Kiran Chandramohan
24 Jun 2022

© 2022 Arm ' ;

Contents

¢ Introduction

**» Highlevel Flow of the Compiler

** OpenMP Dialect

*** Representation of Worksharing loops, Collapse clause, Privatisation
¢ Schedule/Status

** Command Guide

¢ How to contribute?

2 ©2022Arm a rm

Introduction

¢ Flang is the Fortran frontend of LLVM
<+Flang started off as the F18 project at Nvidia in collaboration with US DoE
It became part of LLVM on April 9, 2020
<Arm, AMD, Huawei, Linaro, US DoE labs and a few individuals are contributing

<Intends to replace the Classic Flang project (github.com/flang-compiler/flang)
< Classic Flang is derived from pgfortran/nvfortran
<+ AMD, Arm, Huawei Fortran frontends based on Classic Flang
» All are expected to switch to llvm/flang

¢ Built using modern technologies
<Written in C++17
+Uses new frameworks like MLIR defining Compiler Intermediate Representations

» Available from the Ilvm github repository
whttps://github.com/llvm/llvm-project/tree/main/flang

3 ©2022Arm a rm

https://github.com/llvm/llvm-project/tree/main/flang

4

Introduction - OpenMP

¢ Support for OpenMP is important in HPC

¢ Plan to support the latest standards
< Latest is OpenMP 5.2

+* Classic Flang has partial support for OpenMP 4.5
<Priority to get to this point of support

++ Started with non-target constructs

** OpenACC is also important
<+Both OpenMP and OpenACC in Flang have similar flow

** Also shares code with Clang

© 2022 Arm

arm

Introduction - Sharing Code - Clang

** LLVM has the Clang frontend for C/C++
** Clang has support for OpenMP
*** Avoid redundant code and information about OpenMP standard

<A single file captures information about the clauses in Constructs

+E.g Usage: For performing semantic checks
< Share code that generates LLVM code for OpenMP constructs, calls to the OpenMP runtime, Outlining etc

< OpenMP IRBuilder project

5 ©2022Arm a rm

Introduction Sharing code - Clang

def oMpP_Task : Directive<'"task'"> {
Tet allowedClauses = [
VersionedClause<OMPC_Private>,
versionedClause<OMPC_FirstPrivate>,

versionedClause<OMPC_Shared>, “* Entry from the file (OMP.td)
VersionedClause<OMPC_Untied>, llvm/include/llvm/Frontend/OpenMP/OMP.td
versionedClause<OMPC_Mergeable>, < What clauses are allowed

vVersionedClause<OMPC_Depend>,

VersionedClause<OMPC_InReduction>, < What clauses are allowed starting from version

versionedClause<OMPC_Allocate>, N (5.0 here)
versionedClause<OMPC_Detach, 50>, | <« Wwhat clauses are only allowed once?
versionedClause<OMPC_Affinity, 50>

1;

Tet allowedOnceClauses = [
VersionedClause<OMPC_pefault>,
VersionedClause<OMPC_If>,
VersionedClause<OMPC_Final>,
vVersionedClause<OMPC_Priority>

6 ©§0223rn: arm

7

Flang: High Level Flow

Fortran Program

Parsing & Semantic
Analysis

Flang Parse Tree

MLIR lowering

MLIR Translation

LLVM IR

© 2022 Arm

Runtime

¢ Traditional Compiler Flow

<+ Takes in source program (Fortran)
< Generates LLVM IR

»» Difference with Clang
<+Clang lowers from AST to LLVM IR
<+Has a high-level IR : Fortran IR (FIR)

¢ Uses MLIR infrastructure for FIR

arm

8

Flang: OpenMP High Level Flow

Fortran Program

Parsing & Semantic Analysis

Flang Parse Tree

MLIR lowering

FIR + OpenMP

Runtime

OpenMP IRBuilder

MLIR Translation

LLVM IR

© 2022 Arm

Flang parse-tree augmented to represent
OpenMP

Semantic checks augmented to check OpenMP
standard spec

Parse-tree is lowered to a mix of FIR + OpenMP
+ other native MLIR dialects

LLVM IR generated from this mix using the
OpenMP IRBuilder

Two major components
<+0OpenMP Dialect : Spend some time
+0OpenMP IRBuilder : Opaque Box

arm

Example : OpenMP High Level Flow

Fortran source with OpenMP Flang parse tree MLIR: FIR + OpenMP

| ... func @_QQmain() {
| | ExecutionPartConstruct -> %0 = fir.alloca f32 {bindc_name =

ExecutableConstruct -> a", unig_name ="_QEa"}

OpenMPConstruct -> o . ~
OpenMPBlockConstruct ”‘%3'1 = f_|r.aIIoca f32"{b|ndf:|_name =
b", unig_name ="_QEb"}

| | | OmpBeginBlockDirective : _
%2 = fir.alloca f32 {bindc_name =

||| | OmpB!ockplrectlve -> "c" unig_name ="_QEc"}
llvm::omp::Directive = parallel
omp.parallel {

ISomp parallel | | | | OmpClauselist ->
c=a+b %3 = firload %0 : Ifir.ref<f32>

| | | Block

ISomp end parallel : _ . _
| | | | ExecutionPartConstruct -> %4 = fir.load %1 : Ifirref<f32>

end ExecutableConstruct -> ActionStmt - %5 = addf %3, %4 : f32

> AssignmentStmt = 'c=a+b’ _ _
fir.store %5 to %2 : Ifir.ref<f32>

omp.terminator
| | | OmpEndBlockDirective P

| | | | OmpBlockDirective -> }
llvm::omp::Directive = parallel return

| | | | OmpClauselList -> }
| EndProgramStmt ->

9 © 2022 Arm

Example : OpenMP High Level Flow

MLIR: FIR + OpenMP dialect LLVM IR

omp_parallel:

func @_QQmain() {
o : e ~ call void (%struct.ident_t*, i32, void (i32*, i32*, ...)*, ...)
"%O 3 rlr.alloca f32 {bindc_name ="a", uniq_name = @__kmpc_fork_call(...)@_QQmain..omp_par to void (i32*,
_QEa"} i32%, ...)*), float* %1, float* %2, float* %3)

%1 = fir.alloca f32 {bindc_name ="b", unig_name = Use OpenMP
"_QEb"} IRBuilder

o £ . —n_n 2 —
%2 = fir.alloca f32 {bindc_name ="c", unig_name = gy

"_QEc"} o : . : :
define internal void @_QQmain..omp_par(i32* noalias
omp.parallel { %tid.addr, i32* noalias %zero.addr, float* %0, float* %1,

%3 = fir.load %0 : fir.ref<f32> float* %2) #0 {
%4 = firload %1 : 'fir.ref<f32>
%5 = addf %3, %4 : f32

fir.store %5 to %2 : !fir.ref<f32>

omp.terminator

omp.par.region:
%4 = load float, float* %0, align 4
%5 = load float, float* %1, align 4
%6 = fadd float %4, %5

} store float %6, float* %2, align 4
return

}

10 © 2022 Arm

OpenMP Dialect in MLIR

** MLIR is a generic framework for building IRs

<Can declaratively write definition of operations
<+Generates parsers, printers, builder functions

** OpenMP dialect is a readable high-level IR
<+Models the standard
<+Not specific for Fortran

¢ Operations corresponding to constructs

<+Clauses represented as operands and can be specified in any order ()
< Sometimes can be operations (reduction)

+»» Different kinds of operations
< Region
<+ With : Parallel, Master, Worksharing loop etc
< Without : Barrier

<+ Like containers : Enclose source code : Parallel
<+Loop like : Includes the Fortran loop in the operation : Worksharing loop

11 © 2022 Arm a rm

OpenMP Barrier: Definition of a simple operation

-- Operation corresponding to barrier (omp.barrier)

-- Declaratively defined
def OpenMP_Dialect : Dialect {

let name = "omp": % Definition of OpenMP Dialect,
} OpenMP_Op
class OpenMP_Op<string mnemonic, < Definition of barrier operation
list<OpTrait> traits = []> : instantiates an OpenMP_Op that

includes the name/mnemonic (barrier)

% A summary and description for
generating documentation

% An assembly format that is used to
construct the printer, parser and
builder for this Operation

% Simple Operation: No inputs/outputs
% Format just includes the name

% A dictionary of opaque attributes
can also be added

12 © 222 Arm a rm

Op<OpenMP_Dialect, mnemonic, traits>;

def BarrierOp : OpenMP_Op<"barrier"> {

Representation of OpenMP Worksharing Loop

def wsLoopOp : OpenMP_Op<"wsloop", [..,
AllTypesMatch<["1owerBound”, "upperBound"”, "step"]>]1> {

Tet arguments = (ins variadic<IntLikeType>:$lowerBound,
variadic<IntLikeType>:$upperBound,
variadic<IntLikeType>:$step,
UnitAttr:$nowait,

unitAttr:$inclusive);
let regions = (region AnyRegion:$region);

?et assemblyFormat = [{
oilist(..
| collapse "(* $collapse_val)~
| nowait $nowait

| ..
) “for custom<wsLoopControl>($region, $lowerBound, $upperBound, $step,

type($step), $inclusive) attr-dict
315

13 } © 2022 Arm

arm

Representation of OpenMP Worksharing Loop

Fortran + OpenMP source OpenMP MLIR

omp.wsloop nowait for (%i) : i32 = (%c1) to (%a)
inclusive step (%c1) {

end do

ISomp end do nowait

14 © 2022 Arm a r m

Representation of Collapse

Fortran + OpenMP FIR + OpenMP

ISomp do collapse(3)
doi=1,a

doj=1,b - :
dok=1 omp.wsloop for (%i, %j, %k) : 132 = (%c1, %cl, %cl) to (%a,
ok=1¢C %b,%c) inclusive step (%c1, %cl, %cl) {

end do }...
end do
end do

15 © 2022 Arm a r m

16

Representation of Privatisation

<+Not all OpenMP details are represented in the dialect

< Privatisation is handled while lowering from parse-tree to MLIR
<Longer term plan is to cover this in the OpenMP dialect

< Privatisation creates copies of the variables

<+Copies can be allocated on the stack

<+Examples of Private and Firstprivate in the next two slides

© 2022 Arm

arm

Privatisation — Private Clause

Fortran + OpenMP FIR + OpenMP

%0 = fir.alloca i32 {bindc_name = "x", unig_name ="_QFEx"}

integer :: x omp.parallel {
%1 = fir.alloca i32 {bindc_name = "x", pinned, uniq_name =
II_QFEXH}

!Somp end paraIIeI omp.terminator
}

ISomp parallel private(x)

17 © 2022 Arm a r m

Privatisation — Firstprivate Clause

Fortran + OpenMP FIR + OpenMP

%0 = fir.alloca i32 {bindc_name = "x", unig_name ="_QFEx"}
omp.parallel {
. %1 = fir.alloca i32 {bindc_name = "x", pinned, uniq_name =
Integer :: X " QFEX")
%2 = firload %0 : !fir.ref<i32>
fir.store %2 to %1 : !fir.ref<i32>

ISomp parallel firstprivate(x)

ISomp end parallel
omp.barrier

omp.terminator

}

18 © 2022 Arm a r m

Events/Schedule

Threadprivate,
F18/Flang project OpenMP Dialect Single, Master, Production Quality
announced proposed SRR EEsE: Critical, OpenMP 1.1
| May. 2019 Jan. 2020 Feb. 2021 Jul. 2022 (exp)
Apr. 2018 Sep. 2019 May. 2020 ~ Mid 2021to Mid Late. 2022 (exp)
i i ‘ 2022 ‘
OpenMP IRBuilder QpenMP IRBui!der + Worksharing loop OpenMP 1.1 Feature
proposed First patch adding Complete

dialect (barrier)

19 © 2022 Arm a r' m

Status - Standards

<Reaching close to OpenMP 1.1 completion
+Includes a lot of the basic constructs

<+ A few non OpenMP 1.1 constructs are also in progress
<+ 0OpenMP 2.5 has the workshare construct specifically for Fortran : Not started

<+ 0OpenMP 3.0
< Task construct : In progress
<+ 0OpenMP 4.0
< Simd, Taskgroup, Target : In progress

Completed

Mostly complete

In Progress

OpenMP 1.1 Parallel, Do, Single,
Critical, Sections,
Master, Barrier, Flush

Atomic, Copyin,
Privatisation

Reduction, lastprivate

OpenMP 3.0/4.0

Task, Taskgroup

Task, Taskgroup, Simd,
Target, Target Data
Map, Cancel,
Cancellation

20 © 2022 Arm

arm

Status - Applications

<+ Tested with a proxy application — SNAP
<+ https://github.com/lanl/SNAP
< Around 60 OpenMP directives
< Only uses Fortran 95 and OpenMP 1.1
<+ Exposed a few issues with
< OpenMP regions containing unstructured code (cycle, goto)
> Privatising index variables
< Reprivatising variables
<+More testing ongoing with Spec OMP 2012 and Spec 2017 speed

L)

L)

.0

*

21 © 2022 Arm a rm

https://github.com/lanl/SNAP

Command Guide

+Shown some intermediate representations of the compiler
<+ This slide gives the commands needed to generate these
<+flang-new is the name of the driver
<+ Use -fopenmp flag to enable OpenMP processing
<+ Use -fcl for generating intermediate representations
< Emit parse-tree
<./bin/flang-new -fc1 -fdebug-dump-parse-tree -fopenmp file.f90
<Perform parsing and semantic checks
<./bin/flang-new -fsyntax-only -fopenmp file.f90
“Generate FIR + OpenMP
<./bin/flang-new -fc1 -emit-fir -fopenmp file.f90
“Generate LLVM IR
<./bin/flang-new -S -emit-llvm -fopenmp file.f90
<+Flang compiler is not yet fully open for users
<+ Use "-flang-experimental-exec’ flag to generate executables
<./bin/flang-new -flang-experimental-exec -fopenmp file.f90

22 © 2022 Arm a r m

How to contribute?

¢ Open-source: Welcome to contribute
< Contributors
<+ AMD, Arm, BSC, Nvidia, Huawei, US Labs (ANL, BNL, LANL, ORNL), couple of hobby developers

<+ LLVM contribution process
<https://llvm.org/docs/Contributing.html#how-to-submit-a-patch

*** Project Management via google docs spreadsheet
<+Separate sheets for Parsing, Semantics, OpenMP MLIR, lowerings, OpenMP IRBuilder
<+ Currently has entries as per OpenMP 5.0
*https://docs.google.com/spreadsheets/d/1FvHPuSkGbl4mQZRAwCIndvQx9dQboffiD-
xD0ogxgUO0/edit#gid=0

*»» Bi-weekly meeting on Thursday (4pm UK time)
whttps://docs.google.com/document/d/1yA-Melf6RYY-ZXpdol0t7YoDoqgtwAyBhFLr5thu5pFl/edit

23 © 2022 Arm a r m

https://llvm.org/docs/Contributing.html
https://docs.google.com/spreadsheets/d/1FvHPuSkGbl4mQZRAwCIndvQx9dQboffiD-xD0oqxgU0/edit
https://docs.google.com/document/d/1yA-MeJf6RYY-ZXpdol0t7YoDoqtwAyBhFLr5thu5pFI/edit

© 2022 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

