

Advanced OpenMP Tutorial – Tasking
Christian Terboven

1	

OpenMP	Tasking	

Members	of	the	OpenMP	Language	Commi7ee	

Chris1an	Terboven	

Michael	Klemm	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

2	

Agenda	
n Intro by Example: Sudoku
n Scheduling and Dependencies
n Tasking Clauses

Advanced OpenMP Tutorial – Tasking
Christian Terboven

3	

Intro	by	Example:	
Sudoku	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

4	

n Lets solve Sudoku puzzles with brute multi-core force

 (1) Find an empty field

 (2) Insert a number

 (3) Check Sudoku

 (4 a) If invalid:
 Delete number,
 Insert next number
 (4 b) If valid:
 Go to next field

Sudoko	for	Lazy	Computer	Scien1sts	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

5	

n Each encountering thread/task creates a new task
à Code and data is being packaged up

à Tasks can be nested
à Into another task directive

à Into a Worksharing construct

n Data scoping clauses:
à shared(list)

à private(list) firstprivate(list)

à default(shared | none)

The	OpenMP	Task	Construct	
C/C++	

#pragma omp task [clause]
... structured block ...

Fortran	

!$omp task [clause]
... structured block ...
!$omp end task

Advanced OpenMP Tutorial – Tasking
Christian Terboven

6	

n OpenMP barrier (implicit or explicit)

à All tasks created by any thread of the current Team are

guaranteed to be completed at barrier exit

n Task barrier: taskwait

à Encountering task is suspended until child tasks complete

à Applies only to children, not descendants!

Barrier	and	Taskwait	Constructs	

C/C++	

#pragma omp barrier

C/C++	

#pragma omp taskwait

Advanced OpenMP Tutorial – Tasking
Christian Terboven

7	

n  This parallel algorithm finds all valid solutions

 (1) Search an empty field

 (2) Insert a number

 (3) Check Sudoku

 (4 a) If invalid:
 Delete number,
 Insert next number

 (4 b) If valid:
 Go to next field

 Wait for completion

Parallel	Brute-force	Sudoku	

#pragma omp task
needs	to	work	on	a	new	copy	
of	the	Sudoku	board	

first	call	contained	in	a	
#pragma omp parallel
#pragma omp single
such	that	one	tasks	starts	the	
execuJon	of	the	algorithm	

#pragma omp taskwait
wait	for	all	child	tasks	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

8	

n OpenMP parallel region creates a team of threads
#pragma omp parallel
{
#pragma omp single
 solve_parallel(0, 0, sudoku2,false);
} // end omp parallel

à Single construct: One thread enters the execution of
solve_parallel

à the other threads wait at the end of the single …
à … and are ready to pick up threads „from the work queue“

n Syntactic sugar (either you like it or you don‘t)
#pragma omp parallel sections
{
 solve_parallel(0, 0, sudoku2,false);
} // end omp parallel

Parallel	Brute-force	Sudoku	(2/3)	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

9	

n  The actual implementation
for (int i = 1; i <= sudoku->getFieldSize(); i++) {
 if (!sudoku->check(x, y, i)) {
#pragma omp task firstprivate(i,x,y,sudoku)
{
 // create from copy constructor
 CSudokuBoard new_sudoku(*sudoku);
 new_sudoku.set(y, x, i);
 if (solve_parallel(x+1, y, &new_sudoku)) {
 new_sudoku.printBoard();
 }
} // end omp task
 }
}

#pragma omp taskwait

Parallel	Brute-force	Sudoku	(3/3)	

#pragma omp taskwait
wait	for	all	child	tasks	

#pragma omp task
need	to	work	on	a	new	copy	of	
the	Sudoku	board	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

10	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

0	

1	

2	

3	

4	

5	

6	

7	

8	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 16	 24	 32	

Sp
ee
du

p	

Ru
nJ

m
e	
[s
ec
]	f
or
	1
6x
16
	

#threads	

Sudoku	on	2x	Intel	Xeon	E5-2650	@2.0	GHz	

Intel	C++	13.1,	sca7er	binding	 speedup:	Intel	C++	13.1,	sca7er	binding	

Performance	Evalua1on	

Is	this	the	best	
we	can	can	do?	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

11	

Performance	Analysis	

DuraJon:	0.16	sec	

DuraJon:	0.047	sec	

Event-based	profiling	gives	a		
good	overview	:	

Every	thread	is	execuJng	~1.3m	tasks…	

…	in	~5.7	seconds.	
=>	average	duraJon	of	a	task	is	~4.4	μs		

Tracing	gives	more	details:	

DuraJon:	0.001	sec	

DuraJon:	2.2	μs	

Tasks	get	much	smaller		
down	the	call-stack.	

lvl	6	

lvl	12	

lvl	48	

lvl	82	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

12	

Performance	Analysis	

DuraJon:	0.16	sec	

DuraJon:	0.047	sec	

Event-based	profiling	gives	a		
good	overview	:	

Every	thread	is	execuJng	~1.3m	tasks…	

…	in	~5.7	seconds.	
=>	average	duraJon	of	a	task	is	~4.4	μs		

Tracing	gives	more	details:	

DuraJon:	0.001	sec	

DuraJon:	2.2	μs	

Tasks	get	much	smaller		
down	the	call-stack.	

lvl	6	

lvl	12	

lvl	48	

lvl	82	

Performance	and	Scalability	Tuning	Idea:	If	you	have	created	
sufficiently	many	tasks	to	make	you	cores	busy,	stop	creaJng	
more	tasks!	
•  if-clause	
•  final-clause,	mergeable-clause	
•  naJvely	in	your	program	code	
	
Example:	stop	recursion		

Advanced OpenMP Tutorial – Tasking
Christian Terboven

13	

Performance	Evalua1on	

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

0	

1	

2	

3	

4	

5	

6	

7	

8	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 16	 24	 32	

Sp
ee
du

p	

Ru
nJ

m
e	
[s
ec
]	f
or
	1
6x
16
	

#threads	

Sudoku	on	2x	Intel	Xeon	E5-2650	@2.0	GHz	

Intel	C++	13.1,	sca7er	binding	 Intel	C++	13.1,	sca7er	binding,	cutoff	

speedup:	Intel	C++	13.1,	sca7er	binding	 speedup:	Intel	C++	13.1,	sca7er	binding,	cutoff	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

14	

n If the expression of an if clause on a task
evaluates to false

à The encountering task is suspended

à The new task is executed immediately

à The parent task resumes when the new task finishes

→ Used for optimization, e.g., avoid creation of small tasks

if	Clause	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

15	

Scheduling	and	
Dependencies	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

16	

n  Default: Tasks are tied to the thread that first executes them
→ not neccessarily the creator. Scheduling constraints:
à Only the thread a task is tied to can execute it

à A task can only be suspended at task scheduling points

à Task creation, task finish, taskwait, barrier, taskyield

à If task is not suspended in a barrier, executing thread can only switch
to a direct descendant of all tasks tied to the thread

n  Tasks created with the untied clause are never tied
à Resume at task scheduling points possibly by different thread

à No scheduling restrictions, e.g., can be suspended at any point

à But: More freedom to the implementation, e.g., load balancing

Tasks	in	OpenMP:	Scheduling	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

17	

n The taskyield directive specifies that the current
task can be suspended in favor of execution of a
different task.

à Hint to the runtime for optimization and/or deadlock

prevention

The	taskyield	Direc1ve	

C/C++	

#pragma omp taskyield

Fortran	

!$omp taskyield

Advanced OpenMP Tutorial – Tasking
Christian Terboven

18	

#include <omp.h>

void something_useful();
void something_critical();

void foo(omp_lock_t * lock, int n)
{
 for(int i = 0; i < n; i++)
 #pragma omp task
 {
 something_useful();
 while(!omp_test_lock(lock)) {
 #pragma omp taskyield
 }
 something_critical();
 omp_unset_lock(lock);
 }
}

taskyield	Example	

The	waiJng	task	may	be	
suspended	here	and	allow	the	
execuJng	thread	to	perform	

other	work;	may	also	
avoid	deadlock	situaJons.	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

19	

n Specifies a wait on completion of child tasks and their
descendant tasks

à „deeper“ sychronization than taskwait, but

à with the option to restrict to a subset of all tasks (as

opposed to a barrier)

The	taskgroup	Construct	
C/C++	

#pragma omp taskgroup
... structured block ...

Fortran	

!$omp taskgroup
... structured block ...
!$omp end task

Advanced OpenMP Tutorial – Tasking
Christian Terboven

20	

n  The task dependence is fulfilled when the predecessor task has
completed

à in dependency-type: the generated task will be a dependent task of

all previously generated sibling tasks that reference at least one of the
list items in an out or inout clause.

à out and inout dependency-type: The generated task will be a
dependent task of all previously generated sibling tasks that reference

at least one of the list items in an in, out, or inout clause.

à The list items in a depend clause may include array sections.

The	depend	Clause	
C/C++	

#pragma omp task depend(dependency-type: list)
... structured block ...

Advanced OpenMP Tutorial – Tasking
Christian Terboven

21	

n  Note: variables in the depend clause do not necessarily have
to indicate the data flow

Concurrent	Execu1on	w/	Dep.	

void process_in_parallel() {
 #pragma omp parallel

 #pragma omp single

 {
 int x = 1;

 ...
 for (int i = 0; i < T; ++i) {

 #pragma omp task shared(x, ...) depend(out: x) // T1

 preprocess_some_data(...);
 #pragma omp task shared(x, ...) depend(in: x) // T2

 do_something_with_data(...);

 #pragma omp task shared(x, ...) depend(in: x) // T3
 do_something_independent_with_data(...);

 }
 } // end omp single, omp parallel

}

T1	has	to	be	completed	
before	T2	and	T3	can	be	
executed.	
	

T2	 and	 T3	 can	 be	
executed	in	parallel.	

Degree	of	parallism	exploitable	in	this	concrete	example:	
T2	and	T3	(2	tasks),	T1	of	next	iteraJon	has	to	wait	for	them		

Advanced OpenMP Tutorial – Tasking
Christian Terboven

22	

„Real“	Task	Dependencies	
void blocked_cholesky(int NB, float A[NB][NB]) {
 int i, j, k;

 for (k=0; k<NB; k++) {

 #pragma omp task depend(inout:A[k][k])
 spotrf (A[k][k]) ;

 for (i=k+1; i<NT; i++)
 #pragma omp task depend(in:A[k][k]) depend(inout:A[k][i])
 strsm (A[k][k], A[k][i]);

 // update trailing submatrix
 for (i=k+1; i<NT; i++) {

 for (j=k+1; j<i; j++)

 #pragma omp task depend(in:A[k][i],A[k][j])
 depend(inout:A[j][i])
 sgemm(A[k][i], A[k][j], A[j][i]);

 #pragma omp task depend(in:A[k][i]) depend(inout:A[i][i])
 ssyrk (A[k][i], A[i][i]);

 }

 }
}

* image from BSC

Jack	Dongarra	on	OpenMP	Task	Dependencies:	
	
[…]	The	appearance	of	DAG	scheduling	constructs	in	the	OpenMP	4.0	
standard	offers	a	parJcularly	important	example	of	this	point.	UnJl	now,	
libraries	like	PLASMA	had	to	rely	on	custom	built	task	schedulers;	[…]	
However,	the	inclusion	of	DAG	scheduling	constructs	in	the	OpenMP	
standard,	along	with	the	rapid	implementaJon	of	support	for	them	(with	
excellent	mulJthreading	performance)	in	the	GNU	compiler	suite,	throws	
open	the	doors	to	widespread	adopJon	of	this	model	in	academic	and	
commercial	applicaJons	for	shared	memory.	We	view	OpenMP	as	the	
natural	path	forward	for	the	PLASMA	library	and	expect	that	others	will	
see	the	same	advantages	to	choosing	this	alterna1ve.	
	
Full	arJcle	here:	
h7p://www.hpcwire.com/2015/10/19/numerical-algorithms-and-
libraries-at-exascale/	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

23	

Tasking	Clauses	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

24	

n Parallelize a loop using OpenMP tasks
à Cut loop into chunks
à Create a task for each loop chunk

n Syntax (C/C++)
#pragma omp taskloop [simd] [clause[[,] clause],…]
for-loops

n Syntax (Fortran)
!$omp taskloop[simd] [clause[[,] clause],…]
do-loops
[!$omp end taskloop [simd]]

The	taskloop	Construct	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

25	

n Taskloop constructs inherit clauses both from
worksharing constructs and the task construct
à shared, private
à firstprivate, lastprivate
à default
à collapse
à final, untied, mergeable

n grainsize(grain-size)
Chunks have at least grain-size and max 2*grain-size loop
iterations

n num_tasks(num-tasks)
Create num-tasks tasks for iterations of the loop

Clauses	for	taskloop	Construct	

Advanced OpenMP Tutorial – Tasking
Christian Terboven

26	

n  The priority is a hint to the runtime system for task execution

order
n  Among all tasks ready to be executed, higher priority tasks

are recommended to execute before lower priority ones

à priority is non-negative numerical scalar (default: 0)

à priority <= max-task-priority ICV

à environment variable OMP_MAX_TASK_PRIORITY

n  It is not allowed to rely on task execution order being
determined by this clause!

priority	Clause	
C/C++	

#pragma omp task priority(priority-value)
... structured block ...

Advanced OpenMP Tutorial – Tasking
Christian Terboven

27	

n For recursive problems that perform task decompo-
sition, stopping task creation at a certain depth
exposes enough parallelism but reduces overhead.

n Merging the data environment may have side-effects
void foo(bool arg)

{

 int i = 3;

 #pragma omp task final(arg) firstprivate(i)

 i++;

 printf(“%d\n”, i); // will print 3 or 4 depending on expr

}

final	Clause	

C/C++	

#pragma omp task final(expr)

Fortran	

!$omp task final(expr)

Advanced OpenMP Tutorial – Tasking
Christian Terboven

28	

n If the mergeable clause is present, the implemen-
tation might merge the task‘s data environment

à if the generated task is undeferred or included

à undeferred: if clause present and evaluates to false

à included: final clause present and evaluates to true

n Personal Note: As of today, no compiler or runtime

exploits final and/or mergeable so that real world
applications would profit from using them L.

mergeable	Clause	

C/C++	

#pragma omp task mergeable

Fortran	

!$omp task mergeable

