
OpenMP® Offloading

Support for VASP Using

Cray Compiler

January 2023

Presenter: Mahdieh Ghazimirsaeed

2 |

[Public]

Contributors

▪ Leopold Grinberg

▪ Bill Brantley

▪ Michael Klemm

▪ Justin Chang

▪ Ossian OReily

▪ Paul Mullowney

▪ Asitav Mishra

3 |

[Public]

Content

▪ Introduction

▪ Debugging and profiling OpenMP offloading code in VASP

▪ OpenMP Offloading Challenges in VASP

▪ Concurrent support for different directive-based paradigms

▪ Enable/disable offloading in different code paths

▪ Interface OMP offloading with ROCM libraries

▪ Compiler related challenges

▪ Pointer aliasing

▪ Pointer mismatch in subroutine calls

▪ Atomic update

▪ Declare target

▪ Data management

▪ Summary

4 |

[Public]

VASP (Vienna Ab Initio Simulation Package)

▪ A computer program for atomic scale materials modelling, e.g., electronic structure

calculations and quantum-mechanical molecular dynamics

▪ Currently used by more than 1400 research groups in academia and industry worldwide

▪ Software license agreements with the University of Vienna

▪ ~550K lines of FORTRAN 90 code (some FORTRAN 77)

5 |

[Public]

VASP support for directive-based and distributed programming

▪ Latest version: VASP.6.3.2 released in June 2022

▪ Supports MPI, OpenMP, and OpenACC

▪ Support for directive-based programming

▪ OpenMP support for execution on the host

▪ OpenACC support for execution on GPUs

▪ Working on adding support for OpenMP offloading to enable VASP execution on GPUs with OpenMP

▪ Cray Compiler

6 |

[Public]

Content

▪ Introduction

▪ Debugging and profiling OpenMP offloading code in VASP

▪ OpenMP Offloading Challenges in VASP

▪ Concurrent support for different directive-based paradigms

▪ Enable/disable offloading in different code paths

▪ Interface OMP offloading with ROCM libraries

▪ Compiler related challenges

▪ Pointer aliasing

▪ Pointer mismatch in subroutine calls

▪ Atomic update

▪ Declare target

▪ Data management

▪ Summary

7 |

[Public]

Debugging with Cray compiler: CRAY_ACC_DEBUG

CRAY_ACC_DEBUG=1

CRAY_ACC_DEBUG=2

CRAY_ACC_DEBUG=3

8 |

[Public]

Debugging with Cray compiler: –hlist=aimd

$ftn -hnoacc -homp -fopenmp -hlist=aimd -o ./teamsdis ./teamsdis.f90

teamsdis.f90

*.lst

9 |

[Public]

Profiling OpenMP® offloading code on AMD GPUs

▪ After compiling the code, run it with “rocprof --hip-trace”

$ftn -hnoacc -fopenmp -homp -o ./test ./test.f90

$rocprof --hip-trace ./test

▪ Open the .json file in chrome://tracing/ or https://ui.perfetto.dev/

https://ui.perfetto.dev/

10 |

[Public]

An example of VASP trace on AMD GPUs

▪ Use markers to map trace with different sections of the code

▪ add roctxRangePushA() and roctxRangePop()

▪ Compile with “-lroctx64 –lroctracer64”

▪ Run with “rocprof –hip-trace –roctx-trace”

11 |

[Public]

Content

▪ Introduction

▪ Debugging and profiling OpenMP offloading code in VASP

▪ OpenMP Offloading Challenges in VASP

▪ Concurrent support for different directive-based paradigms

▪ Enable/disable offloading in different code paths

▪ Interface OMP offloading with ROCM libraries

▪ Compiler related challenges

▪ Pointer aliasing

▪ Pointer mismatch in subroutine calls

▪ Atomic update

▪ Declare target

▪ Data management

▪ Summary

12 |

[Public]

Supporting concurrent directive-based paradigms in VASP

▪ Switch between different directive-based paradigms without letting them impact on each other

▪ Take advantage of source preprocessing

▪ Pros: switch between different directive-based paradigms

▪ Cons: makes the code messy

Used when VASP is compiled with OpenACC

Used when OpenMP (host) is

enabled and OpenMP

offloading/OpenACC is disabled

Used when OpenMP

offloading is enabled

13 |

[Public]

Enable/disable offloading in different code paths

▪ Many of the VASP subroutines are called from different code paths

▪ How can we enable offloading for a subroutine in one path and disable offloading for others

▪ It would be useful for code development and debugging

We can call OMP_PUSH_EXEC_ON(.TRUE.) or

OMP_PUSH_EXEC_ON(.FALSE.) to enable or disable

offloading in different code paths

14 |

[Public]

Interface OMP offloading with ROCM libraries

▪ VASP uses FFT, BLAS, and LAPACK extensively

▪ Developed a wrapper to interface OMP target regions with ROCM libraries

▪ rocFFT

▪ rocBLAS

▪ rocSolver

WOPT%CW_RED(A), CEIG(B), and WA%CW_RED(C) are

mapped to device with “omp target enter data map” directive

15 |

[Public]

Content

▪ Introduction

▪ Debugging and profiling OpenMP offloading code in VASP

▪ OpenMP Offloading Challenges in VASP

▪ Concurrent support for different directive-based paradigms

▪ Enable/disable offloading in different code paths

▪ Interface OMP offloading with ROCM libraries

▪ Compiler related challenges

▪ Pointer aliasing

▪ Pointer mismatch in subroutine calls

▪ Atomic update

▪ Declare target

▪ Data management

▪ Summary

16 |

[Public]

▪ Pointer aliasing occurs a lot in VASP

▪ It can be challenging for the compilers to deal with pointer aliasing on device

▪ Set CRAY_ACC_DEBUG=3 as environment variable to get the log

▪ This issue is resolved in CCE15

Pointer aliasing

17 |

[Public]

Pointer aliasing (alternative methods)

Launch a kernel Using target data construct

18 |

[Public]

Pointer mismatch in subroutine calls

$./aliasing

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

ce= (100.,100.)

:0:rocdevice.cpp :2660: 1637590862517 us:

86531: [tid:0x7fbe82217700]

Device::callbackQueue aborting with error :

HSA_STATUS_ERROR_MEMORY_APERTURE_V

IOLATION: The agent attempted to access memory

beyond the largest legal address. code: 0x29

Aborted

19 |

[Public]

Pointer mismatch in subroutine calls (alternative method)

20 |

[Public]

Atomic update for complex(8)

Original code Alternative

21 |

[Public]

The overhead of subroutine call assuming there is no need for

atomic update

Kernel time= 22 msKernel time= 80 ms

22 |

[Public]

Declare target

$make

ftn -fopenmp -c myddot.f90 -o myddot.o

!$omp parallel do simd reduction(+:RES)

ftn-7212 ftn: WARNING MYDDOT_VECTOR_GPU, File = myddot.f90, Line = 7

Variable "res" is used before it is defined.

ftn-7256 ftn: WARNING MYDDOT_VECTOR_GPU, File = myddot.f90, Line = 7

An OpenMP parallel construct in a target region is limited to a single thread.

Cray Fortran : Version 15.0.0.3 (20220920162820_088e5928c3724749216ddb6b2fbbcd2152ed2bb8)

Cray Fortran : Thu Jan 05, 2023 15:58:21

Cray Fortran : Compile time: 0.0472 seconds

Cray Fortran : 13 source lines

Cray Fortran : 0 errors, 2 warnings, 0 other messages, 0 ansi

Cray Fortran : "explain ftn-message number" gives more information about each message.

ftn -fopenmp -c reproducer.f90 -o reproducer.o

ftn -fopenmp myddot.o reproducer.o -o reproducer.x

error: reproducer.f90:28:0: in function reproducer_$ck_L25_1 void (i64, i64, i64, i64, i64, i64): unsupported call

to variadic function myddot_vector_gpu_

make: *** [Makefile:8: reproducer] Error 1

23 |

[Public]

Declare target (alternative method)

▪ To get around the error, we can define function in the same file as

function call

▪ It would be challenging to apply his workaround in the applications

with many function/subroutine calls

24 |

[Public]

Content

▪ Introduction

▪ Debugging and profiling OpenMP offloading code in VASP

▪ OpenMP Offloading Challenges in VASP

▪ Concurrent support for different directive-based paradigms

▪ Enable/disable offloading in different code paths

▪ Interface OMP offloading with ROCM libraries

▪ Compiler related challenges

▪ Pointer aliasing

▪ Pointer mismatch in subroutine calls

▪ Atomic update

▪ Declare target

▪ Data management

▪ Summary

25 |

[Public]

Data management

▪ Data management is challenging in porting big applications like VASP

▪ The present clause in OpenACC is very helpful for data management in VASP

▪ In OpenMP offloading, omp_target_is_present can be used but it makes the code

unmaintainable

▪ Present clause in OpenMP would be very useful for debugging and performance

optimization

26 |

[Public]

Summary

▪ Debugging and profiling OpenMP offloading code on AMD GPUs

▪ Discussed the challenges in adding OpenMP offloading support in VASP

▪ Compiler related challenges

▪ Having a standard benchmark for capturing the compiler related issues would be helpful

▪ Data management

▪ Having present clause in OMP offloading would be helpful to better deal with data management in big

applications

27 |

[Public]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The

information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,

component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes,

firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to

update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from time to time to the

content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF

AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD

SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO

EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING

FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS

PROVIDED “AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO

CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY

DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, and combinations thereof are trademarks of Advanced Micro Devices, Inc. in

the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

28 |

[Public]

	Slide 1: OpenMP® Offloading Support for VASP Using Cray Compiler
	Slide 2: Contributors
	Slide 3: Content
	Slide 4: VASP (Vienna Ab Initio Simulation Package)
	Slide 5: VASP support for directive-based and distributed programming
	Slide 6: Content
	Slide 7: Debugging with Cray compiler: CRAY_ACC_DEBUG
	Slide 8: Debugging with Cray compiler: –hlist=aimd
	Slide 9: Profiling OpenMP® offloading code on AMD GPUs
	Slide 10: An example of VASP trace on AMD GPUs
	Slide 11: Content
	Slide 12: Supporting concurrent directive-based paradigms in VASP
	Slide 13: Enable/disable offloading in different code paths
	Slide 14: Interface OMP offloading with ROCM libraries
	Slide 15: Content
	Slide 16
	Slide 17
	Slide 18: Pointer mismatch in subroutine calls
	Slide 19: Pointer mismatch in subroutine calls (alternative method)
	Slide 20: Atomic update for complex(8)
	Slide 21: The overhead of subroutine call assuming there is no need for atomic update
	Slide 22: Declare target
	Slide 23: Declare target (alternative method)
	Slide 24: Content
	Slide 25: Data management
	Slide 26: Summary
	Slide 27: Disclaimer
	Slide 28

