
© 2022 Arm

Kiran Chandramohan
24 Jun 2022

OpenMP in Flang : An
Intro

OpenMP Users Monthly Telecon

2 © 2022 Arm

Contents

v Introduction
v Highlevel Flow of the Compiler
v OpenMP Dialect
v Representation of Worksharing loops, Collapse clause, Privatisation
v Schedule/Status
v Command Guide
v How to contribute?

3 © 2022 Arm

Introduction
v Flang is the Fortran frontend of LLVM

vFlang started off as the F18 project at Nvidia in collaboration with US DoE
vIt became part of LLVM on April 9, 2020
vArm, AMD, Huawei, Linaro, US DoE labs and a few individuals are contributing
vIntends to replace the Classic Flang project (github.com/flang-compiler/flang)

vClassic Flang is derived from pgfortran/nvfortran
vAMD, Arm, Huawei Fortran frontends based on Classic Flang

v All are expected to switch to llvm/flang

v Built using modern technologies
vWritten in C++17
vUses new frameworks like MLIR defining Compiler Intermediate Representations

v Available from the llvm github repository
vhttps://github.com/llvm/llvm-project/tree/main/flang

https://github.com/llvm/llvm-project/tree/main/flang

4 © 2022 Arm

Introduction - OpenMP
v Support for OpenMP is important in HPC
v Plan to support the latest standards

vLatest is OpenMP 5.2

v Classic Flang has partial support for OpenMP 4.5
vPriority to get to this point of support

v Started with non-target constructs
v OpenACC is also important

vBoth OpenMP and OpenACC in Flang have similar flow

v Also shares code with Clang

5 © 2022 Arm

Introduction - Sharing Code - Clang
v LLVM has the Clang frontend for C/C++
v Clang has support for OpenMP

vAvoid redundant code and information about OpenMP standard
vA single file captures information about the clauses in Constructs

vE.g Usage: For performing semantic checks
vShare code that generates LLVM code for OpenMP constructs, calls to the OpenMP runtime, Outlining etc

vOpenMP IRBuilder project

6 © 2022 Arm

Introduction Sharing code - Clang

v Entry from the file (OMP.td)
llvm/include/llvm/Frontend/OpenMP/OMP.td

v What clauses are allowed
v What clauses are allowed starting from version

N (5.0 here)
v What clauses are only allowed once?

def OMP_Task : Directive<"task"> {
let allowedClauses = [

VersionedClause<OMPC_Private>,
VersionedClause<OMPC_FirstPrivate>,
VersionedClause<OMPC_Shared>,
VersionedClause<OMPC_Untied>,
VersionedClause<OMPC_Mergeable>,
VersionedClause<OMPC_Depend>,
VersionedClause<OMPC_InReduction>,
VersionedClause<OMPC_Allocate>,
VersionedClause<OMPC_Detach, 50>,
VersionedClause<OMPC_Affinity, 50>

];
let allowedOnceClauses = [

VersionedClause<OMPC_Default>,
VersionedClause<OMPC_If>,
VersionedClause<OMPC_Final>,
VersionedClause<OMPC_Priority>

];
}

7 © 2022 Arm

Flang: High Level Flow

v Traditional Compiler Flow
vTakes in source program (Fortran)
vGenerates LLVM IR

v Difference with Clang
vClang lowers from AST to LLVM IR
vHas a high-level IR : Fortran IR (FIR)

v Uses MLIR infrastructure for FIR

Parsing & Semantic
Analysis

Fortran Program

Flang Parse Tree

MLIR Translation

FIR

LLVM IR

MLIR lowering

Runtime

8 © 2022 Arm

Flang: OpenMP High Level Flow

v Flang parse-tree augmented to represent
OpenMP

v Semantic checks augmented to check OpenMP
standard spec

v Parse-tree is lowered to a mix of FIR + OpenMP
+ other native MLIR dialects

v LLVM IR generated from this mix using the
OpenMP IRBuilder

v Two major components
vOpenMP Dialect : Spend some time
vOpenMP IRBuilder : Opaque Box

Parsing & Semantic Analysis

Fortran Program

Flang Parse Tree

FIR + OpenMP

LLVM IR

MLIR lowering

MLIR Translation OpenMP IRBuilder

Runtime

9 © 2022 Arm

Example : OpenMP High Level Flow

…
!$omp parallel
c = a + b

!$omp end parallel
end

| …
| | ExecutionPartConstruct ->
ExecutableConstruct ->
OpenMPConstruct ->
OpenMPBlockConstruct
| | | OmpBeginBlockDirective
| | | | OmpBlockDirective ->
llvm::omp::Directive = parallel
| | | | OmpClauseList ->
| | | Block
| | | | ExecutionPartConstruct ->
ExecutableConstruct -> ActionStmt -
> AssignmentStmt = 'c=a+b’
……
| | | OmpEndBlockDirective
| | | | OmpBlockDirective ->
llvm::omp::Directive = parallel
| | | | OmpClauseList ->
| EndProgramStmt ->

func @_QQmain() {
%0 = fir.alloca f32 {bindc_name =

"a", uniq_name = "_QEa"}
%1 = fir.alloca f32 {bindc_name =

"b", uniq_name = "_QEb"}
%2 = fir.alloca f32 {bindc_name =

"c", uniq_name = "_QEc"}
omp.parallel {
%3 = fir.load %0 : !fir.ref<f32>
%4 = fir.load %1 : !fir.ref<f32>
%5 = addf %3, %4 : f32
fir.store %5 to %2 : !fir.ref<f32>
omp.terminator

}
return

}

Fortran source with OpenMP Flang parse tree MLIR: FIR + OpenMP

10 © 2022 Arm

Example : OpenMP High Level Flow

func @_QQmain() {
%0 = fir.alloca f32 {bindc_name = "a", uniq_name =

"_QEa"}
%1 = fir.alloca f32 {bindc_name = "b", uniq_name =

"_QEb"}
%2 = fir.alloca f32 {bindc_name = "c", uniq_name =

"_QEc"}
omp.parallel {
%3 = fir.load %0 : !fir.ref<f32>
%4 = fir.load %1 : !fir.ref<f32>
%5 = addf %3, %4 : f32
fir.store %5 to %2 : !fir.ref<f32>
omp.terminator

}
return

}

omp_parallel:
call void (%struct.ident_t*, i32, void (i32*, i32*, ...)*, ...)

@__kmpc_fork_call(…)@_QQmain..omp_par to void (i32*,
i32*, ...)*), float* %1, float* %2, float* %3)

; Function Attrs: norecurse nounwind
define internal void @_QQmain..omp_par(i32* noalias
%tid.addr, i32* noalias %zero.addr, float* %0, float* %1,
float* %2) #0 {
…
omp.par.region:

%4 = load float, float* %0, align 4
%5 = load float, float* %1, align 4
%6 = fadd float %4, %5
store float %6, float* %2, align 4

…
}

MLIR: FIR + OpenMP dialect LLVM IR

Use OpenMP
IRBuilder

11 © 2022 Arm

OpenMP Dialect in MLIR
v MLIR is a generic framework for building IRs

vCan declaratively write definition of operations
vGenerates parsers, printers, builder functions

v OpenMP dialect is a readable high-level IR
vModels the standard
vNot specific for Fortran

v Operations corresponding to constructs
vClauses represented as operands and can be specified in any order (oilist)

vSometimes can be operations (reduction)

v Different kinds of operations
vRegion

vWith : Parallel, Master, Worksharing loop etc
vWithout : Barrier

vLike containers : Enclose source code : Parallel
vLoop like : Includes the Fortran loop in the operation : Worksharing loop

12 © 2022 Arm

OpenMP Barrier: Definition of a simple operation
Operation corresponding to barrier (omp.barrier)
Declaratively defined
def OpenMP_Dialect : Dialect {

let name = "omp";

}

class OpenMP_Op<string mnemonic,
list<OpTrait> traits = []> :

Op<OpenMP_Dialect, mnemonic, traits>;

def BarrierOp : OpenMP_Op<"barrier"> {

let summary = "barrier construct";

let description = [{

The barrier construct specifies an
explicit barrier at the point at which

the construct appears.

}];

let assemblyFormat = “attr-dict”;
}

v Definition of OpenMP Dialect,
OpenMP_Op

v Definition of barrier operation
instantiates an OpenMP_Op that
includes the name/mnemonic (barrier)

v A summary and description for
generating documentation

v An assembly format that is used to
construct the printer, parser and
builder for this Operation

v Simple Operation: No inputs/outputs

v Format just includes the name

v A dictionary of opaque attributes
can also be added

13 © 2022 Arm

Representation of OpenMP Worksharing Loop
def WsLoopOp : OpenMP_Op<"wsloop", […,

AllTypesMatch<["lowerBound", "upperBound", "step"]>]> {

…

let arguments = (ins Variadic<IntLikeType>:$lowerBound,

Variadic<IntLikeType>:$upperBound,

Variadic<IntLikeType>:$step,

UnitAttr:$nowait,
…

UnitAttr:$inclusive);

let regions = (region AnyRegion:$region);

…
let assemblyFormat = [{

oilist(…

|`collapse` `(` $collapse_val `)`

|`nowait` $nowait
| …

) `for` custom<WsLoopControl>($region, $lowerBound, $upperBound, $step,

type($step), $inclusive) attr-dict

}];

}

14 © 2022 Arm

Representation of OpenMP Worksharing Loop

!$omp do
do i = 1, a

…

end do
!$omp end do nowait

omp.wsloop nowait for (%i) : i32 = (%c1) to (%a)
inclusive step (%c1) {

…

}

Fortran + OpenMP source OpenMP MLIR

15 © 2022 Arm

Representation of Collapse

!$omp do collapse(3)
do i = 1, a
do j = 1, b
do k = 1, c
…

end do
end do

end do

omp.wsloop for (%i, %j, %k) : i32 = (%c1, %c1, %c1) to (%a,
%b,%c) inclusive step (%c1, %c1, %c1) {

…
}

Fortran + OpenMP FIR + OpenMP

16 © 2022 Arm

Representation of Privatisation

vNot all OpenMP details are represented in the dialect
vPrivatisation is handled while lowering from parse-tree to MLIR

vLonger term plan is to cover this in the OpenMP dialect
vPrivatisation creates copies of the variables
vCopies can be allocated on the stack
vExamples of Private and Firstprivate in the next two slides

17 © 2022 Arm

Privatisation – Private Clause

integer :: x
!$omp parallel private(x)
!$omp end parallel

%0 = fir.alloca i32 {bindc_name = "x", uniq_name = "_QFEx"}
omp.parallel {

%1 = fir.alloca i32 {bindc_name = "x", pinned, uniq_name =
"_QFEx"}

omp.terminator
}

Fortran + OpenMP FIR + OpenMP

18 © 2022 Arm

Privatisation – Firstprivate Clause

integer :: x
!$omp parallel firstprivate(x)
!$omp end parallel

%0 = fir.alloca i32 {bindc_name = "x", uniq_name = "_QFEx"}
omp.parallel {

%1 = fir.alloca i32 {bindc_name = "x", pinned, uniq_name =
"_QFEx"}

%2 = fir.load %0 : !fir.ref<i32>
fir.store %2 to %1 : !fir.ref<i32>
omp.barrier
omp.terminator

}

Fortran + OpenMP FIR + OpenMP

19 © 2022 Arm

Events/Schedule

Apr. 2018

F18/Flang project
announced

May. 2019

OpenMP IRBuilder
proposed

Sep. 2019

OpenMP Dialect
proposed

Jan. 2020

OpenMP IRBuilder +
First patch adding
dialect (barrier)

May. 2020

Parallel construct

Feb. 2021

Worksharing loop

Mid 2021 to Mid
2022

Threadprivate,
Single, Master,
Critical,

Jul. 2022 (exp)

OpenMP 1.1 Feature
Complete

Late. 2022 (exp)

Production Quality
OpenMP 1.1

20 © 2022 Arm

Status - Standards
vReaching close to OpenMP 1.1 completion

vIncludes a lot of the basic constructs
vA few non OpenMP 1.1 constructs are also in progress

vOpenMP 2.5 has the workshare construct specifically for Fortran : Not started
vOpenMP 3.0

v Task construct : In progress
vOpenMP 4.0

v Simd, Taskgroup, Target : In progress

Completed Mostly complete In Progress

OpenMP 1.1 Parallel, Do, Single,
Critical, Sections,
Master, Barrier, Flush

Atomic, Copyin,
Privatisation

Reduction, lastprivate

OpenMP 3.0/4.0 Task, Taskgroup Task, Taskgroup, Simd,
Target, Target Data
Map, Cancel,
Cancellation

21 © 2022 Arm

Status - Applications
vTested with a proxy application – SNAP

vhttps://github.com/lanl/SNAP
vAround 60 OpenMP directives
vOnly uses Fortran 95 and OpenMP 1.1
vExposed a few issues with

v OpenMP regions containing unstructured code (cycle, goto)
v Privatising index variables
v Reprivatising variables

vMore testing ongoing with Spec OMP 2012 and Spec 2017 speed

https://github.com/lanl/SNAP

22 © 2022 Arm

Command Guide
vShown some intermediate representations of the compiler

vThis slide gives the commands needed to generate these
vflang-new is the name of the driver

vUse -fopenmp flag to enable OpenMP processing
vUse -fc1 for generating intermediate representations

vEmit parse-tree
v./bin/flang-new -fc1 -fdebug-dump-parse-tree -fopenmp file.f90

vPerform parsing and semantic checks
v./bin/flang-new -fsyntax-only -fopenmp file.f90

vGenerate FIR + OpenMP
v./bin/flang-new -fc1 -emit-fir -fopenmp file.f90

vGenerate LLVM IR
v./bin/flang-new -S -emit-llvm -fopenmp file.f90

vFlang compiler is not yet fully open for users
vUse `-flang-experimental-exec` flag to generate executables
v./bin/flang-new -flang-experimental-exec -fopenmp file.f90

23 © 2022 Arm

How to contribute?

v Open-source: Welcome to contribute
vContributors

vAMD, Arm, BSC, Nvidia, Huawei, US Labs (ANL, BNL, LANL, ORNL), couple of hobby developers
vLLVM contribution process

vhttps://llvm.org/docs/Contributing.html#how-to-submit-a-patch

v Project Management via google docs spreadsheet
vSeparate sheets for Parsing, Semantics, OpenMP MLIR, lowerings, OpenMP IRBuilder
vCurrently has entries as per OpenMP 5.0
vhttps://docs.google.com/spreadsheets/d/1FvHPuSkGbl4mQZRAwCIndvQx9dQboffiD-

xD0oqxgU0/edit#gid=0

v Bi-weekly meeting on Thursday (4pm UK time)
vhttps://docs.google.com/document/d/1yA-MeJf6RYY-ZXpdol0t7YoDoqtwAyBhFLr5thu5pFI/edit

https://llvm.org/docs/Contributing.html
https://docs.google.com/spreadsheets/d/1FvHPuSkGbl4mQZRAwCIndvQx9dQboffiD-xD0oqxgU0/edit
https://docs.google.com/document/d/1yA-MeJf6RYY-ZXpdol0t7YoDoqtwAyBhFLr5thu5pFI/edit

© 2022 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

