The target data construct creates a new device data environment and maps the
5 variables v/, v2, and p to the new device data environment. The target construct enclosed in the
6 target data region creates a new device data environment, which inherits the variables v/, v2,
7 and p from the enclosing device data environment. The variable N is mapped into the new device
8 data environment from the encountering task’s data environment.
C/C++
9 Example target_data.l.c
S-1 extern void init (floatx, floatx, int);
S-2 extern void output (floatx, int);
S-3 void vec_mult (float *p, float xvl, float *v2, int N)
S-4 {
S-5 int i;
S-6 init (vl, v2, N);
S-7 #pragma omp target data map(to: v1[0:N], v2[:N]) map(from: p[0:N])
S-8 {
S-9 #fpragma omp target
S-10 #fpragma omp parallel for
S-11 for (i=0; i<N; i++)
S-12 pli]l = v1[i] * v2[i];
S-13 }
S-14 output (p, N);
S-15 }
C/C++
10 The Fortran code passes a reference and specifies the extent of the arrays in the declaration. No
11 length information is necessary in the map clause, as is required with C/C++ pointers.

96 OpenMP Examples Version 4.5.0 - November 2016

Fortran

1 Example target_data.1.f90
S-1 subroutine vec_mult (p, vl1l, v2, N)
S-2 real :: p(N), v1(N), v2(N)
S-3 integer :: i
S-4 call init(vl, v2, N)
S-5 !$omp target data map(to: vl, v2) map(from: p)
S-6 !$omp target
S-7 !Somp parallel do
S-8 do i=1,N
S-9 p(i) = vi(i) * v2(i)
S-10 end do
S-11 !Somp end target
S-12 !$omp end target data
S-13 call output (p, N)
S-14 end subroutine

Fortran

2 4.2.2 target data Region Enclosing Multiple target
3 Regions

4 The following examples show how the target data construct maps variables to a device data

5 environment of a target region. The target data construct creates a device data environment

6 and encloses target regions, which have their own device data environments. The device data

7 environment of the target data region is inherited by the device data environment of an

8 enclosed target region. The target data construct is used to create variables that will persist

9 throughout the target data region.
10 In the following example the variables v/ and v2 are mapped at each target construct. Instead of
11 mapping the variable p twice, once at each target construct, p is mapped once by the target
12 data construct.

CHAPTER 4. DEVICES 97

a b~ owND

S-1
S-2
S-3

S-5

S-6

S-7

S-8

S-9
S-10
S-11
S-12
S-13
S-14
S-15
S-16
S-17
S-18
S-19
S-20
S-21

S-1
S-2
S-3
S-4
S-5

S-7
S-8
S-9
S-10
S-11
S-12

98

C/C++

Example target_data.2.c

extern void init (floatx, float*, int);

extern void init_again(floatx, floatx, int);

extern void output (floatx, int);

void vec_mult (float *p, float *vl, float *v2, int N)

{
int i;
init(vl, v2, N);
#ipragma omp target data map (from: p[0:N])
{
#pragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for
for (i=0; i<N; i++)
plil = v1[i] * v2[i];
init_again(vl, v2, N);
#fpragma omp target map(to: v1[:N], v2[:N])
#pragma omp parallel for
for (i=0; i<N; i++)
plil = p[i] + (v1[i] * v2[i]);
}
output (p, N);
}

C/C++

The Fortran code uses reference and specifies the extent of the p, v/ and v2 arrays. No length
information is necessary in the map clause, as is required with C/C++ pointers. The arrays v/ and
v2 are mapped at each target construct. Instead of mapping the array p twice, once at each target
construct