

OpenMP® Technical Report 4:
Version 5.0 Preview 1

This Technical Report augments the OpenMP API Specification, version 4.5, with
language features for task reductions, defines a runtime interface for performance and

correctness tools (OMPT), extensions to the target constructs, and contains several
clarifications and fixes.

All members of the OpenMP Language Working Group

November 10, 2016

Expires November 9, 2018

We actively solicit comments. Please provide feedback on this document either to the Editor directly or in the
OpenMP Forum at openmp.org

End of Public Comment Period: January 9, 2017

OpenMP Architecture Review Board
www.openmp.org info@openmp.org
OpenMP ARB – Ravi S. Rao, c/o Intel Corporation, 1300 S MoPac Express Way, Austin, TX 78746, USA

This technical report describes possible future directions or extensions to the OpenMP
API Specification.

The goal of this technical report is to build more widespread existing practice for an
expanded OpenMP. It gives advice on extensions or future directions to those vendors
who wish to provide them possibly for trial implementation, allows OpenMP to gather
early feedback, support timing and scheduling differences between official OpenMP
releases, and offers a preview to users of the future directions of OpenMP with the
provision stated in the next paragraph.

This technical report is non-normative. Some of the components in this technical report
may be considered for standardization in a future version of OpenMP, but they are not
currently part of any OpenMP Specification. Some of the components in this technical
report may never be standardized, others may be standardized in a substantially changed
form, or it may be standardized as is in its entirety.

OpenMP
Application Programming

Interface

Version 5.0 rev 1, November 2016

Copyright c© 1997-2016 OpenMP Architecture Review Board.
Permission to copy without fee all or part of this material is granted, provided the OpenMP
Architecture Review Board copyright notice and the title of this document appear. Notice is
given that copying is by permission of OpenMP Architecture Review Board.

This page intentionally left blank in published version.

This is Revision 1-TR4 (Initial Official Draft) (10 November 2016) and includes the following
internal tickets applied to the 4.5 LaTeX sources: 354, 399, 425, 452, 461, 463, 465-467, 484, 489,
492, 498-500, 502-504, 510, 520, 523, 530, 531, 551

This is a draft; contents will change in official release

Contents

1. Introduction 1
1.1. Scope . 1
1.2. Glossary . 2

1.2.1. Threading Concepts . 2
1.2.2. OpenMP Language Terminology . 2
1.2.3. Loop Terminology . 8
1.2.4. Synchronization Terminology . 9
1.2.5. Tasking Terminology . 9
1.2.6. Data Terminology . 11
1.2.7. Implementation Terminology . 13
1.2.8. Tool Terminology . 14

1.3. Execution Model . 15
1.4. Memory Model . 18

1.4.1. Structure of the OpenMP Memory Model 18
1.4.2. Device Data Environments . 19
1.4.3. The Flush Operation . 19
1.4.4. OpenMP Memory Consistency . 21

1.5. Tool Interface . 22
1.6. OpenMP Compliance . 23
1.7. Normative References . 23
1.8. Organization of this Document . 25

2. Directives 27
2.1. Directive Format . 28

2.1.1. Fixed Source Form Directives . 31
2.1.2. Free Source Form Directives . 32
2.1.3. Stand-Alone Directives . 35

i

2.2. Conditional Compilation . 36
2.2.1. Fixed Source Form Conditional Compilation Sentinels 37
2.2.2. Free Source Form Conditional Compilation Sentinel 37

2.3. Internal Control Variables . 39
2.3.1. ICV Descriptions . 39
2.3.2. ICV Initialization . 40
2.3.3. Modifying and Retrieving ICV Values . 42
2.3.4. How ICVs are Scoped . 44

2.3.4.1. How the Per-Data Environment ICVs Work 45
2.3.5. ICV Override Relationships . 46

2.4. Array Sections . 48
2.5. parallel Construct . 50

2.5.1. Determining the Number of Threads for a parallel Region 55
2.5.2. Controlling OpenMP Thread Affinity . 57

2.6. Canonical Loop Form . 58
2.7. Worksharing Constructs . 61

2.7.1. Loop Construct . 62
2.7.1.1. Determining the Schedule of a Worksharing Loop 70

2.7.2. sections Construct . 71
2.7.3. single Construct . 74
2.7.4. workshare Construct . 76

2.8. SIMD Constructs . 80
2.8.1. simd Construct . 80
2.8.2. declare simd Construct . 84
2.8.3. Loop SIMD Construct . 89

2.9. Tasking Constructs . 91
2.9.1. task Construct . 91
2.9.2. taskloop Construct . 95
2.9.3. taskloop simd Construct . 100
2.9.4. taskyield Construct . 102
2.9.5. Initial Task . 103
2.9.6. Task Scheduling . 104

ii OpenMP API – Version 5.0 rev 1, November 2016

2.10. Device Constructs . 106
2.10.1. Device Initialization . 106
2.10.2. target data Construct . 107
2.10.3. target enter data Construct . 109
2.10.4. target exit data Construct . 112
2.10.5. target Construct . 116
2.10.6. target update Construct . 121
2.10.7. declare target Directive . 124
2.10.8. teams Construct . 129
2.10.9. distribute Construct . 132
2.10.10.distribute simd Construct . 135
2.10.11.Distribute Parallel Loop Construct . 136
2.10.12.Distribute Parallel Loop SIMD Construct 138

2.11. Combined Constructs . 140
2.11.1. Parallel Loop Construct . 140
2.11.2. parallel sections Construct . 142
2.11.3. parallel workshare Construct . 143
2.11.4. Parallel Loop SIMD Construct . 145
2.11.5. target parallel Construct . 146
2.11.6. Target Parallel Loop Construct . 148
2.11.7. Target Parallel Loop SIMD Construct . 149
2.11.8. target simd Construct . 151
2.11.9. target teams Construct . 152
2.11.10.teams distribute Construct . 153
2.11.11.teams distribute simd Construct 154
2.11.12.target teams distribute Construct 156
2.11.13.target teams distribute simd Construct 157
2.11.14.Teams Distribute Parallel Loop Construct 158
2.11.15.Target Teams Distribute Parallel Loop Construct 159
2.11.16.Teams Distribute Parallel Loop SIMD Construct 161
2.11.17.Target Teams Distribute Parallel Loop SIMD Construct 162

2.12. if Clause . 164

Contents iii

2.13. Master and Synchronization Constructs and Clauses 165
2.13.1. master Construct . 165
2.13.2. critical Construct . 167
2.13.3. barrier Construct . 170
2.13.4. Implicit Barriers . 172
2.13.5. taskwait Construct . 174
2.13.6. taskgroup Construct . 176
2.13.7. atomic Construct . 178
2.13.8. flush Construct . 186
2.13.9. ordered Construct . 190
2.13.10.depend Clause . 194

2.14. Cancellation Constructs . 197
2.14.1. cancel Construct . 197
2.14.2. cancellation point Construct . 202

2.15. Data Environment . 204
2.15.1. Data-sharing Attribute Rules . 205

2.15.1.1. Data-sharing Attribute Rules for Variables Referenced in a Construct205
2.15.1.2. Data-sharing Attribute Rules for Variables Referenced in a Region

but not in a Construct . 209
2.15.2. threadprivate Directive . 210
2.15.3. Data-Sharing Attribute Clauses . 215

2.15.3.1. default Clause . 216
2.15.3.2. shared Clause . 217
2.15.3.3. private Clause . 218
2.15.3.4. firstprivate Clause . 223
2.15.3.5. lastprivate Clause . 225
2.15.3.6. linear Clause . 228

2.15.4. Reduction Clauses . 231
2.15.4.1. Properties Common To All Reduction Clauses 231
2.15.4.2. Reduction Scoping Clauses . 235
2.15.4.3. Reduction Participating Clauses 236
2.15.4.4. reduction Clause . 236
2.15.4.5. task_reduction Clause . 238

iv OpenMP API – Version 5.0 rev 1, November 2016

2.15.4.6. in_reduction Clause . 239
2.15.5. Data Copying Clauses . 240

2.15.5.1. copyin Clause . 240
2.15.5.2. copyprivate Clause . 242

2.15.6. Data-mapping Attribute Rules and Clauses 244
2.15.6.1. map Clause . 245
2.15.6.2. defaultmap Clause . 249

2.16. declare reduction Directive . 250
2.17. Nesting of Regions . 256

3. Runtime Library Routines 259
3.1. Runtime Library Definitions . 260
3.2. Execution Environment Routines . 261

3.2.1. omp_set_num_threads . 262
3.2.2. omp_get_num_threads . 263
3.2.3. omp_get_max_threads . 264
3.2.4. omp_get_thread_num . 266
3.2.5. omp_get_num_procs . 267
3.2.6. omp_in_parallel . 267
3.2.7. omp_set_dynamic . 268
3.2.8. omp_get_dynamic . 270
3.2.9. omp_get_cancellation . 271
3.2.10. omp_set_nested . 271
3.2.11. omp_get_nested . 273
3.2.12. omp_set_schedule . 274
3.2.13. omp_get_schedule . 276
3.2.14. omp_get_thread_limit . 277
3.2.15. omp_set_max_active_levels . 277
3.2.16. omp_get_max_active_levels . 279
3.2.17. omp_get_level . 280
3.2.18. omp_get_ancestor_thread_num 281
3.2.19. omp_get_team_size . 282
3.2.20. omp_get_active_level . 283
3.2.21. omp_in_final . 284

Contents v

3.2.22. omp_get_proc_bind . 285
3.2.23. omp_get_num_places . 287
3.2.24. omp_get_place_num_procs . 288
3.2.25. omp_get_place_proc_ids . 289
3.2.26. omp_get_place_num . 290
3.2.27. omp_get_partition_num_places 291
3.2.28. omp_get_partition_place_nums 292
3.2.29. omp_set_default_device . 293
3.2.30. omp_get_default_device . 294
3.2.31. omp_get_num_devices . 295
3.2.32. omp_get_num_teams . 295
3.2.33. omp_get_team_num . 297
3.2.34. omp_is_initial_device . 298
3.2.35. omp_get_initial_device . 298
3.2.36. omp_get_max_task_priority . 299

3.3. Lock Routines . 301
3.3.1. omp_init_lock and omp_init_nest_lock 303
3.3.2. omp_init_lock_with_hint and

omp_init_nest_lock_with_hint 304
3.3.3. omp_destroy_lock and omp_destroy_nest_lock 307
3.3.4. omp_set_lock and omp_set_nest_lock 308
3.3.5. omp_unset_lock and omp_unset_nest_lock 310
3.3.6. omp_test_lock and omp_test_nest_lock 312

3.4. Timing Routines . 314
3.4.1. omp_get_wtime . 314
3.4.2. omp_get_wtick . 316

3.5. Device Memory Routines . 317
3.5.1. omp_target_alloc . 317
3.5.2. omp_target_free . 318
3.5.3. omp_target_is_present . 320
3.5.4. omp_target_memcpy . 321
3.5.5. omp_target_memcpy_rect . 322
3.5.6. omp_target_associate_ptr . 324

vi OpenMP API – Version 5.0 rev 1, November 2016

3.5.7. omp_target_disassociate_ptr 326
3.6. Tool Control Routines . 327

4. Tool Support 331
4.1. Overview . 331
4.2. Activating a Tool . 331

4.2.1. Determining Whether a Tool Should be Initialized 332
4.2.2. Tool Initialization . 333

4.2.2.1. Binding Entry Points in the OMPT Callback Interface 334
4.2.3. Monitoring Activity on the Host . 335
4.2.4. Tracing Activity on Target Devices . 338

4.3. Finalizing a Tool . 341
4.4. Data Types . 342

4.4.1. Tool Initialization and Finalization . 342
4.4.2. Thread States . 342

4.4.2.1. Work States . 344
4.4.2.2. Barrier Wait States . 344
4.4.2.3. Task Wait States . 345
4.4.2.4. Mutex Wait States . 346
4.4.2.5. Target Wait States . 346
4.4.2.6. Miscellaneous States . 347

4.4.3. Callbacks . 347
4.4.4. Frames . 349
4.4.5. Tracing Support . 350

4.4.5.1. Record Kind . 350
4.4.5.2. Native Record Kind . 351
4.4.5.3. Native Record Abstract Type 351
4.4.5.4. Record Type . 352

4.4.6. Miscellaneous Type Definitions . 352
4.4.6.1. ompt_callback_t . 353
4.4.6.2. ompt_id_t . 353
4.4.6.3. ompt_data_t . 353
4.4.6.4. ompt_wait_id_t . 354
4.4.6.5. ompt_device_t . 354

Contents vii

4.4.6.6. ompt_device_time_t . 355
4.4.6.7. ompt_buffer_t . 355
4.4.6.8. ompt_buffer_cursor_t 355
4.4.6.9. ompt_task_dependence_t 355
4.4.6.10. ompt_thread_type_t . 356
4.4.6.11. ompt_scope_endpoint_t 356
4.4.6.12. ompt_sync_region_kind_t 357
4.4.6.13. ompt_target_data_op_t 357
4.4.6.14. ompt_work_type_t . 357
4.4.6.15. ompt_mutex_kind_t . 358
4.4.6.16. ompt_native_mon_flags_t 358
4.4.6.17. ompt_task_type_t . 359
4.4.6.18. ompt_task_status_t . 359
4.4.6.19. ompt_target_type_t . 360
4.4.6.20. ompt_invoker_t . 360
4.4.6.21. ompt_target_map_flag_t 361
4.4.6.22. ompt_task_dependence_flag_t 361
4.4.6.23. ompt_cancel_flag_t . 362
4.4.6.24. ompt_hwid_t . 362

4.5. Tool Interface Routine . 363
4.5.1. ompt_start_tool . 363

4.6. Tool Callback Signatures and Trace Records . 364
4.6.1. Initialization and Finalization Callback Signature 364

4.6.1.1. ompt_initialize_t . 364
4.6.1.2. ompt_finalize_t . 365

4.6.2. Event Callback Signatures and Trace Records 366
4.6.2.1. ompt_callback_thread_begin_t 366
4.6.2.2. ompt_callback_thread_end_t 367
4.6.2.3. ompt_callback_idle_t 368
4.6.2.4. ompt_callback_parallel_begin_t 369
4.6.2.5. ompt_callback_parallel_end_t 370
4.6.2.6. ompt_callback_master_t 371
4.6.2.7. ompt_callback_task_create_t 373

viii OpenMP API – Version 5.0 rev 1, November 2016

4.6.2.8. ompt_callback_task_dependences_t 374
4.6.2.9. ompt_callback_task_dependence_t 375
4.6.2.10. ompt_callback_task_schedule_t 376
4.6.2.11. ompt_callback_implicit_task_t 377
4.6.2.12. ompt_callback_sync_region_t 378
4.6.2.13. ompt_callback_lock_init_t 379
4.6.2.14. ompt_callback_lock_destroy_t 380
4.6.2.15. ompt_callback_mutex_acquire_t 381
4.6.2.16. ompt_callback_mutex_t 383
4.6.2.17. ompt_callback_nest_lock_t 384
4.6.2.18. ompt_callback_work_t 385
4.6.2.19. ompt_callback_flush_t 386
4.6.2.20. ompt_callback_target_t 387
4.6.2.21. ompt_callback_target_data_op_t 388
4.6.2.22. ompt_callback_target_map_t 390
4.6.2.23. ompt_callback_target_submit_t 391
4.6.2.24. ompt_callback_buffer_request_t 392
4.6.2.25. ompt_callback_buffer_complete_t 393
4.6.2.26. ompt_callback_control_tool_t 394
4.6.2.27. ompt_callback_cancel_t 395
4.6.2.28. ompt_callback_device_initialize_t 396

4.7. Runtime Entry Points for Tools . 398
4.7.1. Entry Points in the OMPT Callback Interface 398

4.7.1.1. ompt_enumerate_states_t 398
4.7.1.2. ompt_enumerate_mutex_impls_t 400
4.7.1.3. ompt_callback_set_t 402
4.7.1.4. ompt_callback_get_t 404
4.7.1.5. ompt_get_thread_data_t 405
4.7.1.6. ompt_get_num_places_t 406
4.7.1.7. ompt_get_place_proc_ids_t 407
4.7.1.8. ompt_get_place_num_t 408
4.7.1.9. ompt_get_partition_place_nums_t 409
4.7.1.10. ompt_get_proc_id_t . 410

Contents ix

4.7.1.11. ompt_get_state_t . 411
4.7.1.12. ompt_get_parallel_info_t 412
4.7.1.13. ompt_get_task_info_t 414
4.7.1.14. ompt_get_target_info_t 416
4.7.1.15. ompt_get_num_devices_t 417

4.7.2. Entry Points in the OMPT Device Tracing Interface 418
4.7.2.1. ompt_get_device_time_t 418
4.7.2.2. ompt_translate_time_t 419
4.7.2.3. ompt_set_trace_ompt_t 420
4.7.2.4. ompt_set_trace_native_t 421
4.7.2.5. ompt_start_trace_t . 422
4.7.2.6. ompt_pause_trace_t . 423
4.7.2.7. ompt_stop_trace_t . 424
4.7.2.8. ompt_advance_buffer_cursor_t 425
4.7.2.9. ompt_get_record_type_t 426
4.7.2.10. ompt_get_record_ompt_t 427
4.7.2.11. ompt_get_record_native_t 428
4.7.2.12. ompt_get_record_abstract_t 429

4.7.3. Lookup Entry Point . 430
4.7.3.1. ompt_function_lookup_t 430

5. Environment Variables 432
5.1. OMP_SCHEDULE . 434
5.2. OMP_NUM_THREADS . 435
5.3. OMP_DYNAMIC . 436
5.4. OMP_PROC_BIND . 436
5.5. OMP_PLACES . 437
5.6. OMP_NESTED . 439
5.7. OMP_STACKSIZE . 440
5.8. OMP_WAIT_POLICY . 441
5.9. OMP_MAX_ACTIVE_LEVELS . 442
5.10. OMP_THREAD_LIMIT . 442
5.11. OMP_CANCELLATION . 442
5.12. OMP_DISPLAY_ENV . 443

x OpenMP API – Version 5.0 rev 1, November 2016

5.13. OMP_DEFAULT_DEVICE . 444
5.14. OMP_MAX_TASK_PRIORITY . 445
5.15. OMP_TOOL . 445
5.16. OMP_TOOL_LIBRARIES . 446

A. Stubs for Runtime Library Routines 447
A.1. C/C++ Stub Routines . 448
A.2. Fortran Stub Routines . 459

B. Interface Declarations 469
B.1. Example of the omp.h Header File . 470
B.2. Example of an Interface Declaration include File 474
B.3. Example of a Fortran Interface Declaration module 478
B.4. Example of a Generic Interface for a Library Routine 485

C. OpenMP Implementation-Defined Behaviors 486

D. Task Frame Management for the Tool Interface 493

E. Features History 495
E.1. Version 4.5 to 5.0 Differences . 495
E.2. Version 4.0 to 4.5 Differences . 496
E.3. Version 3.1 to 4.0 Differences . 497
E.4. Version 3.0 to 3.1 Differences . 498
E.5. Version 2.5 to 3.0 Differences . 499

Index 502

Contents xi

CHAPTER 11

Introduction2

The collection of compiler directives, library routines, and environment variables described in this3
document collectively define the specification of the OpenMP Application Program Interface4
(OpenMP API) for parallelism in C, C++ and Fortran programs.5

This specification provides a model for parallel programming that is portable across architectures6
from different vendors. Compilers from numerous vendors support the OpenMP API. More7
information about the OpenMP API can be found at the following web site8

http://www.openmp.org9

The directives, library routines, and environment variables defined in this document allow users to10
create and to manage parallel programs while permitting portability. The directives extend the C,11
C++ and Fortran base languages with single program multiple data (SPMD) constructs, tasking12
constructs, device constructs, worksharing constructs, and synchronization constructs, and they13
provide support for sharing, mapping and privatizing data. The functionality to control the runtime14
environment is provided by library routines and environment variables. Compilers that support the15
OpenMP API often include a command line option to the compiler that activates and allows16
interpretation of all OpenMP directives.17

1.1 Scope18

The OpenMP API covers only user-directed parallelization, wherein the programmer explicitly19
specifies the actions to be taken by the compiler and runtime system in order to execute the program20
in parallel. OpenMP-compliant implementations are not required to check for data dependencies,21
data conflicts, race conditions, or deadlocks, any of which may occur in conforming programs. In22
addition, compliant implementations are not required to check for code sequences that cause a23

1

program to be classified as non-conforming. Application developers are responsible for correctly1
using the OpenMP API to produce a conforming program. The OpenMP API does not cover2
compiler-generated automatic parallelization and directives to the compiler to assist such3
parallelization.4

1.2 Glossary5

1.2.1 Threading Concepts6

thread An execution entity with a stack and associated static memory, called threadprivate7
memory.8

OpenMP thread A thread that is managed by the OpenMP runtime system.9

idle thread An OpenMP thread that is not currently part of any parallel region.10

thread-safe routine A routine that performs the intended function even when executed concurrently (by11
more than one thread).12

processor Implementation defined hardware unit on which one or more OpenMP threads can13
execute.14

device An implementation defined logical execution engine.15

COMMENT: A device could have one or more processors.16

host device The device on which the OpenMP program begins execution.17

target device A device onto which code and data may be offloaded from the host device.18

1.2.2 OpenMP Language Terminology19

base language A programming language that serves as the foundation of the OpenMP specification.20

COMMENT: See Section 1.7 on page 23 for a listing of current base21
languages for the OpenMP API.22

base program A program written in a base language.23

2 OpenMP API – Version 5.0 rev 1, November 2016

structured block For C/C++, an executable statement, possibly compound, with a single entry at the1
top and a single exit at the bottom, or an OpenMP construct.2

For Fortran, a block of executable statements with a single entry at the top and a3
single exit at the bottom, or an OpenMP construct.4

COMMENTS:5

For all base languages:6

• Access to the structured block must not be the result of a branch; and7

• The point of exit cannot be a branch out of the structured block.8

For C/C++:9

• The point of entry must not be a call to setjmp();10

• longjmp() and throw() must not violate the entry/exit criteria;11

• Calls to exit() are allowed in a structured block; and12

• An expression statement, iteration statement, selection statement, or try13
block is considered to be a structured block if the corresponding14
compound statement obtained by enclosing it in { and } would be a15
structured block.16

For Fortran:17

• STOP statements are allowed in a structured block.18

enclosing context In C/C++, the innermost scope enclosing an OpenMP directive.19

In Fortran, the innermost scoping unit enclosing an OpenMP directive.20

directive In C/C++, a #pragma, and in Fortran, a comment, that specifies OpenMP program21
behavior.22

COMMENT: See Section 2.1 on page 28 for a description of OpenMP23
directive syntax.24

white space A non-empty sequence of space and/or horizontal tab characters.25

OpenMP program A program that consists of a base program, annotated with OpenMP directives and26
runtime library routines.27

conforming program An OpenMP program that follows all rules and restrictions of the OpenMP28
specification.29

declarative directive An OpenMP directive that may only be placed in a declarative context. A declarative30
directive results in one or more declarations only; it is not associated with the31
immediate execution of any user code.32

CHAPTER 1. INTRODUCTION 3

executable directive An OpenMP directive that is not declarative. That is, it may be placed in an1
executable context.2

stand-alone directive An OpenMP executable directive that has no associated executable user code.3

construct An OpenMP executable directive (and for Fortran, the paired end directive, if any)4
and the associated statement, loop or structured block, if any, not including the code5
in any called routines. That is, the lexical extent of an executable directive.6

combined construct A construct that is a shortcut for specifying one construct immediately nested inside7
another construct. A combined construct is semantically identical to that of explicitly8
specifying the first construct containing one instance of the second construct and no9
other statements.10

composite construct A construct that is composed of two constructs but does not have identical semantics11
to specifying one of the constructs immediately nested inside the other. A composite12
construct either adds semantics not included in the constructs from which it is13
composed or the nesting of the one construct inside the other is not conforming.14

region All code encountered during a specific instance of the execution of a given construct15
or of an OpenMP library routine. A region includes any code in called routines as16
well as any implicit code introduced by the OpenMP implementation. The generation17
of a task at the point where a task generating construct is encountered is a part of the18
region of the encountering thread, but an explicit task region associated with a task19
generating construct is not unless it is an included task region. The point where a20
target or teams directive is encountered is a part of the region of the21
encountering thread, but the region associated with the target or teams directive22
is not.23

COMMENTS:24

A region may also be thought of as the dynamic or runtime extent of a25
construct or of an OpenMP library routine.26

During the execution of an OpenMP program, a construct may give rise to27
many regions.28

active parallel region A parallel region that is executed by a team consisting of more than one thread.29

inactive parallel region A parallel region that is executed by a team of only one thread.30

sequential part All code encountered during the execution of an initial task region that is not part of31
a parallel region corresponding to a parallel construct or a task region32
corresponding to a task construct.33

COMMENTS:34

A sequential part is enclosed by an implicit parallel region.35

4 OpenMP API – Version 5.0 rev 1, November 2016

Executable statements in called routines may be in both a sequential part1
and any number of explicit parallel regions at different points in the2
program execution.3

master thread An OpenMP thread that has thread number 0. A master thread may be an initial4
thread or the thread that encounters a parallel construct, creates a team,5
generates a set of implicit tasks, and then executes one of those tasks as thread6
number 0.7

parent thread The thread that encountered the parallel construct and generated a parallel8
region is the parent thread of each of the threads in the team of that parallel9
region. The master thread of a parallel region is the same thread as its parent10
thread with respect to any resources associated with an OpenMP thread.11

child thread When a thread encounters a parallel construct, each of the threads in the12
generated parallel region’s team are child threads of the encountering thread.13
The target or teams region’s initial thread is not a child thread of the thread that14
encountered the target or teams construct.15

ancestor thread For a given thread, its parent thread or one of its parent thread’s ancestor threads.16

descendent thread For a given thread, one of its child threads or one of its child threads’ descendent17
threads.18

team A set of one or more threads participating in the execution of a parallel region.19

COMMENTS:20

For an active parallel region, the team comprises the master thread and at21
least one additional thread.22

For an inactive parallel region, the team comprises only the master thread.23

league The set of thread teams created by a teams construct.24

contention group An initial thread and its descendent threads.25

implicit parallel region An inactive parallel region that is not generated from a parallel construct.26
Implicit parallel regions surround the whole OpenMP program, all target regions,27
and all teams regions.28

initial thread A thread that executes an implicit parallel region.29

nested construct A construct (lexically) enclosed by another construct.30

closely nested construct A construct nested inside another construct with no other construct nested between31
them.32

nested region A region (dynamically) enclosed by another region. That is, a region generated from33
the execution of another region or one of its nested regions.34

CHAPTER 1. INTRODUCTION 5

COMMENT: Some nestings are conforming and some are not. See1
Section 2.17 on page 256 for the restrictions on nesting.2

closely nested region A region nested inside another region with no parallel region nested between3
them.4

strictly nested region A region nested inside another region with no other region nested between them.5

all threads All OpenMP threads participating in the OpenMP program.6

current team All threads in the team executing the innermost enclosing parallel region.7

encountering thread For a given region, the thread that encounters the corresponding construct.8

all tasks All tasks participating in the OpenMP program.9

current team tasks All tasks encountered by the corresponding team. The implicit tasks constituting the10
parallel region and any descendent tasks encountered during the execution of11
these implicit tasks are included in this set of tasks.12

generating task For a given region, the task for which execution by a thread generated the region.13

binding thread set The set of threads that are affected by, or provide the context for, the execution of a14
region.15

The binding thread set for a given region can be all threads on a device, all threads16
in a contention group, all master threads executing an enclosing teams region, the17
current team, or the encountering thread.18

COMMENT: The binding thread set for a particular region is described in19
its corresponding subsection of this specification.20

binding task set The set of tasks that are affected by, or provide the context for, the execution of a21
region.22

The binding task set for a given region can be all tasks, the current team tasks, or the23
generating task.24

COMMENT: The binding task set for a particular region (if applicable) is25
described in its corresponding subsection of this specification.26

6 OpenMP API – Version 5.0 rev 1, November 2016

binding region The enclosing region that determines the execution context and limits the scope of1
the effects of the bound region is called the binding region.2

Binding region is not defined for regions for which the binding thread set is all3
threads or the encountering thread, nor is it defined for regions for which the binding4
task set is all tasks.5

COMMENTS:6

The binding region for an ordered region is the innermost enclosing7
loop region.8

The binding region for a taskwait region is the innermost enclosing9
task region.10

The binding region for a cancel region is the innermost enclosing11
region corresponding to the construct-type-clause of the cancel12
construct.13

The binding region for a cancellation point region is the14
innermost enclosing region corresponding to the construct-type-clause of15
the cancellation point construct.16

For all other regions for which the binding thread set is the current team17
or the binding task set is the current team tasks, the binding region is the18
innermost enclosing parallel region.19

For regions for which the binding task set is the generating task, the20
binding region is the region of the generating task.21

A parallel region need not be active nor explicit to be a binding22
region.23

A task region need not be explicit to be a binding region.24

A region never binds to any region outside of the innermost enclosing25
parallel region.26

orphaned construct A construct that gives rise to a region for which the binding thread set is the current27
team, but is not nested within another construct giving rise to the binding region.28

worksharing construct A construct that defines units of work, each of which is executed exactly once by one29
of the threads in the team executing the construct.30

For C/C++, worksharing constructs are for, sections, and single.31

For Fortran, worksharing constructs are do, sections, single and32
workshare.33

CHAPTER 1. INTRODUCTION 7

place Unordered set of processors on a device that is treated by the execution environment1
as a location unit when dealing with OpenMP thread affinity.2

place list The ordered list that describes all OpenMP places available to the execution3
environment.4

place partition An ordered list that corresponds to a contiguous interval in the OpenMP place list. It5
describes the places currently available to the execution environment for a given6
parallel region.7

place number A number that uniquely identifies a place in the place list, with zero identifying the8
first place in the place list, and each consecutive whole number identifying the next9
place in the place list.10

SIMD instruction A single machine instruction that can operate on multiple data elements.11

SIMD lane A software or hardware mechanism capable of processing one data element from a12
SIMD instruction.13

SIMD chunk A set of iterations executed concurrently, each by a SIMD lane, by a single thread by14
means of SIMD instructions.15

1.2.3 Loop Terminology16

loop directive An OpenMP executable directive for which the associated user code must be a loop17
nest that is a structured block.18

associated loop(s) The loop(s) controlled by a loop directive.19

COMMENT: If the loop directive contains a collapse or an20
ordered(n) clause then it may have more than one associated loop.21

sequential loop A loop that is not associated with any OpenMP loop directive.22

SIMD loop A loop that includes at least one SIMD chunk.23

doacross loop nest A loop nest that has cross-iteration dependence. An iteration is dependent on one or24
more lexicographically earlier iterations.25

COMMENT: The ordered clause parameter on a loop directive26
identifies the loop(s) associated with the doacross loop nest.27

8 OpenMP API – Version 5.0 rev 1, November 2016

1.2.4 Synchronization Terminology1

barrier A point in the execution of a program encountered by a team of threads, beyond2
which no thread in the team may execute until all threads in the team have reached3
the barrier and all explicit tasks generated by the team have executed to completion.4
If cancellation has been requested, threads may proceed to the end of the canceled5
region even if some threads in the team have not reached the barrier.6

cancellation An action that cancels (that is, aborts) an OpenMP region and causes executing7
implicit or explicit tasks to proceed to the end of the canceled region.8

cancellation point A point at which implicit and explicit tasks check if cancellation has been requested.9
If cancellation has been observed, they perform the cancellation.10

COMMENT: For a list of cancellation points, see Section 2.14.1 on11
page 19712

1.2.5 Tasking Terminology13

task A specific instance of executable code and its data environment, generated when a14
thread encounters a task, taskloop, parallel, target, or teams construct15
(or any combined construct that specifies any of these constructs).16

task region A region consisting of all code encountered during the execution of a task.17

COMMENT: A parallel region consists of one or more implicit task18
regions.19

implicit task A task generated by an implicit parallel region or generated when a parallel20
construct is encountered during execution.21

explicit task A task that is not an implicit task.22

initial task An implicit task associated with an implicit parallel region.23

current task For a given thread, the task corresponding to the task region in which it is executing.24

child task A task is a child task of its generating task region. A child task region is not part of25
its generating task region.26

sibling tasks Tasks that are child tasks of the same task region.27

descendent task A task that is the child task of a task region or of one of its descendent task regions.28

CHAPTER 1. INTRODUCTION 9

task completion Task completion occurs when the end of the structured block associated with the1
construct that generated the task is reached.2

COMMENT: Completion of the initial task that is generated when the3
program begins occurs at program exit.4

task scheduling point A point during the execution of the current task region at which it can be suspended5
to be resumed later; or the point of task completion, after which the executing thread6
may switch to a different task region.7

COMMENT: For a list of task scheduling points, see Section 2.9.6 on8
page 104.9

task switching The act of a thread switching from the execution of one task to another task.10

tied task A task that, when its task region is suspended, can be resumed only by the same11
thread that suspended it. That is, the task is tied to that thread.12

untied task A task that, when its task region is suspended, can be resumed by any thread in the13
team. That is, the task is not tied to any thread.14

undeferred task A task for which execution is not deferred with respect to its generating task region.15
That is, its generating task region is suspended until execution of the undeferred task16
is completed.17

included task A task for which execution is sequentially included in the generating task region.18
That is, an included task is undeferred and executed immediately by the encountering19
thread.20

merged task A task for which the data environment, inclusive of ICVs, is the same as that of its21
generating task region.22

mergeable task A task that may be a merged task if it is an undeferred task or an included task.23

final task A task that forces all of its child tasks to become final and included tasks.24

task dependence An ordering relation between two sibling tasks: the dependent task and a previously25
generated predecessor task. The task dependence is fulfilled when the predecessor26
task has completed.27

dependent task A task that because of a task dependence cannot be executed until its predecessor28
tasks have completed.29

predecessor task A task that must complete before its dependent tasks can be executed.30

task synchronization
construct

A taskwait, taskgroup, or a barrier construct.31

task generating
construct

A construct that generates one or more explicit tasks.32

10 OpenMP API – Version 5.0 rev 1, November 2016

target task A mergeable task that is generated by a target, target enter data,1
target exit data, or target update construct.2

taskgroup set A set of tasks that are logically grouped by a taskgroup region.3

1.2.6 Data Terminology4

variable A named data storage block, for which the value can be defined and redefined during5
the execution of a program.6

Note – An array or structure element is a variable that is part of another variable.7

scalar variable For C/C++: A scalar variable, as defined by the base language.8

For Fortran: A scalar variable with intrinsic type, as defined by the base language,9
excluding character type.10

array section A designated subset of the elements of an array.11

array item An array, an array section, or an array element.12

simply contiguous
array section

An array section that statically can be determined to have contiguous storage.13

structure A structure is a variable that contains one or more variables.14

For C/C++: Implemented using struct types.15

For C++: Implemented using class types.16

For Fortran: Implemented using derived types.17

private variable With respect to a given set of task regions or SIMD lanes that bind to the same18
parallel region, a variable for which the name provides access to a different19
block of storage for each task region or SIMD lane.20

A variable that is part of another variable (as an array or structure element) cannot be21
made private independently of other components.22

shared variable With respect to a given set of task regions that bind to the same parallel region, a23
variable for which the name provides access to the same block of storage for each24
task region.25

A variable that is part of another variable (as an array or structure element) cannot be26
shared independently of the other components, except for static data members of27
C++ classes.28

CHAPTER 1. INTRODUCTION 11

threadprivate variable A variable that is replicated, one instance per thread, by the OpenMP1
implementation. Its name then provides access to a different block of storage for each2
thread.3

A variable that is part of another variable (as an array or structure element) cannot be4
made threadprivate independently of the other components, except for static data5
members of C++ classes.6

threadprivate memory The set of threadprivate variables associated with each thread.7

data environment The variables associated with the execution of a given region.8

device data
environment

The initial data environment associated with a device.9

device address An implementation defined reference to an address in a device data environment.10

device pointer A variable that contains a device address.11

mapped variable An original variable in a data environment with a corresponding variable in a device12
data environment.13

COMMENT: The original and corresponding variables may share storage.14

mappable type A type that is valid for a mapped variable. If a type is composed from other types15
(such as the type of an array or structure element) and any of the other types are not16
mappable then the type is not mappable.17

COMMENT: Pointer types are mappable but the memory block to which18
the pointer refers is not mapped.19

For C: The type must be a complete type.20

For C++: The type must be a complete type.21

In addition, for class types:22

• All member functions accessed in any target region must appear in a23
declare target directive.24

For Fortran: No restrictions on the type except that for derived types:25

• All type-bound procedures accessed in any target region must appear in a26
declare target directive.27

defined For variables, the property of having a valid value.28

For C: For the contents of variables, the property of having a valid value.29

For C++: For the contents of variables of POD (plain old data) type, the property of30
having a valid value.31

12 OpenMP API – Version 5.0 rev 1, November 2016

For variables of non-POD class type, the property of having been constructed but not1
subsequently destructed.2

For Fortran: For the contents of variables, the property of having a valid value. For3
the allocation or association status of variables, the property of having a valid status.4

COMMENT: Programs that rely upon variables that are not defined are5
non-conforming programs.6

class type For C++: Variables declared with one of the class, struct, or union keywords7

sequentially consistent
atomic construct

An atomic construct for which the seq_cst clause is specified.8

non-sequentially
consistent atomic

construct

An atomic construct for which the seq_cst clause is not specified9

1.2.7 Implementation Terminology10

supporting n levels of
parallelism

Implies allowing an active parallel region to be enclosed by n-1 active parallel11
regions.12

supporting the
OpenMP API

Supporting at least one level of parallelism.13

supporting nested
parallelism

Supporting more than one level of parallelism.14

internal control
variable

A conceptual variable that specifies runtime behavior of a set of threads or tasks in15
an OpenMP program.16

COMMENT: The acronym ICV is used interchangeably with the term17
internal control variable in the remainder of this specification.18

compliant
implementation

An implementation of the OpenMP specification that compiles and executes any19
conforming program as defined by the specification.20

COMMENT: A compliant implementation may exhibit unspecified21
behavior when compiling or executing a non-conforming program.22

unspecified behavior A behavior or result that is not specified by the OpenMP specification or not known23
prior to the compilation or execution of an OpenMP program.24

Such unspecified behavior may result from:25

• Issues documented by the OpenMP specification as having unspecified behavior.26

• A non-conforming program.27

• A conforming program exhibiting an implementation defined behavior.28

CHAPTER 1. INTRODUCTION 13

implementation defined Behavior that must be documented by the implementation, and is allowed to vary1
among different compliant implementations. An implementation is allowed to define2
this behavior as unspecified.3

COMMENT: All features that have implementation defined behavior are4
documented in Appendix C.5

deprecated Implies a construct, clause or other feature is normative in the current specification6
but is considered obsolescent and will be removed in the future.7

1.2.8 Tool Terminology8

tool Executable code, distinct from application or runtime code, that can observe and/or9
modify the execution of an application.10

first-party tool A tool that executes in the address space of the program it is monitoring.11

activated tool A first-party tool that successfully completed its initialization.12

event A point of interest in the execution of a thread where the condition defining that event13
is true.14

tool callback A function provided by a tool to an OpenMP implementation that can be invoked15
when needed.16

registering a callback Providing a callback function to an OpenMP implementation for a particular purpose.17

dispatching a callback
at an event

Processing a callback when an associated event occurs in a manner consistent with18
the return code provided when a first-party tool registered the callback.19

thread state An enumeration type that describes what an OpenMP thread is currently doing. A20
thread can be in only one state at any time.21

wait identifier A unique opaque handle associated with each data object (e.g., a lock) used by the22
OpenMP runtime to enforce mutual exclusion that may cause a thread to wait actively23
or passively.24

frame A storage area on a thread’s stack associated with a procedure invocation. A frame25
includes space for one or more saved registers and often also includes space for saved26
arguments, local variables, and padding for alignment.27

canonical frame
address

An address associated with a procedure frame on a call stack defined as the value of28
the stack pointer immediately prior to calling the procedure whose invocation the29
frame represents.30

runtime entry point A function interface provided by an OpenMP runtime for use by a tool. A runtime31
entry point is typically not associated with a global function symbol.32

14 OpenMP API – Version 5.0 rev 1, November 2016

trace record A data structure to store information associated with an occurrence of an event.1

native trace record A trace record for an OpenMP device that is in a device-specific format.2

signal A software interrupt delivered to a thread.3

signal handler A function called asynchronously when a signal is delivered to a thread.4

async signal safe Guaranteed not to interfere with operations that are being interrupted by signal5
delivery. An async signal safe runtime entry point is safe to call from a signal6
handler.7

1.3 Execution Model8

The OpenMP API uses the fork-join model of parallel execution. Multiple threads of execution9
perform tasks defined implicitly or explicitly by OpenMP directives. The OpenMP API is intended10
to support programs that will execute correctly both as parallel programs (multiple threads of11
execution and a full OpenMP support library) and as sequential programs (directives ignored and a12
simple OpenMP stubs library). However, it is possible and permitted to develop a program that13
executes correctly as a parallel program but not as a sequential program, or that produces different14
results when executed as a parallel program compared to when it is executed as a sequential15
program. Furthermore, using different numbers of threads may result in different numeric results16
because of changes in the association of numeric operations. For example, a serial addition17
reduction may have a different pattern of addition associations than a parallel reduction. These18
different associations may change the results of floating-point addition.19

An OpenMP program begins as a single thread of execution, called an initial thread. An initial20
thread executes sequentially, as if enclosed in an implicit task region, called an initial task region,21
that is defined by the implicit parallel region surrounding the whole program.22

The thread that executes the implicit parallel region that surrounds the whole program executes on23
the host device. An implementation may support other target devices. If supported, one or more24
devices are available to the host device for offloading code and data. Each device has its own25
threads that are distinct from threads that execute on another device. Threads cannot migrate from26
one device to another device. The execution model is host-centric such that the host device offloads27
target regions to target devices.28

When a target construct is encountered, a new target task is generated. The target task region29
encloses the target region. The target task is complete after the execution of the target region30
is complete.31

When a target task executes, the enclosed target region is executed by an initial thread. The32
initial thread may execute on a target device. The initial thread executes sequentially, as if enclosed33

CHAPTER 1. INTRODUCTION 15

in an implicit task region, called an initial task region, that is defined by an implicit parallel1
region that surrounds the entire target region. If the target device does not exist or the2
implementation does not support the target device, all target regions associated with that device3
execute on the host device.4

The implementation must ensure that the target region executes as if it were executed in the data5
environment of the target device unless an if clause is present and the if clause expression6
evaluates to false.7

The teams construct creates a league of thread teams where the master thread of each team8
executes the region. Each of these master threads is an initial thread, and executes sequentially, as if9
enclosed in an implicit task region that is defined by an implicit parallel region that surrounds the10
entire teams region.11

If a construct creates a data environment, the data environment is created at the time the construct is12
encountered. Whether a construct creates a data environment is defined in the description of the13
construct.14

When any thread encounters a parallel construct, the thread creates a team of itself and zero or15
more additional threads and becomes the master of the new team. A set of implicit tasks, one per16
thread, is generated. The code for each task is defined by the code inside the parallel construct.17
Each task is assigned to a different thread in the team and becomes tied; that is, it is always18
executed by the thread to which it is initially assigned. The task region of the task being executed19
by the encountering thread is suspended, and each member of the new team executes its implicit20
task. There is an implicit barrier at the end of the parallel construct. Only the master thread21
resumes execution beyond the end of the parallel construct, resuming the task region that was22
suspended upon encountering the parallel construct. Any number of parallel constructs23
can be specified in a single program.24

parallel regions may be arbitrarily nested inside each other. If nested parallelism is disabled, or25
is not supported by the OpenMP implementation, then the new team that is created by a thread26
encountering a parallel construct inside a parallel region will consist only of the27
encountering thread. However, if nested parallelism is supported and enabled, then the new team28
can consist of more than one thread. A parallel construct may include a proc_bind clause to29
specify the places to use for the threads in the team within the parallel region.30

When any team encounters a worksharing construct, the work inside the construct is divided among31
the members of the team, and executed cooperatively instead of being executed by every thread.32
There is a default barrier at the end of each worksharing construct unless the nowait clause is33
present. Redundant execution of code by every thread in the team resumes after the end of the34
worksharing construct.35

When any thread encounters a task generating construct, one or more explicit tasks are generated.36
Execution of explicitly generated tasks is assigned to one of the threads in the current team, subject37
to the thread’s availability to execute work. Thus, execution of the new task could be immediate, or38
deferred until later according to task scheduling constraints and thread availability. Threads are39
allowed to suspend the current task region at a task scheduling point in order to execute a different40

16 OpenMP API – Version 5.0 rev 1, November 2016

task. If the suspended task region is for a tied task, the initially assigned thread later resumes1
execution of the suspended task region. If the suspended task region is for an untied task, then any2
thread may resume its execution. Completion of all explicit tasks bound to a given parallel region is3
guaranteed before the master thread leaves the implicit barrier at the end of the region. Completion4
of a subset of all explicit tasks bound to a given parallel region may be specified through the use of5
task synchronization constructs. Completion of all explicit tasks bound to the implicit parallel6
region is guaranteed by the time the program exits.7

When any thread encounters a simd construct, the iterations of the loop associated with the8
construct may be executed concurrently using the SIMD lanes that are available to the thread.9

The cancel construct can alter the previously described flow of execution in an OpenMP region.10
The effect of the cancel construct depends on its construct-type-clause. If a task encounters a11
cancel construct with a taskgroup construct-type-clause, then the task activates cancellation12
and continues execution at the end of its task region, which implies completion of that task. Any13
other task in that taskgroup that has begun executing completes execution unless it encounters a14
cancellation point construct, in which case it continues execution at the end of its task15
region, which implies its completion. Other tasks in that taskgroup region that have not begun16
execution are aborted, which implies their completion.17

For all other construct-type-clause values, if a thread encounters a cancel construct, it activates18
cancellation of the innermost enclosing region of the type specified and the thread continues19
execution at the end of that region. Threads check if cancellation has been activated for their region20
at cancellation points and, if so, also resume execution at the end of the canceled region.21

If cancellation has been activated regardless of construct-type-clause, threads that are waiting22
inside a barrier other than an implicit barrier at the end of the canceled region exit the barrier and23
resume execution at the end of the canceled region. This action can occur before the other threads24
reach that barrier.25

Synchronization constructs and library routines are available in the OpenMP API to coordinate26
tasks and data access in parallel regions. In addition, library routines and environment27
variables are available to control or to query the runtime environment of OpenMP programs.28

The OpenMP specification makes no guarantee that input or output to the same file is synchronous29
when executed in parallel. In this case, the programmer is responsible for synchronizing input and30
output statements (or routines) using the provided synchronization constructs or library routines.31
For the case where each thread accesses a different file, no synchronization by the programmer is32
necessary.33

CHAPTER 1. INTRODUCTION 17

1.4 Memory Model1

1.4.1 Structure of the OpenMP Memory Model2

The OpenMP API provides a relaxed-consistency, shared-memory model. All OpenMP threads3
have access to a place to store and to retrieve variables, called the memory. In addition, each thread4
is allowed to have its own temporary view of the memory. The temporary view of memory for each5
thread is not a required part of the OpenMP memory model, but can represent any kind of6
intervening structure, such as machine registers, cache, or other local storage, between the thread7
and the memory. The temporary view of memory allows the thread to cache variables and thereby8
to avoid going to memory for every reference to a variable. Each thread also has access to another9
type of memory that must not be accessed by other threads, called threadprivate memory.10

A directive that accepts data-sharing attribute clauses determines two kinds of access to variables11
used in the directive’s associated structured block: shared and private. Each variable referenced in12
the structured block has an original variable, which is the variable by the same name that exists in13
the program immediately outside the construct. Each reference to a shared variable in the structured14
block becomes a reference to the original variable. For each private variable referenced in the15
structured block, a new version of the original variable (of the same type and size) is created in16
memory for each task or SIMD lane that contains code associated with the directive. Creation of17
the new version does not alter the value of the original variable. However, the impact of attempts to18
access the original variable during the region associated with the directive is unspecified; see19
Section 2.15.3.3 on page 218 for additional details. References to a private variable in the20
structured block refer to the private version of the original variable for the current task or SIMD21
lane. The relationship between the value of the original variable and the initial or final value of the22
private version depends on the exact clause that specifies it. Details of this issue, as well as other23
issues with privatization, are provided in Section 2.15 on page 204.24

The minimum size at which a memory update may also read and write back adjacent variables that25
are part of another variable (as array or structure elements) is implementation defined but is no26
larger than required by the base language.27

A single access to a variable may be implemented with multiple load or store instructions, and28
hence is not guaranteed to be atomic with respect to other accesses to the same variable. Accesses29
to variables smaller than the implementation defined minimum size or to C or C++ bit-fields may30
be implemented by reading, modifying, and rewriting a larger unit of memory, and may thus31
interfere with updates of variables or fields in the same unit of memory.32

If multiple threads write without synchronization to the same memory unit, including cases due to33
atomicity considerations as described above, then a data race occurs. Similarly, if at least one34
thread reads from a memory unit and at least one thread writes without synchronization to that35
same memory unit, including cases due to atomicity considerations as described above, then a data36
race occurs. If a data race occurs then the result of the program is unspecified.37

18 OpenMP API – Version 5.0 rev 1, November 2016

A private variable in a task region that eventually generates an inner nested parallel region is1
permitted to be made shared by implicit tasks in the inner parallel region. A private variable in2
a task region can be shared by an explicit task region generated during its execution. However, it is3
the programmer’s responsibility to ensure through synchronization that the lifetime of the variable4
does not end before completion of the explicit task region sharing it. Any other access by one task5
to the private variables of another task results in unspecified behavior.6

1.4.2 Device Data Environments7

When an OpenMP program begins, an implicit target data region for each device surrounds8
the whole program. Each device has a device data environment that is defined by its implicit9
target data region. Any declare target directives and the directives that accept10
data-mapping attribute clauses determine how an original variable in a data environment is mapped11
to a corresponding variable in a device data environment.12

When an original variable is mapped to a device data environment and the associated13
corresponding variable is not present in the device data environment, a new corresponding variable14
(of the same type and size as the original variable) is created in the device data environment. The15
initial value of the new corresponding variable is determined from the clauses and the data16
environment of the encountering thread.17

The corresponding variable in the device data environment may share storage with the original18
variable. Writes to the corresponding variable may alter the value of the original variable. The19
impact of this on memory consistency is discussed in Section 1.4.4 on page 21. When a task20
executes in the context of a device data environment, references to the original variable refer to the21
corresponding variable in the device data environment.22

The relationship between the value of the original variable and the initial or final value of the23
corresponding variable depends on the map-type. Details of this issue, as well as other issues with24
mapping a variable, are provided in Section 2.15.6.1 on page 245.25

The original variable in a data environment and the corresponding variable(s) in one or more device26
data environments may share storage. Without intervening synchronization data races can occur.27

1.4.3 The Flush Operation28

The memory model has relaxed-consistency because a thread’s temporary view of memory is not29
required to be consistent with memory at all times. A value written to a variable can remain in the30
thread’s temporary view until it is forced to memory at a later time. Likewise, a read from a variable31

CHAPTER 1. INTRODUCTION 19

may retrieve the value from the thread’s temporary view, unless it is forced to read from memory.1
The OpenMP flush operation enforces consistency between the temporary view and memory.2

The flush operation is applied to a set of variables called the flush-set. The flush operation restricts3
reordering of memory operations that an implementation might otherwise do. Implementations4
must not reorder the code for a memory operation for a given variable, or the code for a flush5
operation for the variable, with respect to a flush operation that refers to the same variable.6

If a thread has performed a write to its temporary view of a shared variable since its last flush of7
that variable, then when it executes another flush of the variable, the flush does not complete until8
the value of the variable has been written to the variable in memory. If a thread performs multiple9
writes to the same variable between two flushes of that variable, the flush ensures that the value of10
the last write is written to the variable in memory. A flush of a variable executed by a thread also11
causes its temporary view of the variable to be discarded, so that if its next memory operation for12
that variable is a read, then the thread will read from memory when it may again capture the value13
in the temporary view. When a thread executes a flush, no later memory operation by that thread for14
a variable involved in that flush is allowed to start until the flush completes. The completion of a15
flush of a set of variables executed by a thread is defined as the point at which all writes to those16
variables performed by the thread before the flush are visible in memory to all other threads and17
that thread’s temporary view of all variables involved is discarded.18

The flush operation provides a guarantee of consistency between a thread’s temporary view and19
memory. Therefore, the flush operation can be used to guarantee that a value written to a variable20
by one thread may be read by a second thread. To accomplish this, the programmer must ensure21
that the second thread has not written to the variable since its last flush of the variable, and that the22
following sequence of events happens in the specified order:23

1. The value is written to the variable by the first thread.24

2. The variable is flushed by the first thread.25

3. The variable is flushed by the second thread.26

4. The value is read from the variable by the second thread.27

Note – OpenMP synchronization operations, described in Section 2.13 on page 165 and in28
Section 3.3 on page 301, are recommended for enforcing this order. Synchronization through29
variables is possible but is not recommended because the proper timing of flushes is difficult.30

20 OpenMP API – Version 5.0 rev 1, November 2016

1.4.4 OpenMP Memory Consistency1

The restrictions in Section 1.4.3 on page 19 on reordering with respect to flush operations2
guarantee the following:3

• If the intersection of the flush-sets of two flushes performed by two different threads is4
non-empty, then the two flushes must be completed as if in some sequential order, seen by all5
threads.6

• If two operations performed by the same thread either access, modify, or flush the same variable,7
then they must be completed as if in that thread’s program order, as seen by all threads.8

• If the intersection of the flush-sets of two flushes is empty, the threads can observe these flushes9
in any order.10

The flush operation can be specified using the flush directive, and is also implied at various11
locations in an OpenMP program: see Section 2.13.8 on page 186 for details.12

Note – Since flush operations by themselves cannot prevent data races, explicit flush operations are13
only useful in combination with non-sequentially consistent atomic directives.14

OpenMP programs that:15

• do not use non-sequentially consistent atomic directives,16

• do not rely on the accuracy of a false result from omp_test_lock and17
omp_test_nest_lock, and18

• correctly avoid data races as required in Section 1.4.1 on page 1819

behave as though operations on shared variables were simply interleaved in an order consistent with20
the order in which they are performed by each thread. The relaxed consistency model is invisible21
for such programs, and any explicit flush operations in such programs are redundant.22

Implementations are allowed to relax the ordering imposed by implicit flush operations when the23
result is only visible to programs using non-sequentially consistent atomic directives.24

CHAPTER 1. INTRODUCTION 21

1.5 Tool Interface1

To enable development of high-quality, portable, first-party tools that support monitoring and2
performance analysis of OpenMP programs developed using any implementation of the OpenMP3
API, the OpenMP API includes a tool interface known as OMPT.4

The OMPT interface provides the following:5

• a mechanism to initialize a first-party tool,6

• routines that enable a tool to determine the capabilities of an OpenMP implementation,7

• routines that enable a tool to examine OpenMP state information associated with a thread,8

• mechanisms that enable a tool to map implementation-level calling contexts back to their9
source-level representations,10

• a callback interface that enables a tool to receive notification of OpenMP events,11

• a tracing interface that enables a tool to trace activity on OpenMP target devices, and12

• a runtime library routine that an application can use to control a tool.13

OpenMP implementations may differ with respect to the thread states that they support, the mutual14
exclusion implementations they employ, and the OpenMP events for which tool callbacks are15
invoked. For some OpenMP events, OpenMP implementations must guarantee that a registered16
callback will be invoked for each occurrence of the event. For other OpenMP events, OpenMP17
implementations are permitted to invoke a registered callback for some or no occurrences of the18
event; for such OpenMP events, however, OpenMP implementations are encouraged to invoke tool19
callbacks on as many occurrences of the event as is practical to do so. Section 4.2.3 specifies the20
subset of OMPT callbacks that an OpenMP implementation must support for a minimal21
implementation of the OMPT interface.22

An implementation of the OpenMP API may differ from the abstract execution model described by23
its specification. The ability of tools using the OMPT interface to observe such differences does not24
constrain implementations of the OpenMP API in any way.25

With the exception of the omp_control_tool runtime library routine for tool control, all other26
routines in the OMPT interface are intended for use only by tools and are not visible to27
applications. For that reason, a Fortran binding is provided only for omp_control_tool; all28
other OMPT functionality is described with C syntax only.29

22 OpenMP API – Version 5.0 rev 1, November 2016

1.6 OpenMP Compliance1

An implementation of the OpenMP API is compliant if and only if it compiles and executes all2
conforming programs, and supports the tool interface, according to the syntax and semantics laid3
out in Chapters 1, 2, 3, 4 and 5. Appendices A, B, C, D, and E, as well as sections designated as4
Notes (see Section 1.8 on page 25) are for information purposes only and are not part of the5
specification.6

The OpenMP API defines constructs that operate in the context of the base language that is7
supported by an implementation. If the base language does not support a language construct that8
appears in this document, a compliant OpenMP implementation is not required to support it, with9
the exception that for Fortran, the implementation must allow case insensitivity for directive and10
API routines names, and must allow identifiers of more than six characters11

All library, intrinsic and built-in routines provided by the base language must be thread-safe in a12
compliant implementation. In addition, the implementation of the base language must also be13
thread-safe. For example, ALLOCATE and DEALLOCATE statements must be thread-safe in14
Fortran. Unsynchronized concurrent use of such routines by different threads must produce correct15
results (although not necessarily the same as serial execution results, as in the case of random16
number generation routines).17

Starting with Fortran 90, variables with explicit initialization have the SAVE attribute implicitly.18
This is not the case in Fortran 77. However, a compliant OpenMP Fortran implementation must19
give such a variable the SAVE attribute, regardless of the underlying base language version.20

Appendix C lists certain aspects of the OpenMP API that are implementation defined. A compliant21
implementation is required to define and document its behavior for each of the items in Appendix C.22

1.7 Normative References23

• ISO/IEC 9899:1990, Information Technology - Programming Languages - C.24

This OpenMP API specification refers to ISO/IEC 9899:1990 as C90.25

• ISO/IEC 9899:1999, Information Technology - Programming Languages - C.26

This OpenMP API specification refers to ISO/IEC 9899:1999 as C99.27

• ISO/IEC 14882:1998, Information Technology - Programming Languages - C++.28

This OpenMP API specification refers to ISO/IEC 14882:1998 as C++.29

• ISO/IEC 1539:1980, Information Technology - Programming Languages - Fortran.30

This OpenMP API specification refers to ISO/IEC 1539:1980 as Fortran 77.31

CHAPTER 1. INTRODUCTION 23

• ISO/IEC 1539:1991, Information Technology - Programming Languages - Fortran.1

This OpenMP API specification refers to ISO/IEC 1539:1991 as Fortran 90.2

• ISO/IEC 1539-1:1997, Information Technology - Programming Languages - Fortran.3

This OpenMP API specification refers to ISO/IEC 1539-1:1997 as Fortran 95.4

• ISO/IEC 1539-1:2004, Information Technology - Programming Languages - Fortran.5

This OpenMP API specification refers to ISO/IEC 1539-1:2004 as Fortran 2003. The following6
features are not supported:7

– IEEE Arithmetic issues covered in Fortran 2003 Section 148

– Parameterized derived types9

– The PASS attribute10

– Procedures bound to a type as operators11

– Overriding a type-bound procedure12

– Polymorphic entities13

– SELECT TYPE construct14

– Deferred bindings and abstract types15

– Controlling IEEE underflow16

– Another IEEE class value17

Where this OpenMP API specification refers to C, C++ or Fortran, reference is made to the base18
language supported by the implementation.19

24 OpenMP API – Version 5.0 rev 1, November 2016

1.8 Organization of this Document1

The remainder of this document is structured as follows:2

• Chapter 2 “Directives”3

• Chapter 3 “Runtime Library Routines”4

• Chapter 4 “Tool Interface”5

• Chapter 5 “Environment Variables”6

• Appendix A “Stubs for Runtime Library Routines”7

• Appendix B “Interface Declarations”8

• Appendix C “OpenMP Implementation-Defined Behaviors”9

• Appendix D “Task Frame Management for the Tool Interface”10

• Appendix E “Features History”11

Some sections of this document only apply to programs written in a certain base language. Text that12
applies only to programs for which the base language is C or C++ is shown as follows:13

C / C++

C/C++ specific text...14

C / C++

Text that applies only to programs for which the base language is C only is shown as follows:15

C
C specific text...16

C

Text that applies only to programs for which the base language is C90 only is shown as follows:17

C90
C90 specific text...18

C90

Text that applies only to programs for which the base language is C99 only is shown as follows:19

CHAPTER 1. INTRODUCTION 25

C99
C99 specific text...1

C99

Text that applies only to programs for which the base language is C++ only is shown as follows:2

C++
C++ specific text...3

C++

Text that applies only to programs for which the base language is Fortran is shown as follows:4

Fortran

Fortran specific text......5

Fortran

Where an entire page consists of, for example, Fortran specific text, a marker is shown at the top of6
the page like this:7

Fortran (cont.)

Some text is for information only, and is not part of the normative specification. Such text is8
designated as a note, like this:9

Note – Non-normative text....10

26 OpenMP API – Version 5.0 rev 1, November 2016

CHAPTER 21

Directives2

This chapter describes the syntax and behavior of OpenMP directives, and is divided into the3
following sections:4

• The language-specific directive format (Section 2.1 on page 28)5

• Mechanisms to control conditional compilation (Section 2.2 on page 36)6

• Control of OpenMP API ICVs (Section 2.3 on page 39)7

• How to specify and to use array sections for all base languages (Section 2.4 on page 48)8

• Details of each OpenMP directive, including associated events and tool callbacks (Section 2.5 on9
page 50 to Section 2.17 on page 256)10

C / C++

In C/C++, OpenMP directives are specified by using the #pragma mechanism provided by the C11
and C++ standards.12

C / C++
Fortran

In Fortran, OpenMP directives are specified by using special comments that are identified by13
unique sentinels. Also, a special comment form is available for conditional compilation.14

Fortran

Compilers can therefore ignore OpenMP directives and conditionally compiled code if support of15
the OpenMP API is not provided or enabled. A compliant implementation must provide an option16
or interface that ensures that underlying support of all OpenMP directives and OpenMP conditional17
compilation mechanisms is enabled. In the remainder of this document, the phrase OpenMP18
compilation is used to mean a compilation with these OpenMP features enabled.19

27

Fortran

Restrictions1

The following restriction applies to all OpenMP directives:2

• OpenMP directives, except SIMD and declare target directives, may not appear in pure3
procedures.4

Fortran

2.1 Directive Format5

C / C++

OpenMP directives for C/C++ are specified with the pragma preprocessing directive. The syntax6
of an OpenMP directive is as follows:7

#pragma omp directive-name [clause[[,] clause] ...] new-line

Each directive starts with #pragma omp. The remainder of the directive follows the conventions8
of the C and C++ standards for compiler directives. In particular, white space can be used before9
and after the #, and sometimes white space must be used to separate the words in a directive.10
Preprocessing tokens following the #pragma omp are subject to macro replacement.11

Some OpenMP directives may be composed of consecutive #pragma preprocessing directives if12
specified in their syntax.13

Directives are case-sensitive.14

An OpenMP executable directive applies to at most one succeeding statement, which must be a15
structured block.16

C / C++

28 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

OpenMP directives for Fortran are specified as follows:1

sentinel directive-name [clause[[,] clause]...]

All OpenMP compiler directives must begin with a directive sentinel. The format of a sentinel2
differs between fixed and free-form source files, as described in Section 2.1.1 on page 31 and3
Section 2.1.2 on page 32.4

Directives are case insensitive. Directives cannot be embedded within continued statements, and5
statements cannot be embedded within directives.6

In order to simplify the presentation, free form is used for the syntax of OpenMP directives for7
Fortran in the remainder of this document, except as noted.8

Fortran

Only one directive-name can be specified per directive (note that this includes combined directives,9
see Section 2.11 on page 140). The order in which clauses appear on directives is not significant.10
Clauses on directives may be repeated as needed, subject to the restrictions listed in the description11
of each clause.12

Some data-sharing attribute clauses (Section 2.15.3 on page 215), data copying clauses13
(Section 2.15.5 on page 240), the threadprivate directive (Section 2.15.2 on page 210), the14
flush directive (Section 2.13.8 on page 186), and the link clause of the declare target15
directive (Section 2.10.7 on page 124) accept a list. The to clause of the declare target16
directive (Section 2.10.7 on page 124) accepts an extended-list. The depend clause17
(Section 2.13.10 on page 194), when used to specify task dependences, accepts a locator-list. A list18
consists of a comma-separated collection of one or more list items. A extended-list consists of a19
comma-separated collection of one or more extended list items. A locator-list consists of a20
comma-separated collection of one or more locator list items.21

C / C++

A list item is a variable or array section. An extended list item is a list item or a function name. A22
locator list item is any lvalue expression, including variables, or an array section.23

C / C++

CHAPTER 2. DIRECTIVES 29

Fortran

A list item is a variable, array section or common block name (enclosed in slashes). An extended1
list item is a list item or a procedure name. A locator list item is a list item.2

When a named common block appears in a list, it has the same meaning as if every explicit member3
of the common block appeared in the list. An explicit member of a common block is a variable that4
is named in a COMMON statement that specifies the common block name and is declared in the same5
scoping unit in which the clause appears.6

Although variables in common blocks can be accessed by use association or host association,7
common block names cannot. As a result, a common block name specified in a data-sharing8
attribute, a data copying or a data-mapping attribute clause must be declared to be a common block9
in the same scoping unit in which the clause appears.10

Fortran

For all base languages, a list item or an extended list item is subject to the restrictions specified in11
Section 2.4 on page 48 and in each of the sections describing clauses and directives for which the12
list or extended-list appears.13

30 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

2.1.1 Fixed Source Form Directives1

The following sentinels are recognized in fixed form source files:2

!$omp | c$omp | *$omp

Sentinels must start in column 1 and appear as a single word with no intervening characters.3
Fortran fixed form line length, white space, continuation, and column rules apply to the directive4
line. Initial directive lines must have a space or zero in column 6, and continuation directive lines5
must have a character other than a space or a zero in column 6.6

Comments may appear on the same line as a directive. The exclamation point initiates a comment7
when it appears after column 6. The comment extends to the end of the source line and is ignored.8
If the first non-blank character after the directive sentinel of an initial or continuation directive line9
is an exclamation point, the line is ignored.10

Note – in the following example, the three formats for specifying the directive are equivalent (the11
first line represents the position of the first 9 columns):12

c2345678913
!$omp parallel do shared(a,b,c)14

15
c$omp parallel do16
c$omp+shared(a,b,c)17

18
c$omp paralleldoshared(a,b,c)19

CHAPTER 2. DIRECTIVES 31

Fortran (cont.)

2.1.2 Free Source Form Directives1

The following sentinel is recognized in free form source files:2

!$omp

The sentinel can appear in any column as long as it is preceded only by white space (spaces and tab3
characters). It must appear as a single word with no intervening character. Fortran free form line4
length, white space, and continuation rules apply to the directive line. Initial directive lines must5
have a space after the sentinel. Continued directive lines must have an ampersand (&) as the last6
non-blank character on the line, prior to any comment placed inside the directive. Continuation7
directive lines can have an ampersand after the directive sentinel with optional white space before8
and after the ampersand.9

Comments may appear on the same line as a directive. The exclamation point (!) initiates a10
comment. The comment extends to the end of the source line and is ignored. If the first non-blank11
character after the directive sentinel is an exclamation point, the line is ignored.12

One or more blanks or horizontal tabs must be used to separate adjacent keywords in directives in13
free source form, except in the following cases, where white space is optional between the given set14
of keywords:15

declare reduction16

declare simd17

declare target18

distribute parallel do19

distribute parallel do simd20

distribute simd21

do simd22

end atomic23

end critical24

end distribute25

end distribute parallel do26

end distribute parallel do simd27

32 OpenMP API – Version 5.0 rev 1, November 2016

Fortran (cont.)

end distribute simd1

end do2

end do simd3

end master4

end ordered5

end parallel6

end parallel do7

end parallel do simd8

end parallel sections9

end parallel workshare10

end sections11

end simd12

end single13

end target14

end target data15

end target parallel16

end target parallel do17

end target parallel do simd18

end target simd19

end target teams20

end target teams distribute21

end target teams distribute parallel do22

end target teams distribute parallel do simd23

end target teams distribute simd24

end task25

end taskgroup26

end taskloop27

CHAPTER 2. DIRECTIVES 33

Fortran (cont.)

end taskloop simd1

end teams2

end teams distribute3

end teams distribute parallel do4

end teams distribute parallel do simd5

end teams distribute simd6

end workshare7

parallel do8

parallel do simd9

parallel sections10

parallel workshare11

target data12

target enter data13

target exit data14

target parallel15

target parallel do16

target parallel do simd17

target simd18

target teams19

target teams distribute20

target teams distribute parallel do21

target teams distribute parallel do simd22

target teams distribute simd23

target update24

taskloop simd25

teams distribute26

teams distribute parallel do27

34 OpenMP API – Version 5.0 rev 1, November 2016

teams distribute parallel do simd1

teams distribute simd2

Note – in the following example the three formats for specifying the directive are equivalent (the3
first line represents the position of the first 9 columns):4

!234567895
!$omp parallel do &6

!$omp shared(a,b,c)7
8

!$omp parallel &9
!$omp&do shared(a,b,c)10

11
!$omp paralleldo shared(a,b,c)12

Fortran

2.1.3 Stand-Alone Directives13

Summary14

Stand-alone directives are executable directives that have no associated user code.15

Description16

Stand-alone directives do not have any associated executable user code. Instead, they represent17
executable statements that typically do not have succinct equivalent statements in the base18
languages. There are some restrictions on the placement of a stand-alone directive within a19
program. A stand-alone directive may be placed only at a point where a base language executable20
statement is allowed.21

CHAPTER 2. DIRECTIVES 35

Restrictions1

C / C++

For C/C++, a stand-alone directive may not be used in place of the statement following an if,2
while, do, switch, or label.3

C / C++
Fortran

For Fortran, a stand-alone directive may not be used as the action statement in an if statement or4
as the executable statement following a label if the label is referenced in the program.5

Fortran

2.2 Conditional Compilation6

In implementations that support a preprocessor, the _OPENMP macro name is defined to have the7
decimal value yyyymm where yyyy and mm are the year and month designations of the version of8
the OpenMP API that the implementation supports.9

If this macro is the subject of a #define or a #undef preprocessing directive, the behavior is10
unspecified.11

Fortran

The OpenMP API requires Fortran lines to be compiled conditionally, as described in the following12
sections.13

36 OpenMP API – Version 5.0 rev 1, November 2016

Fortran (cont.)

2.2.1 Fixed Source Form Conditional Compilation1

Sentinels2

The following conditional compilation sentinels are recognized in fixed form source files:3

!$ | *$ | c$

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the4
following criteria:5

• The sentinel must start in column 1 and appear as a single word with no intervening white space.6

• After the sentinel is replaced with two spaces, initial lines must have a space or zero in column 67
and only white space and numbers in columns 1 through 5.8

• After the sentinel is replaced with two spaces, continuation lines must have a character other than9
a space or zero in column 6 and only white space in columns 1 through 5.10

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not met, the line11
is left unchanged.12

Note – in the following example, the two forms for specifying conditional compilation in fixed13
source form are equivalent (the first line represents the position of the first 9 columns):14

c2345678915
!$ 10 iam = omp_get_thread_num() +16
!$ & index17

18
#ifdef _OPENMP19

10 iam = omp_get_thread_num() +20
& index21

#endif22

2.2.2 Free Source Form Conditional Compilation Sentinel23

The following conditional compilation sentinel is recognized in free form source files:24

CHAPTER 2. DIRECTIVES 37

!$

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the1
following criteria:2

• The sentinel can appear in any column but must be preceded only by white space.3

• The sentinel must appear as a single word with no intervening white space.4

• Initial lines must have a space after the sentinel.5

• Continued lines must have an ampersand as the last non-blank character on the line, prior to any6
comment appearing on the conditionally compiled line. Continuation lines can have an7
ampersand after the sentinel, with optional white space before and after the ampersand.8

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not met, the line9
is left unchanged.10

Note – in the following example, the two forms for specifying conditional compilation in free11
source form are equivalent (the first line represents the position of the first 9 columns):12

c2345678913
!$ iam = omp_get_thread_num() + &14
!$& index15

16
#ifdef _OPENMP17

iam = omp_get_thread_num() + &18
index19

#endif20

Fortran

38 OpenMP API – Version 5.0 rev 1, November 2016

2.3 Internal Control Variables1

An OpenMP implementation must act as if there are internal control variables (ICVs) that control2
the behavior of an OpenMP program. These ICVs store information such as the number of threads3
to use for future parallel regions, the schedule to use for worksharing loops and whether nested4
parallelism is enabled or not. The ICVs are given values at various times (described below) during5
the execution of the program. They are initialized by the implementation itself and may be given6
values through OpenMP environment variables and through calls to OpenMP API routines. The7
program can retrieve the values of these ICVs only through OpenMP API routines.8

For purposes of exposition, this document refers to the ICVs by certain names, but an9
implementation is not required to use these names or to offer any way to access the variables other10
than through the ways shown in Section 2.3.2 on page 40.11

2.3.1 ICV Descriptions12

The following ICVs store values that affect the operation of parallel regions.13

• dyn-var - controls whether dynamic adjustment of the number of threads is enabled for14
encountered parallel regions. There is one copy of this ICV per data environment.15

• nest-var - controls whether nested parallelism is enabled for encountered parallel regions.16
There is one copy of this ICV per data environment.17

• nthreads-var - controls the number of threads requested for encountered parallel regions.18
There is one copy of this ICV per data environment.19

• thread-limit-var - controls the maximum number of threads participating in the contention20
group. There is one copy of this ICV per data environment.21

• max-active-levels-var - controls the maximum number of nested active parallel regions.22
There is one copy of this ICV per device.23

• place-partition-var – controls the place partition available to the execution environment for24
encountered parallel regions. There is one copy of this ICV per implicit task.25

• active-levels-var - the number of nested, active parallel regions enclosing the current task such26
that all of the parallel regions are enclosed by the outermost initial task region on the current27
device. There is one copy of this ICV per data environment.28

• levels-var - the number of nested parallel regions enclosing the current task such that all of the29
parallel regions are enclosed by the outermost initial task region on the current device.30
There is one copy of this ICV per data environment.31

CHAPTER 2. DIRECTIVES 39

• bind-var - controls the binding of OpenMP threads to places. When binding is requested, the1
variable indicates that the execution environment is advised not to move threads between places.2
The variable can also provide default thread affinity policies. There is one copy of this ICV per3
data environment.4

The following ICVs store values that affect the operation of loop regions.5

• run-sched-var - controls the schedule that the runtime schedule clause uses for loop regions.6
There is one copy of this ICV per data environment.7

• def-sched-var - controls the implementation defined default scheduling of loop regions. There is8
one copy of this ICV per device.9

The following ICVs store values that affect program execution.10

• stacksize-var - controls the stack size for threads that the OpenMP implementation creates. There11
is one copy of this ICV per device.12

• wait-policy-var - controls the desired behavior of waiting threads. There is one copy of this ICV13
per device.14

• cancel-var - controls the desired behavior of the cancel construct and cancellation points.15
There is one copy of this ICV for the whole program.16

• default-device-var - controls the default target device. There is one copy of this ICV per data17
environment.18

• max-task-priority-var - controls the maximum priority value that can be specified in the19
priority clause of the task construct. There is one copy of this ICV for the whole program.20

The following ICVs store values that affect the operation of the tool interface.21

• tool-var - determines whether an OpenMP implementation will try to register a tool. There is22
one copy of this ICV for the whole program.23

• tool-libraries-var - specifies a list of absolute paths to tool libraries for OpenMP devices. There24
is one copy of this ICV for the whole program.25

2.3.2 ICV Initialization26

Table 2.1 shows the ICVs, associated environment variables, and initial values.27

40 OpenMP API – Version 5.0 rev 1, November 2016

TABLE 2.1: ICV Initial Values

ICV Environment Variable Initial value

dyn-var OMP_DYNAMIC See description below

nest-var OMP_NESTED false

nthreads-var OMP_NUM_THREADS Implementation defined

run-sched-var OMP_SCHEDULE Implementation defined

def-sched-var (none) Implementation defined

bind-var OMP_PROC_BIND Implementation defined

stacksize-var OMP_STACKSIZE Implementation defined

wait-policy-var OMP_WAIT_POLICY Implementation defined

thread-limit-var OMP_THREAD_LIMIT Implementation defined

max-active-levels-var OMP_MAX_ACTIVE_LEVELS See description below

active-levels-var (none) zero

levels-var (none) zero

place-partition-var OMP_PLACES Implementation defined

cancel-var OMP_CANCELLATION false

default-device-var OMP_DEFAULT_DEVICE Implementation defined

max-task-priority-var OMP_MAX_TASK_PRIORITY zero

tool-var OMP_TOOL enabled

tool-libraries-var OMP_TOOL_LIBRARIES empty string

1

Description2

• Each device has its own ICVs.3

• The value of the nthreads-var ICV is a list.4

• The value of the bind-var ICV is a list.5

• The initial value of dyn-var is implementation defined if the implementation supports dynamic6
adjustment of the number of threads; otherwise, the initial value is false.7

• The initial value of max-active-levels-var is the number of levels of parallelism that the8
implementation supports. See the definition of supporting n levels of parallelism in Section 1.2.79
on page 13 for further details.10

CHAPTER 2. DIRECTIVES 41

The host and target device ICVs are initialized before any OpenMP API construct or OpenMP API1
routine executes. After the initial values are assigned, the values of any OpenMP environment2
variables that were set by the user are read and the associated ICVs for the host device are modified3
accordingly. The method for initializing a target device’s ICVs is implementation defined.4

Cross References5

• OMP_SCHEDULE environment variable, see Section 5.1 on page 434.6

• OMP_NUM_THREADS environment variable, see Section 5.2 on page 435.7

• OMP_DYNAMIC environment variable, see Section 5.3 on page 436.8

• OMP_PROC_BIND environment variable, see Section 5.4 on page 436.9

• OMP_PLACES environment variable, see Section 5.5 on page 437.10

• OMP_NESTED environment variable, see Section 5.6 on page 439.11

• OMP_STACKSIZE environment variable, see Section 5.7 on page 440.12

• OMP_WAIT_POLICY environment variable, see Section 5.8 on page 441.13

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 5.9 on page 442.14

• OMP_THREAD_LIMIT environment variable, see Section 5.10 on page 442.15

• OMP_CANCELLATION environment variable, see Section 5.11 on page 442.16

• OMP_DEFAULT_DEVICE environment variable, see Section 5.13 on page 444.17

• OMP_MAX_TASK_PRIORITY environment variable, see Section 5.14 on page 445.18

• OMP_TOOL environment variable, see Section 5.15 on page 445.19

• OMP_TOOL_LIBRARIES environment variable, see Section 5.16 on page 446.20

2.3.3 Modifying and Retrieving ICV Values21

Table 2.2 shows the method for modifying and retrieving the values of ICVs through OpenMP API22
routines.23

42 OpenMP API – Version 5.0 rev 1, November 2016

TABLE 2.2: Ways to Modify and to Retrieve ICV Values

ICV Ways to modify value Ways to retrieve value

dyn-var omp_set_dynamic() omp_get_dynamic()

nest-var omp_set_nested() omp_get_nested()

nthreads-var omp_set_num_threads() omp_get_max_threads()

run-sched-var omp_set_schedule() omp_get_schedule()

def-sched-var (none) (none)

bind-var (none) omp_get_proc_bind()

stacksize-var (none) (none)

wait-policy-var (none) (none)

thread-limit-var thread_limit clause omp_get_thread_limit()

max-active-levels-var omp_set_max_active_levels() omp_get_max_active_levels()

active-levels-var (none) omp_get_active_level()

levels-var (none) omp_get_level()

place-partition-var (none) See description below

cancel-var (none) omp_get_cancellation()

default-device-var omp_set_default_device() omp_get_default_device()

max-task-priority-var (none) omp_get_max_task_priority()

tool-var (none) (none)

tool-libraries-var (none) (none)

1

Description2

• The value of the nthreads-var ICV is a list. The runtime call omp_set_num_threads() sets3
the value of the first element of this list, and omp_get_max_threads() retrieves the value4
of the first element of this list.5

• The value of the bind-var ICV is a list. The runtime call omp_get_proc_bind() retrieves6
the value of the first element of this list.7

• Detailed values in the place-partition-var ICV are retrieved using the runtime calls8
omp_get_partition_num_places(), omp_get_partition_place_nums(),9
omp_get_place_num_procs(), and omp_get_place_proc_ids().10

Cross References11

• thread_limit clause of the teams construct, see Section 2.10.8 on page 129.12

CHAPTER 2. DIRECTIVES 43

• omp_set_num_threads routine, see Section 3.2.1 on page 262.1

• omp_get_max_threads routine, see Section 3.2.3 on page 264.2

• omp_set_dynamic routine, see Section 3.2.7 on page 268.3

• omp_get_dynamic routine, see Section 3.2.8 on page 270.4

• omp_get_cancellation routine, see Section 3.2.9 on page 271.5

• omp_set_nested routine, see Section 3.2.10 on page 271.6

• omp_get_nested routine, see Section 3.2.11 on page 273.7

• omp_set_schedule routine, see Section 3.2.12 on page 274.8

• omp_get_schedule routine, see Section 3.2.13 on page 276.9

• omp_get_thread_limit routine, see Section 3.2.14 on page 277.10

• omp_set_max_active_levels routine, see Section 3.2.15 on page 277.11

• omp_get_max_active_levels routine, see Section 3.2.16 on page 279.12

• omp_get_level routine, see Section 3.2.17 on page 280.13

• omp_get_active_level routine, see Section 3.2.20 on page 283.14

• omp_get_proc_bind routine, see Section 3.2.22 on page 285.15

• omp_get_place_num_procs() routine, see Section 3.2.24 on page 288.16

• omp_get_place_proc_ids() routine, see Section 3.2.25 on page 289.17

• omp_get_partition_num_places() routine, see Section 3.2.27 on page 291.18

• omp_get_partition_place_nums() routine, see Section 3.2.28 on page 292.19

• omp_set_default_device routine, see Section 3.2.29 on page 293.20

• omp_get_default_device routine, see Section 3.2.30 on page 294.21

• omp_get_max_task_priority routine, see Section 3.2.36 on page 299.22

2.3.4 How ICVs are Scoped23

Table 2.3 shows the ICVs and their scope.24

44 OpenMP API – Version 5.0 rev 1, November 2016

TABLE 2.3: Scopes of ICVs1

ICV Scope

dyn-var data environment
nest-var data environment
nthreads-var data environment
run-sched-var data environment
def-sched-var device
bind-var data environment
stacksize-var device
wait-policy-var device
thread-limit-var data environment
max-active-levels-var device
active-levels-var data environment
levels-var data environment
place-partition-var implicit task
cancel-var global
default-device-var data environment
max-task-priority-var global
tool-var global
tool-libraries-var global

2

Description3

• There is one copy per device of each ICV with device scope4

• Each data environment has its own copies of ICVs with data environment scope5

• Each implicit task has its own copy of ICVs with implicit task scope6

Calls to OpenMP API routines retrieve or modify data environment scoped ICVs in the data7
environment of their binding tasks.8

2.3.4.1 How the Per-Data Environment ICVs Work9

When a task construct or parallel construct is encountered, the generated task(s) inherit the10
values of the data environment scoped ICVs from the generating task’s ICV values.11

CHAPTER 2. DIRECTIVES 45

When a task construct is encountered, the generated task inherits the value of nthreads-var from1
the generating task’s nthreads-var value. When a parallel construct is encountered, and the2
generating task’s nthreads-var list contains a single element, the generated task(s) inherit that list as3
the value of nthreads-var. When a parallel construct is encountered, and the generating task’s4
nthreads-var list contains multiple elements, the generated task(s) inherit the value of nthreads-var5
as the list obtained by deletion of the first element from the generating task’s nthreads-var value.6
The bind-var ICV is handled in the same way as the nthreads-var ICV.7

When a target task executes a target region, the generated initial task uses the values of the data8
environment scoped ICVs from the device data environment ICV values of the device that will9
execute the region.10

If a teams construct with a thread_limit clause is encountered, the thread-limit-var ICV of11
the construct’s data environment is instead set to a value that is less than or equal to the value12
specified in the clause.13

When encountering a loop worksharing region with schedule(runtime), all implicit task14
regions that constitute the binding parallel region must have the same value for run-sched-var in15
their data environments. Otherwise, the behavior is unspecified.16

2.3.5 ICV Override Relationships17

Table 2.4 shows the override relationships among construct clauses and ICVs.18

TABLE 2.4: ICV Override Relationships

ICV construct clause, if used

dyn-var (none)

nest-var (none)

nthreads-var num_threads

run-sched-var schedule

def-sched-var schedule

bind-var proc_bind

stacksize-var (none)

table continued on next page

46 OpenMP API – Version 5.0 rev 1, November 2016

table continued from previous page

ICV construct clause, if used

wait-policy-var (none)

thread-limit-var (none)

max-active-levels-var (none)

active-levels-var (none)

levels-var (none)

place-partition-var (none)

cancel-var (none)

default-device-var (none)

max-task-priority-var (none)

tool-var (none)

tool-libraries-var (none)

1

Description2

• The num_threads clause overrides the value of the first element of the nthreads-var ICV.3

• If bind-var is not set to false then the proc_bind clause overrides the value of the first element4
of the bind-var ICV; otherwise, the proc_bind clause has no effect.5

Cross References6

• parallel construct, see Section 2.5 on page 50.7

• proc_bind clause, Section 2.5 on page 50.8

• num_threads clause, see Section 2.5.1 on page 55.9

• Loop construct, see Section 2.7.1 on page 62.10

• schedule clause, see Section 2.7.1.1 on page 70.11

CHAPTER 2. DIRECTIVES 47

2.4 Array Sections1

An array section designates a subset of the elements in an array. An array section can appear only2
in clauses where it is explicitly allowed.3

C / C++

To specify an array section in an OpenMP construct, array subscript expressions are extended with4
the following syntax:5

[lower-bound : length] or6

[lower-bound :] or7

[: length] or8

[:]9

The array section must be a subset of the original array.10

Array sections are allowed on multidimensional arrays. Base language array subscript expressions11
can be used to specify length-one dimensions of multidimensional array sections.12

The lower-bound and length are integral type expressions. When evaluated they represent a set of13
integer values as follows:14

{ lower-bound, lower-bound + 1, lower-bound + 2,... , lower-bound + length - 1 }15

The length must evaluate to a non-negative integer.16

When the size of the array dimension is not known, the length must be specified explicitly.17

When the length is absent, it defaults to the size of the array dimension minus the lower-bound.18

When the lower-bound is absent it defaults to 0.19

Note – The following are examples of array sections:20

a[0:6]21

a[:6]22

a[1:10]23

a[1:]24

b[10][:][:0]25

c[1:10][42][0:6]26

48 OpenMP API – Version 5.0 rev 1, November 2016

The first two examples are equivalent. If a is declared to be an eleven element array, the third and1
fourth examples are equivalent. The fifth example is a zero-length array section. The last example2
is not contiguous.3

C / C++

Fortran has built-in support for array sections although some restrictions apply to their use, as4
enumerated in the following section.5

Restrictions6

Restrictions to array sections are as follows:7

• An array section can appear only in clauses where it is explicitly allowed.8

C / C++

• An array section can only be specified for a base language identifier.9

C / C++
C

• The type of the variable appearing in an array section must be array or pointer.10

C

C++
• If the type of the variable appearing in an array section is a reference to a type T then the type11
will be considered to be T for all purposes of the array section.12

• An array section cannot be used in a C++ user-defined []-operator.13

C++

Fortran

• A stride expression may not be specified.14

• The upper bound for the last dimension of an assumed-size dummy array must be specified.15

• If a list item is an array section with vector subscripts, the first array element must be the lowest16
in the array element order of the array section.17

Fortran

CHAPTER 2. DIRECTIVES 49

2.5 parallel Construct1

Summary2

This fundamental construct starts parallel execution. See Section 1.3 on page 15 for a general3
description of the OpenMP execution model.4

Syntax5

C / C++

The syntax of the parallel construct is as follows:6

#pragma omp parallel [clause[[,] clause] ...] new-line
structured-block

where clause is one of the following:7

if([parallel :] scalar-expression)8

num_threads(integer-expression)9

default(shared | none)10

private(list)11

firstprivate(list)12

shared(list)13

copyin(list)14

reduction(reduction-identifier : list)15

proc_bind(master | close | spread)16

C / C++

50 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

The syntax of the parallel construct is as follows:1

!$omp parallel [clause[[,] clause] ...]
structured-block

!$omp end parallel

where clause is one of the following:2

if([parallel :] scalar-logical-expression)3

num_threads(scalar-integer-expression)4

default(private | firstprivate | shared | none)5

private(list)6

firstprivate(list)7

shared(list)8

copyin(list)9

reduction(reduction-identifier : list)10

proc_bind(master | close | spread)11

The end parallel directive denotes the end of the parallel construct.12

Fortran

Binding13

The binding thread set for a parallel region is the encountering thread. The encountering thread14
becomes the master thread of the new team.15

CHAPTER 2. DIRECTIVES 51

Description1

When a thread encounters a parallel construct, a team of threads is created to execute the2
parallel region (see Section 2.5.1 on page 55 for more information about how the number of3
threads in the team is determined, including the evaluation of the if and num_threads clauses).4
The thread that encountered the parallel construct becomes the master thread of the new team,5
with a thread number of zero for the duration of the new parallel region. All threads in the new6
team, including the master thread, execute the region. Once the team is created, the number of7
threads in the team remains constant for the duration of that parallel region.8

The optional proc_bind clause, described in Section 2.5.2 on page 57, specifies the mapping of9
OpenMP threads to places within the current place partition, that is, within the places listed in the10
place-partition-var ICV for the implicit task of the encountering thread.11

Within a parallel region, thread numbers uniquely identify each thread. Thread numbers are12
consecutive whole numbers ranging from zero for the master thread up to one less than the number13
of threads in the team. A thread may obtain its own thread number by a call to the14
omp_get_thread_num library routine.15

A set of implicit tasks, equal in number to the number of threads in the team, is generated by the16
encountering thread. The structured block of the parallel construct determines the code that17
will be executed in each implicit task. Each task is assigned to a different thread in the team and18
becomes tied. The task region of the task being executed by the encountering thread is suspended19
and each thread in the team executes its implicit task. Each thread can execute a path of statements20
that is different from that of the other threads21

The implementation may cause any thread to suspend execution of its implicit task at a task22
scheduling point, and switch to execute any explicit task generated by any of the threads in the23
team, before eventually resuming execution of the implicit task (for more details see Section 2.9 on24
page 91).25

There is an implied barrier at the end of a parallel region. After the end of a parallel26
region, only the master thread of the team resumes execution of the enclosing task region.27

If a thread in a team executing a parallel region encounters another parallel directive, it28
creates a new team, according to the rules in Section 2.5.1 on page 55, and it becomes the master of29
that new team.30

If execution of a thread terminates while inside a parallel region, execution of all threads in all31
teams terminates. The order of termination of threads is unspecified. All work done by a team prior32
to any barrier that the team has passed in the program is guaranteed to be complete. The amount of33
work done by each thread after the last barrier that it passed and before it terminates is unspecified.34

Events35

The parallel-begin event occurs in a thread encountering a parallel construct before any36
implicit task is created for the associated parallel region.37

52 OpenMP API – Version 5.0 rev 1, November 2016

Upon creation of each implicit task, an implicit-task-begin event occurs in the thread executing the1
implicit task after the implicit task is fully initialized but before the thread begins to execute the2
structured block of the parallel construct.3

If the parallel region creates a thread, a thread-begin event occurs as the first event in the4
context of the new thread prior to the implicit-task-begin.5

If the parallel region activates an idle thread to create the implicit task, an idle-end event6
occurs in the newly activated thread prior to the implicit-task-begin.7

Events associated with implicit barriers occur at the end of a parallel region. Section 2.13.48
describes events associated with implicit barriers.9

When a thread finishes an implicit task, an implicit-task-end event occurs in the thread after events10
associated with implicit barrier synchronization in the implicit task.11

The parallel-end event occurs in the thread encountering the parallel construct after the thread12
executes its implicit-task-end event but before resuming execution of the parent task.13

If a thread is destroyed at the end of a parallel region, a thread-end event occurs in the thread14
as the last event prior to the thread’s destruction.15

If a non-master thread is not destroyed at the end of a parallel region, an idle-begin event16
occurs after the thread’s implicit-task-end event for the parallel region.17

Tool Callbacks18

A thread dispatches a registered ompt_callback_parallel_begin callback for each19
occurrence of a parallel-begin event in that thread. The callback occurs in the task encountering the20
parallel construct. This callback has the type signature21
ompt_callback_parallel_begin_t.22

A thread dispatches a registered ompt_callback_implicit_task callback for each23
occurrence of a implicit-task-begin and implicit-task-end event in that thread. The callback occurs24
in the context of the implicit task. The callback has type signature25
ompt_callback_implicit_task_t. The callback receives ompt_scope_begin or26
ompt_scope_end as its endpoint argument, as appropriate.27

A thread dispatches a registered ompt_callback_parallel_end callback for each28
occurrence of a parallel-end event in that thread. The callback occurs in the task encountering the29
parallel construct. This callback has the type signature30
ompt_callback_parallel_end_t.31

A thread dispatches a registered ompt_callback_idle callback for each occurrence of a32
idle-begin and idle-end event in that thread. The callback occurs in the context of the idling thread.33
The callback has type signature ompt_callback_idle_t. The callback receives34
ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate.35

CHAPTER 2. DIRECTIVES 53

A thread dispatches a registered ompt_callback_thread_begin callback for the1
thread-begin event in that thread. The callback occurs in the context of the thread. The callback has2
type signature ompt_callback_thread_begin_t.3

A thread dispatches a registered ompt_callback_thread_end callback for the thread-end4
event in that thread. The callback occurs in the context of the thread. The callback has type5
signature ompt_callback_thread_end_t.6

Restrictions7

Restrictions to the parallel construct are as follows:8

• A program that branches into or out of a parallel region is non-conforming.9

• A program must not depend on any ordering of the evaluations of the clauses of the parallel10
directive, or on any side effects of the evaluations of the clauses.11

• At most one if clause can appear on the directive.12

• At most one proc_bind clause can appear on the directive.13

• At most one num_threads clause can appear on the directive. The num_threads14
expression must evaluate to a positive integer value.15

C / C++

A throw executed inside a parallel region must cause execution to resume within the same16
parallel region, and the same thread that threw the exception must catch it.17

C / C++
Fortran

Unsynchronized use of Fortran I/O statements by multiple threads on the same unit has unspecified18
behavior.19

Fortran

54 OpenMP API – Version 5.0 rev 1, November 2016

Cross References1

• if clause, see Section 2.12 on page 164.2

• default, shared, private, firstprivate, and reduction clauses, see3
Section 2.15.3 on page 215.4

• copyin clause, see Section 2.15.5 on page 240.5

• omp_get_thread_num routine, see Section 3.2.4 on page 266.6

• ompt_scope_begin and ompt_scope_end, see Section 4.4.6.11 on page 356.7

• ompt_callback_thread_begin_t, see Section 4.6.2.1 on page 366.8

• ompt_callback_thread_end_t, see Section 4.6.2.2 on page 367.9

• ompt_callback_idle_t, see Section 4.6.2.3 on page 368.10

• ompt_callback_parallel_begin_t, see Section 4.6.2.4 on page 369.11

• ompt_callback_parallel_end_t, see Section 4.6.2.5 on page 370.12

• ompt_callback_implicit_task_t, see Section 4.6.2.11 on page 377.13

2.5.1 Determining the Number of Threads for a parallel14

Region15

When execution encounters a parallel directive, the value of the if clause or num_threads16
clause (if any) on the directive, the current parallel context, and the values of the nthreads-var,17
dyn-var, thread-limit-var, max-active-levels-var, and nest-var ICVs are used to determine the18
number of threads to use in the region.19

Using a variable in an if or num_threads clause expression of a parallel construct causes20
an implicit reference to the variable in all enclosing constructs. The if clause expression and the21
num_threads clause expression are evaluated in the context outside of the parallel22
construct, and no ordering of those evaluations is specified. It is also unspecified whether, in what23
order, or how many times any side effects of the evaluation of the num_threads or if clause24
expressions occur.25

When a thread encounters a parallel construct, the number of threads is determined according26
to Algorithm 2.1.27

CHAPTER 2. DIRECTIVES 55

1
Algorithm 2.12

3

let ThreadsBusy be the number of OpenMP threads currently executing in this4
contention group;5

let ActiveParRegions be the number of enclosing active parallel regions;6

if an if clause exists7

then let IfClauseValue be the value of the if clause expression;8

else let IfClauseValue = true;9

if a num_threads clause exists10

then let ThreadsRequested be the value of the num_threads clause expression;11

else let ThreadsRequested = value of the first element of nthreads-var;12

let ThreadsAvailable = (thread-limit-var - ThreadsBusy + 1);13

if (IfClauseValue = false)14

then number of threads = 1;15

else if (ActiveParRegions >= 1) and (nest-var = false)16

then number of threads = 1;17

else if (ActiveParRegions = max-active-levels-var)18

then number of threads = 1;19

else if (dyn-var = true) and (ThreadsRequested <= ThreadsAvailable)20

then number of threads = [1 : ThreadsRequested];21

else if (dyn-var = true) and (ThreadsRequested > ThreadsAvailable)22

then number of threads = [1 : ThreadsAvailable];23

else if (dyn-var = false) and (ThreadsRequested <= ThreadsAvailable)24

then number of threads = ThreadsRequested;25

else if (dyn-var = false) and (ThreadsRequested > ThreadsAvailable)26

then behavior is implementation defined;27

28
29

56 OpenMP API – Version 5.0 rev 1, November 2016

Note – Since the initial value of the dyn-var ICV is implementation defined, programs that depend1
on a specific number of threads for correct execution should explicitly disable dynamic adjustment2
of the number of threads.3

Cross References4

• nthreads-var, dyn-var, thread-limit-var, max-active-levels-var, and nest-var ICVs, see5
Section 2.3 on page 39.6

2.5.2 Controlling OpenMP Thread Affinity7

When a thread encounters a parallel directive without a proc_bind clause, the bind-var ICV8
is used to determine the policy for assigning OpenMP threads to places within the current place9
partition, that is, the places listed in the place-partition-var ICV for the implicit task of the10
encountering thread. If the parallel directive has a proc_bind clause then the binding policy11
specified by the proc_bind clause overrides the policy specified by the first element of the12
bind-var ICV. Once a thread in the team is assigned to a place, the OpenMP implementation should13
not move it to another place.14

The master thread affinity policy instructs the execution environment to assign every thread in the15
team to the same place as the master thread. The place partition is not changed by this policy, and16
each implicit task inherits the place-partition-var ICV of the parent implicit task.17

The close thread affinity policy instructs the execution environment to assign the threads in the18
team to places close to the place of the parent thread. The place partition is not changed by this19
policy, and each implicit task inherits the place-partition-var ICV of the parent implicit task. If T20
is the number of threads in the team, and P is the number of places in the parent’s place partition,21
then the assignment of threads in the team to places is as follows:22

• T ≤ P . The master thread executes on the place of the parent thread. The thread with the next23
smallest thread number executes on the next place in the place partition, and so on, with wrap24
around with respect to the place partition of the master thread.25

• T > P . Each place P will contain Sp threads with consecutive thread numbers, where26
bbT/Pcc ≤ Sp ≤ ddT/Pee. The first S0 threads (including the master thread) are assigned to the27
place of the parent thread. The next S1 threads are assigned to the next place in the place28
partition, and so on, with wrap around with respect to the place partition of the master thread.29
When P does not divide T evenly, the exact number of threads in a particular place is30
implementation defined.31

CHAPTER 2. DIRECTIVES 57

The purpose of the spread thread affinity policy is to create a sparse distribution for a team of T1
threads among the P places of the parent’s place partition. A sparse distribution is achieved by first2
subdividing the parent partition into T subpartitions if T ≤ P , or P subpartitions if T > P . Then3
one thread (T ≤ P) or a set of threads (T > P) is assigned to each subpartition. The4
place-partition-var ICV of each implicit task is set to its subpartition. The subpartitioning is not5
only a mechanism for achieving a sparse distribution, it also defines a subset of places for a thread6
to use when creating a nested parallel region. The assignment of threads to places is as follows:7

• T ≤ P . The parent thread’s place partition is split into T subpartitions, where each subpartition8
contains bbP/Tcc or ddP/Tee consecutive places. A single thread is assigned to each subpartition.9
The master thread executes on the place of the parent thread and is assigned to the subpartition10
that includes that place. The thread with the next smallest thread number is assigned to the first11
place in the next subpartition, and so on, with wrap around with respect to the original place12
partition of the master thread.13

• T > P . The parent thread’s place partition is split into P subpartitions, each consisting of a14
single place. Each subpartition is assigned Sp threads with consecutive thread numbers, where15
bbT/Pcc ≤ Sp ≤ ddT/Pee. The first S0 threads (including the master thread) are assigned to the16
subpartition containing the place of the parent thread. The next S1 threads are assigned to the17
next subpartition, and so on, with wrap around with respect to the original place partition of the18
master thread. When P does not divide T evenly, the exact number of threads in a particular19
subpartition is implementation defined.20

The determination of whether the affinity request can be fulfilled is implementation defined. If the21
affinity request cannot be fulfilled, then the affinity of threads in the team is implementation defined.22

Note – Wrap around is needed if the end of a place partition is reached before all thread23
assignments are done. For example, wrap around may be needed in the case of close and T ≤ P ,24
if the master thread is assigned to a place other than the first place in the place partition. In this25
case, thread 1 is assigned to the place after the place of the master place, thread 2 is assigned to the26
place after that, and so on. The end of the place partition may be reached before all threads are27
assigned. In this case, assignment of threads is resumed with the first place in the place partition.28

2.6 Canonical Loop Form29

C / C++

A loop has canonical loop form if it conforms to the following:30

58 OpenMP API – Version 5.0 rev 1, November 2016

for (init-expr; test-expr; incr-expr) structured-block

init-expr One of the following:
var = lb
integer-type var = lb
random-access-iterator-type var = lb
pointer-type var = lb

test-expr One of the following:
var relational-op b
b relational-op var

incr-expr One of the following:
++var
var++
- - var
var - -
var += incr
var - = incr
var = var + incr
var = incr + var
var = var - incr

var One of the following:
A variable of a signed or unsigned integer type.
For C++, a variable of a random access iterator type.
For C, a variable of a pointer type.

If this variable would otherwise be shared, it is implicitly made private in the
loop construct. This variable must not be modified during the execution of the
for-loop other than in incr-expr. Unless the variable is specified lastprivate
or linear on the loop construct, its value after the loop is unspecified.

relational-op One of the following:
<
<=
>
>=

lb and b Loop invariant expressions of a type compatible with the type of var.
continued on next page

CHAPTER 2. DIRECTIVES 59

C/C++ (cont.)

continued from previous page

incr A loop invariant integer expression.
1

2

The canonical form allows the iteration count of all associated loops to be computed before3
executing the outermost loop. The computation is performed for each loop in an integer type. This4
type is derived from the type of var as follows:5

• If var is of an integer type, then the type is the type of var.6

• For C++, if var is of a random access iterator type, then the type is the type that would be used7
by std::distance applied to variables of the type of var.8

• For C, if var is of a pointer type, then the type is ptrdiff_t.9

The behavior is unspecified if any intermediate result required to compute the iteration count10
cannot be represented in the type determined above.11

There is no implied synchronization during the evaluation of the lb, b, or incr expressions. It is12
unspecified whether, in what order, or how many times any side effects within the lb, b, or incr13
expressions occur.14

Note – Random access iterators are required to support random access to elements in constant15
time. Other iterators are precluded by the restrictions since they can take linear time or offer limited16
functionality. It is therefore advisable to use tasks to parallelize those cases.17

Restrictions18

The following restrictions also apply:19

• If test-expr is of the form var relational-op b and relational-op is < or <= then incr-expr must20
cause var to increase on each iteration of the loop. If test-expr is of the form var relational-op b21
and relational-op is > or >= then incr-expr must cause var to decrease on each iteration of the22
loop.23

• If test-expr is of the form b relational-op var and relational-op is < or <= then incr-expr must24
cause var to decrease on each iteration of the loop. If test-expr is of the form b relational-op var25
and relational-op is > or >= then incr-expr must cause var to increase on each iteration of the26
loop.27

• For C++, in the simd construct the only random access iterator types that are allowed for var are28
pointer types.29

60 OpenMP API – Version 5.0 rev 1, November 2016

• The b, lb and incr expressions may not reference var of any of the associated loops.1

C / C++

2.7 Worksharing Constructs2

A worksharing construct distributes the execution of the associated region among the members of3
the team that encounters it. Threads execute portions of the region in the context of the implicit4
tasks each one is executing. If the team consists of only one thread then the worksharing region is5
not executed in parallel.6

A worksharing region has no barrier on entry; however, an implied barrier exists at the end of the7
worksharing region, unless a nowait clause is specified. If a nowait clause is present, an8
implementation may omit the barrier at the end of the worksharing region. In this case, threads that9
finish early may proceed straight to the instructions following the worksharing region without10
waiting for the other members of the team to finish the worksharing region, and without performing11
a flush operation.12

The OpenMP API defines the following worksharing constructs, and these are described in the13
sections that follow:14

• loop construct15

• sections construct16

• single construct17

• workshare construct18

Restrictions19

The following restrictions apply to worksharing constructs:20

• Each worksharing region must be encountered by all threads in a team or by none at all, unless21
cancellation has been requested for the innermost enclosing parallel region.22

• The sequence of worksharing regions and barrier regions encountered must be the same for23
every thread in a team24

CHAPTER 2. DIRECTIVES 61

2.7.1 Loop Construct1

Summary2

The loop construct specifies that the iterations of one or more associated loops will be executed in3
parallel by threads in the team in the context of their implicit tasks. The iterations are distributed4
across threads that already exist in the team executing the parallel region to which the loop5
region binds.6

Syntax7

C / C++

The syntax of the loop construct is as follows:8

#pragma omp for [clause[[,] clause] ...] new-line
for-loops

where clause is one of the following:9

private(list)10

firstprivate(list)11

lastprivate([lastprivate-modifier:] list)12

linear(list[: linear-step])13

reduction(reduction-identifier : list)14

schedule([modifier [, modifier]:]kind[, chunk_size])15

collapse(n)16

ordered[(n)]17

nowait18

The for directive places restrictions on the structure of all associated for-loops. Specifically, all19
associated for-loops must have canonical loop form (see Section 2.6 on page 58).20

C / C++

62 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

The syntax of the loop construct is as follows:1

!$omp do [clause[[,] clause] ...]
do-loops

[!$omp end do [nowait]]

where clause is one of the following:2

private(list)3

firstprivate(list)4

lastprivate([lastprivate-modifier:] list)5

linear(list[: linear-step])6

reduction(reduction-identifier : list)7

schedule([modifier [, modifier]:]kind[, chunk_size])8

collapse(n)9

ordered[(n)]10

If an end do directive is not specified, an end do directive is assumed at the end of the do-loops.11

Any associated do-loop must be a do-construct or an inner-shared-do-construct as defined by the12
Fortran standard. If an end do directive follows a do-construct in which several loop statements13
share a DO termination statement, then the directive can only be specified for the outermost of these14
DO statements.15

If any of the loop iteration variables would otherwise be shared, they are implicitly made private on16
the loop construct.17

Fortran

Binding18

The binding thread set for a loop region is the current team. A loop region binds to the innermost19
enclosing parallel region. Only the threads of the team executing the binding parallel20
region participate in the execution of the loop iterations and the implied barrier of the loop region if21
the barrier is not eliminated by a nowait clause.22

CHAPTER 2. DIRECTIVES 63

Description1

The loop construct is associated with a loop nest consisting of one or more loops that follow the2
directive.3

There is an implicit barrier at the end of a loop construct unless a nowait clause is specified.4

The collapse clause may be used to specify how many loops are associated with the loop5
construct. The parameter of the collapse clause must be a constant positive integer expression.6
If a collapse clause is specified with a parameter value greater than 1, then the iterations of the7
associated loops to which the clause applies are collapsed into one larger iteration space that is then8
divided according to the schedule clause. The sequential execution of the iterations in these9
associated loops determines the order of the iterations in the collapsed iteration space. If no10
collapse clause is present or its parameter is 1, the only loop that is associated with the loop11
construct for the purposes of determining how the iteration space is divided according to the12
schedule clause is the one that immediately follows the loop directive.13

The iteration count for each associated loop is computed before entry to the outermost loop. If14
execution of any associated loop changes any of the values used to compute any of the iteration15
counts, then the behavior is unspecified.16

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is17
implementation defined.18

A worksharing loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop19
iterations, and the logical numbering denotes the sequence in which the iterations would be20
executed if a set of associated loop(s) were executed sequentially. The schedule clause specifies21
how iterations of these associated loops are divided into contiguous non-empty subsets, called22
chunks, and how these chunks are distributed among threads of the team. Each thread executes its23
assigned chunk(s) in the context of its implicit task. The iterations of a given chunk are executed in24
sequential order by the assigned thread. The chunk_size expression is evaluated using the original25
list items of any variables that are made private in the loop construct. It is unspecified whether, in26
what order, or how many times, any side effects of the evaluation of this expression occur. The use27
of a variable in a schedule clause expression of a loop construct causes an implicit reference to28
the variable in all enclosing constructs.29

Different loop regions with the same schedule and iteration count, even if they occur in the same30
parallel region, can distribute iterations among threads differently. The only exception is for the31
static schedule as specified in Table 2.5. Programs that depend on which thread executes a32
particular iteration under any other circumstances are non-conforming.33

See Section 2.7.1.1 on page 70 for details of how the schedule for a worksharing loop is determined.34

The schedule kind can be one of those specified in Table 2.5.35

The schedule modifier can be one of those specified in Table 2.6. If the static schedule kind is36
specified or if the ordered clause is specified, and if the nonmonotonic modifier is not37

64 OpenMP API – Version 5.0 rev 1, November 2016

specified, the effect is as if the monotonic modifier is specified. Otherwise, unless the1
monotonic modifier is specified, the effect is as if the nonmonotonic modifier is specified.2

The ordered clause with the parameter may also be used to specify how many loops are3
associated with the loop construct. The parameter of the ordered clause must be a constant4
positive integer expression if specified. The parameter of the ordered clause does not affect how5
the logical iteration space is then divided. If an ordered clause with the parameter is specified for6
the loop construct, then those associated loops form a doacross loop nest.7

If the value of the parameter in the collapse or ordered clause is larger than the number of8
nested loops following the construct, the behavior is unspecified.9

TABLE 2.5: schedule Clause kind Values10

static When schedule(static, chunk_size) is specified, iterations are
divided into chunks of size chunk_size, and the chunks are assigned to
the threads in the team in a round-robin fashion in the order of the thread
number.

When no chunk_size is specified, the iteration space is divided into chunks
that are approximately equal in size, and at most one chunk is distributed to
each thread. The size of the chunks is unspecified in this case.

A compliant implementation of the static schedule must ensure that
the same assignment of logical iteration numbers to threads will be used
in two loop regions if the following conditions are satisfied: 1) both loop
regions have the same number of loop iterations, 2) both loop regions
have the same value of chunk_size specified, or both loop regions have no
chunk_size specified, 3) both loop regions bind to the same parallel region,
and 4) neither loop is associated with a SIMD construct. A data dependence
between the same logical iterations in two such loops is guaranteed to be
satisfied allowing safe use of the nowait clause.

table continued on next page

11

CHAPTER 2. DIRECTIVES 65

table continued from previous page

dynamic
When schedule(dynamic, chunk_size) is specified, the iterations are
distributed to threads in the team in chunks. Each thread executes a chunk
of iterations, then requests another chunk, until no chunks remain to be
distributed.

Each chunk contains chunk_size iterations, except for the chunk that contains
the sequentially last iteration, which may have fewer iterations.

When no chunk_size is specified, it defaults to 1.

guided
When schedule(guided, chunk_size) is specified, the iterations are
assigned to threads in the team in chunks. Each thread executes a chunk
of iterations, then requests another chunk, until no chunks remain to be
assigned.

For a chunk_size of 1, the size of each chunk is proportional to the number
of unassigned iterations divided by the number of threads in the team,
decreasing to 1. For a chunk_size with value k (greater than 1), the size
of each chunk is determined in the same way, with the restriction that
the chunks do not contain fewer than k iterations (except for the chunk
that contains the sequentially last iteration, which may have fewer than k
iterations).

When no chunk_size is specified, it defaults to 1.

auto When schedule(auto) is specified, the decision regarding scheduling is
delegated to the compiler and/or runtime system. The programmer gives the
implementation the freedom to choose any possible mapping of iterations to
threads in the team.

runtime When schedule(runtime) is specified, the decision regarding
scheduling is deferred until run time, and the schedule and chunk size are
taken from the run-sched-var ICV. If the ICV is set to auto, the schedule is
implementation defined.

1

Note – For a team of p threads and a loop of n iterations, let ddn/pee be the integer q that satisfies2
n = p ∗ q − r, with 0 <= r < p. One compliant implementation of the static schedule (with no3
specified chunk_size) would behave as though chunk_size had been specified with value q. Another4
compliant implementation would assign q iterations to the first p− r threads, and q− 1 iterations to5
the remaining r threads. This illustrates why a conforming program must not rely on the details of a6
particular implementation.7

66 OpenMP API – Version 5.0 rev 1, November 2016

A compliant implementation of the guided schedule with a chunk_size value of k would assign1
q = ddn/pee iterations to the first available thread and set n to the larger of n− q and p ∗ k. It would2
then repeat this process until q is greater than or equal to the number of remaining iterations, at3
which time the remaining iterations form the final chunk. Another compliant implementation could4
use the same method, except with q = ddn/(2p)ee, and set n to the larger of n− q and 2 ∗ p ∗ k.5

TABLE 2.6: schedule Clause modifier Values6

monotonic When the monotonic modifier is specified then each thread executes
the chunks that it is assigned in increasing logical iteration order.

nonmonotonic When the nonmonotonic modifier is specified then chunks are
assigned to threads in any order and the behavior of an application that
depends on any execution order of the chunks is unspecified.

simd When the simd modifier is specified and the loop is associated with
a SIMD construct, the chunk_size for all chunks except the first and
last chunks is new_chunk_size = ddchunk_size/simd_widthee ∗
simd_width where simd_width is an implementation-defined value.
The first chunk will have at least new_chunk_size iterations except if
it is also the last chunk. The last chunk may have fewer iterations than
new_chunk_size. If the simd modifier is specified and the loop is not
associated with a SIMD construct, the modifier is ignored.

7

Events8

The loop-begin event occurs after an implicit task encounters a loop construct but before the task9
starts the execution of the structured block of the loop region.10

The loop-end event occurs after a loop region finishes execution but before resuming execution of11
the encountering task.12

Tool Callbacks13

A thread dispatches a registered ompt_callback_work callback for each occurrence of a14
loop-begin and loop-end event in that thread. The callback occurs in the context of the implicit15
task. The callback has type signature ompt_callback_work_t. The callback receives16
ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate, and17
ompt_work_loop as its wstype argument.18

CHAPTER 2. DIRECTIVES 67

Restrictions1

Restrictions to the loop construct are as follows:2

• All loops associated with the loop construct must be perfectly nested; that is, there must be no3
intervening code nor any OpenMP directive between any two loops.4

• The values of the loop control expressions of the loops associated with the loop construct must5
be the same for all threads in the team.6

• Only one schedule clause can appear on a loop directive.7

• Only one collapse clause can appear on a loop directive.8

• chunk_size must be a loop invariant integer expression with a positive value.9

• The value of the chunk_size expression must be the same for all threads in the team.10

• The value of the run-sched-var ICV must be the same for all threads in the team.11

• When schedule(runtime) or schedule(auto) is specified, chunk_size must not be12
specified.13

• A modifier may not be specified on a linear clause.14

• Only one ordered clause can appear on a loop directive.15

• The ordered clause must be present on the loop construct if any ordered region ever binds16
to a loop region arising from the loop construct.17

• The nonmonotonic modifier cannot be specified if an ordered clause is specified.18

• Either the monotonic modifier or the nonmonotonic modifier can be specified but not both.19

• The loop iteration variable may not appear in a threadprivate directive.20

• If both the collapse and ordered clause with a parameter are specified, the parameter of the21
ordered clause must be greater than or equal to the parameter of the collapse clause.22

• A linear clause or an ordered clause with a parameter can be specified on a loop directive23
but not both.24

68 OpenMP API – Version 5.0 rev 1, November 2016

C / C++

• The associated for-loops must be structured blocks.1

• Only an iteration of the innermost associated loop may be curtailed by a continue statement.2

• No statement can branch to any associated for statement.3

• Only one nowait clause can appear on a for directive.4

• A throw executed inside a loop region must cause execution to resume within the same iteration5
of the loop region, and the same thread that threw the exception must catch it.6

C / C++
Fortran

• The associated do-loops must be structured blocks.7

• Only an iteration of the innermost associated loop may be curtailed by a CYCLE statement.8

• No statement in the associated loops other than the DO statements can cause a branch out of the9
loops.10

• The do-loop iteration variable must be of type integer.11

• The do-loop cannot be a DO WHILE or a DO loop without loop control.12

Fortran

Cross References13

• private, firstprivate, lastprivate, linear, and reduction clauses, see14
Section 2.15.3 on page 215.15

• OMP_SCHEDULE environment variable, see Section 5.1 on page 434.16

• ordered construct, see Section 2.13.9 on page 190.17

• depend clause, see Section 2.13.10 on page 194.18

• ompt_scope_begin and ompt_scope_end, see Section 4.4.6.11 on page 356.19

• ompt_work_loop, see Section 4.4.6.14 on page 357.20

• ompt_callback_work_t, see Section 4.6.2.18 on page 385.21

CHAPTER 2. DIRECTIVES 69

2.7.1.1 Determining the Schedule of a Worksharing Loop1

When execution encounters a loop directive, the schedule clause (if any) on the directive, and2
the run-sched-var and def-sched-var ICVs are used to determine how loop iterations are assigned3
to threads. See Section 2.3 on page 39 for details of how the values of the ICVs are determined. If4
the loop directive does not have a schedule clause then the current value of the def-sched-var5
ICV determines the schedule. If the loop directive has a schedule clause that specifies the6
runtime schedule kind then the current value of the run-sched-var ICV determines the schedule.7
Otherwise, the value of the schedule clause determines the schedule. Figure 2.1 describes how8
the schedule for a worksharing loop is determined.9

Cross References10

• ICVs, see Section 2.3 on page 3911

START

schedule
clause present?

schedule
kind value is
runtime?

Use def-sched-var schedule kind

Use schedule kind specified in
schedule clause

Use run-sched-var schedule kind

No

Yes

No

Yes

FIGURE 2.1: Determining the schedule for a Worksharing Loop

70 OpenMP API – Version 5.0 rev 1, November 2016

2.7.2 sections Construct1

Summary2

The sections construct is a non-iterative worksharing construct that contains a set of structured3
blocks that are to be distributed among and executed by the threads in a team. Each structured4
block is executed once by one of the threads in the team in the context of its implicit task.5

Syntax6

C / C++

The syntax of the sections construct is as follows:7

#pragma omp sections [clause[[,] clause] ...] new-line
{
[#pragma omp section new-line]

structured-block
[#pragma omp section new-line

structured-block]
...
}

where clause is one of the following:8

private(list)9

firstprivate(list)10

lastprivate([lastprivate-modifier:] list)11

reduction(reduction-identifier : list)12

nowait13

C / C++

CHAPTER 2. DIRECTIVES 71

Fortran

The syntax of the sections construct is as follows:1

!$omp sections [clause[[,] clause] ...]
[!$omp section]

structured-block
[!$omp section

structured-block]
...

!$omp end sections [nowait]

where clause is one of the following:2

private(list)3

firstprivate(list)4

lastprivate([lastprivate-modifier:] list)5

reduction(reduction-identifier : list)6

Fortran

Binding7

The binding thread set for a sections region is the current team. A sections region binds to8
the innermost enclosing parallel region. Only the threads of the team executing the binding9
parallel region participate in the execution of the structured blocks and the implied barrier of10
the sections region if the barrier is not eliminated by a nowait clause.11

Description12

Each structured block in the sections construct is preceded by a section directive except13
possibly the first block, for which a preceding section directive is optional.14

The method of scheduling the structured blocks among the threads in the team is implementation15
defined.16

There is an implicit barrier at the end of a sections construct unless a nowait clause is17
specified.18

72 OpenMP API – Version 5.0 rev 1, November 2016

Events1

The sections-begin event occurs after an implicit task encounters a sections construct but before2
the task starts the execution of the structured block of the sections region.3

The sections-end event occurs after a sections region finishes execution but before resuming4
execution of the encountering task.5

Tool Callbacks6

A thread dispatches a registered ompt_callback_work callback for each occurrence of a7
sections-begin and sections-end event in that thread. The callback occurs in the context of the8
implicit task. The callback has type signature ompt_callback_work_t. The callback receives9
ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate, and10
ompt_work_sections as its wstype argument.11

Restrictions12

Restrictions to the sections construct are as follows:13

• Orphaned section directives are prohibited. That is, the section directives must appear14
within the sections construct and must not be encountered elsewhere in the sections15
region.16

• The code enclosed in a sections construct must be a structured block.17

• Only a single nowait clause can appear on a sections directive.18

C++
• A throw executed inside a sections region must cause execution to resume within the same19
section of the sections region, and the same thread that threw the exception must catch it.20

C++

Cross References21

• private, firstprivate, lastprivate, and reduction clauses, see Section 2.15.3 on22
page 215.23

• ompt_scope_begin and ompt_scope_end, see Section 4.4.6.11 on page 356.24

• ompt_work_sections, see Section 4.4.6.14 on page 357.25

• ompt_callback_work_t, see Section 4.6.2.18 on page 385.26

CHAPTER 2. DIRECTIVES 73

2.7.3 single Construct1

Summary2

The single construct specifies that the associated structured block is executed by only one of the3
threads in the team (not necessarily the master thread), in the context of its implicit task. The other4
threads in the team, which do not execute the block, wait at an implicit barrier at the end of the5
single construct unless a nowait clause is specified.6

Syntax

C / C++
7

The syntax of the single construct is as follows:8

#pragma omp single [clause[[,] clause] ...] new-line
structured-block

where clause is one of the following:9

private(list)10

firstprivate(list)11

copyprivate(list)12

nowait13

C / C++
Fortran

The syntax of the single construct is as follows:14

!$omp single [clause[[,] clause] ...]
structured-block

!$omp end single [end_clause[[,] end_clause] ...]

where clause is one of the following:15

private(list)16

firstprivate(list)17

and end_clause is one of the following:18

copyprivate(list)19

nowait20

Fortran

74 OpenMP API – Version 5.0 rev 1, November 2016

Binding1

The binding thread set for a single region is the current team. A single region binds to the2
innermost enclosing parallel region. Only the threads of the team executing the binding3
parallel region participate in the execution of the structured block and the implied barrier of the4
single region if the barrier is not eliminated by a nowait clause.5

Description6

The method of choosing a thread to execute the structured block is implementation defined. There7
is an implicit barrier at the end of the single construct unless a nowait clause is specified.8

Events9

The single-begin event occurs after an implicit task encounters a single construct but10
before the task starts the execution of the structured block of the single region.11

The single-end event occurs after a single region finishes execution of the structured block but12
before resuming execution of the encountering implicit task.13

Tool Callbacks14

A thread dispatches a registered ompt_callback_work callback for each occurrence of15
single-begin and single-end events in that thread. The callback has type signature16
ompt_callback_work_t. The callback receives ompt_scope_begin or17
ompt_scope_end as its endpoint argument, as appropriate, and18
ompt_work_single_executor or ompt_work_single_other as its wstype argument.19

Restrictions20

Restrictions to the single construct are as follows:21

• The copyprivate clause must not be used with the nowait clause.22

• At most one nowait clause can appear on a single construct.23

C++
• A throw executed inside a single region must cause execution to resume within the same24
single region, and the same thread that threw the exception must catch it.25

C++

CHAPTER 2. DIRECTIVES 75

Cross References1

• private and firstprivate clauses, see Section 2.15.3 on page 215.2

• copyprivate clause, see Section 2.15.5.2 on page 242.3

• ompt_scope_begin and ompt_scope_end, see Section 4.4.6.11 on page 356.4

• ompt_work_single_executor and ompt_work_single_other, see Section 4.4.6.145
on page 357.6

• ompt_callback_work_t, Section 4.6.2.18 on page 385.7

Fortran

2.7.4 workshare Construct8

Summary9

The workshare construct divides the execution of the enclosed structured block into separate10
units of work, and causes the threads of the team to share the work such that each unit is executed11
only once by one thread, in the context of its implicit task.12

Syntax13

The syntax of the workshare construct is as follows:14

!$omp workshare
structured-block

!$omp end workshare [nowait]

The enclosed structured block must consist of only the following:15

• array assignments16

• scalar assignments17

• FORALL statements18

• FORALL constructs19

• WHERE statements20

• WHERE constructs21

• atomic constructs22

• critical constructs23

76 OpenMP API – Version 5.0 rev 1, November 2016

Fortran (cont.)

• parallel constructs1

Statements contained in any enclosed critical construct are also subject to these restrictions.2
Statements in any enclosed parallel construct are not restricted.3

Binding4

The binding thread set for a workshare region is the current team. A workshare region binds5
to the innermost enclosing parallel region. Only the threads of the team executing the binding6
parallel region participate in the execution of the units of work and the implied barrier of the7
workshare region if the barrier is not eliminated by a nowait clause.8

Description9

There is an implicit barrier at the end of a workshare construct unless a nowait clause is10
specified.11

An implementation of the workshare construct must insert any synchronization that is required12
to maintain standard Fortran semantics. For example, the effects of one statement within the13
structured block must appear to occur before the execution of succeeding statements, and the14
evaluation of the right hand side of an assignment must appear to complete prior to the effects of15
assigning to the left hand side.16

The statements in the workshare construct are divided into units of work as follows:17

• For array expressions within each statement, including transformational array intrinsic functions18
that compute scalar values from arrays:19

– Evaluation of each element of the array expression, including any references to ELEMENTAL20
functions, is a unit of work.21

– Evaluation of transformational array intrinsic functions may be freely subdivided into any22
number of units of work.23

• For an array assignment statement, the assignment of each element is a unit of work.24

• For a scalar assignment statement, the assignment operation is a unit of work.25

• For a WHERE statement or construct, the evaluation of the mask expression and the masked26
assignments are each a unit of work.27

• For a FORALL statement or construct, the evaluation of the mask expression, expressions28
occurring in the specification of the iteration space, and the masked assignments are each a unit29
of work30

CHAPTER 2. DIRECTIVES 77

• For an atomic construct, the atomic operation on the storage location designated as x is a unit1
of work.2

• For a critical construct, the construct is a single unit of work.3

• For a parallel construct, the construct is a unit of work with respect to the workshare4
construct. The statements contained in the parallel construct are executed by a new thread5
team.6

• If none of the rules above apply to a portion of a statement in the structured block, then that7
portion is a unit of work.8

The transformational array intrinsic functions are MATMUL, DOT_PRODUCT, SUM, PRODUCT,9
MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD, PACK, UNPACK, RESHAPE, TRANSPOSE,10
EOSHIFT, CSHIFT, MINLOC, and MAXLOC.11

It is unspecified how the units of work are assigned to the threads executing a workshare region.12

If an array expression in the block references the value, association status, or allocation status of13
private variables, the value of the expression is undefined, unless the same value would be14
computed by every thread.15

If an array assignment, a scalar assignment, a masked array assignment, or a FORALL assignment16
assigns to a private variable in the block, the result is unspecified.17

The workshare directive causes the sharing of work to occur only in the workshare construct,18
and not in the remainder of the workshare region.19

Events20

The workshare-begin event occurs after an implicit task encounters a workshare construct but21
before the task starts the execution of the structured block of the workshare region.22

The workshare-end event occurs after a workshare region finishes execution but before resuming23
execution of the encountering task.24

Tool Callbacks25

A thread dispatches a registered ompt_callback_work callback for each occurrence of a26
workshare-begin and workshare-end event in that thread. The callback occurs in the context of the27
implicit task. The callback has type signature ompt_callback_work_t. The callback receives28
ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate, and29

78 OpenMP API – Version 5.0 rev 1, November 2016

ompt_work_workshare as its wstype argument.1

Restrictions2

The following restrictions apply to the workshare construct:3

• All array assignments, scalar assignments, and masked array assignments must be intrinsic4
assignments.5

• The construct must not contain any user defined function calls unless the function is6
ELEMENTAL.7

Fortran

Cross References8

• ompt_scope_begin and ompt_scope_end, see Section 4.4.6.11 on page 356.9

• ompt_work_workshare, see Section 4.4.6.14 on page 357.10

• ompt_callback_work_t, see Section 4.6.2.18 on page 385.11

CHAPTER 2. DIRECTIVES 79

2.8 SIMD Constructs1

2.8.1 simd Construct2

Summary3

The simd construct can be applied to a loop to indicate that the loop can be transformed into a4
SIMD loop (that is, multiple iterations of the loop can be executed concurrently using SIMD5
instructions).6

Syntax7

The syntax of the simd construct is as follows:8

C / C++

#pragma omp simd [clause[[,] clause] ...] new-line
for-loops

where clause is one of the following:9

safelen(length)10

simdlen(length)11

linear(list[: linear-step])12

aligned(list[: alignment])13

private(list)14

lastprivate([lastprivate-modifier:] list)15

reduction(reduction-identifier : list)16

collapse(n)17

The simd directive places restrictions on the structure of the associated for-loops. Specifically, all18
associated for-loops must have canonical loop form (Section 2.6 on page 58).19

C / C++

80 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

!$omp simd [clause[[,] clause ...]
do-loops

[!$omp end simd]

where clause is one of the following:1

safelen(length)2

simdlen(length)3

linear(list[: linear-step])4

aligned(list[: alignment])5

private(list)6

lastprivate([lastprivate-modifier:] list)7

reduction(reduction-identifier : list)8

collapse(n)9

If an end simd directive is not specified, an end simd directive is assumed at the end of the10
do-loops.11

Any associated do-loop must be a do-construct or an inner-shared-do-construct as defined by the12
Fortran standard. If an end simd directive follows a do-construct in which several loop statements13
share a DO termination statement, then the directive can only be specified for the outermost of these14
DO statements.15

Fortran

Binding16

A simd region binds to the current task region. The binding thread set of the simd region is the17
current team.18

CHAPTER 2. DIRECTIVES 81

Description1

The simd construct enables the execution of multiple iterations of the associated loops2
concurrently by means of SIMD instructions.3

The collapse clause may be used to specify how many loops are associated with the construct.4
The parameter of the collapse clause must be a constant positive integer expression. If no5
collapse clause is present, the only loop that is associated with the loop construct is the one that6
immediately follows the directive.7

If more than one loop is associated with the simd construct, then the iterations of all associated8
loops are collapsed into one larger iteration space that is then executed with SIMD instructions.9
The sequential execution of the iterations in all associated loops determines the order of the10
iterations in the collapsed iteration space.11

The iteration count for each associated loop is computed before entry to the outermost loop. If12
execution of any associated loop changes any of the values used to compute any of the iteration13
counts, then the behavior is unspecified.14

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is15
implementation defined.16

A SIMD loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop iterations,17
and the logical numbering denotes the sequence in which the iterations would be executed if the18
associated loop(s) were executed with no SIMD instructions. If the safelen clause is used then19
no two iterations executed concurrently with SIMD instructions can have a greater distance in the20
logical iteration space than its value. The parameter of the safelen clause must be a constant21
positive integer expression. If used, the simdlen clause specifies the preferred number of22
iterations to be executed concurrently. The parameter of the simdlen clause must be a constant23
positive integer. The number of iterations that are executed concurrently at any given time is24
implementation defined. Each concurrent iteration will be executed by a different SIMD lane. Each25
set of concurrent iterations is a SIMD chunk. Lexical forward dependencies in the iterations of the26
original loop must be preserved within each SIMD chunk.27

C / C++
The aligned clause declares that the object to which each list item points is aligned to the28
number of bytes expressed in the optional parameter of the aligned clause.29

C / C++
Fortran

The aligned clause declares that the location of each list item is aligned to the number of bytes30
expressed in the optional parameter of the aligned clause.31

Fortran
The optional parameter of the aligned clause, alignment, must be a constant positive integer32
expression. If no optional parameter is specified, implementation-defined default alignments for33
SIMD instructions on the target platforms are assumed.34

82 OpenMP API – Version 5.0 rev 1, November 2016

Restrictions1

• All loops associated with the construct must be perfectly nested; that is, there must be no2
intervening code nor any OpenMP directive between any two loops.3

• The associated loops must be structured blocks.4

• A program that branches into or out of a simd region is non-conforming.5

• Only one collapse clause can appear on a simd directive.6

• A list-item cannot appear in more than one aligned clause.7

• Only one safelen clause can appear on a simd directive.8

• Only one simdlen clause can appear on a simd directive.9

• If both simdlen and safelen clauses are specified, the value of the simdlen parameter10
must be less than or equal to the value of the safelen parameter.11

• A modifier may not be specified on a linear clause.12

• An ordered construct with the simd clause is the only OpenMP construct that can be13
encountered during execution of a simd region.14

C / C++

• The simd region cannot contain calls to the longjmp or setjmp functions.15

C / C++

C
• The type of list items appearing in the aligned clause must be array or pointer.16

C

C++
• The type of list items appearing in the aligned clause must be array, pointer, reference to17
array, or reference to pointer.18

• No exception can be raised in the simd region.19

C++

CHAPTER 2. DIRECTIVES 83

Fortran

• The do-loop iteration variable must be of type integer.1

• The do-loop cannot be a DO WHILE or a DO loop without loop control.2

• If a list item on the aligned clause has the ALLOCATABLE attribute, the allocation status must3
be allocated.4

• If a list item on the aligned clause has the POINTER attribute, the association status must be5
associated.6

• If the type of a list item on the aligned clause is either C_PTR or Cray pointer, the list item7
must be defined.8

Fortran

Cross References9

• private, lastprivate, linear and reduction clauses, see Section 2.15.3 on page 215.10

2.8.2 declare simd Construct11

Summary12

The declare simd construct can be applied to a function (C, C++ and Fortran) or a subroutine13
(Fortran) to enable the creation of one or more versions that can process multiple arguments using14
SIMD instructions from a single invocation in a SIMD loop. The declare simd directive is a15
declarative directive. There may be multiple declare simd directives for a function (C, C++,16
Fortran) or subroutine (Fortran).17

Syntax18

The syntax of the declare simd construct is as follows:19

84 OpenMP API – Version 5.0 rev 1, November 2016

C / C++

#pragma omp declare simd [clause[[,] clause] ...] new-line
[#pragma omp declare simd [clause[[,] clause] ...] new-line]
[...]

function definition or declaration

where clause is one of the following:1

simdlen(length)2

linear(linear-list[: linear-step])3

aligned(argument-list[: alignment])4

uniform(argument-list)5

inbranch6

notinbranch7

C / C++
Fortran

!$omp declare simd [(proc-name)] [clause[[,] clause] ...]

where clause is one of the following:8

simdlen(length)9

linear(linear-list[: linear-step])10

aligned(argument-list[: alignment])11

uniform(argument-list)12

inbranch13

notinbranch14

Fortran

CHAPTER 2. DIRECTIVES 85

Description1

C / C++

The use of a declare simd construct on a function enables the creation of SIMD versions of the2
associated function that can be used to process multiple arguments from a single invocation in a3
SIMD loop concurrently.4

The expressions appearing in the clauses of this directive are evaluated in the scope of the5
arguments of the function declaration or definition.6

C / C++
Fortran

The use of a declare simd construct enables the creation of SIMD versions of the specified7
subroutine or function that can be used to process multiple arguments from a single invocation in a8
SIMD loop concurrently.9

Fortran

If a declare simd directive contains multiple SIMD declarations, each declaration enables the10
creation of SIMD versions.11

If a SIMD version is created, the number of concurrent arguments for the function is determined by12
the simdlen clause. If the simdlen clause is used its value corresponds to the number of13
concurrent arguments of the function. The parameter of the simdlen clause must be a constant14
positive integer expression. Otherwise, the number of concurrent arguments for the function is15
implementation defined.16

C++
The special this pointer can be used as if was one of the arguments to the function in any of the17
linear, aligned, or uniform clauses.18

C++

The uniform clause declares one or more arguments to have an invariant value for all concurrent19
invocations of the function in the execution of a single SIMD loop.20

C / C++

The aligned clause declares that the object to which each list item points is aligned to the21
number of bytes expressed in the optional parameter of the aligned clause.22

C / C++

86 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

The aligned clause declares that the target of each list item is aligned to the number of bytes1
expressed in the optional parameter of the aligned clause.2

Fortran

The optional parameter of the aligned clause, alignment, must be a constant positive integer3
expression. If no optional parameter is specified, implementation-defined default alignments for4
SIMD instructions on the target platforms are assumed.5

The inbranch clause specifies that the SIMD version of the function will always be called from6
inside a conditional statement of a SIMD loop. The notinbranch clause specifies that the SIMD7
version of the function will never be called from inside a conditional statement of a SIMD loop. If8
neither clause is specified, then the SIMD version of the function may or may not be called from9
inside a conditional statement of a SIMD loop.10

Restrictions11

• Each argument can appear in at most one uniform or linear clause.12

• At most one simdlen clause can appear in a declare simd directive.13

• Either inbranch or notinbranch may be specified, but not both.14

• When a linear-step expression is specified in a linear clause it must be either a constant integer15
expression or an integer-typed parameter that is specified in a uniform clause on the directive.16

• The function or subroutine body must be a structured block.17

• The execution of the function or subroutine, when called from a SIMD loop, cannot result in the18
execution of an OpenMP construct except for an ordered construct with the simd clause.19

• The execution of the function or subroutine cannot have any side effects that would alter its20
execution for concurrent iterations of a SIMD chunk.21

• A program that branches into or out of the function is non-conforming.22

C / C++

• If the function has any declarations, then the declare simd construct for any declaration that23
has one must be equivalent to the one specified for the definition. Otherwise, the result is24
unspecified.25

• The function cannot contain calls to the longjmp or setjmp functions.26

C / C++

CHAPTER 2. DIRECTIVES 87

C
• The type of list items appearing in the aligned clause must be array or pointer.1

C

C++
• The function cannot contain any calls to throw.2

• The type of list items appearing in the aligned clause must be array, pointer, reference to3
array, or reference to pointer.4

C++

Fortran

• proc-name must not be a generic name, procedure pointer or entry name.5

• If proc-name is omitted, the declare simd directive must appear in the specification part of a6
subroutine subprogram or a function subprogram for which creation of the SIMD versions is7
enabled.8

• Any declare simd directive must appear in the specification part of a subroutine subprogram,9
function subprogram or interface body to which it applies.10

• If a declare simd directive is specified in an interface block for a procedure, it must match a11
declare simd directive in the definition of the procedure.12

• If a procedure is declared via a procedure declaration statement, the procedure proc-name should13
appear in the same specification.14

• If a declare simd directive is specified for a procedure name with explicit interface and a15
declare simd directive is also specified for the definition of the procedure then the two16
declare simd directives must match. Otherwise the result is unspecified.17

• Procedure pointers may not be used to access versions created by the declare simd directive.18

• The type of list items appearing in the aligned clause must be C_PTR or Cray pointer, or the19
list item must have the POINTER or ALLOCATABLE attribute.20

Fortran

88 OpenMP API – Version 5.0 rev 1, November 2016

Cross References1

• reduction clause, see Section 2.15.4.4 on page 236.2

• linear clause, see Section 2.15.3.6 on page 228.3

2.8.3 Loop SIMD Construct4

Summary5

The loop SIMD construct specifies that the iterations of one or more associated loops will be6
distributed across threads that already exist in the team and that the iterations executed by each7
thread can also be executed concurrently using SIMD instructions. The loop SIMD construct is a8
composite construct.9

Syntax10

C / C++

#pragma omp for simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the for or simd directives with identical11
meanings and restrictions.12

C / C++
Fortran

!$omp do simd [clause[[,] clause] ...]
do-loops

[!$omp end do simd [nowait]]

where clause can be any of the clauses accepted by the simd or do directives, with identical13
meanings and restrictions.14

If an end do simd directive is not specified, an end do simd directive is assumed at the end of15
the do-loops.16

Fortran

CHAPTER 2. DIRECTIVES 89

Description1

The loop SIMD construct will first distribute the iterations of the associated loop(s) across the2
implicit tasks of the parallel region in a manner consistent with any clauses that apply to the loop3
construct. The resulting chunks of iterations will then be converted to a SIMD loop in a manner4
consistent with any clauses that apply to the simd construct. The effect of any clause that applies5
to both constructs is as if it were applied to both constructs separately except the collapse6
clause, which is applied once.7

Events8

This composite construct generates the same events as the loop construct.9

Tool Callbacks10

This composite construct dispatches the same callbacks as the loop construct.11

Restrictions12

All restrictions to the loop construct and the simd construct apply to the loop SIMD construct. In13
addition, the following restrictions apply:14

• No ordered clause with a parameter can be specified.15

• A list item may appear in a linear or firstprivate clause but not both.16

Cross References17

• loop construct, see Section 2.7.1 on page 62.18

• simd construct, see Section 2.8.1 on page 80.19

• Data attribute clauses, see Section 2.15.3 on page 215.20

• Events and tool callbacks for the loop construct, see Section 2.7.1 on page 62.21

90 OpenMP API – Version 5.0 rev 1, November 2016

2.9 Tasking Constructs1

2.9.1 task Construct2

Summary3

The task construct defines an explicit task.4

Syntax5

C / C++

The syntax of the task construct is as follows:6

#pragma omp task [clause[[,] clause] ...] new-line
structured-block

where clause is one of the following:7

if([task :] scalar-expression)8

final(scalar-expression)9

untied10

default(shared | none)11

mergeable12

private(list)13

firstprivate(list)14

shared(list)15

in_reduction(reduction-identifier : list)16

depend(dependence-type : locator-list)17

priority(priority-value)18

C / C++

CHAPTER 2. DIRECTIVES 91

Fortran

The syntax of the task construct is as follows:1

!$omp task [clause[[,] clause] ...]
structured-block

!$omp end task

where clause is one of the following:2

if([task :] scalar-logical-expression)3

final(scalar-logical-expression)4

untied5

default(private | firstprivate | shared | none)6

mergeable7

private(list)8

firstprivate(list)9

shared(list)10

in_reduction(reduction-identifier : list)11

depend(dependence-type : locator-list)12

priority(priority-value)13

Fortran

Binding14

The binding thread set of the task region is the current team. A task region binds to the15
innermost enclosing parallel region.16

92 OpenMP API – Version 5.0 rev 1, November 2016

Description1

The task construct is a task generating construct. When a thread encounters a task construct, an2
explicit task is generated from the code for the associated structured block. The data environment3
of the task is created according to the data-sharing attribute clauses on the task construct, per-data4
environment ICVs, and any defaults that apply.5

The encountering thread may immediately execute the task, or defer its execution. In the latter case,6
any thread in the team may be assigned the task. Completion of the task can be guaranteed using7
task synchronization constructs. If a task construct is encountered during execution of an outer8
task, the generated task region associated with this construct is not a part of the outer task region9
unless the generated task is an included task.10

When an if clause is present on a task construct, and the if clause expression evaluates to false,11
an undeferred task is generated, and the encountering thread must suspend the current task region,12
for which execution cannot be resumed until the generated task is completed. The use of a variable13
in an if clause expression of a task construct causes an implicit reference to the variable in all14
enclosing constructs.15

When a final clause is present on a task construct and the final clause expression evaluates16
to true, the generated task will be a final task. All task constructs encountered during execution of17
a final task will generate final and included tasks. Note that the use of a variable in a final clause18
expression of a task construct causes an implicit reference to the variable in all enclosing19
constructs.20

The if clause expression and the final clause expression are evaluated in the context outside of21
the task construct, and no ordering of those evaluations is specified.22

A thread that encounters a task scheduling point within the task region may temporarily suspend23
the task region. By default, a task is tied and its suspended task region can only be resumed by24
the thread that started its execution. If the untied clause is present on a task construct, any25
thread in the team can resume the task region after a suspension. The untied clause is ignored26
if a final clause is present on the same task construct and the final clause expression27
evaluates to true, or if a task is an included task.28

The task construct includes a task scheduling point in the task region of its generating task,29
immediately following the generation of the explicit task. Each explicit task region includes a30
task scheduling point at its point of completion.31

When the mergeable clause is present on a task construct, the generated task is a mergeable32
task.33

The priority clause is a hint for the priority of the generated task. The priority-value is a34
non-negative integer expression that provides a hint for task execution order. Among all tasks ready35
to be executed, higher priority tasks (those with a higher numerical value in the priority clause36
expression) are recommended to execute before lower priority ones. The default priority-value37
when no priority clause is specified is zero (the lowest priority). If a value is specified in the38
priority clause that is higher than the max-task-priority-var ICV then the implementation will39

CHAPTER 2. DIRECTIVES 93

use the value of that ICV. A program that relies on task execution order being determined by this1
priority-value may have unspecified behavior.2

Note – When storage is shared by an explicit task region, the programmer must ensure, by adding3
proper synchronization, that the storage does not reach the end of its lifetime before the explicit4
task region completes its execution.5

Events6

The task-create event occurs when a thread encounters a construct that causes a new explicit,7
non-merged task to be created. The event occurs after the task is initialized but before it begins8
execution or is deferred.9

Tool Callbacks10

A thread dispatches a registered ompt_callback_task_create callback for each occurrence11
of a task-create event in the context of the encountering task. This callback has the type signature12
ompt_callback_task_create_t.13

Restrictions14

Restrictions to the task construct are as follows:15

• A program that branches into or out of a task region is non-conforming.16

• A program must not depend on any ordering of the evaluations of the clauses of the task17
directive, or on any side effects of the evaluations of the clauses.18

• At most one if clause can appear on the directive.19

• At most one final clause can appear on the directive.20

• At most one priority clause can appear on the directive.21

C / C++

• A throw executed inside a task region must cause execution to resume within the same task22
region, and the same thread that threw the exception must catch it.23

C / C++
Fortran

• Unsynchronized use of Fortran I/O statements by multiple tasks on the same unit has unspecified24
behavior25

Fortran

94 OpenMP API – Version 5.0 rev 1, November 2016

Cross References1

• Task scheduling constraints, see Section 2.9.6 on page 104.2

• depend clause, see Section 2.13.10 on page 194.3

• if Clause, see Section 2.12 on page 164.4

• Data-sharing attribute clauses, Section 2.15.3 on page 215.5

• ompt_callback_task_create_t, see Section 4.6.2.7 on page 373.6

2.9.2 taskloop Construct7

Summary8

The taskloop construct specifies that the iterations of one or more associated loops will be9
executed in parallel using explicit tasks. The iterations are distributed across tasks generated by the10
construct and scheduled to be executed.11

Syntax12

C / C++

The syntax of the taskloop construct is as follows:13

#pragma omp taskloop [clause[[,] clause] ...] new-line
for-loops

where clause is one of the following:14

if([taskloop :] scalar-expr)15

shared(list)16

private(list)17

firstprivate(list)18

lastprivate(list)19

reduction(reduction-identifier : list)20

in_reduction(reduction-identifier : list)21

default(shared | none)22

grainsize(grain-size)23

CHAPTER 2. DIRECTIVES 95

num_tasks(num-tasks)1

collapse(n)2

final(scalar-expr)3

priority(priority-value)4

untied5

mergeable6

nogroup7

The taskloop directive places restrictions on the structure of all associated for-loops.8
Specifically, all associated for-loops must have canonical loop form (see Section 2.6 on page 58).9

C / C++
Fortran

The syntax of the taskloop construct is as follows:10

!$omp taskloop [clause[[,] clause] ...]
do-loops

[!$omp end taskloop]

where clause is one of the following:11

if([taskloop :] scalar-logical-expr)12

shared(list)13

private(list)14

firstprivate(list)15

lastprivate(list)16

reduction(reduction-identifier : list)17

in_reduction(reduction-identifier : list)18

default(private | firstprivate | shared | none)19

grainsize(grain-size)20

num_tasks(num-tasks)21

collapse(n)22

final(scalar-logical-expr)23

priority(priority-value)24

96 OpenMP API – Version 5.0 rev 1, November 2016

untied1

mergeable2

nogroup3

If an end taskloop directive is not specified, an end taskloop directive is assumed at the end4
of the do-loops.5

Any associated do-loop must be do-construct or an inner-shared-do-construct as defined by the6
Fortran standard. If an end taskloop directive follows a do-construct in which several loop7
statements share a DO termination statement, then the directive can only be specified for the8
outermost of these DO statements.9

If any of the loop iteration variables would otherwise be shared, they are implicitly made private for10
the loop-iteration tasks generated by the taskloop construct. Unless the loop iteration variables11
are specified in a lastprivate clause on the taskloop construct, their values after the loop12
are unspecified.13

Fortran

Binding14

The binding thread set of the taskloop region is the current team. A taskloop region binds to15
the innermost enclosing parallel region.16

Description17

The taskloop construct is a task generating construct. When a thread encounters a taskloop18
construct, the construct partitions the associated loops into explicit tasks for parallel execution of19
the loops’ iterations. The data environment of each generated task is created according to the20
data-sharing attribute clauses on the taskloop construct, per-data environment ICVs, and any21
defaults that apply. The order of the creation of the loop tasks is unspecified. Programs that rely on22
any execution order of the logical loop iterations are non-conforming.23

By default, the taskloop construct executes as if it was enclosed in a taskgroup construct24
with no statements or directives outside of the taskloop construct. Thus, the taskloop25
construct creates an implicit taskgroup region. If the nogroup clause is present, no implicit26
taskgroup region is created.27

If a reduction clause is present on the taskloop construct, the behavior is as if a28
task_reduction clause with the same reduction operator and list items was applied to the29
implicit taskgroup construct enclosing the taskloop construct. Furthermore, the taskloop30
construct executes as if each generated task was defined by a task construct on which an31
in_reduction clause with the same reduction operator and list items is present. Thus, the32
generated tasks are participants of the reduction defined by the task_reduction clause that was33
applied to the implicit taskgroup construct.34

CHAPTER 2. DIRECTIVES 97

If an in_reduction clause is present on the taskloop construct, the behavior is as if each1
generated task was defined by a task construct on which an in_reduction clause with the2
same reduction operator and list items is present. Thus, the generated tasks are participants of a3
reduction previously defined by a reduction scoping clause.4

If a grainsize clause is present on the taskloop construct, the number of logical loop5
iterations assigned to each generated task is greater than or equal to the minimum of the value of6
the grain-size expression and the number of logical loop iterations, but less than two times the value7
of the grain-size expression.8

The parameter of the grainsize clause must be a positive integer expression. If num_tasks is9
specified, the taskloop construct creates as many tasks as the minimum of the num-tasks10
expression and the number of logical loop iterations. Each task must have at least one logical loop11
iteration. The parameter of the num_tasks clause must evaluate to a positive integer. If neither a12
grainsize nor num_tasks clause is present, the number of loop tasks generated and the13
number of logical loop iterations assigned to these tasks is implementation defined.14

The collapse clause may be used to specify how many loops are associated with the taskloop15
construct. The parameter of the collapse clause must be a constant positive integer expression.16
If no collapse clause is present, the only loop that is associated with the taskloop construct is17
the one that immediately follows the taskloop directive.18

If more than one loop is associated with the taskloop construct, then the iterations of all19
associated loops are collapsed into one larger iteration space that is then divided according to the20
grainsize and num_tasks clauses. The sequential execution of the iterations in all associated21
loops determines the order of the iterations in the collapsed iteration space.22

The iteration count for each associated loop is computed before entry to the outermost loop. If23
execution of any associated loop changes any of the values used to compute any of the iteration24
counts, then the behavior is unspecified.25

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is26
implementation defined.27

When an if clause is present on a taskloop construct, and if the if clause expression evaluates28
to false, undeferred tasks are generated. The use of a variable in an if clause expression of a29
taskloop construct causes an implicit reference to the variable in all enclosing constructs.30

When a final clause is present on a taskloop construct and the final clause expression31
evaluates to true, the generated tasks will be final tasks. The use of a variable in a final clause32
expression of a taskloop construct causes an implicit reference to the variable in all enclosing33
constructs.34

When a priority clause is present on a taskloop construct, the generated tasks have the35
priority-value as if it was specified for each individual task. If the priority clause is not36
specified, tasks generated by the taskloop construct have the default task priority (zero).37

If the untied clause is specified, all tasks generated by the taskloop construct are untied tasks.38

98 OpenMP API – Version 5.0 rev 1, November 2016

When the mergeable clause is present on a taskloop construct, each generated task is a1
mergeable task.2

C++
For firstprivate variables of class type, the number of invocations of copy constructors to3
perform the initialization is implementation-defined.4

C++

Note – When storage is shared by a taskloop region, the programmer must ensure, by adding5
proper synchronization, that the storage does not reach the end of its lifetime before the taskloop6
region and its descendant tasks complete their execution.7

Events8

The taskloop-begin event occurs after a task encounters a taskloop construct but before any9
other events that may trigger as a consequence of executing the taskloop. Specifically, a10
taskloop-begin event for a taskloop will precede the taskgroup-begin that occurs unless a11
nogroup clause is present. Regardless of whether an implicit taskgroup is present, a12
taskloop-begin will always precede any task-create events for generated tasks.13

The taskloop-end event occurs after a taskloop region finishes execution but before resuming14
execution of the encountering task.15

Tool Callbacks16

A thread dispatches a registered ompt_callback_work callback for each occurrence of a17
taskloop-begin and taskloop-end event in that thread. The callback occurs in the context of the18
encountering task. The callback has type signature ompt_callback_work_t. The callback19
receives ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate,20
and ompt_work_taskloop as its wstype argument.21

CHAPTER 2. DIRECTIVES 99

Restrictions1

The restrictions of the taskloop construct are as follows:2

• A program that branches into or out of a taskloop region is non-conforming.3

• All loops associated with the taskloop construct must be perfectly nested; that is, there must4
be no intervening code nor any OpenMP directive between any two loops.5

• If a reduction clause is present on the taskloop directive, the nogroup clause must not6
be specified.7

• The same list item cannot appear in both a reduction and an in_reduction clause.8

• At most one grainsize clause can appear on a taskloop directive.9

• At most one num_tasks clause can appear on a taskloop directive.10

• The grainsize clause and num_tasks clause are mutually exclusive and may not appear on11
the same taskloop directive.12

• At most one collapse clause can appear on a taskloop directive.13

• At most one if clause can appear on the directive.14

• At most one final clause can appear on the directive.15

• At most one priority clause can appear on the directive.16

Cross References17

• task construct, Section 2.9.1 on page 91.18

• taskgroup construct, Section 2.13.6 on page 176.19

• Data-sharing attribute clauses, Section 2.15.3 on page 215.20

• if Clause, see Section 2.12 on page 164.21

• ompt_scope_begin and ompt_scope_end, see Section 4.4.6.11 on page 356.22

• ompt_work_taskloop, see Section 4.4.6.14 on page 357.23

• ompt_callback_work_t, see Section 4.6.2.18 on page 385.24

2.9.3 taskloop simd Construct25

Summary26

The taskloop simd construct specifies a loop that can be executed concurrently using SIMD27
instructions and that those iterations will also be executed in parallel using explicit tasks. The28
taskloop simd construct is a composite construct.29

100 OpenMP API – Version 5.0 rev 1, November 2016

Syntax1

C / C++

The syntax of the taskloop simd construct is as follows:2

#pragma omp taskloop simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the taskloop or simd directives with3
identical meanings and restrictions.4

C / C++
Fortran

The syntax of the taskloop simd construct is as follows:5

!$omp taskloop simd [clause[[,] clause] ...]
do-loops

[!$omp end taskloop simd]

where clause can be any of the clauses accepted by the taskloop or simd directives with6
identical meanings and restrictions.7

If an end taskloop simd directive is not specified, an end taskloop simd directive is8
assumed at the end of the do-loops.9

Fortran

Binding10

The binding thread set of the taskloop simd region is the current team. A taskloop simd11
region binds to the innermost enclosing parallel region.12

Description13

The taskloop simd construct will first distribute the iterations of the associated loop(s) across14
tasks in a manner consistent with any clauses that apply to the taskloop construct. The resulting15
tasks will then be converted to a SIMD loop in a manner consistent with any clauses that apply to16
the simd construct, except for the collapse clause. For the purposes of each task’s conversion to17
a SIMD loop, the collapse clause is ignored and the effect of any in_reduction clause is as18
if a reduction clause with the same reduction operator and list items is present on the construct.19

CHAPTER 2. DIRECTIVES 101

Events1

This composite construct generates the same events as the taskloop construct.2

Tool Callbacks3

This composite construct dispatches the same callbacks as the taskloop construct.4

Restrictions5

• The restrictions for the taskloop and simd constructs apply.6

Cross References7

• taskloop construct, see Section 2.9.2 on page 95.8

• simd construct, see Section 2.8.1 on page 80.9

• Data-sharing attribute clauses, see Section 2.15.3 on page 215.10

• Events and tool callbacks for taskloop construct, see Section 2.9.2 on page 95.11

2.9.4 taskyield Construct12

Summary13

The taskyield construct specifies that the current task can be suspended in favor of execution of14
a different task. The taskyield construct is a stand-alone directive.15

Syntax16

C / C++

The syntax of the taskyield construct is as follows:17

#pragma omp taskyield new-line

C / C++
Fortran

The syntax of the taskyield construct is as follows:18

102 OpenMP API – Version 5.0 rev 1, November 2016

!$omp taskyield

Fortran

Binding1

A taskyield region binds to the current task region. The binding thread set of the taskyield2
region is the current team.3

Description4

The taskyield region includes an explicit task scheduling point in the current task region.5

Cross References6

• Task scheduling, see Section 2.9.6 on page 104.7

2.9.5 Initial Task8

Events9

No events are associated with the implicit parallel region in each initial thread.10

The initial-thread-begin event occurs in an initial thread after the OpenMP runtime invokes the tool11
initializer but before the initial thread begins to execute the first OpenMP region in the initial task.12

The initial-task-create event occurs after an initial-thread-begin event but before the first OpenMP13
region in the initial task begins to execute.14

The initial-thread-end event occurs as the final event in an initial thread at the end of an initial task15
immediately prior to invocation of the tool finalizer.16

CHAPTER 2. DIRECTIVES 103

Tool Callbacks1

A thread dispatches a registered ompt_callback_thread_begin callback for the2
initial-thread-begin event in an initial thread. The callback occurs in the context of the initial3
thread. The callback has type signature ompt_callback_thread_begin_t. The callback4
receives ompt_thread_initial as its thread_type argument.5

A thread dispatches a registered ompt_callback_task_create callback for each occurrence6
of a initial-task-create event in the context of the encountering task. This callback has the type7
signature ompt_callback_task_create_t. The callback receives ompt_task_initial8
as its type argument.9

A thread dispatches a registered ompt_callback_thread_end callback for the10
initial-thread-end event in that thread. The callback occurs in the context of the thread. The11
callback has type signature ompt_callback_thread_end_t.12

Cross References13

• ompt_task_initial, see Section 4.4.6.17 on page 359.14

• ompt_callback_thread_begin_t, see Section 4.6.2.1 on page 366.15

• ompt_callback_thread_end_t, see Section 4.6.2.2 on page 367.16

• ompt_callback_task_create_t, see Section 4.6.2.7 on page 373.17

2.9.6 Task Scheduling18

Whenever a thread reaches a task scheduling point, the implementation may cause it to perform a19
task switch, beginning or resuming execution of a different task bound to the current team. Task20
scheduling points are implied at the following locations:21

• the point immediately following the generation of an explicit task;22

• after the point of completion of a task region;23

• in a taskyield region;24

• in a taskwait region;25

• at the end of a taskgroup region;26

• in an implicit and explicit barrier region;27

• the point immediately following the generation of a target region;28

• at the beginning and end of a target data region;29

104 OpenMP API – Version 5.0 rev 1, November 2016

• in a target update region;1

• in a target enter data region;2

• in a target exit data region;3

• in the omp_target_memcpy routine;4

• in the omp_target_memcpy_rect routine;5

When a thread encounters a task scheduling point it may do one of the following, subject to the6
Task Scheduling Constraints (below):7

• begin execution of a tied task bound to the current team8

• resume any suspended task region, bound to the current team, to which it is tied9

• begin execution of an untied task bound to the current team10

• resume any suspended untied task region bound to the current team.11

If more than one of the above choices is available, it is unspecified as to which will be chosen.12

Task Scheduling Constraints are as follows:13

1. An included task is executed immediately after generation of the task.14

2. Scheduling of new tied tasks is constrained by the set of task regions that are currently tied to the15
thread, and that are not suspended in a barrier region. If this set is empty, any new tied task16
may be scheduled. Otherwise, a new tied task may be scheduled only if it is a descendent task of17
every task in the set.18

3. A dependent task shall not be scheduled until its task dependences are fulfilled.19

4. When an explicit task is generated by a construct containing an if clause for which the20
expression evaluated to false, and the previous constraints are already met, the task is executed21
immediately after generation of the task.22

A program relying on any other assumption about task scheduling is non-conforming.23

Note – Task scheduling points dynamically divide task regions into parts. Each part is executed24
uninterrupted from start to end. Different parts of the same task region are executed in the order in25
which they are encountered. In the absence of task synchronization constructs, the order in which a26
thread executes parts of different schedulable tasks is unspecified.27

A correct program must behave correctly and consistently with all conceivable scheduling28
sequences that are compatible with the rules above.29

For example, if threadprivate storage is accessed (explicitly in the source code or implicitly30
in calls to library routines) in one part of a task region, its value cannot be assumed to be preserved31
into the next part of the same task region if another schedulable task exists that modifies it.32

CHAPTER 2. DIRECTIVES 105

As another example, if a lock acquire and release happen in different parts of a task region, no1
attempt should be made to acquire the same lock in any part of another task that the executing2
thread may schedule. Otherwise, a deadlock is possible. A similar situation can occur when a3
critical region spans multiple parts of a task and another schedulable task contains a4
critical region with the same name.5

The use of threadprivate variables and the use of locks or critical sections in an explicit task with an6
if clause must take into account that when the if clause evaluates to false, the task is executed7
immediately, without regard to Task Scheduling Constraint 2.8

Events9

The task-schedule event occurs in a thread when the thread switches tasks at a task scheduling10
point; no event occurs when switching to or from a merged task.11

Tool Callbacks12

A thread dispatches a registered ompt_callback_task_schedule callback for each13
occurrence of a task-schedule event in the context of the task that begins or resumes. This callback14
has the type signature ompt_callback_task_schedule_t. The argument prior_task_status15
is used to indicate the cause for suspending the prior task. This cause may be the completion of the16
prior task region, the encountering of a taskyield construct, or the encountering of an active17
cancellation point.18

Cross References19

• ompt_callback_task_schedule_t, see Section 4.6.2.10 on page 376.20

2.10 Device Constructs21

2.10.1 Device Initialization22

Events23

The device-initialize event occurs in a thread that encounters the first target, target data, or24
target enter data construct associated with a particular target device after the thread25
initiates initialization of OpenMP on the device and the device’s OpenMP initialization, which may26
include device-side tool initialization, completes.27

106 OpenMP API – Version 5.0 rev 1, November 2016

Tool Callbacks1

A thread dispatches a registered ompt_callback_device_initialize callback for each2
occurrence of a device-initialize event in that thread. This callback has type signature3
ompt_callback_device_initialize_t.4

Restrictions5

No thread may offload execution of an OpenMP construct to a device until any callback associated6
with a device-initialize event completes.7

Cross References8

• ompt_callback_device_initialize_t, see Section 4.6.2.28 on page 396.9

2.10.2 target data Construct10

Summary11

Map variables to a device data environment for the extent of the region.12

Syntax13

C / C++

The syntax of the target data construct is as follows:14

#pragma omp target data clause[[[,] clause] ...] new-line
structured-block

where clause is one of the following:15

if([target data :] scalar-expression)16

device(integer-expression)17

map([[map-type-modifier[,]] map-type:] list)18

use_device_ptr(list)19

C / C++

CHAPTER 2. DIRECTIVES 107

Fortran

The syntax of the target data construct is as follows:1

!$omp target data clause[[[,] clause] ...]
structured-block

!$omp end target data

where clause is one of the following:2

if([target data :] scalar-logical-expression)3

device(scalar-integer-expression)4

map([[map-type-modifier[,]] map-type:] list)5

use_device_ptr(list)6

The end target data directive denotes the end of the target data construct.7

Fortran

Binding8

The binding task set for a target data region is the generating task. The target data region9
binds to the region of the generating task.10

Description11

When a target data construct is encountered, the encountering task executes the region. If12
there is no device clause, the default device is determined by the default-device-var ICV.13
Variables are mapped for the extent of the region, according to any data-mapping attribute clauses,14
from the data environment of the encountering task to the device data environment. When an if15
clause is present and the if clause expression evaluates to false, the device is the host.16

List items that appear in a use_device_ptr clause are converted into device pointers to the17
corresponding list items in the device data environment. If a use_device_ptr clause and one18
or more map clauses are present on the same construct, this conversion will occur as if performed19
after all variables are mapped according to those map clauses.20

Events21

The target-data-begin event occurs when a thread enters a target data region.22

The target-data-end event occurs when a thread exits a target data region.23

108 OpenMP API – Version 5.0 rev 1, November 2016

Tool Callbacks1

A thread dispatches a registered ompt_callback_target callback for each occurrence of a2
target-data-begin and target-data-end event in that thread in the context of the task encountering3
the construct. The callback has type signature ompt_callback_target_t. The callback4
receives ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate,5
and ompt_target_enter_data as its kind argument.6

Restrictions7

• A program must not depend on any ordering of the evaluations of the clauses of the8
target data directive, or on any side effects of the evaluations of the clauses.9

• At most one device clause can appear on the directive. The device expression must evaluate10
to a non-negative integer value less than the value of omp_get_num_devices().11

• At most one if clause can appear on the directive.12

• A map-type in a map clause must be to, from, tofrom or alloc.13

• At least one map or use_device_ptr clause must appear on the directive.14

• A list item in a use_device_ptr clause must have a corresponding list item in the device15
data environment.16

• A list item that specifies a given variable may not appear in more than one use_device_ptr17
clause.18

• References in the construct to a list item that appears in a use_device_ptr clause must be to19
the address of the list item.20

Cross References21

• default-device-var, see Section 2.3 on page 39.22

• if Clause, see Section 2.12 on page 164.23

• map clause, see Section 2.15.6.1 on page 245.24

• ompt_callback_target_t, see Section 4.6.2.20 on page 387.25

2.10.3 target enter data Construct26

Summary27

The target enter data directive specifies that variables are mapped to a device data28
environment. The target enter data directive is a stand-alone directive.29

CHAPTER 2. DIRECTIVES 109

Syntax1

C / C++

The syntax of the target enter data construct is as follows:2

#pragma omp target enter data [clause[[,] clause]...] new-line

where clause is one of the following:3

if([target enter data :] scalar-expression)4

device(integer-expression)5

map([[map-type-modifier[,]] map-type :] list)6

depend(dependence-type : locator-list)7

nowait8

C / C++
Fortran

The syntax of the target enter data is as follows:9

!$omp target enter data [clause[[,] clause]...]

where clause is one of the following:10

if([target enter data :] scalar-logical-expression)11

device(scalar-integer-expression)12

map([[map-type-modifier[,]] map-type :] list)13

depend(dependence-type : locator-list)14

nowait15

Fortran

Binding16

The binding task set for a target enter data region is the generating task, which is the target17
task generated by the target enter data construct. The target enter data region binds18
to the corresponding target task region.19

110 OpenMP API – Version 5.0 rev 1, November 2016

Description1

When a target enter data construct is encountered, the list items are mapped to the device2
data environment according to the map clause semantics.3

The target enter data construct is a task generating construct. The generated task is a target4
task. The generated task region encloses the target enter data region.5

All clauses are evaluated when the target enter data construct is encountered. The data6
environment of the target task is created according to the data-sharing attribute clauses on the7
target enter data construct, per-data environment ICVs, and any default data-sharing8
attribute rules that apply to the target enter data construct. A variable that is mapped in the9
target enter data construct has a default data-sharing attribute of shared in the data10
environment of the target task.11

Assignment operations associated with mapping a variable (see Section 2.15.6.1 on page 245)12
occur when the target task executes.13

If the nowait clause is present, execution of the target task may be deferred. If the nowait14
clause is not present, the target task is an included task.15

If a depend clause is present, it is associated with the target task.16

If there is no device clause, the default device is determined by the default-device-var ICV.17

When an if clause is present and the if clause expression evaluates to false, the device is the host.18

Events19

Events associated with a target task are the same as for the task construct defined in Section 2.9.120
on page 91.21

The target-enter-data-begin event occurs when a thread enters a target enter data region.22

The target-enter-data-end event occurs when a thread exits a target enter data region.23

Tool Callbacks24

Callbacks associated with events for target tasks are the same as for the task construct defined in25
Section 2.9.1 on page 91.26

A thread dispatches a registered ompt_callback_target callback for each occurrence of a27
target-enter-data-begin and target-enter-data-end event in that thread in the context of the target28
task on the host. The callback has type signature ompt_callback_target_t. The callback29
receives ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate,30
and ompt_target_enter_data as its kind argument.31

CHAPTER 2. DIRECTIVES 111

Restrictions1

• A program must not depend on any ordering of the evaluations of the clauses of the2
target enter data directive, or on any side effects of the evaluations of the clauses.3

• At least one map clause must appear on the directive.4

• At most one device clause can appear on the directive. The device expression must evaluate5
to a non-negative integer value.6

• At most one if clause can appear on the directive.7

• A map-type must be specified in all map clauses and must be either to or alloc.8

Cross References9

• default-device-var, see Section 2.3.1 on page 39.10

• task, see Section 2.9.1 on page 91.11

• task scheduling constraints, see Section 2.9.6 on page 104.12

• target data, see Section 2.10.2 on page 107.13

• target exit data, see Section 2.10.4 on page 112.14

• if Clause, see Section 2.12 on page 164.15

• map clause, see Section 2.15.6.1 on page 245.16

• ompt_callback_target_t, see Section 4.6.2.20 on page 387.17

2.10.4 target exit data Construct18

Summary19

The target exit data directive specifies that list items are unmapped from a device data20
environment. The target exit data directive is a stand-alone directive.21

Syntax22

112 OpenMP API – Version 5.0 rev 1, November 2016

C / C++

The syntax of the target exit data construct is as follows:1

#pragma omp target exit data [clause[[,] clause]...] new-line

where clause is one of the following:2

if([target exit data :] scalar-expression)3

device(integer-expression)4

map([[map-type-modifier[,]] map-type :] list)5

depend(dependence-type : locator-list)6

nowait7

C / C++
Fortran

The syntax of the target exit data is as follows:8

!$omp target exit data [clause[[,] clause]...]

where clause is one of the following:9

if([target exit data :] scalar-logical-expression)10

device(scalar-integer-expression)11

map([[map-type-modifier[,]] map-type :] list)12

depend(dependence-type : locator-list)13

nowait14

Fortran

Binding15

The binding task set for a target exit data region is the generating task, which is the target16
task generated by the target exit data construct. The target exit data region binds to17
the corresponding target task region.18

CHAPTER 2. DIRECTIVES 113

Description1

When a target exit data construct is encountered, the list items in the map clauses are2
unmapped from the device data environment according to the map clause semantics.3

The target exit data construct is a task generating construct. The generated task is a target4
task. The generated task region encloses the target exit data region.5

All clauses are evaluated when the target exit data construct is encountered. The data6
environment of the target task is created according to the data-sharing attribute clauses on the7
target exit data construct, per-data environment ICVs, and any default data-sharing attribute8
rules that apply to the target exit data construct. A variable that is mapped in the9
target exit data construct has a default data-sharing attribute of shared in the data10
environment of the target task.11

Assignment operations associated with mapping a variable (see Section 2.15.6.1 on page 245)12
occur when the target task executes.13

If the nowait clause is present, execution of the target task may be deferred. If the nowait14
clause is not present, the target task is an included task.15

If a depend clause is present, it is associated with the target task.16

If there is no device clause, the default device is determined by the default-device-var ICV.17

When an if clause is present and the if clause expression evaluates to false, the device is the host.18

Events19

Events associated with a target task are the same as for the task construct defined in Section 2.9.120
on page 91.21

The target-exit-begin event occurs when a thread enters a target exit data region.22

The target-exit-end event occurs when a thread exits a target exit data region.23

Tool Callbacks24

Callbacks associated with events for target tasks are the same as for the task construct defined in25
Section 2.9.1 on page 91.26

A thread dispatches a registered ompt_callback_target callback for each occurrence of a27
target-exit-begin and target-exit-end event in that thread in the context of the target task on the host.28
The callback has type signature ompt_callback_target_t. The callback receives29
ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate, and30
ompt_target_exit_data as its kind argument.31

114 OpenMP API – Version 5.0 rev 1, November 2016

Restrictions1

• A program must not depend on any ordering of the evaluations of the clauses of the2
target exit data directive, or on any side effects of the evaluations of the clauses.3

• At least one map clause must appear on the directive.4

• At most one device clause can appear on the directive. The device expression must evaluate5
to a non-negative integer value.6

• At most one if clause can appear on the directive.7

• A map-type must be specified in all map clauses and must be either from, release, or8
delete.9

Cross References10

• default-device-var, see Section 2.3.1 on page 39.11

• task, see Section 2.9.1 on page 91.12

• task scheduling constraints, see Section 2.9.6 on page 104.13

• target data, see Section 2.10.2 on page 107.14

• target enter data, see Section 2.10.3 on page 109.15

• if Clause, see Section 2.12 on page 164.16

• map clause, see Section 2.15.6.1 on page 245.17

• ompt_callback_target_t, see Section 4.6.2.20 on page 387.18

CHAPTER 2. DIRECTIVES 115

2.10.5 target Construct1

Summary2

Map variables to a device data environment and execute the construct on that device.3

Syntax4

C / C++

The syntax of the target construct is as follows:5

#pragma omp target [clause[[,] clause] ...] new-line
structured-block

where clause is one of the following:6

if([target :] scalar-expression)7

device(integer-expression)8

private(list)9

firstprivate(list)10

reduction(reduction-identifier : list)11

map([[map-type-modifier[,]] map-type:] list)12

is_device_ptr(list)13

defaultmap(tofrom:scalar)14

nowait15

depend(dependence-type: locator-list)16

C / C++

116 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

The syntax of the target construct is as follows:1

!$omp target [clause[[,] clause] ...]
structured-block

!$omp end target

where clause is one of the following:2

if([target :] scalar-logical-expression)3

device(scalar-integer-expression)4

private(list)5

firstprivate(list)6

reduction(reduction-identifier : list)7

map([[map-type-modifier[,]] map-type:] list)8

is_device_ptr(list)9

defaultmap(tofrom:scalar)10

nowait11

depend (dependence-type : locator-list)12

The end target directive denotes the end of the target construct13

Fortran

Binding14

The binding task set for a target region is the generating task, which is the target task generated15
by the target construct. The target region binds to the corresponding target task region.16

CHAPTER 2. DIRECTIVES 117

Description1

The target construct provides a superset of the functionality provided by the target data2
directive, except for the use_device_ptr clause.3

The functionality added to the target directive is the inclusion of an executable region to be4
executed by a device. That is, the target directive is an executable directive.5

The target construct is a task generating construct. The generated task is a target task. The6
generated task region encloses the target region.7

All clauses are evaluated when the target construct is encountered. The data environment of the8
target task is created according to the data-sharing attribute clauses on the target construct,9
per-data environment ICVs, and any default data-sharing attribute rules that apply to the target10
construct. A variable that appears as a list item in a reduction clause on the target construct11
has a default data-sharing attribute of shared in the data environment of the target task. Likewise, a12
variable that is mapped in the target construct has a default data-sharing attribute of shared in13
the data environment of the target task.14

Assignment operations associated with mapping a variable (see Section 2.15.6.1 on page 245)15
occur when the target task executes.16

If the nowait clause is present, execution of the target task may be deferred. If the nowait17
clause is not present, the target task is an included task.18

If a depend clause is present, it is associated with the target task.19

When an if clause is present and the if clause expression evaluates to false, the target region20
is executed by the host device in the host data environment.21

The is_device_ptr clause is used to indicate that a list item is a device pointer already in the22
device data environment and that it should be used directly. Support for device pointers created23
outside of OpenMP, specifically outside of the omp_target_alloc routine and the24
use_device_ptr clause, is implementation defined.25

If a function (C, C++, Fortran) or subroutine (Fortran) is referenced in a target construct then26
that function or subroutine is treated as if its name had appeared in a to clause on a27
declare target directive.28

C / C++

If an array section is a list item in a map clause and the array section is derived from a variable for29
which the type is pointer then the data-sharing attribute for that variable in the construct is30
firstprivate. Prior to the execution of the construct, the private variable is initialized with the31
address of the storage location of the corresponding array section in the device data environment.32

If a zero-length array section is a list item in a map clause, and the array section is derived from a33
variable for the which the type is pointer then that variable is initialized with the address of the34
corresponding storage location in the device data environment. If the corresponding storage35

118 OpenMP API – Version 5.0 rev 1, November 2016

location is not present in the device data environment then the private variable is initialized to1
NULL.2

C / C++

Events3

The target-begin event occurs when a thread enters a target region.4

The target-end event occurs when a thread exits a target region.5

The target-submit event occurs prior to creating an initial task on a target device for a target region.6

Tool Callbacks7

A thread dispatches a registered ompt_callback_target callback for each occurrence of a8
target-begin and target-end event in that thread in the context of target task on the host. The9
callback has type signature ompt_callback_target_t. The callback receives10
ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate, and11
ompt_target as its kind argument.12

A thread dispatches a registered ompt_callback_target_submit callback for each13
occurrence of a target-submit event in that thread. The callback has type signature14
ompt_callback_target_submit_t.15

Restrictions16

• If a target, target update, target data, target enter data, or17
target exit data construct is encountered during execution of a target region, the18
behavior is unspecified.19

• The result of an omp_set_default_device, omp_get_default_device, or20
omp_get_num_devices routine called within a target region is unspecified.21

• The effect of an access to a threadprivate variable in a target region is unspecified.22

• If a list item in a map clause is a structure element, any other element of that structure that is23
referenced in the target construct must also appear as a list item in a map clause.24

• A variable referenced in a target region but not the target construct that is not declared in25
the target region must appear in a declare target directive.26

• At most one defaultmap clause can appear on the directive.27

• A map-type in a map clause must be to, from, tofrom or alloc.28

• A list item that appears in an is_device_ptr clause must be a valid device pointer in the29
device data environment.30

CHAPTER 2. DIRECTIVES 119

C
• A list item that appears in an is_device_ptr clause must have a type of pointer or array.1

C

C++
• A list item that appears in an is_device_ptr clause must have a type of pointer, array,2
reference to pointer or reference to array.3

• The effect of invoking a virtual member function of an object on a device other than the device4
on which the object was constructed is implementation defined.5

• A throw executed inside a target region must cause execution to resume within the same6
target region, and the same thread that threw the exception must catch it.7

C++

Fortran

• A list item that appears in an is_device_ptr clause must be a dummy argument.8

• If a list item in a map clause is an array section, and the array section is derived from a variable9
with a POINTER or ALLOCATABLE attribute then the behavior is unspecified if the10
corresponding list item’s variable is modified in the region.11

Fortran

Cross References12

• default-device-var, see Section 2.3 on page 39.13

• task construct, see Section 2.9.1 on page 91.14

• task scheduling constraints, see Section 2.9.6 on page 10415

• target data construct, see Section 2.10.2 on page 107.16

• if Clause, see Section 2.12 on page 164.17

• private and firstprivate clauses, see Section 2.15.3 on page 215.18

• Data-mapping Attribute Rules and Clauses, see Section 2.15.6 on page 244.19

• ompt_callback_target_t, see Section 4.6.2.20 on page 387.20

• ompt_callback_target_submit_t, Section 4.6.2.23 on page 391.21

120 OpenMP API – Version 5.0 rev 1, November 2016

2.10.6 target update Construct1

Summary2

The target update directive makes the corresponding list items in the device data environment3
consistent with their original list items, according to the specified motion clauses. The4
target update construct is a stand-alone directive.5

Syntax6

C / C++

The syntax of the target update construct is as follows:7

#pragma omp target update clause[[[,] clause] ...] new-line

where clause is either motion-clause or one of the following:8

if([target update :] scalar-expression)9

device(integer-expression)10

nowait11

depend (dependence-type : locator-list)12

and motion-clause is one of the following:13

to(list)14

from(list)15

C / C++

CHAPTER 2. DIRECTIVES 121

Fortran

The syntax of the target update construct is as follows:1

!$omp target update clause[[[,] clause] ...]

where clause is either motion-clause or one of the following:2

if([target update :] scalar-logical-expression)3

device(scalar-integer-expression)4

nowait5

depend (dependence-type : locator-list)6

and motion-clause is one of the following:7

to(list)8

from(list)9

Fortran

Binding10

The binding task set for a target update region is the generating task, which is the target task11
generated by the target update construct. The target update region binds to the12
corresponding target task region.13

Description14

For each list item in a to or from clause there is a corresponding list item and an original list item.15
If the corresponding list item is not present in the device data environment then no assignment16
occurs to or from the original list item. Otherwise, each corresponding list item in the device data17
environment has an original list item in the current task’s data environment.18

For each list item in a from clause the value of the corresponding list item is assigned to the19
original list item.20

For each list item in a to clause the value of the original list item is assigned to the corresponding21
list item.22

The list items that appear in the to or from clauses may include array sections.23

The target update construct is a task generating construct. The generated task is a target task.24
The generated task region encloses the target update region.25

122 OpenMP API – Version 5.0 rev 1, November 2016

All clauses are evaluated when the target update construct is encountered. The data1
environment of the target task is created according to the data-sharing attribute clauses on the2
target update construct, per-data environment ICVs, and any default data-sharing attribute3
rules that apply to the target update construct. A variable that is mapped in the4
target update construct has a default data-sharing attribute of shared in the data environment5
of the target task.6

Assignment operations associated with mapping a variable (see Section 2.15.6.1 on page 245)7
occur when the target task executes.8

If the nowait clause is present, execution of the target task may be deferred. If the nowait9
clause is not present, the target task is an included task.10

If a depend clause is present, it is associated with the target task.11

The device is specified in the device clause. If there is no device clause, the device is12
determined by the default-device-var ICV. When an if clause is present and the if clause13
expression evaluates to false then no assignments occur.14

Events15

Events associated with a target task are the same as for the task construct defined in Section 2.9.116
on page 91.17

The target-update-begin event occurs when a thread enters a target update region.18

The target-update-end event occurs when a thread exits a target update region.19

Tool Callbacks20

Callbacks associated with events for target tasks are the same as for the task construct defined in21
Section 2.9.1 on page 91.22

A thread dispatches a registered ompt_callback_target callback for each occurrence of a23
target-update-begin and target-update-end event in that thread in the context of the target task on24
the host. The callback has type signature ompt_callback_target_t. The callback receives25
ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate, and26
ompt_target_update as its kind argument.27

Restrictions28

• A program must not depend on any ordering of the evaluations of the clauses of the29
target update directive, or on any side effects of the evaluations of the clauses.30

• At least one motion-clause must be specified.31

• If a list item is an array section it must specify contiguous storage.32

CHAPTER 2. DIRECTIVES 123

• A list item can only appear in a to or from clause, but not both.1

• A list item in a to or from clause must have a mappable type.2

• At most one device clause can appear on the directive. The device expression must evaluate3
to a non-negative integer value less than the value of omp_get_num_devices().4

• At most one if clause can appear on the directive.5

Cross References6

• default-device-var, see Section 2.3 on page 39.7

• Array sections, Section 2.4 on page 488

• task construct, see Section 2.9.1 on page 91.9

• task scheduling constraints, see Section 2.9.6 on page 10410

• target data, see Section 2.10.2 on page 107.11

• if Clause, see Section 2.12 on page 164.12

• ompt_callback_task_create_t, see Section 4.6.2.7 on page 373.13

• ompt_callback_target_t, see Section 4.6.2.20 on page 387.14

2.10.7 declare target Directive15

Summary16

The declare target directive specifies that variables, functions (C, C++ and Fortran), and17
subroutines (Fortran) are mapped to a device. The declare target directive is a declarative18
directive.19

Syntax20

C / C++

The syntax of the declare target directive takes either of the following forms:21

#pragma omp declare target new-line
declaration-definition-seq
#pragma omp end declare target new-line

or22

124 OpenMP API – Version 5.0 rev 1, November 2016

#pragma omp declare target (extended-list) new-line

or1

#pragma omp declare target clause[[,] clause ...] new-line

where clause is one of the following:2

to(extended-list)3

link(list)4

C / C++
Fortran

The syntax of the declare target directive is as follows:5

!$omp declare target (extended-list)

or6

!$omp declare target [clause[[,] clause] ...]

where clause is one of the following:7

to(extended-list)8

link(list)9

Fortran

Description10

The declare target directive ensures that procedures and global variables can be executed or11
accessed on a device. Variables are mapped for all device executions, or for specific device12
executions through a link clause.13

If an extended-list is present with no clause then the to clause is assumed.14

CHAPTER 2. DIRECTIVES 125

C / C++

If a function is treated as if it appeared as a list item in a to clause on a declare target1
directive in the same translation unit in which the definition of the function occurs then a2
device-specific version of the function is created.3

If a variable is treated as if it appeared as a list item in a to clause on a declare target4
directive in the same translation unit in which the definition of the variable occurs then the original5
list item is allocated a corresponding list item in the device data environment of all devices.6

C / C++
Fortran

If a procedure that is host or use associated is treated as if it appeared as a list item in a to clause7
on a declare target directive then a device-specific version of the procedure is created.8

If a variable that is host or use associated is treated as if it appeared as a list item in a to clause on a9
declare target directive then the original list item is allocated a corresponding list item in the10
device data environment of all devices.11

Fortran

If a variable is treated as if it appeared as a list item in a to clause on a declare target12
directive then the corresponding list item in the device data environment of each device is13
initialized once, in the manner specified by the program, but at an unspecified point in the program14
prior to the first reference to that list item. The list item is never removed from those device data15
environments as if its reference count is initialized to positive infinity.16

The list items of a link clause are not mapped by the declare target directive. Instead, their17
mapping is deferred until they are mapped by target data or target constructs. They are18
mapped only for such regions.19

126 OpenMP API – Version 5.0 rev 1, November 2016

C / C++

If a function is referenced in a function that is treated as if it appeared as a list item in a to clause1
on a declare target directive then the name of the referenced function is treated as if it had2
appeared in a to clause on a declare target directive.3

If a variable with static storage duration or a function is referenced in the initializer expression list4
of a variable with static storage duration that is treated as if it appeared as a list item in a to clause5
on a declare target construct then the name of the referenced variable or function is treated as6
if it had appeared in a to clause on a declare target directive.7

The form of the declare target directive that has no clauses and requires a matching8
end declare target directive defines an implicit extended-list to an implicit to clause. The9
implicit extended-list consists of the variable names of any variable declarations at file or10
namespace scope that appear between the two directives and of the function names of any function11
declarations at file, namespace or class scope that appear between the two directives.12

C / C++
Fortran

If a procedure is referenced in a procedure that is treated as if it appeared as a list item in a to13
clause on a declare target directive then the name of the procedure is treated as if it had14
appeared in a to clause on a declare target directive.15

If a declare target does not have any clauses then an implicit extended-list to an implicit to16
clause of one item is formed from the name of the enclosing subroutine subprogram, function17
subprogram or interface body to which it applies.18

Fortran

Restrictions19

• A threadprivate variable cannot appear in a declare target directive.20

• A variable declared in a declare target directive must have a mappable type.21

• The same list item must not appear multiple times in clauses on the same directive.22

• The same list item must not appear in both a to clause on one declare target directive and23
a link clause on another declare target directive.24

C / C++

• The declaration-definition-seq defined by a declare target directive and an25
end declare target directive must not contain any declare target directives.26

C / C++

CHAPTER 2. DIRECTIVES 127

C++
• The function names of overloaded functions or template functions may only be specified within1
an implicit extended-list.2

C++

Fortran

• If a list item is a procedure name, it must not be a generic name, procedure pointer or entry name.3

• Any declare target directive with clauses must appear in a specification part of a4
subroutine subprogram, function subprogram, program or module.5

• Any declare target directive without clauses must appear in a specification part of a6
subroutine subprogram, function subprogram or interface body to which it applies.7

• If a declare target directive is specified in an interface block for a procedure, it must match8
a declare target directive in the definition of the procedure.9

• If an external procedure is a type-bound procedure of a derived type and a declare target10
directive is specified in the definition of the external procedure, such a directive must appear in11
the interface block that is accessible to the derived type definition.12

• If any procedure is declared via a procedure declaration statement that is not in the type-bound13
procedure part of a derived-type definition, any declare target with the procedure name14
must appear in the same specification part.15

• A variable that is part of another variable (as an array or structure element) cannot appear in a16
declare target directive.17

• The declare target directive must appear in the declaration section of a scoping unit in18
which the common block or variable is declared. Although variables in common blocks can be19
accessed by use association or host association, common block names cannot. This means that a20
common block name specified in a declare target directive must be declared to be a21
common block in the same scoping unit in which the declare target directive appears.22

• If a declare target directive specifying a common block name appears in one program unit,23
then such a directive must also appear in every other program unit that contains a COMMON24
statement specifying the same name. It must appear after the last such COMMON statement in the25
program unit.26

• If a list item is declared with the BIND attribute, the corresponding C entities must also be27
specified in a declare target directive in the C program.28

• A blank common block cannot appear in a declare target directive.29

• A variable can only appear in a declare target directive in the scope in which it is declared.30
It must not be an element of a common block or appear in an EQUIVALENCE statement.31

128 OpenMP API – Version 5.0 rev 1, November 2016

• A variable that appears in a declare target directive must be declared in the Fortran scope1
of a module or have the SAVE attribute, either explicitly or implicitly.2

Fortran

2.10.8 teams Construct3

Summary4

The teams construct creates a league of thread teams and the master thread of each team executes5
the region.6

Syntax7

C / C++

The syntax of the teams construct is as follows:8

#pragma omp teams [clause[[,] clause] ...] new-line
structured-block

where clause is one of the following:9

num_teams(integer-expression)10

thread_limit(integer-expression)11

default(shared | none)12

private(list)13

firstprivate(list)14

shared(list)15

reduction(reduction-identifier : list)16

C / C++

CHAPTER 2. DIRECTIVES 129

Fortran

The syntax of the teams construct is as follows:1

!$omp teams [clause[[,] clause] ...]
structured-block

!$omp end teams

where clause is one of the following:2

num_teams(scalar-integer-expression)3

thread_limit(scalar-integer-expression)4

default(shared | firstprivate | private | none)5

private(list)6

firstprivate(list)7

shared(list)8

reduction(reduction-identifier : list)9

The end teams directive denotes the end of the teams construct.10

Fortran

Binding11

The binding thread set for a teams region is the encountering thread, which is the initial thread of12
the target region.13

Description14

When a thread encounters a teams construct, a league of thread teams is created and the master15
thread of each thread team executes the teams region.16

The number of teams created is implementation defined, but is less than or equal to the value17
specified in the num_teams clause. A thread may obtain the number of teams by a call to the18
omp_get_num_teams routine.19

The maximum number of threads participating in the contention group that each team initiates is20
implementation defined, but is less than or equal to the value specified in the thread_limit21
clause.22

On a combined or composite construct that includes target and teams constructs, the23
expressions in num_teams and thread_limit clauses are evaluated on the host device on24
entry to the target construct.25

130 OpenMP API – Version 5.0 rev 1, November 2016

Once the teams are created, the number of teams remains constant for the duration of the teams1
region.2

Within a teams region, team numbers uniquely identify each team. Team numbers are consecutive3
whole numbers ranging from zero to one less than the number of teams. A thread may obtain its4
own team number by a call to the omp_get_team_num library routine.5

After the teams have completed execution of the teams region, the encountering thread resumes6
execution of the enclosing target region.7

There is no implicit barrier at the end of a teams construct.8

Restrictions9

Restrictions to the teams construct are as follows:10

• A program that branches into or out of a teams region is non-conforming.11

• A program must not depend on any ordering of the evaluations of the clauses of the teams12
directive, or on any side effects of the evaluation of the clauses.13

• At most one thread_limit clause can appear on the directive. The thread_limit14
expression must evaluate to a positive integer value.15

• At most one num_teams clause can appear on the directive. The num_teams expression must16
evaluate to a positive integer value.17

• If specified, a teams construct must be contained within a target construct. That target18
construct must contain no statements, declarations or directives outside of the teams construct.19

• distribute, distribute simd, distribute parallel loop, distribute parallel loop SIMD,20
and parallel regions, including any parallel regions arising from combined constructs,21
are the only OpenMP regions that may be strictly nested inside the teams region.22

Cross References23

• default, shared, private, firstprivate, and reduction clauses, see24
Section 2.15.3 on page 215.25

• omp_get_num_teams routine, see Section 3.2.32 on page 295.26

• omp_get_team_num routine, see Section 3.2.33 on page 297.27

CHAPTER 2. DIRECTIVES 131

2.10.9 distribute Construct1

Summary2

The distribute construct specifies that the iterations of one or more loops will be executed by3
the thread teams in the context of their implicit tasks. The iterations are distributed across the4
master threads of all teams that execute the teams region to which the distribute region binds.5

Syntax6

C / C++

The syntax of the distribute construct is as follows:7

#pragma omp distribute [clause[[,] clause] ...] new-line
for-loops

Where clause is one of the following:8

private(list)9

firstprivate(list)10

lastprivate(list)11

collapse(n)12

dist_schedule(kind[, chunk_size])13

All associated for-loops must have the canonical form described in Section 2.6 on page 58.14

C / C++

132 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

The syntax of the distribute construct is as follows:1

!$omp distribute [clause[[,] clause] ...]
do-loops

[!$omp end distribute]

Where clause is one of the following:2

private(list)3

firstprivate(list)4

lastprivate(list)5

collapse(n)6

dist_schedule(kind[, chunk_size])7

If an end distribute directive is not specified, an end distribute directive is assumed at8
the end of the do-loops.9

Any associated do-loop must be a do-construct or an inner-shared-do-construct as defined by the10
Fortran standard. If an end distribute directive follows a do-construct in which several loop11
statements share a DO termination statement, then the directive can only be specified for the12
outermost of these DO statements.13

Fortran

Binding14

The binding thread set for a distribute region is the set of master threads executing an15
enclosing teams region. A distribute region binds to this teams region. Only the threads16
executing the binding teams region participate in the execution of the loop iterations.17

Description18

The distribute construct is associated with a loop nest consisting of one or more loops that19
follow the directive.20

There is no implicit barrier at the end of a distribute construct. To avoid data races the21
original list items modified due to lastprivate or linear clauses should not be accessed22
between the end of the distribute construct and the end of the teams region to which the23
distribute binds.24

The collapse clause may be used to specify how many loops are associated with the25
distribute construct. The parameter of the collapse clause must be a constant positive26

CHAPTER 2. DIRECTIVES 133

integer expression. If no collapse clause is present, the only loop that is associated with the1
distribute construct is the one that immediately follows the distribute construct.2

If more than one loop is associated with the distribute construct, then the iteration of all3
associated loops are collapsed into one larger iteration space. The sequential execution of the4
iterations in all associated loops determines the order of the iterations in the collapsed iteration5
space.6

The iteration count for each associated loop is computed before entry to the outermost loop. If7
execution of any associated loop changes any of the values used to compute any of the iteration8
counts, then the behavior is unspecified.9

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is10
implementation defined.11

If dist_schedule is specified, kind must be static. If specified, iterations are divided into12
chunks of size chunk_size, chunks are assigned to the teams of the league in a round-robin fashion13
in the order of the team number. When no chunk_size is specified, the iteration space is divided into14
chunks that are approximately equal in size, and at most one chunk is distributed to each team of15
the league. The size of the chunks is unspecified in this case.16

When no dist_schedule clause is specified, the schedule is implementation defined.17

Events18

The distribute-begin event occurs after an implicit task encounters a distribute construct but19
before the task starts the execution of the structured block of the distribute region.20

The distribute-end event occurs after a distribute region finishes execution but before21
resuming execution of the encountering task.22

Tool Callbacks23

A thread dispatches a registered ompt_callback_work callback for each occurrence of a24
distribute-begin and distribute-end event in that thread. The callback occurs in the context of the25
implicit task. The callback has type signature ompt_callback_work_t. The callback receives26
ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate, and27
ompt_work_distribute as its wstype argument.28

Restrictions29

Restrictions to the distribute construct are as follows:30

• The distribute construct inherits the restrictions of the loop construct.31

• The region associated with the distribute construct must be strictly nested inside a teams32
region.33

134 OpenMP API – Version 5.0 rev 1, November 2016

• A list item may appear in a firstprivate or lastprivate clause but not both.1

Cross References2

• loop construct, see Section 2.7.1 on page 62.3

• teams construct, see Section 2.10.8 on page 1294

• ompt_work_distribute, see Section 4.4.6.14 on page 357.5

• ompt_callback_work_t, see Section 4.6.2.18 on page 385.6

2.10.10 distribute simd Construct7

Summary8

The distribute simd construct specifies a loop that will be distributed across the master9
threads of the teams region and executed concurrently using SIMD instructions. The10
distribute simd construct is a composite construct.11

Syntax12

The syntax of the distribute simd construct is as follows:13

C / C++

#pragma omp distribute simd [clause[[,] clause] ...] newline
for-loops

where clause can be any of the clauses accepted by the distribute or simd directives with14
identical meanings and restrictions.15

C / C++
Fortran

!$omp distribute simd [clause[[,] clause] ...]
do-loops

[!$omp end distribute simd]

where clause can be any of the clauses accepted by the distribute or simd directives with16
identical meanings and restrictions.17

If an end distribute simd directive is not specified, an end distribute simd directive is18
assumed at the end of the do-loops.19

Fortran

CHAPTER 2. DIRECTIVES 135

Description1

The distribute simd construct will first distribute the iterations of the associated loop(s)2
according to the semantics of the distribute construct and any clauses that apply to the3
distribute construct. The resulting chunks of iterations will then be converted to a SIMD loop in a4
manner consistent with any clauses that apply to the simd construct. The effect of any clause that5
applies to both constructs is as if it were applied to both constructs separately except the6
collapse clause, which is applied once.7

Events8

This composite construct generates the same events as the distribute construct.9

Tool Callbacks10

This composite construct dispatches the same callbacks as the distribute construct.11

Restrictions12

• The restrictions for the distribute and simd constructs apply.13

• A list item may not appear in a linear clause, unless it is the loop iteration variable.14

Cross References15

• simd construct, see Section 2.8.1 on page 80.16

• distribute construct, see Section 2.10.9 on page 132.17

• Data attribute clauses, see Section 2.15.3 on page 215.18

• Events and tool callbacks for the distribute construct, see Section 2.8.1 on page 80.19

2.10.11 Distribute Parallel Loop Construct20

Summary21

The distribute parallel loop construct specifies a loop that can be executed in parallel by multiple22
threads that are members of multiple teams. The distribute parallel loop construct is a composite23
construct.24

136 OpenMP API – Version 5.0 rev 1, November 2016

Syntax1

The syntax of the distribute parallel loop construct is as follows:2

C / C++

#pragma omp distribute parallel for [clause[[,] clause] ...] newline
for-loops

where clause can be any of the clauses accepted by the distribute or parallel loop directives3
with identical meanings and restrictions.4

C / C++
Fortran

!$omp distribute parallel do [clause[[,] clause] ...]
do-loops

[!$omp end distribute parallel do]

where clause can be any of the clauses accepted by the distribute or parallel loop directives5
with identical meanings and restrictions.6

If an end distribute parallel do directive is not specified, an7
end distribute parallel do directive is assumed at the end of the do-loops.8

Fortran

Description9

The distribute parallel loop construct will first distribute the iterations of the associated loop(s) into10
chunks according to the semantics of the distribute construct and any clauses that apply to the11
distribute construct. Each of these chunks will form a loop. Each resulting loop will then be12
distributed across the threads within the teams region to which the distribute construct binds13
in a manner consistent with any clauses that apply to the parallel loop construct. The effect of any14
clause that applies to both constructs is as if it were applied to both constructs separately except the15
collapse clause, which is applied once.16

Events17

This composite construct generates the same events as the distribute and parallel loop18
constructs.19

Tool Callbacks20

This composite construct dispatches the same callbacks as the distribute and parallel loop21
constructs.22

CHAPTER 2. DIRECTIVES 137

Restrictions1

• The restrictions for the distribute and parallel loop constructs apply.2

• No ordered clause can be specified.3

• No linear clause can be specified.4

Cross References5

• distribute construct, see Section 2.10.9 on page 132.6

• Parallel loop construct, see Section 2.11.1 on page 140.7

• Data attribute clauses, see Section 2.15.3 on page 215.8

• Events and tool callbacks for distribute construct, see Section 2.10.9 on page 132.9

• Events and tool callbacks for parallel loop construct, see Section 2.11.1 on page 140.10

2.10.12 Distribute Parallel Loop SIMD Construct11

Summary12

The distribute parallel loop SIMD construct specifies a loop that can be executed concurrently13
using SIMD instructions in parallel by multiple threads that are members of multiple teams. The14
distribute parallel loop SIMD construct is a composite construct.15

Syntax16

C / C++

The syntax of the distribute parallel loop SIMD construct is as follows:17

#pragma omp distribute parallel for simd [clause[[,] clause] ...] newline
for-loops

where clause can be any of the clauses accepted by the distribute or parallel loop SIMD18
directives with identical meanings and restrictions19

C / C++

138 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

The syntax of the distribute parallel loop SIMD construct is as follows:1

!$omp distribute parallel do simd [clause[[,] clause] ...]
do-loops

[!$omp end distribute parallel do simd]

where clause can be any of the clauses accepted by the distribute or parallel loop SIMD2
directives with identical meanings and restrictions.3

If an end distribute parallel do simd directive is not specified, an4
end distribute parallel do simd directive is assumed at the end of the do-loops.5

Fortran

Description6

The distribute parallel loop SIMD construct will first distribute the iterations of the associated7
loop(s) according to the semantics of the distribute construct and any clauses that apply to the8
distribute construct. The resulting loops will then be distributed across the threads contained9
within the teams region to which the distribute construct binds in a manner consistent with10
any clauses that apply to the parallel loop construct. The resulting chunks of iterations will then be11
converted to a SIMD loop in a manner consistent with any clauses that apply to the simd construct.12
The effect of any clause that applies to both constructs is as if it were applied to both constructs13
separately except the collapse clause, which is applied once.14

Events15

This composite construct generates the same events as the distribute and parallel loop16
constructs.17

Tool Callbacks18

This composite construct dispatches the same callbacks as the distribute and parallel loop19
constructs.20

Restrictions21

• The restrictions for the distribute and parallel loop SIMD constructs apply.22

• No ordered clause can be specified.23

• A list item may not appear in a linear clause, unless it is the loop iteration variable.24

CHAPTER 2. DIRECTIVES 139

Cross References1

• distribute construct, see Section 2.10.9 on page 132.2

• Parallel loop SIMD construct, see Section 2.11.4 on page 145.3

• Data attribute clauses, see Section 2.15.3 on page 215.4

• Events and tool callbacks for distribute construct, see Section 2.10.9 on page 132.5

• Events and tool callbacks for parallel loop construct, see Section 2.11.1 on page 140.6

2.11 Combined Constructs7

Combined constructs are shortcuts for specifying one construct immediately nested inside another8
construct. The semantics of the combined constructs are identical to that of explicitly specifying9
the first construct containing one instance of the second construct and no other statements.10

Some combined constructs have clauses that are permitted on both constructs that were combined.11
Where specified, the effect is as if applying the clauses to one or both constructs. If not specified12
and applying the clause to one construct would result in different program behavior than applying13
the clause to the other construct then the program’s behavior is unspecified.14

For combined constructs, tool callbacks shall be invoked as if the constructs were explicitly nested.15

2.11.1 Parallel Loop Construct16

Summary17

The parallel loop construct is a shortcut for specifying a parallel construct containing one loop18
constuct with one or more associated loops and no other statements.19

140 OpenMP API – Version 5.0 rev 1, November 2016

Syntax1

C / C++

The syntax of the parallel loop construct is as follows:2

#pragma omp parallel for [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the parallel or for directives, except the3
nowait clause, with identical meanings and restrictions.4

C / C++
Fortran

The syntax of the parallel loop construct is as follows:5

!$omp parallel do [clause[[,] clause] ...]
do-loops

[!$omp end parallel do]

where clause can be any of the clauses accepted by the parallel or do directives, with identical6
meanings and restrictions.7

If an end parallel do directive is not specified, an end parallel do directive is assumed at8
the end of the do-loops. nowait may not be specified on an end parallel do directive.9

Fortran

Description10

The semantics are identical to explicitly specifying a parallel directive immediately followed11
by a loop directive.12

Restrictions13

• The restrictions for the parallel construct and the loop construct apply.14

Cross References15

• parallel construct, see Section 2.5 on page 50.16

• loop SIMD construct, see Section 2.8.3 on page 89.17

• Data attribute clauses, see Section 2.15.3 on page 215.18

CHAPTER 2. DIRECTIVES 141

2.11.2 parallel sections Construct1

Summary2

The parallel sections construct is a shortcut for specifying a parallel construct3
containing one sections construct and no other statements.4

Syntax5

C / C++

The syntax of the parallel sections construct is as follows:6

#pragma omp parallel sections [clause[[,] clause] ...] new-line
{
[#pragma omp section new-line]

structured-block
[#pragma omp section new-line

structured-block]
...
}

where clause can be any of the clauses accepted by the parallel or sections directives,7
except the nowait clause, with identical meanings and restrictions.8

C / C++
Fortran

The syntax of the parallel sections construct is as follows:9

!$omp parallel sections [clause[[,] clause] ...]
[!$omp section]

structured-block
[!$omp section

structured-block]
...

!$omp end parallel sections

where clause can be any of the clauses accepted by the parallel or sections directives, with10
identical meanings and restrictions.11

The last section ends at the end parallel sections directive. nowait cannot be specified12
on an end parallel sections directive.13

Fortran

142 OpenMP API – Version 5.0 rev 1, November 2016

Description1

C / C++

The semantics are identical to explicitly specifying a parallel directive immediately followed2
by a sections directive.3

C / C++
Fortran

The semantics are identical to explicitly specifying a parallel directive immediately followed4
by a sections directive, and an end sections directive immediately followed by an5
end parallel directive.6

Fortran

Restrictions7

The restrictions for the parallel construct and the sections construct apply.8

Cross References9

• parallel construct, see Section 2.5 on page 50.10

• sections construct, see Section 2.7.2 on page 71.11

• Data attribute clauses, see Section 2.15.3 on page 215.12

Fortran

2.11.3 parallel workshare Construct13

Summary14

The parallel workshare construct is a shortcut for specifying a parallel construct15
containing one workshare construct and no other statements.16

CHAPTER 2. DIRECTIVES 143

Syntax1

The syntax of the parallel workshare construct is as follows:2

!$omp parallel workshare [clause[[,] clause] ...]
structured-block

!$omp end parallel workshare

where clause can be any of the clauses accepted by the parallel directive, with identical3
meanings and restrictions. nowait may not be specified on an end parallel workshare4
directive.5

Description6

The semantics are identical to explicitly specifying a parallel directive immediately followed7
by a workshare directive, and an end workshare directive immediately followed by an8
end parallel directive.9

Restrictions10

The restrictions for the parallel construct and the workshare construct apply.11

Cross References12

• parallel construct, see Section 2.5 on page 50.13

• workshare construct, see Section 2.7.4 on page 76.14

• Data attribute clauses, see Section 2.15.3 on page 215.15

Fortran

144 OpenMP API – Version 5.0 rev 1, November 2016

2.11.4 Parallel Loop SIMD Construct1

Summary2

The parallel loop SIMD construct is a shortcut for specifying a parallel construct containing3
one loop SIMD construct and no other statement.4

Syntax5

C / C++

The syntax of the parallel loop SIMD construct is as follows:6

#pragma omp parallel for simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the parallel or for simd directives, except7
the nowait clause, with identical meanings and restrictions.8

C / C++
Fortran

The syntax of the parallel loop SIMD construct is as follows:9

!$omp parallel do simd [clause[[,] clause] ...]
do-loops

[!$omp end parallel do simd]

where clause can be any of the clauses accepted by the parallel or do simd directives, with10
identical meanings and restrictions.11

If an end parallel do simd directive is not specified, an end parallel do simd directive12
is assumed at the end of the do-loops. nowait may not be specified on an13
end parallel do simd directive.14

Fortran

Description15

The semantics of the parallel loop SIMD construct are identical to explicitly specifying a16
parallel directive immediately followed by a loop SIMD directive. The effect of any clause that17
applies to both constructs is as if it were applied to the loop SIMD construct and not to the18
parallel construct.19

CHAPTER 2. DIRECTIVES 145

Restrictions1

The restrictions for the parallel construct and the loop SIMD construct apply.2

Cross References3

• parallel construct, see Section 2.5 on page 50.4

• loop SIMD construct, see Section 2.8.3 on page 89.5

• Data attribute clauses, see Section 2.15.3 on page 215.6

2.11.5 target parallel Construct7

Summary8

The target parallel construct is a shortcut for specifying a target construct containing a9
parallel construct and no other statements.10

Syntax11

C / C++

The syntax of the target parallel construct is as follows:12

#pragma omp target parallel [clause[[,] clause] ...] new-line
structured-block

where clause can be any of the clauses accepted by the target or parallel directives, except13
for copyin, with identical meanings and restrictions.14

C / C++

146 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

The syntax of the target parallel construct is as follows:1

!$omp target parallel [clause[[,] clause] ...]
structured-block

!$omp end target parallel

where clause can be any of the clauses accepted by the target or parallel directives, except2
for copyin, with identical meanings and restrictions.3

Fortran

Description4

The semantics are identical to explicitly specifying a target directive immediately followed by a5
parallel directive.6

Restrictions7

The restrictions for the target and parallel constructs apply except for the following explicit8
modifications:9

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the10
directive must include a directive-name-modifier.11

• At most one if clause without a directive-name-modifier can appear on the directive.12

• At most one if clause with the parallel directive-name-modifier can appear on the directive.13

• At most one if clause with the target directive-name-modifier can appear on the directive.14

Cross References15

• parallel construct, see Section 2.5 on page 50.16

• target construct, see Section 2.10.5 on page 116.17

• if Clause, see Section 2.12 on page 164.18

• Data attribute clauses, see Section 2.15.3 on page 215.19

CHAPTER 2. DIRECTIVES 147

2.11.6 Target Parallel Loop Construct1

Summary2

The target parallel loop construct is a shortcut for specifying a target construct containing a3
parallel loop construct and no other statements.4

Syntax5

C / C++

The syntax of the target parallel loop construct is as follows:6

#pragma omp target parallel for [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the target or parallel for directives,7
except for copyin, with identical meanings and restrictions.8

C / C++
Fortran

The syntax of the target parallel loop construct is as follows:9

!$omp target parallel do [clause[[,] clause] ...]
do-loops

[!$omp end target parallel do]

where clause can be any of the clauses accepted by the target or parallel do directives,10
except for copyin, with identical meanings and restrictions.11

If an end target parallel do directive is not specified, an end target parallel do12
directive is assumed at the end of the do-loops.13

Fortran

Description14

The semantics are identical to explicitly specifying a target directive immediately followed by a15
parallel loop directive.16

148 OpenMP API – Version 5.0 rev 1, November 2016

Restrictions1

The restrictions for the target and parallel loop constructs apply except for the following explicit2
modifications:3

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the4
directive must include a directive-name-modifier.5

• At most one if clause without a directive-name-modifier can appear on the directive.6

• At most one if clause with the parallel directive-name-modifier can appear on the directive.7

• At most one if clause with the target directive-name-modifier can appear on the directive.8

Cross References9

• target construct, see Section 2.10.5 on page 116.10

• Parallel loop construct, see Section 2.11.1 on page 140.11

• if Clause, see Section 2.12 on page 164.12

• Data attribute clauses, see Section 2.15.3 on page 215.13

2.11.7 Target Parallel Loop SIMD Construct14

Summary15

The target parallel loop SIMD construct is a shortcut for specifying a target construct containing16
a parallel loop SIMD construct and no other statements.17

Syntax18

C / C++

The syntax of the target parallel loop SIMD construct is as follows:19

#pragma omp target parallel for simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the target or parallel for simd20
directives, except for copyin, with identical meanings and restrictions.21

C / C++

CHAPTER 2. DIRECTIVES 149

Fortran

The syntax of the target parallel loop SIMD construct is as follows:1

!$omp target parallel do simd [clause[[,] clause] ...]
do-loops

[!$omp end target parallel do simd]

where clause can be any of the clauses accepted by the target or parallel do simd2
directives, except for copyin, with identical meanings and restrictions.3

If an end target parallel do simd directive is not specified, an4
end target parallel do simd directive is assumed at the end of the do-loops.5

Fortran

Description6

The semantics are identical to explicitly specifying a target directive immediately followed by a7
parallel loop SIMD directive.8

Restrictions9

The restrictions for the target and parallel loop SIMD constructs apply except for the following10
explicit modifications:11

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the12
directive must include a directive-name-modifier.13

• At most one if clause without a directive-name-modifier can appear on the directive.14

• At most one if clause with the parallel directive-name-modifier can appear on the directive.15

• At most one if clause with the target directive-name-modifier can appear on the directive.16

Cross References17

• target construct, see Section 2.10.5 on page 116.18

• Parallel loop SIMD construct, see Section 2.11.4 on page 145.19

• if Clause, see Section 2.12 on page 164.20

• Data attribute clauses, see Section 2.15.3 on page 215.21

150 OpenMP API – Version 5.0 rev 1, November 2016

2.11.8 target simd Construct1

Summary2

The target simd construct is a shortcut for specifying a target construct containing a simd3
construct and no other statements.4

Syntax5

C / C++

The syntax of the target simd construct is as follows:6

#pragma omp target simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the target or simd directives with identical7
meanings and restrictions.8

C / C++
Fortran

The syntax of the target simd construct is as follows:9

!$omp target simd [clause[[,] clause] ...]
do-loops

[!$omp end target simd]

where clause can be any of the clauses accepted by the target or simd directives with identical10
meanings and restrictions.11

If an end target simd directive is not specified, an end target simd directive is assumed at12
the end of the do-loops.13

Fortran

Description14

The semantics are identical to explicitly specifying a target directive immediately followed by a15
simd directive.16

Restrictions17

The restrictions for the target and simd constructs apply.18

CHAPTER 2. DIRECTIVES 151

Cross References1

• simd construct, see Section 2.8.1 on page 80.2

• target construct, see Section 2.10.5 on page 116.3

• Data attribute clauses, see Section 2.15.3 on page 215.4

2.11.9 target teams Construct5

Summary6

The target teams construct is a shortcut for specifying a target construct containing a7
teams construct and no other statements.8

Syntax9

C / C++

The syntax of the target teams construct is as follows:10

#pragma omp target teams [clause[[,] clause] ...] new-line
structured-block

where clause can be any of the clauses accepted by the target or teams directives with identical11
meanings and restrictions.12

C / C++
Fortran

The syntax of the target teams construct is as follows:13

!$omp target teams [clause[[,] clause] ...]
structured-block

!$omp end target teams

where clause can be any of the clauses accepted by the target or teams directives with identical14
meanings and restrictions.15

Fortran

152 OpenMP API – Version 5.0 rev 1, November 2016

Description1

The semantics are identical to explicitly specifying a target directive immediately followed by a2
teams directive.3

Restrictions4

The restrictions for the target and teams constructs apply.5

Cross References6

• target construct, see Section 2.10.5 on page 116.7

• teams construct, see Section 2.10.8 on page 129.8

• Data attribute clauses, see Section 2.15.3 on page 215.9

2.11.10 teams distribute Construct10

Summary11

The teams distribute construct is a shortcut for specifying a teams construct containing a12
distribute construct and no other statements.13

Syntax14

C / C++

The syntax of the teams distribute construct is as follows:15

#pragma omp teams distribute [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the teams or distribute directives with16
identical meanings and restrictions.17

C / C++

CHAPTER 2. DIRECTIVES 153

Fortran

The syntax of the teams distribute construct is as follows:1

!$omp teams distribute [clause[[,] clause] ...]
do-loops

[!$omp end teams distribute]

where clause can be any of the clauses accepted by the teams or distribute directives with2
identical meanings and restrictions.3

If an end teams distribute directive is not specified, an end teams distribute4
directive is assumed at the end of the do-loops.5

Fortran

Description6

The semantics are identical to explicitly specifying a teams directive immediately followed by a7
distribute directive. The effect of any clause that applies to both constructs is as if it were8
applied to both constructs separately.9

Restrictions10

The restrictions for the teams and distribute constructs apply.11

Cross References12

• teams construct, see Section 2.10.8 on page 129.13

• distribute construct, see Section 2.10.9 on page 132.14

• Data attribute clauses, see Section 2.15.3 on page 215.15

2.11.11 teams distribute simd Construct16

Summary17

The teams distribute simd construct is a shortcut for specifying a teams construct18
containing a distribute simd construct and no other statements.19

154 OpenMP API – Version 5.0 rev 1, November 2016

Syntax1

C / C++

The syntax of the teams distribute simd construct is as follows:2

#pragma omp teams distribute simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the teams or distribute simd directives3
with identical meanings and restrictions.4

C / C++
Fortran

The syntax of the teams distribute simd construct is as follows:5

!$omp teams distribute simd [clause[[,] clause] ...]
do-loops

[!$omp end teams distribute simd]

where clause can be any of the clauses accepted by the teams or distribute simd directives6
with identical meanings and restrictions.7

If an end teams distribute simd directive is not specified, an8
end teams distribute simd directive is assumed at the end of the do-loops.9

Fortran

Description10

The semantics are identical to explicitly specifying a teams directive immediately followed by a11
distribute simd directive. The effect of any clause that applies to both constructs is as if it12
were applied to both constructs separately.13

Restrictions14

The restrictions for the teams and distribute simd constructs apply.15

Cross References16

• teams construct, see Section 2.10.8 on page 129.17

• distribute simd construct, see Section 2.10.10 on page 135.18

• Data attribute clauses, see Section 2.15.3 on page 215.19

CHAPTER 2. DIRECTIVES 155

2.11.12 target teams distribute Construct1

Summary2

The target teams distribute construct is a shortcut for specifying a target construct3
containing a teams distribute construct and no other statements.4

Syntax5

C / C++

The syntax of the target teams distribute construct is as follows:6

#pragma omp target teams distribute [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the target or teams distribute7
directives with identical meanings and restrictions.8

C / C++
Fortran

The syntax of the target teams distribute construct is as follows:9

!$omp target teams distribute [clause[[,] clause] ...]
do-loops

[!$omp end target teams distribute]

where clause can be any of the clauses accepted by the target or teams distribute10
directives with identical meanings and restrictions.11

If an end target teams distribute directive is not specified, an12
end target teams distribute directive is assumed at the end of the do-loops.13

Fortran

Description14

The semantics are identical to explicitly specifying a target directive immediately followed by a15
teams distribute directive.16

Restrictions17

The restrictions for the target and teams distribute constructs apply.18

156 OpenMP API – Version 5.0 rev 1, November 2016

Cross References1

• target construct, see Section 2.10.2 on page 107.2

• teams distribute construct, see Section 2.11.10 on page 153.3

• Data attribute clauses, see Section 2.15.3 on page 215.4

2.11.13 target teams distribute simdConstruct5

Summary6

The target teams distribute simd construct is a shortcut for specifying a target7
construct containing a teams distribute simd construct and no other statements.8

Syntax9

C / C++

The syntax of the target teams distribute simd construct is as follows:10

#pragma omp target teams distribute simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the target or teams distribute simd11
directives with identical meanings and restrictions.12

C / C++
Fortran

The syntax of the target teams distribute simd construct is as follows:13

!$omp target teams distribute simd [clause[[,] clause] ...]
do-loops

[!$omp end target teams distribute simd]

where clause can be any of the clauses accepted by the target or teams distribute simd14
directives with identical meanings and restrictions.15

If an end target teams distribute simd directive is not specified, an16
end target teams distribute simd directive is assumed at the end of the do-loops.17

Fortran

CHAPTER 2. DIRECTIVES 157

Description1

The semantics are identical to explicitly specifying a target directive immediately followed by a2
teams distribute simd directive.3

Restrictions4

The restrictions for the target and teams distribute simd constructs apply.5

Cross References6

• target construct, see Section 2.10.2 on page 107.7

• teams distribute simd construct, see Section 2.11.11 on page 154.8

• Data attribute clauses, see Section 2.15.3 on page 215.9

2.11.14 Teams Distribute Parallel Loop Construct10

Summary11

The teams distribute parallel loop construct is a shortcut for specifying a teams construct12
containing a distribute parallel loop construct and no other statements.13

Syntax14

C / C++

The syntax of the teams distribute parallel loop construct is as follows:15

#pragma omp teams distribute parallel for [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the teams or distribute parallel for16
directives with identical meanings and restrictions.17

C / C++

158 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

The syntax of the teams distribute parallel loop construct is as follows:1

!$omp teams distribute parallel do [clause[[,] clause] ...]
do-loops

[!$omp end teams distribute parallel do]

where clause can be any of the clauses accepted by the teams or distribute parallel do2
directives with identical meanings and restrictions.3

If an end teams distribute parallel do directive is not specified, an4
end teams distribute parallel do directive is assumed at the end of the do-loops.5

Fortran

Description6

The semantics are identical to explicitly specifying a teams directive immediately followed by a7
distribute parallel loop directive. The effect of any clause that applies to both constructs is as if it8
were applied to both constructs separately.9

Restrictions10

The restrictions for the teams and distribute parallel loop constructs apply.11

Cross References12

• teams construct, see Section 2.10.8 on page 129.13

• Distribute parallel loop construct, see Section 2.10.11 on page 136.14

• Data attribute clauses, see Section 2.15.3 on page 215.15

2.11.15 Target Teams Distribute Parallel Loop Construct16

Summary17

The target teams distribute parallel loop construct is a shortcut for specifying a target construct18
containing a teams distribute parallel loop construct and no other statements.19

CHAPTER 2. DIRECTIVES 159

Syntax1

C / C++

The syntax of the target teams distribute parallel loop construct is as follows:2

#pragma omp target teams distribute parallel for [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the target or3
teams distribute parallel for directives with identical meanings and restrictions.4

C / C++
Fortran

The syntax of the target teams distribute parallel loop construct is as follows:5

!$omp target teams distribute parallel do [clause[[,] clause] ...]
do-loops

[!$omp end target teams distribute parallel do]

where clause can be any of the clauses accepted by the target or6
teams distribute parallel do directives with identical meanings and restrictions.7

If an end target teams distribute parallel do directive is not specified, an8
end target teams distribute parallel do directive is assumed at the end of the9
do-loops.10

Fortran

Description11

The semantics are identical to explicitly specifying a target directive immediately followed by a12
teams distribute parallel loop directive.13

Restrictions14

The restrictions for the target and teams distribute parallel loop constructs apply except for the15
following explicit modifications:16

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the17
directive must include a directive-name-modifier.18

• At most one if clause without a directive-name-modifier can appear on the directive.19

• At most one if clause with the parallel directive-name-modifier can appear on the directive.20

• At most one if clause with the target directive-name-modifier can appear on the directive.21

160 OpenMP API – Version 5.0 rev 1, November 2016

Cross References1

• target construct, see Section 2.10.5 on page 116.2

• Teams distribute parallel loop construct, see Section 2.11.14 on page 158.3

• if Clause, see Section 2.12 on page 164.4

• Data attribute clauses, see Section 2.15.3 on page 215.5

2.11.16 Teams Distribute Parallel Loop SIMD Construct6

Summary7

The teams distribute parallel loop SIMD construct is a shortcut for specifying a teams construct8
containing a distribute parallel loop SIMD construct and no other statements.9

Syntax10

C / C++

The syntax of the teams distribute parallel loop construct is as follows:11

#pragma omp teams distribute parallel for simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the teams or12
distribute parallel for simd directives with identical meanings and restrictions.13

C / C++
Fortran

The syntax of the teams distribute parallel loop construct is as follows:14

!$omp teams distribute parallel do simd [clause[[,] clause] ...]
do-loops

[!$omp end teams distribute parallel do simd]

where clause can be any of the clauses accepted by the teams or15
distribute parallel do simd directives with identical meanings and restrictions.16

If an end teams distribute parallel do simd directive is not specified, an17
end teams distribute parallel do simd directive is assumed at the end of the do-loops.18

Fortran

CHAPTER 2. DIRECTIVES 161

Description1

The semantics are identical to explicitly specifying a teams directive immediately followed by a2
distribute parallel loop SIMD directive. The effect of any clause that applies to both constructs is as3
if it were applied to both constructs separately.4

Restrictions5

The restrictions for the teams and distribute parallel loop SIMD constructs apply.6

Cross References7

• teams construct, see Section 2.10.8 on page 129.8

• Distribute parallel loop SIMD construct, see Section 2.10.12 on page 138.9

• Data attribute clauses, see Section 2.15.3 on page 215.10

2.11.17 Target Teams Distribute Parallel Loop SIMD11

Construct12

Summary13

The target teams distribute parallel loop SIMD construct is a shortcut for specifying a target14
construct containing a teams distribute parallel loop SIMD construct and no other statements.15

Syntax16

C / C++

The syntax of the target teams distribute parallel loop SIMD construct is as follows:17

#pragma omp target teams distribute parallel for simd \
[clause[[,] clause] ...] new-line

for-loops

where clause can be any of the clauses accepted by the target or18
teams distribute parallel for simd directives with identical meanings and restrictions.19

C / C++

162 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

The syntax of the target teams distribute parallel loop SIMD construct is as follows:1

!$omp target teams distribute parallel do simd [clause[[,] clause] ...]
do-loops

[!$omp end target teams distribute parallel do simd]

where clause can be any of the clauses accepted by the target or2
teams distribute parallel do simd directives with identical meanings and restrictions.3

If an end target teams distribute parallel do simd directive is not specified, an4
end target teams distribute parallel do simd directive is assumed at the end of the5
do-loops.6

Fortran

Description7

The semantics are identical to explicitly specifying a target directive immediately followed by a8
teams distribute parallel loop SIMD directive.9

Restrictions10

The restrictions for the target and teams distribute parallel loop SIMD constructs apply except11
for the following explicit modifications:12

• If any if clause on the directive includes a directive-name-modifier then all if clauses on the13
directive must include a directive-name-modifier.14

• At most one if clause without a directive-name-modifier can appear on the directive.15

• At most one if clause with the parallel directive-name-modifier can appear on the directive.16

• At most one if clause with the target directive-name-modifier can appear on the directive.17

Cross References18

• target construct, see Section 2.10.5 on page 116.19

• Teams distribute parallel loop SIMD construct, see Section 2.11.16 on page 161.20

• if Clause, see Section 2.12 on page 164.21

• Data attribute clauses, see Section 2.15.3 on page 215.22

CHAPTER 2. DIRECTIVES 163

2.12 if Clause1

Summary2

The semantics of an if clause are described in the section on the construct to which it applies. The3
if clause directive-name-modifier names the associated construct to which an expression applies,4
and is particularly useful for composite and combined constructs.5

Syntax6

C / C++

The syntax of the if clause is as follows:7

if([directive-name-modifier :] scalar-expression)

C / C++
Fortran

The syntax of the if clause is as follows:8

if([directive-name-modifier :] scalar-logical-expression)

Fortran

Description9

The effect of the if clause depends on the construct to which it is applied. For combined or10
composite constructs, the if clause only applies to the semantics of the construct named in the11
directive-name-modifier if one is specified. If no directive-name-modifier is specified for a12
combined or composite construct then the if clause applies to all constructs to which an if clause13
can apply.14

164 OpenMP API – Version 5.0 rev 1, November 2016

2.13 Master and Synchronization Constructs1

and Clauses2

OpenMP provides the following synchronization constructs:3

• the master construct;4

• the critical construct;5

• the barrier construct;6

• the taskwait construct;7

• the taskgroup construct;8

• the atomic construct;9

• the flush construct;10

• the ordered construct.11

2.13.1 master Construct12

Summary13

The master construct specifies a structured block that is executed by the master thread of the team.14

Syntax15

C / C++

The syntax of the master construct is as follows:16

#pragma omp master new-line
structured-block

C / C++
Fortran

The syntax of the master construct is as follows:17

!$omp master
structured-block

!$omp end master

Fortran

CHAPTER 2. DIRECTIVES 165

Binding1

The binding thread set for a master region is the current team. A master region binds to the2
innermost enclosing parallel region. Only the master thread of the team executing the binding3
parallel region participates in the execution of the structured block of the master region.4

Description5

Other threads in the team do not execute the associated structured block. There is no implied6
barrier either on entry to, or exit from, the master construct.7

Events8

The master-begin event occurs in the thread encountering the master construct on entry to the9
master region, if it is the master thread of the team.10

The master-end event occurs in the thread encountering the master construct on exit of the master11
region, if it is the master thread of the team.12

Tool Callbacks13

A thread dispatches a registered ompt_callback_master callback for each occurrence of a14
master-begin and a master-end event in that thread.15

The callback occurs in the context of the task executed by the master thread. This callback has the16
type signature ompt_callback_master_t. The callback receives ompt_scope_begin or17
ompt_scope_end as its endpoint argument, as appropriate.18

Restrictions19

C++
• A throw executed inside a master region must cause execution to resume within the same20
master region, and the same thread that threw the exception must catch it21

C++

Cross References22

• ompt_scope_begin and ompt_scope_end, see Section 4.4.6.11 on page 356.23

• ompt_callback_master_t, see Section 4.6.2.6 on page 371.24

166 OpenMP API – Version 5.0 rev 1, November 2016

2.13.2 critical Construct1

Summary2

The critical construct restricts execution of the associated structured block to a single thread at3
a time.4

Syntax5

C / C++

The syntax of the critical construct is as follows:6

#pragma omp critical [(name) [hint(hint-expression)]] new-line
structured-block

where hint-expression is an integer constant expression that evaluates to a valid lock hint (as7
described in Section 3.3.2 on page 304).8

C / C++
Fortran

The syntax of the critical construct is as follows:9

!$omp critical [(name) [hint(hint-expression)]]
structured-block

!$omp end critical [(name)]

where hint-expression is a constant expression that evaluates to a scalar value with kind10
omp_lock_hint_kind and a value that is a valid lock hint (as described in Section 3.3.2 on11
page 304).12

Fortran

Binding13

The binding thread set for a critical region is all threads in the contention group. The region is14
executed as if only a single thread at a time among all threads in the contention group is entering15
the region for execution, without regard to the team(s) to which the threads belong.16

CHAPTER 2. DIRECTIVES 167

Description1

An optional name may be used to identify the critical construct. All critical constructs2
without a name are considered to have the same unspecified name.3

C / C++

Identifiers used to identify a critical construct have external linkage and are in a name space4
that is separate from the name spaces used by labels, tags, members, and ordinary identifiers.5

C / C++
Fortran

The names of critical constructs are global entities of the program. If a name conflicts with6
any other entity, the behavior of the program is unspecified.7

Fortran

The threads of a contention group execute the critical region as if only one thread of the8
contention group is executing the critical region at a time. The critical construct enforces9
these execution semantics with respect to all critical constructs with the same name in all10
threads in the contention group, not just those threads in the current team.11

The presence of a hint clause does not affect the isolation guarantees provided by the critical12
construct. If no hint clause is specified, the effect is as if hint(omp_lock_hint_none) had13
been specified.14

Events15

The critical-acquire event occurs in the thread encountering the critical construct on entry to16
the critical region before initiating synchronization for the region.17

The critical-acquired event occurs in the thread encountering the critical construct after18
entering the region, but before executing the structured block of the critical region.19

The critical-release event occurs in the thread encountering the critical construct after20
completing any synchronization on exit from the critical region.21

168 OpenMP API – Version 5.0 rev 1, November 2016

Tool Callbacks1

A thread dispatches a registered ompt_callback_mutex_acquire callback for each2
occurrence of a critical-acquire event in that thread. This callback has the type signature3
ompt_callback_mutex_acquire_t.4

A thread dispatches a registered ompt_callback_mutex_acquired callback for each5
occurrence of a critical-acquired event in that thread. This callback has the type signature6
ompt_callback_mutex_t.7

A thread dispatches a registered ompt_callback_mutex_released callback for each8
occurrence of a critical-release event in that thread. This callback has the type signature9
ompt_callback_mutex_t. The callbacks occur in the task encountering the critical construct.10
The callbacks should receive ompt_mutex_critical as their kind argument if practical, but a11
less specific kind is acceptable.12

Restrictions13

• If the hint clause is specified, the critical construct must have a name.14

• If the hint clause is specified, each of the critical constructs with the same name must15
have a hint clause for which the hint-expression evaluates to the same value.16

C++
• A throw executed inside a critical region must cause execution to resume within the same17
critical region, and the same thread that threw the exception must catch it.18

C++

Fortran

The following restrictions apply to the critical construct:19

• If a name is specified on a critical directive, the same name must also be specified on the20
end critical directive.21

• If no name appears on the critical directive, no name can appear on the end critical22
directive.23

Fortran

CHAPTER 2. DIRECTIVES 169

Cross References1

• omp_init_lock_with_hint and omp_init_nest_lock_with_hint, see2
Section 3.3.2 on page 304.3

• ompt_mutex_critical, see Section 4.4.6.15 on page 358.4

• ompt_callback_mutex_acquire_t, see Section 4.6.2.15 on page 381.5

• ompt_callback_mutex_t, see Section 4.6.2.16 on page 383.6

2.13.3 barrier Construct7

Summary8

The barrier construct specifies an explicit barrier at the point at which the construct appears.9
The barrier construct is a stand-alone directive.10

Syntax11

C / C++

The syntax of the barrier construct is as follows:12

#pragma omp barrier new-line

C / C++
Fortran

The syntax of the barrier construct is as follows:13

!$omp barrier

Fortran

Binding14

The binding thread set for a barrier region is the current team. A barrier region binds to the15
innermost enclosing parallel region.16

170 OpenMP API – Version 5.0 rev 1, November 2016

Description1

All threads of the team executing the binding parallel region must execute the barrier2
region and complete execution of all explicit tasks bound to this parallel region before any are3
allowed to continue execution beyond the barrier.4

The barrier region includes an implicit task scheduling point in the current task region.5

Events6

The barrier-begin event occurs in each thread encountering the barrier construct on entry to the7
barrier region.8

The barrier-wait-begin event occurs when a task begins an interval of active or passive waiting in a9
barrier region.10

The barrier-wait-end event occurs when a task ends an interval of active or passive waiting and11
resumes execution in a barrier region.12

The barrier-end event occurs in each thread encountering the barrier construct after the barrier13
synchronization on exit from the barrier region.14

A cancellation event occurs if cancellation is activated at an implicit cancellation point in an barrier15
region.16

Tool Callbacks17

A thread dispatches a registered ompt_callback_sync_region callback for each occurrence18
of a barrier-begin and barrier-end event in that thread. The callback occurs in the task encountering19
the barrier construct. This callback has the type signature ompt_callback_sync_region_t.20
The callback receives ompt_sync_region_barrier as its kind argument and21
ompt_scope_begin or ompt_scope_end as its endpoint argument, as appropriate.22

A thread dispatches a registered ompt_callback_sync_region_wait callback for each23
occurrence of a barrier-wait-begin and barrier-wait-end event. This callback has type signature24
ompt_callback_sync_region_t. This callback executes in the context of the task that25
encountered the barrier construct. The callback receives ompt_sync_region_barrier as26
its kind argument and ompt_scope_begin or ompt_scope_end as its endpoint argument, as27
appropriate.28

A thread dispatches a registered ompt_callback_cancel callback for each occurrence of a29
cancellation event in that thread. The callback occurs in the context of the encountering task. The30
callback has type signature ompt_callback_cancel_t. The callback receives31
ompt_cancel_detected as its flags argument.32

CHAPTER 2. DIRECTIVES 171

Restrictions1

The following restrictions apply to the barrier construct:2

• Each barrier region must be encountered by all threads in a team or by none at all, unless3
cancellation has been requested for the innermost enclosing parallel region.4

• The sequence of worksharing regions and barrier regions encountered must be the same for5
every thread in a team.6

Cross References7

• ompt_scope_begin and ompt_scope_end, see Section 4.4.6.11 on page 356.8

• ompt_sync_region_barrier, see Section 4.4.6.12 on page 357.9

• ompt_callback_sync_region_t, see Section 4.6.2.12 on page 378.10

• ompt_callback_cancel_t, see Section 4.6.2.27 on page 395.11

2.13.4 Implicit Barriers12

Implicit tasks in a parallel region synchronize with one another using implicit barriers at the end of13
worksharing constructs and at the end of the parallel region. This section describes the OMPT14
events and tool callbacks associated with implicit barriers.15

Implicit barriers are task scheduling points. For a description of task sheduling points, associated16
events, and tool callbacks, see Section 2.9.6 on page 104.17

Events18

A cancellation event occurs if cancellation is activated at an implicit cancellation point in an19
implicit barrier region.20

The implicit-barrier-begin event occurs in each implicit task at the beginning of an implicit barrier.21

The implicit-barrier-wait-begin event occurs when a task begins an interval of active or passive22
waiting while executing in an implicit barrier region.23

The implicit-barrier-wait-end event occurs when a task ends an interval of active or waiting and24
resumes execution of an implicit barrier region.25

The implicit-barrier-end event occurs in each implicit task at the end of an implicit barrier.26

172 OpenMP API – Version 5.0 rev 1, November 2016

Tool Callbacks1

A thread dispatches a registered ompt_callback_sync_region callback for each occurrence2
of a implicit-barrier-begin and implicit-barrier-end event in that thread. The callback occurs in the3
implicit task executing in a parallel region. This callback has the type signature4
ompt_callback_sync_region_t. The callback receives5
ompt_sync_region_barrier as its kind argument and ompt_scope_begin or6
ompt_scope_end as its endpoint argument, as appropriate.7

A thread dispatches a registered ompt_callback_cancel callback for each occurrence of a8
cancellation event in that thread. The callback occurs in the context of the encountering task. The9
callback has type signature ompt_callback_cancel_t. The callback receives10
ompt_cancel_detected as its flags argument.11

A thread dispatches a registered ompt_callback_sync_region_wait callback for each12
occurrence of a implicit-barrier-wait-begin and implicit-barrier-wait-end event. This callback has13
type signature ompt_callback_sync_region_t. The callback occurs in each implicit task14
participating in an implicit barrier. The callback receives ompt_sync_region_barrier as its15
kind argument and ompt_scope_begin or ompt_scope_end as its endpoint argument, as16
appropriate.17

Restrictions18

If a thread is in the state omp_state_wait_barrier_implicit_parallel, a call to19
ompt_get_parallel_info may return a pointer to a copy of the current parallel region’s20
parallel_data rather than a pointer to the data word for the region itself. This convention enables21
the master thread for a parallel region to free storage for the region immediately after the region22
ends, yet avoid having some other thread in the region’s team potentially reference the region’s23
parallel_data object after it has been freed.24

Cross References25

• ompt_scope_begin and ompt_scope_end, see Section 4.4.6.11 on page 356.26

• ompt_sync_region_barrier, see Section 4.4.6.12 on page 35727

• ompt_cancel_detected, see Section 4.4.6.23 on page 362.28

• ompt_callback_sync_region_t, see Section 4.6.2.12 on page 378.29

• ompt_callback_cancel_t, see Section 4.6.2.27 on page 395.30

CHAPTER 2. DIRECTIVES 173

2.13.5 taskwait Construct1

Summary2

The taskwait construct specifies a wait on the completion of child tasks of the current task. The3
taskwait construct is a stand-alone directive.4

Syntax5

C / C++

The syntax of the taskwait construct is as follows:6

#pragma omp taskwait [clause[[,] clause] ...] new-line

where clause is one of the following:7

depend(dependence-type : locator-list)8

C / C++
Fortran

The syntax of the taskwait construct is as follows:9

!$omp taskwait [clause[[,] clause] ...]

where clause is one of the following:10

depend(dependence-type : locator-list)11

Fortran

Binding12

The taskwait region binds to the current task region. The binding thread set of the taskwait13
region is the current team.14

174 OpenMP API – Version 5.0 rev 1, November 2016

Description1

If no depend clause is present on the taskwait construct, the current task region is suspended2
at an implicit task scheduling point associated with the construct. The current task region remains3
suspended until all child tasks that it generated before the taskwait region complete execution.4

Otherwise, if one or more depend clauses are present on the taskwait construct, the behavior5
is as if these clauses were applied to a task construct with an empty associated structured block6
that generates a mergeable and included task. Thus, the current task region is suspended until the7
predecessor tasks of this task complete execution.8

Events9

The taskwait-begin event occurs in each thread encountering the taskwait construct on entry to10
the taskwait region.11

The taskwait-wait-begin event occurs when a task begins an interval of active or passive waiting in12
a taskwait region.13

The taskwait-wait-end event occurs when a task ends an interval of active or passive waiting and14
resumes execution in a taskwait region.15

The taskwait-end event occurs in each thread encountering the taskwait construct after the16
taskwait synchronization on exit from the taskwait region.17

Tool Callbacks18

A thread dispatches a registered ompt_callback_sync_region callback for each occurrence19
of a taskwait-begin and taskwait-end event in that thread. The callback occurs in the task20
encountering the taskwait construct. This callback has the type signature21
ompt_callback_sync_region_t. The callback receives22
ompt_sync_region_taskwait as its kind argument and ompt_scope_begin or23
ompt_scope_end as its endpoint argument, as appropriate.24

A thread dispatches a registered ompt_callback_sync_region_wait callback for each25
occurrence of a taskwait-wait-begin and taskwait-wait-end event. This callback has type signature26
ompt_callback_sync_region_t. This callback executes in the context of the task that27
encountered the taskwait construct. The callback receives ompt_sync_region_taskwait28
as its kind argument and ompt_scope_begin or ompt_scope_end as its endpoint argument,29
as appropriate.30

Cross References31

• task construct, see Section 2.9.1 on page 91.32

• Task scheduling, see Section 2.9.6 on page 104.33

CHAPTER 2. DIRECTIVES 175

• depend clause, see Section 2.13.10 on page 194.1

• ompt_scope_begin and ompt_scope_end, see Section 4.4.6.11 on page 356.2

• ompt_sync_region_taskwait, see Section 4.4.6.12 on page 357.3

• ompt_callback_sync_region_t, see Section 4.6.2.12 on page 378.4

2.13.6 taskgroup Construct5

Summary6

The taskgroup construct specifies a wait on completion of child tasks of the current task and7
their descendent tasks.8

Syntax9

C / C++

The syntax of the taskgroup construct is as follows:10

#pragma omp taskgroup [clause[[,] clause] ...] new-line
structured-block

C / C++

where clause is one of the following:11

task_reduction(reduction-identifier : list)12

Fortran

The syntax of the taskgroup construct is as follows:13

!$omp taskgroup [clause [[,] clause] ...]
structured-block

!$omp end taskgroup

where clause is one of the following:14

task_reduction(reduction-identifier : list)15

Fortran

176 OpenMP API – Version 5.0 rev 1, November 2016

Binding1

A taskgroup region binds to the current task region. A taskgroup region binds to the2
innermost enclosing parallel region.3

Description4

When a thread encounters a taskgroup construct, it starts executing the region. All child tasks5
generated in the taskgroup region and all of their descendants that bind to the same parallel6
region as the taskgroup region are part of the taskgroup set associated with the taskgroup7
region.8

There is an implicit task scheduling point at the end of the taskgroup region. The current task is9
suspended at the task scheduling point until all tasks in the taskgroup set complete execution.10

Events11

The taskgroup-begin event occurs in each thread encountering the taskgroup construct on entry12
to the taskgroup region.13

The taskgroup-wait-begin event occurs when a task begins an interval of active or passive waiting14
in a taskgroup region.15

The taskgroup-wait-end event occurs when a task ends an interval of active or passive waiting and16
resumes execution in a taskgroup region.17

The taskgroup-end event occurs in each thread encountering the taskgroup construct after the18
taskgroup synchronization on exit from the taskgroup region.19

Tool Callbacks20

A thread dispatches a registered ompt_callback_sync_region callback for each occurrence21
of a taskgroup-begin and taskgroup-end event in that thread. The callback occurs in the task22
encountering the taskgroup construct. This callback has the type signature23
ompt_callback_sync_region_t. The callback receives24
ompt_sync_region_taskgroup as its kind argument and ompt_scope_begin or25
ompt_scope_end as its endpoint argument, as appropriate.26

A thread dispatches a registered ompt_callback_sync_region_wait callback for each27
occurrence of a taskgroup-wait-begin and taskgroup-wait-end event. This callback has type28
signature ompt_callback_sync_region_t. This callback executes in the context of the task29
that encountered the taskgroup construct. The callback receives30
ompt_sync_region_taskgroup as its kind argument and ompt_scope_begin or31
ompt_scope_end as its endpoint argument, as appropriate.32

CHAPTER 2. DIRECTIVES 177

Cross References1

• Task scheduling, see Section 2.9.6 on page 104.2

• task_reduction Clause, see Section 2.15.4.5 on page 238.3

• ompt_scope_begin and ompt_scope_end, see Section 4.4.6.11 on page 356.4

• ompt_sync_region_taskgroup, see Section 4.4.6.12 on page 357.5

• ompt_callback_sync_region_t, see Section 4.6.2.12 on page 378.6

2.13.7 atomic Construct7

Summary8

The atomic construct ensures that a specific storage location is accessed atomically, rather than9
exposing it to the possibility of multiple, simultaneous reading and writing threads that may result10
in indeterminate values.11

Syntax12

In the following syntax, atomic-clause is a clause that indicates the semantics for which atomicity is13
enforced and is one of the following:14

read15

write16

update17

capture18

C / C++

The syntax of the atomic construct takes one of the following forms:19

#pragma omp atomic [seq_cst[,]] atomic-clause [[,]seq_cst] new-line
expression-stmt

or20

#pragma omp atomic [seq_cst] new-line
expression-stmt

178 OpenMP API – Version 5.0 rev 1, November 2016

C/C++ (cont.)

or1

#pragma omp atomic [seq_cst[,]] capture [[,]seq_cst] new-line
structured-block

where expression-stmt is an expression statement with one of the following forms:2

• If atomic-clause is read:3
v = x;4

• If atomic-clause is write:5
x = expr;6

• If atomic-clause is update or not present:7
x++;8
x--;9
++x;10
--x;11
x binop= expr;12
x = x binop expr;13
x = expr binop x;14

• If atomic-clause is capture:15
v = x++;16
v = x--;17
v = ++x;18
v = --x;19
v = x binop= expr;20
v = x = x binop expr;21
v = x = expr binop x;22

and where structured-block is a structured block with one of the following forms:23

{v = x; x binop= expr;}24
{x binop= expr; v = x;}25
{v = x; x = x binop expr;}26
{v = x; x = expr binop x;}27
{x = x binop expr; v = x;}28
{x = expr binop x; v = x;}29
{v = x; x = expr;}30
{v = x; x++;}31
{v = x; ++x;}32
{++x; v = x;}33
{x++; v = x;}34

CHAPTER 2. DIRECTIVES 179

{v = x; x--;}1
{v = x; --x;}2
{--x; v = x;}3
{x--; v = x;}4

In the preceding expressions:5

• x and v (as applicable) are both l-value expressions with scalar type.6

• During the execution of an atomic region, multiple syntactic occurrences of x must designate the7
same storage location.8

• Neither of v and expr (as applicable) may access the storage location designated by x.9

• Neither of x and expr (as applicable) may access the storage location designated by v.10

• expr is an expression with scalar type.11

• binop is one of +, *, -, /, &, ˆ, |, <<, or >>.12

• binop, binop=, ++, and -- are not overloaded operators.13

• The expression x binop expr must be numerically equivalent to x binop (expr). This requirement14
is satisfied if the operators in expr have precedence greater than binop, or by using parentheses15
around expr or subexpressions of expr.16

• The expression expr binop x must be numerically equivalent to (expr) binop x. This requirement17
is satisfied if the operators in expr have precedence equal to or greater than binop, or by using18
parentheses around expr or subexpressions of expr.19

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is20
unspecified.21

C / C++
Fortran

The syntax of the atomic construct takes any of the following forms:22

!$omp atomic [seq_cst[,]] read [[,]seq_cst]
capture-statement

[!$omp end atomic]

or23

!$omp atomic [seq_cst[,]] write [[,]seq_cst]
write-statement

[!$omp end atomic]

or24

180 OpenMP API – Version 5.0 rev 1, November 2016

Fortran (cont.)

!$omp atomic [seq_cst[,]] update [[,]seq_cst]
update-statement

[!$omp end atomic]

or1

!$omp atomic [seq_cst]
update-statement

[!$omp end atomic]

or2

!$omp atomic [seq_cst[,]] capture [[,]seq_cst]
update-statement
capture-statement

!$omp end atomic

or3

!$omp atomic [seq_cst[,]] capture [[,]seq_cst]
capture-statement
update-statement

!$omp end atomic

or4

!$omp atomic [seq_cst[,]] capture [[,]seq_cst]
capture-statement
write-statement

!$omp end atomic

where write-statement has the following form (if atomic-clause is capture or write):5

x = expr6

where capture-statement has the following form (if atomic-clause is capture or read):7

v = x8

and where update-statement has one of the following forms (if atomic-clause is update,9
capture, or not present):10

CHAPTER 2. DIRECTIVES 181

x = x operator expr1

x = expr operator x2

x = intrinsic_procedure_name (x, expr_list)3

x = intrinsic_procedure_name (expr_list, x)4

In the preceding statements:5

• x and v (as applicable) are both scalar variables of intrinsic type.6

• x must not have the ALLOCATABLE attribute.7

• During the execution of an atomic region, multiple syntactic occurrences of x must designate the8
same storage location.9

• None of v, expr, and expr_list (as applicable) may access the same storage location as x.10

• None of x, expr, and expr_list (as applicable) may access the same storage location as v.11

• expr is a scalar expression.12

• expr_list is a comma-separated, non-empty list of scalar expressions. If13
intrinsic_procedure_name refers to IAND, IOR, or IEOR, exactly one expression must appear in14
expr_list.15

• intrinsic_procedure_name is one of MAX, MIN, IAND, IOR, or IEOR.16

• operator is one of +, *, -, /, .AND., .OR., .EQV., or .NEQV..17

• The expression x operator expr must be numerically equivalent to x operator (expr). This18
requirement is satisfied if the operators in expr have precedence greater than operator, or by19
using parentheses around expr or subexpressions of expr.20

• The expression expr operator x must be numerically equivalent to (expr) operator x. This21
requirement is satisfied if the operators in expr have precedence equal to or greater than22
operator, or by using parentheses around expr or subexpressions of expr.23

• intrinsic_procedure_name must refer to the intrinsic procedure name and not to other program24
entities.25

• operator must refer to the intrinsic operator and not to a user-defined operator.26

• All assignments must be intrinsic assignments.27

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is28
unspecified.29

Fortran

182 OpenMP API – Version 5.0 rev 1, November 2016

Binding1

If the size of x is 8, 16, 32, or 64 bits and x is aligned to a multiple of its size, the binding thread set2
for the atomic region is all threads on the device. Otherwise, the binding thread set for the3
atomic region is all threads in the contention group. atomic regions enforce exclusive access4
with respect to other atomic regions that access the same storage location x among all threads in5
the binding thread set without regard to the teams to which the threads belong.6

Description7

The atomic construct with the read clause forces an atomic read of the location designated by x8
regardless of the native machine word size.9

The atomic construct with the write clause forces an atomic write of the location designated by10
x regardless of the native machine word size.11

The atomic construct with the update clause forces an atomic update of the location designated12
by x using the designated operator or intrinsic. Note that when no clause is present, the semantics13
are equivalent to atomic update. Only the read and write of the location designated by x are14
performed mutually atomically. The evaluation of expr or expr_list need not be atomic with respect15
to the read or write of the location designated by x. No task scheduling points are allowed between16
the read and the write of the location designated by x.17

The atomic construct with the capture clause forces an atomic update of the location18
designated by x using the designated operator or intrinsic while also capturing the original or final19
value of the location designated by x with respect to the atomic update. The original or final value20
of the location designated by x is written in the location designated by v depending on the form of21
the atomic construct structured block or statements following the usual language semantics. Only22
the read and write of the location designated by x are performed mutually atomically. Neither the23
evaluation of expr or expr_list, nor the write to the location designated by v, need be atomic with24
respect to the read or write of the location designated by x. No task scheduling points are allowed25
between the read and the write of the location designated by x.26

Any atomic construct with a seq_cst clause forces the atomically performed operation to27
include an implicit flush operation without a list.28

Note – As with other implicit flush regions, Section 1.4.4 on page 21 reduces the ordering that must29
be enforced. The intent is that, when the analogous operation exists in C++11 or C11, a sequentially30
consistent atomic construct has the same semantics as a memory_order_seq_cst atomic31
operation in C++11/C11. Similarly, a non-sequentially consistent atomic construct has the same32
semantics as a memory_order_relaxed atomic operation in C++11/C11.33

Unlike non-sequentially consistent atomic constructs, sequentially consistent atomic constructs34
preserve the interleaving (sequentially consistent) behavior of correct, data race free programs.35
However, they are not designed to replace the flush directive as a mechanism to enforce ordering36

CHAPTER 2. DIRECTIVES 183

for non-sequentially consistent atomic constructs, and attempts to do so require extreme caution.1
For example, a sequentially consistent atomic write construct may appear to be reordered with2
a subsequent non-sequentially consistent atomic write construct, since such reordering would3
not be observable by a correct program if the second write were outside an atomic directive.4

For all forms of the atomic construct, any combination of two or more of these atomic5
constructs enforces mutually exclusive access to the locations designated by x among threads in the6
binding thread set. To avoid race conditions, all accesses of the locations designated by x that could7
potentially occur in parallel must be protected with an atomic construct.8

atomic regions do not guarantee exclusive access with respect to any accesses outside of9
atomic regions to the same storage location x even if those accesses occur during a critical10
or ordered region, while an OpenMP lock is owned by the executing task, or during the11
execution of a reduction clause.12

However, other OpenMP synchronization can ensure the desired exclusive access. For example, a13
barrier following a series of atomic updates to x guarantees that subsequent accesses do not form a14
race with the atomic accesses.15

A compliant implementation may enforce exclusive access between atomic regions that update16
different storage locations. The circumstances under which this occurs are implementation defined.17

If the storage location designated by x is not size-aligned (that is, if the byte alignment of x is not a18
multiple of the size of x), then the behavior of the atomic region is implementation defined.19

Events20

The atomic-acquire event occurs in the thread encountering the atomic construct on entry to the21
atomic region before initiating synchronization for the region.22

The atomic-acquired event occurs in the thread encountering the atomic construct after entering23
the region, but before executing the structured block of the atomic region.24

The atomic-release event occurs in the thread encountering the atomic construct after completing25
any synchronization on exit from the atomic region.26

Tool Callbacks27

A thread dispatches a registered ompt_callback_mutex_acquire callback for each28
occurrence of an atomic-acquire event in that thread. This callback has the type signature29
ompt_callback_mutex_acquire_t.30

A thread dispatches a registered ompt_callback_mutex_acquired callback for each31
occurrence of an atomic-acquired event in that thread. This callback has the type signature32
ompt_callback_mutex_t.33

184 OpenMP API – Version 5.0 rev 1, November 2016

A thread dispatches a registered ompt_callback_mutex_released callback for each1
occurrence of an atomic-release event in that thread. This callback has the type signature2
ompt_callback_mutex_t. The callbacks occur in the task encountering the atomic construct.3
The callbacks should receive ompt_mutex_atomic as their kind argument if practical, but a4
less specific kind is acceptable.5

Restrictions6

The following restrictions apply to the atomic construct:7

• At most one seq_cst clause may appear on the construct.8

C / C++

• All atomic accesses to the storage locations designated by x throughout the program are required9
to have a compatible type.10

C / C++
Fortran

• All atomic accesses to the storage locations designated by x throughout the program are required11
to have the same type and type parameters.12

Fortran

• OpenMP constructs may not be encountered during execution of an atomic region.13

Cross References14

• critical construct, see Section 2.13.2 on page 167.15

• barrier construct, see Section 2.13.3 on page 170.16

• flush construct, see Section 2.13.8 on page 186.17

• ordered construct, see Section 2.13.9 on page 190.18

• reduction clause, see Section 2.15.4.4 on page 236.19

• lock routines, see Section 3.3 on page 301.20

• ompt_mutex_atomic, see Section 4.4.6.15 on page 358.21

• ompt_callback_mutex_acquire_t, see Section 4.6.2.15 on page 381.22

• ompt_callback_mutex_t, see Section 4.6.2.16 on page 383.23

CHAPTER 2. DIRECTIVES 185

2.13.8 flush Construct1

Summary2

The flush construct executes the OpenMP flush operation. This operation makes a thread’s3
temporary view of memory consistent with memory and enforces an order on the memory4
operations of the variables explicitly specified or implied. See the memory model description in5
Section 1.4 on page 18 for more details. The flush construct is a stand-alone directive.6

Syntax7

C / C++

The syntax of the flush construct is as follows:8

#pragma omp flush [(list)] new-line

C / C++
Fortran

The syntax of the flush construct is as follows:9

!$omp flush [(list)]

Fortran

Binding10

The binding thread set for a flush region is the encountering thread. Execution of a flush11
region affects the memory and the temporary view of memory of only the thread that executes the12
region. It does not affect the temporary view of other threads. Other threads must themselves13
execute a flush operation in order to be guaranteed to observe the effects of the encountering14
thread’s flush operation15

186 OpenMP API – Version 5.0 rev 1, November 2016

Description1

A flush construct without a list, executed on a given thread, operates as if the whole2
thread-visible data state of the program, as defined by the base language, is flushed. A flush3
construct with a list applies the flush operation to the items in the list, and does not return until the4
operation is complete for all specified list items. An implementation may implement a flush with5
a list by ignoring the list, and treating it the same as a flush without a list.6

C / C++

If a pointer is present in the list, the pointer itself is flushed, not the memory block to which the7
pointer refers.8

C / C++
Fortran

If the list item or a subobject of the list item has the POINTER attribute, the allocation or9
association status of the POINTER item is flushed, but the pointer target is not. If the list item is a10
Cray pointer, the pointer is flushed, but the object to which it points is not. If the list item is of type11
C_PTR, the variable is flushed, but the storage that corresponds to that address is not flushed. If the12
list item or the subobject of the list item has the ALLOCATABLE attribute and has an allocation13
status of allocated, the allocated variable is flushed; otherwise the allocation status is flushed.14

Fortran

Note – Use of a flush construct with a list is extremely error prone and users are strongly15
discouraged from attempting it. The following examples illustrate the ordering properties of the16
flush operation. In the following incorrect pseudocode example, the programmer intends to prevent17
simultaneous execution of the protected section by the two threads, but the program does not work18
properly because it does not enforce the proper ordering of the operations on variables a and b.19
Any shared data accessed in the protected section is not guaranteed to be current or consistent20
during or after the protected section. The atomic notation in the pseudocode in the following two21
examples indicates that the accesses to a and b are ATOMIC writes and captures. Otherwise both22
examples would contain data races and automatically result in unspecified behavior.23

CHAPTER 2. DIRECTIVES 187

Incorrect example:
a = b = 0

thread 1 thread 2

atomic(b = 1) atomic(a = 1)

flush(b) flush(a)
flush(a) flush(b)
atomic(tmp = a) atomic(tmp = b)

if (tmp == 0) then if (tmp == 0) then

protected section protected section
end if end if

1

The problem with this example is that operations on variables a and b are not ordered with respect2
to each other. For instance, nothing prevents the compiler from moving the flush of b on thread 1 or3
the flush of a on thread 2 to a position completely after the protected section (assuming that the4
protected section on thread 1 does not reference b and the protected section on thread 2 does not5
reference a). If either re-ordering happens, both threads can simultaneously execute the protected6
section.7

The following pseudocode example correctly ensures that the protected section is executed by not8
more than one of the two threads at any one time. Execution of the protected section by neither9
thread is considered correct in this example. This occurs if both flushes complete prior to either10
thread executing its if statement.11

Correct example:
a = b = 0

thread 1 thread 2

atomic(b = 1) atomic(a = 1)

flush(a,b) flush(a,b)

atomic(tmp = a) atomic(tmp = b)

if (tmp == 0) then if (tmp == 0) then

protected section protected section

end if end if

12

13

188 OpenMP API – Version 5.0 rev 1, November 2016

The compiler is prohibited from moving the flush at all for either thread, ensuring that the1
respective assignment is complete and the data is flushed before the if statement is executed.2

A flush region without a list is implied at the following locations:3

• During a barrier region.4

• At entry to a target update region whose corresponding construct has a to clause.5

• At exit from a target update region whose corresponding construct has a from clause.6

• At entry to and exit from parallel, critical, target and target data regions.7

• At entry to and exit from an ordered region, if a threads clause or a depend clause is8
present, or if no clauses are present.9

• At entry to a target enter data region.10

• At exit from a target exit data region.11

• At exit from worksharing regions unless a nowait is present.12

• At entry to and exit from the atomic operation (read, write, update, or capture) performed in a13
sequentially consistent atomic region.14

• During omp_set_lock and omp_unset_lock regions.15

• During omp_test_lock, omp_set_nest_lock, omp_unset_nest_lock and16
omp_test_nest_lock regions, if the region causes the lock to be set or unset.17

• Immediately before and immediately after every task scheduling point.18

• During a cancel or cancellation point region, if the cancel-var ICV is true and19
cancellation has been activated.20

A flush region with a list is implied at the following locations:21

• At entry to and exit from the atomic operation (read, write, update, or capture) performed in a22
non-sequentially consistent atomic region, where the list contains only the storage location23
designated as x according to the description of the syntax of the atomic construct in24
Section 2.13.7 on page 178.25

Note – A flush region is not implied at the following locations:26

• At entry to worksharing regions.27

• At entry to or exit from a master region.28

CHAPTER 2. DIRECTIVES 189

Events1

The flush event occurs in a thread encountering the flush construct.2

Tool Callbacks3

A thread dispatches a registered ompt_callback_flush callback for each occurrence of a4
flush event in that thread. This callback has the type signature ompt_callback_flush_t.5

Cross References6

• ompt_callback_flush_t, see Section 4.6.2.19 on page 386.7

2.13.9 ordered Construct8

Summary9

The ordered construct either specifies a structured block in a loop, simd, or loop SIMD region10
that will be executed in the order of the loop iterations, or it is a stand-alone directive that specifies11
cross-iteration dependences in a doacross loop nest. The ordered construct sequentializes and12
orders the execution of ordered regions while allowing code outside the region to run in parallel.13

Syntax14

C / C++

The syntax of the ordered construct is as follows:15

#pragma omp ordered [clause[[,] clause]] new-line
structured-block

where clause is one of the following:16

threads17

simd18

or19

#pragma omp ordered clause [[[,] clause] ...] new-line

190 OpenMP API – Version 5.0 rev 1, November 2016

where clause is one of the following:1

depend(source)2

depend(sink : vec)3

C / C++
Fortran

The syntax of the ordered construct is as follows:4

!$omp ordered [clause[[,] clause]]
structured-block

!$omp end ordered

where clause is one of the following:5

threads6

simd7

or8

!$omp ordered clause [[[,] clause] ...]

where clause is one of the following:9

depend(source)10

depend(sink : vec)11

Fortran

If the depend clause is specified, the ordered construct is a stand-alone directive.12

Binding13

The binding thread set for an ordered region is the current team. An ordered region binds to14
the innermost enclosing simd or loop SIMD region if the simd clause is present, and otherwise it15
binds to the innermost enclosing loop region. ordered regions that bind to different regions16
execute independently of each other.17

CHAPTER 2. DIRECTIVES 191

Description1

If no clause is specified, the ordered construct behaves as if the threads clause had been2
specified. If the threads clause is specified, the threads in the team executing the loop region3
execute ordered regions sequentially in the order of the loop iterations. If any depend clauses4
are specified then those clauses specify the order in which the threads in the team execute ordered5
regions. If the simd clause is specified, the ordered regions encountered by any thread will use6
only a single SIMD lane to execute the ordered regions in the order of the loop iterations.7

When the thread executing the first iteration of the loop encounters an ordered construct, it can8
enter the ordered region without waiting. When a thread executing any subsequent iteration9
encounters an ordered construct without a depend clause, it waits at the beginning of the10
ordered region until execution of all ordered regions belonging to all previous iterations has11
completed. When a thread executing any subsequent iteration encounters an ordered construct12
with one or more depend(sink:vec) clauses, it waits until its dependences on all valid13
iterations specified by the depend clauses are satisfied before it completes execution of the14
ordered region. A specific dependence is satisfied when a thread executing the corresponding15
iteration encounters an ordered construct with a depend(source) clause.16

Events17

The ordered-acquire event occurs in the thread encountering the ordered construct on entry to18
the ordered region before initiating synchronization for the region.19

The ordered-acquired event occurs in the thread encountering the ordered construct after20
entering the region, but before executing the structured block of the ordered region.21

The ordered-release event occurs in the thread encountering the ordered construct after22
completing any synchronization on exit from the ordered region.23

Tool Callbacks24

A thread dispatches a registered ompt_callback_mutex_acquire callback for each25
occurrence of an ordered-acquire event in that thread. This callback has the type signature26
ompt_callback_mutex_acquire_t.27

A thread dispatches a registered ompt_callback_mutex_acquired callback for each28
occurrence of an ordered-acquired event in that thread. This callback has the type signature29
ompt_callback_mutex_t.30

A thread dispatches a registered ompt_callback_mutex_released callback for each31
occurrence of an ordered-release event in that thread. This callback has the type signature32
ompt_callback_mutex_t. The callbacks occur in the task encountering the ordered33
construct. The callbacks should receive ompt_mutex_ordered as their kind argument if34
practical, but a less specific kind is acceptable.35

192 OpenMP API – Version 5.0 rev 1, November 2016

Restrictions1

Restrictions to the ordered construct are as follows:2

• At most one threads clause can appear on an ordered construct.3

• At most one simd clause can appear on an ordered construct.4

• At most one depend(source) clause can appear on an ordered construct.5

• Either depend(sink:vec) clauses or depend(source) clauses may appear on an6
ordered construct, but not both.7

• The loop or loop SIMD region to which an ordered region arising from an ordered8
construct without a depend clause binds must have an ordered clause without the parameter9
specified on the corresponding loop or loop SIMD directive.10

• The loop region to which an ordered region arising from an ordered construct with any11
depend clauses binds must have an ordered clause with the parameter specified on the12
corresponding loop directive.13

• An ordered construct with the depend clause specified must be closely nested inside a loop14
(or parallel loop) construct.15

• An ordered region arising from an ordered construct with the simd clause specified must16
be closely nested inside a simd or loop SIMD region.17

• An ordered region arising from an ordered construct with both the simd and threads18
clauses must be closely nested inside a loop SIMD region.19

• During execution of an iteration of a loop or a loop nest within a loop, simd, or loop SIMD20
region, a thread must not execute more than one ordered region arising from an ordered21
construct without a depend clause.22

C++
• A throw executed inside a ordered region must cause execution to resume within the same23
ordered region, and the same thread that threw the exception must catch it.24

C++

Cross References25

• loop construct, see Section 2.7.1 on page 62.26

• simd construct, see Section 2.8.1 on page 80.27

• parallel loop construct, see Section 2.11.1 on page 140.28

• depend Clause, see Section 2.13.10 on page 19429

• ompt_mutex_ordered, see Section 4.4.6.15 on page 358.30

CHAPTER 2. DIRECTIVES 193

• ompt_callback_mutex_acquire_t, see Section 4.6.2.15 on page 381.1

• ompt_callback_mutex_t, see Section 4.6.2.16 on page 383.2

2.13.10 depend Clause3

Summary4

The depend clause enforces additional constraints on the scheduling of tasks or loop iterations.5
These constraints establish dependences only between sibling tasks or between loop iterations.6

Syntax7

The syntax of the depend clause is as follows:8

depend(dependence-type : locator-list)

where dependence-type is one of the following:9

in10

out11

inout12

or13

depend(dependence-type)

where dependence-type is:14

source15

or16

depend(dependence-type : vec)

where dependence-type is:17

sink18

194 OpenMP API – Version 5.0 rev 1, November 2016

and where vec is the iteration vector, which has the form:1

x1 [± d1], x2 [± d2], . . . , xn [± dn]2

where n is the value specified by the ordered clause in the loop directive, xi denotes the loop3
iteration variable of the i-th nested loop associated with the loop directive, and di is a constant4
non-negative integer.5

Description6

Task dependences are derived from the dependence-type of a depend clause and its list items7
when dependence-type is in, out, or inout.8

For the in dependence-type, if the storage location of at least one of the list items is the same as the9
storage location of a list item appearing in a depend clause with an out or inout10
dependence-type on a construct from which a sibling task was previously generated, then the11
generated task will be a dependent task of that sibling task.12

For the out and inout dependence-types, if the storage location of at least one of the list items is13
the same as the storage location of a list item appearing in a depend clause with an in, out, or14
inout dependence-type on a construct from which a sibling task was previously generated, then15
the generated task will be a dependent task of that sibling task.16

Fortran

If a list item has the ALLOCATABLE attribute and its allocation status is unallocated, the behavior17
is unspecified. If a list item has the POINTER attribute and its association status is disassociated or18
undefined, the behavior is unspecified.19

The list items that appear in the depend clause may include array sections.20

Fortran

Note – The enforced task dependence establishes a synchronization of memory accesses performed21
by a dependent task with respect to accesses performed by the predecessor tasks. However, it is the22
responsibility of the programmer to synchronize properly with respect to other concurrent accesses23
that occur outside of those tasks.24

The source dependence-type specifies the satisfaction of cross-iteration dependences that arise25
from the current iteration.26

The sink dependence-type specifies a cross-iteration dependence, where the iteration vector vec27
indicates the iteration that satisfies the dependence.28

If the iteration vector vec does not occur in the iteration space, the depend clause is ignored. If all29
depend clauses on an ordered construct are ignored then the construct is ignored.30

CHAPTER 2. DIRECTIVES 195

Note – If the iteration vector vec does not indicate a lexicographically earlier iteration, it can cause1
a deadlock.2

Events3

The task-dependences event occurs in a thread encountering a tasking construct with a depend4
clause immediately after the task-create event for the new task.5

The task-dependence event indicates an unfulfilled dependence for the generated task. This event6
occurs in a thread that observes the unfulfilled dependence before it is satisfied.7

Tool Callbacks8

A thread dispatches the ompt_callback_task_dependences callback for each occurrence9
of the task-dependences event to announce its dependences with respect to the list items in the10
depend clause. This callback has type signature ompt_callback_task_dependences_t.11

A thread dispatches the ompt_callback_task_dependence callback for a task-dependence12
event to report a dependence between a predecessor task (src_task_data) and a dependent task13
(sink_task_data). This callback has type signature ompt_callback_task_dependence_t.14

Restrictions15

Restrictions to the depend clause are as follows:16

• List items used in depend clauses of the same task or sibling tasks must indicate identical17
storage locations or disjoint storage locations.18

• List items used in depend clauses cannot be zero-length array sections.19

Fortran

• A common block name cannot appear in a depend clause.20

Fortran

• For a vec element of sink dependence-type of the form xi + di or xi − di if the loop iteration21
variable xi has an integral or pointer type, the expression xi + di or xi − di for any value of the22
loop iteration variable xi that can encounter the ordered construct must be computable in the23
loop iteration variable’s type without overflow.24

196 OpenMP API – Version 5.0 rev 1, November 2016

C++
• For a vec element of sink dependence-type of the form xi + di or xi − di if the loop iteration1
variable xi is of a random access iterator type other than pointer type, the expression (xi - lbi)2
+ di or (xi - lbi) − di for any value of the loop iteration variable xi that can encounter the3
ordered construct must be computable in the type that would be used by std::distance applied4
to variables of the type of xi without overflow.5

C++

C / C++

• A bit-field cannot appear in a depend clause.6

C / C++

Cross References7

• Array sections, see Section 2.4 on page 48.8

• task construct, see Section 2.9.1 on page 91.9

• target enter data construct, see Section 2.10.3 on page 109.10

• target exit data construct, see Section 2.10.4 on page 112.11

• target construct, see Section 2.10.5 on page 116.12

• target update construct, see Section 2.10.6 on page 121.13

• Task scheduling constraints, see Section 2.9.6 on page 104.14

• ordered construct, see Section 2.13.9 on page 190.15

• ompt_callback_task_dependences_t, see Section 4.6.2.8 on page 374.16

• ompt_callback_task_dependence_t, see Section 4.6.2.9 on page 375.17

2.14 Cancellation Constructs18

2.14.1 cancel Construct19

Summary20

The cancel construct activates cancellation of the innermost enclosing region of the type21
specified. The cancel construct is a stand-alone directive.22

CHAPTER 2. DIRECTIVES 197

Syntax1

C / C++

The syntax of the cancel construct is as follows:2

#pragma omp cancel construct-type-clause [[,] if-clause] new-line

where construct-type-clause is one of the following:3

parallel4

sections5

for6

taskgroup7

and if-clause is8

if ([cancel :] scalar-expression)9

C / C++
Fortran

The syntax of the cancel construct is as follows:10

!$omp cancel construct-type-clause [[,] if-clause]

where construct-type-clause is one of the following:11

parallel12

sections13

do14

taskgroup15

and if-clause is16

if ([cancel :] scalar-logical-expression)17

Fortran

198 OpenMP API – Version 5.0 rev 1, November 2016

Binding1

The binding thread set of the cancel region is the current team. The binding region of the2
cancel region is the innermost enclosing region of the type corresponding to the3
construct-type-clause specified in the directive (that is, the innermost parallel, sections,4
loop, or taskgroup region).5

Description6

The cancel construct activates cancellation of the binding region only if the cancel-var ICV is7
true, in which case the cancel construct causes the encountering task to continue execution at the8
end of the binding region if construct-type-clause is parallel, for, do, or sections. If the9
cancel-var ICV is true and construct-type-clause is taskgroup, the encountering task continues10
execution at the end of the current task region. If the cancel-var ICV is false, the cancel11
construct is ignored.12

Threads check for active cancellation only at cancellation points that are implied at the following13
locations:14

• cancel regions;15

• cancellation point regions;16

• barrier regions;17

• implicit barriers regions.18

When a thread reaches one of the above cancellation points and if the cancel-var ICV is true, then:19

• If the thread is at a cancel or cancellation point region and construct-type-clause is20
parallel, for, do, or sections, the thread continues execution at the end of the canceled21
region if cancellation has been activated for the innermost enclosing region of the type specified.22

• If the thread is at a cancel or cancellation point region and construct-type-clause is23
taskgroup, the encountering task checks for active cancellation of all of the taskgroup sets to24
which the encountering task belongs, and continues execution at the end of the current task25
region if cancellation has been activated for any of the taskgroup sets.26

• If the encountering task is at a barrier region, the encountering task checks for active cancellation27
of the innermost enclosing parallel region. If cancellation has been activated, then the28
encountering task continues execution at the end of the canceled region.29

CHAPTER 2. DIRECTIVES 199

Note – If one thread activates cancellation and another thread encounters a cancellation point, the1
order of execution between the two threads is non-deterministic. Whether the thread that2
encounters a cancellation point detects the activated cancellation depends on the underlying3
hardware and operating system.4

When cancellation of tasks is activated through the cancel taskgroup construct, the tasks that5
belong to the taskgroup set of the innermost enclosing taskgroup region will be canceled. The6
task that encountered the cancel taskgroup construct continues execution at the end of its7
task region, which implies completion of that task. Any task that belongs to the innermost8
enclosing taskgroup and has already begun execution must run to completion or until a9
cancellation point is reached. Upon reaching a cancellation point and if cancellation is active, the10
task continues execution at the end of its task region, which implies the task’s completion. Any11
task that belongs to the innermost enclosing taskgroup and that has not begun execution may be12
discarded, which implies its completion.13

When cancellation is active for a parallel, sections, or loop region, each thread of the14
binding thread set resumes execution at the end of the canceled region if a cancellation point is15
encountered. If the canceled region is a parallel region, any tasks that have been created by a16
task construct and their descendent tasks are canceled according to the above taskgroup17
cancellation semantics. If the canceled region is a sections, or loop region, no task cancellation18
occurs.19

C++
The usual C++ rules for object destruction are followed when cancellation is performed.20

C++

Fortran

All private objects or subobjects with ALLOCATABLE attribute that are allocated inside the21
canceled construct are deallocated.22

Fortran

If the canceled construct contains a reduction or lastprivate clause, the final value of the23
reduction or lastprivate variable is undefined.24

When an if clause is present on a cancel construct and the if expression evaluates to false, the25
cancel construct does not activate cancellation. The cancellation point associated with the26
cancel construct is always encountered regardless of the value of the if expression.27

200 OpenMP API – Version 5.0 rev 1, November 2016

Note – The programmer is responsible for releasing locks and other synchronization data structures1
that might cause a deadlock when a cancel construct is encountered and blocked threads cannot2
be canceled. The programmer is also responsible for ensuring proper synchronizations to avoid3
deadlocks that might arise from cancellation of OpenMP regions that contain OpenMP4
synchronization constructs.5

Events6

The cancel event occurs after a task encounters a cancel construct if the cancel-var ICV is true.7

Tool Callbacks8

A thread dispatches a registered ompt_callback_cancel callback for each occurrence of a9
cancel event in that thread. The callback occurs in the context of the encountering task. The10
callback has type signature ompt_callback_cancel_t. The callback receives11
ompt_cancel_activated as its flags argument.12

Restrictions13

The restrictions to the cancel construct are as follows:14

• The behavior for concurrent cancellation of a region and a region nested within it is unspecified.15

• If construct-type-clause is taskgroup, the cancel construct must be closely nested inside a16
task construct and the cancel region must be closely nested inside a taskgroup region. If17
construct-type-clause is sections, the cancel construct must be closely nested inside a18
sections or section construct. Otherwise, the cancel construct must be closely nested19
inside an OpenMP construct that matches the type specified in construct-type-clause of the20
cancel construct.21

• A worksharing construct that is canceled must not have a nowait clause.22

• A loop construct that is canceled must not have an ordered clause.23

• During execution of a construct that may be subject to cancellation, a thread must not encounter24
an orphaned cancellation point. That is, a cancellation point must only be encountered within25
that construct and must not be encountered elsewhere in its region.26

CHAPTER 2. DIRECTIVES 201

Cross References1

• cancel-var ICV, see Section 2.3.1 on page 39.2

• cancellation point construct, see Section 2.14.2 on page 202.3

• if Clause, see Section 2.12 on page 164.4

• omp_get_cancellation routine, see Section 3.2.9 on page 271.5

• ompt_callback_cancel_t, see Section 4.6.2.27 on page 395.6

2.14.2 cancellation point Construct7

Summary8

The cancellation point construct introduces a user-defined cancellation point at which9
implicit or explicit tasks check if cancellation of the innermost enclosing region of the type10
specified has been activated. The cancellation point construct is a stand-alone directive.11

Syntax12

C / C++

The syntax of the cancellation point construct is as follows:13

#pragma omp cancellation point construct-type-clause new-line

where construct-type-clause is one of the following:14

parallel15

sections16

for17

taskgroup18

C / C++

202 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

The syntax of the cancellation point construct is as follows:1

!$omp cancellation point construct-type-clause

where construct-type-clause is one of the following:2

parallel3

sections4

do5

taskgroup6

Fortran

Binding7

The binding thread set of the cancellation point construct is the current team. The binding8
region of the cancellation point region is the innermost enclosing region of the type9
corresponding to the construct-type-clause specified in the directive (that is, the innermost10
parallel, sections, loop, or taskgroup region).11

Description12

This directive introduces a user-defined cancellation point at which an implicit or explicit task must13
check if cancellation of the innermost enclosing region of the type specified in the clause has been14
requested. This construct does not implement any synchronization between threads or tasks.15

When an implicit or explicit task reaches a user-defined cancellation point and if the cancel-var16
ICV is true, then:17

• If the construct-type-clause of the encountered cancellation point construct is18
parallel, for, do, or sections, the thread continues execution at the end of the canceled19
region if cancellation has been activated for the innermost enclosing region of the type specified.20

• If the construct-type-clause of the encountered cancellation point construct is21
taskgroup, the encountering task checks for active cancellation of all taskgroup sets to which22
the encountering task belongs and continues execution at the end of the current task region if23
cancellation has been activated for any of them.24

Events25

The cancellation event occurs if a task encounters a cancellation point and detected the activation26
of cancellation.27

CHAPTER 2. DIRECTIVES 203

Tool Callbacks1

A thread dispatches a registered ompt_callback_cancel callback for each occurrence of a2
cancellation event in that thread. The callback occurs in the context of the encountering task. The3
callback has type signature ompt_callback_cancel_t. The callback receives4
ompt_cancel_detected as its flags argument.5

Restrictions6

• A cancellation point construct for which construct-type-clause is taskgroup must be7
closely nested inside a task construct, and the cancellation point region must be closely8
nested inside a taskgroup region. A cancellation point construct for which9
construct-type-clause is sections must be closely nested inside a sections or section10
construct. Otherwise, a cancellation point construct must be closely nested inside an11
OpenMP construct that matches the type specified in construct-type-clause.12

Cross References13

• cancel-var ICV, see Section 2.3.1 on page 39.14

• cancel construct, see Section 2.14.1 on page 197.15

• omp_get_cancellation routine, see Section 3.2.9 on page 271.16

• ompt_callback_cancel_t, see Section 4.6.2.27 on page 395.17

2.15 Data Environment18

This section presents a directive and several clauses for controlling the data environment during the19
execution of teams, parallel, simd, task generating, and worksharing regions.20

• Section 2.15.1 on page 205 describes how the data-sharing attributes of variables referenced in21
teams, parallel, simd, task generating, and worksharing regions are determined.22

• The threadprivate directive, which is provided to create threadprivate memory, is23
described in Section 2.15.2 on page 210.24

• Clauses that may be specified on directives to control the data-sharing attributes of variables25
referenced in teams, parallel, simd, task generating, or worksharing constructs are26
described in Section 2.15.3 on page 21527

204 OpenMP API – Version 5.0 rev 1, November 2016

• Clauses that may be specified on directives to copy data values from private or threadprivate1
variables on one thread to the corresponding variables on other threads in the team are described2
in Section 2.15.5 on page 240.3

• Clauses that may be specified on directives to control the data-mapping of variables to a device4
data environment are described in Section 2.15.6.1 on page 245.5

2.15.1 Data-sharing Attribute Rules6

This section describes how the data-sharing attributes of variables referenced in target,7
parallel, task, taskloop, simd, and worksharing regions are determined. The following8
two cases are described separately:9

• Section 2.15.1.1 on page 205 describes the data-sharing attribute rules for variables referenced in10
a construct.11

• Section 2.15.1.2 on page 209 describes the data-sharing attribute rules for variables referenced in12
a region, but outside any construct.13

2.15.1.1 Data-sharing Attribute Rules for Variables Referenced14
in a Construct15

The data-sharing attributes of variables that are referenced in a construct can be predetermined,16
explicitly determined, or implicitly determined, according to the rules outlined in this section.17

Specifying a variable on a firstprivate, lastprivate, linear, reduction, or18
copyprivate clause of an enclosed construct causes an implicit reference to the variable in the19
enclosing construct. Specifying a variable on a map clause of an enclosed construct may cause an20
implicit reference to the variable in the enclosing construct. Such implicit references are also21
subject to the data-sharing attribute rules outlined in this section.22

Certain variables and objects have predetermined data-sharing attributes as follows:23

C / C++

• Variables appearing in threadprivate directives are threadprivate.24

• Variables with automatic storage duration that are declared in a scope inside the construct are25
private.26

• Objects with dynamic storage duration are shared.27

• Static data members are shared.28

CHAPTER 2. DIRECTIVES 205

• The loop iteration variable(s) in the associated for-loop(s) of a for, parallel for,1
taskloop, or distribute construct is (are) private.2

• The loop iteration variable in the associated for-loop of a simd construct with just one3
associated for-loop is linear with a linear-step that is the increment of the associated for-loop.4

• The loop iteration variables in the associated for-loops of a simd construct with multiple5
associated for-loops are lastprivate.6

• Variables with static storage duration that are declared in a scope inside the construct are shared.7

• If an array section is a list item in a map clause on the target construct and the array section is8
derived from a variable for which the type is pointer then that variable is firstprivate.9

C / C++
Fortran

• Variables and common blocks appearing in threadprivate directives are threadprivate.10

• The loop iteration variable(s) in the associated do-loop(s) of a do, parallel do, taskloop,11
or distribute construct is (are) private.12

• The loop iteration variable in the associated do-loop of a simd construct with just one13
associated do-loop is linear with a linear-step that is the increment of the associated do-loop.14

• The loop iteration variables in the associated do-loops of a simd construct with multiple15
associated do-loops are lastprivate.16

• A loop iteration variable for a sequential loop in a parallel or task generating construct is17
private in the innermost such construct that encloses the loop.18

• Implied-do indices and forall indices are private.19

• Cray pointees have the same the data-sharing attribute as the storage with which their Cray20
pointers are associated.21

• Assumed-size arrays are shared.22

• An associate name preserves the association with the selector established at the ASSOCIATE23
statement.24

Fortran

Variables with predetermined data-sharing attributes may not be listed in data-sharing attribute25
clauses, except for the cases listed below. For these exceptions only, listing a predetermined26
variable in a data-sharing attribute clause is allowed and overrides the variable’s predetermined27
data-sharing attributes.28

206 OpenMP API – Version 5.0 rev 1, November 2016

C / C++

• The loop iteration variable(s) in the associated for-loop(s) of a for, parallel for,1
taskloop, or distribute construct may be listed in a private or lastprivate clause.2

• The loop iteration variable in the associated for-loop of a simd construct with just one3
associated for-loop may be listed in a linear clause with a linear-step that is the increment of4
the associated for-loop.5

• The loop iteration variables in the associated for-loops of a simd construct with multiple6
associated for-loops may be listed in a lastprivate clause.7

• Variables with const-qualified type having no mutable member may be listed in a8
firstprivate clause, even if they are static data members.9

C / C++
Fortran

• The loop iteration variable(s) in the associated do-loop(s) of a do, parallel do, taskloop,10
or distribute construct may be listed in a private or lastprivate clause.11

• The loop iteration variable in the associated do-loop of a simd construct with just one12
associated do-loop may be listed in a linear clause with a linear-step that is the increment of13
the associated loop.14

• The loop iteration variables in the associated do-loops of a simd construct with multiple15
associated do-loops may be listed in a lastprivate clause.16

• Variables used as loop iteration variables in sequential loops in a parallel or task generating17
construct may be listed in data-sharing clauses on the construct itself, and on enclosed18
constructs, subject to other restrictions.19

• Assumed-size arrays may be listed in a shared clause.20

Fortran

Additional restrictions on the variables that may appear in individual clauses are described with21
each clause in Section 2.15.3 on page 215.22

Variables with explicitly determined data-sharing attributes are those that are referenced in a given23
construct and are listed in a data-sharing attribute clause on the construct.24

Variables with implicitly determined data-sharing attributes are those that are referenced in a given25
construct, do not have predetermined data-sharing attributes, and are not listed in a data-sharing26
attribute clause on the construct.27

Rules for variables with implicitly determined data-sharing attributes are as follows:28

• In a parallel, teams, or task generating construct, the data-sharing attributes of these29
variables are determined by the default clause, if present (see Section 2.15.3.1 on page 216).30

CHAPTER 2. DIRECTIVES 207

• In a parallel construct, if no default clause is present, these variables are shared.1

• For constructs other than task generating constructs, if no default clause is present, these2
variables reference the variables with the same names that exist in the enclosing context.3

• In a target construct, variables that are not mapped after applying data-mapping attribute4
rules (see Section 2.15.6 on page 244) are firstprivate.5

C++
• In an orphaned task generating construct, if no default clause is present, formal arguments6
passed by reference are firstprivate.7

C++

Fortran

• In an orphaned task generating construct, if no default clause is present, dummy arguments8
are firstprivate.9

Fortran

• In a task generating construct, if no default clause is present, a variable for which the10
data-sharing attribute is not determined by the rules above and that in the enclosing context is11
determined to be shared by all implicit tasks bound to the current team is shared.12

• In a task generating construct, if no default clause is present, a variable for which the13
data-sharing attribute is not determined by the rules above is firstprivate.14

Additional restrictions on the variables for which data-sharing attributes cannot be implicitly15
determined in a task generating construct are described in Section 2.15.3.4 on page 223.16

208 OpenMP API – Version 5.0 rev 1, November 2016

2.15.1.2 Data-sharing Attribute Rules for Variables Referenced1
in a Region but not in a Construct2

The data-sharing attributes of variables that are referenced in a region, but not in a construct, are3
determined as follows:4

C / C++

• Variables with static storage duration that are declared in called routines in the region are shared.5

• File-scope or namespace-scope variables referenced in called routines in the region are shared6
unless they appear in a threadprivate directive.7

• Objects with dynamic storage duration are shared.8

• Static data members are shared unless they appear in a threadprivate directive.9

• In C++, formal arguments of called routines in the region that are passed by reference have the10
same data-sharing attributes as the associated actual arguments.11

• Other variables declared in called routines in the region are private.12

C / C++
Fortran

• Local variables declared in called routines in the region and that have the save attribute, or that13
are data initialized, are shared unless they appear in a threadprivate directive.14

• Variables belonging to common blocks, or accessed by host or use association, and referenced in15
called routines in the region are shared unless they appear in a threadprivate directive.16

• Dummy arguments of called routines in the region that have the VALUE attribute are private.17

• Dummy arguments of called routines in the region that do not have the VALUE attribute are18
private if the associated actual argument is not shared.19

• Dummy arguments of called routines in the region that do not have the VALUE attribute are20
shared if the actual argument is shared and it is a scalar variable, structure, an array that is not a21
pointer or assumed-shape array, or a simply contiguous array section. Otherwise, the22
data-sharing attribute of the dummy argument is implementation-defined if the associated actual23
argument is shared.24

• Cray pointees have the same data-sharing attribute as the storage with which their Cray pointers25
are associated.26

• Implied-do indices, forall indices, and other local variables declared in called routines in the27
region are private.28

Fortran

CHAPTER 2. DIRECTIVES 209

2.15.2 threadprivate Directive1

Summary2

The threadprivate directive specifies that variables are replicated, with each thread having its3
own copy. The threadprivate directive is a declarative directive.4

Syntax5

C / C++

The syntax of the threadprivate directive is as follows:6

#pragma omp threadprivate(list) new-line

where list is a comma-separated list of file-scope, namespace-scope, or static block-scope variables7
that do not have incomplete types.8

C / C++
Fortran

The syntax of the threadprivate directive is as follows:9

!$omp threadprivate(list)

where list is a comma-separated list of named variables and named common blocks. Common10
block names must appear between slashes.11

Fortran

210 OpenMP API – Version 5.0 rev 1, November 2016

Description1

Each copy of a threadprivate variable is initialized once, in the manner specified by the program,2
but at an unspecified point in the program prior to the first reference to that copy. The storage of all3
copies of a threadprivate variable is freed according to how static variables are handled in the base4
language, but at an unspecified point in the program.5

A program in which a thread references another thread’s copy of a threadprivate variable is6
non-conforming.7

The content of a threadprivate variable can change across a task scheduling point if the executing8
thread switches to another task that modifies the variable. For more details on task scheduling, see9
Section 1.3 on page 15 and Section 2.9 on page 91.10

In parallel regions, references by the master thread will be to the copy of the variable in the11
thread that encountered the parallel region.12

During a sequential part references will be to the initial thread’s copy of the variable. The values of13
data in the initial thread’s copy of a threadprivate variable are guaranteed to persist between any14
two consecutive references to the variable in the program.15

The values of data in the threadprivate variables of non-initial threads are guaranteed to persist16
between two consecutive active parallel regions only if all of the following conditions hold:17

• Neither parallel region is nested inside another explicit parallel region.18

• The number of threads used to execute both parallel regions is the same.19

• The thread affinity policies used to execute both parallel regions are the same.20

• The value of the dyn-var internal control variable in the enclosing task region is false at entry to21
both parallel regions.22

If these conditions all hold, and if a threadprivate variable is referenced in both regions, then23
threads with the same thread number in their respective regions will reference the same copy of that24
variable.25

C / C++

If the above conditions hold, the storage duration, lifetime, and value of a thread’s copy of a26
threadprivate variable that does not appear in any copyin clause on the second region will be27
retained. Otherwise, the storage duration, lifetime, and value of a thread’s copy of the variable in28
the second region is unspecified.29

If the value of a variable referenced in an explicit initializer of a threadprivate variable is modified30
prior to the first reference to any instance of the threadprivate variable, then the behavior is31
unspecified.32

C / C++

CHAPTER 2. DIRECTIVES 211

C++
The order in which any constructors for different threadprivate variables of class type are called is1
unspecified. The order in which any destructors for different threadprivate variables of class type2
are called is unspecified.3

C++

Fortran

A variable is affected by a copyin clause if the variable appears in the copyin clause or it is in a4
common block that appears in the copyin clause.5

If the above conditions hold, the definition, association, or allocation status of a thread’s copy of a6
threadprivate variable or a variable in a threadprivate common block, that is not affected by any7
copyin clause that appears on the second region, will be retained. Otherwise, the definition and8
association status of a thread’s copy of the variable in the second region are undefined, and the9
allocation status of an allocatable variable will be implementation defined.10

If a threadprivate variable or a variable in a threadprivate common block is not affected by any11
copyin clause that appears on the first parallel region in which it is referenced, the variable or12
any subobject of the variable is initially defined or undefined according to the following rules:13

• If it has the ALLOCATABLE attribute, each copy created will have an initial allocation status of14
unallocated.15

• If it has the POINTER attribute:16

– if it has an initial association status of disassociated, either through explicit initialization or17
default initialization, each copy created will have an association status of disassociated;18

– otherwise, each copy created will have an association status of undefined.19

• If it does not have either the POINTER or the ALLOCATABLE attribute:20

– if it is initially defined, either through explicit initialization or default initialization, each copy21
created is so defined;22

– otherwise, each copy created is undefined.23

Fortran

212 OpenMP API – Version 5.0 rev 1, November 2016

Restrictions1

The restrictions to the threadprivate directive are as follows:2

• A threadprivate variable must not appear in any clause except the copyin, copyprivate,3
schedule, num_threads, thread_limit, and if clauses.4

• A program in which an untied task accesses threadprivate storage is non-conforming.5

C / C++

• A variable that is part of another variable (as an array or structure element) cannot appear in a6
threadprivate clause unless it is a static data member of a C++ class.7

• A threadprivate directive for file-scope variables must appear outside any definition or8
declaration, and must lexically precede all references to any of the variables in its list.9

• A threadprivate directive for namespace-scope variables must appear outside any10
definition or declaration other than the namespace definition itself, and must lexically precede all11
references to any of the variables in its list.12

• Each variable in the list of a threadprivate directive at file, namespace, or class scope must13
refer to a variable declaration at file, namespace, or class scope that lexically precedes the14
directive.15

• A threadprivate directive for static block-scope variables must appear in the scope of the16
variable and not in a nested scope. The directive must lexically precede all references to any of17
the variables in its list.18

• Each variable in the list of a threadprivate directive in block scope must refer to a variable19
declaration in the same scope that lexically precedes the directive. The variable declaration must20
use the static storage-class specifier.21

• If a variable is specified in a threadprivate directive in one translation unit, it must be22
specified in a threadprivate directive in every translation unit in which it is declared.23

• The address of a threadprivate variable is not an address constant.24

C / C++

CHAPTER 2. DIRECTIVES 213

C++
• A threadprivate directive for static class member variables must appear in the class1
definition, in the same scope in which the member variables are declared, and must lexically2
precede all references to any of the variables in its list.3

• A threadprivate variable must not have an incomplete type or a reference type.4

• A threadprivate variable with class type must have:5

– an accessible, unambiguous default constructor in case of default initialization without a given6
initializer;7

– an accessible, unambiguous constructor accepting the given argument in case of direct8
initialization;9

– an accessible, unambiguous copy constructor in case of copy initialization with an explicit10
initializer11

C++

Fortran

• A variable that is part of another variable (as an array or structure element) cannot appear in a12
threadprivate clause.13

• The threadprivate directive must appear in the declaration section of a scoping unit in14
which the common block or variable is declared. Although variables in common blocks can be15
accessed by use association or host association, common block names cannot. This means that a16
common block name specified in a threadprivate directive must be declared to be a17
common block in the same scoping unit in which the threadprivate directive appears.18

• If a threadprivate directive specifying a common block name appears in one program unit,19
then such a directive must also appear in every other program unit that contains a COMMON20
statement specifying the same name. It must appear after the last such COMMON statement in the21
program unit.22

• If a threadprivate variable or a threadprivate common block is declared with the BIND attribute,23
the corresponding C entities must also be specified in a threadprivate directive in the C24
program.25

• A blank common block cannot appear in a threadprivate directive.26

• A variable can only appear in a threadprivate directive in the scope in which it is declared.27
It must not be an element of a common block or appear in an EQUIVALENCE statement.28

• A variable that appears in a threadprivate directive must be declared in the scope of a29
module or have the SAVE attribute, either explicitly or implicitly.30

Fortran

214 OpenMP API – Version 5.0 rev 1, November 2016

Cross References1

• dyn-var ICV, see Section 2.3 on page 39.2

• Number of threads used to execute a parallel region, see Section 2.5.1 on page 55.3

• copyin clause, see Section 2.15.5.1 on page 240.4

2.15.3 Data-Sharing Attribute Clauses5

Several constructs accept clauses that allow a user to control the data-sharing attributes of variables6
referenced in the construct. Data-sharing attribute clauses apply only to variables for which the7
names are visible in the construct on which the clause appears.8

Not all of the clauses listed in this section are valid on all directives. The set of clauses that is valid9
on a particular directive is described with the directive.10

Most of the clauses accept a comma-separated list of list items (see Section 2.1 on page 28). All list11
items appearing in a clause must be visible, according to the scoping rules of the base language.12
With the exception of the default clause, clauses may be repeated as needed. A list item that13
specifies a given variable may not appear in more than one clause on the same directive, except that14
a variable may be specified in both firstprivate and lastprivate clauses.15

The reduction data-sharing clauses are explained in Section 2.15.4.16

C++
If a variable referenced in a data-sharing attribute clause has a type derived from a template, and17
there are no other references to that variable in the program, then any behavior related to that18
variable is unspecified.19

C++

Fortran

When a named common block appears in a private, firstprivate, lastprivate, or20
shared clause of a directive, none of its members may be declared in another data-sharing21
attribute clause in that directive. When individual members of a common block appear in a22
private, firstprivate, lastprivate, reduction, or linear clause of a directive,23
the storage of the specified variables is no longer Fortran associated with the storage of the common24
block itself.25

Fortran

CHAPTER 2. DIRECTIVES 215

2.15.3.1 default Clause1

Summary2

The default clause explicitly determines the data-sharing attributes of variables that are3
referenced in a parallel, teams, or task generating construct and would otherwise be implicitly4
determined (see Section 2.15.1.1 on page 205).5

Syntax6

C / C++

The syntax of the default clause is as follows:7

default(shared | none)

C / C++
Fortran

The syntax of the default clause is as follows:8

default(private | firstprivate | shared | none)

Fortran

Description9

The default(shared) clause causes all variables referenced in the construct that have10
implicitly determined data-sharing attributes to be shared.11

Fortran

The default(firstprivate) clause causes all variables in the construct that have implicitly12
determined data-sharing attributes to be firstprivate.13

The default(private) clause causes all variables referenced in the construct that have14
implicitly determined data-sharing attributes to be private.15

Fortran

The default(none) clause requires that each variable that is referenced in the construct, and16
that does not have a predetermined data-sharing attribute, must have its data-sharing attribute17
explicitly determined by being listed in a data-sharing attribute clause.18

216 OpenMP API – Version 5.0 rev 1, November 2016

Restrictions1

The restrictions to the default clause are as follows:2

• Only a single default clause may be specified on a parallel, task, taskloop or3
teams directive.4

2.15.3.2 shared Clause5

Summary6

The shared clause declares one or more list items to be shared by tasks generated by a7
parallel, teams, or task generating construct.8

Syntax9

The syntax of the shared clause is as follows:10

shared(list)

Description11

All references to a list item within a task refer to the storage area of the original variable at the point12
the directive was encountered.13

The programmer must ensure, by adding proper synchronization, that storage shared by an explicit14
task region does not reach the end of its lifetime before the explicit task region completes its15
execution.16

Fortran

The association status of a shared pointer becomes undefined upon entry to and on exit from the17
parallel, teams, or task generating construct if it is associated with a target or a subobject of a18
target that is in a private, firstprivate, lastprivate, or reduction clause in the19
construct.20

CHAPTER 2. DIRECTIVES 217

Note – Passing a shared variable to a procedure may result in the use of temporary storage in place1
of the actual argument when the corresponding dummy argument does not have the VALUE2
attribute and its data-sharing attribute is implementation-defined as per the rules in Section 2.15.1.23
on page 209. These conditions effectively result in references to, and definitions of, the temporary4
storage during the procedure reference. Furthermore, the value of the shared variable is copied into5
the intervening temporary storage before the procedure reference when the dummy argument does6
not have the INTENT(OUT) attribute, and back out of the temporary storage into the shared7
variable when the dummy argument does not have the INTENT(IN) attribute. Any references to8
(or definitions of) the shared storage that is associated with the dummy argument by any other task9
must be synchronized with the procedure reference to avoid possible race conditions.10

Fortran

Restrictions11

The restrictions for the shared clause are as follows:12
C

• A variable that is part of another variable (as an array or structure element) cannot appear in a13
shared clause.14

C

C++
• A variable that is part of another variable (as an array or structure element) cannot appear in a15
shared clause except if the shared clause is associated with a construct within a class16
non-static member function and the variable is an accessible data member of the object for which17
the non-static member function is invoked.18

C++

Fortran

• A variable that is part of another variable (as an array or structure element) cannot appear in a19
shared clause.20

Fortran

2.15.3.3 private Clause21

Summary22

The private clause declares one or more list items to be private to a task or to a SIMD lane.23

218 OpenMP API – Version 5.0 rev 1, November 2016

Syntax1

The syntax of the private clause is as follows:2

private(list)

Description3

Each task that references a list item that appears in a private clause in any statement in the4
construct receives a new list item. Each SIMD lane used in a simd construct that references a list5
item that appears in a private clause in any statement in the construct receives a new list item.6
Language-specific attributes for new list items are derived from the corresponding original list item.7
Inside the construct, all references to the original list item are replaced by references to the new list8
item. In the rest of the region, it is unspecified whether references are to the new list item or the9
original list item.10

C++
If the construct is contained in a member function, it is unspecified anywhere in the region if11
accesses through the implicit this pointer refer to the new list item or the original list item.12

C++

Therefore, if an attempt is made to reference the original item, its value after the region is also13
unspecified. If a SIMD construct or a task does not reference a list item that appears in a private14
clause, it is unspecified whether SIMD lanes or the task receive a new list item.15

The value and/or allocation status of the original list item will change only:16

• if accessed and modified via pointer,17

• if possibly accessed in the region but outside of the construct,18

• as a side effect of directives or clauses, or19

CHAPTER 2. DIRECTIVES 219

Fortran

• if accessed and modified via construct association.1

Fortran

List items that appear in a private, firstprivate, or reduction clause in a parallel2
construct may also appear in a private clause in an enclosed parallel, worksharing, task,3
taskloop, simd, or target construct.4

List items that appear in a private or firstprivate clause in a task or taskloop5
construct may also appear in a private clause in an enclosed parallel, task, taskloop,6
simd, or target construct.7

List items that appear in a private, firstprivate, lastprivate, or reduction clause8
in a worksharing construct may also appear in a private clause in an enclosed parallel,9
task, simd, or target construct.10

C / C++

A new list item of the same type, with automatic storage duration, is allocated for the construct.11
The storage and thus lifetime of these list items lasts until the block in which they are created exits.12
The size and alignment of the new list item are determined by the type of the variable. This13
allocation occurs once for each task generated by the construct and once for each SIMD lane used14
by the construct.15

The new list item is initialized, or has an undefined initial value, as if it had been locally declared16
without an initializer.17

C / C++
C++

If the type of a list item is a reference to a type T then the type will be considered to be T for all18
purposes of this clause.19

The order in which any default constructors for different private variables of class type are called is20
unspecified. The order in which any destructors for different private variables of class type are21
called is unspecified.22

C++

220 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

If any statement of the construct references a list item, a new list item of the same type and type1
parameters is allocated. This allocation occurs once for each task generated by the construct and2
once for each SIMD lane used by the construct. The initial value of the new list item is undefined.3
The initial status of a private pointer is undefined.4

For a list item or the subobject of a list item with the ALLOCATABLE attribute:5

• if the allocation status is unallocated, the new list item or the subobject of the new list item will6
have an initial allocation status of unallocated.7

• if the allocation status is allocated, the new list item or the subobject of the new list item will8
have an initial allocation status of allocated.9

• If the new list item or the subobject of the new list item is an array, its bounds will be the same as10
those of the original list item or the subobject of the original list item.11

A list item that appears in a private clause may be storage-associated with other variables when12
the private clause is encountered. Storage association may exist because of constructs such as13
EQUIVALENCE or COMMON. If A is a variable appearing in a private clause on a construct and14
B is a variable that is storage-associated with A, then:15

• The contents, allocation, and association status of B are undefined on entry to the region.16

• Any definition of A, or of its allocation or association status, causes the contents, allocation, and17
association status of B to become undefined.18

• Any definition of B, or of its allocation or association status, causes the contents, allocation, and19
association status of A to become undefined.20

A list item that appears in a private clause may be a selector of an ASSOCIATE construct. If the21
construct association is established prior to a parallel region, the association between the22
associate name and the original list item will be retained in the region.23

Finalization of a list item of a finalizable type or subojects of a list item of a finalizable type occurs24
at the end of the region. The order in which any final subroutines for different variables of a25
finalizable type are called is unspecified.26

Fortran

Restrictions27

The restrictions to the private clause are as follows:28

CHAPTER 2. DIRECTIVES 221

C
• A variable that is part of another variable (as an array or structure element) cannot appear in a1
private clause.2

C

C++
• A variable that is part of another variable (as an array or structure element) cannot appear in a3
private clause except if the private clause is associated with a construct within a class4
non-static member function and the variable is an accessible data member of the object for which5
the non-static member function is invoked.6

• A variable of class type (or array thereof) that appears in a private clause requires an7
accessible, unambiguous default constructor for the class type.8

C++

C / C++

• A variable that appears in a private clause must not have a const-qualified type unless it is9
of class type with a mutable member. This restriction does not apply to the firstprivate10
clause.11

• A variable that appears in a private clause must not have an incomplete type or be a reference12
to an incomplete type.13

C / C++
Fortran

• A variable that is part of another variable (as an array or structure element) cannot appear in a14
private clause.15

• A variable that appears in a private clause must either be definable, or an allocatable variable.16
This restriction does not apply to the firstprivate clause.17

• Variables that appear in namelist statements, in variable format expressions, and in expressions18
for statement function definitions, may not appear in a private clause.19

• Pointers with the INTENT(IN) attribute may not appear in a private clause. This restriction20
does not apply to the firstprivate clause.21

Fortran

222 OpenMP API – Version 5.0 rev 1, November 2016

2.15.3.4 firstprivate Clause1

Summary2

The firstprivate clause declares one or more list items to be private to a task, and initializes3
each of them with the value that the corresponding original item has when the construct is4
encountered.5

Syntax6

The syntax of the firstprivate clause is as follows:7

firstprivate(list)

Description8

The firstprivate clause provides a superset of the functionality provided by the private9
clause.10

A list item that appears in a firstprivate clause is subject to the private clause semantics11
described in Section 2.15.3.3 on page 218, except as noted. In addition, the new list item is12
initialized from the original list item existing before the construct. The initialization of the new list13
item is done once for each task that references the list item in any statement in the construct. The14
initialization is done prior to the execution of the construct.15

For a firstprivate clause on a parallel, task, taskloop, target, or teams16
construct, the initial value of the new list item is the value of the original list item that exists17
immediately prior to the construct in the task region where the construct is encountered. For a18
firstprivate clause on a worksharing construct, the initial value of the new list item for each19
implicit task of the threads that execute the worksharing construct is the value of the original list20
item that exists in the implicit task immediately prior to the point in time that the worksharing21
construct is encountered.22

To avoid race conditions, concurrent updates of the original list item must be synchronized with the23
read of the original list item that occurs as a result of the firstprivate clause.24

If a list item appears in both firstprivate and lastprivate clauses, the update required25
for lastprivate occurs after all the initializations for firstprivate.26

C / C++

For variables of non-array type, the initialization occurs by copy assignment. For an array of27
elements of non-array type, each element is initialized as if by assignment from an element of the28
original array to the corresponding element of the new array.29

C / C++

CHAPTER 2. DIRECTIVES 223

C++
For variables of class type, a copy constructor is invoked to perform the initialization. The order in1
which copy constructors for different variables of class type are called is unspecified.2

C++

Fortran

If the original list item does not have the POINTER attribute, initialization of the new list items3
occurs as if by intrinsic assignment, unless the original list item has the allocation status of4
unallocated, in which case the new list items will have the same status.5

If the original list item has the POINTER attribute, the new list items receive the same association6
status of the original list item as if by pointer assignment.7

Fortran

Restrictions8

The restrictions to the firstprivate clause are as follows:9

• A list item that is private within a parallel region must not appear in a firstprivate10
clause on a worksharing construct if any of the worksharing regions arising from the worksharing11
construct ever bind to any of the parallel regions arising from the parallel construct.12

• A list item that is private within a teams region must not appear in a firstprivate clause13
on a distribute construct if any of the distribute regions arising from the14
distribute construct ever bind to any of the teams regions arising from the teams15
construct.16

• A list item that appears in a reduction clause of a parallel construct must not appear in a17
firstprivate clause on a worksharing, task, or taskloop construct if any of the18
worksharing or task regions arising from the worksharing, task, or taskloop construct ever19
bind to any of the parallel regions arising from the parallel construct.20

• A list item that appears in a reduction clause of a teams construct must not appear in a21
firstprivate clause on a distribute construct if any of the distribute regions22
arising from the distribute construct ever bind to any of the teams regions arising from the23
teams construct.24

• A list item that appears in a reduction clause of a worksharing construct must not appear in a25
firstprivate clause in a task construct encountered during execution of any of the26
worksharing regions arising from the worksharing construct.27

224 OpenMP API – Version 5.0 rev 1, November 2016

C++
• A variable of class type (or array thereof) that appears in a firstprivate clause requires an1
accessible, unambiguous copy constructor for the class type.2

C++

C / C++

• A variable that appears in a firstprivate clause must not have an incomplete C/C++ type or3
be a reference to an incomplete type.4

• If a list item in a firstprivate clause on a worksharing construct has a reference type then it5
must bind to the same object for all threads of the team.6

C / C++
Fortran

• Variables that appear in namelist statements, in variable format expressions, or in expressions for7
statement function definitions, may not appear in a firstprivate clause.8

Fortran

2.15.3.5 lastprivate Clause9

Summary10

The lastprivate clause declares one or more list items to be private to an implicit task or to a11
SIMD lane, and causes the corresponding original list item to be updated after the end of the region.12

Syntax13

The syntax of the lastprivate clause is as follows:14

lastprivate([lastprivate-modifier:] list)

where lastprivate-modifier is:15

conditional16

CHAPTER 2. DIRECTIVES 225

Description1

The lastprivate clause provides a superset of the functionality provided by the private2
clause.3

A list item that appears in a lastprivate clause is subject to the private clause semantics4
described in Section 2.15.3.3 on page 218. In addition, when a lastprivate clause without the5
conditional modifier appears on the directive that identifies a worksharing construct or a6
SIMD construct, the value of each new list item from the sequentially last iteration of the associated7
loops, or the lexically last section construct, is assigned to the original list item. When the8
conditional modifier appears on the clause, if an assignment to a list item is encountered in the9
construct then the original list item is assigned the value that is assigned to the new list item in the10
sequentially last iteration or lexically last section in which such an assignment is encountered.11

C / C++

For an array of elements of non-array type, each element is assigned to the corresponding element12
of the original array.13

C / C++

Fortran

If the original list item does not have the POINTER attribute, its update occurs as if by intrinsic14
assignment.15

If the original list item has the POINTER attribute, its update occurs as if by pointer assignment.16

Fortran

When the conditional modifier does not appear on the lastprivate clause, list items that17
are not assigned a value by the sequentially last iteration of the loops, or by the lexically last18
section construct, have unspecified values after the construct. Unassigned subcomponents also19
have unspecified values after the construct.20

The original list item becomes defined at the end of the construct if there is an implicit barrier at21
that point. To avoid race conditions, concurrent reads or updates of the original list item must be22
synchronized with the update of the original list item that occurs as a result of the lastprivate23
clause.24

If the lastprivate clause is used on a construct that does not end with an implicit barrier,25
accesses to the original list item may create a data race. To avoid this, if an assignment to the26
original list item occurs then synchronization must be inserted to ensure that the assignment27
completes and the original list item is flushed to memory.28

If a list item appears in both firstprivate and lastprivate clauses, the update required29
for lastprivate occurs after all initializations for firstprivate.30

226 OpenMP API – Version 5.0 rev 1, November 2016

Restrictions1

The restrictions to the lastprivate clause are as follows:2

• A list item that is private within a parallel region, or that appears in the reduction clause3
of a parallel construct, must not appear in a lastprivate clause on a worksharing4
construct if any of the corresponding worksharing regions ever binds to any of the corresponding5
parallel regions.6

• If a list item that appears in a lastprivate clause with the conditional modifier is7
modified in the region by an assignment outside the construct or not to the list item then the value8
assigned to the original list item is unspecified.9

• A list item that appears in a lastprivate clause with the conditional modifier must be a10
scalar variable.11

C++
• A variable of class type (or array thereof) that appears in a lastprivate clause requires an12
accessible, unambiguous default constructor for the class type, unless the list item is also13
specified in a firstprivate clause.14

• A variable of class type (or array thereof) that appears in a lastprivate clause requires an15
accessible, unambiguous copy assignment operator for the class type. The order in which copy16
assignment operators for different variables of class type are called is unspecified.17

C++

C / C++

• A variable that appears in a lastprivate clause must not have a const-qualified type unless18
it is of class type with a mutable member.19

• A variable that appears in a lastprivate clause must not have an incomplete C/C++ type or20
be a reference to an incomplete type.21

• If a list item in a lastprivate clause on a worksharing construct has a reference type then it22
must bind to the same object for all threads of the team.23

C / C++
Fortran

• A variable that appears in a lastprivate clause must be definable.24

• If the original list item has the ALLOCATABLE attribute, the corresponding list item whose value25
is assigned to the original list item must have an allocation status of allocated upon exit from the26
sequentially last iteration or lexically last section construct.27

• Variables that appear in namelist statements, in variable format expressions, or in expressions for28
statement function definitions, may not appear in a lastprivate clause.29

Fortran

CHAPTER 2. DIRECTIVES 227

2.15.3.6 linear Clause1

Summary2

The linear clause declares one or more list items to be private to a SIMD lane and to have a3
linear relationship with respect to the iteration space of a loop.4

Syntax5

C
The syntax of the linear clause is as follows:6

linear(linear-list[: linear-step])

where linear-list is one of the following7

list8

modifier(list)9

where modifier is one of the following:10

val11

C

C++
The syntax of the linear clause is as follows:12

linear(linear-list[: linear-step])

where linear-list is one of the following13

list14

modifier(list)15

where modifier is one of the following:16

ref17

val18

uval19

C++

228 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

The syntax of the linear clause is as follows:1

linear(linear-list[: linear-step])

where linear-list is one of the following2

list3

modifier(list)4

where modifier is one of the following:5

ref6

val7

uval8

Fortran

Description9

The linear clause provides a superset of the functionality provided by the private clause. A10
list item that appears in a linear clause is subject to the private clause semantics described in11
Section 2.15.3.3 on page 218 except as noted. If linear-step is not specified, it is assumed to be 1.12

When a linear clause is specified on a construct, the value of the new list item on each iteration13
of the associated loop(s) corresponds to the value of the original list item before entering the14
construct plus the logical number of the iteration times linear-step. The value corresponding to the15
sequentially last iteration of the associated loop(s) is assigned to the original list item.16

When a linear clause is specified on a declarative directive, all list items must be formal17
parameters (or, in Fortran, dummy arguments) of a function that will be invoked concurrently on18
each SIMD lane. If no modifier is specified or the val or uval modifier is specified, the value of19
each list item on each lane corresponds to the value of the list item upon entry to the function plus20
the logical number of the lane times linear-step. If the uval modifier is specified, each invocation21
uses the same storage location for each SIMD lane; this storage location is updated with the final22
value of the logically last lane. If the ref modifier is specified, the storage location of each list23
item on each lane corresponds to an array at the storage location upon entry to the function indexed24
by the logical number of the lane times linear-step.25

CHAPTER 2. DIRECTIVES 229

Restrictions1

• The linear-step expression must be invariant during the execution of the region associated with2
the construct. Otherwise, the execution results in unspecified behavior.3

• A list-item cannot appear in more than one linear clause.4

• A list-item that appears in a linear clause cannot appear in any other data-sharing attribute5
clause.6

C
• A list-item that appears in a linear clause must be of integral or pointer type.7

C

C++
• A list-item that appears in a linear clause without the ref modifier must be of integral or8
pointer type, or must be a reference to an integral or pointer type.9

• The ref or uval modifier can only be used if the list-item is of a reference type.10

• If a list item in a linear clause on a worksharing construct has a reference type then it must11
bind to the same object for all threads of the team.12

• If the list item is of a reference type and the ref modifier is not specified and if any write to the13
list item occurs before any read of the list item then the result is unspecified.14

C++

Fortran

• A list-item that appears in a linear clause without the ref modifier must be of type15
integer.16

• The ref or uval modifier can only be used if the list-item is a dummy argument without the17
VALUE attribute.18

• Variables that have the POINTER attribute and Cray pointers may not appear in a linear clause.19

• The list item with the ALLOCATABLE attribute in the sequentially last iteration must have an20
allocation status of allocated upon exit from that iteration.21

• If the list item is a dummy argument without the VALUE attribute and the ref modifier is not22
specified and if any write to the list item occurs before any read of the list item then the result is23
unspecified.24

• A common block name cannot appear in a linear clause.25

Fortran

230 OpenMP API – Version 5.0 rev 1, November 2016

2.15.4 Reduction Clauses1

The reduction clauses can be used to perform some forms of recurrence calculations (involving2
mathematically associative and commutative operators) in parallel.3

Reduction clauses include reduction scoping clauses and reduction participating clauses. Reduction4
scoping clauses define the region in which a reduction is computed. Reduction participating clauses5
define the participants in the reduction.6

Reduction clauses specify a reduction-identifier and one or more list items.7

2.15.4.1 Properties Common To All Reduction Clauses8

Syntax9

The syntax of a reduction-identifier is defined as follows:10

C
A reduction-identifier is either an identifier or one of the following operators: +, -, *, &, |, ˆ, &&11
and ||12

C

C++
A reduction-identifier is either an id-expression or one of the following operators: +, -, *, &, |, ˆ,13
&& and ||14

C++

Fortran

A reduction-identifier is either a base language identifier, or a user-defined operator, or one of the15
following operators: +, -, *, .and., .or., .eqv., .neqv., or one of the following intrinsic16
procedure names: max, min, iand, ior, ieor.17

Fortran
C / C++

Table 2.7 lists each reduction-identifier that is implicitly declared at every scope for arithmetic18
types and its semantic initializer value. The actual initializer value is that value as expressed in the19
data type of the reduction list item.20

CHAPTER 2. DIRECTIVES 231

TABLE 2.7: Implicitly Declared C/C++ reduction-identifiers

Identifier Initializer Combiner

+ omp_priv = 0 omp_out += omp_in

* omp_priv = 1 omp_out *= omp_in

- omp_priv = 0 omp_out += omp_in

& omp_priv = ~0 omp_out &= omp_in

| omp_priv = 0 omp_out |= omp_in

ˆ omp_priv = 0 omp_out ˆ= omp_in

&& omp_priv = 1 omp_out = omp_in && omp_out

|| omp_priv = 0 omp_out = omp_in || omp_out

max omp_priv = Least
representable number in the
reduction list item type

omp_out = omp_in > omp_out ?
omp_in : omp_out

min omp_priv = Largest
representable number in the
reduction list item type

omp_out = omp_in < omp_out ?
omp_in : omp_out

1

C / C++

Fortran

Table 2.8 lists each reduction-identifier that is implicitly declared for numeric and logical types and2
its semantic initializer value. The actual initializer value is that value as expressed in the data type3
of the reduction list item.4

TABLE 2.8: Implicitly Declared Fortran reduction-identifiers

Identifier Initializer Combiner

+ omp_priv = 0 omp_out = omp_in + omp_out

* omp_priv = 1 omp_out = omp_in * omp_out

- omp_priv = 0 omp_out = omp_in + omp_out

.and. omp_priv = .true. omp_out = omp_in .and. omp_out

table continued on next page

232 OpenMP API – Version 5.0 rev 1, November 2016

table continued from previous page

Identifier Initializer Combiner

.or. omp_priv = .false. omp_out = omp_in .or. omp_out

.eqv. omp_priv = .true. omp_out = omp_in .eqv. omp_out

.neqv. omp_priv = .false. omp_out = omp_in .neqv. omp_out

max omp_priv = Least
representable number in the
reduction list item type

omp_out = max(omp_in, omp_out)

min omp_priv = Largest
representable number in the
reduction list item type

omp_out = min(omp_in, omp_out)

iand omp_priv = All bits on omp_out = iand(omp_in, omp_out)

ior omp_priv = 0 omp_out = ior(omp_in, omp_out)

ieor omp_priv = 0 omp_out = ieor(omp_in, omp_out)

Fortran

In the above tables, omp_in and omp_out correspond to two identifiers that refer to storage of the1
type of the list item. omp_out holds the final value of the combiner operation.2

Any reduction-identifier that is defined with the declare reduction directive is also valid. In3
that case, the initializer and combiner of the reduction-identifier are specified by the4
initializer-clause and the combiner in the declare reduction directive.5

Description6

A reduction clause specifies a reduction-identifier and one or more list items.7

The reduction-identifier specified in a reduction clause must match a previously declared8
reduction-identifier of the same name and type for each of the list items. This match is done by9
means of a name lookup in the base language.10

The list items that appear in a reduction clause may include array sections.11

CHAPTER 2. DIRECTIVES 233

C++
If the type is a derived class, then any reduction-identifier that matches its base classes is also a1
match, if there is no specific match for the type.2

If the reduction-identifier is not an id-expression, then it is implicitly converted to one by3
prepending the keyword operator (for example, + becomes operator+).4

If the reduction-identifier is qualified then a qualified name lookup is used to find the declaration.5

If the reduction-identifier is unqualified then an argument-dependent name lookup must be6
performed using the type of each list item.7

C++

If the list item is an array or array section, it will be treated as if a reduction clause would be applied8
to each separate element of the array section.9

Restrictions10

The restrictions common to reduction clauses are as follows:11

• Any number of reduction clauses can be specified on the directive, but a list item (or any array12
element in an array section) can appear only once in reduction clauses for that directive.13

• For a reduction-identifier declared with the declare reduction construct, the directive14
must appear before its use in a reduction clause.15

• If a list item is an array section, it must specify contiguous storage and it cannot be a zero-length16
array section.17

• If a list item is an array section, accesses to the elements of the array outside the specified array18
section result in unspecified behavior.19

C / C++

• The type of a list item that appears in a reduction clause must be valid for the20
reduction-identifier. For a max or min reduction in C, the type of the list item must be an21
allowed arithmetic data type: char, int, float, double, or _Bool, possibly modified with22
long, short, signed, or unsigned. For a max or min reduction in C++, the type of the23
list item must be an allowed arithmetic data type: char, wchar_t, int, float, double, or24
bool, possibly modified with long, short, signed, or unsigned.25

• A list item that appears in a reduction clause must not be const-qualified.26

• The reduction-identifier for any list item must be unambiguous and accessible.27

C / C++

234 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

• The type and the rank of a list item that appears in a reduction clause must be valid for the1
combiner and initializer.2

• A list item that appears in a reduction clause must be definable.3

• A procedure pointer may not appear in a reduction clause.4

• A pointer with the INTENT(IN) attribute may not appear in the reduction clause.5

• An original list item with the POINTER attribute or any pointer component of an original list6
item that is referenced in the combiner must be associated at entry to the construct that contains7
the reduction clause. Additionally, the list item or the pointer component of the list item must not8
be deallocated, allocated, or pointer assigned within the region.9

• An original list item with the ALLOCATABLE attribute or any allocatable component of an10
original list item that is referenced in the combiner must be in the allocated state at entry to the11
construct that contains the reduction clause. Additionally, the list item or the allocatable12
component of the list item must be neither deallocated nor allocated within the region.13

• If the reduction-identifier is defined in a declare reduction directive, the14
declare reduction directive must be in the same subprogram, or accessible by host or use15
association.16

• If the reduction-identifier is a user-defined operator, the same explicit interface for that operator17
must be accessible as at the declare reduction directive.18

• If the reduction-identifier is defined in a declare reduction directive, any subroutine or19
function referenced in the initializer clause or combiner expression must be an intrinsic function,20
or must have an explicit interface where the same explicit interface is accessible as at the21
declare reduction directive.22

Fortran

2.15.4.2 Reduction Scoping Clauses23

Reduction scoping clauses define the region in which a reduction is computed by tasks or SIMD24
lanes. All properties common to all reduction clauses, which are defined in Section 2.15.4.1, apply25
to reduction scoping clauses.26

The number of copies created for each list item and the time at which those copies are initialized27
are determined by the particular reduction scoping clause that appears on the construct. Any copies28
associated with the reduction are initialized with the intializer value of the reduction-identifier.29

Any copies are combined using the combiner associated with the reduction-identifier. The time at30
which the original list item contains the result of the reduction is determined by the particular31
reduction scoping clause.32

CHAPTER 2. DIRECTIVES 235

Fortran

If the original list item has the POINTER attribute, copies of the list item are associated with1
private targets.2

Fortran

If the list item is an array section, the elements of any copy of the array section will be allocated3
contiguously.4

The location in the OpenMP program at which values are combined and the order in which values5
are combined are unspecified. Therefore, when comparing sequential and parallel runs, or when6
comparing one parallel run to another (even if the number of threads used is the same), there is no7
guarantee that bit-identical results will be obtained or that side effects (such as floating-point8
exceptions) will be identical or take place at the same location in the OpenMP program.9

To avoid race conditions, concurrent reads or updates of the original list item must be synchronized10
with the update of the original list item that occurs as a result of the reduction computation.11

2.15.4.3 Reduction Participating Clauses12

A reduction participating clause specifies a task or a SIMD lane as a participant in a reduction13
defined by a reduction scoping clause. All properties common to all reduction clauses, which are14
defined in Section 2.15.4.1, apply to reduction participating clauses.15

Accesses to the original list item may be replaced by accesses to copies of the original list item16
created by a region associated with a construct with a reduction scoping clause.17

In any case, the final value of the reduction must be determined as if all tasks or SIMD lanes that18
participate in the reduction are executed sequentially in some arbitrary order.19

2.15.4.4 reduction Clause20

Summary21

The reduction clause specifies a reduction-identifier and one or more list items. For each list22
item, a private copy is created in each implicit task or SIMD lane and is initialized with the23
initializer value of the reduction-identifier. After the end of the region, the original list item is24
updated with the values of the private copies using the combiner associated with the25
reduction-identifier.26

236 OpenMP API – Version 5.0 rev 1, November 2016

Syntax1

reduction(reduction-identifier : list)

Where reduction-identifier is defined in Section 2.15.4.1.2

Description3

The reduction clause is a reduction scoping clause and a reduction participating clause, as4
described in Sections 2.15.4.2 and 2.15.4.3.5

For parallel and worksharing constructs, a private copy of each list item is created, one for each6
implicit task, as if the private clause had been used. For the simd construct, a private copy of7
each list item is created, one for each SIMD lane as if the private clause had been used. For the8
taskloop construct, private copies are created according to the rules of the reduction scoping9
clauses. For the target construct, a private copy of each list item is created and initialized for the10
initial task as if the private clause had been used. For the teams construct, a private copy of11
each list item is created and initialized, one for each team in the league as if the private clause12
had been used. At the end of the region for which the reduction clause was specified, the13
original list item is updated by combining its original value with the final value of each of the14
private copies, using the combiner of the specified reduction-identifier.15

If nowait is not used, the reduction computation will be complete at the end of the construct;16
however, if the reduction clause is used on a construct to which nowait is also applied, accesses to17
the original list item will create a race and, thus, have unspecified effect unless synchronization18
ensures that they occur after all threads have executed all of their iterations or section constructs,19
and the reduction computation has completed and stored the computed value of that list item. This20
can most simply be ensured through a barrier synchronization.21

Restrictions22

The restrictions to the reduction clause are as follows:23

• All the common restrictions to all reduction clauses, which are listed in Section 2.15.4.1, apply to24
this clause.25

• A list item that appears in a reduction clause of a worksharing construct must be shared in26
the parallel regions to which any of the worksharing regions arising from the worksharing27
construct bind.28

• A list item that appears in a reduction clause of the innermost enclosing worksharing or29
parallel construct may not be accessed in an explicit task generated by a construct for which30
an in_reduction clause over the same list item does not appear.31

CHAPTER 2. DIRECTIVES 237

C / C++

• If a list item in a reduction clause on a worksharing construct has a reference type then it1
must bind to the same object for all threads of the team.2

C / C++

2.15.4.5 task_reduction Clause3

Summary4

The task_reduction clause specifies a reduction among tasks.5

Syntax6

task_reduction(reduction-identifier : list)

Where reduction-identifier is defined in Section 2.15.4.1.7

Description8

The task_reduction clause is a reduction scoping clause, as described in 2.15.4.2.9

For each list item, the number of copies is unspecified. Any copies associated with the reduction10
are initialized before they are accessed by the tasks participating in the reduction. After the end of11
the region, the original list item contains the result of the reduction.12

Restrictions13

The restrictions to the task_reduction clause are as follows:14

• All the common restrictions to all reduction clauses, which are listed in Section 2.15.4.1, apply to15
this clause.16

238 OpenMP API – Version 5.0 rev 1, November 2016

2.15.4.6 in_reduction Clause1

Summary2

The in_reduction clause specifies that a task participates in a reduction.3

Syntax4

in_reduction(reduction-identifier : list)

Where reduction-identifier is defined in Section 2.15.4.15

Description6

The in_reduction clause is a reduction participating clause, as described in Section 2.15.4.3.7

Restrictions8

The restrictions to the in_reduction clause are as follows:9

• All the common restrictions to all reduction clauses, which are listed in Section 2.15.4.1, apply to10
this clause.11

• A list item that appears in an in_reduction clause of a task construct must appear in a12
task_reduction clause of a construct associated with a taskgroup region that includes the13
participating task in its taskgroup set. The construct associated with the innermost region that14
meets this condition must specify the same reduction-identifier as the in_reduction clause.15

CHAPTER 2. DIRECTIVES 239

2.15.5 Data Copying Clauses1

This section describes the copyin clause (allowed on the parallel directive and combined2
parallel worksharing directives) and the copyprivate clause (allowed on the single directive).3

These clauses support the copying of data values from private or threadprivate variables on one4
implicit task or thread to the corresponding variables on other implicit tasks or threads in the team.5

The clauses accept a comma-separated list of list items (see Section 2.1 on page 28). All list items6
appearing in a clause must be visible, according to the scoping rules of the base language. Clauses7
may be repeated as needed, but a list item that specifies a given variable may not appear in more8
than one clause on the same directive.9

Fortran

An associate name preserves the association with the selector established at the ASSOCIATE10
statement. A list item that appears in a data copying clause may be a selector of an ASSOCIATE11
construct. If the construct association is established prior to a parallel region, the association12
between the associate name and the original list item will be retained in the region.13

Fortran

2.15.5.1 copyin Clause14

Summary15

The copyin clause provides a mechanism to copy the value of the master thread’s threadprivate16
variable to the threadprivate variable of each other member of the team executing the parallel17
region.18

Syntax19

The syntax of the copyin clause is as follows:20

copyin(list)

240 OpenMP API – Version 5.0 rev 1, November 2016

Description1

C / C++

The copy is done after the team is formed and prior to the start of execution of the associated2
structured block. For variables of non-array type, the copy occurs by copy assignment. For an array3
of elements of non-array type, each element is copied as if by assignment from an element of the4
master thread’s array to the corresponding element of the other thread’s array.5

C / C++
C++

For class types, the copy assignment operator is invoked. The order in which copy assignment6
operators for different variables of class type are called is unspecified.7

C++

Fortran

The copy is done, as if by assignment, after the team is formed and prior to the start of execution of8
the associated structured block.9

On entry to any parallel region, each thread’s copy of a variable that is affected by a copyin10
clause for the parallel region will acquire the allocation, association, and definition status of the11
master thread’s copy, according to the following rules:12

• If the original list item has the POINTER attribute, each copy receives the same association13
status of the master thread’s copy as if by pointer assignment.14

• If the original list item does not have the POINTER attribute, each copy becomes defined with15
the value of the master thread’s copy as if by intrinsic assignment, unless it has the allocation16
status of unallocated, in which case each copy will have the same status.17

Fortran

CHAPTER 2. DIRECTIVES 241

Restrictions1

The restrictions to the copyin clause are as follows:2

C / C++

• A list item that appears in a copyin clause must be threadprivate.3

• A variable of class type (or array thereof) that appears in a copyin clause requires an4
accessible, unambiguous copy assignment operator for the class type.5

C / C++
Fortran

• A list item that appears in a copyin clause must be threadprivate. Named variables appearing6
in a threadprivate common block may be specified: it is not necessary to specify the whole7
common block.8

• A common block name that appears in a copyin clause must be declared to be a common block9
in the same scoping unit in which the copyin clause appears.10

Fortran

2.15.5.2 copyprivate Clause11

Summary12

The copyprivate clause provides a mechanism to use a private variable to broadcast a value13
from the data environment of one implicit task to the data environments of the other implicit tasks14
belonging to the parallel region.15

To avoid race conditions, concurrent reads or updates of the list item must be synchronized with the16
update of the list item that occurs as a result of the copyprivate clause.17

Syntax18

The syntax of the copyprivate clause is as follows:19

copyprivate(list)

242 OpenMP API – Version 5.0 rev 1, November 2016

Description1

The effect of the copyprivate clause on the specified list items occurs after the execution of the2
structured block associated with the single construct (see Section 2.7.3 on page 74), and before3
any of the threads in the team have left the barrier at the end of the construct.4

C / C++

In all other implicit tasks belonging to the parallel region, each specified list item becomes5
defined with the value of the corresponding list item in the implicit task associated with the thread6
that executed the structured block. For variables of non-array type, the definition occurs by copy7
assignment. For an array of elements of non-array type, each element is copied by copy assignment8
from an element of the array in the data environment of the implicit task associated with the thread9
that executed the structured block to the corresponding element of the array in the data environment10
of the other implicit tasks11

C / C++
C++

For class types, a copy assignment operator is invoked. The order in which copy assignment12
operators for different variables of class type are called is unspecified.13

C++

Fortran

If a list item does not have the POINTER attribute, then in all other implicit tasks belonging to the14
parallel region, the list item becomes defined as if by intrinsic assignment with the value of the15
corresponding list item in the implicit task associated with the thread that executed the structured16
block.17

If the list item has the POINTER attribute, then, in all other implicit tasks belonging to the18
parallel region, the list item receives, as if by pointer assignment, the same association status of19
the corresponding list item in the implicit task associated with the thread that executed the20
structured block.21

The order in which any final subroutines for different variables of a finalizable type are called is22
unspecified.23

Fortran

Note – The copyprivate clause is an alternative to using a shared variable for the value when24
providing such a shared variable would be difficult (for example, in a recursion requiring a different25
variable at each level).26

CHAPTER 2. DIRECTIVES 243

Restrictions1

The restrictions to the copyprivate clause are as follows:2

• All list items that appear in the copyprivate clause must be either threadprivate or private in3
the enclosing context.4

• A list item that appears in a copyprivate clause may not appear in a private or5
firstprivate clause on the single construct.6

C++
• A variable of class type (or array thereof) that appears in a copyprivate clause requires an7
accessible unambiguous copy assignment operator for the class type.8

C++

Fortran

• A common block that appears in a copyprivate clause must be threadprivate.9

• Pointers with the INTENT(IN) attribute may not appear in the copyprivate clause.10

• The list item with the ALLOCATABLE attribute must have the allocation status of allocated when11
the intrinsic assignment is performed.12

Fortran

2.15.6 Data-mapping Attribute Rules and Clauses13

This section describes how the data-mapping attributes of any variable referenced in a target14
region are determined. When specified, explicit map clauses on target data and target15
directives determine these attributes. Otherwise, the following data-mapping rules apply for16
variables referenced in a target construct that are not declared in the construct and do not appear17
in data-sharing attribute or map clauses:18

Certain variables and objects have predetermined data-mapping attributes as follows:19

• If a variable appears in a to or link clause on a declare target directive then it is treated20
as if it had appeared in a map clause with a map-type of tofrom.21

C / C++

• A variable that is of type pointer is treated as if it had appeared in a map clause as a zero-length22
array section.23

C / C++

244 OpenMP API – Version 5.0 rev 1, November 2016

C++
• A variable that is of type reference to pointer is treated as if it had appeared in a map clause as a1
zero-length array section.2

C++

Otherwise, the following implicit data-mapping attribute rules apply:3

• If a defaultmap(tofrom:scalar) clause is not present then a scalar variable is not4
mapped, but instead has an implicit data-sharing attribute of firstprivate (see Section 2.15.1.1 on5
page 205).6

• If a defaultmap(tofrom:scalar) clause is present then a scalar variable is treated as if it7
had appeared in a map clause with a map-type of tofrom.8

• If a variable is not a scalar then it is treated as if it had appeared in a map clause with a map-type9
of tofrom.10

2.15.6.1 map Clause11

Summary12

The map clause specifies how an original list item is mapped from the current task’s data13
environment to a corresponding list item in the device data environment of the device identified by14
the construct.15

Syntax16

The syntax of the map clause is as follows:17

map([[map-type-modifier[,]] map-type :] list)

where map-type is one of the following:18

to19

from20

tofrom21

alloc22

release23

delete24

and map-type-modifier is always.25

CHAPTER 2. DIRECTIVES 245

Description1

The list items that appear in a map clause may include array sections and structure elements.2

The map-type and map-type-modifier specify the effect of the map clause, as described below.3

The original and corresponding list items may share storage such that writes to either item by one4
task followed by a read or write of the other item by another task without intervening5
synchronization can result in data races.6

If the map clause appears on a target, target data, or target enter data construct then7
on entry to the region the following sequence of steps occurs as if performed as a single atomic8
operation:9

1. If a corresponding list item of the original list item is not present in the device data environment,10
then:11

a) A new list item with language-specific attributes is derived from the original list item and12
created in the device data environment.13

b) The new list item becomes the corresponding list item to the original list item in the device14
data environment.15

c) The corresponding list item has a reference count that is initialized to zero.16

2. The corresponding list item’s reference count is incremented by one.17

3. If the corresponding list item’s reference count is one or the always map-type-modifier is18
present, then:19

a) If the map-type is to or tofrom, then the corresponding list item is assigned the value of20
the original list item.21

4. If the corresponding list item’s reference count is one, then:22

a) If the map-type is from or alloc, the value of the corresponding list item is undefined.23

If the map clause appears on a target, target data, or target exit data construct then24
on exit from the region the following sequence of steps occurs as if performed as a single atomic25
operation:26

1. If a corresponding list item of the original list item is not present in the device data environment,27
then the list item is ignored.28

2. If a corresponding list item of the original list item is present in the device data environment,29
then:30

a) If the corresponding list item’s reference count is finite, then:31

i. If the map-type is not delete, then the corresponding list item’s reference count is32
decremented by one.33

246 OpenMP API – Version 5.0 rev 1, November 2016

ii. If the map-type is delete, then the corresponding list item’s reference count is set to1
zero.2

b) If the corresponding list item’s reference count is zero or the always map-type-modifier is3
present, then:4

i. If the map-type is from or tofrom, then the original list item is assigned the value of5
the corresponding list item.6

c) If the corresponding list item’s reference count is zero, then the corresponding list item is7
removed from the device data environment8

If a single contiguous part of the original storage of a list item with an implicit data-mapping9
attribute has corresponding storage in the device data environment prior to a task encountering the10
construct associated with the map clause, only that part of the original storage will have11
corresponding storage in the device data environment as a result of the map clause.12

C / C++

If a new list item is created then a new list item of the same type, with automatic storage duration, is13
allocated for the construct. The size and alignment of the new list item are determined by the static14
type of the variable. This allocation occurs if the region references the list item in any statement.15

C / C++
Fortran

If a new list item is created then a new list item of the same type, type parameter, and rank is16
allocated.17

Fortran

The map-type determines how the new list item is initialized.18

If a map-type is not specified, the map-type defaults to tofrom.19

Events20

The target-map event occurs when a thread maps data to or from a target device.21

The target-transfer event occurs when a thread initiates a data transfer to or from a target device.22

Tool Callbacks23

A thread dispatches a registered ompt_callback_target_map callback for each occurrence24
of a target-map event in that thread. The callback occurs in the context of the target task. The25
callback has type signature ompt_callback_target_map_t.26

A thread dispatches a registered ompt_callback_target_transfer callback for each27
occurrence of a target-transfer event in that thread. The callback occurs in the context of the target28
task. The callback has type signature ompt_callback_target_transfer_t.29

CHAPTER 2. DIRECTIVES 247

Restrictions1

• A list item cannot appear in both a map clause and a data-sharing attribute clause on the same2
construct.3

• If a list item is an array section, it must specify contiguous storage.4

• At most one list item can be an array item derived from a given variable in map clauses of the5
same construct.6

• List items of map clauses in the same construct must not share original storage.7

• If any part of the original storage of a list item with a predetermined or explicit data-mapping8
attribute has corresponding storage in the device data environment prior to a task encountering9
the construct associated with the map clause, all of the original storage must have corresponding10
storage in the device data environment prior to the task encountering the construct.11

• If a list item is an element of a structure, and a different element of the structure has a12
corresponding list item in the device data environment prior to a task encountering the construct13
associated with the map clause, then the list item must also have a correspnding list item in the14
device data environment prior to the task encountering the construct.15

• If a list item is an element of a structure, only the rightmost symbol of the variable reference can16
be an array section.17

• If variables that share storage are mapped, the behavior is unspecified.18

• A list item must have a mappable type.19

• threadprivate variables cannot appear in a map clause.20

C++
• If the type of a list item is a reference to a type T then the type will be considered to be T for all21
purposes of this clause.22

C++

C / C++

• Initialization and assignment are through bitwise copy.23

• A variable for which the type is pointer and an array section derived from that variable must not24
appear as list items of map clauses of the same construct.25

• A list item cannot be a variable that is a member of a structure with a union type.26

• A bit-field cannot appear in a map clause.27

C / C++

248 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

• The value of the new list item becomes that of the original list item in the map initialization and1
assignment.2

• A list item must not contain any components that have the ALLOCATABLE attribute.3

• If the allocation status of a list item with the ALLOCATABLE attribute is unallocated upon entry4
to a target region, the list item must be unallocated upon exit from the region.5

• If the allocation status of a list item with the ALLOCATABLE attribute is allocated upon entry to6
a target region, the allocation status of the corresponding list item must not be changed and7
must not be reshaped in the region.8

• If an array section is mapped and the size of the section is smaller than that of the whole array,9
the behavior of referencing the whole array in the target region is unspecified.10

Fortran

2.15.6.2 defaultmap Clause11

Summary12

The defaultmap clause explicitly determines the data-mapping attributes of variables that are13
referenced in a target construct and would otherwise be implicitly determined.14

Syntax15

C / C++

The syntax of the defaultmap clause is as follows:16

defaultmap(tofrom:scalar)

C / C++
Fortran

The syntax of the defaultmap clause is as follows:17

defaultmap(tofrom:scalar)

Fortran

CHAPTER 2. DIRECTIVES 249

Description1

The defaultmap(tofrom:scalar) clause causes all scalar variables referenced in the2
construct that have implicitly determined data-mapping attributes to have the tofrom map-type.3

2.16 declare reduction Directive4

Summary5

The following section describes the directive for declaring user-defined reductions. The6
declare reduction directive declares a reduction-identifier that can be used in a7
reduction clause. The declare reduction directive is a declarative directive.8

Syntax9

C

#pragma omp declare reduction(reduction-identifier : typename-list :
combiner)[initializer-clause] new-line

where:10

• reduction-identifier is either a base language identifier or one of the following operators: +, -, *,11
&, |, ˆ, && and ||12

• typename-list is a list of type names13

• combiner is an expression14

• initializer-clause is initializer(initializer-expr) where initializer-expr is15
omp_priv = initializer or function-name(argument-list)16

C

250 OpenMP API – Version 5.0 rev 1, November 2016

C++

#pragma omp declare reduction(reduction-identifier : typename-list :
combiner) [initializer-clause] new-line

where:1

• reduction-identifier is either an id-expression or one of the following operators: +, -, *, &, |, ˆ,2
&& and ||3

• typename-list is a list of type names4

• combiner is an expression5

• initializer-clause is initializer(initializer-expr) where initializer-expr is6
omp_priv initializer or function-name(argument-list)7

C++

Fortran

!$omp declare reduction(reduction-identifier : type-list : combiner)
[initializer-clause]

where:8

• reduction-identifier is either a base language identifier, or a user-defined operator, or one of the9
following operators: +, -, *, .and., .or., .eqv., .neqv., or one of the following intrinsic10
procedure names: max, min, iand, ior, ieor.11

• type-list is a list of type specifiers12

• combiner is either an assignment statement or a subroutine name followed by an argument list13

• initializer-clause is initializer(initializer-expr), where initializer-expr is14
omp_priv = expression or subroutine-name(argument-list)15

Fortran

CHAPTER 2. DIRECTIVES 251

Description1

Custom reductions can be defined using the declare reduction directive; the2
reduction-identifier and the type identify the declare reduction directive. The3
reduction-identifier can later be used in a reduction clause using variables of the type or types4
specified in the declare reduction directive. If the directive applies to several types then it is5
considered as if there were multiple declare reduction directives, one for each type.6

Fortran

If a type with deferred or assumed length type parameter is specified in a declare reduction7
directive, the reduction-identifier of that directive can be used in a reduction clause with any8
variable of the same type and the same kind parameter, regardless of the length type Fortran9
parameters with which the variable is declared.10

Fortran

The visibility and accessibility of this declaration are the same as those of a variable declared at the11
same point in the program. The enclosing context of the combiner and of the initializer-expr will be12
that of the declare reduction directive. The combiner and the initializer-expr must be correct13
in the base language as if they were the body of a function defined at the same point in the program.14

Fortran

If the reduction-identifier is the same as the name of a user-defined operator or an extended15
operator, or the same as a generic name that is one of the allowed intrinsic procedures, and if the16
operator or procedure name appears in an accessibility statement in the same module, the17
accessibility of the corresponding declare reduction directive is determined by the18
accessibility attribute of the statement.19

If the reduction-identifier is the same as a generic name that is one of the allowed intrinsic20
procedures and is accessible, and if it has the same name as a derived type in the same module, the21
accessibility of the corresponding declare reduction directive is determined by the22
accessibility of the generic name according to the base language.23

Fortran

252 OpenMP API – Version 5.0 rev 1, November 2016

C++
The declare reduction directive can also appear at points in the program at which a static1
data member could be declared. In this case, the visibility and accessibility of the declaration are2
the same as those of a static data member declared at the same point in the program.3

C++

The combiner specifies how partial results can be combined into a single value. The combiner can4
use the special variable identifiers omp_in and omp_out that are of the type of the variables5
being reduced with this reduction-identifier. Each of them will denote one of the values to be6
combined before executing the combiner. It is assumed that the special omp_out identifier will7
refer to the storage that holds the resulting combined value after executing the combiner.8

The number of times the combiner is executed, and the order of these executions, for any9
reduction clause is unspecified.10

Fortran

If the combiner is a subroutine name with an argument list, the combiner is evaluated by calling the11
subroutine with the specified argument list.12

If the combiner is an assignment statement, the combiner is evaluated by executing the assignment13
statement.14

Fortran

As the initializer-expr value of a user-defined reduction is not known a priori the initializer-clause15
can be used to specify one. Then the contents of the initializer-clause will be used as the initializer16
for private copies of reduction list items where the omp_priv identifier will refer to the storage to17
be initialized. The special identifier omp_orig can also appear in the initializer-clause and it will18
refer to the storage of the original variable to be reduced.19

The number of times that the initializer-expr is evaluated, and the order of these evaluations, is20
unspecified.21

C / C++

If the initializer-expr is a function name with an argument list, the initializer-expr is evaluated by22
calling the function with the specified argument list. Otherwise, the initializer-expr specifies how23
omp_priv is declared and initialized.24

C / C++

CHAPTER 2. DIRECTIVES 253

C
If no initializer-clause is specified, the private variables will be initialized following the rules for1
initialization of objects with static storage duration.2

C

C++
If no initializer-expr is specified, the private variables will be initialized following the rules for3
default-initialization.4

C++

Fortran

If the initializer-expr is a subroutine name with an argument list, the initializer-expr is evaluated by5
calling the subroutine with the specified argument list.6

If the initializer-expr is an assignment statement, the initializer-expr is evaluated by executing the7
assignment statement.8

If no initializer-clause is specified, the private variables will be initialized as follows:9

• For complex, real, or integer types, the value 0 will be used.10

• For logical types, the value .false. will be used.11

• For derived types for which default initialization is specified, default initialization will be used.12

• Otherwise, not specifying an initializer-clause results in unspecified behavior.13

Fortran

C / C++

If reduction-identifier is used in a target region then a declare target construct must be14
specified for any function that can be accessed through the combiner and initializer-expr.15

C / C++

Fortran

If reduction-identifier is used in a target region then a declare target construct must be16
specified for any function or subroutine that can be accessed through the combiner and17
initializer-expr.18

Fortran

254 OpenMP API – Version 5.0 rev 1, November 2016

Restrictions1

• Only the variables omp_in and omp_out are allowed in the combiner.2

• Only the variables omp_priv and omp_orig are allowed in the initializer-clause.3

• If the variable omp_orig is modified in the initializer-clause, the behavior is unspecified.4

• If execution of the combiner or the initializer-expr results in the execution of an OpenMP5
construct or an OpenMP API call, then the behavior is unspecified.6

• A reduction-identifier may not be re-declared in the current scope for the same type or for a type7
that is compatible according to the base language rules.8

• At most one initializer-clause can be specified.9

C / C++

• A type name in a declare reduction directive cannot be a function type, an array type, a10
reference type, or a type qualified with const, volatile or restrict.11

C / C++

C
• If the initializer-expr is a function name with an argument list, then one of the arguments must be12
the address of omp_priv.13

C

C++
• If the initializer-expr is a function name with an argument list, then one of the arguments must be14
omp_priv or the address of omp_priv.15

C++

Fortran

• If the initializer-expr is a subroutine name with an argument list, then one of the arguments must16
be omp_priv.17

• If the declare reduction directive appears in the specification part of a module and the18
corresponding reduction clause does not appear in the same module, the reduction-identifier must19
be the same as the name of a user-defined operator, one of the allowed operators that is extended20
or a generic name that is the same as the name of one of the allowed intrinsic procedures.21

CHAPTER 2. DIRECTIVES 255

• If the declare reduction directive appears in the specification of a module, if the1
corresponding reduction clause does not appear in the same module, and if the2
reduction-identifier is the same as the name of a user-defined operator or an extended operator, or3
the same as a generic name that is the same as one of the allowed intrinsic procedures then the4
interface for that operator or the generic name must be defined in the specification of the same5
module, or must be accessible by use association.6

• Any subroutine or function used in the initializer clause or combiner expression must be7
an intrinsic function, or must have an accessible interface.8

• Any user-defined operator or extended operator used in the initializer clause or combiner9
expression must have an accessible interface.10

• If any subroutine, function, user-defined operator, or extended operator is used in the11
initializer clause or combiner expression, it must be accessible to the subprogram in12
which the corresponding reduction clause is specified.13

• If the length type parameter is specified for a character type, it must be a constant, a colon or an *.14

• If a character type with deferred or assumed length parameter is specified in a15
declare reduction directive, no other declare reduction directive with Fortran16
character type of the same kind parameter and the same reduction-identifier is allowed in the17
same scope.18

• Any subroutine used in the initializer clause or combiner expression must not have any19
alternate returns appear in the argument list.20

Fortran

Cross References21

• reduction clause, Section 2.15.4.4 on page 236.22

2.17 Nesting of Regions23

This section describes a set of restrictions on the nesting of regions. The restrictions on nesting are24
as follows:25

• A worksharing region may not be closely nested inside a worksharing, task, taskloop,26
critical, ordered, atomic, or master region.27

• A barrier region may not be closely nested inside a worksharing, task, taskloop,28
critical, ordered, atomic, or master region.29

256 OpenMP API – Version 5.0 rev 1, November 2016

• A master region may not be closely nested inside a worksharing, atomic, task, or1
taskloop region.2

• An ordered region arising from an ordered construct without any clause or with the3
threads or depend clause may not be closely nested inside a critical, ordered,4
atomic, task, or taskloop region.5

• An ordered region arising from an ordered construct without any clause or with the6
threads or depend clause must be closely nested inside a loop region (or parallel loop7
region) with an ordered clause.8

• An ordered region arising from an ordered construct with the simd clause must be closely9
nested inside a simd (or loop SIMD) region.10

• An ordered region arising from an ordered construct with both the simd and threads11
clauses must be closely nested inside a loop SIMD region.12

• A critical region may not be nested (closely or otherwise) inside a critical region with13
the same name. This restriction is not sufficient to prevent deadlock.14

• OpenMP constructs may not be encountered during execution of an atomic region.15

• An ordered construct with the simd clause is the only OpenMP construct that can be16
encountered during execution of a simd region.17

• If a target, target update, target data, target enter data, or18
target exit data construct is encountered during execution of a target region, the19
behavior is unspecified.20

• If specified, a teams construct must be contained within a target construct. That target21
construct must not contain any statements or directives outside of the teams construct.22

• distribute, distribute simd, distribute parallel loop, distribute parallel loop SIMD,23
and parallel regions, including any parallel regions arising from combined constructs,24
are the only OpenMP regions that may be strictly nested inside the teams region.25

• The region associated with the distribute construct must be strictly nested inside a teams26
region.27

• If construct-type-clause is taskgroup, the cancel construct must be closely nested inside a28
task construct and the cancel region must be closely nested inside a taskgroup region. If29
construct-type-clause is sections, the cancel construct must be closely nested inside a30
sections or section construct. Otherwise, the cancel construct must be closely nested31
inside an OpenMP construct that matches the type specified in construct-type-clause of the32
cancel construct.33

• A cancellation point construct for which construct-type-clause is taskgroup must be34
closely nested inside a task construct, and the cancellation point region must be closely35
nested inside a taskgroup region. A cancellation point construct for which36
construct-type-clause is sections must be closely nested inside a sections or section37

CHAPTER 2. DIRECTIVES 257

construct. Otherwise, a cancellation point construct must be closely nested inside an1
OpenMP construct that matches the type specified in construct-type-clause.2

258 OpenMP API – Version 5.0 rev 1, November 2016

CHAPTER 31

Runtime Library Routines2

This chapter describes the OpenMP API runtime library routines and queryable runtime states, and3
is divided into the following sections:4

• Runtime library definitions (Section 3.1 on page 260).5

• Execution environment routines that can be used to control and to query the parallel execution6
environment (Section 3.2 on page 261).7

• Lock routines that can be used to synchronize access to data (Section 3.3 on page 301).8

• Portable timer routines (Section 3.4 on page 314).9

• Device memory routines that can be used to allocate memory and to manage pointers on target10
devices (Section 3.5 on page 317).11

• Execution routines to control the application monitoring (Section 3.6 on page 327)12

Throughout this chapter, true and false are used as generic terms to simplify the description of the13
routines.14

C / C++

true means a nonzero integer value and false means an integer value of zero.15

C / C++

Fortran

true means a logical value of .TRUE. and false means a logical value of .FALSE..16

Fortran

259

Fortran

Restrictions1

The following restriction applies to all OpenMP runtime library routines:2

• OpenMP runtime library routines may not be called from PURE or ELEMENTAL procedures.3

Fortran

3.1 Runtime Library Definitions4

For each base language, a compliant implementation must supply a set of definitions for the5
OpenMP API runtime library routines and the special data types of their parameters. The set of6
definitions must contain a declaration for each OpenMP API runtime library routine and a7
declaration for the simple lock, nestable lock, schedule, and thread affinity policy data types. In8
addition, each set of definitions may specify other implementation specific values.9

C / C++

The library routines are external functions with “C” linkage.10

Prototypes for the C/C++ runtime library routines described in this chapter shall be provided in a11
header file named omp.h. This file defines the following:12

• The prototypes of all the routines in the chapter.13

• The type omp_lock_t.14

• The type omp_nest_lock_t.15

• The type omp_lock_hint_t.16

• The type omp_sched_t.17

• The type omp_proc_bind_t.18

• The type omp_control_tool_t.19

• The type omp_control_tool_result_t.20

See Section Section B.1 on page 470 for an example of this file.21

C / C++

260 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

The OpenMP Fortran API runtime library routines are external procedures. The return values of1
these routines are of default kind, unless otherwise specified.2

Interface declarations for the OpenMP Fortran runtime library routines described in this chapter3
shall be provided in the form of a Fortran include file named omp_lib.h or a Fortran 904
module named omp_lib. It is implementation defined whether the include file or the5
module file (or both) is provided.6

These files define the following:7

• The interfaces of all of the routines in this chapter.8

• The integer parameter omp_lock_kind.9

• The integer parameter omp_nest_lock_kind.10

• The integer parameter omp_lock_hint_kind.11

• The integer parameter omp_sched_kind.12

• The integer parameter omp_proc_bind_kind.13

• The integer parameter openmp_version with a value yyyymm where yyyy and mm are14
the year and month designations of the version of the OpenMP Fortran API that the15
implementation supports. This value matches that of the C preprocessor macro _OPENMP, when16
a macro preprocessor is supported (see Section 2.2 on page 36).17

See Section B.1 on page 474 and Section B.3 on page 478 for examples of these files.18

It is implementation defined whether any of the OpenMP runtime library routines that take an19
argument are extended with a generic interface so arguments of different KIND type can be20
accommodated. See Appendix B.4 for an example of such an extension.21

Fortran

3.2 Execution Environment Routines22

This section describes routines that affect and monitor threads, processors, and the parallel23
environment.24

CHAPTER 3. RUNTIME LIBRARY ROUTINES 261

3.2.1 omp_set_num_threads1

Summary2

The omp_set_num_threads routine affects the number of threads to be used for subsequent3
parallel regions that do not specify a num_threads clause, by setting the value of the first4
element of the nthreads-var ICV of the current task.5

Format6

C / C++

void omp_set_num_threads(int num_threads);

C / C++
Fortran

subroutine omp_set_num_threads(num_threads)
integer num_threads

Fortran

Constraints on Arguments7

The value of the argument passed to this routine must evaluate to a positive integer, or else the8
behavior of this routine is implementation defined.9

Binding10

The binding task set for an omp_set_num_threads region is the generating task.11

Effect12

The effect of this routine is to set the value of the first element of the nthreads-var ICV of the13
current task to the value specified in the argument.14

262 OpenMP API – Version 5.0 rev 1, November 2016

Cross References1

• nthreads-var ICV, see Section 2.3 on page 39.2

• parallel construct and num_threads clause, see Section 2.5 on page 50.3

• Determining the number of threads for a parallel region, see Section 2.5.1 on page 55.4

• omp_get_max_threads routine, see Section 3.2.3 on page 264.5

• OMP_NUM_THREADS environment variable, see Section 5.2 on page 435.6

3.2.2 omp_get_num_threads7

Summary8

The omp_get_num_threads routine returns the number of threads in the current team.9

Format10

C / C++

int omp_get_num_threads(void);

C / C++
Fortran

integer function omp_get_num_threads()

Fortran

Binding11

The binding region for an omp_get_num_threads region is the innermost enclosing12
parallel region.13

Effect14

The omp_get_num_threads routine returns the number of threads in the team executing the15
parallel region to which the routine region binds. If called from the sequential part of a16
program, this routine returns 1.17

CHAPTER 3. RUNTIME LIBRARY ROUTINES 263

Cross References1

• parallel construct, see Section 2.5 on page 50.2

• Determining the number of threads for a parallel region, see Section 2.5.1 on page 55.3

• omp_set_num_threads routine, see Section 3.2.1 on page 262.4

• OMP_NUM_THREADS environment variable, see Section 5.2 on page 435.5

3.2.3 omp_get_max_threads6

Summary7

The omp_get_max_threads routine returns an upper bound on the number of threads that8
could be used to form a new team if a parallel construct without a num_threads clause were9
encountered after execution returns from this routine.10

Format11

C / C++

int omp_get_max_threads(void);

C / C++
Fortran

integer function omp_get_max_threads()

Fortran

Binding12

The binding task set for an omp_get_max_threads region is the generating task.13

264 OpenMP API – Version 5.0 rev 1, November 2016

Effect1

The value returned by omp_get_max_threads is the value of the first element of the2
nthreads-var ICV of the current task. This value is also an upper bound on the number of threads3
that could be used to form a new team if a parallel region without a num_threads clause were4
encountered after execution returns from this routine.5

Note – The return value of the omp_get_max_threads routine can be used to dynamically6
allocate sufficient storage for all threads in the team formed at the subsequent active parallel7
region.8

Cross References9

• nthreads-var ICV, see Section 2.3 on page 39.10

• parallel construct, see Section 2.5 on page 50.11

• num_threads clause, see Section 2.5 on page 50.12

• Determining the number of threads for a parallel region, see Section 2.5.1 on page 55.13

• omp_set_num_threads routine, see Section 3.2.1 on page 262.14

• OMP_NUM_THREADS environment variable, see Section 5.2 on page 435.15

CHAPTER 3. RUNTIME LIBRARY ROUTINES 265

3.2.4 omp_get_thread_num1

Summary2

The omp_get_thread_num routine returns the thread number, within the current team, of the3
calling thread.4

Format5

C / C++

int omp_get_thread_num(void);

C / C++
Fortran

integer function omp_get_thread_num()

Fortran

Binding6

The binding thread set for an omp_get_thread_num region is the current team. The binding7
region for an omp_get_thread_num region is the innermost enclosing parallel region.8

Effect9

The omp_get_thread_num routine returns the thread number of the calling thread, within the10
team executing the parallel region to which the routine region binds. The thread number is an11
integer between 0 and one less than the value returned by omp_get_num_threads, inclusive.12
The thread number of the master thread of the team is 0. The routine returns 0 if it is called from13
the sequential part of a program.14

Note – The thread number may change during the execution of an untied task. The value returned15
by omp_get_thread_num is not generally useful during the execution of such a task region.16

Cross References17

• omp_get_num_threads routine, see Section 3.2.2 on page 263.18

266 OpenMP API – Version 5.0 rev 1, November 2016

3.2.5 omp_get_num_procs1

Summary2

The omp_get_num_procs routine returns the number of processors available to the device.3

Format4

C / C++

int omp_get_num_procs(void);

C / C++
Fortran

integer function omp_get_num_procs()

Fortran

Binding5

The binding thread set for an omp_get_num_procs region is all threads on a device. The effect6
of executing this routine is not related to any specific region corresponding to any construct or API7
routine.8

Effect9

The omp_get_num_procs routine returns the number of processors that are available to the10
device at the time the routine is called. This value may change between the time that it is11
determined by the omp_get_num_procs routine and the time that it is read in the calling12
context due to system actions outside the control of the OpenMP implementation.13

Cross References14

None.15

3.2.6 omp_in_parallel16

Summary17

The omp_in_parallel routine returns true if the active-levels-var ICV is greater than zero;18
otherwise, it returns false.19

CHAPTER 3. RUNTIME LIBRARY ROUTINES 267

Format1

C / C++

int omp_in_parallel(void);

C / C++
Fortran

logical function omp_in_parallel()

Fortran

Binding2

The binding task set for an omp_in_parallel region is the generating task.3

Effect4

The effect of the omp_in_parallel routine is to return true if the current task is enclosed by an5
active parallel region, and the parallel region is enclosed by the outermost initial task6
region on the device; otherwise it returns false.7

Cross References8

• active-levels-var, see Section 2.3 on page 39.9

• parallel construct, see Section 2.5 on page 50.10

• omp_get_active_level routine, see Section 3.2.20 on page 283.11

3.2.7 omp_set_dynamic12

Summary13

The omp_set_dynamic routine enables or disables dynamic adjustment of the number of14
threads available for the execution of subsequent parallel regions by setting the value of the15
dyn-var ICV.16

268 OpenMP API – Version 5.0 rev 1, November 2016

Format1

C / C++

void omp_set_dynamic(int dynamic_threads);

C / C++

Fortran

subroutine omp_set_dynamic(dynamic_threads)
logical dynamic_threads

Fortran

Binding2

The binding task set for an omp_set_dynamic region is the generating task.3

Effect4

For implementations that support dynamic adjustment of the number of threads, if the argument to5
omp_set_dynamic evaluates to true, dynamic adjustment is enabled for the current task;6
otherwise, dynamic adjustment is disabled for the current task. For implementations that do not7
support dynamic adjustment of the number of threads this routine has no effect: the value of8
dyn-var remains false.9

Cross References10

• dyn-var ICV, see Section 2.3 on page 39.11

• Determining the number of threads for a parallel region, see Section 2.5.1 on page 55.12

• omp_get_num_threads routine, see Section 3.2.2 on page 263.13

• omp_get_dynamic routine, see Section 3.2.8 on page 270.14

• OMP_DYNAMIC environment variable, see Section 5.3 on page 436.15

CHAPTER 3. RUNTIME LIBRARY ROUTINES 269

3.2.8 omp_get_dynamic1

Summary2

The omp_get_dynamic routine returns the value of the dyn-var ICV, which determines whether3
dynamic adjustment of the number of threads is enabled or disabled.4

Format5

C / C++

int omp_get_dynamic(void);

C / C++
Fortran

logical function omp_get_dynamic()

Fortran

Binding6

The binding task set for an omp_get_dynamic region is the generating task.7

Effect8

This routine returns true if dynamic adjustment of the number of threads is enabled for the current9
task; it returns false, otherwise. If an implementation does not support dynamic adjustment of the10
number of threads, then this routine always returns false.11

Cross References12

• dyn-var ICV, see Section 2.3 on page 39.13

• Determining the number of threads for a parallel region, see Section 2.5.1 on page 55.14

• omp_set_dynamic routine, see Section 3.2.7 on page 268.15

• OMP_DYNAMIC environment variable, see Section 5.3 on page 436.16

270 OpenMP API – Version 5.0 rev 1, November 2016

3.2.9 omp_get_cancellation1

Summary2

The omp_get_cancellation routine returns the value of the cancel-var ICV, which3
determines if cancellation is enabled or disabled.4

Format5

C / C++

int omp_get_cancellation(void);

C / C++
Fortran

logical function omp_get_cancellation()

Fortran

Binding6

The binding task set for an omp_get_cancellation region is the whole program.7

Effect8

This routine returns true if cancellation is enabled. It returns false otherwise.9

Cross References10

• cancel-var ICV, see Section 2.3.1 on page 39.11

• cancel construct, see Section 2.14.1 on page 19712

• OMP_CANCELLATION environment variable, see Section 5.11 on page 44213

3.2.10 omp_set_nested14

Summary15

The omp_set_nested routine enables or disables nested parallelism, by setting the nest-var16
ICV.17

CHAPTER 3. RUNTIME LIBRARY ROUTINES 271

Format1

C / C++

void omp_set_nested(int nested);

C / C++
Fortran

subroutine omp_set_nested(nested)
logical nested

Fortran

Binding2

The binding task set for an omp_set_nested region is the generating task.3

Effect4

For implementations that support nested parallelism, if the argument to omp_set_nested5
evaluates to true, nested parallelism is enabled for the current task; otherwise, nested parallelism is6
disabled for the current task. For implementations that do not support nested parallelism, this7
routine has no effect: the value of nest-var remains false.8

Cross References9

• nest-var ICV, see Section 2.3 on page 39.10

• Determining the number of threads for a parallel region, see Section 2.5.1 on page 55.11

• omp_set_max_active_levels routine, see Section 3.2.15 on page 277.12

• omp_get_max_active_levels routine, see Section 3.2.16 on page 279.13

• omp_get_nested routine, see Section 3.2.11 on page 273.14

• OMP_NESTED environment variable, see Section 5.6 on page 439.15

272 OpenMP API – Version 5.0 rev 1, November 2016

3.2.11 omp_get_nested1

Summary2

The omp_get_nested routine returns the value of the nest-var ICV, which determines if nested3
parallelism is enabled or disabled.4

Format5

C / C++

int omp_get_nested(void);

C / C++
Fortran

logical function omp_get_nested()

Fortran

Binding6

The binding task set for an omp_get_nested region is the generating task.7

Effect8

This routine returns true if nested parallelism is enabled for the current task; it returns false,9
otherwise. If an implementation does not support nested parallelism, this routine always returns10
false.11

Cross References12

• nest-var ICV, see Section 2.3 on page 39.13

• Determining the number of threads for a parallel region, see Section 2.5.1 on page 55.14

• omp_set_nested routine, see Section 3.2.10 on page 271.15

• OMP_NESTED environment variable, see Section 5.6 on page 439.16

CHAPTER 3. RUNTIME LIBRARY ROUTINES 273

3.2.12 omp_set_schedule1

Summary2

The omp_set_schedule routine affects the schedule that is applied when runtime is used as3
schedule kind, by setting the value of the run-sched-var ICV.4

Format5

C / C++

void omp_set_schedule(omp_sched_t kind, int chunk_size);

C / C++
Fortran

subroutine omp_set_schedule(kind, chunk_size)
integer (kind=omp_sched_kind) kind
integer chunk_size

Fortran

Constraints on Arguments6

The first argument passed to this routine can be one of the valid OpenMP schedule kinds (except for7
runtime) or any implementation specific schedule. The C/C++ header file (omp.h) and the8
Fortran include file (omp_lib.h) and/or Fortran 90 module file (omp_lib) define the valid9
constants. The valid constants must include the following, which can be extended with10
implementation specific values:11

274 OpenMP API – Version 5.0 rev 1, November 2016

C / C++

typedef enum omp_sched_t {
omp_sched_static = 1,
omp_sched_dynamic = 2,
omp_sched_guided = 3,
omp_sched_auto = 4

} omp_sched_t;

C / C++
Fortran

integer(kind=omp_sched_kind), parameter :: omp_sched_static = 1
integer(kind=omp_sched_kind), parameter :: omp_sched_dynamic = 2
integer(kind=omp_sched_kind), parameter :: omp_sched_guided = 3
integer(kind=omp_sched_kind), parameter :: omp_sched_auto = 4

Fortran

Binding1

The binding task set for an omp_set_schedule region is the generating task.2

Effect3

The effect of this routine is to set the value of the run-sched-var ICV of the current task to the4
values specified in the two arguments. The schedule is set to the schedule type specified by the first5
argument kind. It can be any of the standard schedule types or any other implementation specific6
one. For the schedule types static, dynamic, and guided the chunk_size is set to the value of7
the second argument, or to the default chunk_size if the value of the second argument is less than 1;8
for the schedule type auto the second argument has no meaning; for implementation specific9
schedule types, the values and associated meanings of the second argument are implementation10
defined.11

Cross References12

• run-sched-var ICV, see Section 2.3 on page 39.13

• Determining the schedule of a worksharing loop, see Section 2.7.1.1 on page 70.14

• omp_get_schedule routine, see Section 3.2.13 on page 276.15

• OMP_SCHEDULE environment variable, see Section 5.1 on page 434.16

CHAPTER 3. RUNTIME LIBRARY ROUTINES 275

3.2.13 omp_get_schedule1

Summary2

The omp_get_schedule routine returns the schedule that is applied when the runtime schedule3
is used.4

Format5

C / C++

void omp_get_schedule(omp_sched_t * kind, int * chunk_size);

C / C++
Fortran

subroutine omp_get_schedule(kind, chunk_size)
integer (kind=omp_sched_kind) kind
integer chunk_size

Fortran

Binding6

The binding task set for an omp_get_schedule region is the generating task.7

Effect8

This routine returns the run-sched-var ICV in the task to which the routine binds. The first9
argument kind returns the schedule to be used. It can be any of the standard schedule types as10
defined in Section 3.2.12 on page 274, or any implementation specific schedule type. The second11
argument is interpreted as in the omp_set_schedule call, defined in Section 3.2.12 on12
page 274.13

Cross References14

• run-sched-var ICV, see Section 2.3 on page 39.15

• Determining the schedule of a worksharing loop, see Section 2.7.1.1 on page 70.16

• omp_set_schedule routine, see Section 3.2.12 on page 274.17

• OMP_SCHEDULE environment variable, see Section 5.1 on page 434.18

276 OpenMP API – Version 5.0 rev 1, November 2016

3.2.14 omp_get_thread_limit1

Summary2

The omp_get_thread_limit routine returns the maximum number of OpenMP threads3
available to participate in the current contention group.4

Format5

C / C++

int omp_get_thread_limit(void);

C / C++
Fortran

integer function omp_get_thread_limit()

Fortran

Binding6

The binding thread set for an omp_get_thread_limit region is all threads on the device. The7
effect of executing this routine is not related to any specific region corresponding to any construct8
or API routine.9

Effect10

The omp_get_thread_limit routine returns the value of the thread-limit-var ICV.11

Cross References12

• thread-limit-var ICV, see Section 2.3 on page 39.13

• OMP_THREAD_LIMIT environment variable, see Section 5.10 on page 442.14

3.2.15 omp_set_max_active_levels15

Summary16

The omp_set_max_active_levels routine limits the number of nested active parallel17
regions on the device, by setting the max-active-levels-var ICV18

CHAPTER 3. RUNTIME LIBRARY ROUTINES 277

Format1

C / C++

void omp_set_max_active_levels(int max_levels);

C / C++
Fortran

subroutine omp_set_max_active_levels(max_levels)
integer max_levels

Fortran

Constraints on Arguments2

The value of the argument passed to this routine must evaluate to a non-negative integer, otherwise3
the behavior of this routine is implementation defined.4

Binding5

When called from a sequential part of the program, the binding thread set for an6
omp_set_max_active_levels region is the encountering thread. When called from within7
any explicit parallel region, the binding thread set (and binding region, if required) for the8
omp_set_max_active_levels region is implementation defined.9

Effect10

The effect of this routine is to set the value of the max-active-levels-var ICV to the value specified11
in the argument.12

If the number of parallel levels requested exceeds the number of levels of parallelism supported by13
the implementation, the value of the max-active-levels-var ICV will be set to the number of parallel14
levels supported by the implementation.15

This routine has the described effect only when called from a sequential part of the program. When16
called from within an explicit parallel region, the effect of this routine is implementation17
defined.18

Cross References19

• max-active-levels-var ICV, see Section 2.3 on page 39.20

• omp_get_max_active_levels routine, see Section 3.2.16 on page 279.21

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 5.9 on page 442.22

278 OpenMP API – Version 5.0 rev 1, November 2016

3.2.16 omp_get_max_active_levels1

Summary2

The omp_get_max_active_levels routine returns the value of the max-active-levels-var3
ICV, which determines the maximum number of nested active parallel regions on the device.4

Format5

C / C++

int omp_get_max_active_levels(void);

C / C++
Fortran

integer function omp_get_max_active_levels()

Fortran

Binding6

When called from a sequential part of the program, the binding thread set for an7
omp_get_max_active_levels region is the encountering thread. When called from within8
any explicit parallel region, the binding thread set (and binding region, if required) for the9
omp_get_max_active_levels region is implementation defined.10

Effect11

The omp_get_max_active_levels routine returns the value of the max-active-levels-var12
ICV, which determines the maximum number of nested active parallel regions on the device.13

Cross References14

• max-active-levels-var ICV, see Section 2.3 on page 39.15

• omp_set_max_active_levels routine, see Section 3.2.15 on page 277.16

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 5.9 on page 442.17

CHAPTER 3. RUNTIME LIBRARY ROUTINES 279

3.2.17 omp_get_level1

Summary2

The omp_get_level routine returns the value of the levels-var ICV.3

Format4

C / C++

int omp_get_level(void);

C / C++
Fortran

integer function omp_get_level()

Fortran

Binding5

The binding task set for an omp_get_level region is the generating task.6

Effect7

The effect of the omp_get_level routine is to return the number of nested parallel regions8
(whether active or inactive) enclosing the current task such that all of the parallel regions are9
enclosed by the outermost initial task region on the current device.10

Cross References11

• levels-var ICV, see Section 2.3 on page 39.12

• omp_get_active_level routine, see Section 3.2.20 on page 283.13

• OMP_MAX_ACTIVE_LEVELS environment variable, see Section 5.9 on page 442.14

280 OpenMP API – Version 5.0 rev 1, November 2016

3.2.18 omp_get_ancestor_thread_num1

Summary2

The omp_get_ancestor_thread_num routine returns, for a given nested level of the current3
thread, the thread number of the ancestor of the current thread.4

Format5

C / C++

int omp_get_ancestor_thread_num(int level);

C / C++
Fortran

integer function omp_get_ancestor_thread_num(level)
integer level

Fortran

Binding6

The binding thread set for an omp_get_ancestor_thread_num region is the encountering7
thread. The binding region for an omp_get_ancestor_thread_num region is the innermost8
enclosing parallel region.9

Effect10

The omp_get_ancestor_thread_num routine returns the thread number of the ancestor at a11
given nest level of the current thread or the thread number of the current thread. If the requested12
nest level is outside the range of 0 and the nest level of the current thread, as returned by the13
omp_get_level routine, the routine returns -1.14

Note – When the omp_get_ancestor_thread_num routine is called with a value of15
level=0, the routine always returns 0. If level=omp_get_level(), the routine has the16
same effect as the omp_get_thread_num routine.17

CHAPTER 3. RUNTIME LIBRARY ROUTINES 281

Cross References1

• omp_get_thread_num routine, see Section 3.2.4 on page 266.2

• omp_get_level routine, see Section 3.2.17 on page 280.3

• omp_get_team_size routine, see Section 3.2.19 on page 282.4

3.2.19 omp_get_team_size5

Summary6

The omp_get_team_size routine returns, for a given nested level of the current thread, the size7
of the thread team to which the ancestor or the current thread belongs.8

Format9

C / C++

int omp_get_team_size(int level);

C / C++
Fortran

integer function omp_get_team_size(level)
integer level

Fortran

Binding10

The binding thread set for an omp_get_team_size region is the encountering thread. The11
binding region for an omp_get_team_size region is the innermost enclosing parallel12
region.13

282 OpenMP API – Version 5.0 rev 1, November 2016

Effect1

The omp_get_team_size routine returns the size of the thread team to which the ancestor or2
the current thread belongs. If the requested nested level is outside the range of 0 and the nested3
level of the current thread, as returned by the omp_get_level routine, the routine returns -1.4
Inactive parallel regions are regarded like active parallel regions executed with one thread.5

Note – When the omp_get_team_size routine is called with a value of level=0, the routine6
always returns 1. If level=omp_get_level(), the routine has the same effect as the7
omp_get_num_threads routine.8

Cross References9

• omp_get_num_threads routine, see Section 3.2.2 on page 263.10

• omp_get_level routine, see Section 3.2.17 on page 280.11

• omp_get_ancestor_thread_num routine, see Section 3.2.18 on page 281.12

3.2.20 omp_get_active_level13

Summary14

The omp_get_active_level routine returns the value of the active-level-vars ICV..15

Format16

C / C++

int omp_get_active_level(void);

C / C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 283

Fortran

integer function omp_get_active_level()

Fortran

Binding1

The binding task set for the an omp_get_active_level region is the generating task.2

Effect3

The effect of the omp_get_active_level routine is to return the number of nested, active4
parallel regions enclosing the current task such that all of the parallel regions are enclosed5
by the outermost initial task region on the current device.6

Cross References7

• active-levels-var ICV, see Section 2.3 on page 39.8

• omp_get_level routine, see Section 3.2.17 on page 280.9

3.2.21 omp_in_final10

Summary11

The omp_in_final routine returns true if the routine is executed in a final task region;12
otherwise, it returns false.13

Format14

C / C++

int omp_in_final(void);

C / C++
Fortran

logical function omp_in_final()

Fortran

284 OpenMP API – Version 5.0 rev 1, November 2016

Binding1

The binding task set for an omp_in_final region is the generating task.2

Effect3

omp_in_final returns true if the enclosing task region is final. Otherwise, it returns false.4

Cross References5

• task construct, see Section 2.9.1 on page 91.6

3.2.22 omp_get_proc_bind7

Summary8

The omp_get_proc_bind routine returns the thread affinity policy to be used for the9
subsequent nested parallel regions that do not specify a proc_bind clause.10

Format11

C / C++

omp_proc_bind_t omp_get_proc_bind(void);

C / C++
Fortran

integer (kind=omp_proc_bind_kind) function omp_get_proc_bind()

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 285

Constraints on Arguments1

The value returned by this routine must be one of the valid affinity policy kinds. The C/ C++ header2
file (omp.h) and the Fortran include file (omp_lib.h) and/or Fortran 90 module file (omp_lib)3
define the valid constants. The valid constants must include the following:4

C / C++

typedef enum omp_proc_bind_t {5
omp_proc_bind_false = 0,6
omp_proc_bind_true = 1,7
omp_proc_bind_master = 2,8
omp_proc_bind_close = 3,9
omp_proc_bind_spread = 410

} omp_proc_bind_t;11

C / C++
Fortran

integer (kind=omp_proc_bind_kind), &12
parameter :: omp_proc_bind_false = 013

integer (kind=omp_proc_bind_kind), &14
parameter :: omp_proc_bind_true = 115

integer (kind=omp_proc_bind_kind), &16
parameter :: omp_proc_bind_master = 217

integer (kind=omp_proc_bind_kind), &18
parameter :: omp_proc_bind_close = 319

integer (kind=omp_proc_bind_kind), &20
parameter :: omp_proc_bind_spread = 421

Fortran

Binding22

The binding task set for an omp_get_proc_bind region is the generating task23

Effect24

The effect of this routine is to return the value of the first element of the bind-var ICV of the current25
task. See Section 2.5.2 on page 57 for the rules governing the thread affinity policy.26

286 OpenMP API – Version 5.0 rev 1, November 2016

Cross References1

• bind-var ICV, see Section 2.3 on page 39.2

• Controlling OpenMP thread affinity, see Section 2.5.2 on page 57.3

• OMP_PROC_BIND environment variable, see Section 5.4 on page 436.4

3.2.23 omp_get_num_places5

Summary6

The omp_get_num_places routine returns the number of places available to the execution7
environment in the place list.8

Format9

C / C++

int omp_get_num_places(void);

C / C++
Fortran

integer function omp_get_num_places()

Fortran

Binding10

The binding thread set for an omp_get_num_places region is all threads on a device. The11
effect of executing this routine is not related to any specific region corresponding to any construct12
or API routine.13

Effect14

The omp_get_num_places routine returns the number of places in the place list. This value is15
equivalent to the number of places in the place-partition-var ICV in the execution environment of16
the initial task.17

CHAPTER 3. RUNTIME LIBRARY ROUTINES 287

Cross References1

• place-partition-var ICV, see Section 2.3 on page 39.2

• OMP_PLACES environment variable, see Section 5.5 on page 437.3

3.2.24 omp_get_place_num_procs4

Summary5

The omp_get_place_num_procs routine returns the number of processors available to the6
execution environment in the specified place.7

Format8

C / C++

int omp_get_place_num_procs(int place_num);

C / C++
Fortran

integer function omp_get_place_num_procs(place_num)
integer place_num

Fortran

Binding9

The binding thread set for an omp_get_place_num_procs region is all threads on a device.10
The effect of executing this routine is not related to any specific region corresponding to any11
construct or API routine.12

Effect13

The omp_get_place_num_procs routine returns the number of processors associated with14
the place numbered place_num. The routine returns zero when place_num is negative, or is equal15
to or larger than the value returned by omp_get_num_places().16

288 OpenMP API – Version 5.0 rev 1, November 2016

Cross References1

• OMP_PLACES environment variable, see Section 5.5 on page 437.2

3.2.25 omp_get_place_proc_ids3

Summary4

The omp_get_place_proc_ids routine returns the numerical identifiers of the processors5
available to the execution environment in the specified place.6

Format7

C / C++

void omp_get_place_proc_ids(int place_num, int *ids);

C / C++
Fortran

subroutine omp_get_place_proc_ids(place_num, ids)
integer place_num
integer ids(*)

Fortran

Binding8

The binding thread set for an omp_get_place_proc_ids region is all threads on a device.9
The effect of executing this routine is not related to any specific region corresponding to any10
construct or API routine.11

Effect12

The omp_get_place_proc_ids routine returns the numerical identifiers of each processor13
associated with the place numbered place_num. The numerical identifiers are non-negative, and14
their meaning is implementation defined. The numerical identifiers are returned in the array ids and15
their order in the array is implementation defined. The array must be sufficiently large to contain16
omp_get_place_num_procs(place_num) integers; otherwise, the behavior is unspecified.17
The routine has no effect when place_num has a negative value, or a value equal or larger than18
omp_get_num_places().19

CHAPTER 3. RUNTIME LIBRARY ROUTINES 289

Cross References1

• omp_get_place_num_procs routine, see Section 3.2.24 on page 288.2

• omp_get_num_places routine, see Section 3.2.23 on page 287.3

• OMP_PLACES environment variable, see Section 5.5 on page 437.4

3.2.26 omp_get_place_num5

Summary6

The omp_get_place_num routine returns the place number of the place to which the7
encountering thread is bound.8

Format9

C / C++

int omp_get_place_num(void);

C / C++
Fortran

integer function omp_get_place_num()

Fortran

Binding10

The binding thread set for an omp_get_place_num region is the encountering thread.11

Effect12

When the encountering thread is bound to a place, the omp_get_place_num routine returns the13
place number associated with the thread. The returned value is between 0 and one less than the14
value returned by omp_get_num_places(), inclusive. When the encountering thread is not15
bound to a place, the routine returns -1.16

290 OpenMP API – Version 5.0 rev 1, November 2016

Cross References1

• Controlling OpenMP thread affinity, see Section 2.5.2 on page 57.2

• omp_get_num_places routine, see Section 3.2.23 on page 287.3

• OMP_PLACES environment variable, see Section 5.5 on page 437.4

3.2.27 omp_get_partition_num_places5

Summary6

The omp_get_partition_num_places routine returns the number of places in the place7
partition of the innermost implicit task.8

Format9

C / C++

int omp_get_partition_num_places(void);

C / C++
Fortran

integer function omp_get_partition_num_places()

Fortran

Binding10

The binding task set for an omp_get_partition_num_places region is the encountering11
implicit task.12

Effect13

The omp_get_partition_num_places routine returns the number of places in the14
place-partition-var ICV.15

CHAPTER 3. RUNTIME LIBRARY ROUTINES 291

Cross References1

• place-partition-var ICV, see Section 2.3 on page 39.2

• Controlling OpenMP thread affinity, see Section 2.5.2 on page 57.3

• OMP_PLACES environment variable, see Section 5.5 on page 437.4

3.2.28 omp_get_partition_place_nums5

Summary6

The omp_get_partition_place_nums routine returns the list of place numbers7
corresponding to the places in the place-partition-var ICV of the innermost implicit task.8

Format9

C / C++

void omp_get_partition_place_nums(int *place_nums);

C / C++
Fortran

subroutine omp_get_partition_place_nums(place_nums)
integer place_nums(*)

Fortran

Binding10

The binding task set for an omp_get_partition_place_nums region is the encountering11
implicit task.12

Effect13

The omp_get_partition_place_nums routine returns the list of place numbers14
corresponding to the places in the place-partition-var ICV of the innermost implicit task. The array15
must be sufficiently large to contain omp_get_partition_num_places() integers;16
otherwise, the behavior is unspecified.17

292 OpenMP API – Version 5.0 rev 1, November 2016

Cross References1

• place-partition-var ICV, see Section 2.3 on page 39.2

• Controlling OpenMP thread affinity, see Section 2.5.2 on page 57.3

• omp_get_partition_num_places routine, see Section 3.2.27 on page 291.4

• OMP_PLACES environment variable, see Section 5.5 on page 437.5

3.2.29 omp_set_default_device6

Summary7

The omp_set_default_device routine controls the default target device by assigning the8
value of the default-device-var ICV.9

Format10

C / C++

void omp_set_default_device(int device_num);

C / C++
Fortran

subroutine omp_set_default_device(device_num)
integer device_num

Fortran

Binding11

The binding task set for an omp_set_default_device region is the generating task.12

Effect13

The effect of this routine is to set the value of the default-device-var ICV of the current task to the14
value specified in the argument. When called from within a target region the effect of this15
routine is unspecified.16

CHAPTER 3. RUNTIME LIBRARY ROUTINES 293

Cross References1

• default-device-var, see Section 2.3 on page 39.2

• omp_get_default_device, see Section 3.2.30 on page 294.3

• OMP_DEFAULT_DEVICE environment variable, see Section 5.13 on page 4444

3.2.30 omp_get_default_device5

Summary6

The omp_get_default_device routine returns the default target device.7

Format8

C / C++

int omp_get_default_device(void);

C / C++
Fortran

integer function omp_get_default_device()

Fortran

Binding9

The binding task set for an omp_get_default_device region is the generating task.10

Effect11

The omp_get_default_device routine returns the value of the default-device-var ICV of the12
current task. When called from within a target region the effect of this routine is unspecified.13

Cross References14

• default-device-var, see Section 2.3 on page 39.15

• omp_set_default_device, see Section 3.2.29 on page 293.16

• OMP_DEFAULT_DEVICE environment variable, see Section 5.13 on page 444.17

294 OpenMP API – Version 5.0 rev 1, November 2016

3.2.31 omp_get_num_devices1

Summary2

The omp_get_num_devices routine returns the number of target devices.3

Format4

C / C++

int omp_get_num_devices(void);

C / C++
Fortran

integer function omp_get_num_devices()

Fortran

Binding5

The binding task set for an omp_get_num_devices region is the generating task.6

Effect7

The omp_get_num_devices routine returns the number of available target devices. When8
called from within a target region the effect of this routine is unspecified.9

Cross References10

None.11

3.2.32 omp_get_num_teams12

Summary13

The omp_get_num_teams routine returns the number of teams in the current teams region.14

CHAPTER 3. RUNTIME LIBRARY ROUTINES 295

Format1

C / C++

int omp_get_num_teams(void);

C / C++
Fortran

integer function omp_get_num_teams()

Fortran

Binding2

The binding task set for an omp_get_num_teams region is the generating task3

Effect4

The effect of this routine is to return the number of teams in the current teams region. The routine5
returns 1 if it is called from outside of a teams region.6

Cross References7

• teams construct, see Section 2.10.8 on page 129.8

296 OpenMP API – Version 5.0 rev 1, November 2016

3.2.33 omp_get_team_num1

Summary2

The omp_get_team_num routine returns the team number of the calling thread.3

Format4

C / C++

int omp_get_team_num(void);

C / C++
Fortran

integer function omp_get_team_num()

Fortran

Binding5

The binding task set for an omp_get_team_num region is the generating task.6

Effect7

The omp_get_team_num routine returns the team number of the calling thread. The team8
number is an integer between 0 and one less than the value returned by9
omp_get_num_teams(), inclusive. The routine returns 0 if it is called outside of a teams10
region.11

Cross References12

• teams construct, see Section 2.10.8 on page 129.13

• omp_get_num_teams routine, see Section 3.2.32 on page 295.14

CHAPTER 3. RUNTIME LIBRARY ROUTINES 297

3.2.34 omp_is_initial_device1

Summary2

The omp_is_initial_device routine returns true if the current task is executing on the host3
device; otherwise, it returns false.4

Format5

C / C++

int omp_is_initial_device(void);

C / C++
Fortran

logical function omp_is_initial_device()

Fortran

Binding6

The binding task set for an omp_is_initial_device region is the generating task.7

Effect8

The effect of this routine is to return true if the current task is executing on the host device;9
otherwise, it returns false.10

Cross References11

• target construct, see Section 2.10.5 on page 11612

3.2.35 omp_get_initial_device13

Summary14

The omp_get_initial_device routine returns a device number representing the host device.15

298 OpenMP API – Version 5.0 rev 1, November 2016

Format1

C / C++

int omp_get_initial_device(void);

C / C++
Fortran

integer function omp_get_initial_device()

Fortran

Binding2

The binding task set for an omp_get_initial_device region is the generating task.3

Effect4

The effect of this routine is to return the device number of the host device. The value of the device5
number is implementation defined. If it is between 0 and one less than6
omp_get_num_devices() then it is valid for use with all device constructs and routines; if it is7
outside that range, then it is only valid for use with the device memory routines and not in the8
device clause. When called from within a target region the effect of this routine is unspecified.9

Cross References10

• target construct, see Section 2.10.5 on page 11611

• Device memory routines, see Section 3.5 on page 317.12

3.2.36 omp_get_max_task_priority13

Summary14

The omp_get_max_task_priority routine returns the maximum value that can be specified15
in the priority clause.16

CHAPTER 3. RUNTIME LIBRARY ROUTINES 299

Format1

C / C++

int omp_get_max_task_priority(void);

C / C++
Fortran

integer function omp_get_max_task_priority()

Fortran

Binding2

The binding thread set for an omp_get_max_task_priority region is all threads on the3
device. The effect of executing this routine is not related to any specific region corresponding to4
any construct or API routine.5

Effect6

The omp_get_max_task_priority routine returns the value of the max-task-priority-var7
ICV, which determines the maximum value that can be specified in the priority clause.8

Cross References9

• max-task-priority-var, see Section 2.3 on page 39.10

• task construct, see Section 2.9.1 on page 91.11

300 OpenMP API – Version 5.0 rev 1, November 2016

3.3 Lock Routines1

The OpenMP runtime library includes a set of general-purpose lock routines that can be used for2
synchronization. These general-purpose lock routines operate on OpenMP locks that are3
represented by OpenMP lock variables. OpenMP lock variables must be accessed only through the4
routines described in this section; programs that otherwise access OpenMP lock variables are5
non-conforming.6

An OpenMP lock can be in one of the following states: uninitialized, unlocked, or locked. If a lock7
is in the unlocked state, a task can set the lock, which changes its state to locked. The task that sets8
the lock is then said to own the lock. A task that owns a lock can unset that lock, returning it to the9
unlocked state. A program in which a task unsets a lock that is owned by another task is10
non-conforming.11

Two types of locks are supported: simple locks and nestable locks. A nestable lock can be set12
multiple times by the same task before being unset; a simple lock cannot be set if it is already13
owned by the task trying to set it. Simple lock variables are associated with simple locks and can14
only be passed to simple lock routines. Nestable lock variables are associated with nestable locks15
and can only be passed to nestable lock routines.16

Each type of lock can also have a lock hint that contains information about the intended usage of the17
lock by the application code. The effect of the lock hint is implementation defined. An OpenMP18
implementation can use this hint to select a usage-specific lock, but lock hints do not change the19
mutual exclusion semantics of locks. A conforming implementation can safely ignore the lock hint.20

Constraints on the state and ownership of the lock accessed by each of the lock routines are21
described with the routine. If these constraints are not met, the behavior of the routine is22
unspecified.23

The OpenMP lock routines access a lock variable such that they always read and update the most24
current value of the lock variable. It is not necessary for an OpenMP program to include explicit25
flush directives to ensure that the lock variable’s value is consistent among different tasks.26

Binding27

The binding thread set for all lock routine regions is all threads in the contention group. As a28
consequence, for each OpenMP lock, the lock routine effects relate to all tasks that call the routines,29
without regard to which teams the threads in the contention group executing the tasks belong.30

Simple Lock Routines31

C / C++

The type omp_lock_t represents a simple lock. For the following routines, a simple lock variable32
must be of omp_lock_t type. All simple lock routines require an argument that is a pointer to a33
variable of type omp_lock_t.34

C / C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 301

Fortran

For the following routines, a simple lock variable must be an integer variable of1
kind=omp_lock_kind.2

Fortran

The simple lock routines are as follows:3

• The omp_init_lock routine initializes a simple lock.4

• The omp_init_lock_with_hint routine initializes a simple lock and attaches a hint to it.5

• The omp_destroy_lock routine uninitializes a simple lock.6

• The omp_set_lock routine waits until a simple lock is available, and then sets it.7

• The omp_unset_lock routine unsets a simple lock.8

• The omp_test_lock routine tests a simple lock, and sets it if it is available.9

Nestable Lock Routines10

C / C++

The type omp_nest_lock_t represents a nestable lock. For the following routines, a nestable11
lock variable must be of omp_nest_lock_t type. All nestable lock routines require an12
argument that is a pointer to a variable of type omp_nest_lock_t.13

C / C++
Fortran

For the following routines, a nestable lock variable must be an integer variable of14
kind=omp_nest_lock_kind.15

Fortran

The nestable lock routines are as follows:16

• The omp_init_nest_lock routine initializes a nestable lock.17

• The omp_init_nest_lock_with_hint routine initializes a nestable lock and attaches a18
hint to it.19

• The omp_destroy_nest_lock routine uninitializes a nestable lock.20

• The omp_set_nest_lock routine waits until a nestable lock is available, and then sets it.21

• The omp_unset_nest_lock routine unsets a nestable lock.22

• The omp_test_nest_lock routine tests a nestable lock, and sets it if it is available23

302 OpenMP API – Version 5.0 rev 1, November 2016

Restrictions1

OpenMP lock routines have the following restrictions:2

• The use of the same OpenMP lock in different contention groups results in unspecified behavior.3

3.3.1 omp_init_lock and omp_init_nest_lock4

Summary5

These routines initialize an OpenMP lock without a hint.6

Format7

C / C++

void omp_init_lock(omp_lock_t *lock);
void omp_init_nest_lock(omp_nest_lock_t *lock);

C / C++
Fortran

subroutine omp_init_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_init_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Fortran

Constraints on Arguments8

A program that accesses a lock that is not in the uninitialized state through either routine is9
non-conforming.10

Effect11

The effect of these routines is to initialize the lock to the unlocked state; that is, no task owns the12
lock. In addition, the nesting count for a nestable lock is set to zero.13

CHAPTER 3. RUNTIME LIBRARY ROUTINES 303

Events1

The lock-init or nest-lock-init event occurs in the thread executing a omp_init_lock or2
omp_init_nest_lock region after initialization of the lock, but before finishing the region.3

Tool Callbacks4

A thread dispatches a registered ompt_callback_lock_init callback for each occurrence of5
a lock-init or nest-lock-init event in that thread. This callback has the type signature6
ompt_callback_lock_init_t. The callbacks occur in the task encountering the routine.7
The callback receives omp_lock_hint_none as hint argument and ompt_mutex_lock or8
ompt_mutex_nest_lock as kind argument as appropriate.9

Cross References10

• ompt_callback_lock_init_t, see Section 4.6.2.13 on page 379.11

3.3.2 omp_init_lock_with_hint and12

omp_init_nest_lock_with_hint13

Summary14

These routines initialize an OpenMP lock with a hint. The effect of the hint is15
implementation-defined. The OpenMP implementation can ignore the hint without changing16
program semantics.17

Format18

C / C++

void omp_init_lock_with_hint(omp_lock_t *lock,
omp_lock_hint_t hint);

void omp_init_nest_lock_with_hint(omp_nest_lock_t *lock,
omp_lock_hint_t hint);

C / C++

304 OpenMP API – Version 5.0 rev 1, November 2016

Fortran

subroutine omp_init_lock_with_hint(svar, hint)
integer (kind=omp_lock_kind) svar
integer (kind=omp_lock_hint_kind) hint

subroutine omp_init_nest_lock_with_hint(nvar, hint)
integer (kind=omp_nest_lock_kind) nvar
integer (kind=omp_lock_hint_kind) hint

Fortran

Constraints on Arguments1

A program that accesses a lock that is not in the uninitialized state through either routine is2
non-conforming.3

The second argument passed to this routine (hint) can be one of the valid OpenMP lock hints below4
or any implementation-defined hint. The C/C++ header file (omp.h) and the Fortran include file5
(omp_lib.h) and/or Fortran 90 module file (omp_lib) define the valid lock hint constants. The6
valid constants must include the following, which can be extended with implementation-defined7
values:8

C / C++

typedef enum omp_lock_hint_t {9
omp_lock_hint_none = 0,10
omp_lock_hint_uncontended = 1,11
omp_lock_hint_contended = 2,12
omp_lock_hint_nonspeculative = 4,13
omp_lock_hint_speculative = 814

} omp_lock_hint_t;15

C / C++

CHAPTER 3. RUNTIME LIBRARY ROUTINES 305

Fortran

integer (kind=omp_lock_hint_kind), &1
parameter :: omp_lock_hint_none = 02

integer (kind=omp_lock_hint_kind), &3
parameter :: omp_lock_hint_uncontended = 14

integer (kind=omp_lock_hint_kind), &5
parameter :: omp_lock_hint_contended = 26

integer (kind=omp_lock_hint_kind), &7
parameter :: omp_lock_hint_nonspeculative = 48

integer (kind=omp_lock_hint_kind), &9
parameter :: omp_lock_hint_speculative = 810

Fortran

The hints can be combined by using the + or | operators in C/C++ or the + operator in Fortran.11
The effect of the combined hint is implementation defined and can be ignored by the12
implementation. Combining omp_lock_hint_none with any other hint is equivalent to13
specifying the other hint. The following restrictions apply to combined hints; violating these14
restrictions results in unspecified behavior:15

• the hints omp_lock_hint_uncontended and omp_lock_hint_contended cannot be16
combined,17

• the hints omp_lock_hint_nonspeculative and omp_lock_hint_speculative18
cannot be combined.19

Note – Future OpenMP specifications may add additional hints to the omp_lock_hint_t type20
and the omp_lock_hint_kind kind. Implementers are advised to add implementation-defined21
hints starting from the most significant bit of the omp_lock_hint_t type and22
omp_lock_hint_kind kind and to include the name of the implementation in the name of the23
added hint to avoid name conflicts with other OpenMP implementations.24

Effect25

The effect of these routines is to initialize the lock to the unlocked state and, optionally, to choose a26
specific lock implementation based on the hint. After initialization no task owns the lock. In27
addition, the nesting count for a nestable lock is set to zero.28

Events29

The lock-init or nest-lock-init event occurs in the thread executing a30
omp_init_lock_with_hint or omp_init_nest_lock_with_hint region after31
initialization of the lock, but before finishing the region.32

306 OpenMP API – Version 5.0 rev 1, November 2016

Tool Callbacks1

A thread dispatches a registered ompt_callback_lock_init callback for each occurrence of2
a lock-init or nest-lock-init event in that thread. This callback has the type signature3
ompt_callback_lock_init_t. The callbacks occur in the task encountering the routine.4
The callback receives the function’s hint argument as hint argument and ompt_mutex_lock or5
ompt_mutex_nest_lock as kind argument as appropriate.6

Cross References7

• ompt_callback_lock_init_t, see Section 4.6.2.13 on page 379.8

3.3.3 omp_destroy_lock and9

omp_destroy_nest_lock10

Summary11

These routines ensure that the OpenMP lock is uninitialized.12

Format13

C / C++

void omp_destroy_lock(omp_lock_t *lock);
void omp_destroy_nest_lock(omp_nest_lock_t *lock);

C / C++
Fortran

subroutine omp_destroy_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_destroy_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Fortran

Constraints on Arguments14

A program that accesses a lock that is not in the unlocked state through either routine is15
non-conforming.16

CHAPTER 3. RUNTIME LIBRARY ROUTINES 307

Effect1

The effect of these routines is to change the state of the lock to uninitialized.2

Events3

The lock-destroy or nest-lock-destroy event occurs in the thread executing a4
omp_init_destroy or omp_init_nest_destroy region before finishing the region.5

Tool Callbacks6

A thread dispatches a registered ompt_callback_lock_destroy callback for each7
occurrence of a lock-destroy or nest-lock-destroy event in that thread. This callback has the type8
signature ompt_callback_lock_destroy_t. The callbacks occur in the task encountering9
the routine. The callbacks receive ompt_mutex_lock or ompt_mutex_nest_lock as their10
kind argument as appropriate.11

Cross References12

• ompt_callback_lock_destroy_t, see Section 4.6.2.14 on page 380.13

3.3.4 omp_set_lock and omp_set_nest_lock14

Summary15

These routines provide a means of setting an OpenMP lock. The calling task region behaves as if it16
was suspended until the lock can be set by this task.17

Format18

C / C++

void omp_set_lock(omp_lock_t *lock);
void omp_set_nest_lock(omp_nest_lock_t *lock);

C / C++
Fortran

subroutine omp_set_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_set_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Fortran

308 OpenMP API – Version 5.0 rev 1, November 2016

Constraints on Arguments1

A program that accesses a lock that is in the uninitialized state through either routine is2
non-conforming. A simple lock accessed by omp_set_lock that is in the locked state must not3
be owned by the task that contains the call or deadlock will result.4

Effect5

Each of these routines has an effect equivalent to suspension of the task executing the routine until6
the specified lock is available.7

Note – The semantics of these routines is specified as if they serialize execution of the region8
guarded by the lock. However, implementations may implement them in other ways provided that9
the isolation properties are respected so that the actual execution delivers a result that could arise10
from some serialization.11

A simple lock is available if it is unlocked. Ownership of the lock is granted to the task executing12
the routine.13

A nestable lock is available if it is unlocked or if it is already owned by the task executing the14
routine. The task executing the routine is granted, or retains, ownership of the lock, and the nesting15
count for the lock is incremented.16

Events17

The lock-acquire or nest-lock-acquire event occurs in the thread executing a omp_set_lock or18
omp_set_nest_lock region before the associated lock is requested.19

The lock-acquired or nest-lock-acquired event occurs in the thread executing a omp_set_lock20
or omp_set_nest_lock region after acquiring the associated lock, if the thread did not already21
own the lock, but before finishing the region.22

The nest-lock-owned event occurs in the thread executing a omp_set_nest_lock region when23
the thread already owned the lock, before finishing the region.24

CHAPTER 3. RUNTIME LIBRARY ROUTINES 309

Tool Callbacks1

A thread dispatches a registered ompt_callback_mutex_acquire callback for each2
occurrence of a lock-acquire or nest-lock-acquire event in that thread. This callback has the type3
signature ompt_callback_mutex_acquire_t.4

A thread dispatches a registered ompt_callback_mutex_acquired callback for each5
occurrence of a lock-acquired or nest-lock-acquired event in that thread. This callback has the type6
signature ompt_callback_mutex_t.7

A thread dispatches a registered ompt_callback_nest_lock callback for each occurrence of8
a nest-lock-owned event in that thread. This callback has the type signature9
ompt_callback_nest_lock_t. The callback receives ompt_scope_begin as its10
endpoint argument.11

The callbacks occur in the task encountering the lock function. The callbacks receive12
ompt_mutex_lock or ompt_mutex_nest_lock as their kind argument, as appropriate.13

Cross References14

• ompt_callback_mutex_acquire_t, see Section 4.6.2.15 on page 381.15

• ompt_callback_mutex_t, see Section 4.6.2.16 on page 383.16

• ompt_callback_nest_lock_t, see Section 4.6.2.17 on page 384.17

3.3.5 omp_unset_lock and omp_unset_nest_lock18

Summary19

These routines provide the means of unsetting an OpenMP lock.20

Format21

C / C++

void omp_unset_lock(omp_lock_t *lock);
void omp_unset_nest_lock(omp_nest_lock_t *lock);

C / C++
Fortran

310 OpenMP API – Version 5.0 rev 1, November 2016

subroutine omp_unset_lock(svar)
integer (kind=omp_lock_kind) svar

subroutine omp_unset_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Fortran

Constraints on Arguments1

A program that accesses a lock that is not in the locked state or that is not owned by the task that2
contains the call through either routine is non-conforming.3

Effect4

For a simple lock, the omp_unset_lock routine causes the lock to become unlocked.5

For a nestable lock, the omp_unset_nest_lock routine decrements the nesting count, and6
causes the lock to become unlocked if the resulting nesting count is zero.7

For either routine, if the lock becomes unlocked, and if one or more task regions were effectively8
suspended because the lock was unavailable, the effect is that one task is chosen and given9
ownership of the lock.10

Events11

The lock-release or nest-lock-release event occurs in the thread executing a omp_unset_lock or12
omp_unset_nest_lock region after releasing the associated lock, but before finishing the13
region.14

The nest-lock-held event occurs in the thread executing a omp_unset_nest_lock region when15
the thread still owns the lock, before finishing the region.16

Tool Callbacks17

A thread dispatches a registered ompt_callback_mutex_released callback for each18
occurrence of a lock-release or nest-lock-release event in that thread. This callback has the type19
signature ompt_callback_mutex_t. The callback occurs in the task encountering the routine.20
The callback receives ompt_mutex_lock or ompt_mutex_nest_lock as kind argument as21
appropriate.22

A thread dispatches a registered ompt_callback_nest_lock callback for each occurrence of23
a nest-lock-held event in that thread. This callback has the type signature24
ompt_callback_nest_lock_t. The callback receives ompt_scope_end as its endpoint25
argument.26

CHAPTER 3. RUNTIME LIBRARY ROUTINES 311

Cross References1

• ompt_callback_mutex_t, see Section 4.6.2.16 on page 383.2

• ompt_callback_nest_lock_t, see Section 4.6.2.17 on page 384.3

3.3.6 omp_test_lock and omp_test_nest_lock4

Summary5

These routines attempt to set an OpenMP lock but do not suspend execution of the task executing6
the routine.7

Format8

C / C++

int omp_test_lock(omp_lock_t *lock);
int omp_test_nest_lock(omp_nest_lock_t *lock);

C / C++
Fortran

logical function omp_test_lock(svar)
integer (kind=omp_lock_kind) svar
integer function omp_test_nest_lock(nvar)
integer (kind=omp_nest_lock_kind) nvar

Fortran

Constraints on Arguments9

A program that accesses a lock that is in the uninitialized state through either routine is10
non-conforming. The behavior is unspecified if a simple lock accessed by omp_test_lock is in11
the locked state and is owned by the task that contains the call.12

312 OpenMP API – Version 5.0 rev 1, November 2016

Effect1

These routines attempt to set a lock in the same manner as omp_set_lock and2
omp_set_nest_lock, except that they do not suspend execution of the task executing the3
routine.4

For a simple lock, the omp_test_lock routine returns true if the lock is successfully set;5
otherwise, it returns false.6

For a nestable lock, the omp_test_nest_lock routine returns the new nesting count if the lock7
is successfully set; otherwise, it returns zero.8

Events9

The lock-test or nest-lock-test event occurs in the thread executing a omp_test_lock or10
omp_test_nest_lock region before the associated lock is tested.11

The lock-test-acquired or nest-lock-test-acquired event occurs in the thread executing a12
omp_test_lock or omp_test_nest_lock region before finishing the region if the13
associated lock was acquired and the thread did not already own the lock.14

The nest-lock-owned event occurs in the thread executing a omp_test_nest_lock region if the15
thread already owned the lock, before finishing the region.16

Tool Callbacks17

A thread dispatches a registered ompt_callback_mutex_acquire callback for each18
occurrence of a lock-test or nest-lock-test event in that thread. This callback has the type signature19
ompt_callback_mutex_acquire_t.20

A thread dispatches a registered ompt_callback_mutex_acquired callback for each21
occurrence of a lock-test-acquired or nest-lock-test-acquired event in that thread. This callback has22
the type signature ompt_callback_mutex_t.23

A thread dispatches a registered ompt_callback_nest_lock callback for each occurrence of24
a nest-lock-owned event in that thread. This callback has the type signature25
ompt_callback_nest_lock_t. The callback receives ompt_scope_begin as its26
endpoint argument.27

The callbacks occur in the task encountering the lock function. The callbacks receive28
ompt_mutex_lock or ompt_mutex_nest_lock as their kind argument, as appropriate.29

Cross References30

• ompt_callback_mutex_acquire_t, see Section 4.6.2.15 on page 381.31

• ompt_callback_mutex_t, see Section 4.6.2.16 on page 383.32

• ompt_callback_nest_lock_t, see Section 4.6.2.17 on page 384.33

CHAPTER 3. RUNTIME LIBRARY ROUTINES 313

3.4 Timing Routines1

This section describes routines that support a portable wall clock timer.2

3.4.1 omp_get_wtime3

Summary4

The omp_get_wtime routine returns elapsed wall clock time in seconds.5

Format6

C / C++

double omp_get_wtime(void);

C / C++
Fortran

double precision function omp_get_wtime()

Fortran

Binding7

The binding thread set for an omp_get_wtime region is the encountering thread. The routine’s8
return value is not guaranteed to be consistent across any set of threads.9

Effect10

The omp_get_wtime routine returns a value equal to the elapsed wall clock time in seconds11
since some “time in the past”. The actual “time in the past” is arbitrary, but it is guaranteed not to12
change during the execution of the application program. The time returned is a “per-thread time”,13
so it is not required to be globally consistent across all threads participating in an application.14

Note – It is anticipated that the routine will be used to measure elapsed times as shown in the15
following example:16

C / C++

314 OpenMP API – Version 5.0 rev 1, November 2016

double start;
double end;
start = omp_get_wtime();
... work to be timed ...
end = omp_get_wtime();
printf("Work took %f seconds\n", end - start);

C / C++
Fortran

DOUBLE PRECISION START, END
START = omp_get_wtime()
... work to be timed ...
END = omp_get_wtime()
PRINT *, "Work took", END - START, "seconds"

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 315

3.4.2 omp_get_wtick1

Summary2

The omp_get_wtick routine returns the precision of the timer used by omp_get_wtime.3

Format4

C / C++

double omp_get_wtick(void);

C / C++
Fortran

double precision function omp_get_wtick()

Fortran

Binding5

The binding thread set for an omp_get_wtick region is the encountering thread. The routine’s6
return value is not guaranteed to be consistent across any set of threads.7

Effect8

The omp_get_wtick routine returns a value equal to the number of seconds between successive9
clock ticks of the timer used by omp_get_wtime.10

316 OpenMP API – Version 5.0 rev 1, November 2016

C / C++

3.5 Device Memory Routines1

This section describes routines that support allocation of memory and management of pointers in2
the data environments of target devices.3

3.5.1 omp_target_alloc4

Summary5

The omp_target_alloc routine allocates memory in a device data environment.6

Format7

void* omp_target_alloc(size_t size, int device_num);

Effect8

The omp_target_alloc routine returns the device address of a storage location of size bytes.9
The storage location is dynamically allocated in the device data environment of the device specified10
by device_num, which must be greater than or equal to zero and less than the result of11
omp_get_num_devices() or the result of a call to omp_get_initial_device(). When12
called from within a target region the effect of this routine is unspecified.13

The omp_target_alloc routine returns NULL if it cannot dynamically allocate the memory in14
the device data environment.15

The device address returned by omp_target_alloc can be used in an is_device_ptr16
clause, Section 2.10.5 on page 116.17

Pointer arithmetic is not supported on the device address returned by omp_target_alloc.18

Freeing the storage returned by omp_target_alloc with any routine other than19
omp_target_free results in unspecified behavior.20

CHAPTER 3. RUNTIME LIBRARY ROUTINES 317

C/C++ (cont.)

Events1

The target-data-allocation event occurs when a thread allocates data on a target device.2

Tool Callbacks3

A thread invokes a registered ompt_callback_target_data_op callback for each4
occurrence of a target-data-allocation event in that thread. The callback occurs in the context of the5
target task. The callback has type signature ompt_callback_target_data_op_t.6

Cross References7

• target construct, see Section 2.10.5 on page 1168

• omp_get_num_devices routine, see Section 3.2.31 on page 2959

• omp_get_initial_device routine, see Section 3.2.35 on page 29810

• omp_target_free routine, see Section 3.5.2 on page 31811

• ompt_callback_target_data_op_t, see Section 4.6.2.21 on page 388.12

3.5.2 omp_target_free13

Summary14

The omp_target_free routine frees the device memory allocated by the15
omp_target_alloc routine.16

Format17

void omp_target_free(void * device_ptr, int device_num);

Constraints on Arguments18

A program that calls omp_target_free with a non-NULL pointer that does not have a value19
returned from omp_target_alloc is non-conforming. The device_num must be greater than or20
equal to zero and less than the result of omp_get_num_devices() or the result of a call to21
omp_get_initial_device().22

318 OpenMP API – Version 5.0 rev 1, November 2016

C/C++ (cont.)

Effect1

The omp_target_free routine frees the memory in the device data environment associated2
with device_ptr. If device_ptr is NULL, the operation is ignored.3

Synchronization must be inserted to ensure that all accesses to device_ptr are completed before the4
call to omp_target_free.5

When called from within a target region the effect of this routine is unspecified.6

Events7

The target-data-free event occurs when a thread frees data on a target device.8

Tool Callbacks9

A thread invokes a registered ompt_callback_target_data_op callback for each10
occurrence of a target-data-free event in that thread. The callback occurs in the context of the target11
task. The callback has type signature ompt_callback_target_data_op_t.12

Cross References13

• target construct, see Section 2.10.5 on page 11614

• omp_get_num_devices routine, see Section 3.2.31 on page 29515

• omp_get_initial_device routine, see Section 3.2.35 on page 29816

• omp_target_alloc routine, see Section 3.5.1 on page 31717

• ompt_callback_target_data_op_t, see Section 4.6.2.21 on page 388.18

CHAPTER 3. RUNTIME LIBRARY ROUTINES 319

C/C++ (cont.)

3.5.3 omp_target_is_present1

Summary2

The omp_target_is_present routine tests whether a host pointer has corresponding storage3
on a given device.4

Format5

int omp_target_is_present(void * ptr, int device_num);

Constraints on Arguments6

The value of ptr must be a valid host pointer or NULL. The device_num must be greater than or7
equal to zero and less than the result of omp_get_num_devices() or the result of a call to8
omp_get_initial_device().9

Effect10

This routine returns true if the specified pointer would be found present on device device_num by a11
map clause; otherwise, it returns false.12

When called from within a target region the effect of this routine is unspecified.13

Cross References14

• target construct, see Section 2.10.5 on page 11615

• map clause, see Section 2.15.6.1 on page 245.16

• omp_get_num_devices routine, see Section 3.2.31 on page 29517

• omp_get_initial_device routine, see Section 3.2.35 on page 29818

320 OpenMP API – Version 5.0 rev 1, November 2016

C/C++ (cont.)

3.5.4 omp_target_memcpy1

Summary2

The omp_target_memcpy routine copies memory between any combination of host and device3
pointers.4

Format5

int omp_target_memcpy(void * dst, void * src, size_t length,
size_t dst_offset, size_t src_offset,
int dst_device_num, int src_device_num);

Constraints on Arguments6

Each device must be compatible with the device pointer specified on the same side of the copy. The7
dst_device_num and src_device_num must be greater than or equal to zero and less than the result8
of omp_get_num_devices() or equal to the result of a call to9
omp_get_initial_device().10

Effect11

length bytes of memory at offset src_offset from src in the device data environment of device12
src_device_num are copied to dst starting at offset dst_offset in the device data environment of13
device dst_device_num. The return value is zero on success and non-zero on failure. The host14
device and host device data environment can be referenced with the device number returned by15
omp_get_initial_device. This routine contains a task scheduling point.16

When called from within a target region the effect of this routine is unspecified.17

Events18

The target-data-transfer event occurs when a thread transfers data on a target device.19

CHAPTER 3. RUNTIME LIBRARY ROUTINES 321

C/C++ (cont.)

Tool Callbacks1

A thread invokes a registered ompt_callback_target_data_op callback for each2
occurrence of a target-data-transfer event in that thread. The callback occurs in the context of the3
target task. The callback has type signature ompt_callback_target_data_op_t.4

Cross References5

• target construct, see Section 2.10.5 on page 1166

• omp_get_initial_device routine, see Section 3.2.35 on page 2987

• omp_target_alloc routine, see Section 3.5.1 on page 3178

• ompt_callback_target_data_op_t, see Section 4.6.2.21 on page 388.9

3.5.5 omp_target_memcpy_rect10

Summary11

The omp_target_memcpy_rect routine copies a rectangular subvolume from a12
multi-dimensional array to another multi-dimensional array. The copies can use any combination of13
host and device pointers.14

Format15

int omp_target_memcpy_rect(
void * dst, void * src,
size_t element_size,
int num_dims,
const size_t* volume,
const size_t* dst_offsets,
const size_t* src_offsets,
const size_t* dst_dimensions,
const size_t* src_dimensions,
int dst_device_num, int src_device_num);

322 OpenMP API – Version 5.0 rev 1, November 2016

C/C++ (cont.)

Constraints on Arguments1

The length of the offset and dimension arrays must be at least the value of num_dims. The2
dst_device_num and src_device_num must be greater than or equal to zero and less than3
the result of omp_get_num_devices() or equal to the result of a call to4
omp_get_initial_device().5

The value of num_dims must be between 1 and the implementation-defined limit, which must be at6
least three.7

Effect8

This routine copies a rectangular subvolume of src, in the device data environment of device9
src_device_num, to dst, in the device data environment of device dst_device_num. The volume is10
specified in terms of the size of an element, number of dimensions, and constant arrays of length11
num_dims. The maximum number of dimensions supported is at least three, support for higher12
dimensionality is implementation defined. The volume array specifies the length, in number of13
elements, to copy in each dimension from src to dst. The dst_offsets (src_offsets) parameter14
specifies number of elements from the origin of dst (src) in elements. The dst_dimensions15
(src_dimensions) parameter specifies the length of each dimension of dst (src)16

The routine returns zero if successful. If both dst and src are NULL pointers, the routine returns the17
number of dimensions supported by the implementation for the specified device numbers. The host18
device and host device data environment can be referenced with the device number returned by19
omp_get_initial_device. Otherwise, it returns a non-zero value. The routine contains a20
task scheduling point.21

When called from within a target region the effect of this routine is unspecified.22

Events23

The target-data-transfer event occurs when a thread transfers data on a target device.24

Tool Callbacks25

A thread invokes a registered ompt_callback_target_data_op callback for each26
occurrence of a target-data-transfer event in that thread. The callback occurs in the context of the27
target task. The callback has type signature ompt_callback_target_data_op_t.28

CHAPTER 3. RUNTIME LIBRARY ROUTINES 323

C/C++ (cont.)

Cross References1

• target construct, see Section 2.10.5 on page 1162

• omp_get_initial_device routine, see Section 3.2.35 on page 2983

• omp_target_alloc routine, see Section 3.5.1 on page 3174

• ompt_callback_target_data_op_t, see Section 4.6.2.21 on page 388.5

3.5.6 omp_target_associate_ptr6

Summary7

The omp_target_associate_ptr routine maps a device pointer, which may be returned8
from omp_target_alloc or implementation-defined runtime routines, to a host pointer.9

Format10

int omp_target_associate_ptr(void * host_ptr, void * device_ptr,
size_t size, size_t device_offset,
int device_num);

Constraints on Arguments11

The value of device_ptr value must be a valid pointer to device memory for the device denoted by12
the value of device_num. The device_num argument must be greater than or equal to zero and less13
than the result of omp_get_num_devices() or equal to the result of a call to14
omp_get_initial_device().15

324 OpenMP API – Version 5.0 rev 1, November 2016

C/C++ (cont.)

Effect1

The omp_target_associate_ptr routine associates a device pointer in the device data2
environment of device device_num with a host pointer such that when the host pointer appears in a3
subsequent map clause, the associated device pointer is used as the target for data motion4
associated with that host pointer. The device_offset parameter specifies what offset into device_ptr5
will be used as the base address for the device side of the mapping. The reference count of the6
resulting mapping will be infinite. After being successfully associated, the buffer pointed to by the7
device pointer is invalidated and accessing data directly through the device pointer results in8
unspecified behavior. The pointer can be retrieved for other uses by disassociating it. When called9
from within a target region the effect of this routine is unspecified.10

The routine returns zero if successful. Otherwise it returns a non-zero value.11

Only one device buffer can be associated with a given host pointer value and device number pair.12
Attempting to associate a second buffer will return non-zero. Associating the same pair of pointers13
on the same device with the same offset has no effect and returns zero. Associating pointers that14
share underlying storage will result in unspecified behavior. The omp_target_is_present15
region can be used to test whether a given host pointer has a corresponding variable in the device16
data environment.17

Events18

The target-data-associate event occurs when a thread associates data on a target device.19

Tool Callbacks20

A thread invokes a registered ompt_callback_target_data_op callback for each21
occurrence of a target-data-associate event in that thread. The callback occurs in the context of the22
target task. The callback has type signature ompt_callback_target_data_op_t.23

Cross References24

• target construct, see Section 2.10.5 on page 11625

• map clause, see Section 2.15.6.1 on page 245.26

• omp_target_alloc routine, see Section 3.5.1 on page 31727

• omp_target_disassociate_ptr routine, see Section 3.5.6 on page 32428

• ompt_callback_target_data_op_t, see Section 4.6.2.21 on page 388.29

CHAPTER 3. RUNTIME LIBRARY ROUTINES 325

C/C++ (cont.)

3.5.7 omp_target_disassociate_ptr1

Summary2

The omp_target_disassociate_ptr removes the associated pointer for a given device3
from a host pointer.4

Format5

int omp_target_disassociate_ptr(void * ptr, int device_num);

Constraints on Arguments6

The device_num must be greater than or equal to zero and less than the result of7
omp_get_num_devices() or equal to the result of a call to8
omp_get_initial_device().9

Effect10

The omp_target_disassociate_ptr removes the associated device data on device11
device_num from the presence table for host pointer ptr. A call to this routine on a pointer that is12
not NULL and does not have associated data on the given device results in unspecified behavior.13
The reference count of the mapping is reduced to zero, regardless of its current value.14

When called from within a target region the effect of this routine is unspecified.15

After a call to omp_target_disassociate_ptr, the contents of the device buffer are16
invalidated.17

Events18

The target-data-disassociate event occurs when a thread disassociates data on a target device.19

Tool Callbacks20

A thread invokes a registered ompt_callback_target_data_op callback for each21
occurrence of a target-data-disassociate event in that thread. The callback occurs in the context of22
the target task. The callback has type signature ompt_callback_target_data_op_t.23

326 OpenMP API – Version 5.0 rev 1, November 2016

C/C++ (cont.)

Cross References1

• target construct, see Section 2.10.5 on page 1162

• omp_target_associate_ptr routine, see Section 3.5.6 on page 3243

• ompt_callback_target_data_op_t, see Section 4.6.2.21 on page 388.4

C / C++

3.6 Tool Control Routines5

Summary6

The omp_control_tool routine enables a program to pass commands to an active tool.7

Format8

C / C++

int omp_control_tool(int command, int modifier, void *arg);

C / C++
Fortran

integer function omp_control_tool(command, modifier)
integer (kind=omp_control_tool_kind) command
integer (kind=omp_control_tool_kind) modifier

Fortran

CHAPTER 3. RUNTIME LIBRARY ROUTINES 327

Description1

An OpenMP program may use omp_control_tool to pass commands to a tool. Using2
omp_control_tool, an application can request that a tool start or restart data collection when a3
code region of interest is encountered, pause data collection when leaving the region of interest,4
flush any data that it has collected so far, or end data collection. Additionally,5
omp_control_tool can be used to pass tool-specific commands to a particular tool.6

C / C++

typedef enum omp_control_tool_result_t {
omp_control_tool_notool = -2,
omp_control_tool_nocallback = -1,
omp_control_tool_success = 0,
omp_control_tool_ignored = 1

} omp_control_tool_result_t;

C / C++
Fortran

integer (kind=omp_control_tool_result_kind), &
parameter :: omp_control_tool_notool = -2

integer (kind=omp_control_tool_result_kind), &
parameter :: omp_control_tool_nocallback = -1

integer (kind=omp_control_tool_result_kind), &
parameter :: omp_control_tool_success = 0

integer (kind=omp_control_tool_result_kind), &
parameter :: omp_control_tool_ignored = 1

Fortran

If no tool is active, the OpenMP implementation will return omp_control_tool_notool. If a7
tool is active, but it has not registered a callback for the tool-control event, the OpenMP8
implementation will return omp_control_tool_nocallback. An OpenMP implementation9
may return other implementation-defined negative values < −64; an application may assume that10
any negative return value indicates that a tool has not received the command. A return value of11
omp_control_tool_success indicates that the tool has performed the specified command.12
A return value of omp_control_tool_ignored indicates that the tool has ignored the13
specified command. A tool may return other positive values > 64 that are tool-defined.14

Constraints on Arguments15

The following enumeration type defines four standard commands. Table 3.1 describes the actions16
that these commands request from a tool.17

328 OpenMP API – Version 5.0 rev 1, November 2016

Command Action

omp_control_tool_start Start or restart monitoring if it is off. If monitoring is already
on, this command is idempotent. If monitoring has already
been turned off permanently, this command will have no effect.

omp_control_tool_pause Temporarily turn monitoring off. If monitoring is already off,
it is idempotent.

omp_control_tool_flush Flush any data buffered by a tool. This command may be
applied whether monitoring is on or off.

omp_control_tool_end Turn monitoring off permanently; the tool finalizes itself and
flushes all output.

TABLE 3.1: Standard tool control commands.

C / C++

typedef enum omp_control_tool_t {
omp_control_tool_start = 1,
omp_control_tool_pause = 2,
omp_control_tool_flush = 3,
omp_control_tool_end = 4

} omp_control_tool_t;

C / C++
Fortran

integer (kind=omp_control_tool_kind), &
parameter :: omp_control_tool_start = 1

integer (kind=omp_control_tool_kind), &
parameter :: omp_control_tool_pause = 2

integer (kind=omp_control_tool_kind), &
parameter :: omp_control_tool_flush = 3

integer (kind=omp_control_tool_kind), &
parameter :: omp_control_tool_end = 4

Fortran

Tool-specific values for command must be ≥ 64. Tools must ignore command values that they are1
not explicitly designed to handle. Other values accepted by a tool for command, and any values for2
modifier and arg are tool-defined.3

CHAPTER 3. RUNTIME LIBRARY ROUTINES 329

Events1

The tool-control event occurs in the thread encountering a call to omp_control_tool at a point2
inside its associated OpenMP region.3

Tool Callbacks4

An OpenMP implementation dispatches a registered ompt_callback_control_tool5
callback for each occurrence of a tool-control event. The callback executes in the context of the call6
that occurs in the user program. This callback has type signature7
ompt_callback_control_tool_t.The callback may return any non-negative value, which8
will be returned to the application by the OpenMP implementation as the return value of the9
omp_control_tool call that triggered the callback.10

Arguments passed to the callback are those passed by the user to omp_control_tool. If the11
call is made in Fortran, the tool will be passed a NULL as the third argument to the callback. If any12
of the four standard commands is presented to a tool, the tool will ignore the modifier and arg13
argument values.14

Cross References15

• Tool Interface, see Chapter 4 on page 33116

• ompt_callback_control_tool_t, see Section 4.6.2.26 on page 39417

330 OpenMP API – Version 5.0 rev 1, November 2016

CHAPTER 41

Tool Support2

This chapter describes OMPT—a tool interface for the OpenMP API. The chapter begins with an3
overview of the OMPT interface in Section 4.1. Next, it describes how to initialize (Section 4.2)4
and finalize (Sections 4.3) a tool. Subsequent sections describe details of the interface, including5
data types shared between an OpenMP implementation and a tool (Section 4.4), an interface that6
enables an OpenMP implementation to determine that a tool is available (Section 4.5), type7
signatures for tool callbacks that an OpenMP implementation may dispatch for OpenMP events8
(Section 4.6), and runtime entry points—function interfaces provided by an OpenMP9
implementation for use by a tool (Section 4.7).10

4.1 Overview11

The OMPT interface defines mechanisms for initializing a tool, exploring the details of an OpenMP12
implementation, examining OpenMP state associated with an OpenMP thread, interpreting an13
OpenMP thread’s call stack, receiving notification about OpenMP events, tracing activity on14
OpenMP target devices, and controlling a tool from an OpenMP application.15

4.2 Activating a Tool16

There are three steps to activating a tool. First, an OpenMP implementation determines whether a17
tool should be initialized. If so, the OpenMP implementation invokes the tool’s initializer, enabling18
the tool to prepare to monitor the execution on the host. Finally, a tool may arrange to monitor19
computation that execute on target devices. This section explains how the tool and an OpenMP20
implementation interact to accomplish these tasks.21

331

4.2.1 Determining Whether a Tool Should be Initialized1

A tool indicates its interest in using the OMPT interface by providing a non-NULL pointer to an2
ompt_fns_t structure to an OpenMP implementation as a return value from3
ompt_start_tool. There are three ways that a tool can provide a definition of4
ompt_start_tool to an OpenMP implementation:5

• statically-linking the tool’s definition of ompt_start_tool into an OpenMP application,6

• introducing a dynamically-linked library that includes the tool’s definition of7
ompt_start_tool into the application’s address space, or8

• providing the name of a dynamically-linked library appropriate for the architecture and operating9
system used by the application in the tool-libraries-var ICV.10

Immediately before an OpenMP implementation initializes itself, it determines whether it should11
check for the presence of a tool interested in using the OMPT interface by examining the tool-var12
ICV. If value of tool-var is disabled, the OpenMP implementation will initialize itself without even13
checking whether a tool is present and the functionality of the OMPT interface will be unavailable14
as the program executes.15

If the value of tool-var is enabled, the OpenMP implementation will check to see if a tool has16
provided an implmentation of ompt_start_tool. The OpenMP implementation first checks if17
a tool-provided implementation of ompt_start_tool is available in the address space, either18
statically-linked into the application or in a dynamically-linked library loaded in the address space.19
If multiple implementations of ompt_start_tool are available, the OpenMP implementation20
will use the first tool-provided implementation of ompt_start_tool found.21

If no tool-provided implementation of ompt_start_tool is found in the address space, the22
OpenMP implementation will consult the tool-libraries-var ICV, which contains a (possibly empty)23
list of dynamically-linked libraries. As described in detail in Section 5.16, the libraries in24
tool-libraries-var, will be searched for the first usable implementation of ompt_start_tool25
provided by one of the libraries in the list.26

If a tool-provided definition of ompt_start_tool is found using either method, the OpenMP27
implementation will invoke it; if it returns a non-NULL pointer to an ompt_fns_t structure, the28
OpenMP implementation will know that a tool is present that wants to use the OMPT interface.29

Next, the OpenMP implementation will initialize itself. If a tool provided a non-NULL pointer to an30
ompt_fns_t structure, the OpenMP runtime will prepare itself for use of the OMPT interface by31
a tool.32

Cross References33

• tool-var ICV, see Section 2.3 on page 39.34

• tool-libraries-var ICV, see Section 2.3 on page 39.35

332 OpenMP API – Version 5.0 rev 1, November 2016

• ompt_fns_t, see Section 4.4.1 on page 342.1

• ompt_start_tool, see Section 4.5.1 on page 363.2

4.2.2 Tool Initialization3

If a tool-provided implementation of ompt_start_tool returns a non-NULL pointer to an4
ompt_fns_t structure, the OpenMP implementation will invoke the tool initializer specified in5
this structure prior to the occurrence of any OpenMP event.6

A tool’s initializer, described in Section 4.6.1.1 on page 364 uses its argument lookup to look up7
pointers to OMPT interface runtime entry points provided by the OpenMP implementation; this8
process is described in Section 4.2.2.1 on page 334. After obtaining a pointer to the OpenMP9
runtime entry point known as known as ompt_callback_set with type signature10
ompt_callback_set_t, the tool initializer should use it to register tool callbacks for OpenMP11
events, as described in Section 4.2.3 on page 335.12

A tool initializer may use the OMPT interface runtime entry points known as13
ompt_enumerate_states and ompt_enumerate_mutex_impls, which have type14
signatures ompt_enumerate_states_t and ompt_enumerate_mutex_impls_t, to15
determine what thread states and implementations of mutual exclusion a particular OpenMP16
implementation employs. The descriptions of the enumeration runtime entry point type signatures17
show how to use them to determine what thread states and mutual exclusion mechanisms an18
OpenMP implementation supports.19

If a tool initializer returns a non-zero value, the tool will be activated for the execution; otherwise,20
the tool will be inactive.21

Cross References22

• ompt_initialize_t, see Section 4.6.1.1 on page 364.23

• ompt_callback_thread_begin_t, see Section 4.6.2.1 on page 366.24

• ompt_enumerate_states_t, see Section 4.7.1.1 on page 398.25

• ompt_enumerate_mutex_impls_t, see Section 4.7.1.2 on page 400.26

• ompt_callback_set_t, see Section 4.7.1.3 on page 402.27

• ompt_function_lookup_t, see Section 4.7.3.1 on page 430.28

CHAPTER 4. TOOL SUPPORT 333

4.2.2.1 Binding Entry Points in the OMPT Callback Interface1

Functions that an OpenMP implementation provides to support the OMPT interface are not defined2
as global function symbols. Instead, they are defined as runtime entry points that a tool can only3
identify using the lookup function provided as an argument to the tool’s initializer. This design4
avoids tool implementations that will fail in certain circumstances when functions defined as part of5
the OpenMP runtime are not visible to a tool, even though the tool and the OpenMP runtime are6
both present in the same address space. It also prevents inadvertant use of a tool support routine by7
applications.8

A tool’s initializer receives a function pointer to a lookup runtime entry point with type signature9
ompt_function_lookup_t as its first argument. Using this function, a tool initializer may10
obtain a pointer to each of the runtime entry points that an OpenMP implementation provides to11
support the OMPT interface. Once a tool has obtained a lookup function, it may employ it at any12
point in the future.13

For each runtime entry point in the OMPT interface for the host device, Table 4.1 provides the14
string name by which it is known and its associated type signature. Implementations can provide15
additional, implementation specific names and corresponding entry points as long as they don’t use16
names that start with the prefix “ompt_”. These are reserved for future extensions in the OpenMP17
specification.18

During initialization, a tool should look up each runtime entry point in the OMPT interface by19
name and bind a pointer maintained by the tool that it can use later to invoke the entry point as20
needed. The entry points described in Table 4.1 enable a tool to assess what thread states and21
mutual exclusion implementations that an OpenMP runtime supports, register tool callbacks,22
inspect callbacks registered, introspect OpenMP state associated with threads, and use tracing to23
monitor computations that execute on target devices.24

Detailed information about each runtime entry point listed in Table 4.1 is included as part of the25
description of its type signature.26

Cross References27

• ompt_enumerate_states_t, see Section 4.7.1.1 on page 398.28

• ompt_enumerate_mutex_impls_t, see Section 4.7.1.2 on page 400.29

• ompt_callback_set_t, see Section 4.7.1.3 on page 402.30

• ompt_callback_get_t, see Section 4.7.1.4 on page 404.31

• ompt_get_thread_data_t, see Section 4.7.1.5 on page 405.32

• ompt_get_num_places_t, see Section 4.7.1.6 on page 406.33

• ompt_get_place_proc_ids_t, see Section 4.7.1.7 on page 407.34

• ompt_get_place_num_t, see Section 4.7.1.8 on page 408.35

334 OpenMP API – Version 5.0 rev 1, November 2016

• ompt_get_partition_place_nums_t, see Section 4.7.1.9 on page 409.1

• ompt_get_procid_t, see Section 4.7.1.10 on page 410.2

• ompt_get_state_t, see Section 4.7.1.11 on page 411.3

• ompt_get_parallel_info_t, see Section 4.7.1.12 on page 412.4

• ompt_get_task_info_t, see Section 4.7.1.13 on page 414.5

• ompt_get_target_info_t, see Section 4.7.1.14 on page 416.6

• ompt_get_num_devices_t, see Section 4.7.1.15 on page 417.7

• ompt_function_lookup_t, see Section 4.7.3.1 on page 430.8

4.2.3 Monitoring Activity on the Host9

To monitor execution of an OpenMP program on the host device, a tool’s initializer must register to10
receive notification of events that occur as an OpenMP program executes. A tool can register11
callbacks for OpenMP events using the runtime entry point known as ompt_callback_set.12
The possible return codes for ompt_callback_set and their meanings are shown in Table 4.5.13
If the ompt_callback_set runtime entry point is called outside a tool’s initializer, registration14
of supported callbacks may fail with a return code of ompt_set_error.15

All callbacks registered with ompt_callback_set or returned by ompt_callback_get use16
the dummy type signature ompt_callback_t. While this is a compromise, it is better than17
providing unique runtime entry points with a precise type signatures to set and get the callback for18
each unique runtime entry point type signature.19

Table 4.2 indicates the return codes permissible when trying to register various callbacks. For20
callbacks where the only registration return code allowed is ompt_set_always, an OpenMP21
implementation must guarantee that the callback will be invoked every time a runtime event22
associated with it occurs. Support for such callbacks is required in a minimal implementation of the23
OMPT interface. For other callbacks where registration is allowed to return values other than24
ompt_set_always, its implementation-defined whether an OpenMP implementation invokes a25
registered callback never, sometimes, or always. If registration for a callback allows a return code26
of omp_set_never, support for invoking such a callback need not be present in a minimal27
implementation of the OMPT interface. The return code when a callback is registered enables a tool28
to know what to expect when the level of support for the callback can be implementation defined.29

To avoid a tool interface specification that enables a tool to register unique callbacks for an30
overwhelming number of events, the interface was collapsed in several ways. First, in cases where31
events are naturally paired, e.g., the beginning and end of a region, and the arguments needed by the32
callback at each endpoint were identical, the pair of events was collapsed so that a tool registers a33
single callback that will be invoked at both endpoints with ompt_scope_begin or34

CHAPTER 4. TOOL SUPPORT 335

TABLE 4.1: OMPT callback interface runtime entry point names and their type signatures.

Entry Point String Name Type signature

“ompt_enumerate_states” ompt_enumerate_states_t

“ompt_enumerate_mutex_impls” ompt_enumerate_mutex_impls_t

“ompt_callback_set” ompt_callback_set_t

“ompt_callback_get” ompt_callback_get_t

“ompt_get_thread_data” ompt_get_thread_data_t

“ompt_get_num_places” ompt_get_num_places_t

“ompt_get_place_proc_ids” ompt_get_place_proc_ids_t

“ompt_get_place_num” ompt_get_place_num_t

“ompt_get_partition_place_nums” ompt_get_partition_place_nums_t

“ompt_get_proc_id” ompt_get_proc_id_t

“ompt_get_state” ompt_get_state_t

“ompt_get_parallel_info” ompt_get_parallel_info_t

“ompt_get_task_info” ompt_get_task_info_t

“ompt_get_num_devices” ompt_get_num_devices_t

“ompt_get_target_info” ompt_get_target_info_t

336 OpenMP API – Version 5.0 rev 1, November 2016

TABLE 4.2: Valid return codes of ompt_callback_set for each callback.

om
pt
_s
et
_n
ev
er

om
pt
_s
et
_s
om
et
im
es

om
pt
_s
et
_s
om
et
im
es
_p
ai
re
d

om
pt
_s
et
_a
lw
ay
s

ompt_callback_thread_begin *
ompt_callback_thread_end *
ompt_callback_parallel_begin *
ompt_callback_parallel_end *
ompt_callback_task_create *
ompt_callback_task_schedule *
ompt_callback_implicit_task *
ompt_callback_target *
ompt_callback_target_data_op *
ompt_callback_target_submit *
ompt_callback_control_tool *
ompt_callback_device_initialize *
ompt_callback_idle * * *
ompt_callback_sync_region_wait * * *
ompt_callback_mutex_released * * *
ompt_callback_task_dependences * * *
ompt_callback_task_dependence * * *
ompt_callback_work * * *
ompt_callback_master * * *
ompt_callback_target_map * * *
ompt_callback_sync_region * * *
ompt_callback_lock_init * * *
ompt_callback_lock_destroy * * *
ompt_callback_mutex_acquire * * *
ompt_callback_mutex_acquired * * *
ompt_callback_nest_lock * * *
ompt_callback_flush * * *
ompt_callback_cancel * * *

CHAPTER 4. TOOL SUPPORT 337

ompt_scope_end provided as an argument to identify which endpoint the callback invocation1
reflects. Second, when a whole class of events is amenable to uniform treatment, only a single2
callback is provided for a family of events, e.g., a ompt_callback_sync_region_wait3
callback is used for multiple kinds of synchronization regions, i.e., barrier, taskwait, and taskgroup4
regions. Some events involve both kinds of collapsing: the aforementioned5
ompt_callback_sync_region_wait represents a callback that will be invoked at each6
endpoint for different kinds of synchronization regions.7

Cross References8

• ompt_callback_set_t, see Section 4.7.1.3 on page 402.9

• ompt_callback_get_t, see Section 4.7.1.4 on page 404.10

4.2.4 Tracing Activity on Target Devices11

A target device may or may not initialize a full OpenMP runtime system. Unless it does, it may not12
be possible to monitor activity on a device using a tool interface based on callbacks. To13
accommodate such cases, the OMPT interface defines a performance monitoring interface for14
tracing activity on target devices. Tracing activity on a target device involves the following steps:15

• To prepare to trace activity on a target device, when a tool initializer executes, it must register a16
tool ompt_callback_device_initialize callback.17

• When an OpenMP implementation initializes a target device, the OpenMP implementation will18
dispatch the tool’s device initialization callback on the host device. If the OpenMP19
implementation or target device does not support tracing, the OpenMP implementation will pass20
a NULL to the tool’s device initializer for its lookup argument; otherwise, the OpenMP21
implementation will pass a pointer to a device-specific runtime entry point with type signature22
ompt_function_lookup_t to the tool’s device initializer.23

• If the device initializer for the tool receives a non-NULL lookup pointer, the tool may use it to24
query which runtime entry points in the tracing interface are available for a target device and25
bind the function pointers returned to tool variables. Table 4.3 indicates the names of the runtime26
entry points that a target device may provide for use by a tool. Implementations can provide27
additional, implementation specific names and corresponding entry points as long as they don’t28
use names that start with the prefix “ompt_”. Theses are reserved for future extensions in the29
OpenMP specification.30

If lookup is non-NULL, the driver for a device will provide runtime entry points that enable a tool31
to control the device’s interface for collecting traces in its native trace format, which may be32
device specific. The kinds of trace records available for a device will typically be33
implementation-defined. Some devices may also allow a tool to collect traces of records in a34

338 OpenMP API – Version 5.0 rev 1, November 2016

TABLE 4.3: OMPT tracing interface runtime entry point names and their type signatures.

Entry Point String Name Type Signature

“ompt_get_device_time” ompt_get_device_time_t

“ompt_translate_time” ompt_translate_time_t

“ompt_set_trace_ompt” ompt_set_trace_ompt_t

“ompt_set_trace_native” ompt_set_trace_native_t

“ompt_start_trace” ompt_start_trace_t

“ompt_pause_trace” ompt_pause_trace_t

“ompt_stop_trace” ompt_stop_trace_t

“ompt_advance_buffer_cursor” ompt_advance_buffer_cursor_t

“ompt_get_record_type” ompt_get_record_type_t

“ompt_get_record_ompt” ompt_get_record_ompt_t

“ompt_get_record_native” ompt_get_record_native_t

“ompt_get_record_abstract” ompt_get_record_abstract_t

standard format known as OMPT format, described in this document. If so, the lookup function1
will return values for the runtime entry points ompt_set_trace_ompt and2
ompt_get_record_ompt, which support collecting and decoding OMPT traces. These3
runtime entry points are not required for all devices and will only be available for target devices4
that support collection of standard traces in OMPT format. For some devices, their native tracing5
format may be OMPT format. In that case, tracing can be controlled using either the runtime6
entry points for native or OMPT tracing.7

• The tool will use the ompt_set_trace_native and/or the ompt_set_trace_ompt8
runtime entry point to specify what types of events or activities to monitor on the target device.9

• The tool will initiate tracing on the target device by invoking ompt_start_trace.10
Arguments to ompt_start_trace include two tool callbacks for use by the OpenMP11
implementation to manage traces associated with the target device: one to allocate a buffer where12
the target device can deposit trace events and a second to process a buffer of trace events from the13
target device.14

• When the target device needs a trace buffer, the OpenMP implementation will invoke the15
tool-supplied callback function on the host device to request a new buffer.16

• The OpenMP implementation will monitor execution of OpenMP constructs on the target device17
as directed and record a trace of events or activities into a trace buffer. If the device is capable,18
device trace records will be marked with a host_op_id—an identifier used to associate device19

CHAPTER 4. TOOL SUPPORT 339

activities with the target operation initiated on the host that caused these activities. To correlate1
activities on the host with activities on a device, a tool can register a2
ompt_callback_target_submit callback. Before the host initiates each distinct activity3
associated with a structured block for a target construct on a target device, the OpenMP4
implementation will dispatch the ompt_callback_target_submit callback on the host in5
the thread executing the task that encounters the target construct. Examples of activities that6
could cause an ompt_callback_target_submit callback to be dispatched include an7
explicit data copy between a host and target device or execution of a computation. The callback8
provides the tool with a pair of identifiers: one that identifies the target region and a second that9
uniquely identifies an activity associated with that region. These identifiers help the tool10
correlate activities on the target device with their target region.11

• When appropriate, e.g., when a trace buffer fills or needs to be flushed, the OpenMP12
implementation will invoke the tool-supplied buffer completion callback to process a non-empty13
sequence of records in a trace buffer associated with the target device.14

• The tool-supplied buffer completion callback may return immediately, ignoring records in the15
trace buffer, or it may iterate through them using the ompt_advance_buffer_cursor16
entry point and inspect each one. A tool may inspect the type of the record at the current cursor17
position using the ompt_get_record_type runtime entry point. A tool may choose to18
inspect the contents of some or all records in a trace buffer using the19
ompt_get_record_ompt, ompt_get_record_native, or20
ompt_get_record_abstract runtime entry point. Presumably, a tool that chooses to use21
the ompt_get_record_native runtime entry point to inspect records will have some22
knowledge about a device’s native trace format. A tool may always use the23
ompt_get_record_abstract runtime entry point to inspect a trace record; this runtime24
entry point will decode the contents of a native trace record and summarize them in a standard25
format, namely, a ompt_record_abstract_t record. Only a record in OMPT format can26
be retrieved using the ompt_get_record_ompt runtime entry point.27

• Once tracing has been started on a device, a tool may pause or resume tracing on the device at28
any time by invoking ompt_pause_trace with an appropriate flag value as an argument.29

• A tool may start or stop tracing on a device at any time using the ompt_start_trace or30
ompt_stop_trace runtime entry points, respectively. When tracing is stopped on a device,31
the OpenMP implementatin will eventually gather all trace records already collected on the32
device and present to the tool using the buffer completion callback provided by the tool.33

• It is legal to shut down the OpenMP implementation while device tracing is in progress.34

• When the OpenMP implementation is shut down, any device tracing in progress will be stopped35
and all trace records collected on each device will be flushed. For each target device, the36
OpenMP implementation will present the tool with the trace records for the device using the37
buffer completion callback associated with that device.38

340 OpenMP API – Version 5.0 rev 1, November 2016

Cross References1

• ompt_callback_device_initialize_t, see Section 4.6.2.28 on page 396.2

• ompt_get_device_time, see Section 4.7.2.1 on page 418.3

• ompt_translate_time, see Section 4.7.2.2 on page 419.4

• ompt_set_trace_ompt, see Section 4.7.2.3 on page 420.5

• ompt_set_trace_native, see Section 4.7.2.4 on page 421.6

• ompt_start_trace, see Section 4.7.2.5 on page 422.7

• ompt_pause_trace, see Section 4.7.2.6 on page 423.8

• ompt_stop_trace, see Section 4.7.2.7 on page 424.9

• ompt_advance_buffer_cursor, see Section 4.7.2.8 on page 425.10

• ompt_get_record_type, see Section 4.7.2.9 on page 426.11

• ompt_get_record_ompt, see Section 4.7.2.10 on page 427.12

• ompt_get_record_native, see Section 4.7.2.11 on page 428.13

• ompt_get_record_abstract, see Section 4.7.2.12 on page 429.14

4.3 Finalizing a Tool15

If ompt_start_tool returned a non-NULL pointer when an OpenMP implementation was16
initialized, the tool finalizer, of type signature ompt_finalize_t, specified by the finalize field17
in this structure will be called as the OpenMP implementation shuts down.18

Cross References19

• ompt_finalize_t, Section 4.6.1.2 on page 36520

CHAPTER 4. TOOL SUPPORT 341

4.4 Data Types1

4.4.1 Tool Initialization and Finalization2

Summary3

A tool’s implementation of ompt_start_tool returns a pointer to an ompt_fns_t structure4
that contains pointers to the tool’s initializer and finalizer functions.5

C / C++

typedef struct ompt_fns_t {
ompt_initialize_t initialize;
ompt_finalize_t finalize;

} ompt_fns_t;

C / C++

Restrictions6

Both the initialize and finalize function pointers in an ompt_fns_t structure returned by7
ompt_start_tool must be non-NULL.8

Cross References9

• ompt_start_tool, see Section 4.5.1 on page 363.10

4.4.2 Thread States11

To enable a tool to understand the behavior of an executing program, an OpenMP implementation12
maintains a state for each thread. The state maintained for a thread is an approximation of the13
thread’s instantaneous state.14

342 OpenMP API – Version 5.0 rev 1, November 2016

C / C++

A thread’s state will be one of the values of the enumeration type omp_state_t or an
implementation-defined state value of 512 or higher. Thread states in the enumeration fall into
several classes: work, barrier wait, task wait, mutex wait, target wait, and miscellaneous.

typedef enum omp_state_e {
omp_state_work_serial = 0x000,
omp_state_work_parallel = 0x001,
omp_state_work_reduction = 0x002,

omp_state_wait_barrier = 0x010,
omp_state_wait_barrier_implicit_parallel = 0x011,
omp_state_wait_barrier_implicit_workshare = 0x012,
omp_state_wait_barrier_implicit = 0x013,
omp_state_wait_barrier_explicit = 0x014,

omp_state_wait_taskwait = 0x020,
omp_state_wait_taskgroup = 0x021,

omp_state_wait_mutex = 0x040,
omp_state_wait_lock = 0x041,
omp_state_wait_critical = 0x042,
omp_state_wait_atomic = 0x043,
omp_state_wait_ordered = 0x044,

omp_state_wait_target = 0x080,
omp_state_wait_target_map = 0x081,
omp_state_wait_target_update = 0x082,

omp_state_idle = 0x100,
omp_state_overhead = 0x101,
omp_state_undefined = 0x102

} omp_state_t;

C / C++

A tool can query the OpenMP state of a thread at any time. If a tool queries the state of a thread that1
is not associated with OpenMP, the implementation reports the state as2
omp_state_undefined.3

Some values of the enumeration type omp_state_t are used by all OpenMP implementations,4
e.g., omp_state_work_serial, which indicates that a thread is executing in a serial region,5
and omp_state_work_parallel, which indicates that a thread is executing in a parallel6

CHAPTER 4. TOOL SUPPORT 343

region. Other values of the enumeration type describe a thread’s state at different levels of1
specificity. For instance, an OpenMP implementation may use the state2
omp_state_wait_barrier to represent all waiting at barriers. It may differentiate between3
waiting at implicit or explicit barriers using omp_state_wait_barrier_implicit and4
omp_state_wait_barrier_explicit. To provide full detail about the type of an implicit5
barrier, a runtime may report omp_state_wait_barrier_implicit_parallel or6
omp_state_wait_barrier_implicit_workshare as appropriate.7

For states that represent waiting, an OpenMP implementation has the choice of transitioning a8
thread to such states early or late. For instance, when an OpenMP thread is trying to acquire a lock,9
there are several points at which an OpenMP implementation transition the thread to the10
omp_state_wait_lock state. One implementation may transition the thread to the state early11
before the thread attempts to acquire a lock. Another implementation may transition the thread to12
the state late, only if the thread begins to spin or block to wait for an unavailable lock. A third13
implementation may transition the thread to the state even later, e.g., only after the thread waits for14
a significant amount of time.15

The following sections describe the classes of states and the states in each class.16

4.4.2.1 Work States17

An OpenMP implementation reports a thread in a work state when the thread is performing serial18
work, parallel work, or a reduction.19

omp_state_work_serial20

The thread is executing code outside all parallel regions.21

omp_state_work_parallel22

The thread is executing code within the scope of a parallel region construct.23

omp_state_work_reduction24

The thread is combining partial reduction results from threads in its team. An OpenMP25
implementation might never report a thread in this state; a thread combining partial reduction26
results may have its state reported as omp_state_work_parallel or27
omp_state_overhead.28

4.4.2.2 Barrier Wait States29

An OpenMP implementation reports that a thread is in a barrier wait state when the thread is30
awaiting completion of a barrier.31

344 OpenMP API – Version 5.0 rev 1, November 2016

omp_state_wait_barrier1

The thread is waiting at either an implicit or explicit barrier. A thread may enter this state early,2
when the thread encounters a barrier, or late, when the thread begins to wait at the barrier. An3
implementation may never report a thread in this state; instead, a thread may have its state reported4
as omp_state_wait_barrier_implicit or5
omp_state_wait_barrier_explicit, as appropriate.6

omp_state_wait_barrier_implicit7

The thread is waiting at an implicit barrier in a parallel region. A thread may enter this state early,8
when the thread encounters a barrier, or late, when the thread begins to wait at the barrier. An9
OpenMP implementation may report omp_state_wait_barrier for implicit barriers.10

omp_state_wait_barrier_explicit_parallel11

The description of when a thread reports a state associated with an implicit barrier is described for12
state omp_state_wait_barrier_implicit. An OpenMP implementation may report13
omp_state_wait_barrier_explicit_parallel for an implicit barrier that occurs at14
the end of a parallel region. As explained in Section 4.6.2.12 on page 378, reporting the state15
omp_state_wait_barrier_implicit_parallel permits a weaker contract between a16
runtime and a tool that enables a simpler and faster implementation of parallel regions.17

omp_state_wait_barrier_explicit_workshare18

The description of when a thread reports a state associated with an implicit barrier is described for19
state omp_state_wait_barrier_implicit. An OpenMP implementation may report20
omp_state_wait_barrier_explicit_parallel for an implicit barrier that occurs at21
the end of a worksharing construct.22

omp_state_wait_barrier_explicit23

The thread is waiting at an explicit barrier in a parallel region. A thread may enter this state early,24
when the thread encounters a barrier, or late, when the thread begins to wait at the barrier. An25
implementation may report omp_state_wait_barrier for explicit barriers.26

4.4.2.3 Task Wait States27

omp_state_wait_taskwait28

The thread is waiting at a taskwait construct. A thread may enter this state early, when the thread29
encounters a taskwait construct, or late, when the thread begins to wait for an uncompleted task.30

omp_state_wait_taskgroup31

The thread is waiting at the end of a taskgroup construct. A thread may enter this state early, when32
the thread encounters the end of a taskgroup construct, or late, when the thread begins to wait for33
an uncompleted task.34

CHAPTER 4. TOOL SUPPORT 345

4.4.2.4 Mutex Wait States1

OpenMP provides several mechanisms that enforce mutual exclusion: locks as well as critical,2
atomic, and ordered sections. This grouping contains all states used to indicate that a thread is3
awaiting exclusive access to a lock, critical section, variable, or ordered section.4

An OpenMP implementation may report a thread waiting for any type of mutual exclusion using5
either a state that precisely identifies the type of mutual exclusion, or a more generic state such as6
omp_state_wait_mutex or omp_state_wait_lock. This flexibility may significantly7
simplify the maintenance of states associated with mutual exclusion in the runtime when various8
mechanisms for mutual exclusion rely on a common implementation, e.g., locks.9

omp_state_wait_mutex10

The thread is waiting for a mutex of an unspecified type. A thread may enter this state early, when11
a thread encounters a lock acquisition or a region that requires mutual exclusion, or late, when the12
thread begins to wait.13

omp_state_wait_lock14

The thread is waiting for a lock or nest lock. A thread may enter this state early, when a thread15
encounters a lock set routine, or late, when the thread begins to wait for a lock.16

omp_state_wait_critical17

The thread is waiting to enter a critical region. A thread may enter this state early, when the thread18
encounters a critical construct, or late, when the thread begins to wait to enter the critical region.19

omp_state_wait_atomic20

The thread is waiting to enter an atomic region. A thread may enter this state early, when the21
thread encounters an atomic construct, or late, when the thread begins to wait to enter the atomic22
region. An implementation may opt not to report this state when using atomic hardware23
instructions that support non-blocking atomic implementations.24

omp_state_wait_ordered25

The thread is waiting to enter an ordered region. A thread may enter this state early, when the26
thread encounters an ordered construct, or late, when the thread begins to wait to enter the ordered27
region.28

4.4.2.5 Target Wait States29

omp_state_wait_target30

The thread is waiting for a target region to complete.31

346 OpenMP API – Version 5.0 rev 1, November 2016

omp_state_wait_target_map1

The thread is waiting for a target data mapping operation to complete. An implementation may2
report omp_state_wait_target for target data constructs.3

omp_state_wait_target_update4

The thread is waiting for a target update operation to complete. An implementation may report5
omp_state_wait_target for target update constructs.6

4.4.2.6 Miscellaneous States7

omp_state_idle8

The thread is idle, waiting for work.9

omp_state_overhead10

A thread may be reported as being in the overhead state at any point while executing within an11
OpenMP runtime, except while waiting indefinitely at a synchronization point. An OpenMP12
implementation report a thread’s state as a work state for some or all of the time the thread spends13
in executing in the OpenMP runtime.14

omp_state_undefined15

This state is reserved for threads that are not user threads, initial threads, threads currently in an16
OpenMP team, or threads waiting to become part of an OpenMP team.17

4.4.3 Callbacks18

The following enumeration type indicates the integer codes used to identify OpenMP callbacks19
when registering or querying them.20

CHAPTER 4. TOOL SUPPORT 347

C / C++

typedef enum ompt_callbacks_e {
ompt_callback_thread_begin = 1,
ompt_callback_thread_end = 2,
ompt_callback_parallel_begin = 3,
ompt_callback_parallel_end = 4,
ompt_callback_task_create = 5,
ompt_callback_task_schedule = 6,
ompt_callback_implicit_task = 7,
ompt_callback_target = 8,
ompt_callback_target_data_op = 9,
ompt_callback_target_submit = 10,
ompt_callback_control_tool = 11,
ompt_callback_device_initialize = 12,
ompt_callback_idle = 13,
ompt_callback_sync_region_wait = 14,
ompt_callback_mutex_released = 15,
ompt_callback_task_dependences = 16,
ompt_callback_task_dependence = 17,
ompt_callback_work = 18,
ompt_callback_master = 19,
ompt_callback_target_map = 20,
ompt_callback_sync_region = 21,
ompt_callback_lock_init = 22,
ompt_callback_lock_destroy = 23,
ompt_callback_mutex_acquire = 24,
ompt_callback_mutex_acquired = 25,
ompt_callback_nest_lock = 26,
ompt_callback_flush = 27,
ompt_callback_cancel = 28

} ompt_callbacks_t;

C / C++

348 OpenMP API – Version 5.0 rev 1, November 2016

4.4.4 Frames1

C / C++

typedef struct ompt_frame_s {
void *exit_frame;
void *enter_frame;

} ompt_frame_t;

C / C++

Description2

When executing an OpenMP program, at times, one or more procedure frames associated with the3
OpenMP runtime may appear on a thread’s stack between frames associated with tasks. To help a4
tool determine whether a procedure frame on the call stack belongs to a task or not, for each task5
whose frames appear on the stack, the runtime maintains an ompt_frame_t object that indicates6
a contiguous sequence of procedure frames associated with the task. Each ompt_frame_t object7
is associated with the task to which the procedure frames belong. Each non-merged initial, implicit,8
explicit, or target task with one or more frames on a thread’s stack will have an associated9
ompt_frame_t object.10

An ompt_frame_t object associated with a task contains a pair of pointers: exit_frame and11
enter_frame. The field names were chosen, respectively, to reflect that they typically contain a12
pointer to a procedure frame on the stack when exiting the OpenMP runtime into code for a task or13
entering the OpenMP runtime from a task.14

The exit_frame field of a task’s ompt_frame_t object contains the canonical frame address for15
the procedure frame that transfers control to the structured block for the task. The value of16
exit_frame is NULL until just prior to beginning execution of the structured block for the task. A17
task’s exit_frame may point to a procedure frame that belongs to the OpenMP runtime or one that18
belongs to another task. The exit_frame for the ompt_frame_t object associated with an initial19
task is NULL.20

The enter_frame field of a task’s ompt_frame_t object contains the canonical frame address of a21
task procedure frame that invoked the OpenMP runtime causing the current task to suspend and22
another task to execute. If a task with frames on the stack has not suspended, the value of23
enter_frame for the ompt_frame_t object associated with the task may contain NULL. The value24
of enter_frame in a task’s ompt_frame_t is reset to NULL just before a suspended task resumes25
execution.26

An ompt_frame_t’s lifetime begins when a task is created and ends when the task is destroyed.27
Tools should not assume that a frame structure remains at a constant location in memory28
throughout a task’s lifetime. A pointer to a task’s ompt_frame_t object is passed to some29
callbacks; a pointer to a task’s ompt_frame_t object can also be retrieved by a tool at any time,30

CHAPTER 4. TOOL SUPPORT 349

TABLE 4.4: Meaning of various states of an ompt_frame_t object.

exit_frame /
enter_frame state

enter_frame is NULL enter_frame is non-NULL

exit_frame is
NULL

case 1) initial task during execution
case 2) task that is created but not
yet scheduled or already finished

initial task suspended while another
task executes

exit_frame is
non-NULL

non-initial task that has been
scheduled

non-initial task suspended while
another task executes

including in a signal handler, by invoking the ompt_get_task_info runtime entry point1
(described in Section 4.7.1.13).2

Table 4.4 describes various states in which an ompt_frame_t object may be observed and their3
meaning. In the presence of nested parallelism, a tool may observe a sequence of ompt_frame_t4
objects for a thread. Appendix D illustrates use of ompt_frame_t objects with nested5
parallelism.6

Note – A monitoring tool using asynchronous sampling can observe values of exit_frame and7
enter_frame at inconvenient times. Tools must be prepared to observe and handle8
ompt_frame_t objects observed just prior to when their field values should be set or reset.9

4.4.5 Tracing Support10

4.4.5.1 Record Kind11

C / C++

typedef enum ompt_record_kind_e {
ompt_record_ompt = 1,
ompt_record_native = 2,
ompt_record_invalid = 3

} ompt_record_kind_t;

C / C++

350 OpenMP API – Version 5.0 rev 1, November 2016

4.4.5.2 Native Record Kind1

C / C++

typedef enum ompt_record_native_kind_e {
ompt_record_native_info = 1,
ompt_record_native_event = 2

} ompt_record_native_kind_t;

C / C++

4.4.5.3 Native Record Abstract Type2

C / C++

typedef struct ompt_record_abstract_s {
ompt_record_native_class_t rclass;
const char *type;
ompt_device_time_t start_time;
ompt_device_time_t end_time;
ompt_hwid_t hwid;

} ompt_record_abstract_t;

C / C++

Description3

A ompt_record_abstract_t record contains several pieces of information that a tool can use4
to process a native record that it may not fully understand. The rclass field indicates whether the5
record is informational or represents an event; knowing this can help a tool determine how to6
present the record. The record type field points to a statically-allocated, immutable character string7
that provides a meaningful name that a tool might want to use to describe the event to a user. The8
start_time and end_time fields are used to place an event in time. The times are relative to the9
device clock. If an event has no associated start_time and/or end_time, its value will be10
ompt_time_none. The hardware id field, hwid, is used to indicate the location on the device11
where the event occurred. A hwid may represent a hardware abstraction such as a core or a12
hardware thread id. The meaning of a hwid value for a device is defined by the implementer of the13
software stack for the device. If there is no hardware abstraction associated with the record, the14
value of hwid will be ompt_hwid_none.15

CHAPTER 4. TOOL SUPPORT 351

4.4.5.4 Record Type1

C / C++

typedef struct ompt_record_ompt_s {
ompt_callbacks_t type;
ompt_target_time_t time;
ompt_id_t thread_id;
ompt_id_t target_id;
union {

ompt_record_thread_begin_t thread_begin;
ompt_record_idle_t idle;
ompt_record_parallel_begin_t parallel_begin;
ompt_record_parallel_end_t parallel_end;
ompt_record_task_create_t task_create;
ompt_record_task_dependence_t task_dep;
ompt_record_task_schedule_t task_sched;
ompt_record_implicit_t implicit;
ompt_record_sync_region_t sync_region;
ompt_record_target_t target_record;
ompt_record_target_data_op_t target_data_op;
ompt_record_target_map_t target_map;
ompt_record_target_kernel_t kernel;
ompt_record_lock_init_t lock_init;
ompt_record_lock_destroy_t lock_destroy;
ompt_record_mutex_acquire_t mutex_acquire;
ompt_record_mutex_t mutex;
ompt_record_nest_lock_t nest_lock;
ompt_record_master_t master;
ompt_record_work_t work;
ompt_record_flush_t flush;

} record;
} ompt_record_ompt_t;

C / C++

4.4.6 Miscellaneous Type Definitions2

This section describes miscellaneous types and enumerations used by the tool interface.3

352 OpenMP API – Version 5.0 rev 1, November 2016

4.4.6.1 ompt_callback_t1

Pointers to tool callback functions with many different type signatures are passed to the2
ompt_callback_set runtime entry point and returned by the ompt_callback_get3
runtime entry point. For convenience, these runtime entry points expect all type signatures to be4
cast to a dummy type ompt_callback_t.5

C / C++

typedef void (*ompt_callback_t)(void);

C / C++

4.4.6.2 ompt_id_t6

When tracing asynchronous activity on OpenMP devices, tools need identifiers to correlate target7
regions and operations initiated by the host with associated activities on a target device. In addition,8
tools need identifiers to refer to parallel regions and tasks that execute on a device. OpenMP9
implementations use identifiers of type ompt_id_t type for each of these purposes. The value10
ompt_id_none is reserved to indicate an invalid id.11

C / C++

typedef uint64_t ompt_id_t;
#define ompt_id_none 0

C / C++

Identifiers created on each device must be unique from the time an OpenMP implementation is12
initialized until it is shut down. Specifically, this means that (1) identifiers for each target region13
and target operation instance initiated by the host device must be unique over time on the host, and14
(2) identifiers for parallel and task region instances that execute on a device must be unique over15
time within that device.16

Tools should not assume that ompt_id_t values are small or densely allocated.17

4.4.6.3 ompt_data_t18

Threads, parallel regions, and task regions each have an associated data object of type19
ompt_data_t reserved for use by a tool. When an OpenMP implementation creates a thread or20
an instance of a parallel or task region, it will initialize its associated ompt_data_t object with21
the value ompt_data_none.22

CHAPTER 4. TOOL SUPPORT 353

C / C++

typedef union ompt_data_u {
uint64_t value;
void *ptr;

} ompt_data_t;

const ompt_data_t ompt_data_none = {.value=0};

C / C++

4.4.6.4 ompt_wait_id_t1

Each thread instance maintains a wait identifier of type ompt_wait_id_t. When a task2
executing on a thread is waiting for mutual exclusion, the thread’s wait identifer indicates what the3
thread is awaiting. A wait identifier may represent a critical section name, a lock, a program4
variable accessed in an atomic region, or a synchronization object internal to an OpenMP5
implementation.6

C / C++

typedef uint64_t ompt_wait_id_t;

C / C++

When a thread is not in a wait state, the value of the thread’s wait identifier is undefined.7

4.4.6.5 ompt_device_t8

ompt_device_t is an opaque object representing a device.9

C / C++

typedef void ompt_device_t;

C / C++

354 OpenMP API – Version 5.0 rev 1, November 2016

4.4.6.6 ompt_device_time_t1

ompt_device_time_t is an opaque object representing a raw time value from a device.2
ompt_time_none refers to an uknown or unspecified time.3

C / C++

typedef uint64_t ompt_device_time_t;
#define ompt_time_none 0

C / C++

4.4.6.7 ompt_buffer_t4

ompt_buffer_t is an opaque object handle for a target buffer.5

C / C++

typedef void ompt_buffer_t;

C / C++

4.4.6.8 ompt_buffer_cursor_t6

ompt_buffer_cursor_t is an opaque handle for a position in a target buffer.7

C / C++

typedef uint64_t ompt_buffer_cursor_t;

C / C++

4.4.6.9 ompt_task_dependence_t8

ompt_task_dependence_t is a task dependence.9

CHAPTER 4. TOOL SUPPORT 355

C / C++

typedef struct ompt_task_dependence_s {
void *variable_addr;
unsigned int dependence_flags;

} ompt_task_dependence_t;

C / C++

4.4.6.10 ompt_thread_type_t1

ompt_thread_type_t is an enumeration that defines the valid thread type values.2

C / C++

typedef enum ompt_thread_type_e {
ompt_thread_initial = 1,
ompt_thread_worker = 2,
ompt_thread_other = 3,
ompt_thread_unknown = 4

} ompt_thread_type_t;

C / C++

4.4.6.11 ompt_scope_endpoint_t3

ompt_scope_endpoint_t is an enumeration that defines valid scope endpoint values.4

C / C++

typedef enum ompt_scope_endpoint_e {
ompt_scope_begin = 1,
ompt_scope_end = 2

} ompt_scope_endpoint_t;

C / C++

356 OpenMP API – Version 5.0 rev 1, November 2016

4.4.6.12 ompt_sync_region_kind_t1

ompt_sync_region_kind_t is an enumeration that defines the valid sync region kind values.2

C / C++

typedef enum ompt_sync_region_kind_e {
ompt_sync_region_barrier = 1,
ompt_sync_region_taskwait = 2,
ompt_sync_region_taskgroup = 3

} ompt_sync_region_kind_t;

C / C++

4.4.6.13 ompt_target_data_op_t3

ompt_target_data_op_t is an enumeration that defines the valid target data operation values.4

C / C++

typedef enum ompt_target_data_op_e {
ompt_target_data_alloc = 1,
ompt_target_data_transfer_to_dev = 2,
ompt_target_data_transfer_from_dev = 3,
ompt_target_data_delete = 4

} ompt_target_data_op_t;

C / C++

4.4.6.14 ompt_work_type_t5

ompt_work_type_t is an enumeration that defines the valid work type values.6

CHAPTER 4. TOOL SUPPORT 357

C / C++

typedef enum ompt_work_type_e {
ompt_work_loop = 1,
ompt_work_sections = 2,
ompt_work_single_executor = 3,
ompt_work_single_other = 4,
ompt_work_workshare = 5,
ompt_work_distribute = 6,
ompt_work_taskloop = 7

} ompt_work_type_t;

C / C++

4.4.6.15 ompt_mutex_kind_t1

ompt_mutex_kind_t is an enumeration that defines the valid mutex kind values.2

C / C++

typedef enum ompt_mutex_kind_e {
ompt_mutex = 0x10,
ompt_mutex_lock = 0x11,
ompt_mutex_nest_lock = 0x12,
ompt_mutex_critical = 0x13,
ompt_mutex_atomic = 0x14,
ompt_mutex_ordered = 0x20

} ompt_mutex_kind_t;

C / C++

4.4.6.16 ompt_native_mon_flags_t3

ompt_native_mon_flags_t is an enumeration that defines the valid native monitoring flag4
values.5

358 OpenMP API – Version 5.0 rev 1, November 2016

C / C++

typedef enum ompt_native_mon_flags_e {
ompt_native_data_motion_explicit = 1,
ompt_native_data_motion_implicit = 2,
ompt_native_kernel_invocation = 4,
ompt_native_kernel_execution = 8,
ompt_native_driver = 16,
ompt_native_runtime = 32,
ompt_native_overhead = 64,
ompt_native_idleness = 128

} ompt_native_mon_flags_t;

C / C++

4.4.6.17 ompt_task_type_t1

ompt_task_type_t is an enumeration that defines the valid task type values.2

C / C++

typedef enum ompt_task_type_e {
ompt_task_initial = 1,
ompt_task_implicit = 2,
ompt_task_explicit = 3,
ompt_task_target = 4

} ompt_task_type_t;

C / C++

4.4.6.18 ompt_task_status_t3

ompt_task_status_t is an enumeration that explains the reasons for switching a task that4
reached a task scheduling point.5

CHAPTER 4. TOOL SUPPORT 359

C / C++

typedef enum ompt_task_status_e {
ompt_task_complete = 1,
ompt_task_yield = 2,
ompt_task_cancel = 3,
ompt_task_others = 4

} ompt_task_status_t;

C / C++

The ompt_task_complete indicates the completion of task that encountered the task1
scheduling point. The ompt_task_yield indicates that the task encountered a taskyield2
construct. The ompt_task_cancel indicates that the taks is canceled due to the encountering3
of an active cancellation point resulting in the cancelation of that task. The ompt_task_others4
is used in the remaining cases.5

4.4.6.19 ompt_target_type_t6

ompt_target_type_t is an enumeration that defines the valid target type values.7

C / C++

typedef enum ompt_target_type_e {
ompt_target = 1,
ompt_target_enter_data = 2,
ompt_target_exit_data = 3,
ompt_target_update = 4

} ompt_target_type_t;

C / C++

4.4.6.20 ompt_invoker_t8

ompt_invoker_t is an enumeration that defines the valid invoker values.9

360 OpenMP API – Version 5.0 rev 1, November 2016

C / C++

typedef enum ompt_invoker_e {
ompt_invoker_program = 1, /* program invokes master task */
ompt_invoker_runtime = 2 /* runtime invokes master task */

} ompt_invoker_t;

C / C++

4.4.6.21 ompt_target_map_flag_t1

ompt_target_map_flag_t is an enumeration that defines the valid target map flag values.2

C / C++

typedef enum ompt_target_map_flag_e {
ompt_target_map_flag_to = 1,
ompt_target_map_flag_from = 2,
ompt_target_map_flag_alloc = 4,
ompt_target_map_flag_release = 8,
ompt_target_map_flag_delete = 16

} ompt_target_map_flag_t;

C / C++

4.4.6.22 ompt_task_dependence_flag_t3

ompt_task_dependence_flag_t is an enumeration that defines the valid task dependence4
flag values.5

C / C++

typedef enum ompt_task_dependence_flag_e {
ompt_task_dependence_type_out = 1,
ompt_task_dependence_type_in = 2,
ompt_task_dependence_type_inout = 3

} ompt_task_dependence_flag_t;

C / C++

CHAPTER 4. TOOL SUPPORT 361

4.4.6.23 ompt_cancel_flag_t1

ompt_cancel_flag_t is an enumeration that defines the valid cancel flag values.2

C / C++

typedef enum ompt_cancel_flag_e {
ompt_cancel_parallel = 0x1,
ompt_cancel_sections = 0x2,
ompt_cancel_do = 0x4,
ompt_cancel_taskgroup = 0x8,
ompt_cancel_activated = 0x10,
ompt_cancel_detected = 0x20

} ompt_cancel_flag_t;

C / C++

Cross References3

• ompt_cancel_t data type, see Section 4.6.2.27 on page 395.4

4.4.6.24 ompt_hwid_t5

ompt_hwid_t is an opaque object representing a hardware identifier for a target device.6
ompt_hwid_none refers to an uknown or unspecified hardware id. If there is no hwid associated7
with a ompt_record_abstract_t, the value of hwid shall be ompt_hwid_none.8

C / C++

typedef uint64_t ompt_hwid_t;
#define ompt_hwid_none 0

C / C++

362 OpenMP API – Version 5.0 rev 1, November 2016

4.5 Tool Interface Routine1

4.5.1 ompt_start_tool2

Summary3

If a tool wants to use the OMPT interface provided by an OpenMP implementation, the tool must4
implement ompt_start_tool to announce its interest.5

Format6

C / C++

ompt_fns_t *ompt_start_tool(
unsigned int omp_version,
const char *runtime_version

);

C / C++

Description7

For a tool to use the OMPT interface provided by an OpenMP implementation, the tool must define8
a globally-visible implementation of the function ompt_start_tool.9

A tool may indicate its intent to use the OMPT interface provided by an OpenMP implementation10
by having ompt_start_tool return a non-NULL pointer to an ompt_fns_t structure, which11
contains pointers to a tool’s initializer and finalizer functions.12

A tool may use its argument omp_version to determine whether it is compatible with the OMPT13
interface provided by an OpenMP implementation.14

If a tool implements ompt_start_tool but has no interest in using the OMPT interface in a15
particular execution, ompt_start_tool should return NULL.16

Description of Arguments17

The argument omp_version is the value of the _OPENMP version macro associated with the18
OpenMP API implementation. This value identifies the OpenMP API version supported by an19
OpenMP implementation, which specifies the version of the OMPT interface that it supports.20

The argument runtime_version is a version string that unambiguously identifies the OpenMP21
implementation.22

CHAPTER 4. TOOL SUPPORT 363

Constraints on Arguments1

The argument runtime_version must be an immutable string that is defined for the lifetime of a2
program execution.3

Effect4

If a tool returns a non-NULL pointer, an OpenMP implementation will call the tool initializer5
specified by the finalize field in this structure but before beginning execution of any OpenMP6
construct or completing execution of any environment routine invocation; the OpenMP7
implementation will call the tool finializer when the OpenMP implementation shuts down.8

Cross References9

• ompt_fns_t, see Section 4.4.1 on page 342.10

4.6 Tool Callback Signatures and Trace Records11

Restrictions12

Tool callbacks may not use OpenMP directives or call any runtime library routines described in13
Section 3.14

4.6.1 Initialization and Finalization Callback Signature15

4.6.1.1 ompt_initialize_t16

Summary17

A tool implements an initializer with the type signature ompt_initialize_t to initialize the18
tool’s use of the OMPT interace.19

364 OpenMP API – Version 5.0 rev 1, November 2016

Format1

C / C++

typedef int (*ompt_initialize_t) (
ompt_function_lookup_t lookup,
struct ompt_fns_t *fns

);

C / C++

Description2

For a tool to initialize the OMPT interface of an OpenMP implementation, the tool’s3
implementation of ompt_start_tool must return a pointer to a tool initializer with type4
signature ompt_initialize_t. An OpenMP implementation will call the tool initializer5
returned by ompt_start_tool after fully initializing itself but before beginning execution of6
any OpenMP construct or completing execution of any environment routine invocation.7

The initializer returns a non-zero value if it succeeds.8

Description of Arguments9

The argument lookup is a callback to an OpenMP runtime routine that a tool must use to obtain a10
pointer to each runtime entry point in the OMPT interface. The argument fns is the value returned11
by ompt_start_tool. The actions of a tool initializer are described in Section 4.2.2 on12
page 333.13

Cross References14

• ompt_function_lookup_t, see Section 4.7.3.1 on page 430.15

4.6.1.2 ompt_finalize_t16

Summary17

A tool implements an finalizer with the type signature ompt_finalize_t to finalize the tool’s18
use of the OMPT interface.19

CHAPTER 4. TOOL SUPPORT 365

Format1

C / C++

typedef void (*ompt_finalize_t) (
struct ompt_fns_t *fns

);

C / C++

Description2

The finalizer for an OpenMP implementation is invoked by an OpenMP implementation as it shuts3
down.4

Description of Arguments5

The argument fns is the value returned by ompt_start_tool.6

Cross References7

• ompt_fns_t, see Section 4.4.1 on page 342.8

4.6.2 Event Callback Signatures and Trace Records9

This section describes the signatures of tool callback functions that an OMPT tool might register10
and that are called during runtime of an OpenMP program.11

4.6.2.1 ompt_callback_thread_begin_t12

Format13

C / C++

typedef void (*ompt_callback_thread_begin_t) (
ompt_thread_type_t thread_type,
ompt_data_t *thread_data

);

C / C++

366 OpenMP API – Version 5.0 rev 1, November 2016

Trace Record1

C / C++

typedef struct ompt_record_thread_begin_s {
ompt_thread_type_t thread_type;

} ompt_record_thread_begin_t;

C / C++

Description of Arguments2

The argument thread_type indicates the type of the new thread: initial, worker, or other.3

The binding of argument thread_data is the new thread.4

Cross References5

• ompt_data_t type, see Section 4.4.6.3 on page 353.6

• ompt_thread_type_t type, see Section 4.4.6.10 on page 356.7

4.6.2.2 ompt_callback_thread_end_t8

Format9

C / C++

typedef void (*ompt_callback_thread_end_t) (
ompt_data_t *thread_data

);

C / C++

Description of Arguments10

The binding of argument thread_data is the thread that is terminating.11

Cross References12

• ompt_data_t type, see Section 4.4.6.3 on page 353.13

CHAPTER 4. TOOL SUPPORT 367

4.6.2.3 ompt_callback_idle_t1

Format2

C / C++

typedef void (*ompt_callback_idle_t) (
ompt_scope_endpoint_t endpoint

);

C / C++

Trace Record3

C / C++

typedef struct ompt_record_idle_s {
ompt_scope_endpoint_t endpoint;

} ompt_record_idle_t;

C / C++

Description of Arguments4

The argument endpoint indicates whether the callback is signalling the beginning or end of an idle5
interval.6

Cross References7

• ompt_scope_endpoint_t type, see Section 4.4.6.11 on page 356.8

368 OpenMP API – Version 5.0 rev 1, November 2016

4.6.2.4 ompt_callback_parallel_begin_t1

Format2

C / C++

typedef void (*ompt_callback_parallel_begin_t) (
ompt_data_t *parent_task_data,
const ompt_frame_t *parent_frame,
ompt_data_t *parallel_data,
unsigned int requested_team_size,
unsigned int actual_team_size,
ompt_invoker_t invoker,
const void *codeptr_ra

);

C / C++

Trace Record3

C / C++

typedef struct ompt_record_parallel_begin_s {
ompt_id_t parent_task_id;
ompt_id_t parallel_id;
unsigned int requested_team_size;
ompt_invoker_t invoker;
const void *codeptr_ra;

} ompt_record_parallel_begin_t;

C / C++

Description of Arguments4

The binding of argument parent_task_data is the encountering task.5

The argument parent_frame points to the frame object associated with the encountering task.6

The binding of argument parallel_data is the parallel region that is beginning.7

The argument requested_team_size indicates the number of threads requested by the user.8

The argument actual_team_size indicates the number of threads in the team.9

The argument invoker indicates whether the code for the parallel region is inlined into the10
application or invoked by the runtime.11

CHAPTER 4. TOOL SUPPORT 369

The argument codeptr_ra is used to relate the implementation of an OpenMP region back to its1
source code. In cases where a runtime routine implements the region associated with this callback,2
codeptr_ra is expected to contain the return address of the call to the runtime routine. In cases3
where the implementation of this feature is inlined, codeptr_ra is expected to contain the return4
address of the invocation of this callback. In cases where attribution to source code is impossible or5
inappropriate, codeptr_ra may be NULL.6

Cross References7

• ompt_data_t type, see Section 4.4.6.3 on page 353.8

• ompt_frame_t type, see Section 4.4.4 on page 349.9

• ompt_invoker_t type, see Section 4.4.6.20 on page 360.10

4.6.2.5 ompt_callback_parallel_end_t11

Format12

C / C++

typedef void (*ompt_callback_parallel_end_t) (
ompt_data_t *parallel_data,
ompt_data_t *task_data,
ompt_invoker_t invoker,
const void *codeptr_ra

);

C / C++

Trace Record13

C / C++

typedef struct ompt_record_parallel_end_s {
ompt_id_t parallel_id;
ompt_id_t task_id;
ompt_invoker_t invoker;
const void *codeptr_ra;

} ompt_record_parallel_end_t;

C / C++

370 OpenMP API – Version 5.0 rev 1, November 2016

Description of Arguments1

The binding of argument parallel_data is the parallel region that is ending.2

The binding of argument task_data is the encountering task.3

The argument invoker explains whether the execution of the parallel region code is inlined into the4
application code or started by the runtime.5

The argument codeptr_ra is used to relate the implementation of an OpenMP region back to its6
source code. In cases where a runtime routine implements the region associated with this callback,7
codeptr_ra is expected to contain the return address of the call to the runtime routine. In cases8
where the implementation of this feature is inlined, codeptr_ra is expected to contain the return9
address of the invocation of this callback. In cases where attribution to source code is impossible or10
inappropriate, codeptr_ra may be NULL.11

Cross References12

• ompt_data_t type signature, see Section 4.4.6.3 on page 353.13

• ompt_invoker_t type signature, see Section 4.4.6.20 on page 360.14

4.6.2.6 ompt_callback_master_t15

Format16

C / C++

typedef void (*ompt_callback_master_t) (
ompt_scope_endpoint_t endpoint,
ompt_data_t *parallel_data,
ompt_data_t *task_data,
const void *codeptr_ra

);

C / C++

CHAPTER 4. TOOL SUPPORT 371

Trace Record1

C / C++

typedef struct ompt_record_master_s {
ompt_scope_endpoint_t endpoint;
ompt_id_t parallel_id;
ompt_id_t task_id;
const void *codeptr_ra;

} ompt_record_master_t;

C / C++

Description of Arguments2

The argument endpoint indicates whether the callback is signalling the beginning or the end of a3
scope.4

The binding of argument parallel_data is the current parallel region.5

The binding of argument task_data is the encountering task.6

The argument codeptr_ra is used to relate the implementation of an OpenMP region back to its7
source code. In cases where a runtime routine implements the region associated with this callback,8
codeptr_ra is expected to contain the return address of the call to the runtime routine. In cases9
where the implementation of this feature is inlined, codeptr_ra is expected to contain the return10
address of the invocation of this callback. In cases where attribution to source code is impossible or11
inappropriate, codeptr_ra may be NULL.12

Cross References13

• ompt_data_t type signature, see Section 4.4.6.3 on page 353.14

• ompt_scope_endpoint_t type, see Section 4.4.6.11 on page 356.15

372 OpenMP API – Version 5.0 rev 1, November 2016

4.6.2.7 ompt_callback_task_create_t1

Format2

C / C++

typedef void (*ompt_callback_task_create_t) (
ompt_data_t *parent_task_data,
const ompt_frame_t *parent_frame,
ompt_data_t *new_task_data,
ompt_task_type_t type,
int has_dependences,
const void *codeptr_ra

);

C / C++

Trace Record3

C / C++

typedef struct ompt_record_task_create_s {
ompt_id_t parent_task_id;
ompt_id_t new_task_id;
ompt_task_type_t type;
int has_dependences;
const void *codeptr_ra;

} ompt_record_task_create_t;

C / C++

Description of Arguments4

The binding of argument parent_task_data is the encountering task. This parameter is NULL for an5
initial task.6

The argument parent_frame points to the frame object associated with the encountering task. This7
parameter is NULL for an initial task.8

The binding of argument new_task_data is the created task.9

The argument type indicates the kind of the task: initial, explicit or target.10

The argument has_dependences indicates whether created task has dependences.11

CHAPTER 4. TOOL SUPPORT 373

The argument codeptr_ra is used to relate the implementation of an OpenMP region back to its1
source code. In cases where a runtime routine implements the region associated with this callback,2
codeptr_ra is expected to contain the return address of the call to the runtime routine. In cases3
where the implementation of this feature is inlined, codeptr_ra is expected to contain the return4
address of the invocation of this callback. In cases where attribution to source code is impossible or5
inappropriate, codeptr_ra may be NULL.6

Cross References7

• ompt_data_t type, see Section 4.4.6.3 on page 353.8

• ompt_frame_t type, see Section 4.4.4 on page 349.9

• ompt_task_type_t type, see Section 4.4.6.17 on page 359.10

4.6.2.8 ompt_callback_task_dependences_t11

Format12

C / C++

typedef void (*ompt_callback_task_dependences_t) (
ompt_data_t *task_data,
const ompt_task_dependence_t *deps,
int ndeps

);

C / C++

Description of Arguments13

The binding of argument task_data is the task being created.14

The argument deps lists all dependences of a new task.15

The argument ndeps specifies the length of the list. The memory for deps is owned by the caller;16
the tool cannot rely on the data after the callback returns.17

Cross References18

• ompt_data_t type, see Section 4.4.6.3 on page 353.19

• ompt_task_dependence_t type, see Section 4.4.6.9 on page 355.20

374 OpenMP API – Version 5.0 rev 1, November 2016

4.6.2.9 ompt_callback_task_dependence_t1

Format2

C / C++

typedef void (*ompt_callback_task_dependence_t) (
ompt_data_t *src_task_data,
ompt_data_t *sink_task_data

);

C / C++

Trace Record3

C / C++

typedef struct ompt_record_task_dependence_s {
ompt_id_t src_task_id;
ompt_id_t sink_task_id;

} ompt_record_task_dependence_t;

C / C++

Description of Arguments4

The binding of argument src_task_data is a running task with an outgoing dependence.5

The binding of argument sink_task_data is a task with an unsatisfied incoming dependence.6

Cross References7

• ompt_data_t type signature, see Section 4.4.6.3 on page 353.8

CHAPTER 4. TOOL SUPPORT 375

4.6.2.10 ompt_callback_task_schedule_t1

Format2

C / C++

typedef void (*ompt_callback_task_schedule_t) (
ompt_data_t *prior_task_data,
ompt_task_status_t prior_task_status,
ompt_data_t *next_task_data

);

C / C++

Trace Record3

C / C++

typedef struct ompt_record_task_schedule_s {
ompt_id_t prior_task_id;
ompt_task_status_t prior_task_status,
ompt_id_t next_task_id;

} ompt_record_task_schedule_t;

C / C++

Description of Arguments4

The argument prior_task_status indicates the status of the task that arrived at a task scheduling5
point.6

The binding of argument prior_task_data is the task that arrived at the scheduling point.7

The binding of argument next_task_data is the task that will resume at the scheduling point.8

Cross References9

• ompt_data_t type, see Section 4.4.6.3 on page 353.10

• ompt_task_status_t type, see Section 4.4.6.18 on page 359.11

376 OpenMP API – Version 5.0 rev 1, November 2016

4.6.2.11 ompt_callback_implicit_task_t1

Format2

C / C++

typedef void (*ompt_callback_implicit_task_t) (
ompt_scope_endpoint_t endpoint,
ompt_data_t *parallel_data,
ompt_data_t *task_data,
unsigned int thread_num

);

C / C++

Trace Record3

C / C++

typedef struct ompt_record_implicit_s {
ompt_scope_endpoint_t endpoint;
ompt_id_t parallel_id;
ompt_id_t task_id;
unsigned int thread_num;

} ompt_record_implicit_t;

C / C++

Description of Arguments4

The argument endpoint indicates whether the callback is signalling the beginning or the end of a5
scope.6

The binding of argument parallel_data is the current parallel region.7

The binding of argument task_data is the implicit task executing the parallel region’s structured8
block.9

The argument thread_num indicates the thread number of the calling thread, within the team10
executing the parallel region to which the implicit region binds.11

Cross References12

• ompt_data_t type, see Section 4.4.6.3 on page 353.13

• ompt_scope_endpoint_t enumeration type, see Section 4.4.6.11 on page 356.14

CHAPTER 4. TOOL SUPPORT 377

4.6.2.12 ompt_callback_sync_region_t1

Format2

C / C++

typedef void (*ompt_callback_sync_region_t) (
ompt_sync_region_kind_t kind,
ompt_scope_endpoint_t endpoint,
ompt_data_t *parallel_data,
ompt_data_t *task_data,
const void *codeptr_ra

);

C / C++

Trace Record3

C / C++

typedef struct ompt_record_sync_region_s {
ompt_sync_region_kind_t kind;
ompt_scope_endpoint_t endpoint;
ompt_id_t parallel_id;
ompt_id_t task_id;
const void *codeptr_ra;

} ompt_record_sync_region_t;

C / C++

Description of Arguments4

The argument kind indicates the kind of synchronization region.5

The argument endpoint indicates whether the callback is signalling the beginning or the end of a6
scope.7

The binding of argument parallel_data is the current parallel region.8

The binding of argument task_data is the current task.9

The argument codeptr_ra is used to relate the implementation of an OpenMP region back to its10
source code. In cases where a runtime routine implements the region associated with this callback,11
codeptr_ra is expected to contain the return address of the call to the runtime routine. In cases12
where the implementation of this feature is inlined, codeptr_ra is expected to contain the return13

378 OpenMP API – Version 5.0 rev 1, November 2016

address of the invocation of this callback. In cases where attribution to source code is impossible or1
inappropriate, codeptr_ra may be NULL.2

Cross References3

• ompt_data_t type, see Section 4.4.6.3 on page 353.4

• ompt_sync_region_kind_t type, see Section 4.4.6.12 on page 357.5

• ompt_scope_endpoint_t type, see Section 4.4.6.11 on page 356.6

4.6.2.13 ompt_callback_lock_init_t7

Format8

C / C++

typedef void (*ompt_callback_lock_init_t) (
ompt_mutex_kind_t kind,
unsigned int hint,
unsigned int impl,
ompt_wait_id_t wait_id,
const void *codeptr_ra

);

C / C++

Trace Record9

C / C++

typedef struct ompt_record_lock_init_s {
ompt_mutex_kind_t kind;
unsigned int hint;
unsigned int impl;
ompt_wait_id_t wait_id;
const void *codeptr_ra;

} ompt_record_lock_init_t;

C / C++

CHAPTER 4. TOOL SUPPORT 379

Description of Arguments1

The argument kind indicates the kind of the lock.2

The argument hint indicates the hint provided when initializing an implementation of mutual3
exclusion.4

The argument impl indicates the mechanism chosen by the runtime to implement the mutual5
exclusion.6

The argument wait_id indicates the object being awaited.7

The argument codeptr_ra is used to relate the implementation of an OpenMP region back to its8
source code. In cases where a runtime routine implements the region associated with this callback,9
codeptr_ra is expected to contain the return address of the call to the runtime routine. In cases10
where the implementation of this feature is inlined, codeptr_ra is expected to contain the return11
address of the invocation of this callback. In cases where attribution to source code is impossible or12
inappropriate, codeptr_ra may be NULL.13

Cross References14

• ompt_wait_id_t type, see Section 4.4.6.4 on page 354.15

4.6.2.14 ompt_callback_lock_destroy_t16

Format17

C / C++

typedef void (*ompt_callback_lock_destroy_t) (
ompt_mutex_kind_t kind,
ompt_wait_id_t wait_id,
const void *codeptr_ra

);

C / C++

380 OpenMP API – Version 5.0 rev 1, November 2016

Trace Record1

C / C++

typedef struct ompt_record_lock_destroy_s {
ompt_mutex_kind_t kind;
ompt_wait_id_t wait_id;
const void *codeptr_ra;

} ompt_record_lock_destroy_t;

C / C++

Description of Arguments2

The argument kind indicates the kind of the lock.3

The argument wait_id identifies the lock.4

The argument codeptr_ra is used to relate the implementation of an OpenMP region back to its5
source code. In cases where a runtime routine implements the region associated with this callback,6
codeptr_ra is expected to contain the return address of the call to the runtime routine. In cases7
where the implementation of this feature is inlined, codeptr_ra is expected to contain the return8
address of the invocation of this callback. In cases where attribution to source code is impossible or9
inappropriate, codeptr_ra may be NULL.10

Cross References11

• ompt_wait_id_t type, see Section 4.4.6.4 on page 354.12

4.6.2.15 ompt_callback_mutex_acquire_t13

Format14

C / C++

typedef void (*ompt_callback_mutex_acquire_t) (
ompt_mutex_kind_t kind,
unsigned int hint,
unsigned int impl,
ompt_wait_id_t wait_id,
const void *codeptr_ra

);

C / C++

CHAPTER 4. TOOL SUPPORT 381

Trace Record1

C / C++

typedef struct ompt_record_mutex_acquire_s {
ompt_mutex_kind_t kind;
unsigned int hint;
unsigned int impl;
ompt_wait_id_t wait_id;
const void *codeptr_ra;

} ompt_record_mutex_acquire_t;

C / C++

Description of Arguments2

The argument kind indicates the kind of the lock.3

The argument hint indicates the hint provided when initializing an implementation of mutual4
exclusion. If no hint is available when a thread initiates acquisition of mutual exclusion, the runtime5
may supply omp_lock_hint_none as the value for hint.6

The argument impl indicates the mechanism chosen by the runtime to implement the mutual7
exclusion.8

The argument wait_id indicates the object being awaited.9

The argument codeptr_ra is used to relate the implementation of an OpenMP region back to its10
source code. In cases where a runtime routine implements the region associated with this callback,11
codeptr_ra is expected to contain the return address of the call to the runtime routine. In cases12
where the implementation of this feature is inlined, codeptr_ra is expected to contain the return13
address of the invocation of this callback. In cases where attribution to source code is impossible or14
inappropriate, codeptr_ra may be NULL.15

Cross References16

• ompt_wait_id_t type, see Section 4.4.6.4 on page 354.17

• ompt_mutex_kind_t type, see Section 4.4.6.15 on page 358.18

382 OpenMP API – Version 5.0 rev 1, November 2016

4.6.2.16 ompt_callback_mutex_t1

Format2

C / C++

typedef void (*ompt_callback_mutex_t) (
ompt_mutex_kind_t kind,
ompt_wait_id_t wait_id,
const void *codeptr_ra

);

C / C++

Trace Record3

C / C++

typedef struct ompt_record_mutex_s {
ompt_mutex_kind_t kind;
ompt_wait_id_t wait_id;
const void *codeptr_ra;

} ompt_record_mutex_t;

C / C++

Description of Arguments4

The argument kind indicates the kind of mutual exclusion event.5

The argument wait_id indicates the object being awaited.6

The argument codeptr_ra is used to relate the implementation of an OpenMP region back to its7
source code. In cases where a runtime routine implements the region associated with this callback,8
codeptr_ra is expected to contain the return address of the call to the runtime routine. In cases9
where the implementation of this feature is inlined, codeptr_ra is expected to contain the return10
address of the invocation of this callback. In cases where attribution to source code is impossible or11
inappropriate, codeptr_ra may be NULL.12

Cross References13

• ompt_wait_id_t type signature, see Section 4.4.6.4 on page 354.14

• ompt_mutex_kind_t type signature, see Section 4.4.6.15 on page 358.15

CHAPTER 4. TOOL SUPPORT 383

4.6.2.17 ompt_callback_nest_lock_t1

Format2

C / C++

typedef void (*ompt_callback_nest_lock_t) (
ompt_scope_endpoint_t endpoint,
ompt_wait_id_t wait_id,
const void *codeptr_ra

);

C / C++

Trace Record3

C / C++

typedef struct ompt_record_nest_lock_s {
ompt_scope_endpoint_t endpoint;
ompt_wait_id_t wait_id;
const void *codeptr_ra;

} ompt_record_nest_lock_t;

C / C++

Description of Arguments4

The argument endpoint indicates whether the callback is signalling the beginning or the end of a5
scope.6

The argument wait_id indicates the object being awaited.7

The argument codeptr_ra is used to relate the implementation of an OpenMP region back to its8
source code. In cases where a runtime routine implements the region associated with this callback,9
codeptr_ra is expected to contain the return address of the call to the runtime routine. In cases10
where the implementation of this feature is inlined, codeptr_ra is expected to contain the return11
address of the invocation of this callback. In cases where attribution to source code is impossible or12
inappropriate, codeptr_ra may be NULL.13

Cross References14

• ompt_wait_id_t type signature, see Section 4.4.6.4 on page 354.15

• ompt_scope_endpoint_t type signature, see Section 4.4.6.11 on page 356.16

384 OpenMP API – Version 5.0 rev 1, November 2016

4.6.2.18 ompt_callback_work_t1

Format2

C / C++

typedef void (*ompt_callback_work_t) (
ompt_work_type_t wstype,
ompt_scope_endpoint_t endpoint,
ompt_data_t *parallel_data,
ompt_data_t *task_data,
uint64_t count,
const void *codeptr_ra

);

C / C++

Trace Record3

C / C++

typedef struct ompt_record_work_s {
ompt_work_type_t wstype;
ompt_scope_endpoint_t endpoint;
ompt_id_t parallel_id;
ompt_id_t task_id;
uint64_t count;
const void *codeptr_ra;

} ompt_record_work_t;

C / C++

Description of Arguments4

The argument wstype indicates the kind of worksharing region.5

The argument endpoint indicates whether the callback is signalling the beginning or the end of a6
scope.7

The binding of argument parallel_data is the current parallel region.8

The binding of argument task_data is the current task.9

The argument count is a measure of the quantity of work involved in the worksharing construct. For10
a loop construct, count represents the number of iterations of the loop. For a taskloop construct,11
count represents the number of iterations in the iteration space, which may be the result of12

CHAPTER 4. TOOL SUPPORT 385

collapsing several associated loops. For a sections construct, count represents the number of1
sections. For a workshare construct, count represents the units of work, as defined by the2
workshare construct. For a single construct, count is always 1.3

The argument codeptr_ra is used to relate the implementation of an OpenMP region back to its4
source code. In cases where a runtime routine implements the region associated with this callback,5
codeptr_ra is expected to contain the return address of the call to the runtime routine. In cases6
where the implementation of this feature is inlined, codeptr_ra is expected to contain the return7
address of the invocation of this callback. In cases where attribution to source code is impossible or8
inappropriate, codeptr_ra may be NULL.9

Cross References10

• worksharing constructs, see Section 2.7 on page 61.11

• ompt_data_t type signature, see Section 4.4.6.3 on page 353.12

• ompt_scope_endpoint_t type signature, see Section 4.4.6.11 on page 356.13

• ompt_work_type_t type signature, see Section 4.4.6.14 on page 357.14

4.6.2.19 ompt_callback_flush_t15

Format16

C / C++

typedef void (*ompt_callback_flush_t) (
ompt_data_t *thread_data,
const void *codeptr_ra

);

C / C++

Trace Record17

C / C++

typedef struct ompt_record_flush_s {
void *codeptr_ra;

} ompt_record_flush_t;

C / C++

386 OpenMP API – Version 5.0 rev 1, November 2016

Description of Arguments1

The argument codeptr_ra is used to relate the implementation of an OpenMP region back to its2
source code. In cases where a runtime routine implements the region associated with this callback,3
codeptr_ra is expected to contain the return address of the call to the runtime routine. In cases4
where the implementation of this feature is inlined, codeptr_ra is expected to contain the return5
address of the invocation of this callback. In cases where attribution to source code is impossible or6
inappropriate, codeptr_ra may be NULL.7

Cross References8

• ompt_data_t type signature, see Section 4.4.6.3 on page 353.9

4.6.2.20 ompt_callback_target_t10

Format11

C / C++

typedef void (*ompt_callback_target_t) (
ompt_target_type_t kind,
ompt_scope_endpoint_t endpoint,
int device_id,
ompt_data_t *task_data,
ompt_id_t target_id,
const void *codeptr_ra

);

C / C++

Trace Record12

C / C++

typedef struct ompt_record_target_s {
ompt_target_type_t kind;
ompt_scope_endpoint_t endpoint;
int device_id;
ompt_data_t *task_data;
ompt_id_t target_id;
const void *codeptr_ra;

} ompt_record_target_t;

C / C++

CHAPTER 4. TOOL SUPPORT 387

Description of Arguments1

The argument kind indicates the kind of target region.2

The argument endpoint indicates whether the callback is signalling the beginning or the end of a3
scope.4

The argument device_id indicates the id of the device which will execute the target region.5

The binding of argument task_data is the target task.6

The binding of argument target_id is the target region.7

The argument codeptr_ra is used to relate the implementation of an OpenMP region back to its8
source code. In cases where a runtime routine implements the region associated with this callback,9
codeptr_ra is expected to contain the return address of the call to the runtime routine. In cases10
where the implementation of this feature is inlined, codeptr_ra is expected to contain the return11
address of the invocation of this callback. In cases where attribution to source code is impossible or12
inappropriate, codeptr_ra may be NULL.13

Cross References14

• ompt_id_t type, see Section 4.4.6.2 on page 353.15

• ompt_data_t type signature, see Section 4.4.6.3 on page 353.16

• ompt_scope_endpoint_t type signature, see Section 4.4.6.11 on page 356.17

• ompt_target_type_t type signature, see Section 4.4.6.19 on page 360.18

4.6.2.21 ompt_callback_target_data_op_t19

Format20

C / C++

typedef void (*ompt_callback_target_data_op_t) (
ompt_id_t target_id,
ompt_id_t host_op_id,
ompt_target_data_op_t optype,
void *host_addr,
void *device_addr,
size_t bytes

);

C / C++

388 OpenMP API – Version 5.0 rev 1, November 2016

Trace Record1

C / C++

typedef struct ompt_record_target_data_op_s {
ompt_id_t host_op_id;
ompt_target_data_op_t optype;
void *host_addr;
void *device_addr;
size_t bytes;
ompt_device_time_t end_time;

} ompt_record_target_data_op_t;

C / C++

Description of Arguments2

The argument host_op_id is a unique identifer for a data operations on a target device.3

The argument optype indicates the kind of data mapping.4

The argument host_addr indicates the address of data on host side.5

The argument device_addr indicates the address of data on device side.6

The argument bytes indicates the size of data.7

Cross References8

• ompt_id_t type, see Section 4.4.6.2 on page 353.9

• ompt_target_data_op_t type signature, see Section 4.4.6.13 on page 357.10

CHAPTER 4. TOOL SUPPORT 389

4.6.2.22 ompt_callback_target_map_t1

Format2

C / C++

typedef void (*ompt_callback_target_map_t) (
ompt_id_t target_id,
unsigned int nitems,
void **host_addr,
void **device_addr,
size_t *bytes,
unsigned int *mapping_flags

);

C / C++

Trace Record3

C / C++

typedef struct ompt_record_target_map_s {
ompt_id_t target_id;
unsigned int nitems;
void **host_addr;
void **device_addr;
size_t *bytes;
unsigned int *mapping_flags;

} ompt_record_target_map_t;

C / C++

Description of Arguments4

The binding of argument target_id is the target region.5

The argument nitems indicates the number of data mappings.6

The argument host_addr indicates an array of addresses of data on host side.7

The argument device_addr indicates an array of addresses of data on device side.8

The argument bytes indicates an array of size of data.9

The argument mapping_flags indicates the kind of data mapping.10

390 OpenMP API – Version 5.0 rev 1, November 2016

Cross References1

• ompt_id_t type, see Section 4.4.6.2 on page 353.2

4.6.2.23 ompt_callback_target_submit_t3

Format4

C / C++

typedef void (*ompt_callback_target_submit_t) (
ompt_id_t target_id,
ompt_id_t host_op_id

);

C / C++

Description5

This callback is invoked when a target task creates an initial task on a target device.6

Description of Arguments7

The argument target_id is a unique identifier for the associated target region.8

The argument host_op_id is a unique identifer for the initial task on the target device.9

Constraints on Arguments10

The argument target_id indicates the instance of the target construct to which the computation11
belongs.12

The argument host_op_id provides a unique host-side identifier that represents the computation on13
the device.14

CHAPTER 4. TOOL SUPPORT 391

Trace Record1

C / C++

typedef struct ompt_record_target_kernel_s {
ompt_id_t host_op_id;
unsigned int requested_num_teams;
unsigned int granted_num_teams;
ompt_device_time_t end_time;

} ompt_record_target_kernel_t;

C / C++

Cross References2

• ompt_id_t type, see Section 4.4.6.2 on page 353.3

4.6.2.24 ompt_callback_buffer_request_t4

Summary5

The OpenMP runtime will invoke a callback with type signature6
ompt_callback_buffer_request_t to request a buffer to store event records for a device.7

Format8

C / C++

typedef void (*ompt_callback_buffer_request_t) (
int device_id,
ompt_buffer_t **buffer,
size_t *bytes

);

C / C++

Description9

The callback requests a buffer to store trace records for the specified device.10

A buffer request callback may set *bytes to 0 if it does not want to provide a buffer for any reason.11
If a callback sets *bytes to 0, further recording of events for the device will be disabled until the12

392 OpenMP API – Version 5.0 rev 1, November 2016

next invocation of ompt_start_trace. This will cause the device to drop future trace records1
until recording is restarted.2

The buffer request callback is not required to be async signal safe.3

Description of Arguments4

The argument device_id specifies the device.5

A tool should set *buffer to point to a buffer where device events may be recorded and *bytes to the6
length of that buffer.7

Cross References8

• ompt_buffer_t type, see Section 4.4.6.7 on page 355.9

4.6.2.25 ompt_callback_buffer_complete_t10

Summary11

A device triggers a call to ompt_callback_buffer_complete_t when no further records12
will be recorded in an event buffer and all records written to the buffer are valid.13

Format14

C / C++

typedef void (*ompt_callback_buffer_complete_t) (
int device_id,
const ompt_buffer_t *buf,
size_t bytes,
ompt_buffer_cursor_t begin,
int buffer_owned

);

C / C++

CHAPTER 4. TOOL SUPPORT 393

Description1

The callback provides a tool with a buffer containing trace records for the specified device.2
Typically, a tool will iterate through the records in the buffer and process them.3

The OpenMP implementation will make these callbacks on a thread that is not an OpenMP master4
or worker.5

The callee may delete the buffer if the argument buffer_owned=0.6

The buffer completion callback is not required to be async signal safe.7

Description of Arguments8

The argument device_id indicates the device whose events the buffer contains.9

The argument buffer is the address of a buffer previously allocated by a buffer request callback.10

The argument bytes indicates the full size of the buffer.11

The argument begin is an opaque cursor that indicates the position at the beginning of the first12
record in the buffer.13

The argument buffer_owned is 1 if the data pointed to by buffer can be deleted by the callback and14
0 otherwise. If multiple devices accumulate trace events into a single buffer, this callback might be15
invoked with a pointer to one or more trace records in a shared buffer with buffer_owned = 0. In16
this case, the callback may not delete the buffer.17

Cross References18

• ompt_buffer_t type, see Section 4.4.6.7 on page 355.19

• ompt_buffer_cursor_t type, see Section 4.4.6.8 on page 355.20

4.6.2.26 ompt_callback_control_tool_t21

Format22

C / C++

typedef int (*ompt_callback_control_tool_t) (
uint64_t command,
uint64_t modifier,
void *arg

);

C / C++

394 OpenMP API – Version 5.0 rev 1, November 2016

Description1

The tool control callback may return any non-negative value, which will be returned to the2
application by the OpenMP implementation as the return value of the omp_control_tool call3
that triggered the callback.4

Description of Arguments5

The argument command passes a command from an application to a tool. Standard values for6
command are defined by omp_control_tool_t. defined in Section 3.6 on page 327.7

The argument modifier passes a command modifier from an application to a tool.8

The callback allows tool-specific values for command and modifier. Tools must ignore command9
values that they are not explicitly designed to handle.10

The argument arg is a void pointer that enables a tool and an application to pass arbitrary state back11
and forth. The argument arg may be NULL.12

Constraints on Arguments13

Tool-specific values for command must be ≥ 64.14

Cross References15

• omp_control_tool_t enumeration type, see Section 3.6 on page 327.16

4.6.2.27 ompt_callback_cancel_t17

Format18

C / C++

typedef void (*ompt_callback_cancel_t) (
ompt_data_t *task_data,
int flags,
const void *codeptr_ra
);

C / C++

CHAPTER 4. TOOL SUPPORT 395

Description of Arguments1

The argument task_data corresponds to the task encountering a cancel construct, a2
cancellation point construct, or a construct defined as having an implicit cancellation3
point.4

The argument flags, defined by the enumeration ompt_cancel_flag_t, indicates whether the5
cancel is activated by the current task, or detected as being activated by another task. The construct6
being canceled is also described in the flags. When several constructs are detected as being7
concurrently canceled, each corresponding bit in the flags will be set.8

The argument codeptr_ra is used to relate the implementation of an OpenMP region back to its9
source code. In cases where a runtime routine implements the region associated with this callback,10
codeptr_ra is expected to contain the return address of the call to the runtime routine. In cases11
where the implementation of this feature is inlined, codeptr_ra is expected to contain the return12
address of the invocation of this callback. In cases where attribution to source code is impossible or13
inappropriate, codeptr_ra may be NULL.14

Cross References15

• omp_cancel_flag_t enumeration type, see Section 4.4.6.23 on page 362.16

4.6.2.28 ompt_callback_device_initialize_t17

Summary18

The tool callback with type signature ompt_callback_device_initialize_t initializes a19
tool’s tracing interface for a device.20

Format21

C / C++

typedef void (*ompt_callback_device_initialize_t) (
int device_id,
const char *type,
ompt_device_t *device,
ompt_function_lookup_t *lookup,
const char *documentation

);

C / C++

396 OpenMP API – Version 5.0 rev 1, November 2016

Description1

A tool that wants to asynchronously collect a trace of activities on a device should register a2
callback with type signature ompt_callback_device_initialize_t for the3
ompt_callback_device_initialize OpenMP event. An OpenMP implementation will4
invoke this callback for a device after OpenMP is initialized for the device but before beginning5
execution of any OpenMP construct on the device.6

Description of Arguments7

The argument device_id identifies the logical device being initialized.8

The argument type is a character string indicating the type of the device. A device type string is a9
semicolon separated character string that includes at a minimum the vendor and model name of the10
device. This may be followed by a semicolon-separated sequence of properties that describe a11
device’s hardware or software.12

The argument device is a pointer to an opaque object that represents the target device instance. The13
pointer to the device instance object is used by functions in the device tracing interface to identify14
the device being addressed.15

The argument lookup is a pointer to a runtime callback that a tool must use to obtain pointers to16
runtime entry points in the device’s OMPT tracing interface. If a device does not support tracing, it17
should provide NULL for lookup.18

The argument documentation is a string that describes how to use any device-specific runtime entry19
points that can be obtained using lookup. This documentation string could simply be a pointer to20
external documentation, or it could be inline descriptions that includes names and type signatures21
for any device-specific interfaces that are available through lookup along with descriptions of how22
to use these interface functions to control monitoring and analysis of device traces.23

Constraints on Arguments24

The arguments type and documentation must be immutable strings that are defined for the lifetime25
of a program execution.26

Effect27

A tool’s device initializer has several duties. First, it should use type to determine whether the tool28
has any special knowledge about a device’s hardware and/or software. Second, it should use lookup29
to look up pointers to runtime entry points in the OMPT tracing interface for the device. Finally,30
using these runtime entry points, it can then set up tracing for a device.31

Initializing tracing for a target device is described in section Section 4.2.4 on page 338.32

CHAPTER 4. TOOL SUPPORT 397

Cross References1

• ompt_function_lookup_t, see Section 4.7.3.1 on page 430.2

4.7 Runtime Entry Points for Tools3

The OMPT interface supports two principal sets of runtime entry points for tools. One set of4
runtime entry points enables a tool to register callbacks for OpenMP events and to inspect the state5
of an OpenMP thread while executing in a tool callback or a signal handler. The second set of6
runtime entry points enables a tool to trace activities on a device. When directed by the tracing7
interface, an OpenMP implementation will trace activities on a device, collect buffers full of trace8
records, and invoke callbacks on the host to process these records. Runtime entry points for tools in9
an OpenMP implementation should not be global symbols since tools cannot rely on the visibility10
of such symbols in general.11

In addition, the OMPT interface supports runtime entry points for two classes of lookup routines.12
The first class of lookup routines contains a single member: a routine that returns runtime entry13
points in the OMPT callback interface. The second class of lookup routines includes a unique14
lookup routine for each kind of device that can return runtime entry points in a device’s OMPT15
tracing interface.16

4.7.1 Entry Points in the OMPT Callback Interface17

Entry points in the OMPT callback interface enable a tool to register callbacks for OpenMP events18
and to inspect the state of an OpenMP thread while executing in a tool callback or a signal handler.19
A tool obtains pointers to these runtime entry points using the lookup function passed to the tool’s20
initializer for the callback interface.21

4.7.1.1 ompt_enumerate_states_t22

Summary23

A runtime entry point known as ompt_enumerate_states with type signature24
ompt_enumerate_states_t enumerates the thread states supported by an OpenMP25
implementation.26

398 OpenMP API – Version 5.0 rev 1, November 2016

Format1

C / C++

typedef int (*ompt_enumerate_states_t)(
int current_state,
int *next_state,
const char **next_state_name

);

C / C++

Description2

An OpenMP implementation may support only a subset of the states defined by the3
omp_states_t enumeration type. In addition, an OpenMP implementation may support4
implementation-specific states. The ompt_enumerate_states runtime entry point enables a5
tool to enumerate the thread states supported by an OpenMP implementation.6

When a thread state supported by an OpenMP implementation is passed as the first argument to the7
runtime entry point, the runtime entry point will assign the next thread state in the enumeration to8
the variable passed by reference as the runtime entry point’s second argument and assign the name9
associated with the next thread state to the character pointer passed by reference as the third10
argument.11

Whenever one or more states are left in the enumeration, the enumerate states runtime entry point12
will return 1. When the last state in the enumeration is passed as the first argument, the runtime13
entry point will return 0 indicating that the enumeration is complete.14

Description of Arguments15

The argument current_state must be a thread state supported by the OpenMP implementation. To16
begin enumerating the states that an OpenMP implementation supports, a tool should pass17
omp_state_undefined as current_state. Subsequent invocations of the runtime entry point by18
the tool should pass the value assigned to the variable passed by reference as the second argument19
to the previous call.20

The argument next_state is a pointer to an integer where the entry point will return the value of the21
next state in the enumeration.22

The argument next_state_name is a pointer to a character string pointer, where the entry point will23
return a string describing the next state.24

CHAPTER 4. TOOL SUPPORT 399

Constraints on Arguments1

Any string returned through the argument next_state_name must be immutable and defined for the2
lifetime of a program execution.3

Note – The following example illustrates how a tool can enumerate all states supported by an4
OpenMP implementation. The example assumes that a function pointer to enumerate the thread5
states supported by an OpenMP implementation has previously been assigned to6
ompt_enumerate_states_fn.7

C / C++

int state = omp_state_undefined;
const char *state_name;
while (ompt_enumerate_states_fn(state, &state, &state_name)) {

// note that the runtime supports a state value "state"
// associated with the name "state_name"

}

C / C++

Cross References8

• omp_state_t, see Section 4.4.2 on page 342.9

4.7.1.2 ompt_enumerate_mutex_impls_t10

Summary11

A runtime entry point known as ompt_enumerate_mutex_impls with type signature12
ompt_enumerate_mutex_impls_t enumerates the kinds of mutual exclusion13
implementations that an OpenMP implementation employs.14

400 OpenMP API – Version 5.0 rev 1, November 2016

Format1

C / C++

typedef int (*ompt_enumerate_mutex_impls_t)(
int current_impl,
int *next_impl,
const char **next_impl_name

);

#define ompt_mutex_impl_unknown 0

C / C++

Description2

An OpenMP implementation may implement mutual exclusion for locks, nest locks, critical3
sections, and atomic regions in several different ways. The ompt_enumerate_mutex_impls4
runtime entry point enables a tool to enumerate the kinds of mutual exclusion implementations that5
an OpenMP implementation employs. The value ompt_mutex_impl_unknown is reserved to6
indicate an invalid implementation.7

When a mutex kind supported by an OpenMP implementation is passed as the first argument to the8
runtime entry point, the runtime entry point will assign the next mutex kind in the enumeration to9
the variable passed by reference as the runtime entry point’s second argument and assign the name10
associated with the next mutex kind to the character pointer passed by reference as the third11
argument.12

Whenever one or more mutex kinds are left in the enumeration, the runtime entry point to13
enumerate mutex implementations will return 1. When the last mutex kind in the enumeration is14
passed as the first argument, the runtime entry point will return 0 indicating that the enumeration is15
complete.16

Description of Arguments17

The argument current_impl must be a mutex implementation kind supported by an OpenMP18
implementation. To begin enumerating the mutex implementation kinds that an OpenMP19
implementation supports, a tool should pass ompt_mutex_impl_unknown as the first20
argument of the enumerate mutex kinds runtime entry point. Subsequent invocations of the runtime21
entry point by the tool should pass the value assigned to the variable passed by reference as the22
second argument to the previous call.23

The argument next_impl is a pointer to an integer where the entry point will return the value of the24
next mutex implementation in the enumeration.25

CHAPTER 4. TOOL SUPPORT 401

The argument next_impl_name is a pointer to a character string pointer, where the entry point will1
return a string describing the next mutex implementation.2

Constraints on Arguments3

Any string returned through the argument next_impl_name must be immutable and defined for the4
lifetime of a program execution.5

Note – The following example illustrates how a tool can enumerate all types of mutex6
implementations supported by an OpenMP runtime. The example assumes that a function pointer7
to enumerate the mutex implementations supported by an OpenMP runtime has previously been8
assigned to ompt_enumerate_mutex_impls_fn.9

C / C++

int kind = ompt_mutex_impl_unknown;
const char *impl_name;
while (ompt_enumerate_mutex_impls_fn(impl, &impl, &impl_name)) {

// note that the runtime supports a mutex value "impl"
// associated with the name "impl_name"

}

C / C++

4.7.1.3 ompt_callback_set_t10

Summary11

A runtime entry point known as ompt_callback_set with type signature12
ompt_callback_set_t registers a pointer to a tool callback that an OpenMP implementation13
will invoke when a host OpenMP event occurs.14

402 OpenMP API – Version 5.0 rev 1, November 2016

Format1

C / C++

typedef int (*ompt_callback_set_t)(
ompt_callbacks_t which,
ompt_callback_t callback

);

C / C++

Description2

OpenMP implementations can inform tools about events that occur during the execution of an3
OpenMP program using callbacks. To register a tool callback for an OpenMP event on the current4
device, a tool uses the runtime entry point known as ompt_callback_set with type signature5
ompt_callback_set_t.6

The return value of the ompt_callback_set runtime entry point may indicate several possible7
outcomes. Callback registration may fail if it is called outside the initializer for the callback8
interface, returning omp_set_error. Otherwise, the return value of ompt_callback_set9
indicates whether dispatching a callback leads to its invocation. A return value of10
ompt_set_never indicates that the callback will never be invoked at runtime. A return value of11
ompt_set_sometimes indicates that the callback will be invoked at runtime for an12
implementation-defined subset of associated event occurrences. A return value of13
ompt_set_sometimes_paired is similar to ompt_set_sometimes, but provides an14
additional guarantee for callbacks with an endpoint parameter. Namely, it guarantees that a callback15
with an endpoint value of ompt_scope_begin is invoked if and only if the same callback with16
endpoint value of ompt_scope_end will also be invoked sometime in the future. A return value17
of ompt_set_always indicates that the callback will be always invoked at runtime for18
associated event occurrences.19

Description of Arguments20

The argument which indicates the callback being registered.21

The argument callback is a tool callback function.22

A tool may pass a NULL value for callback to disable any callback associated with which. If23
disabling was successful, ompt_set_always is returned.24

Constraints on Arguments25

When a tool registers a callback for an event, the type signature for the callback must match the26
type signature appropriate for the event.27

CHAPTER 4. TOOL SUPPORT 403

TABLE 4.5: Return codes for ompt_callback_set and ompt_set_trace_ompt.

typedef enum ompt_set_result_e {
ompt_set_error = 0,
ompt_set_none = 1,
ompt_set_sometimes = 2,
ompt_set_sometimes_paired = 3,
ompt_set_always = 4

} ompt_set_result_t;

Cross References1

• ompt_callbacks_t enumeration type, see Section 4.4.3 on page 347.2

• ompt_callback_t type, see Section 4.4.6.1 on page 353.3

• ompt_callback_get_t host callback type signature, see Section 4.7.1.4 on page 404.4

4.7.1.4 ompt_callback_get_t5

Summary6

A runtime entry point known as ompt_callback_get with type signature7
ompt_callback_get_t retrieves a pointer to a tool callback routine (if any) that an OpenMP8
implementation will invoke when an OpenMP event occurs.9

Format10

C / C++

typedef int (*ompt_callback_get_t)(
ompt_callbacks_t which,
ompt_callback_t *callback

);

C / C++

404 OpenMP API – Version 5.0 rev 1, November 2016

Description1

A tool uses the runtime entry point known as ompt_callback_get with type signature2
ompt_callback_get_t to obtain a pointer to the tool callback that an OpenMP3
implementation will invoke when a host OpenMP event occurs. If a non-NULL tool callback is4
registered for the specified event, the pointer to the tool callback will be assigned to the variable5
passed by reference as the second argument and the entry point will return 1; otherwise, it will6
return 0. If the entry point returns 0, the value of the variable passed by reference as the second7
argument is undefined.8

Description of Arguments9

The argument which indicates the callback being inspected.10

The argument callback is a pointer to a return value that will be assigned the value of the callback11
being inspected.12

Constraints on Arguments13

The second argument passed to the entry point must be a reference to a variable of specified type.14

Cross References15

• ompt_callbacks_t enumeration type, see Section 4.4.3 on page 347.16

• ompt_callback_t type, see Section 4.4.6.1 on page 353.17

• ompt_callback_set_t type signature, see Section 4.7.1.3 on page 402.18

4.7.1.5 ompt_get_thread_data_t19

Summary20

A runtime entry point known as ompt_get_thread_data with type signature21
ompt_get_thread_data_t returns the address of the thread data object for the current thread.22

Format23

C / C++

typedef ompt_data_t *(*ompt_get_thread_data_t)(void);

C / C++

CHAPTER 4. TOOL SUPPORT 405

Description1

Each OpenMP thread has an associated thread data object of type ompt_data_t. A tool uses the2
runtime entry point known as ompt_get_thread_data with type signature3
ompt_get_thread_data_t to obtain a pointer to the thread data object, if any, associated4
with the current thread. If the current thread is unknown to the OpenMP runtime, the entry point5
returns NULL.6

A tool may use a pointer to an OpenMP thread’s data object obtained from this runtime entry point7
to inspect or modify the value of the data object. When an OpenMP thread is created, its data8
object will be initialized with value ompt_data_none.9

This runtime entry point is async signal safe.10

Cross References11

• ompt_data_t type, see Section 4.4.6.3 on page 353.12

4.7.1.6 ompt_get_num_places_t13

Summary14

A runtime entry point known as ompt_get_num_places with type signature15
ompt_get_num_places_t returns the number of places available to the execution16
environment in the place list.17

Format18

C / C++

typedef int (*ompt_get_num_places_t)(void);

C / C++

Binding19

The binding thread set for the region of the runtime entry point known as20
ompt_get_num_places is all threads on a device. The effect of executing this routine is not21
related to any specific region corresponding to any construct or API routine.22

406 OpenMP API – Version 5.0 rev 1, November 2016

Description1

The runtime entry point known as ompt_get_num_places returns the number of places in the2
place list. This value is equivalent to the number of places in the place-partition-var ICV in the3
execution environment of the initial task.4

This runtime entry point is async signal safe.5

Cross References6

• place-partition-var ICV, see Section 2.3 on page 39.7

• OMP_PLACES environment variable, see Section 5.5 on page 437.8

4.7.1.7 ompt_get_place_proc_ids_t9

Summary10

A runtime entry point known as ompt_get_place_proc_ids with type signature11
ompt_get_place_proc_ids_t returns the numerical identifiers of the processors available12
to the execution environment in the specified place.13

Format14

C / C++

typedef int (*ompt_get_place_proc_ids_t)(
int place_num,
int ids_size,
int *ids

);

C / C++

Binding15

The binding thread set for the region of the runtime entry point known as16
ompt_get_place_proc_ids is all threads on a device. The effect of executing this routine is17
not related to any specific region corresponding to any construct or API routine.18

CHAPTER 4. TOOL SUPPORT 407

Description1

The runtime entry point known as ompt_get_place_proc_ids with type signature2
ompt_get_place_proc_ids_t returns the numerical identifiers of each processor associated3
with the specified place. The numerical identifiers returned are non-negative, and their meaning is4
implementation defined.5

Description of Arguments6

The argument place_num specifies the place being queried.7

The argument ids_size indicates the size of the result array specified by argument ids.8

The argument ids is an array where the routine can return a vector of processor identifiers in the9
specified place.10

Effect11

If the array ids of size ids_size is large enough to contain all identifiers, they are returned in ids and12
their order in the array is implementation defined.13

Otherwise, if the ids array is too small, the values in ids are unchanged.14

In both cases, the routine returns the number of numerical identifiers available to the execution15
environment in the specified place.16

4.7.1.8 ompt_get_place_num_t17

Summary18

A runtime entry point known as ompt_get_place_num with type signature19
ompt_get_place_num_t returns the place number of the place to which the encountering20
thread is bound.21

Format22

C / C++

typedef int (*ompt_get_place_num_t)(void);

C / C++

408 OpenMP API – Version 5.0 rev 1, November 2016

Binding1

The binding thread set for the region of the runtime entry point known as2
ompt_get_place_num is the encountering thread.3

Description4

When the encountering thread is bound to a place, the runtime entry point known as5
ompt_get_place_num returns the place number associated with the thread. The returned value6
is between 0 and one less than the value returned by runtime entry point known as7
ompt_get_num_places, inclusive. When the encountering thread is not bound to a place, the8
routine returns -1.9

This runtime entry point is async signal safe.10

4.7.1.9 ompt_get_partition_place_nums_t11

Summary12

A runtime entry point known as ompt_get_partition_place_nums with type signature13
ompt_get_partition_place_nums_t returns the list of place numbers corresponding to14
the places in the place-partition-var ICV of the innermost implicit task.15

Format16

C / C++

typedef int (*ompt_get_partition_place_nums_t)(
int place_nums_size,
int *place_nums

);

C / C++

Binding17

The binding task set for the region of the runtime entry point known as18
ompt_get_partition_place_nums is the encountering implicit task.19

CHAPTER 4. TOOL SUPPORT 409

Description1

The runtime entry point known as ompt_get_partition_place_nums with type signature2
ompt_get_partition_place_nums_t returns the list of place numbers corresponding to3
the places in the place-partition-var ICV of the innermost implicit task.4

This runtime entry point is async signal safe.5

Description of Arguments6

The argument place_nums_size indicates the size of the result array specified by argument7
place_nums.8

The argument place_nums is an array where the routine can return a vector of place identifiers.9

Effect10

If the array place_nums of size place_nums_size is large enough to contain all identifiers, they are11
returned in place_nums and their order in the array is implementation defined.12

In both cases, the routine returns the number of places in the place-partition-var ICV of the13
innermost implicit task.14

Cross References15

• place-partition-var ICV, see Section 2.3 on page 39.16

• OMP_PLACES environment variable, see Section 5.5 on page 437.17

4.7.1.10 ompt_get_proc_id_t18

Summary19

A runtime entry point known as ompt_get_proc_id with type signature20
ompt_get_proc_id_t returns the numerical identifier of the processor of the encountering21
thread.22

Format23

C / C++

typedef int (*ompt_get_proc_id_t)(void);

C / C++

410 OpenMP API – Version 5.0 rev 1, November 2016

Binding1

The binding thread set for the region of the runtime entry point known as ompt_get_proc_id2
is the encountering thread.3

Description4

The runtime entry point known as ompt_get_proc_id returns the numerical identifier of the5
processor of the encountering thread. The numerical identifier is non-negative, and its meaning is6
implementation defined.7

This runtime entry point is async signal safe.8

4.7.1.11 ompt_get_state_t9

Summary10

A runtime entry point known as ompt_get_state with type signature ompt_get_state_t11
returns the state and the wait identifier of the current thread.12

Format13

C / C++

typedef omp_state_t (*ompt_get_state_t)(
ompt_wait_id_t *wait_id

);

C / C++

Description14

Each OpenMP thread has an associated state and a wait identifier. If a thread’s state indicates that15
the thread is waiting for mutual exclusion, the thread’s wait identifier will contain an opaque handle16
that indicates the data object upon which the thread is waiting.17

To retrieve the state and wait identifier for the current thread, a tool uses the runtime entry point18
known as ompt_get_state with type signature ompt_get_state_t.19

If the returned state indicates that the thread is waiting for a lock, nest lock, critical section, atomic20
region, or ordered region the value of the thread’s wait identifier will be assigned to a non-NULL21
wait identifier passed as an argument.22

This runtime entry point is async signal safe.23

CHAPTER 4. TOOL SUPPORT 411

Description of Arguments1

The argument wait_id is a pointer to an opaque handle available to receive the value of the thread’s2
wait identifier. If the wait_id pointer is not NULL, the entry point will assign the value of the3
thread’s wait identifier *wait_id. If the returned state is not one of the specified wait states, the4
value of *wait_id is undefined after the call.5

Constraints on Arguments6

The argument passed to the entry point must be a reference to a variable of the specified type or7
NULL.8

Cross References9

• ompt_wait_id_t type, see Section 4.4.6.4 on page 354.10

4.7.1.12 ompt_get_parallel_info_t11

Summary12

A runtime entry point known as ompt_get_parallel_info with type signature13
ompt_get_parallel_info_t returns information about the parallel region, if any, at the14
specified ancestor level for the current execution context.15

Format16

C / C++

typedef int (*ompt_get_parallel_info_t)(
int ancestor_level,
ompt_data_t **parallel_data,
int *team_size

);

C / C++

412 OpenMP API – Version 5.0 rev 1, November 2016

Description1

During execution, an OpenMP program may employ nested parallel regions. To obtain information2
about a parallel region, a tool uses the runtime entry point known as3
ompt_get_parallel_info with type signature ompt_get_parallel_info_t. This4
runtime entry point can be used to obtain information about the current parallel region, if any, and5
any enclosing parallel regions for the current execution context.6

The entry point returns 1 if there is a parallel region at the specified ancestor level and 0 otherwise.7

A tool may use the pointer to a parallel region’s data object that it obtains from this runtime entry8
point to inspect or modify the value of the data object. When a parallel region is created, its data9
object will be initialized with the value ompt_data_none.10

This runtime entry point is async signal safe.11

Description of Arguments12

The argument ancestor_level specifies the parallel region of interest to a tool by its ancestor level.13
Ancestor level 0 refers to the innermost parallel region; information about enclosing parallel14
regions may be obtained using larger ancestor levels.15

If a parallel region exists at the specified ancestor level, information will be returned in the16
variables parallel_data and team_size passed by reference to the entry point. Specifically, a17
reference to the parallel region’s associated data object will be assigned to *parallel_data and the18
number of threads in the parallel region’s team will be assigned to *team_size.19

If no enclosing parallel region exists at the specified ancestor level, the values of variables passed20
by reference *parallel_data and *team_size will be undefined when the entry point returns.21

Constraints on Arguments22

While argument ancestor_level is passed by value, all other arguments to the entry point must be23
references to variables of the specified types.24

Restrictions25

If a thread is in the state omp_state_wait_barrier_implicit_parallel, a call to26
ompt_get_parallel_info may return a pointer to a copy of the specified parallel region’s27
parallel_data rather than a pointer to the data word for the region itself. This convention enables28
the master thread for a parallel region to free storage for the region immediately after the region29
ends, yet avoid having some other thread in the region’s team potentially reference the region’s30
parallel_data object after it has been freed.31

Cross References32

• ompt_data_t type, see Section 4.4.6.3 on page 353.33

CHAPTER 4. TOOL SUPPORT 413

4.7.1.13 ompt_get_task_info_t1

Summary2

A runtime entry point known as ompt_get_task_info with type signature3
ompt_get_task_info_t provides information about the task, if any, at the specified ancestor4
level in the current execution context.5

Format6

C / C++

typedef int (*ompt_get_task_info_t)(
int ancestor_level,
ompt_task_type_t *type,
ompt_data_t **task_data,
ompt_frame_t **task_frame,
ompt_data_t **parallel_data,
int *thread_num

);

C / C++

Description7

During execution, an OpenMP thread may be executing an OpenMP task. Additionally, the thread’s8
stack may contain procedure frames associated with suspended OpenMP tasks or OpenMP runtime9
system routines. To obtain information about any task on the current thread’s stack, a tool uses the10
runtime entry point known as ompt_get_task_info with type signature11
ompt_get_task_info_t.12

Ancestor level 0 refers to the active task; information about other tasks with associated frames13
present on the stack in the current execution context may be queried at higher ancestor levels. The14
ompt_get_task_info runtime entry point returns 1 if there is a task region at the specified15
ancestor level and 0 otherwise.16

If a task exists at the specified ancestor level, information will be returned in the variables passed by17
reference to the entry point. If no task region exists at the specified ancestor level, the values of18
variables passed by reference to the entry point will be undefined when the entry point returns.19

A tool may use a pointer to a data object for a task or parallel region that it obtains from this20
runtime entry point to inspect or modify the value of the data object. When either a parallel region21
or a task region is created, its data object will be initialized with the value ompt_data_none.22

This runtime entry point is async signal safe.23

414 OpenMP API – Version 5.0 rev 1, November 2016

Description of Arguments1

The argument ancestor_level specifies the task region of interest to a tool by its ancestor level.2
Ancestor level 0 refers to the active task; information about ancestor tasks found in the current3
execution context may be queried at higher ancestor levels.4

The argument type is pointer to a task type return value or a NULL if no task type return value is5
required.6

The argument task_data is a pointer to a task data pointer return value or a NULL if no task data7
pointer return value is required.8

The argument task_frame is a pointer to a task frame pointer return value or a NULL if no task9
frame pointer return value is required.10

The argument parallel_data is a pointer to a parallel data pointer return value or a NULL if no11
parallel data pointer return value is required.12

The argument thread_num is a pointer to a return value for a thread number or a NULL if no thread13
number return value is required.14

Effect15

If the runtime entry point returns 0, no return values will be set. Otherwise, the entry point has the16
effects described below.17

If a non-NULL value was passed for type, the value returned in *type represents the type of the task18
at the specified level. Task types that a tool may observe on a thread’s stack include initial, implicit,19
explicit, and target tasks.20

If a non-NULL value was passed for task_data, the value returned in *task_data is a pointer to a21
data word associated with the task at the specified level.22

If a non-NULL value was passed for task_frame, the value returned in *task_frame is a pointer to23
the ompt_frame_t structure associated with the task at the specified level. Appendix D24
discusses an example that illustrates the use of ompt_frame_t structures with multiple threads25
and nested parallelism.26

If a non-NULL value was passed for parallel_data, the value returned in *parallel_data is a pointer27
to a data word associated with the parallel region containing the task at the specified level. If the28
task at the specified level is an initial task, the value of *parallel_data will be NULL.29

If a non-NULL value was passed for thread_num, the value returned in *thread_num indicates the30
number of the thread in the parallel region executing the task.31

Cross References32

• ompt_data_t type, see Section 4.4.6.3 on page 353.33

CHAPTER 4. TOOL SUPPORT 415

• ompt_frame_t type, see Section 4.4.4 on page 349.1

• ompt_task_type_t type, see Section 4.4.6.17 on page 359.2

4.7.1.14 ompt_get_target_info_t3

Summary4

A runtime entry point known as ompt_get_target_info with type signature5
ompt_get_target_info_t returns identifiers that specify a thread’s current target region and6
target operation id, if any.7

Format8

C / C++

typedef int (*ompt_get_target_info_t)(
int *device_id,
ompt_id_t *target_id,
ompt_id_t *host_op_id

);

C / C++

Description9

A tool can query whether an OpenMP thread is in a target region by invoking the entry point known10
as ompt_get_target_info with type signature ompt_get_target_info_t. This11
runtime entry point returns 1 if the invoking thread is in a target region and 0 otherwise. If the entry12
point returns 0, the values of the variables passed by reference as its arguments are undefined.13

If the invoking thread is in a target region, the entry point will return information about the current14
device, active target region, and active host operation, if any.15

This runtime entry point is async signal safe.16

Description of Arguments17

The argument device_id is a pointer to a return value for the current device. If the host is in a18
target region, the target device will be returned in *device_id.19

The argument target_id is a pointer to a return value for the target region identifier. If the host is in20
a target region, the target region identifier will be returned in *target_id.21

416 OpenMP API – Version 5.0 rev 1, November 2016

The argument host_op_id is a pointer to a return value for an identifer for an operation being1
initiated on a target device. If the invoking thread is in the process of initiating an operation on a2
target device (e.g., copying data to or from an accelerator or launching a kernel) the identifier for3
the operation being initiated will be returned in *host_op_id; otherwise, *host_op_id. will be set to4
ompt_id_none.5

Constraints on Arguments6

Arguments passed to the entry point must be valid references to variables of the specified types.7

Cross References8

• ompt_id_t type, see Section 4.4.6.2 on page 353.9

4.7.1.15 ompt_get_num_devices_t10

Summary11

A runtime entry point known as ompt_get_num_devices with type signature12
ompt_get_num_devices_t returns the number of available devices.13

Format14

C / C++

typedef int (*ompt_get_num_devices_t)(void);

C / C++

Description15

An OpenMP program may execute on one or more devices. A tool may determine the number of16
devices available to an OpenMP program by invoking a runtime entry point known as17
ompt_get_num_devices with type signature ompt_get_num_devices_t.18

This runtime entry point is async signal safe.19

CHAPTER 4. TOOL SUPPORT 417

4.7.2 Entry Points in the OMPT Device Tracing Interface1

4.7.2.1 ompt_get_device_time_t2

Summary3

A runtime entry point for a device known as ompt_get_device_time with type signature4
ompt_get_device_time_t returns the current time on the specified device.5

Format6

C / C++

typedef ompt_device_time_t (*ompt_get_device_time_t)(
ompt_device_t *device

);

C / C++

Description7

Host and target devices are typically distinct and run independently. If host and target devices are8
different hardware components, they may use different clock generators. For this reason, there may9
be no common time base for ordering host-side and device-side events.10

A runtime entry point for a device known as ompt_get_device_time with type signature11
ompt_get_device_time_t returns the current time on the specified device. A tool can use12
this information to align time stamps from different devices.13

Description of Arguments14

The argument device is a pointer to an opaque object that represents the target device instance. The15
pointer to the device instance object is used by functions in the device tracing interface to identify16
the device being addressed.17

Cross References18

• ompt_device_t, see Section 4.4.6.5 on page 354.19

• ompt_device_time_t, see Section 4.4.6.6 on page 355.20

418 OpenMP API – Version 5.0 rev 1, November 2016

4.7.2.2 ompt_translate_time_t1

Summary2

A runtime entry point for a device known as ompt_translate_time with type signature3
ompt_translate_time_t translates a time value obtained from the specified device to a4
corresponding time value on the host device.5

Format6

C / C++

typedef double (*ompt_translate_time_t)(
ompt_device_t *device,
ompt_device_time_t time

);

C / C++

Description7

A runtime entry point for a device known as ompt_translate_time with type signature8
ompt_translate_time_t translates a time value obtained from the specified device to a9
corresponding time value on the host device. The returned value for the host time has the same10
meaning as the value returned from omp_get_wtime.11

Note – The accuracy of time translations may degrade if they are not performed promptly after a12
device time value is received if either the host or device vary their clock speeds. Prompt translation13
of device times to host times is recommended.14

Description of Arguments15

The argument device is a pointer to an opaque object that represents the target device instance. The16
pointer to the device instance object is used by functions in the device tracing interface to identify17
the device being addressed.18

The argument time is a time from the specified device.19

Cross References20

• ompt_device_t, see Section 4.4.6.5 on page 354.21

• ompt_device_time_t, see Section 4.4.6.6 on page 355.22

CHAPTER 4. TOOL SUPPORT 419

4.7.2.3 ompt_set_trace_ompt_t1

Summary2

A runtime entry point for a device known as ompt_set_trace_ompt with type signature3
ompt_set_trace_ompt_t enables or disables the recording of trace records for one or more4
types of OMPT events.5

Format6

C / C++

typedef int (*ompt_set_trace_ompt_t)(
ompt_device_t *device,
unsigned int enable,
unsigned int etype

);

C / C++

Description of Arguments7

The argument device is a pointer to an opaque object that represents the target device instance. The8
pointer to the device instance object is used by functions in the device tracing interface to identify9
the device being addressed.10

The argument enable indicates whether tracing should be enabled or disabled for the event or11
events specified by argument etype. A positive value for enable indicates that recording of one or12
more events specified by etype should be enabled; a value of 0 for enable indicates that recording of13
events should be disabled by this invocation.14

An argument etype value 0 indicates that traces for all event types will be enabled or disabled.15
Passing a positive value for etype inidicates that recording should be enabled or disabled for the16
event in ompt_callbacks_t that matches etype.17

Effect18

Table 4.6 shows the possible return codes for ompt_set_trace_ompt. If a single invocation of19
ompt_set_trace_ompt is used to enable or disable more than one event (i.e., etype=0), the20
return code will be 3 if tracing is possible for one or more events but not for others.21

Cross References22

• ompt_callbacks_t, see Section 4.4.3 on page 347.23

• ompt_device_t, see Section 4.4.6.5 on page 354.24

420 OpenMP API – Version 5.0 rev 1, November 2016

TABLE 4.6: Meaning of return codes for ompt_trace_set_ompt and
ompt_set_trace_native.

return code meaning

0 error

1 event will never occur

2 event may occur but no tracing is possible

3 event may occur and will be traced when convenient

4 event may occur and will always be traced if event occurs

4.7.2.4 ompt_set_trace_native_t1

Summary2

A runtime entry point for a device known as ompt_set_trace_native with type signature3
ompt_set_trace_native_t enables or disables the recording of native trace records for a4
device.5

Format6

C / C++

typedef int (*ompt_set_trace_native_t)(
ompt_device_t *device,
int enable,
int flags

);

C / C++

Description7

This interface is designed for use by a tool with no knowledge about an attached device. If a tool8
knows how to program a particular attached device, it may opt to invoke native control functions9
directly using pointers obtained through the lookup function associated with the device and10
described in the documentation string that is provided to the device initializer callback.11

CHAPTER 4. TOOL SUPPORT 421

Description of Arguments1

The argument device is a pointer to an opaque object that represents the target device instance. The2
pointer to the device instance object is used by functions in the device tracing interface to identify3
the device being addressed.4

The argument enable indicates whether recording of events should be enabled or disabled by this5
invocation.6

The argument flags specifies the kinds of native device monitoring to enable or disable. Each kind7
of monitoring is specified by a flag bit. Flags can be composed by using logical or to combine8
enumeration values from type ompt_native_mon_flags_t. Table 4.6 shows the possible9
return codes for ompt_set_trace_native. If a single invocation of10
ompt_set_trace_ompt is used to enable/disable more than one kind of monitoring, the return11
code will be 3 if tracing is possible for one or more kinds of monitoring but not for others.12

To start, pause, or stop tracing for a specific target device associated with the handle device, a tool13
calls the functions ompt_start_trace, ompt_pause_trace, or ompt_stop_trace.14

Cross References15

• ompt_device_t, see Section 4.4.6.5 on page 354.16

4.7.2.5 ompt_start_trace_t17

Summary18

A runtime entry point for a device known as ompt_start_trace with type signature19
ompt_start_trace_t starts tracing of activity on a specific device.20

Format21

C / C++

typedef int (*ompt_start_trace_t)(
ompt_device_t *device,
ompt_callback_buffer_request_t request,
ompt_callback_buffer_complete_t complete,
ompt_callback_get_target_info_t get_info

);

C / C++

422 OpenMP API – Version 5.0 rev 1, November 2016

Description1

This runtime entry point enables tracing on a device. It provides tool callbacks that the device uses2
to request a buffer from a tool for recording events and a second calback that the device uses to3
return a buffer containing events to the tool.4

Under normal operating conditions, every event buffer provided to a device by the tool will be5
returned to the tool before the OpenMP runtime shuts down. If an exceptional condition terminates6
execution of an OpenMP program, the OpenMP runtime may not return buffers provided to the7
device.8

Description of Arguments9

The argument device is a pointer to an opaque object that represents the target device instance. The10
pointer to the device instance object is used by functions in the device tracing interface to identify11
the device being addressed.12

The argument buffer request specifies a tool callback that will supply a device with a buffer to13
deposit events.14

The argument buffer complete specifies a tool callback that will be invoked by the OpenMP15
implmementation to empty a buffer containing event records.16

The argument get_info is a function that a device can use to map device activity back to identifiers17
that indicate where the activity was initiated by the host.18

Cross References19

• ompt_device_t, see Section 4.4.6.5 on page 354.20

• ompt_callback_buffer_request_t, see Section 4.6.2.24 on page 392.21

• ompt_callback_buffer_complete_t, see Section 4.6.2.25 on page 393.22

4.7.2.6 ompt_pause_trace_t23

Summary24

A runtime entry point for a device known as ompt_pause_trace with type signature25
ompt_pause_trace_t pauses or restarts activity tracing on a specific device.26

CHAPTER 4. TOOL SUPPORT 423

C / C++

typedef int (*ompt_pause_trace_t)(
ompt_device_t *device,
int begin_pause

);

C / C++

Description1

A tool may pause or resume tracing on a device by invoking the device’s ompt_pause_trace2
runtime entry point.3

Description of Arguments4

The argument device is a pointer to an opaque object that represents the target device instance. The5
pointer to the device instance object is used by functions in the device tracing interface to identify6
the device being addressed.7

The argument begin_pause indicates whether to pause or resume tracing. To resume tracing, zero8
should be supplied for begin_pause. The entry point will return 0 if the request fails, e.g., if tracing9
for a device has not been started, and return a non-zero return code otherwise. Redundant pause or10
resume commands are idempotent and will return a non-zero value indicating success.11

Cross References12

• ompt_device_t, see Section 4.4.6.5 on page 354.13

4.7.2.7 ompt_stop_trace_t14

Summary15

A runtime entry point for a device known as ompt_stop_trace with type signature16
ompt_stop_trace_t stops tracing for a device.17

C / C++

typedef int (*ompt_stop_trace_t)(
ompt_device_t *device

);

C / C++

424 OpenMP API – Version 5.0 rev 1, November 2016

Description1

Each invocation returns 1 if the command succeeded and 0 otherwise. A call to2
ompt_stop_trace also implicitly requests that the device flush any buffers that it owns.3

Description of Arguments4

The argument device is a pointer to an opaque object that represents the target device instance. The5
pointer to the device instance object is used by functions in the device tracing interface to identify6
the device being addressed.7

Cross References8

• ompt_device_t, see Section 4.4.6.5 on page 354.9

4.7.2.8 ompt_advance_buffer_cursor_t10

Summary11

A runtime entry point for a device known as ompt_advance_buffer_cursor with type12
signature ompt_advance_buffer_cursor_t advances a trace buffer cursor to the next13
record.14

Format15

C / C++

typedef int (*ompt_advance_buffer_cursor_t)(
ompt_buffer_t *buffer,
size_t size,
ompt_buffer_cursor_t current,
ompt_buffer_cursor_t *next

);

C / C++

Description16

It returns true if the advance is successful and the next position in the buffer is valid.17

CHAPTER 4. TOOL SUPPORT 425

Description of Arguments1

The argument device is a pointer to an opaque object that represents the target device instance. The2
pointer to the device instance object is used by functions in the device tracing interface to identify3
the device being addressed.4

The argument buffer indicates a trace buffer associated with the cursors.5

The argument size indicates the size of buffer in bytes.6

The argument current is an opaque buffer cursor.7

The argument next is a pointer to a return value for the next value of a opaque buffer cursor.8

Cross References9

• ompt_device_t, see Section 4.4.6.5 on page 354.10

• ompt_buffer_cursor_t, see Section 4.4.6.8 on page 355.11

4.7.2.9 ompt_get_record_type_t12

Summary13

A runtime entry point for a device known as ompt_get_record_type with type signature14
ompt_get_record_type_t inspects the type of a trace record for a device.15

Format16

C / C++

typedef ompt_record_type_t (*ompt_get_record_type_t)(
ompt_buffer_t *buffer,
ompt_buffer_cursor_t current

);

C / C++

426 OpenMP API – Version 5.0 rev 1, November 2016

Description1

Trace records for a device may be in one of two forms: a native record format, which may be2
device-specific, or an OMPT record format, where each trace record corresponds to an OpenMP3
event and fields in the record structure are mostly the arguments that would be passed to the OMPT4
callback for the event.5

A runtime entry point for a device known as ompt_get_record_type with type signature6
ompt_get_record_type_t inspects the type of a trace record and indicates whether the7
record at the current position in the provided trace buffer is an OMPT record, a native record, or an8
invalid record. An invalid record type is returned if the cursor is out of bounds.9

Description of Arguments10

The argument buffer indicates a trace buffer.11

The argument current is an opaque buffer cursor.12

Cross References13

• ompt_buffer_t, see Section 4.4.6.7 on page 355.14

• ompt_buffer_cursor_t, see Section 4.4.6.8 on page 355.15

4.7.2.10 ompt_get_record_ompt_t16

Summary17

A runtime entry point for a device known as ompt_get_record_ompt with type signature18
ompt_get_record_ompt_t obtains a pointer to an OMPT trace record from a trace buffer19
associated with a device.20

Format21

C / C++

typedef ompt_record_ompt_t *(*ompt_get_record_ompt_t)(
ompt_buffer_t *buffer,
ompt_buffer_cursor_t current

);

C / C++

CHAPTER 4. TOOL SUPPORT 427

Description1

This function returns a pointer that may point to a record in the trace buffer, or it may point to a2
record in thread local storage where the information extracted from a record was assembled. The3
information available for an event depends upon its type.4

The return value of type ompt_record_ompt_t defines a union type that can represent5
information for any OMPT event record type. Another call to the runtime entry point may6
overwrite the contents of the fields in a record returned by a prior invocation.7

Description of Arguments8

The argument buffer indicates a trace buffer.9

The argument current is an opaque buffer cursor.10

Cross References11

• ompt_record_ompt_t, see Section 4.4.5.4 on page 352.12

• ompt_device_t, see Section 4.4.6.5 on page 354.13

• ompt_buffer_cursor_t, see Section 4.4.6.8 on page 355.14

4.7.2.11 ompt_get_record_native_t15

Summary16

A runtime entry point for a device known as ompt_get_record_native with type signature17
ompt_get_record_native_t obtains a pointer to a native trace record from a trace buffer18
associated with a device.19

Format20

C / C++

typedef void *(ompt_get_record_native_t)(
ompt_buffer_t *buffer,
ompt_buffer_cursor_t current,
ompt_id_t *host_op_id

);

C / C++

428 OpenMP API – Version 5.0 rev 1, November 2016

Description1

The pointer returned may point into the specified trace buffer, or into thread local storage where the2
information extracted from a trace record was assembled. The information available for a native3
event depends upon its type. If the function returns a non-NULL result, it will also set4
*host_op_id to identify host-side identifier for the operation associated with the record. A5
subsequent call to ompt_get_record_native may overwrite the contents of the fields in a6
record returned by a prior invocation.7

Description of Arguments8

The argument buffer indicates a trace buffer.9

The argument current is an opaque buffer cursor.10

The argument host_op_id is a pointer to an identifier that will be returned by the function. The11
entry point will set *host_op_id to the value of a host-side identifier for an operation on a target12
device that was created when the operation was initiated by the host.13

Cross References14

• ompt_id_t, see Section 4.4.6.2 on page 353.15

• ompt_buffer_t, see Section 4.4.6.7 on page 355.16

• ompt_buffer_cursor_t, see Section 4.4.6.8 on page 355.17

4.7.2.12 ompt_get_record_abstract_t18

Summary19

A runtime entry point for a device known as ompt_get_record_abstract with type20
signature ompt_get_record_abstract_t summarizes the context of a native21
(device-specific) trace record.22

Format23

C / C++

typedef ompt_record_abstract_t *
(*ompt_get_record_abstract_t)(
void *native_record

);

C / C++

CHAPTER 4. TOOL SUPPORT 429

Description1

An OpenMP implementation may execute on a device that logs trace records in a native2
(device-specific) format unknown to a tool. A tool can use the ompt_get_record_abstract3
runtime entry point for the device with type signature ompt_get_record_abstract_t to4
decode a native trace record that it does not understand into a standard form that it can interpret.5

Description of Arguments6

The argument native_record is a pointer to a native trace record.7

Cross References8

• ompt_record_abstract_t, see Section 4.4.5.3 on page 351.9

4.7.3 Lookup Entry Point10

4.7.3.1 ompt_function_lookup_t11

Summary12

A tool uses a lookup routine with type signature ompt_function_lookup_t to obtain13
pointers to runtime entry points that are part of the OMPT interface.14

Format15

C / C++

typedef ompt_interface_fn_t (*ompt_function_lookup_t) (
const char *interface_function_name

);

C / C++

430 OpenMP API – Version 5.0 rev 1, November 2016

Description1

An OpenMP implementation provides a pointer to a lookup routine as an argument to tool callbacks2
used to initialize tool support for monitoring an OpenMP device using either tracing or callbacks.3

When an OpenMP implementation invokes a tool initializer to configure the OMPT callback4
interface, the OpenMP implementation will pass the initializer a lookup function that the tool can5
use to obtain pointers to runtime entry points that implement routines that are part of the OMPT6
callback interface.7

When an OpenMP implementation invokes a tool initializer to configure the OMPT tracing8
interface for a device, the Open implementation will pass the device tracing initializer a lookup9
function that the tool can use to obtain pointers to runtime entry points that implement tracing10
control routines appropriate for that device.11

A tool can call the lookup function to obtain a pointer to a runtime entry point.12

Description of Arguments13

The argument interface_function_name is a C string that represents the name of a runtime entry14
point.15

Cross References16

• Entry points in the OMPT callback interface, see Table 4.1 on page 336 for a list and17
Section 4.7.1 on page 398 for detailed definitions.18

• Tool initializer for a device’s OMPT tracing interface, Section 4.2.4 on page 338.19

• Entry points in the OMPT tracing interface, see Table 4.3 on page 339 for a list and Section 4.7.220
on page 418 for detailed definitions.21

• Tool initializer for the OMPT callback interface, Section 4.6.1.1 on page 36422

CHAPTER 4. TOOL SUPPORT 431

CHAPTER 51

Environment Variables2

This chapter describes the OpenMP environment variables that specify the settings of the ICVs that3
affect the execution of OpenMP programs (see Section 2.3 on page 39). The names of the4
environment variables must be upper case. The values assigned to the environment variables are5
case insensitive and may have leading and trailing white space. Modifications to the environment6
variables after the program has started, even if modified by the program itself, are ignored by the7
OpenMP implementation. However, the settings of some of the ICVs can be modified during the8
execution of the OpenMP program by the use of the appropriate directive clauses or OpenMP API9
routines.10

The environment variables are as follows:11

• OMP_SCHEDULE sets the run-sched-var ICV that specifies the runtime schedule type and chunk12
size. It can be set to any of the valid OpenMP schedule types.13

• OMP_NUM_THREADS sets the nthreads-var ICV that specifies the number of threads to use for14
parallel regions.15

• OMP_DYNAMIC sets the dyn-var ICV that specifies the dynamic adjustment of threads to use for16
parallel regions.17

• OMP_PROC_BIND sets the bind-var ICV that controls the OpenMP thread affinity policy.18

• OMP_PLACES sets the place-partition-var ICV that defines the OpenMP places that are19
available to the execution environment.20

• OMP_NESTED sets the nest-var ICV that enables or disables nested parallelism.21

• OMP_STACKSIZE sets the stacksize-var ICV that specifies the size of the stack for threads22
created by the OpenMP implementation.23

• OMP_WAIT_POLICY sets the wait-policy-var ICV that controls the desired behavior of waiting24
threads.25

• OMP_MAX_ACTIVE_LEVELS sets the max-active-levels-var ICV that controls the maximum26
number of nested active parallel regions.27

432

• OMP_THREAD_LIMIT sets the thread-limit-var ICV that controls the maximum number of1
threads participating in a contention group.2

• OMP_CANCELLATION sets the cancel-var ICV that enables or disables cancellation.3

• OMP_DISPLAY_ENV instructs the runtime to display the OpenMP version number and the4
initial values of the ICVs, once, during initialization of the runtime.5

• OMP_DEFAULT_DEVICE sets the default-device-var ICV that controls the default device6
number.7

• OMP_MAX_TASK_PRIORITY sets the max-task-priority-var ICV that specifies the maximum8
value that can be specified in the priority clause of the task construct.9

• OMP_TOOL sets the tool-var ICV that controls whether or not an OpenMP will try to register a10
performance tool.11

• OMP_TOOL_LIBRARIES sets the tool-libraries-var ICV that contains a list of tool libraries that12
the runtime searches to find one appropriate for use on a device where an OpenMP13
implementation is being initialized.14

The examples in this chapter only demonstrate how these variables might be set in Unix C shell15
(csh) environments. In Korn shell (ksh) and DOS environments the actions are similar, as follows:16

• csh:17

setenv OMP_SCHEDULE "dynamic"

• ksh:18

export OMP_SCHEDULE="dynamic"

• DOS:19

set OMP_SCHEDULE=dynamic

CHAPTER 5. ENVIRONMENT VARIABLES 433

5.1 OMP_SCHEDULE1

The OMP_SCHEDULE environment variable controls the schedule type and chunk size of all loop2
directives that have the schedule type runtime, by setting the value of the run-sched-var ICV.3

The value of this environment variable takes the form:4

type[, chunk]5

where6

• type is one of static, dynamic, guided, or auto7

• chunk is an optional positive integer that specifies the chunk size8

If chunk is present, there may be white space on either side of the “,”. See Section 2.7.1 on9
page 62 for a detailed description of the schedule types.10

The behavior of the program is implementation defined if the value of OMP_SCHEDULE does not11
conform to the above format.12

Implementation specific schedules cannot be specified in OMP_SCHEDULE. They can only be13
specified by calling omp_set_schedule, described in Section 3.2.12 on page 274.14

Examples:15

setenv OMP_SCHEDULE "guided,4"
setenv OMP_SCHEDULE "dynamic"

Cross References16

• run-sched-var ICV, see Section 2.3 on page 39.17

• Loop construct, see Section 2.7.1 on page 62.18

• Parallel loop construct, see Section 2.11.1 on page 140.19

• omp_set_schedule routine, see Section 3.2.12 on page 274.20

• omp_get_schedule routine, see Section 3.2.13 on page 276.21

434 OpenMP API – Version 5.0 rev 1, November 2016

5.2 OMP_NUM_THREADS1

The OMP_NUM_THREADS environment variable sets the number of threads to use for parallel2
regions by setting the initial value of the nthreads-var ICV. See Section 2.3 on page 39 for a3
comprehensive set of rules about the interaction between the OMP_NUM_THREADS environment4
variable, the num_threads clause, the omp_set_num_threads library routine and dynamic5
adjustment of threads, and Section 2.5.1 on page 55 for a complete algorithm that describes how the6
number of threads for a parallel region is determined.7

The value of this environment variable must be a list of positive integer values. The values of the8
list set the number of threads to use for parallel regions at the corresponding nested levels.9

The behavior of the program is implementation defined if any value of the list specified in the10
OMP_NUM_THREADS environment variable leads to a number of threads which is greater than an11
implementation can support, or if any value is not a positive integer.12

Example:13

setenv OMP_NUM_THREADS 4,3,2

Cross References14

• nthreads-var ICV, see Section 2.3 on page 39.15

• num_threads clause, Section 2.5 on page 50.16

• omp_set_num_threads routine, see Section 3.2.1 on page 262.17

• omp_get_num_threads routine, see Section 3.2.2 on page 263.18

• omp_get_max_threads routine, see Section 3.2.3 on page 264.19

• omp_get_team_size routine, see Section 3.2.19 on page 282.20

CHAPTER 5. ENVIRONMENT VARIABLES 435

5.3 OMP_DYNAMIC1

The OMP_DYNAMIC environment variable controls dynamic adjustment of the number of threads2
to use for executing parallel regions by setting the initial value of the dyn-var ICV. The value of3
this environment variable must be true or false. If the environment variable is set to true, the4
OpenMP implementation may adjust the number of threads to use for executing parallel5
regions in order to optimize the use of system resources. If the environment variable is set to6
false, the dynamic adjustment of the number of threads is disabled. The behavior of the program7
is implementation defined if the value of OMP_DYNAMIC is neither true nor false.8

Example:9

setenv OMP_DYNAMIC true

Cross References10

• dyn-var ICV, see Section 2.3 on page 39.11

• omp_set_dynamic routine, see Section 3.2.7 on page 268.12

• omp_get_dynamic routine, see Section 3.2.8 on page 270.13

5.4 OMP_PROC_BIND14

The OMP_PROC_BIND environment variable sets the initial value of the bind-var ICV. The value15
of this environment variable is either true, false, or a comma separated list of master,16
close, or spread. The values of the list set the thread affinity policy to be used for parallel17
regions at the corresponding nested level.18

If the environment variable is set to false, the execution environment may move OpenMP threads19
between OpenMP places, thread affinity is disabled, and proc_bind clauses on parallel20
constructs are ignored.21

Otherwise, the execution environment should not move OpenMP threads between OpenMP places,22
thread affinity is enabled, and the initial thread is bound to the first place in the OpenMP place list23
prior to the first active parallel region.24

The behavior of the program is implementation defined if the value in the OMP_PROC_BIND25
environment variable is not true, false, or a comma separated list of master, close, or26
spread. The behavior is also implementation defined if an initial thread cannot be bound to the27
first place in the OpenMP place list.28

436 OpenMP API – Version 5.0 rev 1, November 2016

Examples:1

setenv OMP_PROC_BIND false
setenv OMP_PROC_BIND "spread, spread, close"

Cross References2

• bind-var ICV, see Section 2.3 on page 39.3

• proc_bind clause, see Section 2.5.2 on page 57.4

• omp_get_proc_bind routine, see Section 3.2.22 on page 285.5

5.5 OMP_PLACES6

A list of places can be specified in the OMP_PLACES environment variable. The7
place-partition-var ICV obtains its initial value from the OMP_PLACES value, and makes the list8
available to the execution environment. The value of OMP_PLACES can be one of two types of9
values: either an abstract name describing a set of places or an explicit list of places described by10
non-negative numbers.11

The OMP_PLACES environment variable can be defined using an explicit ordered list of12
comma-separated places. A place is defined by an unordered set of comma-separated non-negative13
numbers enclosed by braces. The meaning of the numbers and how the numbering is done are14
implementation defined. Generally, the numbers represent the smallest unit of execution exposed by15
the execution environment, typically a hardware thread.16

Intervals may also be used to define places. Intervals can be specified using the <lower-bound> :17
<length> : <stride> notation to represent the following list of numbers: “<lower-bound>,18
<lower-bound> + <stride>, ..., <lower-bound> + (<length>- 1)*<stride>.” When <stride> is19
omitted, a unit stride is assumed. Intervals can specify numbers within a place as well as sequences20
of places.21

An exclusion operator “!” can also be used to exclude the number or place immediately following22
the operator.23

Alternatively, the abstract names listed in Table 5.1 should be understood by the execution and24
runtime environment. The precise definitions of the abstract names are implementation defined. An25
implementation may also add abstract names as appropriate for the target platform.26

The abstract name may be appended by a positive number in parentheses to denote the length of the27
place list to be created, that is abstract_name(num-places). When requesting fewer places than28

CHAPTER 5. ENVIRONMENT VARIABLES 437

available on the system, the determination of which resources of type abstract_name are to be1
included in the place list is implementation defined. When requesting more resources than2
available, the length of the place list is implementation defined.3

TABLE 5.1: Defined Abstract Names for OMP_PLACES

Abstract Name Meaning

threads Each place corresponds to a single hardware thread on the
target machine.

cores Each place corresponds to a single core (having one or more
hardware threads) on the target machine.

sockets Each place corresponds to a single socket (consisting of one or
more cores) on the target machine.

4

The behavior of the program is implementation defined when the execution environment cannot5
map a numerical value (either explicitly defined or implicitly derived from an interval) within the6
OMP_PLACES list to a processor on the target platform, or if it maps to an unavailable processor.7
The behavior is also implementation defined when the OMP_PLACES environment variable is8
defined using an abstract name.9

The following grammar describes the values accepted for the OMP_PLACES environment variable.10

〈list〉 |= 〈p-list〉 | 〈aname〉
〈p-list〉 |= 〈p-interval〉 | 〈p-list〉,〈p-interval〉

〈p-interval〉 |= 〈place〉:〈len〉:〈stride〉 | 〈place〉:〈len〉 | 〈place〉 | !〈place〉
〈place〉 |= {〈res-list〉}
〈res-list〉 |= 〈res-interval〉 | 〈res-list〉,〈res-interval〉

〈res-interval〉 |= 〈res〉:〈num-places〉:〈stride〉 | 〈res〉:〈num-places〉 | 〈res〉 | !〈res〉
〈aname〉 |= 〈word〉(〈num-places〉) | 〈word〉
〈word〉 |= sockets | cores | threads | <implementation-defined abstract name>
〈res〉 |= non-negative integer

〈num-places〉 |= positive integer
〈stride〉 |= integer
〈len〉 |= positive integer

438 OpenMP API – Version 5.0 rev 1, November 2016

Examples:1

setenv OMP_PLACES threads
setenv OMP_PLACES "threads(4)"
setenv OMP_PLACES "{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}"
setenv OMP_PLACES "{0:4},{4:4},{8:4},{12:4}"
setenv OMP_PLACES "{0:4}:4:4"

where each of the last three definitions corresponds to the same 4 places including the smallest2
units of execution exposed by the execution environment numbered, in turn, 0 to 3, 4 to 7, 8 to 11,3
and 12 to 15.4

Cross References5

• place-partition-var, Section 2.3 on page 39.6

• Controlling OpenMP thread affinity, Section 2.5.2 on page 57.7

• omp_get_num_places routine, see Section 3.2.23 on page 287.8

• omp_get_place_num_procs routine, see Section 3.2.24 on page 288.9

• omp_get_place_proc_ids routine, see Section 3.2.25 on page 289.10

• omp_get_place_num routine, see Section 3.2.26 on page 290.11

• omp_get_partition_num_places routine, see Section 3.2.27 on page 291.12

• omp_get_partition_place_nums routine, see Section 3.2.28 on page 292.13

5.6 OMP_NESTED14

The OMP_NESTED environment variable controls nested parallelism by setting the initial value of15
the nest-var ICV. The value of this environment variable must be true or false. If the16
environment variable is set to true, nested parallelism is enabled; if set to false, nested17
parallelism is disabled. The behavior of the program is implementation defined if the value of18
OMP_NESTED is neither true nor false.19

Example:20

setenv OMP_NESTED false

CHAPTER 5. ENVIRONMENT VARIABLES 439

Cross References1

• nest-var ICV, see Section 2.3 on page 39.2

• omp_set_nested routine, see Section 3.2.10 on page 271.3

• omp_get_team_size routine, see Section 3.2.19 on page 282.4

5.7 OMP_STACKSIZE5

The OMP_STACKSIZE environment variable controls the size of the stack for threads created by6
the OpenMP implementation, by setting the value of the stacksize-var ICV. The environment7
variable does not control the size of the stack for an initial thread.8

The value of this environment variable takes the form:9

size | sizeB | sizeK | sizeM | sizeG10

where:11

• size is a positive integer that specifies the size of the stack for threads that are created by the12
OpenMP implementation.13

• B, K, M, and G are letters that specify whether the given size is in Bytes, Kilobytes (1024 Bytes),14
Megabytes (1024 Kilobytes), or Gigabytes (1024 Megabytes), respectively. If one of these letters15
is present, there may be white space between size and the letter.16

If only size is specified and none of B, K, M, or G is specified, then size is assumed to be in Kilobytes.17

The behavior of the program is implementation defined if OMP_STACKSIZE does not conform to18
the above format, or if the implementation cannot provide a stack with the requested size.19

Examples:20

setenv OMP_STACKSIZE 2000500B
setenv OMP_STACKSIZE "3000 k "
setenv OMP_STACKSIZE 10M
setenv OMP_STACKSIZE " 10 M "
setenv OMP_STACKSIZE "20 m "
setenv OMP_STACKSIZE " 1G"
setenv OMP_STACKSIZE 20000

440 OpenMP API – Version 5.0 rev 1, November 2016

Cross References1

• stacksize-var ICV, see Section 2.3 on page 39.2

5.8 OMP_WAIT_POLICY3

The OMP_WAIT_POLICY environment variable provides a hint to an OpenMP implementation4
about the desired behavior of waiting threads by setting the wait-policy-var ICV. A compliant5
OpenMP implementation may or may not abide by the setting of the environment variable.6

The value of this environment variable takes the form:7

ACTIVE | PASSIVE8

The ACTIVE value specifies that waiting threads should mostly be active, consuming processor9
cycles, while waiting. An OpenMP implementation may, for example, make waiting threads spin.10

The PASSIVE value specifies that waiting threads should mostly be passive, not consuming11
processor cycles, while waiting. For example, an OpenMP implementation may make waiting12
threads yield the processor to other threads or go to sleep.13

The details of the ACTIVE and PASSIVE behaviors are implementation defined.14

Examples:15

setenv OMP_WAIT_POLICY ACTIVE
setenv OMP_WAIT_POLICY active
setenv OMP_WAIT_POLICY PASSIVE
setenv OMP_WAIT_POLICY passive

Cross References16

• wait-policy-var ICV, see Section 2.3 on page 39.17

CHAPTER 5. ENVIRONMENT VARIABLES 441

5.9 OMP_MAX_ACTIVE_LEVELS1

The OMP_MAX_ACTIVE_LEVELS environment variable controls the maximum number of nested2
active parallel regions by setting the initial value of the max-active-levels-var ICV.3

The value of this environment variable must be a non-negative integer. The behavior of the4
program is implementation defined if the requested value of OMP_MAX_ACTIVE_LEVELS is5
greater than the maximum number of nested active parallel levels an implementation can support,6
or if the value is not a non-negative integer.7

Cross References8

• max-active-levels-var ICV, see Section 2.3 on page 39.9

• omp_set_max_active_levels routine, see Section 3.2.15 on page 277.10

• omp_get_max_active_levels routine, see Section 3.2.16 on page 279.11

5.10 OMP_THREAD_LIMIT12

The OMP_THREAD_LIMIT environment variable sets the maximum number of OpenMP threads13
to use in a contention group by setting the thread-limit-var ICV.14

The value of this environment variable must be a positive integer. The behavior of the program is15
implementation defined if the requested value of OMP_THREAD_LIMIT is greater than the16
number of threads an implementation can support, or if the value is not a positive integer.17

Cross References18

• thread-limit-var ICV, see Section 2.3 on page 39.19

• omp_get_thread_limit routine, see Section 3.2.14 on page 277.20

5.11 OMP_CANCELLATION21

The OMP_CANCELLATION environment variable sets the initial value of the cancel-var ICV.22

442 OpenMP API – Version 5.0 rev 1, November 2016

The value of this environment variable must be true or false. If set to true, the effects of the1
cancel construct and of cancellation points are enabled and cancellation is activated. If set to2
false, cancellation is disabled and the cancel construct and cancellation points are effectively3
ignored.4

Cross References5

• cancel-var, see Section 2.3.1 on page 39.6

• cancel construct, see Section 2.14.1 on page 197.7

• cancellation point construct, see Section 2.14.2 on page 202.8

• omp_get_cancellation routine, see Section 3.2.9 on page 271.9

5.12 OMP_DISPLAY_ENV10

The OMP_DISPLAY_ENV environment variable instructs the runtime to display the OpenMP11
version number and the value of the ICVs associated with the environment variables described in12
Chapter 5, as name = value pairs. The runtime displays this information once, after processing the13
environment variables and before any user calls to change the ICV values by runtime routines14
defined in Chapter 3.15

The value of the OMP_DISPLAY_ENV environment variable may be set to one of these values:16

TRUE | FALSE | VERBOSE17

The TRUE value instructs the runtime to display the OpenMP version number defined by the18
_OPENMP version macro (or the openmp_version Fortran parameter) value and the initial ICV19
values for the environment variables listed in Chapter 5. The VERBOSE value indicates that the20
runtime may also display the values of runtime variables that may be modified by vendor-specific21
environment variables. The runtime does not display any information when the22
OMP_DISPLAY_ENV environment variable is FALSE or undefined. For all values of the23
environment variable other than TRUE, FALSE, and VERBOSE, the displayed information is24
unspecified.25

The display begins with "OPENMP DISPLAY ENVIRONMENT BEGIN", followed by the26
_OPENMP version macro (or the openmp_version Fortran parameter) value and ICV values, in27
the format NAME ’=’ VALUE. NAME corresponds to the macro or environment variable name,28
optionally prepended by a bracketed device-type. VALUE corresponds to the value of the macro or29
ICV associated with this environment variable. Values should be enclosed in single quotes. The30
display is terminated with "OPENMP DISPLAY ENVIRONMENT END".31

CHAPTER 5. ENVIRONMENT VARIABLES 443

Example:1

% setenv OMP_DISPLAY_ENV TRUE

The above example causes an OpenMP implementation to generate output of the following form:2

OPENMP DISPLAY ENVIRONMENT BEGIN
_OPENMP=’201611’
[host] OMP_SCHEDULE=’GUIDED,4’
[host] OMP_NUM_THREADS=’4,3,2’
[device] OMP_NUM_THREADS=’2’
[host,device] OMP_DYNAMIC=’TRUE’
[host] OMP_PLACES=’0:4,4:4,8:4,12:4’
...

OPENMP DISPLAY ENVIRONMENT END

5.13 OMP_DEFAULT_DEVICE3

The OMP_DEFAULT_DEVICE environment variable sets the device number to use in device4
constructs by setting the initial value of the default-device-var ICV.5

The value of this environment variable must be a non-negative integer value.6

Cross References7

• default-device-var ICV, see Section 2.3 on page 39.8

• device constructs, Section 2.10 on page 106.9

444 OpenMP API – Version 5.0 rev 1, November 2016

5.14 OMP_MAX_TASK_PRIORITY1

The OMP_MAX_TASK_PRIORITY environment variable controls the use of task priorities by2
setting the initial value of the max-task-priority-var ICV. The value of this environment variable3
must be a non-negative integer.4

Example:5

% setenv OMP_MAX_TASK_PRIORITY 20

Cross References6

• max-task-priority-var ICV, see Section 2.3 on page 39.7

• Tasking Constructs, see Section 2.9 on page 91.8

• omp_get_max_task_priority routine, see Section 3.2.36 on page 299.9

5.15 OMP_TOOL10

The OMP_TOOL environment variable sets the tool-var ICV which controls whether an OpenMP11
runtime will try to register a performance tool. The value of this environment variable must be12
enabled or disabled. If OMP_TOOL is set to any value other than enabled or disabled,13
the behavior is unspecified. If OMP_TOOL is not defined, the default value for tool-var is14
enabled.15

Example:16

% setenv OMP_TOOL enabled

Cross References17

• tool-var ICV, see Section 2.3 on page 39.18

• Tool Interface, see Section 4 on page 331.19

CHAPTER 5. ENVIRONMENT VARIABLES 445

5.16 OMP_TOOL_LIBRARIES1

The OMP_TOOL_LIBRARIES environment variable sets the tool-libraries-var ICV to a list of tool2
libraries that will be considered for use on a device where an OpenMP implementation is being3
initialized. The value of this environment variable must be a comma-separated list of4
dynamically-linked libraries, each specified by an absolute path.5

If the tool-var ICV is not enabled, the value of tool-libraries-var will be ignored. Otherwise, if6
ompt_start_tool, a global function symbol for a tool initializer, isn’t visible in the address7
space on a device where OpenMP is being initialized or if ompt_start_tool returns NULL, an8
OpenMP implementation will consider libraries in the tool-libraries-var list in a left to right order.9
The OpenMP implementation will search the list for a library that meets two criteria: it can be10
dynamically loaded on the current device and it defines the symbol ompt_start_tool. If an11
OpenMP implementation finds a suitable library, no further libraries in the list will be considered.12

Cross References13

• tool-libraries-var ICV, see Section 2.3 on page 39.14

• Tool Interface, see Section 4 on page 331.15

• ompt_start_tool routine, see Section 4.5.1 on page 363.16

446 OpenMP API – Version 5.0 rev 1, November 2016

APPENDIX A1

Stubs for Runtime Library Routines2

This section provides stubs for the runtime library routines defined in the OpenMP API. The stubs3
are provided to enable portability to platforms that do not support the OpenMP API. On these4
platforms, OpenMP programs must be linked with a library containing these stub routines. The stub5
routines assume that the directives in the OpenMP program are ignored. As such, they emulate6
serial semantics executing on the host.7

Note that the lock variable that appears in the lock routines must be accessed exclusively through8
these routines. It should not be initialized or otherwise modified in the user program.9

In an actual implementation the lock variable might be used to hold the address of an allocated10
memory block, but here it is used to hold an integer value. Users should not make assumptions11
about mechanisms used by OpenMP implementations to implement locks based on the scheme12
used by the stub procedures.13

Fortran

Note – In order to be able to compile the Fortran stubs file, the include file omp_lib.h was split14
into two files: omp_lib_kinds.h and omp_lib.h and the omp_lib_kinds.h file included15
where needed. There is no requirement for the implementation to provide separate files.16

Fortran

447

A.1 C/C++ Stub Routines1

#include <stdio.h>2
#include <stdlib.h>3
#include "omp.h"4

5
void omp_set_num_threads(int num_threads)6
{7
}8

9
int omp_get_num_threads(void)10
{11

return 1;12
}13

14
int omp_get_max_threads(void)15
{16

return 1;17
}18

19
int omp_get_thread_num(void)20
{21

return 0;22
}23

24
int omp_get_num_procs(void)25
{26

return 1;27
}28

29
int omp_in_parallel(void)30
{31

return 0;32
}33

34
void omp_set_dynamic(int dynamic_threads)35
{36
}37

38
int omp_get_dynamic(void)39
{40

return 0;41
}42

43
int omp_get_cancellation(void)44
{45

return 0;46

448 OpenMP API – Version 5.0 rev 1, November 2016

}1
2

void omp_set_nested(int nested)3
{4
}5

6
int omp_get_nested(void)7
{8

return 0;9
}10

11
void omp_set_schedule(omp_sched_t kind, int chunk_size)12
{13
}14

15
void omp_get_schedule(omp_sched_t *kind, int *chunk_size)16
{17

*kind = omp_sched_static;18
*chunk_size = 0;19

}20
21

int omp_get_thread_limit(void)22
{23

return 1;24
}25

26
void omp_set_max_active_levels(int max_active_levels)27
{28
}29

30
int omp_get_max_active_levels(void)31
{32

return 0;33
}34

35
int omp_get_level(void)36
{37

return 0;38
}39

40
int omp_get_ancestor_thread_num(int level)41
{42

if (level == 0)43
{44

return 0;45
}46
else47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 449

{1
return -1;2

}3
}4

5
int omp_get_team_size(int level)6
{7

if (level == 0)8
{9

return 1;10
}11
else12
{13

return -1;14
}15

}16
17

int omp_get_active_level(void)18
{19

return 0;20
}21

22
int omp_in_final(void)23
{24

return 1;25
}26

27
omp_proc_bind_t omp_get_proc_bind(void)28
{29

return omp_proc_bind_false;30
}31

32
int omp_get_num_places(void)33
{34

return 0;35
}36

37
int omp_get_place_num_procs(int place_num)38
{39

return 0;40
}41

42
void omp_get_place_proc_ids(int place_num, int *ids)43
{44
}45

46
int omp_get_place_num(void)47

450 OpenMP API – Version 5.0 rev 1, November 2016

{1
return -1;2

}3
4

int omp_get_partition_num_places(void)5
{6

return 0;7
}8

9
void omp_get_partition_place_nums(int *place_nums)10
{11
}12

13
void omp_set_default_device(int device_num)14
{15
}16

17
int omp_get_default_device(void)18
{19

return 0;20
}21

22
int omp_get_num_devices(void)23
{24

return 0;25
}26

27
int omp_get_num_teams(void)28
{29

return 1;30
}31

32
int omp_get_team_num(void)33
{34

return 0;35
}36

37
int omp_is_initial_device(void)38
{39

return 1;40
}41

42
int omp_get_initial_device(void)43
{44

return -10;45
}46

47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 451

int omp_get_max_task_priority(void)1
{2

return 0;3
}4

5
struct __omp_lock6
{7

int lock;8
};9

10
enum { UNLOCKED = -1, INIT, LOCKED };11

12
void omp_init_lock(omp_lock_t *arg)13
{14

struct __omp_lock *lock = (struct __omp_lock *)arg;15
lock->lock = UNLOCKED;16

}17
18

void omp_init_lock_with_hint(omp_lock_t *arg, omp_lock_hint_t hint)19
{20

omp_init_lock(arg);21
}22

23
void omp_destroy_lock(omp_lock_t *arg)24
{25

struct __omp_lock *lock = (struct __omp_lock *)arg;26
lock->lock = INIT;27

}28
29

void omp_set_lock(omp_lock_t *arg)30
{31

struct __omp_lock *lock = (struct __omp_lock *)arg;32
if (lock->lock == UNLOCKED)33
{34

lock->lock = LOCKED;35
}36
else if (lock->lock == LOCKED)37
{38

fprintf(stderr, "error: deadlock in using lock variable\n");39
exit(1);40

}41
42

else43
{44

fprintf(stderr, "error: lock not initialized\n");45
exit(1);46

}47

452 OpenMP API – Version 5.0 rev 1, November 2016

}1
2

void omp_unset_lock(omp_lock_t *arg)3
{4

struct __omp_lock *lock = (struct __omp_lock *)arg;5
if (lock->lock == LOCKED)6
{7

lock->lock = UNLOCKED;8
}9
else if (lock->lock == UNLOCKED)10
{11

fprintf(stderr, "error: lock not set\n");12
exit(1);13

}14
else15
{16

fprintf(stderr, "error: lock not initialized\n");17
exit(1);18

}19
}20

21
int omp_test_lock(omp_lock_t *arg)22
{23

struct __omp_lock *lock = (struct __omp_lock *)arg;24
if (lock->lock == UNLOCKED)25
{26

lock->lock = LOCKED;27
return 1;28

}29
else if (lock->lock == LOCKED)30
{31

return 0;32
}33
else34
{35

fprintf(stderr, "error: lock not initialized\ n");36
exit(1);37

}38
}39

40
struct __omp_nest_lock41
{42

short owner;43
short count;44

};45
46

enum { NOOWNER = -1, MASTER = 0 };47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 453

1
void omp_init_nest_lock(omp_nest_lock_t *arg)2
{3

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;4
nlock->owner = NOOWNER;5
nlock->count = 0;6

}7
8

void omp_init_nest_lock_with_hint(omp_nest_lock_t *arg,9
omp_lock_hint_t hint)10

{11
omp_init_nest_lock(arg);12

}13
14

void omp_destroy_nest_lock(omp_nest_lock_t *arg)15
{16

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;17
nlock->owner = NOOWNER;18
nlock->count = UNLOCKED;19

}20
21

void omp_set_nest_lock(omp_nest_lock_t *arg)22
{23

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;24
if (nlock->owner == MASTER && nlock->count >= 1)25
{26

nlock->count++;27
}28
else if (nlock->owner == NOOWNER && nlock->count == 0)29
{30

nlock->owner = MASTER;31
nlock->count = 1;32

}33
else34
{35

fprintf(stderr, "error: lock corrupted or not initialized\n");36
exit(1);37

}38
}39

40
void omp_unset_nest_lock(omp_nest_lock_t *arg)41
{42

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;43
if (nlock->owner == MASTER && nlock->count >= 1)44
{45

nlock->count--;46
if (nlock->count == 0)47

454 OpenMP API – Version 5.0 rev 1, November 2016

{1
nlock->owner = NOOWNER;2

}3
}4
else if (nlock->owner == NOOWNER && nlock->count == 0)5
{6

fprintf(stderr, "error: lock not set\n");7
exit(1);8

}9
else10
{11

fprintf(stderr, "error: lock corrupted or not initialized\n");12
exit(1);13

}14
}15

16
int omp_test_nest_lock(omp_nest_lock_t *arg)17
{18

struct __omp_nest_lock *nlock=(struct __omp_nest_lock *)arg;19
omp_set_nest_lock(arg);20
return nlock->count;21

}22
23

double omp_get_wtime(void)24
{25
/* This function does not provide a working26
* wallclock timer. Replace it with a version27
* customized for the target machine.28
*/29

return 0.0;30
}31

32
double omp_get_wtick(void)33
{34
/* This function does not provide a working35
* clock tick function. Replace it with36
* a version customized for the target machine.37
*/38

return 365. * 86400.;39
}40

41
void * omp_target_alloc(size_t size, int device_num)42
{43

if (device_num != -10)44
return NULL;45

return malloc(size)46
}47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 455

1
void omp_target_free(void *device_ptr, int device_num)2
{3

free(device_ptr);4
}5

6
int omp_target_is_present(void *ptr, int device_num)7
{8

return 1;9
}10

11
int omp_target_memcpy(void *dst, void *src, size_t length,12

size_t dst_offset, size_t src_offset,13
int dst_device, int src_device)14

{15
// only the default device is valid in a stub16
if (dst_device != -10 || src_device != -1017

|| ! dst || ! src)18
return EINVAL;19

memcpy((char *)dst + dst_offset,20
(char *)src + src_offset,21
length);22

return 0;23
}24

25
int omp_target_memcpy_rect(26

void *dst, void *src,27
size_t element_size,28
int num_dims,29
const size_t *volume,30
const size_t *dst_offsets,31
const size_t *src_offsets,32
const size_t *dst_dimensions,33
const size_t *src_dimensions,34
int dst_device_num, int src_device_num)35

{36
int ret=0;37
// Both null, return number of dimensions supported,38
// this stub supports an arbitrary number39
if (dst == NULL && src == NULL) return INT_MAX;40

41
if (!volume || !dst_offsets || !src_offsets42

|| !dst_dimensions || !src_dimensions43
|| num_dims < 1) {44

ret = EINVAL;45
goto done;46

}47

456 OpenMP API – Version 5.0 rev 1, November 2016

if (num_dims == 1) {1
ret = omp_target_memcpy(dst, src,2

element_size * volume[0],3
dst_offsets[0] * element_size,4
src_offsets[0] * element_size,5
dst_device_num, src_device_num);6

if(ret) goto done;7
} else {8

size_t dst_slice_size = element_size;9
size_t src_slice_size = element_size;10
for (int i=1; i < num_dims; i++) {11

dst_slice_size *= dst_dimensions[i];12
src_slice_size *= src_dimensions[i];13

}14
size_t dst_off = dst_offsets[0] * dst_slice_size;15
size_t src_off = src_offsets[0] * src_slice_size;16
for (size_t i=0; i < volume[0]; i++) {17

ret = omp_target_memcpy_rect(18
(char *)dst + dst_off + dst_slice_size*i,19
(char *)src + src_off + src_slice_size*i,20
element_size,21
num_dims - 1,22
volume + 1,23
dst_offsets + 1,24
src_offsets + 1,25
dst_dimensions + 1,26
src_dimensions + 1,27
dst_device_num,28
src_device_num);29

if (ret) goto done;30
}31

}32
done:33

return ret;34
}35

36
int omp_target_associate_ptr(void *host_ptr, void *device_ptr,37

size_t size, size_t device_offset,38
int device_num)39

{40
// No association is possible because all host pointers41
// are considered present42
return EINVAL;43

}44
45

int omp_target_disassociate_ptr(void *ptr, int device_num)46
{47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 457

return EINVAL;1
}2

3
4

int omp_control_tool(int command, int modifier, void *arg)5
{6

return omp_control_tool_notool;7
}8

9

458 OpenMP API – Version 5.0 rev 1, November 2016

A.2 Fortran Stub Routines1

subroutine omp_set_num_threads(num_threads)2
integer num_threads3
return4

end subroutine5
6

integer function omp_get_num_threads()7
omp_get_num_threads = 18
return9

end function10
11

integer function omp_get_max_threads()12
omp_get_max_threads = 113
return14

end function15
16

integer function omp_get_thread_num()17
omp_get_thread_num = 018
return19

end function20
21

integer function omp_get_num_procs()22
omp_get_num_procs = 123
return24

end function25
26

logical function omp_in_parallel()27
omp_in_parallel = .false.28
return29

end function30
31

subroutine omp_set_dynamic(dynamic_threads)32
logical dynamic_threads33
return34

end subroutine35
36

logical function omp_get_dynamic()37
omp_get_dynamic = .false.38
return39

end function40
41

logical function omp_get_cancellation()42
omp_get_cancellation = .false.43
return44

end function45
46

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 459

subroutine omp_set_nested(nested)1
logical nested2
return3

end subroutine4
5

logical function omp_get_nested()6
omp_get_nested = .false.7
return8

end function9
10

subroutine omp_set_schedule(kind, chunk_size)11
include ’omp_lib_kinds.h’12
integer (kind=omp_sched_kind) kind13
integer chunk_size14
return15

end subroutine16
17

subroutine omp_get_schedule(kind, chunk_size)18
include ’omp_lib_kinds.h’19
integer (kind=omp_sched_kind) kind20
integer chunk_size21
kind = omp_sched_static22
chunk_size = 023
return24

end subroutine25
26

integer function omp_get_thread_limit()27
omp_get_thread_limit = 128
return29

end function30
31

subroutine omp_set_max_active_levels(max_level)32
integer max_level33

end subroutine34
35

integer function omp_get_max_active_levels()36
omp_get_max_active_levels = 037
return38

end function39
40

integer function omp_get_level()41
omp_get_level = 042
return43

end function44
45

integer function omp_get_ancestor_thread_num(level)46
integer level47

460 OpenMP API – Version 5.0 rev 1, November 2016

if (level .eq. 0) then1
omp_get_ancestor_thread_num = 02

else3
omp_get_ancestor_thread_num = -14

end if5
return6

end function7
8

integer function omp_get_team_size(level)9
integer level10
if (level .eq. 0) then11

omp_get_team_size = 112
else13

omp_get_team_size = -114
end if15
return16

end function17
18

integer function omp_get_active_level()19
omp_get_active_level = 020
return21

end function22
23

logical function omp_in_final()24
omp_in_final = .true.25
return26

end function27
28

function omp_get_proc_bind()29
include ’omp_lib_kinds.h’30
integer (kind=omp_proc_bind_kind) omp_get_proc_bind31
omp_get_proc_bind = omp_proc_bind_false32

end function33
34

integer function omp_get_num_places()35
return 036

end function37
38

integer function omp_get_place_num_procs(place_num)39
integer place_num40
return 041

end function42
43

subroutine omp_get_place_proc_ids(place_num, ids)44
integer place_num45
integer ids(*)46
return47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 461

end subroutine1
2

integer function omp_get_place_num()3
return -14

end function5
6

integer function omp_get_partition_num_places()7
return 08

end function9
10

subroutine omp_get_partition_place_nums(place_nums)11
integer place_nums(*)12
return13

end subroutine14
15

subroutine omp_set_default_device(device_num)16
integer device_num17
return18

end subroutine19
20

integer function omp_get_default_device()21
omp_get_default_device = 022
return23

end function24
25

integer function omp_get_num_devices()26
omp_get_num_devices = 027
return28

end function29
30

integer function omp_get_num_teams()31
omp_get_num_teams = 132
return33

end function34
35

integer function omp_get_team_num()36
omp_get_team_num = 037
return38

end function39
40

logical function omp_is_initial_device()41
omp_is_initial_device = .true.42
return43

end function44
45

integer function omp_get_initial_device()46
omp_get_initial_device = -1047

462 OpenMP API – Version 5.0 rev 1, November 2016

return1
end function2

3
integer function omp_get_max_task_priority()4
omp_get_max_task_priority = 05
return6

end function7
8

subroutine omp_init_lock(lock)9
! lock is 0 if the simple lock is not initialized10
! -1 if the simple lock is initialized but not set11
! 1 if the simple lock is set12
include ’omp_lib_kinds.h’13
integer(kind=omp_lock_kind) lock14

15
lock = -116
return17

end subroutine18
19

subroutine omp_init_lock_with_hint(lock, hint)20
include ’omp_lib_kinds.h’21
integer(kind=omp_lock_kind) lock22
integer(kind=omp_lock_hint_kind) hint23

24
call omp_init_lock(lock)25
return26

end subroutine27
28

subroutine omp_destroy_lock(lock)29
include ’omp_lib_kinds.h’30
integer(kind=omp_lock_kind) lock31

32
lock = 033
return34

end subroutine35
36

subroutine omp_set_lock(lock)37
include ’omp_lib_kinds.h’38
integer(kind=omp_lock_kind) lock39

40
if (lock .eq. -1) then41

lock = 142
elseif (lock .eq. 1) then43

print *, ’error: deadlock in using lock variable’44
stop45

else46
print *, ’error: lock not initialized’47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 463

stop1
endif2
return3

end subroutine4
5

subroutine omp_unset_lock(lock)6
include ’omp_lib_kinds.h’7
integer(kind=omp_lock_kind) lock8

9
if (lock .eq. 1) then10

lock = -111
elseif (lock .eq. -1) then12

print *, ’error: lock not set’13
stop14

else15
print *, ’error: lock not initialized’16
stop17

endif18
return19

end subroutine20
21

logical function omp_test_lock(lock)22
include ’omp_lib_kinds.h’23
integer(kind=omp_lock_kind) lock24

25
if (lock .eq. -1) then26
lock = 127
omp_test_lock = .true.28

elseif (lock .eq. 1) then29
omp_test_lock = .false.30

else31
print *, ’error: lock not initialized’32
stop33

endif34
35

return36
end function37

38
subroutine omp_init_nest_lock(nlock)39
! nlock is40
! 0 if the nestable lock is not initialized41
! -1 if the nestable lock is initialized but not set42
! 1 if the nestable lock is set43
! no use count is maintained44
include ’omp_lib_kinds.h’45
integer(kind=omp_nest_lock_kind) nlock46

47

464 OpenMP API – Version 5.0 rev 1, November 2016

nlock = -11
2

return3
end subroutine4

5
subroutine omp_init_nest_lock_with_hint(nlock, hint)6
include ’omp_lib_kinds.h’7
integer(kind=omp_nest_lock_kind) nlock8
integer(kind=omp_lock_hint_kind) hint9

10
call omp_init_nest_lock(nlock)11
return12

end subroutine13
14

subroutine omp_destroy_nest_lock(nlock)15
include ’omp_lib_kinds.h’16
integer(kind=omp_nest_lock_kind) nlock17

18
nlock = 019

20
return21

end subroutine22
23

subroutine omp_set_nest_lock(nlock)24
include ’omp_lib_kinds.h’25
integer(kind=omp_nest_lock_kind) nlock26

27
if (nlock .eq. -1) then28

nlock = 129
elseif (nlock .eq. 0) then30

print *, ’error: nested lock not initialized’31
stop32

else33
print *, ’error: deadlock using nested lock variable’34
stop35

endif36
37

return38
end subroutine39

40
subroutine omp_unset_nest_lock(nlock)41
include ’omp_lib_kinds.h’42
integer(kind=omp_nest_lock_kind) nlock43

44
if (nlock .eq. 1) then45

nlock = -146
elseif (nlock .eq. 0) then47

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 465

print *, ’error: nested lock not initialized’1
stop2

else3
print *, ’error: nested lock not set’4
stop5

endif6
7

return8
end subroutine9

10
integer function omp_test_nest_lock(nlock)11
include ’omp_lib_kinds.h’12
integer(kind=omp_nest_lock_kind) nlock13

14
if (nlock .eq. -1) then15
nlock = 116
omp_test_nest_lock = 117

elseif (nlock .eq. 1) then18
omp_test_nest_lock = 019

else20
print *, ’error: nested lock not initialized’21
stop22

endif23
24

return25
end function26

27
double precision function omp_get_wtime()28
! this function does not provide a working29
! wall clock timer. replace it with a version30
! customized for the target machine.31

32
omp_get_wtime = 0.0d033

34
return35

end function36
37

double precision function omp_get_wtick()38
! this function does not provide a working39
! clock tick function. replace it with40
! a version customized for the target machine.41
double precision one_year42
parameter (one_year=365.d0*86400.d0)43

44
omp_get_wtick = one_year45

46
return47

466 OpenMP API – Version 5.0 rev 1, November 2016

end function1
2

int function omp_control_tool(command, modifier)3
include ’omp_lib_kinds.h’4
integer (kind=omp_control_tool_kind) command5
integer (kind=omp_control_tool_kind) modifier6

7
return omp_control_tool_notool8

end function9

APPENDIX A. STUBS FOR RUNTIME LIBRARY ROUTINES 467

This page intentionally left blank1

APPENDIX B1

Interface Declarations2

This appendix gives examples of the C/C++ header file, the Fortran include file and Fortran3
module that shall be provided by implementations as specified in Chapter 3. It also includes an4
example of a Fortran 90 generic interface for a library routine. This is a non-normative section,5
implementation files may differ.6

469

B.1 Example of the omp.h Header File1

#ifndef _OMP_H_DEF2
#define _OMP_H_DEF3

4
/*5
* define the lock data types6
*/7

typedef void *omp_lock_t;8
9

typedef void *omp_nest_lock_t;10
11

/*12
* define the lock hints13
*/14

typedef enum omp_lock_hint_t15
{16
omp_lock_hint_none = 0,17
omp_lock_hint_uncontended = 1,18
omp_lock_hint_contended = 2,19
omp_lock_hint_nonspeculative = 4,20
omp_lock_hint_speculative = 821

/* , Add vendor specific constants for lock hints here,22
starting from the most-significant bit. */23

} omp_lock_hint_t;24
25

/*26
* define the schedule kinds27
*/28

typedef enum omp_sched_t29
{30
omp_sched_static = 1,31
omp_sched_dynamic = 2,32
omp_sched_guided = 3,33
omp_sched_auto = 434

/* , Add vendor specific schedule constants here */35
} omp_sched_t;36

37
/*38
* define the proc bind values39
*/40
typedef enum omp_proc_bind_t41
{42
omp_proc_bind_false = 0,43
omp_proc_bind_true = 1,44
omp_proc_bind_master = 2,45
omp_proc_bind_close = 3,46

470 OpenMP API – Version 5.0 rev 1, November 2016

omp_proc_bind_spread = 41
} omp_proc_bind_t;2

3
/*4
* define the tool control commands5
*/6

typedef omp_control_tool_t7
{8

omp_control_tool_start = 1,9
omp_control_tool_pause = 2,10
omp_control_tool_flush = 3,11
omp_control_tool_end = 4,12

} omp_control_tool_t;13
14

/*15
* exported OpenMP functions16
*/17

#ifdef __cplusplus18
extern "C"19
{20
#endif21

22
extern void omp_set_num_threads(int num_threads);23
extern int omp_get_num_threads(void);24
extern int omp_get_max_threads(void);25
extern int omp_get_thread_num(void);26
extern int omp_get_num_procs(void);27
extern int omp_in_parallel(void);28
extern void omp_set_dynamic(int dynamic_threads);29
extern int omp_get_dynamic(void);30
extern int omp_get_cancellation(void);31
extern void omp_set_nested(int nested);32
extern int omp_get_nested(void);33
extern void omp_set_schedule(omp_sched_t kind, int chunk_size);34
extern void omp_get_schedule(omp_sched_t *kind, int *chunk_size);35
extern int omp_get_thread_limit(void);36
extern void omp_set_max_active_levels(int max_active_levels);37
extern int omp_get_max_active_levels(void);38
extern int omp_get_level(void);39
extern int omp_get_ancestor_thread_num(int level);40
extern int omp_get_team_size(int level);41
extern int omp_get_active_level(void);42
extern int omp_in_final(void);43
extern omp_proc_bind_t omp_get_proc_bind(void);44
extern int omp_get_num_places(void);45
extern int omp_get_place_num_procs(int place_num);46
extern void omp_get_place_proc_ids(int place_num, int *ids);47

APPENDIX B. INTERFACE DECLARATIONS 471

extern int omp_get_place_num(void);1
extern int omp_get_partition_num_places(void);2
extern void omp_get_partition_place_nums(int *place_nums);3
extern void omp_set_default_device(int device_num);4
extern int omp_get_default_device(void);5
extern int omp_get_num_devices(void);6
extern int omp_get_num_teams(void);7
extern int omp_get_team_num(void);8
extern int omp_is_initial_device(void);9
extern int omp_get_initial_device(void);10
extern int omp_get_max_task_priority(void);11

12
extern void omp_init_lock(omp_lock_t *lock);13
extern void omp_init_lock_with_hint(omp_lock_t *lock,14

omp_lock_hint_t hint);15
extern void omp_destroy_lock(omp_lock_t *lock);16
extern void omp_set_lock(omp_lock_t *lock);17
extern void omp_unset_lock(omp_lock_t *lock);18
extern int omp_test_lock(omp_lock_t *lock);19

20
extern void omp_init_nest_lock(omp_nest_lock_t *lock);21
extern void omp_init_nest_lock_with_hint(omp_nest_lock_t *lock,22

omp_lock_hint_t hint);23
extern void omp_destroy_nest_lock(omp_nest_lock_t *lock);24
extern void omp_set_nest_lock(omp_nest_lock_t *lock);25
extern void omp_unset_nest_lock(omp_nest_lock_t *lock);26
extern int omp_test_nest_lock(omp_nest_lock_t *lock);27

28
extern double omp_get_wtime(void);29
extern double omp_get_wtick(void);30

31
extern void * omp_target_alloc(size_t size, int device_num);32
extern void omp_target_free(void * device_ptr, int device_num);33
extern int omp_target_is_present(void * ptr, int device_num);34
extern int omp_target_memcpy(void *dst, void *src, size_t length,35

size_t dst_offset, size_t src_offset,36
int dst_device_num, int src_device_num);37

extern int omp_target_memcpy_rect(38
void *dst, void *src,39
size_t element_size,40
int num_dims,41
const size_t *volume,42
const size_t *dst_offsets,43
const size_t *src_offsets,44
const size_t *dst_dimensions,45
const size_t *src_dimensions,46
int dst_device_num, int src_device_num);47

472 OpenMP API – Version 5.0 rev 1, November 2016

extern int omp_target_associate_ptr(void * host_ptr,1
void * device_ptr,2
size_t size,3
size_t device_offset,4
int device_num);5

extern int omp_target_disassociate_ptr(void * ptr,6
int device_num);7

8
extern void omp_control_tool(int command, int modifier, void *arg);9

10
#ifdef __cplusplus11
}12
#endif13

14
#endif15

APPENDIX B. INTERFACE DECLARATIONS 473

B.2 Example of an Interface Declaration include1

File2

omp_lib_kinds.h:3

integer omp_lock_kind4
integer omp_nest_lock_kind5
integer omp_lock_hint_kind6
integer omp_control_tool_kind7
integer omp_control_tool_result_kind8

! this selects an integer that is large enough to hold a 64 bit integer9
parameter (omp_lock_kind = selected_int_kind(10))10
parameter (omp_nest_lock_kind = selected_int_kind(10))11
parameter (omp_lock_hint_kind = selected_int_kind(10))12

13
integer omp_sched_kind14

! this selects an integer that is large enough to hold a 32 bit integer15
parameter (omp_sched_kind = selected_int_kind(8))16
integer (omp_sched_kind) omp_sched_static17
parameter (omp_sched_static = 1)18
integer (omp_sched_kind) omp_sched_dynamic19
parameter (omp_sched_dynamic = 2)20
integer (omp_sched_kind) omp_sched_guided21
parameter (omp_sched_guided = 3)22
integer (omp_sched_kind) omp_sched_auto23
parameter (omp_sched_auto = 4)24

25
integer omp_proc_bind_kind26
parameter (omp_proc_bind_kind = selected_int_kind(8))27
integer (omp_proc_bind_kind) omp_proc_bind_false28
parameter (omp_proc_bind_false = 0)29
integer (omp_proc_bind_kind) omp_proc_bind_true30
parameter (omp_proc_bind_true = 1)31
integer (omp_proc_bind_kind) omp_proc_bind_master32
parameter (omp_proc_bind_master = 2)33
integer (omp_proc_bind_kind) omp_proc_bind_close34
parameter (omp_proc_bind_close = 3)35
integer (omp_proc_bind_kind) omp_proc_bind_spread36
parameter (omp_proc_bind_spread = 4)37

38
integer (omp_lock_hint_kind) omp_lock_hint_none39
parameter (omp_lock_hint_none = 0)40
integer (omp_lock_hint_kind) omp_lock_hint_uncontended41
parameter (omp_lock_hint_uncontended = 1)42
integer (omp_lock_hint_kind) omp_lock_hint_contended43
parameter (omp_lock_hint_contended = 2)44

474 OpenMP API – Version 5.0 rev 1, November 2016

integer (omp_lock_hint_kind) omp_lock_hint_nonspeculative1
parameter (omp_lock_hint_nonspeculative = 4)2
integer (omp_lock_hint_kind) omp_lock_hint_speculative3
parameter (omp_lock_hint_speculative = 8)4

5
parameter (omp_control_tool_kind = selected_int_kind(8))6
integer (omp_control_tool_kind) omp_control_tool_start7
parameter (omp_control_tool_start = 1)8
integer (omp_control_tool_kind) omp_control_tool_pause9
parameter (omp_control_tool_pause = 2)10
integer (omp_control_tool_kind) omp_control_tool_flush11
parameter (omp_control_tool_flush = 3)12
integer (omp_control_tool_kind) omp_control_tool_end13
parameter (omp_control_tool_end = 4)14

15
16

parameter (omp_control_tool_result_kind = selected_int_kind(8))17
integer (omp_control_tool_result_kind) omp_control_tool_notool18
parameter (omp_control_tool_notool = -2)19
integer (omp_control_tool_result_kind) omp_control_tool_nocallback20
parameter (omp_control_tool_nocallback = -1)21
integer (omp_control_tool_result_kind) omp_control_tool_success22
parameter (omp_control_tool_success = 0)23
integer (omp_control_tool_result_kind) omp_control_tool_ignored24
parameter (omp_control_tool_ignored = 1)25

26

omp_lib.h:27

! default integer type assumed below28
! default logical type assumed below29
! OpenMP API v5.0 Preview 1 (TR4)30

31
include ’omp_lib_kinds.h’32
integer openmp_version33
parameter (openmp_version = 201611)34

35
external omp_set_num_threads36
external omp_get_num_threads37
integer omp_get_num_threads38
external omp_get_max_threads39
integer omp_get_max_threads40
external omp_get_thread_num41
integer omp_get_thread_num42
external omp_get_num_procs43
integer omp_get_num_procs44
external omp_in_parallel45
logical omp_in_parallel46

APPENDIX B. INTERFACE DECLARATIONS 475

external omp_set_dynamic1
external omp_get_dynamic2
logical omp_get_dynamic3
external omp_get_cancellation4
logical omp_get_cancellation5
external omp_set_nested6
external omp_get_nested7
logical omp_get_nested8
external omp_set_schedule9
external omp_get_schedule10
external omp_get_thread_limit11
integer omp_get_thread_limit12
external omp_set_max_active_levels13
external omp_get_max_active_levels14
integer omp_get_max_active_levels15
external omp_get_level16
integer omp_get_level17
external omp_get_ancestor_thread_num18
integer omp_get_ancestor_thread_num19
external omp_get_team_size20
integer omp_get_team_size21
external omp_get_active_level22
integer omp_get_active_level23
external omp_set_default_device24
external omp_get_default_device25
integer omp_get_default_device26
external omp_get_num_devices27
integer omp_get_num_devices28
external omp_get_num_teams29
integer omp_get_num_teams30
external omp_get_team_num31
integer omp_get_team_num32
external omp_is_initial_device33
logical omp_is_initial_device34
external omp_get_initial_device35
integer omp_get_initial_device36
external omp_get_max_task_priority37
integer omp_get_max_task_priority38

39
external omp_in_final40
logical omp_in_final41

42
integer (omp_proc_bind_kind) omp_get_proc_bind43
external omp_get_proc_bind44
integer omp_get_num_places45
external omp_get_num_places46
integer omp_get_place_num_procs47

476 OpenMP API – Version 5.0 rev 1, November 2016

external omp_get_place_num_procs1
external omp_get_place_proc_ids2
integer omp_get_place_num3
external omp_get_place_num4
integer omp_get_partition_num_places5
external omp_get_partition_num_places6
external omp_get_partition_place_nums7

8
external omp_init_lock9
external omp_init_lock_with_hint10
external omp_destroy_lock11
external omp_set_lock12
external omp_unset_lock13
external omp_test_lock14
logical omp_test_lock15

16
external omp_init_nest_lock17
external omp_init_nest_lock_with_hint18
external omp_destroy_nest_lock19
external omp_set_nest_lock20
external omp_unset_nest_lock21
external omp_test_nest_lock22
integer omp_test_nest_lock23

24
external omp_get_wtick25
double precision omp_get_wtick26
external omp_get_wtime27
double precision omp_get_wtime28

29
integer omp_control_tool30
external omp_control_tool31

APPENDIX B. INTERFACE DECLARATIONS 477

B.3 Example of a Fortran Interface Declaration1

module2

! the "!" of this comment starts in column 13
!234564

5
module omp_lib_kinds6
integer, parameter :: omp_lock_kind = selected_int_kind(10)7
integer, parameter :: omp_nest_lock_kind = selected_int_kind(10)8
integer, parameter :: omp_lock_hint_kind = selected_int_kind(10)9
integer (kind=omp_lock_hint_kind), parameter ::10

& omp_lock_hint_none = 011
integer (kind=omp_lock_hint_kind), parameter ::12

& omp_lock_hint_uncontended = 113
integer (kind=omp_lock_hint_kind), parameter ::14

& omp_lock_hint_contended = 215
integer (kind=omp_lock_hint_kind), parameter ::16

& omp_lock_hint_nonspeculative = 417
integer (kind=omp_lock_hint_kind), parameter ::18

& omp_lock_hint_speculative = 819
20

integer, parameter :: omp_sched_kind = selected_int_kind(8)21
integer(kind=omp_sched_kind), parameter ::22

& omp_sched_static = 123
integer(kind=omp_sched_kind), parameter ::24

& omp_sched_dynamic = 225
integer(kind=omp_sched_kind), parameter ::26

& omp_sched_guided = 327
integer(kind=omp_sched_kind), parameter ::28

& omp_sched_auto = 429
30

integer, parameter :: omp_proc_bind_kind = selected_int_kind(8)31
integer (kind=omp_proc_bind_kind), parameter ::32

& omp_proc_bind_false = 033
integer (kind=omp_proc_bind_kind), parameter ::34

& omp_proc_bind_true = 135
integer (kind=omp_proc_bind_kind), parameter ::36

& omp_proc_bind_master = 237
integer (kind=omp_proc_bind_kind), parameter ::38

& omp_proc_bind_close = 339
integer (kind=omp_proc_bind_kind), parameter ::40

& omp_proc_bind_spread = 441

478 OpenMP API – Version 5.0 rev 1, November 2016

1
integer, parameter :: omp_control_tool_kind = selected_int_kind(8)2
integer (kind=omp_control_tool_kind), parameter ::3

& omp_control_tool_start = 14
integer (kind=omp_control_tool_kind), parameter ::5

& omp_control_tool_pause = 26
integer (kind=omp_control_tool_kind), parameter ::7

& omp_control_tool_flush = 38
integer (kind=omp_control_tool_kind), parameter ::9

& omp_control_tool_end = 410
end module omp_lib_kinds11

12
13

integer, parameter :: omp_control_tool_result_kind =14
& selected_int_kind(8)15
integer (omp_control_tool_result_kind), parameter ::16

& omp_control_tool_notool = -217
integer (omp_control_tool_result_kind), parameter ::18

& omp_control_tool_nocallback = -119
integer (omp_control_tool_result_kind), parameter ::20

& omp_control_tool_success = 021
integer (omp_control_tool_result_kind), parameter ::22

& omp_control_tool_ignored = 123
24
25

module omp_lib26
27

use omp_lib_kinds28
29

! OpenMP API v5.0 Preview 1 (TR4)30
integer, parameter :: openmp_version = 20161131

32
interface33

34
subroutine omp_set_num_threads (num_threads)35
integer, intent(in) :: num_threads36

end subroutine omp_set_num_threads37
38

function omp_get_num_threads ()39
integer :: omp_get_num_threads40

end function omp_get_num_threads41
42

function omp_get_max_threads ()43
integer :: omp_get_max_threads44

end function omp_get_max_threads45
46

function omp_get_thread_num ()47

APPENDIX B. INTERFACE DECLARATIONS 479

integer :: omp_get_thread_num1
end function omp_get_thread_num2

3
function omp_get_num_procs ()4
integer :: omp_get_num_procs5

end function omp_get_num_procs6
7

function omp_in_parallel ()8
logical :: omp_in_parallel9

end function omp_in_parallel10
11

subroutine omp_set_dynamic (dynamic_threads)12
logical, intent(in) ::dynamic_threads13

end subroutine omp_set_dynamic14
15

function omp_get_dynamic ()16
logical :: omp_get_dynamic17

end function omp_get_dynamic18
19

function omp_get_cancellation ()20
logical :: omp_get_cancellation21

end function omp_get_cancellation22
23

subroutine omp_set_nested (nested)24
logical, intent(in) :: nested25

end subroutine omp_set_nested26
27

function omp_get_nested ()28
logical :: omp_get_nested29

end function omp_get_nested30
31

subroutine omp_set_schedule (kind, chunk_size)32
use omp_lib_kinds33
integer(kind=omp_sched_kind), intent(in) :: kind34
integer, intent(in) :: chunk_size35

end subroutine omp_set_schedule36
37

subroutine omp_get_schedule (kind, chunk_size)38
use omp_lib_kinds39
integer(kind=omp_sched_kind), intent(out) :: kind40
integer, intent(out)::chunk_size41

end subroutine omp_get_schedule42
43

function omp_get_thread_limit ()44
integer :: omp_get_thread_limit45

end function omp_get_thread_limit46
47

480 OpenMP API – Version 5.0 rev 1, November 2016

subroutine omp_set_max_active_levels (max_levels)1
integer, intent(in) :: max_levels2

end subroutine omp_set_max_active_levels3
4

function omp_get_max_active_levels ()5
integer :: omp_get_max_active_levels6

end function omp_get_max_active_levels7
8

function omp_get_level()9
integer :: omp_get_level10

end function omp_get_level11
12

function omp_get_ancestor_thread_num (level)13
integer, intent(in) :: level14
integer :: omp_get_ancestor_thread_num15

end function omp_get_ancestor_thread_num16
17

function omp_get_team_size (level)18
integer, intent(in) :: level19
integer :: omp_get_team_size20

end function omp_get_team_size21
22

function omp_get_active_level ()23
integer :: omp_get_active_level24

end function omp_get_active_level25
26

function omp_in_final ()27
logical :: omp_in_final28

end function omp_in_final29
30

function omp_get_proc_bind ()31
use omp_lib_kinds32
integer(kind=omp_proc_bind_kind) :: omp_get_proc_bind33
omp_get_proc_bind = omp_proc_bind_false34

end function omp_get_proc_bind35
36

function omp_get_num_places ()37
integer :: omp_get_num_places38
end function omp_get_num_places39

40
function omp_get_place_num_procs (place_num)41
integer, intent(in) :: place_num42
integer :: omp_get_place_num_procs43
end function omp_get_place_num_procs44

45
subroutine omp_get_place_proc_ids (place_num, ids)46
integer, intent(in) :: place_num47

APPENDIX B. INTERFACE DECLARATIONS 481

integer, intent(out) :: ids(*)1
end subroutine omp_get_place_proc_ids2

3
function omp_get_place_num ()4
integer :: omp_get_place_num5
end function omp_get_place_num6

7
function omp_get_partition_num_places ()8
integer :: omp_get_partition_num_places9
end function omp_get_partition_num_places10

11
subroutine omp_get_partition_place_nums (place_nums)12
integer, intent(out) :: place_nums(*)13
end subroutine omp_get_partition_place_nums14

15
subroutine omp_set_default_device (device_num)16
integer :: device_num17

end subroutine omp_set_default_device18
19

function omp_get_default_device ()20
integer :: omp_get_default_device21

end function omp_get_default_device22
23

function omp_get_num_devices ()24
integer :: omp_get_num_devices25

end function omp_get_num_devices26
27

function omp_get_num_teams ()28
integer :: omp_get_num_teams29

end function omp_get_num_teams30
31

function omp_get_team_num ()32
integer :: omp_get_team_num33

end function omp_get_team_num34
35

function omp_is_initial_device ()36
logical :: omp_is_initial_device37

end function omp_is_initial_device38
39

function omp_get_initial_device ()40
integer :: omp_get_initial_device41

end function omp_get_initial_device42
43

function omp_get_max_task_priority ()44
integer :: omp_get_max_task_priority45

end function omp_get_max_task_priority46
47

482 OpenMP API – Version 5.0 rev 1, November 2016

subroutine omp_init_lock (svar)1
use omp_lib_kinds2
integer(kind=omp_lock_kind), intent(out) :: svar3

end subroutine omp_init_lock4
5

subroutine omp_init_lock_with_hint (svar, hint)6
use omp_lib_kinds7
integer(kind=omp_lock_kind), intent(out) :: svar8
integer(kind=omp_lock_hint_kind), intent(in) :: hint9

end subroutine omp_init_lock_with_hint10
11

subroutine omp_destroy_lock (svar)12
use omp_lib_kinds13
integer(kind=omp_lock_kind), intent(inout) :: svar14

end subroutine omp_destroy_lock15
16

subroutine omp_set_lock (svar)17
use omp_lib_kinds18
integer(kind=omp_lock_kind), intent(inout) :: svar19

end subroutine omp_set_lock20
21

subroutine omp_unset_lock (svar)22
use omp_lib_kinds23
integer(kind=omp_lock_kind), intent(inout) :: svar24

end subroutine omp_unset_lock25
26

function omp_test_lock (svar)27
use omp_lib_kinds28
logical :: omp_test_lock29
integer(kind=omp_lock_kind), intent(inout) :: svar30

end function omp_test_lock31
32

subroutine omp_init_nest_lock (nvar)33
use omp_lib_kinds34
integer(kind=omp_nest_lock_kind), intent(out) :: nvar35

end subroutine omp_init_nest_lock36
37

subroutine omp_init_nest_lock_with_hint (nvar, hint)38
use omp_lib_kinds39
integer(kind=omp_nest_lock_kind), intent(out) :: nvar40
integer(kind=omp_lock_hint_kind), intent(in) :: hint41

end subroutine omp_init_nest_lock_with_hint42
43

subroutine omp_destroy_nest_lock (nvar)44
use omp_lib_kinds45
integer(kind=omp_nest_lock_kind), intent(inout) :: nvar46

end subroutine omp_destroy_nest_lock47

APPENDIX B. INTERFACE DECLARATIONS 483

1
subroutine omp_set_nest_lock (nvar)2
use omp_lib_kinds3
integer(kind=omp_nest_lock_kind), intent(inout) :: nvar4

end subroutine omp_set_nest_lock5
6

subroutine omp_unset_nest_lock (nvar)7
use omp_lib_kinds8
integer(kind=omp_nest_lock_kind), intent(inout) :: nvar9

end subroutine omp_unset_nest_lock10
11

function omp_test_nest_lock (nvar)12
use omp_lib_kinds13
integer :: omp_test_nest_lock14
integer(kind=omp_nest_lock_kind), intent(inout) :: nvar15

end function omp_test_nest_lock16
17

function omp_get_wtick ()18
double precision :: omp_get_wtick19

end function omp_get_wtick20
21

function omp_get_wtime ()22
double precision :: omp_get_wtime23

end function omp_get_wtime24
25

function omp_control_tool (command, modifier)26
use omp_lib_kinds27
integer :: omp_control_tool28
integer(kind=omp_control_tool_kind), intent(in) :: command29
integer(kind=omp_control_tool_kind), intent(in) :: modifier30

end function omp_control_tool31
32

end interface33
34

end module omp_lib35

484 OpenMP API – Version 5.0 rev 1, November 2016

B.4 Example of a Generic Interface for a Library1

Routine2

Any of the OpenMP runtime library routines that take an argument may be extended with a generic3
interface so arguments of different KIND type can be accommodated.4

The OMP_SET_NUM_THREADS interface could be specified in the omp_lib module as follows:5

interface omp_set_num_threads

subroutine omp_set_num_threads_4(num_threads)
use omp_lib_kinds
integer(4), intent(in) :: num_threads

end subroutine omp_set_num_threads_4

subroutine omp_set_num_threads_8(num_threads)
use omp_lib_kinds
integer(8), intent(in) :: num_threads

end subroutine omp_set_num_threads_8

end interface omp_set_num_threads

APPENDIX B. INTERFACE DECLARATIONS 485

APPENDIX C1

OpenMP Implementation-Defined2

Behaviors3

This appendix summarizes the behaviors that are described as implementation defined in this API.4
Each behavior is cross-referenced back to its description in the main specification. An5
implementation is required to define and document its behavior in these cases.6

• Processor: a hardware unit that is implementation defined (see Section 1.2.1 on page 2).7

• Device: an implementation defined logical execution engine (see Section 1.2.1 on page 2).8

• Device address: an address in a device data environment (see Section 1.2.6 on page 11).9

• Memory model: the minimum size at which a memory update may also read and write back10
adjacent variables that are part of another variable (as array or structure elements) is11
implementation defined but is no larger than required by the base language (see Section 1.4.1 on12
page 18).13

• Memory model: Implementations are allowed to relax the ordering imposed by implicit flush14
operations when the result is only visible to programs using non-sequentially consistent atomic15
directives (see Section 1.4.4 on page 21).16

• Internal control variables: the initial values of dyn-var, nthreads-var, run-sched-var,17
def-sched-var, bind-var, stacksize-var, wait-policy-var, thread-limit-var, max-active-levels-var,18
place-partition-var, and default-device-var are implementation defined. The method for19
initializing a target device’s internal control variable is implementation defined (see Section 2.3.220
on page 40).21

• Dynamic adjustment of threads: providing the ability to dynamically adjust the number of22
threads is implementation defined . Implementations are allowed to deliver fewer threads (but at23
least one) than indicated in Algorithm 2-1 even if dynamic adjustment is disabled (see24
Section 2.5.1 on page 55).25

486

• Thread affinity: For the close thread affinity policy, if T > P and P does not divide T evenly,1
the exact number of threads in a particular place is implementation defined. For the spread2
thread affinity, if T > P and P does not divide T evenly, the exact number of threads in a3
particular subpartition is implementation defined. The determination of whether the affinity4
request can be fulfilled is implementation defined. If not, the number of threads in the team and5
their mapping to places become implementation defined (see Section 2.5.2 on page 57).6

• Loop directive: the integer type (or kind, for Fortran) used to compute the iteration count of a7
collapsed loop is implementation defined. The effect of the schedule(runtime) clause8
when the run-sched-var ICV is set to auto is implementation defined. The simd_width used9
when a simd schedule modifier is specified is implementation defined (see Section 2.7.1 on10
page 62).11

• sections construct: the method of scheduling the structured blocks among threads in the12
team is implementation defined (see Section 2.7.2 on page 71).13

• single construct: the method of choosing a thread to execute the structured block is14
implementation defined (see Section 2.7.3 on page 74)15

• simd construct: the integer type (or kind, for Fortran) used to compute the iteration count for16
the collapsed loop is implementation defined. The number of iterations that are executed17
concurrently at any given time is implementation defined. If the alignment parameter is not18
specified in the aligned clause, the default alignments for the SIMD instructions are19
implementation defined (see Section 2.8.1 on page 80).20

• declare simd construct: if the parameter of the simdlen clause is not a constant positive21
integer expression, the number of concurrent arguments for the function is implementation22
defined. If the alignment parameter of the aligned clause is not specified, the default23
alignments for SIMD instructions are implementation defined (see Section 2.8.2 on page 84).24

• taskloop construct: The number of loop iterations assigned to a task created from a25
taskloop construct is implementation defined, unless the grainsize or num_tasks26
clauses are specified. The integer type (or kind, for Fortran) used to compute the iteration count27
for the collapsed loop is implementation defined (see Section 2.9.2 on page 95).28

• is_device_ptr clause: Support for pointers created outside of the OpenMP device data29
management routines is implementation defined (see Section 2.10.5 on page 116).30

• target construct: the effect of invoking a virtual member function of an object on a device31
other than the device on which the object was constructed is implementation defined (see32
Section 2.10.5 on page 116).33

• teams construct: the number of teams that are created is implementation defined but less than34
or equal to the value of the num_teams clause if specified. The maximum number of threads35
participating in the contention group that each team initiates is implementation defined but less36
than or equal to the value of the thread_limit clause if specified (see Section 2.10.8 on37
page 129).38

APPENDIX C. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 487

• distribute construct: the integer type (or kind, for Fortran) used to compute the iteration1
count for the collapsed loop is implementation defined (see Section 2.10.9 on page 132).2

• distribute construct: If no dist_schedule clause is specified then the schedule for the3
distribute construct is implementation defined (see Section 2.10.9 on page 132).4

• critical construct: the effect of using a hint clause is implementation defined (see5
Section 2.13.2 on page 167).6

• atomic construct: a compliant implementation may enforce exclusive access between7
atomic regions that update different storage locations. The circumstances under which this8
occurs are implementation defined. If the storage location designated by x is not size-aligned9
(that is, if the byte alignment of x is not a multiple of the size of x), then the behavior of the10
atomic region is implementation defined (see Section 2.13.7 on page 178).11

Fortran

• Data-sharing attributes: The data-sharing attributes of dummy arguments without the VALUE12
attribute are implementation-defined if the associated actual argument is shared, except for the13
conditions specified (see Section 2.15.1.2 on page 209).14

• threadprivate directive: if the conditions for values of data in the threadprivate objects of15
threads (other than an initial thread) to persist between two consecutive active parallel regions do16
not all hold, the allocation status of an allocatable variable in the second region is17
implementation defined (see Section 2.15.2 on page 210).18

• Runtime library definitions: it is implementation defined whether the include file omp_lib.h19
or the module omp_lib (or both) is provided. It is implementation defined whether any of the20
OpenMP runtime library routines that take an argument are extended with a generic interface so21
arguments of different KIND type can be accommodated (see Section 3.1 on page 260).22

Fortran

• omp_set_num_threads routine: if the argument is not a positive integer the behavior is23
implementation defined (see Section 3.2.1 on page 262).24

• omp_set_schedule routine: for implementation specific schedule types, the values and25
associated meanings of the second argument are implementation defined. (see Section 3.2.12 on26
page 274).27

• omp_set_max_active_levels routine: when called from within any explicit parallel28
region the binding thread set (and binding region, if required) for the29
omp_set_max_active_levels region is implementation defined and the behavior is30
implementation defined. If the argument is not a non-negative integer then the behavior is31
implementation defined (see Section 3.2.15 on page 277).32

488 OpenMP API – Version 5.0 rev 1, November 2016

• omp_get_max_active_levels routine: when called from within any explicit parallel1
region the binding thread set (and binding region, if required) for the2
omp_get_max_active_levels region is implementation defined (see Section 3.2.16 on3
page 279).4

• omp_get_place_proc_ids routine: the meaning of the nonnegative numerical identifiers5
returned by the omp_get_place_proc_ids routine is implementation defined (see6
Section 3.2.25 on page 289).7

• omp_get_initial_device routine: the value of the device number is implementation8
defined (see Section 3.2.35 on page 298).9

• omp_init_lock_with_hint and omp_init_nest_lock_with_hint routines: if10
hints are stored with a lock variable, the effect of the hints on the locks are implementation11
defined (see Section 3.3.2 on page 304).12

• omp_target_memcpy_rect routine: the maximum number of dimensions supported is13
implementation defined, but must be at least three (see Section 3.5.5 on page 322).14

• OMP_SCHEDULE environment variable: if the value does not conform to the specified format15
then the result is implementation defined (see Section 5.1 on page 434).16

• OMP_NUM_THREADS environment variable: if any value of the list specified in the17
OMP_NUM_THREADS environment variable leads to a number of threads that is greater than the18
implementation can support, or if any value is not a positive integer, then the result is19
implementation defined (see Section 5.2 on page 435).20

• OMP_PROC_BIND environment variable: if the value is not true, false, or a comma21
separated list of master, close, or spread, the behavior is implementation defined. The22
behavior is also implementation defined if an initial thread cannot be bound to the first place in23
the OpenMP place list (see Section 5.4 on page 436).24

• OMP_DYNAMIC environment variable: if the value is neither true nor false the behavior is25
implementation defined (see Section 5.3 on page 436).26

• OMP_NESTED environment variable: if the value is neither true nor false the behavior is27
implementation defined (see Section 5.6 on page 439).28

• OMP_STACKSIZE environment variable: if the value does not conform to the specified format29
or the implementation cannot provide a stack of the specified size then the behavior is30
implementation defined (see Section 5.7 on page 440).31

• OMP_WAIT_POLICY environment variable: the details of the ACTIVE and PASSIVE32
behaviors are implementation defined (see Section 5.8 on page 441).33

• OMP_MAX_ACTIVE_LEVELS environment variable: if the value is not a non-negative integer34
or is greater than the number of parallel levels an implementation can support then the behavior35
is implementation defined (see Section 5.9 on page 442).36

APPENDIX C. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 489

• OMP_THREAD_LIMIT environment variable: if the requested value is greater than the number1
of threads an implementation can support, or if the value is not a positive integer, the behavior of2
the program is implementation defined (see Section 5.10 on page 442).3

• OMP_PLACES environment variable: the meaning of the numbers specified in the environment4
variable and how the numbering is done are implementation defined. The precise definitions of5
the abstract names are implementation defined. An implementation may add6
implementation-defined abstract names as appropriate for the target platform. When creating a7
place list of n elements by appending the number n to an abstract name, the determination of8
which resources to include in the place list is implementation defined. When requesting more9
resources than available, the length of the place list is also implementation defined. The behavior10
of the program is implementation defined when the execution environment cannot map a11
numerical value (either explicitly defined or implicitly derived from an interval) within the12
OMP_PLACES list to a processor on the target platform, or if it maps to an unavailable processor.13
The behavior is also implementation defined when the OMP_PLACES environment variable is14
defined using an abstract name (see Section 5.5 on page 437).15

• OMPT thread states: The set of OMPT thread states supported is implementation defined (see16
Section 4.4.2 on page 342).17

• ompt_callback_idle tool callback: if a tool attempts to register a callback with this string18
name using the runtime entry point ompt_callback_set, it is implementation defined19
whether the registered callback may never or sometimes invoke this callback for the associated20
events (see Table 4.2 on page 337)21

• ompt_callback_sync_region_wait tool callback: if a tool attempts to register a22
callback with this string name using the runtime entry point ompt_callback_set, it is23
implementation defined whether the registered callback may never or sometimes invoke this24
callback for the associated events (see Table 4.2 on page 337)25

• ompt_callback_mutex_released tool callback: if a tool attempts to register a callback26
with this string name using the runtime entry point ompt_callback_set, it is27
implementation defined whether the registered callback may never or sometimes invoke this28
callback for the associated events (see Table 4.2 on page 337)29

• ompt_callback_task_dependences tool callback: if a tool attempts to register a30
callback with this string name using the runtime entry point ompt_callback_set, it is31
implementation defined whether the registered callback may never or sometimes invoke this32
callback for the associated events (see Table 4.2 on page 337)33

• ompt_callback_task_dependence tool callback: if a tool attempts to register a34
callback with this string name using the runtime entry point ompt_callback_set, it is35
implementation defined whether the registered callback may never or sometimes invoke this36
callback for the associated events (see Table 4.2 on page 337)37

• ompt_callback_work tool callback: if a tool attempts to register a callback with this string38
name using the runtime entry point ompt_callback_set, it is implementation defined39

490 OpenMP API – Version 5.0 rev 1, November 2016

whether the registered callback may never or sometimes invoke this callback for the associated1
events (see Table 4.2 on page 337)2

• ompt_callback_master tool callback: if a tool attempts to register a callback with this3
string name using the runtime entry point ompt_callback_set, it is implementation defined4
whether the registered callback may never or sometimes invoke this callback for the associated5
events (see Table 4.2 on page 337)6

• ompt_callback_target_map tool callback: if a tool attempts to register a callback with7
this string name using the runtime entry point ompt_callback_set, it is implementation8
defined whether the registered callback may never or sometimes invoke this callback for the9
associated events (see Table 4.2 on page 337)10

• ompt_callback_sync_region tool callback: if a tool attempts to register a callback with11
this string name using the runtime entry point ompt_callback_set, it is implementation12
defined whether the registered callback may never or sometimes invoke this callback for the13
associated events (see Table 4.2 on page 337)14

• ompt_callback_lock_init tool callback: if a tool attempts to register a callback with15
this string name using the runtime entry point ompt_callback_set, it is implementation16
defined whether the registered callback may never or sometimes invoke this callback for the17
associated events (see Table 4.2 on page 337)18

• ompt_callback_lock_destroy tool callback: if a tool attempts to register a callback19
with this string name using the runtime entry point ompt_callback_set, it is20
implementation defined whether the registered callback may never or sometimes invoke this21
callback for the associated events (see Table 4.2 on page 337)22

• ompt_callback_mutex_acquire tool callback: if a tool attempts to register a callback23
with this string name using the runtime entry point ompt_callback_set, it is24
implementation defined whether the registered callback may never or sometimes invoke this25
callback for the associated events (see Table 4.2 on page 337)26

• ompt_callback_mutex_acquired tool callback: if a tool attempts to register a callback27
with this string name using the runtime entry point ompt_callback_set, it is28
implementation defined whether the registered callback may never or sometimes invoke this29
callback for the associated events (see Table 4.2 on page 337)30

• ompt_callback_nest_lock tool callback: if a tool attempts to register a callback with31
this string name using the runtime entry point ompt_callback_set, it is implementation32
defined whether the registered callback may never or sometimes invoke this callback for the33
associated events (see Table 4.2 on page 337)34

• ompt_callback_flush tool callback: if a tool attempts to register a callback with this35
string name using the runtime entry point ompt_callback_set, it is implementation defined36
whether the registered callback may never or sometimes invoke this callback for the associated37
events (see Table 4.2 on page 337)38

APPENDIX C. OPENMP IMPLEMENTATION-DEFINED BEHAVIORS 491

• ompt_callback_cancel tool callback: if a tool attempts to register a callback with this1
string name using the runtime entry point ompt_callback_set, it is implementation defined2
whether the registered callback may never or sometimes invoke this callback for the associated3
events (see Table 4.2 on page 337)4

• Device tracing: Whether a target device supports tracing or not is implementation defined; if a5
target device does not support tracing, a NULL may be supplied for the lookup function to a6
tool’s device initializer (see Section 4.2.4 on page 338).7

• ompt_set_trace_ompt runtime entry point: it is implementation defined whether a8
device-specific tracing interface will define this runtime entry point, indicating that it can collect9
traces in OMPT format (see Section 4.2.4 on page 338).10

• ompt_buffer_get_record_ompt runtime entry point: it is implementation defined11
whether a device-specific tracing interface will define this runtime entry point, indicating that it12
can collect traces in OMPT format (see Section 4.2.4 on page 338).13

492 OpenMP API – Version 5.0 rev 1, November 2016

APPENDIX D1

Task Frame Management for the2

Tool Interface3

FIGURE D.1: Thread call stacks implementing nested parallelism annotated with frame
information for the OMPT tool interface.

The top half of Figure D.1 illustrates a conceptualization of a program executing a nested parallel4
region, where code A, B, and C represent, respectively, one or more procedure frames of code5
associated with an initial task, an outer parallel region, and an inner parallel region. The bottom6
half of Figure D.1 illustrates the stacks of two threads executing the nested parallel region. In the7

493

illustration, stacks grow downward—a call to a function adds a new frame to the stack below the1
frame of its caller. When thread 1 encounters the outer-parallel region “b", it calls a routine in the2
OpenMP runtime to create a new parallel region. The OpenMP runtime sets the enter_frame field3
in the ompt_frame_t for the initial task executing code A to frame f1—the user frame in the4
initial task that calls the runtime. The ompt_frame_t for the initial task is labeled r1 in5
Figure D.1. In this figure, three consecutive runtime system frames, labeled “par” with frame6
identifiers f2–f4, are on the stack. Before starting the implicit task for parallel region “b" in thread7
1, the runtime sets the exit_frame in the implicit task’s ompt_frame_t (labeled r2) to f4.8
Execution of application code for parallel region “b” begins on thread 1 when the runtime system9
invokes application code B (frame f5) from frame f4.10

Let us focus now on thread 2, an OpenMP thread. Figure D.1 shows this worker executing work for11
the outer-parallel region “b." On the OpenMP thread’s stack is a runtime frame labeled “idle,”12
where the OpenMP thread waits for work. When work becomes available, the runtime system13
invokes a function to dispatch it. While dispatching parallel work might involve a chain of several14
calls, here we assume that the length of this chain is 1 (frame f7). Before thread 2 exits the runtime15
to execute an implicit task for parallel region “b,” the runtime sets the exit_frame field of the16
implicit task’s ompt_frame_t (labeled r3) to frame f7. When thread 2 later encounters the17
inner-parallel region “c," as execution returns to the runtime, the runtime fills in the enter_frame18
field of the current task’s ompt_frame_t (labeled r3) to frame f8—the frame that invoked the19
runtime. Before the task for parallel region “c” is invoked on thread 2, the runtime system sets the20
exit_frame field of the ompt_frame_t (labeled r4) for the implicit task for “c” to frame f11.21
Execution of application code for parallel region “c” begins on thread 2 when the runtime system22
invokes application code C (frame f12) from frame f11.23

Below the stack for each thread in Figure D.1, the figure shows the ompt_frame_t information24
obtained by calls to ompt_get_task_info made on each thread for the stack state shown. We25
show the ID of the ompt_frame_t object returned at each ancestor level. Note that thread 2 has26
task frame information for three levels of tasks, whereas thread 1 has only two.27

Cross References28

• ompt_frame_t, see Section 4.4.4 on page 349.29

494 OpenMP API – Version 5.0 rev 1, November 2016

APPENDIX E1

Features History2

This appendix summarizes the major changes between recent versions of the OpenMP API since3
version 2.5.4

E.1 Version 4.5 to 5.0 Differences5

• The list items allowable in a depend clause on a task generating construct was extended,6
including for C/C++ allowing any lvalue expression (see Section 2.1 on page 28 and7
Section 2.13.10 on page 194).8

• To support taskloop reductions, the reduction and in_reduction clauses were added to9
the taskloop (see Section 2.9.2 on page 95) and taskloop simd (see Section 2.9.3 on10
page 100) constructs.11

• The depend clause was added to the taskwait construct (see Section 2.13.5 on page 174).12

• To support conditional assignment to lastprivate variables, the conditional modifier was13
added to the lastprivate clause (see Section 2.15.3.5 on page 225).14

• To support task reductions, the task_reduction clause was added to the taskgroup15
construct (see Section 2.15.4.5 on page 238) and the in_reduction clause to the task16
construct (see Section 2.15.4.6 on page 239).17

• To reduce programmer effort implicit declare target directives for some functions (C, C++,18
Fortran) and subroutines (Fortran) were added (see Section 2.10.5 on page 116 and19
Section 2.10.7 on page 124).20

• Support for a tool interface was added (see Section 4 on page 331).21

495

E.2 Version 4.0 to 4.5 Differences1

• Support for several features of Fortran 2003 was added (see Section 1.7 on page 23 for features2
that are still not supported).3

• A parameter was added to the ordered clause of the loop construct (see Section 2.7.1 on4
page 62) and clauses were added to the ordered construct (see Section 2.13.9 on page 190) to5
support doacross loop nests and use of the simd construct on loops with loop-carried backward6
dependences.7

• The linear clause was added to the loop construct (see Section 2.7.1 on page 62).8

• The simdlen clause was added to the simd construct (see Section 2.8.1 on page 80) to support9
specification of the exact number of iterations desired per SIMD chunk.10

• The priority clause was added to the task construct (see Section 2.9.1 on page 91) to11
support hints that specify the relative execution priority of explicit tasks. The12
omp_get_max_task_priority routine was added to return the maximum supported13
priority value (see Section 3.2.36 on page 299) and the OMP_MAX_TASK_PRIORITY14
environment variable was added to control the maximum priority value allowed (see15
Section 5.14 on page 445).16

• Taskloop constructs (see Section 2.9.2 on page 95 and Section 2.9.3 on page 100) were added to17
support nestable parallel loops that create OpenMP tasks.18

• To support interaction with native device implementations, the use_device_ptr clause was19
added to the target data construct (see Section 2.10.2 on page 107) and the20
is_device_ptr clause was added to the target construct (see Section 2.10.5 on page 116).21

• The nowait and depend clauses were added to the target construct (see Section 2.10.5 on22
page 116) to improve support for asynchronous execution of target regions.23

• The private, firstprivate and defaultmap clauses were added to the target24
construct (see Section 2.10.5 on page 116).25

• The declare target directive was extended to allow mapping of global variables to be26
deferred to specific device executions and to allow an extended-list to be specified in C/C++ (see27
Section 2.10.7 on page 124).28

• To support unstructured data mapping for devices, the target enter data (see29
Section 2.10.3 on page 109) and target exit data (see Section 2.10.4 on page 112)30
constructs were added and the map clause (see Section 2.15.6.1 on page 245) was updated.31

• To support a more complete set of device construct shortcuts, the target parallel (see32
Section 2.11.5 on page 146), target parallel loop (see Section 2.11.6 on page 148), target parallel33
loop SIMD (see Section 2.11.7 on page 149), and target simd (see Section 2.11.8 on34
page 151), combined constructs were added.35

496 OpenMP API – Version 5.0 rev 1, November 2016

• The if clause was extended to take a directive-name-modifier that allows it to apply to1
combined constructs (see Section 2.12 on page 164).2

• The hint clause was addded to the critical construct (see Section 2.13.2 on page 167).3

• The source and sink dependence types were added to the depend clause (see4
Section 2.13.10 on page 194) to support doacross loop nests.5

• The implicit data-sharing attribute for scalar variables in target regions was changed to6
firstprivate (see Section 2.15.1.1 on page 205).7

• Use of some C++ reference types was allowed in some data sharing attribute clauses (see8
Section 2.15.3 on page 215).9

• Semantics for reductions on C/C++ array sections were added and restrictions on the use of10
arrays and pointers in reductions were removed (see Section 2.15.4.4 on page 236).11

• The ref, val, and uval modifiers were added to the linear clause (see Section 2.15.3.6 on12
page 228).13

• Support was added to the map clauses to handle structure elements (see Section 2.15.6.1 on14
page 245).15

• Query functions for OpenMP thread affinity were added (see Section 3.2.23 on page 287 to16
Section 3.2.28 on page 292).17

• The lock API was extended with lock routines that support storing a hint with a lock to select a18
desired lock implementation for a lock’s intended usage by the application code (see19
Section 3.3.2 on page 304).20

• Device memory routines were added to allow explicit allocation, deallocation, memory transfers21
and memory associations (see Section 3.5 on page 317).22

• C/C++ Grammar (previously Appendix B) was moved to a separate document.23

E.3 Version 3.1 to 4.0 Differences24

• Various changes throughout the specification were made to provide initial support of Fortran25
2003 (see Section 1.7 on page 23).26

• C/C++ array syntax was extended to support array sections (see Section 2.4 on page 48).27

• The proc_bind clause (see Section 2.5.2 on page 57), the OMP_PLACES environment28
variable (see Section 5.5 on page 437), and the omp_get_proc_bind runtime routine (see29
Section 3.2.22 on page 285) were added to support thread affinity policies.30

APPENDIX E. FEATURES HISTORY 497

• SIMD constructs were added to support SIMD parallelism (see Section 2.8 on page 80).1

• Device constructs (see Section 2.10 on page 106), the OMP_DEFAULT_DEVICE environment2
variable (see Section 5.13 on page 444), the omp_set_default_device,3
omp_get_default_device, omp_get_num_devices, omp_get_num_teams,4
omp_get_team_num, and omp_is_initial_device routines were added to support5
execution on devices.6

• Implementation defined task scheduling points for untied tasks were removed (see Section 2.9.67
on page 104).8

• The depend clause (see Section 2.13.10 on page 194) was added to support task dependences.9

• The taskgroup construct (see Section 2.13.6 on page 176) was added to support more flexible10
deep task synchronization.11

• The reduction clause (see Section 2.15.4.4 on page 236) was extended and the12
declare reduction construct (see Section 2.16 on page 250) was added to support user13
defined reductions.14

• The atomic construct (see Section 2.13.7 on page 178) was extended to support atomic swap15
with the capture clause, to allow new atomic update and capture forms, and to support16
sequentially consistent atomic operations with a new seq_cst clause.17

• The cancel construct (see Section 2.14.1 on page 197), the cancellation point18
construct (see Section 2.14.2 on page 202), the omp_get_cancellation runtime routine19
(see Section 3.2.9 on page 271) and the OMP_CANCELLATION environment variable (see20
Section 5.11 on page 442) were added to support the concept of cancellation.21

• The OMP_DISPLAY_ENV environment variable (see Section 5.12 on page 443) was added to22
display the value of ICVs associated with the OpenMP environment variables.23

• Examples (previously Appendix A) were moved to a separate document.24

E.4 Version 3.0 to 3.1 Differences25

• The final and mergeable clauses (see Section 2.9.1 on page 91) were added to the task26
construct to support optimization of task data environments.27

• The taskyield construct (see Section 2.9.4 on page 102) was added to allow user-defined task28
scheduling points.29

• The atomic construct (see Section 2.13.7 on page 178) was extended to include read, write,30
and capture forms, and an update clause was added to apply the already existing form of the31
atomic construct.32

498 OpenMP API – Version 5.0 rev 1, November 2016

• Data environment restrictions were changed to allow intent(in) and const-qualified types1
for the firstprivate clause (see Section 2.15.3.4 on page 223).2

• Data environment restrictions were changed to allow Fortran pointers in firstprivate (see3
Section 2.15.3.4 on page 223) and lastprivate (see Section 2.15.3.5 on page 225).4

• New reduction operators min and max were added for C and C++5

• The nesting restrictions in Section 2.17 on page 256 were clarified to disallow closely-nested6
OpenMP regions within an atomic region. This allows an atomic region to be consistently7
defined with other OpenMP regions so that they include all code in the atomic construct.8

• The omp_in_final runtime library routine (see Section 3.2.21 on page 284) was added to9
support specialization of final task regions.10

• The nthreads-var ICV has been modified to be a list of the number of threads to use at each11
nested parallel region level. The value of this ICV is still set with the OMP_NUM_THREADS12
environment variable (see Section 5.2 on page 435), but the algorithm for determining the13
number of threads used in a parallel region has been modified to handle a list (see Section 2.5.114
on page 55).15

• The bind-var ICV has been added, which controls whether or not threads are bound to processors16
(see Section 2.3.1 on page 39). The value of this ICV can be set with the OMP_PROC_BIND17
environment variable (see Section 5.4 on page 436).18

• Descriptions of examples (previously Appendix A) were expanded and clarified.19

• Replaced incorrect use of omp_integer_kind in Fortran interfaces (see Section B.3 on20
page 478 and Section B.4 on page 485) with selected_int_kind(8).21

E.5 Version 2.5 to 3.0 Differences22

The concept of tasks has been added to the OpenMP execution model (see Section 1.2.5 on page 923
and Section 1.3 on page 15).24

• The task construct (see Section 2.9 on page 91) has been added, which provides a mechanism25
for creating tasks explicitly.26

• The taskwait construct (see Section 2.13.5 on page 174) has been added, which causes a task27
to wait for all its child tasks to complete.28

• The OpenMP memory model now covers atomicity of memory accesses (see Section 1.4.1 on29
page 18). The description of the behavior of volatile in terms of flush was removed.30

APPENDIX E. FEATURES HISTORY 499

• In Version 2.5, there was a single copy of the nest-var, dyn-var, nthreads-var and run-sched-var1
internal control variables (ICVs) for the whole program. In Version 3.0, there is one copy of2
these ICVs per task (see Section 2.3 on page 39). As a result, the omp_set_num_threads,3
omp_set_nested and omp_set_dynamic runtime library routines now have specified4
effects when called from inside a parallel region (see Section 3.2.1 on page 262,5
Section 3.2.7 on page 268 and Section 3.2.10 on page 271).6

• The definition of active parallel region has been changed: in Version 3.0 a parallel7
region is active if it is executed by a team consisting of more than one thread (see Section 1.2.28
on page 2).9

• The rules for determining the number of threads used in a parallel region have been modified10
(see Section 2.5.1 on page 55).11

• In Version 3.0, the assignment of iterations to threads in a loop construct with a static12
schedule kind is deterministic (see Section 2.7.1 on page 62).13

• In Version 3.0, a loop construct may be associated with more than one perfectly nested loop. The14
number of associated loops may be controlled by the collapse clause (see Section 2.7.1 on15
page 62).16

• Random access iterators, and variables of unsigned integer type, may now be used as loop17
iterators in loops associated with a loop construct (see Section 2.7.1 on page 62).18

• The schedule kind auto has been added, which gives the implementation the freedom to choose19
any possible mapping of iterations in a loop construct to threads in the team (see Section 2.7.1 on20
page 62).21

• Fortran assumed-size arrays now have predetermined data-sharing attributes (see22
Section 2.15.1.1 on page 205).23

• In Fortran, firstprivate is now permitted as an argument to the default clause (see24
Section 2.15.3.1 on page 216).25

• For list items in the private clause, implementations are no longer permitted to use the storage26
of the original list item to hold the new list item on the master thread. If no attempt is made to27
reference the original list item inside the parallel region, its value is well defined on exit28
from the parallel region (see Section 2.15.3.3 on page 218).29

• In Version 3.0, Fortran allocatable arrays may appear in private, firstprivate,30
lastprivate, reduction, copyin and copyprivate clauses. (see Section 2.15.2 on31
page 210, Section 2.15.3.3 on page 218, Section 2.15.3.4 on page 223, Section 2.15.3.5 on32
page 225, Section 2.15.4.4 on page 236, Section 2.15.5.1 on page 240 and Section 2.15.5.2 on33
page 242).34

• In Version 3.0, static class members variables may appear in a threadprivate directive (see35
Section 2.15.2 on page 210).36

500 OpenMP API – Version 5.0 rev 1, November 2016

• Version 3.0 makes clear where, and with which arguments, constructors and destructors of1
private and threadprivate class type variables are called (see Section 2.15.2 on page 210,2
Section 2.15.3.3 on page 218, Section 2.15.3.4 on page 223, Section 2.15.5.1 on page 240 and3
Section 2.15.5.2 on page 242).4

• The runtime library routines omp_set_schedule and omp_get_schedule have been5
added; these routines respectively set and retrieve the value of the run-sched-var ICV (see6
Section 3.2.12 on page 274 and Section 3.2.13 on page 276).7

• The thread-limit-var ICV has been added, which controls the maximum number of threads8
participating in the OpenMP program. The value of this ICV can be set with the9
OMP_THREAD_LIMIT environment variable and retrieved with the10
omp_get_thread_limit runtime library routine (see Section 2.3.1 on page 39,11
Section 3.2.14 on page 277 and Section 5.10 on page 442).12

• The max-active-levels-var ICV has been added, which controls the number of nested active13
parallel regions. The value of this ICV can be set with the OMP_MAX_ACTIVE_LEVELS14
environment variable and the omp_set_max_active_levels runtime library routine, and15
it can be retrieved with the omp_get_max_active_levels runtime library routine (see Section 2.3.116
on page 39, Section 3.2.15 on page 277, Section 3.2.16 on page 279 and Section 5.9 on page 442).17

• The stacksize-var ICV has been added, which controls the stack size for threads that the OpenMP18
implementation creates. The value of this ICV can be set with the OMP_STACKSIZE19
environment variable (see Section 2.3.1 on page 39 and Section 5.7 on page 440).20

• The wait-policy-var ICV has been added, which controls the desired behavior of waiting threads.21
The value of this ICV can be set with the OMP_WAIT_POLICY environment variable (see22
Section 2.3.1 on page 39 and Section 5.8 on page 441).23

• The omp_get_level runtime library routine has been added, which returns the number of24
nested parallel regions enclosing the task that contains the call (see Section 3.2.17 on25
page 280).26

• The omp_get_ancestor_thread_num runtime library routine has been added, which27
returns, for a given nested level of the current thread, the thread number of the ancestor (see28
Section 3.2.18 on page 281).29

• The omp_get_team_size runtime library routine has been added, which returns, for a given30
nested level of the current thread, the size of the thread team to which the ancestor belongs (see31
Section 3.2.19 on page 282).32

• The omp_get_active_level runtime library routine has been added, which returns the33
number of nested, active parallel regions enclosing the task that contains the call (see34
Section 3.2.20 on page 283).35

• In Version 3.0, locks are owned by tasks, not by threads (see Section 3.3 on page 301).36

APPENDIX E. FEATURES HISTORY 501

Index

Symbols
_OPENMP macro, 443
_OPENMP macro, 36

A
affinity, 57
array sections, 48
atomic, 178
atomic construct, 488
attribute clauses, 215
attributes, data-mapping, 244
attributes, data-sharing, 205
auto, 66

B
barrier, 170
barrier, implicit, 172

C
C/C++ stub routines, 448
cancel, 197
cancellation constructs, 197

cancel, 197
cancellation point, 202

cancellation point, 202
canonical loop form, 58
clauses

attribute data-sharing, 215
collapse, 62, 64
copyin, 240
copyprivate, 242
data copying, 240
data-sharing, 215
default, 216
defaultmap, 249
depend, 194
firstprivate, 223
if Clause, 164

in_reduction, 239
lastprivate, 225
linear, 228
map, 245
private, 218
reduction, 236
schedule, 64
shared, 217
task_reduction, 238

combined constructs, 140
parallel loop construct, 140
parallel loop SIMD construct, 145
parallel sections, 142
parallel workshare, 143
target parallel, 146
target parallel loop, 148
target parallel loop SIMD, 149
target simd, 151
target teams, 152
target teams distribute, 156
target teams distribute parallel loop

construct, 159
target teams distribute parallel loop

SIMD construct, 162
target teams distribute simd,

157
teams distribute, 153
teams distribute parallel loop construct,

158
teams distribute parallel loop SIMD

construct, 161
teams distribute simd, 154

compilation sentinels, 37
compliance, 23
conditional compilation, 36
constructs

atomic, 178

502

barrier, 170
cancel, 197
cancellation constructs, 197
cancellation point, 202
combined constructs, 140
critical, 167
declare simd, 84
declare target, 124
device constructs, 106
distribute, 132
distribute parallel do, 136
distribute parallel do simd,

138
distribute parallel for, 136
distribute parallel for simd,

138
distribute parallel loop, 136
distribute parallel loop SIMD, 138
distribute simd, 135
do Fortran, 62
flush, 186
for, C/C++, 62
loop, 62
Loop SIMD, 89
master, 165
ordered, 190
parallel, 50
parallel do Fortran, 140
parallel for C/C++, 140
parallel loop construct, 140
parallel loop SIMD construct, 145
parallel sections, 142
parallel workshare, 143
sections, 71
simd, 80
single, 74
target, 116
target data, 107
target enter data, 109
target exit data, 112
target parallel, 146
target parallel do, 148
target parallel do simd, 149

target parallel for, 148
target parallel for simd, 149
target parallel loop, 148
target parallel loop SIMD, 149
target simd, 151
target teams, 152
target teams distribute, 156
target teams distribute parallel loop

construct, 159
target teams distribute parallel loop

SIMD construct, 162
target teams distribute simd,

157
target update, 121
task, 91
taskgroup, 176
tasking constructs, 91
taskloop, 95
taskloop simd, 100
taskwait, 174
taskyield, 102
teams, 129
teams distribute, 153
teams distribute parallel loop construct,

158
teams distribute parallel loop SIMD

construct, 161
teams distribute simd, 154
workshare, 76
worksharing, 61

controlling OpenMP thread affinity, 57
copyin, 240
copyprivate, 242
critical, 167

D
data copying clauses, 240
data environment, 204
data terminology, 11
data-mapping rules and clauses, 244
data-sharing attribute clauses, 215
data-sharing attribute rules, 205
declare reduction, 250
declare simd, 84

Index 503

declare target, 124
default, 216
defaultmap, 249
depend, 194
device constructs, 106

declare target, 124
device constructs, 106
distribute, 132
distribute parallel loop, 136
distribute parallel loop SIMD, 138
distribute simd, 135
target, 116
target update, 121
teams, 129

device data environments, 19, 109, 112
device memory routines, 317
directive format, 28
directives, 27

declare reduction, 250
declare target, 124
threadprivate, 210

distribute, 132
distribute parallel loop construct, 136
distribute parallel loop SIMD construct, 138
distribute simd, 135
do, Fortran, 62
do simd, 89
dynamic, 66
dynamic thread adjustment, 486

E
environment variables, 432

OMP_CANCELLATION, 442
OMP_DEFAULT_DEVICE, 444
OMP_DISPLAY_ENV, 443
OMP_DYNAMIC, 436
OMP_MAX_ACTIVE_LEVELS, 442
OMP_MAX_TASK_PRIORITY, 445
OMP_NESTED, 439
OMP_NUM_THREADS, 435
OMP_PLACES, 437
OMP_PROC_BIND, 436
OMP_SCHEDULE, 434
OMP_STACKSIZE, 440

OMP_THREAD_LIMIT, 442
OMP_TOOL, 445
OMP_TOOL_LIBRARIES, 446
OMP_WAIT_POLICY, 441

event callback registration, 335
event callback signatures, 366
execution environment routines, 261
execution model, 15

F
features history, 495
firstprivate, 223
fixed source form conditional compilation

sentinels, 37
fixed source form directives, 31
flush, 186
flush operation, 19
for, C/C++, 62
for simd, 89
frames, 349
free source form conditional compilation

sentinel, 37
free source form directives, 32

G
glossary, 2
guided, 66

H
header files, 260, 469
history of features, 495

I
ICVs (internal control variables), 39
if Clause, 164
implementation, 486
implementation terminology, 13
implicit barrier, 172
in_reduction, 239
include files, 260, 469
interface declarations, 469
internal control variables, 486
internal control variables (ICVs), 39
introduction, 1

504 OpenMP API – Version 5.0 rev 1, November 2016

L
lastprivate, 225
linear, 228
lock routines, 301
loop, 62
loop SIMD Construct, 89
loop terminology, 8

M
map, 245
master, 165
master and synchronization constructs and

clauses, 165
memory model, 18
modifying and retrieving ICV values, 42
modifying ICV’s, 40

N
nesting of regions, 256
normative references, 23

O
omp_get_num_teams, 295
OMP_CANCELLATION, 442
OMP_DEFAULT_DEVICE, 444
omp_destroy_lock, 307
omp_destroy_nest_lock, 307
OMP_DISPLAY_ENV, 443
OMP_DYNAMIC, 436
omp_get_active_level, 283
omp_get_ancestor_thread_num,

281
omp_get_cancellation, 271
omp_get_default_device, 294
omp_get_dynamic, 270
omp_get_initial_device, 298
omp_get_level, 280
omp_get_max_active_levels, 279
omp_get_max_task_priority, 299
omp_get_max_threads, 264
omp_get_nested, 273
omp_get_num_devices, 295
omp_get_num_places, 287
omp_get_num_procs, 267

omp_get_num_threads, 263
omp_get_partition_num_places,

291
omp_get_partition_place_nums,

292
omp_get_place_num, 290
omp_get_place_num_procs, 288
omp_get_place_proc_ids, 289
omp_get_proc_bind, 285
omp_get_schedule, 276
omp_get_team_num, 297
omp_get_team_size, 282
omp_get_thread_limit, 277
omp_get_thread_num, 266
omp_get_wtick, 316
omp_get_wtime, 314
omp_in_final, 284
omp_in_parallel, 267
omp_init_lock, 303, 304
omp_init_nest_lock, 303, 304
omp_is_initial_device, 298
OMP_MAX_ACTIVE_LEVELS, 442
OMP_MAX_TASK_PRIORITY, 445
OMP_NESTED, 439
OMP_NUM_THREADS, 435
OMP_PLACES, 437
OMP_PROC_BIND, 436
OMP_SCHEDULE, 434
omp_set_default_device, 293
omp_set_dynamic, 268
omp_set_lock, 308
omp_set_max_active_levels, 277
omp_set_nest_lock, 308
omp_set_nested, 271
omp_set_num_threads, 262
omp_set_schedule, 274
OMP_STACKSIZE, 440
omp_target_alloc, 317
omp_target_associate_ptr, 324
omp_target_disassociate_ptr,

326
omp_target_free, 318
omp_target_is_present, 320

Index 505

omp_target_memcpy, 321
omp_target_memcpy_rect, 322
omp_test_lock, 312
omp_test_nest_lock, 312
OMP_THREAD_LIMIT, 442
OMP_TOOL, 445
OMP_TOOL_LIBRARIES, 446
omp_unset_lock, 310
omp_unset_nest_lock, 310
OMP_WAIT_POLICY, 441
ompt_callback_buffer_complete_t,

393
ompt_callback_buffer_request_t,

392
ompt_callback_cancel_t, 395
ompt_callback_control_tool_t,

394
ompt_callback_device_initialize_t,

396
ompt_callback_flush_t, 386
ompt_callback_idle_t, 368
ompt_callback_implicit_task_t,

377
ompt_callback_lock_destroy_t,

380
ompt_callback_lock_init_t, 379
ompt_callback_master_t, 371
ompt_callback_mutex_acquire_t,

381
ompt_callback_mutex_t, 383
ompt_callback_nest_lock_t, 384
ompt_callback_parallel_begin_t,

369
ompt_callback_parallel_end_t,

370
ompt_callback_sync_region_t,

378
ompt_callback_target_data_op_t,

388
ompt_callback_target_map_t, 390
ompt_callback_target_submit_t,

391
ompt_callback_target_t, 387

ompt_callback_task_create_t,
373

ompt_callback_task_dependence_t,
375

ompt_callback_task_dependences_t,
374

ompt_callback_task_schedule_t,
376

ompt_callback_thread_begin_t,
366

ompt_callback_thread_end_t, 367
ompt_callback_work_t, 385
OpenMP compliance, 23
ordered, 190

P
parallel, 50
parallel loop construct, 140
parallel loop SIMD construct, 145
parallel sections, 142
parallel workshare, 143
private, 218

R
read, atomic, 178
reduction, 236
reduction clauses, 231
runtime library definitions, 260
runtime library routines, 259

S
scheduling, 104
sections, 71
shared, 217
simd, 80
SIMD Constructs, 80
Simple Lock Routines, 301
single, 74
stand-alone directives, 35
stub routines, 448
synchronization constructs, 165
synchronization terminology, 9

T
target, 116

506 OpenMP API – Version 5.0 rev 1, November 2016

target data, 107
target memory routines, 317
target parallel, 146
target parallel loop construct, 148
target parallel loop SIMD construct, 149
target simd, 151
target teams, 152
target teams distribute, 156
target teams distribute parallel loop

construct, 159
target teams distribute parallel loop SIMD

construct, 162
target teams distribute simd, 157
target update, 121
task, 91
task frame management, 493
task scheduling, 104
task_reduction, 238
taskgroup, 176
tasking constructs, 91
tasking terminology, 9
taskloop, 95
taskloop simd, 100
taskwait, 174
taskyield, 102
teams, 129
teams distribute, 153
teams distribute parallel loop construct, 158
teams distribute parallel loop SIMD

construct, 161
teams distribute simd, 154
thread affinity, 57
threadprivate, 210
timer, 314
timing routines, 314
tool control, 327
tool initialization, 333
tool support, 331
tracing device activity, 338

U
update, atomic, 178

V
variables, environment, 432

W
wait identifier, 354
wall clock timer, 314
workshare, 76
worksharing

constructs, 61
parallel, 140
scheduling, 70

worksharing constructs, 61
write, atomic, 178

Index 507

	TR4_Cover_Page
	openmp
	Introduction
	Scope
	Glossary
	Threading Concepts
	OpenMP Language Terminology
	Loop Terminology
	Synchronization Terminology
	Tasking Terminology
	Data Terminology
	Implementation Terminology
	Tool Terminology

	Execution Model
	Memory Model
	Structure of the OpenMP Memory Model
	Device Data Environments
	The Flush Operation
	OpenMP Memory Consistency

	Tool Interface
	OpenMP Compliance
	Normative References
	Organization of this Document

	Directives
	Directive Format
	Fixed Source Form Directives
	Free Source Form Directives
	Stand-Alone Directives

	Conditional Compilation
	Fixed Source Form Conditional Compilation Sentinels
	Free Source Form Conditional Compilation Sentinel

	Internal Control Variables
	ICV Descriptions
	ICV Initialization
	Modifying and Retrieving ICV Values
	How ICVs are Scoped
	How the Per-Data Environment ICVs Work

	ICV Override Relationships

	Array Sections
	parallel Construct
	Determining the Number of Threads for a parallel Region
	Controlling OpenMP Thread Affinity

	Canonical Loop Form
	Worksharing Constructs
	Loop Construct
	Determining the Schedule of a Worksharing Loop

	sections Construct
	single Construct
	workshare Construct

	SIMD Constructs
	simd Construct
	declare simd Construct
	Loop SIMD Construct

	Tasking Constructs
	task Construct
	taskloop Construct
	taskloop simd Construct
	taskyield Construct
	Initial Task
	Task Scheduling

	Device Constructs
	Device Initialization
	target data Construct
	target enter data Construct
	target exit data Construct
	target Construct
	target update Construct
	declare target Directive
	teams Construct
	distribute Construct
	distribute simd Construct
	Distribute Parallel Loop Construct
	Distribute Parallel Loop SIMD Construct

	Combined Constructs
	Parallel Loop Construct
	parallel sections Construct
	parallel workshare Construct
	Parallel Loop SIMD Construct
	target parallel Construct
	Target Parallel Loop Construct
	Target Parallel Loop SIMD Construct
	target simd Construct
	target teams Construct
	teams distribute Construct
	teams distribute simd Construct
	target teams distribute Construct
	target teams distribute simd Construct
	Teams Distribute Parallel Loop Construct
	Target Teams Distribute Parallel Loop Construct
	Teams Distribute Parallel Loop SIMD Construct
	Target Teams Distribute Parallel Loop SIMD Construct

	if Clause
	Master and Synchronization Constructs and Clauses
	master Construct
	critical Construct
	barrier Construct
	Implicit Barriers
	taskwait Construct
	taskgroup Construct
	atomic Construct
	flush Construct
	ordered Construct
	depend Clause

	Cancellation Constructs
	cancel Construct
	cancellation point Construct

	Data Environment
	Data-sharing Attribute Rules
	Data-sharing Attribute Rules for Variables Referenced in a Construct
	Data-sharing Attribute Rules for Variables Referenced in a Region but not in a Construct

	threadprivate Directive
	Data-Sharing Attribute Clauses
	default Clause
	shared Clause
	private Clause
	firstprivate Clause
	lastprivate Clause
	linear Clause

	Reduction Clauses
	Properties Common To All Reduction Clauses
	Reduction Scoping Clauses
	Reduction Participating Clauses
	reduction Clause
	task_reduction Clause
	in_reduction Clause

	Data Copying Clauses
	copyin Clause
	copyprivate Clause

	Data-mapping Attribute Rules and Clauses
	map Clause
	defaultmap Clause

	declare reduction Directive
	Nesting of Regions

	Runtime Library Routines
	Runtime Library Definitions
	Execution Environment Routines
	omp_set_num_threads
	omp_get_num_threads
	omp_get_max_threads
	omp_get_thread_num
	omp_get_num_procs
	omp_in_parallel
	omp_set_dynamic
	omp_get_dynamic
	omp_get_cancellation
	omp_set_nested
	omp_get_nested
	omp_set_schedule
	omp_get_schedule
	omp_get_thread_limit
	omp_set_max_active_levels
	omp_get_max_active_levels
	omp_get_level
	omp_get_ancestor_thread_num
	omp_get_team_size
	omp_get_active_level
	omp_in_final
	omp_get_proc_bind
	omp_get_num_places
	omp_get_place_num_procs
	omp_get_place_proc_ids
	omp_get_place_num
	omp_get_partition_num_places
	omp_get_partition_place_nums
	omp_set_default_device
	omp_get_default_device
	omp_get_num_devices
	omp_get_num_teams
	omp_get_team_num
	omp_is_initial_device
	omp_get_initial_device
	omp_get_max_task_priority

	Lock Routines
	omp_init_lock and omp_init_nest_lock
	omp_init_lock_with_hint and omp_init_nest_lock_with_hint
	omp_destroy_lock and omp_destroy_nest_lock
	omp_set_lock and omp_set_nest_lock
	omp_unset_lock and omp_unset_nest_lock
	omp_test_lock and omp_test_nest_lock

	Timing Routines
	omp_get_wtime
	omp_get_wtick

	Device Memory Routines
	omp_target_alloc
	omp_target_free
	omp_target_is_present
	omp_target_memcpy
	omp_target_memcpy_rect
	omp_target_associate_ptr
	omp_target_disassociate_ptr

	Tool Control Routines

	Tool Support
	Overview
	Activating a Tool
	Determining Whether a Tool Should be Initialized
	Tool Initialization
	Binding Entry Points in the OMPT Callback Interface

	Monitoring Activity on the Host
	Tracing Activity on Target Devices

	Finalizing a Tool
	Data Types
	Tool Initialization and Finalization
	Thread States
	Work States
	Barrier Wait States
	Task Wait States
	Mutex Wait States
	Target Wait States
	Miscellaneous States

	Callbacks
	Frames
	Tracing Support
	Record Kind
	Native Record Kind
	Native Record Abstract Type
	Record Type

	Miscellaneous Type Definitions
	ompt_callback_t
	ompt_id_t
	ompt_data_t
	ompt_wait_id_t
	ompt_device_t
	ompt_device_time_t
	ompt_buffer_t
	ompt_buffer_cursor_t
	ompt_task_dependence_t
	ompt_thread_type_t
	ompt_scope_endpoint_t
	ompt_sync_region_kind_t
	ompt_target_data_op_t
	ompt_work_type_t
	ompt_mutex_kind_t
	ompt_native_mon_flags_t
	ompt_task_type_t
	ompt_task_status_t
	ompt_target_type_t
	ompt_invoker_t
	ompt_target_map_flag_t
	ompt_task_dependence_flag_t
	ompt_cancel_flag_t
	ompt_hwid_t

	Tool Interface Routine
	ompt_start_tool

	Tool Callback Signatures and Trace Records
	Initialization and Finalization Callback Signature
	ompt_initialize_t
	ompt_finalize_t

	Event Callback Signatures and Trace Records
	ompt_callback_thread_begin_t
	ompt_callback_thread_end_t
	ompt_callback_idle_t
	ompt_callback_parallel_begin_t
	ompt_callback_parallel_end_t
	ompt_callback_master_t
	ompt_callback_task_create_t
	ompt_callback_task_dependences_t
	ompt_callback_task_dependence_t
	ompt_callback_task_schedule_t
	ompt_callback_implicit_task_t
	ompt_callback_sync_region_t
	ompt_callback_lock_init_t
	ompt_callback_lock_destroy_t
	ompt_callback_mutex_acquire_t
	ompt_callback_mutex_t
	ompt_callback_nest_lock_t
	ompt_callback_work_t
	ompt_callback_flush_t
	ompt_callback_target_t
	ompt_callback_target_data_op_t
	ompt_callback_target_map_t
	ompt_callback_target_submit_t
	ompt_callback_buffer_request_t
	ompt_callback_buffer_complete_t
	ompt_callback_control_tool_t
	ompt_callback_cancel_t
	ompt_callback_device_initialize_t

	Runtime Entry Points for Tools
	Entry Points in the OMPT Callback Interface
	ompt_enumerate_states_t
	ompt_enumerate_mutex_impls_t
	ompt_callback_set_t
	ompt_callback_get_t
	ompt_get_thread_data_t
	ompt_get_num_places_t
	ompt_get_place_proc_ids_t
	ompt_get_place_num_t
	ompt_get_partition_place_nums_t
	ompt_get_proc_id_t
	ompt_get_state_t
	ompt_get_parallel_info_t
	ompt_get_task_info_t
	ompt_get_target_info_t
	ompt_get_num_devices_t

	Entry Points in the OMPT Device Tracing Interface
	ompt_get_device_time_t
	ompt_translate_time_t
	ompt_set_trace_ompt_t
	ompt_set_trace_native_t
	ompt_start_trace_t
	ompt_pause_trace_t
	ompt_stop_trace_t
	ompt_advance_buffer_cursor_t
	ompt_get_record_type_t
	ompt_get_record_ompt_t
	ompt_get_record_native_t
	ompt_get_record_abstract_t

	Lookup Entry Point
	ompt_function_lookup_t

	Environment Variables
	OMP_SCHEDULE
	OMP_NUM_THREADS
	OMP_DYNAMIC
	OMP_PROC_BIND
	OMP_PLACES
	OMP_NESTED
	OMP_STACKSIZE
	OMP_WAIT_POLICY
	OMP_MAX_ACTIVE_LEVELS
	OMP_THREAD_LIMIT
	OMP_CANCELLATION
	OMP_DISPLAY_ENV
	OMP_DEFAULT_DEVICE
	OMP_MAX_TASK_PRIORITY
	OMP_TOOL
	OMP_TOOL_LIBRARIES

	Stubs for Runtime Library Routines
	C/C++ Stub Routines
	Fortran Stub Routines

	Interface Declarations
	Example of the omp.h Header File
	Example of an Interface Declaration include File
	Example of a Fortran Interface Declaration module
	Example of a Generic Interface for a Library Routine

	OpenMP Implementation-Defined Behaviors
	Task Frame Management for the Tool Interface
	Features History
	Version 4.5 to 5.0 Differences
	Version 4.0 to 4.5 Differences
	Version 3.1 to 4.0 Differences
	Version 3.0 to 3.1 Differences
	Version 2.5 to 3.0 Differences

	Index

