OpenMP
OpenMP Tasking

Christian Terboven

Michael Klemm (intel.

sC15

Members of the OpenMP Language Committee 2@ “|hpc transforms.

Agenda OpenMP

H Intro by Example: Sudoku
B Scheduling and Dependencies
B Tasking Clauses

9@ 15

2 Advanced OpenMP Tutorial — Tasking Austin,
- Christian Terboven ™| hpc transforms.

OpenMP

Intro by Example: 9,@:.“5
S U d (9) ku *=|hpc transforms.

> SC15
3 Advanced OpenMP Tutorial — Tasking g Austin,
- Christian Terboven %] hpc transforms.

Sudoko for Lazy Computer Scientists OpenMP

B [ets solve Sudoku puzzles with brute multi-core force

6 8[11 15[14 16
15[11 16[14 12 6 : :
13] | 9[12 3l1614] [15[11]10 (1) Find an empty field
2l 16l [11] [15]10] 1
15[11[10 16| 2|13| 8| 9|12 (2) Insert a number
12[13 4l 1] 5] 6] 2| 3 11[10
51 el 1112] |9 [15[11]10] 7|16 3
2 10l M1l 6 5 13 9 (3) Check Sudoku
10] 7[15[11[16 12[13 6
0 0o ra o L M (4 a) If invalid:
1| | 4| 6| 9[13 71 111 1 3l16
16]14 71 T1ol15] 4| 6| 1 13] 8 Delete number,
11[10] [15 16] 9[12[13 1] 5| 4 Insert next number
121 11| 4/ 6] |16 11[10 (4 b) If valid:
51 | 8[12[13] |10 11] 2 14 .
316 10 - 5 e Go to next field

9@ c15

Austin

4 Advanced OpenMP Tutorial — Tasking .
- Christian Terboven %] hpc transforms.

The OpenMP Task Construct OpenMP

C/C++ Fortran
#fpragma omp task [clause] 'Somp task [clause]
. structured block structured block ...
''Somp end task

B Each encountering thread/task creates a new task
- Code and data is being packaged up

—> Tasks can be nested
—>Into another task directive
—Into a Worksharing construct
B Data scoping clauses:
> shared(/ist)
> private(list) firstprivate(list)

> default(shared | none)

7 SC15
Advanced OpenMP Tutorial — Tasking 9 Austin

Christian Terboven %] hpc transforms.

Barrier and Taskwait Constructs OpenMP

B OpenMP barrier (implicit or explicit)
- All tasks created by any thread of the current Team are

guaranteed to be completed at barrier exit

C/C++

fpragma omp barrier

B Task barrier: taskwait

- Encountering task is suspended until child tasks complete

- Applies only to children, not descendants!

C/C++

fpragma omp taskwait

7 sC15
n Advanced OpenMP Tutorial — Tasking 2 A

ustin,
Christian Terboven %] hpc transforms.

Parallel Brute-force Sudoku

OpenMP

B This parallel algorithm finds all valid solutions

I Aalaal

IAI_IJ ‘I

|4

15 1? first call contained in a 2
fpragma omp parallel -
13 9|12 #fpragma omp single —
2| |16 11 such that one tasks starts the _
15[11]10 execution of the algorithm |
12(13 4] 1| 5| o] 2| 3 11110
5 6 1112 9 15|11(10| 7|16 3
2 10l 111 A 5 13 9
10l 7115]11l16| #pragma omp task 3
9 needs to work on a new copy 1]
1 2 6l 9 .(Bfthe Sud_oku t?qard 2116 B
16|14 71 |10|15] 4| 6| 1 13| 8
11]10] |15 16] 9(12(13 11 5| 4
12 11 4| 6 16 11110

5 8|12|13 10 11] 2 14

3[16 10 7 6 12

#pragma omp taskwait

Advanced OpenMP Tut Wait for all child tasks
Christian Terboven

(1) Search an empty field
(2) Insert a number
(3) Check Sudoku

(4 a) If invalid:
Delete number,
Insert next number

(4 b) If valid:
Go to next field

Wait for ¢ ws

| hpc transforms.

Parallel Brute-force Sudoku (2/3) OpenMP

B OpenMP parallel region creates a team of threads
#fpragma omp parallel

{
#fpragma omp single

solve parallel (0, 0, sudokuZ, false);
} // end omp parallel

- Single construct: One thread enters the execution of

solve parallel

—~>the other threads wait at the end of the single ...

—> ... and are ready to pick up threads ,from the work queue”

B Syntactic sugar (either you like it or you don‘t)

fpragma omp parallel sections

{
solve parallel (0, 0, sudokuZ, false);
} // end omp parallel

7 SC15
n Advanced OpenMP Tutorial — Tasking 2 Austin

Christian Terboven %] hpc transforms.

Parallel Brute-force Sudoku (3/3) OpenMP

B The actual implementation
for (int 1 = 1; 1 <= sudoku->getFieldSize(); 1i++) {
if (!sudoku->check(x, vy, 1)) {
fpragma omp task firstprivate (i, x,y,sudoku)
{ #pragma omp task
// create from copy constructor need to work on anew copy of
CSudokuBoard new sudoku (*sudoku) the Sudoku board
new sudoku.set(y, x, 1);
if (solve parallel(x+1l, y, &new sudoku)) {
new sudoku.printBoard();

}
} // end omp task

}

fpragma omp taskwait #pragma omp taskwait

wait for all child tasks

. 19
- Advanced OpenMP Tutorial — Tasking AustTi;.| hpC transforms

Christian Terboven

OpenMP

Performance Evaluation

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

58 Intel C++ 13.1, scatter binding =#—speedup: Intel C++ 13.1, scatter binding

Is this the best
we can can do?

o .
- 0.0
5 6 7 8 9 10 11 12 16 24 32

H#threads

Runtime [sec] for 16x16

(CSC15

10 Advanced OpenMP Tutorial — Tasking Austin,
- Christian Terboven % hpc transforms.

Performance Analysis

Event-based profiling gives a
good overview :

Bl wetric tree

i Call tree [Flat view ‘

i System tree ’ Box < ’;l

103.547101 Time (
[J 0.000000 Minimum
7.165572 Maximun
127.000000 max a

5.088038e7 Visits ([

Every threa

L

CF [0 task_root
B [1.077944e7 1$omp tas
[1.077944e7 I$omp
[1.077936e7 I$omp
[80 !'$omp atomic q
[80 !$omp atomic @sudoki

G+ [1.854197e7 !$omp paralle|
[17 '$omp parallel @sudok|

Call tree Flat view i

= [J - machine Linux
& [- node cluster-phi.rz.

= [- Process
— [1.357093e6 M
— [1.359940e6 O

— [1.289513e6 O
— [1.318732e6 O
— [1.384539¢6 O
— [1.384849e6 O
L [1.368480e6 O

d is executing ~1.3m tasks...
ﬁ]. Box<|]

Metric tree

[J 0.000000 Minimum|
7.165572 Maximun
127.000000 max a¢

5.088038e7 Visits ([~
103.547101 Time (

[+ [] 0.000000 task_root
46.229420 I$omp task
0.000051 !$omp atomic @

57.317553 I$omp parallel

[0.000076 !$omp parallel @

... in ~5.7 seconds.

=> average duration of a task is ~4.4 ps

Advanced OpenMP Tutorial —
Christian Terboven

Tasking

b

F [- machine Linux
& [- node cluster-phi.rz.

B [- Process
— [5.787572 Mas
— [5.767037 OM
— [5.770846 OM
— [5.793451 OM
— [5.794502 OM
— [5.775753 OM
— [5.770343 OM
L [5.769917 OM

— [1.316294e6 OF|

OpenMP

Tracing gives more details:

6.80s 6.855 6.90's 6.95s 7.00's 7.05s 7.10s 7.15s

Master thread H
l$omp paraIIeI @sudoku [

—
<
—
(@)}

O WVWoONOULLEWN

=

Duration: 0.16 sec

6.80s 6.855 6.90's 6.955 7.00s 7.q§ s 7.10s 7.15s
Master thread
i H H : — ; H H
|V|1212W“W————~-~ i E—
13 0 5 KWE
14

Timeling

6.80 s 6.85s 6905 6955 7005 7055 7105 7155
Master thread !
7 B -
lv| 48 ¢ Eo—— ——"
49 "
50

Masterthre739d - - . m ‘5-
0 | A | ER 11
. T - =
vl 82 w e
Y Duration: 2.2 ps

Tasks get much smaller
down the call-stack.

ZC15

¥|hpc transforms.

Performance Analysis OpenMP

Event-based profiling gives a Tracing gives more details:

d 1 . 6.80 s 6.85s 6.90s 6.95s 7.00s 7.055s 7.10s 7.15s
A go O Ove rvl eW * i _ . Master thread :
Metric tree | Call tree | E1 Flat view B [l system tree | E[BoX ¢ >‘

W !somp parallel@sudokucpp:174 .
[5.088038e7 Visits (| [J 0 task_root | B[- machine Linux —
[103.547101 Time ([‘ EF [1.077944e7 !$omp tas [’ &} [- node cluster-phi.rz. Frl 1..1 — 5 Hompt

Performance and Scalability Tuning Idea: If you have created
sufficiently many tasks to make you cores busy, stop creating
more tasks!
e if-clause

e final-clause, mergeable-clause
e natively in your program code

Example: stop recursion

‘ ‘ (& omr ol ~ " puration: 2.2 s |
. in ~5.7 seconds. Tasks get much smaller
=> average duration of a task is ~¥4.4 us down the call-stack.

7 SC15
Advanced OpenMP Tutorial — Tasking 2 Austin, |hpc tronsforms

Christian Terboven

Performance Evaluation OpenMP

Sudoku on 2x Intel Xeon E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding Intel C++ 13.1, scatter binding, cutoff
=—speedup: Intel C++ 13.1, scatter binding =>=speedup: Intel C++ 13.1, scatter binding, cutoff

8 - 18

7 - 16
=
L>‘§ 6 - 14
—
= - 12
L 5 o
] - 10 3
Mg g
Q - 8
£ &
.Jé 3
0::_))

2 -4

1 -2

0 -0

1 2 3 4 5 6 7 8 9 10 11 12 16 24 32
#threads

 SC15
Advanced OpenMP Tutorial — Tasking Dg Austin,

Christian Terboven ™| hpc transforms.

if Clause OpenMP

M If the expression of an if clause on a task
evaluates to false

- The encountering task is suspended
- The new task is executed immediately
- The parent task resumes when the new task finishes

— Used for optimization, e.g., avoid creation of small tasks

(SC15
Advanced OpenMP Tutorial — Tasking 2 A

ustin,
Christian Terboven %] hpc transforms.

OpenMP

Scheduling and 9‘(§C15
Dependencies

| hpc transforms.

> SC15
15 Advanced OpenMP Tutorial — Tasking g Austin,
- Christian Terboven %] hpc transforms.

Tasks in OpenMP: Scheduling OpenMP

B Default: Tasks are tied to the thread that first executes them
— not neccessarily the creator. Scheduling constraints:

- Only the thread a task is tied to can execute it

— Atask can only be suspended at task scheduling points
—> Task creation, task finish, taskwait, barrier, taskyield
- If task is not suspended in a barrier, executing thread can only switch

to a direct descendant of all tasks tied to the thread

B Tasks created with the untied clause are never tied
- Resume at task scheduling points possibly by different thread
9

— But: More freedom to the implementation, e.g., load balancing

7 SC15
Advanced OpenMP Tutorial — Tasking 2 Austin

Christian Terboven %] hpc transforms.

The taskyield Directive OpenMP

B The taskyield directive specifies that the current
task can be suspended in favor of execution of a
different task.

-~ Hint to the runtime for optimization and/or deadlock

prevention
C/C++ Fortran
#fpragma omp taskyield 'Somp taskyield

7 sC15
Advanced OpenMP Tutorial — Tasking 2 A

ustin,
Christian Terboven %] hpc transforms.

taskyield Example OpenMP

#include <omp.h>

volid something useful ();
void something critical();

void foo(omp lock t * lock, 1int n)

{

for(int 1 = 0; 1 < n; 1i++)
#pragma omp task
{
something useful () ; @ Y

while('omp test lock(lock)) {
#fpragma omp taskyield

}

something critical();

omp unset lock(lock) ; . 4

| hpc transforms.

“ZC15

18 Advanced OpenMP Tutorial — Tasking
Christian Terboven

OpenMP

The taskgroup Construct

C/C++ Fortran
#fpragma omp taskgroup 'Somp taskgroup
. structured block structured block ...
''Somp end task

B Specifies a wait on completion of child tasks and their
descendant tasks

-, deeper” sychronization than taskwait, but

—>with the option to restrict to a subset of all tasks (as

opposed to a barrier)

7 sc15

J
19 Advanced OpenMP Tutorial — Tasking Austin,
- Christian Terboven 2 %] hpc transforms.

The depend Clause

OpenMP

C/C++

#fpragma omp task depend (dependency-type: list)
. structured block ...

The task dependence is fulfilled when the predecessor task has
completed

— in dependency-type: the generated task will be a dependent task of

all previously generated sibling tasks that reference at least one of the

list items in an out or inout clause.

- out and inout dependency-type: The generated task will be a
dependent task of all previously generated sibling tasks that reference

at least one of the list items in an in, out, or inout clause.

- The list items in a depend clause may include array sections.

7 SC15
Advanced OpenMP Tutorial — Tasking 2 Austin

Christian Terboven %] hpc transforms.

OpenMP

Concurrent Execution w/ Dep.

Degree of parallism exploitable in this concrete example:

T2 and T3 (2 tasks), T1 of next iteration has to wait for them
' has to be completed

vold process in parallel () {
fpragma omp parallel before T2 and can be
executed.

fpragma omp single

{
T2 and can be

executed in parallel.

int x = 1;

for (int 1 = 0; 1 < T; ++1) {

#fpragma omp task shared(x, ...) depend(out: x) // T1
preprocess some data(...);

#pragma omp task shared(x, ...) depend(in: x) // T2
do something with data(...);

#fpragma omp task shared(x, ...) depend(in: x)
do something independent with data(...);

}
} // end omp single, omp parallel

} “ZC15

21 Advanced OpenMP Tutorial — Tasking
- Christian Terboven %] hpc transforms.

,Real” Task Dependencies OpenMP

Jack Dongarra on OpenMP Task Dependencies:

[...] The appearance of DAG scheduling constructs in the OpenMP 4.0
standard offers a particularly important example of this point. Until now,
libraries like PLASMA had to rely on custom built task schedulers; |[...]
However, the inclusion of DAG scheduling constructs in the OpenMP
standard, along with the rapid implementation of support for them (with
excellent multithreading performance) in the GNU compiler suite, throws
open the doors to widespread adoption of this model in academic and
commercial applications for shared memory. We view OpenMP as the
natural path forward for the PLASMA library and expect that others will
see the same advantages to choosing this alternative.

Full article here:
http://www.hpcwire.com/2015/10/19/numerical-algorithms-and-

7 SC15
Advanced OpenMP Tutorial — Tasking 2 Austin

Christian Terboven %] hpc transforms.

OpenMP

Tasking Clauses Dgs‘f!ﬁfm

X

(SC15
Advanced OpenMP Tutorial — Tasking Dg Au

stin,
Christian Terboven %] hpc transforms.

The taskloop Construct OpenMP

B Parallelize a loop using OpenMP tasks
— Cut loop into chunks
- Create a task for each loop chunk

B Syntax (C/C++)

fprragma omp taskloop [simd] [clause[[,] clause],..]
for-l1oops

B Syntax (Fortran)

'Somp taskloop/simd] [clause[[,] clause],..]
do-loops
[!Somp end taskloop [simd]]

7 sc15

J
24 Advanced OpenMP Tutorial — Tasking Austin,
- Christian Terboven 2 %] hpc transforms.

Clauses for taskloop Construct OpenMP

B Taskloop constructs inherit clauses both from
worksharing constructs and the task construct

- shared, private

- firstprivate, lastprivate
> default

- collapse

- final, untied, mergeable

B grainsize(grain-size)
Chunks have at least grain-size and max 2*grain-size loop
iterations

B num tasks (num-tasks)
Create num-tasks tasks for iterations of the Ioop

7 sc15

25 Advanced OpenMP Tutorial — Tasking Austin,
- Christian Terboven 2 %] hpc transforms.

priority Clause OpenMP

C/C++

fpragma omp task priority(priority-value)
. structured block ...

B The priority is a hint to the runtime system for task execution
order

B Among all tasks ready to be executed, higher priority tasks
are recommended to execute before lower priority ones

—>priority is non-negative numerical scalar (default: 0)

—> priority <= max-task-priority ICV

—>environment variable OMP_MAX_TASK_ PRIORITY

M |t is not allowed to rely on task execution order being
determined by this clause!

7 SC15
Advanced OpenMP Tutorial — Tasking 2 Austin

Christian Terboven %] hpc transforms.

final Clause

OpenMP

B For recursive problems that perform task decompo-

sition, stopping task creation at a certain depth
exposes enough parallelism but reduces overhead.

C/C++ Fortran
fpragma omp task final (expr) 'Somp task final (expr)

B Merging the data environment may have side-effects

void foo(bool argqg)

{

int 1 = 3;
fpragma omp task final (arg) firstprivate (i)
1++;
printf (“&d\n”, 1i); // will print 3 or 4 depending on expr

L C15

Advanced OpenMP Tutorial — Tasking Tx'| hpc tronsforms

Christian Terboven

OpenMP

mergeable Clause

M If the mergeable clause is present, the implemen-
tation might merge the task's data environment

—if the generated task is undeferred or included

—>undeferred: if clause present and evaluates to false

—~included: final clause present and evaluates to true

C/C++ Fortran

fpragma omp task mergeable 'Somp task mergeable

B Personal Note: As of today, no compiler or runtime
exploits final and/or mergeable so that real world
applications would profit from using them ®.

7 sc15

(J
28 Advanced OpenMP Tutorial — Tasking Austin,
- Christian Terboven 2 %] hpc transforms.

